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Abstract

Beginning with the Cramér-Loéve spectral represen-
tation for a monstationary discrete-time random pro-
cess, one may derive the stochastic Rihaczek distribu-
tion as a natural time-frequency distribution. This dis-
tribution is within one Fourier transform of the time-
varying correlation and the frequency-varying correlo-
gram, and within two of the ambiguity function. But,
more importantly, it is a complex Hilbert space in-
ner product, or cross-correlation, between the time
series and its one-term Fourier expansion. To this
inner product we may attach an illuminating geome-
try. Moreover, the Rihaczek distribution determines
a time-varying Wiener filter for estimating the time
series from its local spectrum, the error covariance of
the estimator, and the related time-varying coherence.
The squared coherence is the magnitude-squared of the
complex Rihaczek distribution, normalized by its time
and frequency marginals. It is this squared coherence
that determines the time-varying localization of the
time series in frequency. Most of these insights ex-
tend to the characterization of time-varying and ran-
dom channels, in which case the stochastic Rihaczek
distribution is a fine-grained characterization of the
channel that complements the coarse-grained charac-
terization given by the ambiguity function.

1 Introduction

For every nonstationary, harmonizable random se-
quence there is a well-defined bivariate correlation
function and bivariate generalized spectral density.
Fourier transforms of these produce what might be
called the stochastic Rihaczek distribution [1], or the
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Rihaczek spectrum [4]. In this paper we review the
finding from [8] that this distribution is, in fact, a
Hilbert space inner product, or cross correlation, be-
tween the random sequence and its one-term Fourier
expansion.

We show that the stochastic Rihaczek distribution
determines a complex time-varying Wiener filter for
estimating a time series from a single value of its
global Fourier transform. Moreover, the magnitude
squared of the stochastic Rihaczek distribution deter-
mines the mean-squared error of the estimator, and
therefore provides a basis for determining the local
spectrum of the time series. Suitably normalized, the
stochastic Rihaczek distribution is the coherence, or
cosine-squared of the angle, between the time series
random variable z[n] and the Fourier transform ran-
dom variable Z(#). Thus the correct interpretation
of the stochastic Rihaczek distribution is that it dis-
tributes complex correlation over time and frequency,
and not power or energy.

These insights extend to the analysis of time-
varying and random channels. The stochastic Ri-
haczek distribution gives a fine-grained characteriza-
tion of a channel to complement the coarse-grained
characterization given by the ambiguity function.

2 The Stochastic Rihaczek Distribu-
tion and its Hilbert Space Geometry

Following the lead of [2], [3], [7], we shall be-
gin with the Cramér-Loeve spectral representation for
a discrete-time zero-mean nonstationary time series
{z[n],n € Z}:

z[n] = /” "X (6). (1)
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Here X (0) is a complex valued stochastic set function
with non-orthogonal increments, i.e.,

E{dX (6:)dX*(62)} = S1.(81,82)d61db:/(27).  (2)

The function Sp,(61,602) is the bivariate generalized
power spectrum for the time series and its bivariate
Fourier transform is the bivariate correlation sequence
for the time series:

rr[ni, ne] = E{z[ni]z[n]*} =
1

(2)2 /,7T [,r S1.(61,82)e/ " 0171202 df, db

The subscripts L denote Loeve spectrum and Loeve
correlation, after one of the discoverers of the Cramér-
Loeve spectral representation in Eq. (1). We shall as-
sume that the nonstationary time series {z[n],n € Z}
is square summable, with probability one, so that it
makes sense to Fourier transform realizations of the
series.

In the stationary limit, rp[ni,ns] — r[ny — nal,
which 1mphes SL(91,92) — 5(01)6(91 — 02)/(2’/T)2,
where S() = >, r[n]exp(—jfn); 0] <.

The Rihaczek distribution figures prominently in
Flandrin’s monograph “Temps-fréquence” [4] (see also
the English translation [5]. Its stochastic version is
obtained by first defining the frequency-varying spec-
trum S(9,0) = S (6 + 6,0) and the time-varying cor-
relation r(n, k) = rr(n,n — k), which are functions of
global frequency 6, local frequency d, global time n,
and local time k. Then, these are Fourier transformed
to produce the stochastic Rihaczek distribution [8]

oo
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The Fourier transform picture is completed by not-
ing that r[n, k] and S(d,0) are Fourier transforms of
V(n,0), and of each other:

r[n, k] = % i V(n,0)e*ds, (3)
S(0,6) = f: V(n,8)e . (4)

It is easy to check that in the stationary limit,
V(n,8) — S(#), so the conventional power spectral
density for stationary processes is recovered.
Actually, the stochastic Rihaczek distribution is
within one Fourier transform of the time- and
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Figure 1: Relation between time-frequency functions.

frequency-domain correlations, and within two of the
radar ambiguity function A[d, k] :

A, k) = rn,kle " = % [ﬂ S(8,6)el* dp.

n

In Fig. 1, we show the relation between the four key
time-frequency functions, r[n, k|, V[n, 6], A(J, k), and
S(6,6). Going from left to right implies a discrete
Fourier transform (DTFT) from local time k to global
frequency 6. Going from top to bottom implies a
DTFT from global time n to local frequency 4. Note
that while the stochastic Rihaczek distribution is a
function of global time and frequency variables, the
ambiguity function is a function of local time and fre-
quency variables.

