GENERALIZED LAMPERTI TRANSFORMATION OF BROKEN SCALE INVARIANCE
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ABSTRACT

The Lamperti transformation is a powerful tool for studying
nonstationary self-similar processes via associated station-
ary generators. After having discussed how the Lamperti
transformation offers a new perspective on the represen-
tation of nonstationary self-similar processes, we propose
hereto enlargeits scopein two manners. First, we show that
many kinds of broken self-similarity admit Lamperti coun-
terparts which are weakened forms of stationarity: a promi-
nent example isthat of Discrete Scale Invariance (i.e., scale
invariance for some preferred scaling factors only), which
is the Lamperti image of cyclostationarity. Second, we in-
troduce modified versions of the original Lamperti transfor-
mation in order to stationarize other forms of broken scale
invariance such as local self-similarity or finite-size scale
invariance based on warped dilations properties.

1. LAMPERTI TRANSFORMATION: A NEW
READING

study H-ss processes from their increments or by means of
a wawelet transformation, known to stationarize the wavelet
coefficients of H-sssi processes [1]. The property (1) of-
fers a different possibility to cope with nonstationdifyss
processes by studying their stationary generator. A first se-
ries of consequences of the aforementioned approach allows
therefore to re-issue some problems on the representation
of genuinely self-similar processes and their manipulation.
Some recent advances in this direction have been proposed
in [2, 15, 19], and we will here elaborate on those results.

2. REPRESENTATION OF NONSTATIONARY
SELF-SIMILAR PROCESSES

2.1. Filtersand generators

In classical linear system theory, it is well-known that linear
filtersare those linear operatdgkséwhich are shift-covariant,
i.e., such that{S, = S, H for anyr € R. By analogy, it is
natural to introduce systems which preserve scaling proper-
ties [19, 18]. More precisely, a linear operagaracting on

Dating back to 1962 and the first ideas on self-similarity, a processe$ X (¢),t > 0}, will be said to be scale-covariant
classical result has been proved by J.W. Lamperti [11]: by if it commutes with any renormalized dilation, i.e., if we
means of a suitable invertible transformation, one can maphaveGDy , = Dy G for any H and any\ > 0. As a
stationary processes onto self-similar processes of iilex consequence of this definition, it can be shown [8] that the
(H-ss processes), i.e., processes that are invariance undaramperti transform maps linear filters onto scale-covariant

renormalized dilations.

systems. Moreover, if an operai@iis scale-covariant, then

More precisely, the Lamperti transform is defined for a it necessarily acts on processgk (t),t+ > 0} as a multi-

procesqY (t),t € R}as(LyY)(t) :== t"Y (logt), and the
corresponding inverse Lamperti transform acts on a process

{X(t),t > 0} according to(Ly 'z)(t) := e HtX(et).

The central property is that, given the time-shift operator
(§;Y) := Y (t + ) and the (renormalized) dilation opera-
tor (D, X)(t) := A~ X (\t), the transformation ensures

that

Ly DL = Sioga- (1)

plicative convolution, according to

+oo
(GX)(t) = / o(t/5) X(s) ds/s, @

and scale-covariant operators preserve self-similarity.
Continuing along this analogy-ss processes can be
represented as the output of scale-covariant systems, as sta-
tionary processes are outputs of linear filters. More pre-
cisely, stationarity being preserved by linear filtering, sta-
tionary processes admit a representation under a convolutive

It is of common knowledge indeed that self-similarity ¢,
and stationarity are mutually exclusive properties. Frequently, +oo
one adds a further assumption of stationary increments (“si”): Y(t) = / h(t — s) dB(s), ()
this enables to use usual (stationary) methods of analysis to —o0



with IEdB(t)dB(s) = 02 §(t — s) dt ds.
Applying the Lamperti transformation to (3) ends up
with the relation

“+ o0
(LaY)(t) = / (Lah)(t)s) (CdB)(s)/s  (4)

and, comparing with (2), this corresponds to the output of a
linear scale-covariant system whose input is such that

E(LydB)(t)(LydB)(s) = o? t* 1 §5(t — s)dtds. (5)

It then follows that anyH-ss proces{ X (¢),t > 0}
can be represented as the output of a linear scale-covaria
system of some impulse responge):

X(#)

(6)