Let us recall that r[n, k] is the expectation or inner
product E{z[n]z*[n — k]} and S(d,8) is the expecta-
tion or inner product E{Z(0 + §)z*(f)}. When these
identities are substituted into the definitions of the
stochastic Rihaczek distribution, we find that

V(n,0) = E{z[n](Z(0)e’’")*} = E{(z[nle7"")z*(6)},
where

2(0) =Y _ a[n]e™ .

This representation of V' (n, ) shows that the stochas-
tic Rihaczek distribution is nothing more than the
Hilbert space inner product between the time series
{x[n]} and its one-term Fourier expansion {Z()e’'"},
evaluated at time n. This inner product is in general
complex valued, but its marginals are real and non-
negative:

E{|Z(6) [’} = 5(0,6) =Y V(n,0) >0, (5)

B «fn] 7} = rfn, 0] = o~ /ﬁ V(n,0)d0 > 0. (6)
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The fact that marginals are non-negative and real does
not in any way suggest that the stochastic Rihaczek



distribution is a distribution of power or energy over
time and frequency. Rather, it is a distribution of
inner product or cross-correlation over time and fre-
quency.

In order to develop this geometry further, let us
construct the 2 x 1 complex vector

_ | =i
Z[naa] - |: Zf(a)egen :| ) (7)
and define its second-order covariance matrix K|n, 6]:

— H _ T[na 0] n
Ki[n,0] = E{z[n,0]z" [n,0]} = { Vi(n,8) S(0,6)
Under time delay ng and complex frequency modula-
tion e/ this covariance matrix is transformed by
the group action

r[n — ng, 0]

K[n,@] — V*(n,@—ao) V(n_no,a_e()) }

S(0,6 — 6y)
(8)

Thus this second-order description of the vector z[n, 6]
is co-variant under time delay and complex modula-
tion, which is one of the key requirements of a time-
frequency distribution [9], [10], [6].

From the covariance matrix K[n, 8] we can now read
out the Wiener filter W (n, 0) for estimating the com-
plex time series value z[n] from the one-term complex
valued Fourier-expansion Z(6) exp(jnf) as

B Vin,8) B V(n,0
W0 =560 = v,

)
5O

The mean-squared error Q(n,6) of the estimator
W (n,0)z(0)e’? is readily found to be

- Vn,0) |
Q(n,0) = r[n, 6] ll - W] -

V(n,0)

{; V(n,a)} L [T V(n,0)dd

=r[n,d [1-

By defining a complex valued time-frequency coher-
ence function as

V(n,0)

=v8) RENRY)

n

p(n,0) =

)
1/2

(10)
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Figure 2: Hilbert space geometry for stochastic Ri-
haczek distribution.

we see that the mean-squared error can be written as
Q(n,6) =rln. 6] (1= lp(m0)7) . (11)

Note that 0 < |p(n, 0)|2 < 1 can also be interpreted as
a correlation coefficient or a cosine squared.

This distribution of magnitude-squared coherence
over time and frequency seems to be the fundamen-
tal descriptor of the Rihaczek time-frequency distri-
bution. The reason is that it defines the cosine-
squared of the angle between the complex variable
z[n] and its one-term Fourier transform variable
#(6)e?™ in the Hilbert space of complex random vari-
ables. This cosine-squared is illustrated in Fig. 2,
where z[n] makes an angle ¢)(n, ) with z(8)e/’”, and
cos?4(n, 0) = |p(n, 0)|".

As long in time as the magnitude-squared coher-
ence |p(n,8)|” is close to one, then the time series
x[n] is estimable from the the one-term Fourier ex-
pansion z(6)e’’”. Equivalently, as long in 6 as the
the magnitude-squared coherence is close to one, the
spectrum Z(f) is estimable from the one-term Fourier
transform z[n]e /%" . This interpretation is illustrated
in Fig. 3, where it is suggested that a time series z[n]
which hugs the phasor z(#)e/’” over a time interval
0 < n < N —1 has a squared coherence near to one,
and may be said to have local spectrum Z(6) over that
interval.

3 Time-Varying Channels

Let us now extend this Hilbert space geometry to
the analysis of a linear time-varying channel, whose
impulse response at time n due to a unit pulse applied
at time m is hin, m]. Each of the variables n and m is
a global time variable. The output of the channel in



Figure 3: Approxzimation of x[n] (full line) by the
rotating phasor T(0) exp(jnb) (dashed line), for 6 =
27 /8. Bullets indicate sampling points.

response to an arbitrary input sequence z[n] is
y[n] = Z hin, m]xz[m]. (12)

There are two transforms of this unit-pulse response
hln,m] that will be of interest in this section and the
next. The first, H(#,m), characterizes the Fourier
transform of the unit pulse response, and the second,
H(n,#), the channel response to a complex exponen-
tial input.

H(6,m) =" hln,mle "’ (13)
H(n,0) = Zh[n,m]eime. (14)

H(0,¢) =Y H(n,d)e ™ =" H(B,m)e/™.
' " (15)

When this channel is excited by zero-mean, station-
ary white noise of unit variance, then the autocorre-
lation of the output is

rn, k] = E{y[nly*[n — k]} =
= Z hin,m]h*[n — k,m] = (h[n, ], h[n — k, ],

which is an inner product between h[n, m] and h[n —
k,m]. In this formula, n is a global output time vari-
able and k is a local output time variable. The vari-
ance of y[n] is 7[n,0] =Y, |h[n,m]> > 0.

The Fourier transform of the autocorrelation func-
tion on the global variable n produces the ambiguity
function

A, k) =) rln, kle™ ™, (16)

n

which cannot be written as an inner product. In this
formula, § and k are local frequency and time vari-
ables, respectively, as is usual for the ambiguity func-
tion.

The Fourier transform of the correlation sequence
on the variable k£ produces the time-averaged Rihaczek
distribution:

V(n,0) = Zr[n,k]e*jke =
k

= Z h[n,m]H*(a,m)e*jne = (h[n,-], H(6, _)ejn9>’

which is an inner product between the unit pulse
response h[n,m] and its one-term Fourier expansion
H(6,m)e’™. In this formula, n is a global time vari-
able and € is a global frequency variable. In fact, we
may say that r[n, k] and V(n,f) are a Fourier trans-
form pair, from which it follows that the time marginal
of V(n,#) is non-negative:

1 [7 9
o V(n,0)dd =rn,0] = %: |h[n,m]|* > 0. (17)

The Fourier transform of V(n,f) on the variable
n, or A(d, k) on the variable k, produces the spectral
correlation

S(6,0) =Y V(n,0)e =

= ST H(0 +6,m)H* (9, m) = (H(6 + 4, H(6,-))

which is an inner product between the complex fre-
quency responses H (6 + §,m) and H(A,m). In this
function the variable  is global frequency and the vari-
able 0 is local frequency. In fact V(n,6#) and S(4,6)
are a Fourier transform pair, from which it follows that
the frequency marginal of V' (n,#) is non-negative:

> V(n,0) =S5(0,6) =Y |H(®,m)]>>0. (18)

In summary, there are four descriptions of a time-
varying channel. The two variable correlation function
r[n, k] describes the autocorrelation of hln,m] at two
nearby points n and n — &, and this is independent of



m, because the input is white. The ambiguity function
is actually not very illuminating. The time-averaged
Rihaczek distribution describes the cross-correlation
between the impulse response at time n and its Fourier
transform at frequency 6. The spectral correlation de-
scribes the spectral autocorrelation between the com-
plex Fourier transform H (6, m) at two nearby frequen-
cies 8 and §. The extent to which the impulse response
h[n,m] is sinusoidal is measured by the time-frequency
coherence between it and the one-term Fourier expan-
sion H (8, m)e/™?.

4 Random Channels

In order to apply these results to random chan-
nels, we shall assume that the channel is a wide-
sense stationary-uncorrelated sources (WSSUS) chan-
nel. The meaning and influence of this assumption
will become clear in due course. We shall again be
interested in a channel whose unit pulse response is
h[n,m].