+oo
— [ atssavisys
0
with IEQV (¢)dV (s) = o2 t2H+1 §(t — s) dt ds.
From a dual perspective, stationary proceg3ég),t €
R} are known to admit a Craén representation [16]

+oo
v = [ errap) @
with spectral increment& (/) such that
BdS(f)dE(v) = 0(f —v)dSy (f) dv, €

anddSy (f) = 'y (f) df in case of absolute continuity with
respect to the Lebesgue measure. Moreover, the Fourie
transform of the spectral measuiBy (f) identifies to the

covariance function which, in this case, takes necessarily on

the formRy (¢, s) := IEY ()Y (s) = vy (t—s), with vy ()
anon-negative definite function, and we get from (3) that:

dSy (f) = o [(Fh)(f)I* df, 9)

whereF stands for the Fourier transformation.

In a very similar way, the covariance function Hf-ss
processe$ X (t),t > 0} expresses necessarilyBs (¢, s) =
(ts) cg (t/s), with cg (exp(.)) some non-negative definite
function. Given (6), we have explicitly

“+o0
cp(N) =a* \H / g(0) g(\g)de/e*H+L (10)
0

and the power spectrum density of the stationary counter-
part{(£;'X)(t),t € R} of {X(t),¢ > 0} is simply given
by

Feoay(f) = 0 (Mg)(H +i2nf)P, (1)

where

(Mg)(s) : (12)

“+o0
/ gyt 1at
0

stands for the Mellin transform.

The fact that the Mellin transform appears in this context
just results from the Lamperti transformation of (7), thanks
to which self-similar processes can be expanded on a ba-
sis of “chirps”t! exp(i2n f log t), obtained as the Lamperti
image of “tones’exp(i2w ft).

2.2. Examples
2.2.1. Fractional Brownian motion

Fractional Brownian motion (fBm) By (t) [12] is the most

n\ﬁ:ell-known example of aH-sssi” process and it is in fact
t

e only H-sssi process which is Gaussian. Its covariance
function reads

0,2

2

with 02 := IEB%(1) and0 < H < 1, thus offering an
extension of ordinary Brownian motiofs(t) = B /o(t)
(known to have uncorrelated increments) to situations where
increments may be correlated (negatively ik H < 1/2
and positively ifl /2 < H < 1).

Since fBm isH-ss, its covariance function (13) can be
factorized aR g, (t, 5) = (ts) cx(t/s), with

Rp,(t,s) = (tQH + g2 _ [t — 3|2H) , (13)

2
g
ca(\) = - M AT (1= 1= AP)], (14)
and it follows that the covariance function of the inverse
Lamperti transform{Yz (t) := (L' Bu)(t),t € R} ex-
presses as [8, 19]:

Yy (T) = o? (cosh(H|7'\) -2 sinh(|7’\/2)]2H/2) . (15)

Manipulating (nonstationary) fBm is usually made eas-
ier by resorting to its (stationary) increments, although this
may be at the expense of facihgng-range dependence
(LRD) when1/2 < H < 1. In contrast, it follows from
(15) that

Ty, (7_) x e~ min(H,1-H)T (16)

whent — oo, which means that the stationary counterpart
of fBm is indeedshort-range dependent for any H € (0, 1),
since its correlation function decreases exponentially fast at
infinity.

As shown in [14, 15], using the Lamperti transforma-
tion in the context of linear estimation of self-similar pro-
cesses makes possible a number of manipulations (such as
whitening or prediction) which otherwise prove much more
difficult to handle. Factoring the Fourier transform of (15)
and using representations Bfss processes as in (6), it then
becomes possible to, e.g., re-derive representation formulse
for fBm on a finite interval using a finite interval of ordinary
Bm (and vice-versa), as well as to get explicit prediction
formulae for fBm.



2.2.2. Ornstein-Uhlenbeck processes 3. BROKEN SCALE INVARIANCE

If we let H = 1/2in (15), we readily get for the (sta- |5 many cases, exact self-similarity (or exact stationarity) is

tionary) covariance function the simple exponential form qever a too strong requirement for a proper modeling of

7Y1/2(7’_) = o exp{—|r|/2} which is characteristic of the  re4|jife situations. In this respect, we propose to enlarge the

Ornstein-Uhlenbeck proce$¥ »(t), € IR}, knowntobe | amperti transformation in order to study processes which
the Lamperti image of ordinary Brownian motion and solu- are not exactly self-similar.

tion of the Langevin equation: Before pursuing this program, we can first remark that

_ a process with any form of broken scale invariance can no

dY (t) + ¥ (t) dt = dB(t), (17) longer be the Lamperti image of a stationary process. It

with o = 1/2. Lamperti transforming the general Langevin S however always possible to apply the Lamperti trans-

equation (17), and defining () := (LxY)(?), it follows  formation to nonstationary processes, resulting in specific

that the proces§X (t),¢ > 0} is H-ss and solution of classes of processes with broken scale invariance. As a gen-
eralization of (7), it is known that nonstationary processes
tdX(t) + (o — H) X (t)dt =dV (t), (18) {Y (t),t € IR} still admit a CAmer-like decomposition, but

] ] ] _with correlated spectral increments:
wheredV (¢) is covariance-equivalent to the “modulated white

noise”dV (t) := t"+1/2 dB(t). Ede(f)dé(v) = d* Dy (f,v), (22)
Alternatively, for a givena. > 0, Ornstein-Uhlenbeck
processes admit the integral representation i.e., with spectral masses which are not located along the
, only diagonal of the frequency-frequency plane. Provided
Ya(t) = / o—olt—s) dB(s), (19) that the L@&ve’s condition [16]
oo oo
2
whose Lamperti transform reads //_Oo |d°®y (f, )] < o0 (23)
+oo . . g . .
Y _ Hea ) [sH/2 4B is satisfied, the corr_espondmg nonstationary processes are
i (t) /0 [(t/5) u(t/s = Dlls dB(s))/s, referred to asiarmonizable, and such that

(20) +oo
Ry (t,s) = / / G =) R (F). (24)

with u(.) the unit step function.
We recognize in (20) an example of the general repre-

sentation (6), with the identificatiof(6) := 07~ u(0 —1) As a follow-up, a companion concept olultiplicative
anddV (t) := tH+1/24B(t). This H-ss process has for harmonizability can be introduced [2] in the case of pro-
(nonstationary) covariance function: CesseS{X(t),t > O} dEViating from exact Self'Sim”arity.

This readily follows from the “lampertization” of (7) which,
Ry, ,(t s) = o? (min(t,s))” T (max(t,s))”~*. (21) together with (23), leads to

In the general case of arbitratyand H, this makes of O ione
{Xa u(t),t > 0} a versatile 2-parameter model [13], in (LuY)() :/ t d¢(o), (29)
which H controls self-similarity whereas may be related -
to long-range dependence. whereas the restriction of this general expression to the spe-

cial case of independent spectral increments leads to the
2.2.3. Euler-Cauchy processes representation considered, e.g., in [7, 9, 19].
As a thi_rd example, we can br_iefly mentio_n that _(17) can 31 Discrete scaleinvariance
be rewritten as a stochastic (first-order) differential equa-
tion, from whichY (¢) is usually interpreted as the output of An important example of broken self-similarity which en-
afirst-order linear system whose input is white noigét). ters the above framework of multiplicative harmonizability
Such a system constitutes a building block for more compli- is that ofDiscrete Scale Invariance (DSI), i.e., scale invari-
cated ones (with elementary sub-systems in cascade and/cince for some preferred scaling factors only. While rou-
in parallel), and it can also be generalized to higher orders,tinely present in toy systems (think of the triadic Cantor
as in ARMA(p, q) processes. The (self-similar) Lamperti Set, for which exact replication can only be achieved for
counterparts of such (stationary) processes are referred to ascale factor§ A = 3% k € Z}, or of the Mellin “chirps”
Euler-Cauchy processes, and we refer the interested readedf the form¢* exp(i2x f; log t), for which scale invariance
to [19] (or [8]) for more details. applies for{\ = (exp(l/fo))k,k: € 7} only), DSI has



in fact been recently put forward as a central concept in 3.2. Local self-similarity
the study of many critical systems [17], and it has received
much attention in a deterministic context. An extension
of the DSI concept to stochastic processes has been pro
posed [2], according to which a proce§X (¢),t > 0}
is said to possess a discrete scale invariance of irfdlex
and of scaling facton, > 0 (or to be {H, X\y)-DSI") if
{(DuxX)(t),t > 0} 4 {X(t),t > 0} for some preferred
scale factor\, (and, hence, for any = )5, k € 7).