The first object of interest is the correlation be-
tween the channel output at time n to a complex ex-
ponential input of frequency 8 and a similar output at
time n—k to a complex exponential input of frequency
0 +94:

E{H(n,0)H"(n — k,0 + 6)} =
E{Z Z h[n,m)e™ h*[n — k, l]efjl(0+§)}-
mo

Under the WSSUS assumption, the expectation of
h[n,m]h*[n —k,1] is zero for mismatch between global
input times m and [, and dependent only on the local
difference in output times n and n — k:

E{h[n,m]h*[n — k,l]} = r[m, k]é[m — ] (19)

r[m, k] = E{h[n, m]h*[n — k,m]} (20)

In this equation, m is a global input time, k is a lo-
cal output time, and r[m, k] is the inner product be-
tween h[n,m] and hln — k,m]. This interpretation is
very important, and it differs from the interpretation
of r[n, k] in the analysis of the time-varying channel
with white noise input. For m = [ and k& = 0, the func-
tion r[m,0] = E{|h[n,m]|?} is the global time spread
function for the input, which measures the temporal
selectivity of the channel. This language is somewhat
different than the language of [11], but the equations
are the same. As long as the duration of r[m,0] is
small compared with the symbol rate of the channel,
then there is little temporal selectivity, or intersymbol
interference (ISI), in the channel.

Under the WSSUS assumption, we see that the am-
biguity function of the channel can be written as

A(6,k) = E{H(n,0)H*(n — k,0 + )} =
Zr[m, kle™™ = (H(n,8), H(n — k,0 + 6)).

m

In this ambiguity function, which is the Fourier trans-
form of the correlation function r[m, k|, the variable
0 is a local frequency variable and the variable k is a
local time variable. When evaluated at k£ = 0, this
ambiguity function is the spectral coherence function
A(6,0) = E{H(n,0)H*(n,0 + §)}, which measures
the frequency selectivity of the channel to sinusoids
of nearby frequencies, separated by §. Again, the lan-
guage is somewhat different than the language of [11],
but the results are the same. When the bandwidth of
A(6,0) is larger than the bandwidth of a symbolling
waveform, then there is little frequency selectivity in
the channel. Of course, the global time spread func-
tion r[m, 0] and the spectral coherence function A(4, 0)
constitute a Fourier transform pair.

The Fourier transform of the correlation function
r[m, k] is the stochastic Rihaczek distribution:

V(m,0) = Zr[m,k]e‘jw =
k
= E{h[n,m]H*(0,m)e="} = (h[n,m], H(8, m)e’™?)

This inner product describes the cross-correlation be-
tween h[n,m], the channel output at global time n to
an input at global time m and a single term Fourier
series expansion, H(#,m)e’™, using a single term in
the Fourier transform of h[n,m]. The extent to which
the impulse response h[n, m] is sinusoidal is measured
by the coherence between it and the one-term Fourier
expansion H (6, m)e/™?.

The Fourier transform of the Rihaczek distribution
on the global time variable m, or the Fourier transform
of the ambiguity function on the local time variable k
gives the spectral correlation function

S(6,0) =Y V(m,0)e ™ =" A5, k)e 7%, (21)
m k

which cannot be written as an inner product.

In summary, there are four descriptions of a random
channel. The two variable correlation function r[m, k]
describes the autocorrelation of h[n,m] at two nearby
outputs times n and n — k, and a common input time
m. The ambiguity function describes the autocorre-
lation between the output at two nearby times n and
n — k, when the inputs are complex exponentials with



nearby frequencies 6 and 6 + §. The stochastic Ri-
haczek distribution describes the cross-correlation be-
tween the impulse response at time n due to an excita-
tion at time m and its Fourier transform at frequency
f. The extent to which the impulse response h[n,m]
is sinusoidal is measured by the coherence between it
and the one-term Fourier expansion H(#, m)e/™?.

5 Conclusions

The Cramér-Loeve representation for a nonstation-
ary time series suggests that the stochastic Rihaczek
distribution V[n,#] is the natural time-frequency dis-
tribution to associate with the time-series. In [§],
drawing on the insights of [2], [3], [4], [6],[7], we showed
that the stochastic Rihaczek distribution is, in fact,
the Hilbert space inner product of the time series sam-
ple z[n] and its global Fourier transform value Z(6). In
this paper we have clarified this geometry by showing
that the stochastic Rihaczek distribution determines
the Hilbert space angle that the time series makes with
its spectrum. We have reviewed this geometry from
the point of view of a single time series value and a
single spectrum value. But the arguments generalize
easily to vectors of time series values within a time
domain window and vectors of frequency domain val-
ues within a spectral window. Then the appropriate
generalization is to canonical angles between a time
domain subspace and a frequency domain subspace.
This will be clarified in a forthcoming paper.

All of these insights have been extended to the de-
scription of time-varying channels and random chan-
nels that are WSSUS. For such channels the Rihaczek
distribution gives a fine-grained description, which
complements the coarse-grained description of the am-
biguity function.

The theory of stochastic Rihaczek distributions has
recently been extended to higher-order moment spec-
tra [12]. Also in the higher-order case, we find impor-
tant and useful Hilbert space interpretations.
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