Given this definition, it is straightforward to establish
[2] that the Lamperti transformation guarantees a one-to-

Another possibility that we will just mention is to connect
locally self-similar processes, among them the multifrac-
tional Brownian motion (mfBm) (and its generalizations)
[5], to locally stationary processes. As shown in [3, 8],
this can be achieved via the introduction of a local Lam-
perti transformation around some timg thanks to which
alocally stationary generator of the mfBm can be obtained.

3.3. Finitesize scaleinvariance

one correspondence between DSI processescynidsta- A third variation is concerned with the experimental evi-
tionary (or periodically correlated) processes, i.e., those pro- dence that scale invariance is usually only observed over
cesses for whicH (S7,Y)(¢),t € IR} 4 {Y(t),t € R} some finite range for scales and/or fields. In order to cope

for some preferred period, only (and all integer multi-  With this issue, it is worth noting that, whereas the renor-
plesT = kTy, k € 7Z) [10]. More precisely, if a process malized dilation operatdP , usually acts on the “natural”
{Y(t),t € R} is Tp-cyclostationary, its Lamperti trans- representation of a procedYt), other representations may
form {(LyY)(t),t > 0} is (H,e™)-DSI. Conversely, ifa  prove more useful for a sake of generalization. Introduc-
process( X (t),t > 0} is (H, \o)-DSI, its inverse Lamperti  ing indeed the modified representatioR := log(X/Xj)
transform{ (L' X)(t), t € R} is (log \o)-cyclostationary. ~ (whereX(¢) > 0 and X, is some reference for the fiel)l

Itis well-known that, in contrast with the stationary case and the associated logarithmic time warping= log(t/to)
for which the spectral distribution function is entirely con- (wheret > 0 andt, is some reference for time), it happens
centrated along the main diagonal= f of the frequency-  that self-similarity is turned into the equality:
frequency plane, that of cyclostationary processes is also

non-zero along equally spaced parallel lines [10]: Ux(s) 4 Ux(s+p)—Hu (28)
) °° or, in other words, into the stationarity dfx (s) — Hs.
POy (f,v)= > caw) (v — (f —n/To)) df dv. Following Nottale and Dubrulle [6], the “additive” rep-
n=Teo (26) resentation obtained this way can then be modified so as

to accommodate for finite size effects pertaining to scale
This is a direct consequence of the existence of a Fourierand/or fields. To this end, the idea is to generalize addition

series expansion for the covariance function of cyclostation—szoégﬁrgzoar?ﬁrﬁzggglg\;\ésuzostt?fétrfrzmﬁ'?Qiéorzgg]e't; '?fti\:'e
ry pr . Therefore, since DSI pr result from). . ’
a“y processes " eretore, since S| processes resu "OMirst restrict scale to belong to some finite intervld _, s, |,
a“lampertization” of cyclostationary processes, we readily the solution is given by the composition law [61-
get that(H, A\o)-DSI processeg X (¢),t > 0} have a co- 9 y P (6]
variance function of the form: S1 4 82 — s182(1/5_ +1/54)
S1® 89 1=

2
1—s182/5_ 84 ’ (29)

o0

Rx(t, kt) = (k)" Y~ Cu(logh) t?+m/To - (27)

o which of course reduces to addition when the cuteffand

s+ go to infinity. A companion composition la®w can be
with Ty = log Ao. introduced the same way for fields, thus leading to define
Stochastic DSI processes can be considered from twofinite size scale invariance by generalizing (28) according
different perspectives. On the one hand, “delampertizing” to:
DSI processes make them enter the better known world of
cyclostationary processes to which numerous tools have been Ux(s) 4 Ux(s® u) @ g(p). (30)
dedicated (e.g., cyclic spectrum analysis). On the other
hand, DSI processes can be viewed as resulting from the  Inthis expression, the functigi{.) accounts for a renor-
“lampertization” of cyclostationary processes, so that it can Malization analogous to the ' pre-factor of the ordinary
be imagined to apply to them specific tools which would (renormalized) dilation, and it can be further expressed as
themselves result from the lampertization of classical ones.9(it) = Sg' (—HSo(n)), whereSg and S, stand for the
We will here not comment further on both aspects, and we 15 — : . .
. . ue to space limitations, the discussion is limited here to positive pro-

refer the interested reader to [3] for a more detailed accountcesses but this positivity restriction can be alleviated at the expense of
including analysis, synthesis, modeling and examples. considering more complicated groups based on modulus and sign [3].
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