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ABSTRACT

The Lamperti transformation is a powerful tool for studying
nonstationary self-similar processes via associated station-
ary generators. After having discussed how the Lamperti
transformation offers a new perspective on the represen-
tation of nonstationary self-similar processes, we propose
here to enlarge its scope in two manners. First, we show that
many kinds of broken self-similarity admit Lamperti coun-
terparts which are weakened forms of stationarity: a promi-
nent example is that of Discrete Scale Invariance (i.e., scale
invariance for some preferred scaling factors only), which
is the Lamperti image of cyclostationarity. Second, we in-
troduce modified versions of the original Lamperti transfor-
mation in order to stationarize other forms of broken scale
invariance such as local self-similarity or finite-size scale
invariance based on warped dilations properties.

1. LAMPERTI TRANSFORMATION: A NEW
READING

Dating back to 1962 and the first ideas on self-similarity, a
classical result has been proved by J.W. Lamperti [11]: by
means of a suitable invertible transformation, one can map
stationary processes onto self-similar processes of indexH
(H-ss processes), i.e., processes that are invariance under
renormalized dilations.

More precisely, the Lamperti transform is defined for a
process{Y (t), t ∈ R} as(LHY )(t) := tHY (log t), and the
corresponding inverse Lamperti transform acts on a process
{X(t), t > 0} according to(LH

−1x)(t) := e−HtX(et).
The central property is that, given the time-shift operator
(SτY ) := Y (t + τ) and the (renormalized) dilation opera-
tor (DH,λX)(t) := λ−HX(λt), the transformation ensures
that

LH
−1DH,λLH = Slog λ. (1)

It is of common knowledge indeed that self-similarity
and stationarity are mutually exclusive properties. Frequently,
one adds a further assumption of stationary increments (“si”):
this enables to use usual (stationary) methods of analysis to

studyH-ss processes from their increments or by means of
a wavelet transformation, known to stationarize the wavelet
coefficients ofH-sssi processes [1]. The property (1) of-
fers a different possibility to cope with nonstationaryH-ss
processes by studying their stationary generator. A first se-
ries of consequences of the aforementioned approach allows
therefore to re-issue some problems on the representation
of genuinely self-similar processes and their manipulation.
Some recent advances in this direction have been proposed
in [2, 15, 19], and we will here elaborate on those results.

2. REPRESENTATION OF NONSTATIONARY
SELF-SIMILAR PROCESSES

2.1. Filters and generators

In classical linear system theory, it is well-known that linear
filters are those linear operatorsH which are shift-covariant,
i.e., such thatHSτ = SτH for anyτ ∈ R. By analogy, it is
natural to introduce systems which preserve scaling proper-
ties [19, 18]. More precisely, a linear operatorG, acting on
processes{X(t), t > 0}, will be said to be scale-covariant
if it commutes with any renormalized dilation, i.e., if we
haveGDH,λ = DH,λG for any H and anyλ > 0. As a
consequence of this definition, it can be shown [8] that the
Lamperti transform maps linear filters onto scale-covariant
systems. Moreover, if an operatorG is scale-covariant, then
it necessarily acts on processes{X(t), t > 0} as a multi-
plicative convolution, according to

(GX)(t) =
∫ +∞

0

g(t/s) X(s) ds/s, (2)

and scale-covariant operators preserve self-similarity.
Continuing along this analogy,H-ss processes can be

represented as the output of scale-covariant systems, as sta-
tionary processes are outputs of linear filters. More pre-
cisely, stationarity being preserved by linear filtering, sta-
tionary processes admit a representation under a convolutive
form:

Y (t) =
∫ +∞

−∞
h(t − s) dB(s), (3)



with IEdB(t)dB(s) = σ2 δ(t − s) dt ds.
Applying the Lamperti transformation to (3) ends up

with the relation

(LHY )(t) =
∫ +∞

0

(LHh)(t/s) (LHdB)(s)/s (4)

and, comparing with (2), this corresponds to the output of a
linear scale-covariant system whose input is such that

IE(LHdB)(t)(LHdB)(s) = σ2 t2H+1 δ(t − s) dt ds. (5)

It then follows that anyH-ss process{X(t), t > 0}
can be represented as the output of a linear scale-covariant
system of some impulse responseg(.):

X(t) =
∫ +∞

0

g(t/s) dV (s)/s, (6)

with IEdV (t)dV (s) = σ2 t2H+1 δ(t − s) dt ds.
From a dual perspective, stationary processes{Y (t), t ∈

R} are known to admit a Craḿer representation [16]

Y (t) =
∫ +∞

−∞
ei2πft dξ(f), (7)

with spectral incrementsdξ(f) such that

IEdξ(f)dξ(ν) = δ(f − ν) dSY (f) dν, (8)

anddSY (f) = ΓY (f) df in case of absolute continuity with
respect to the Lebesgue measure. Moreover, the Fourier
transform of the spectral measuredSY (f) identifies to the
covariance function which, in this case, takes necessarily on
the formRY (t, s) := IEY (t)Y (s) = γY (t−s), with γY (.)
anon-negative definite function, and we get from (3) that:

dSY (f) = σ2 |(Fh)(f)|2 df, (9)

whereF stands for the Fourier transformation.
In a very similar way, the covariance function ofH-ss

processes{X(t), t > 0} expresses necessarily asRX(t, s) =
(ts)H cH(t/s), with cH(exp(.)) some non-negative definite
function. Given (6), we have explicitly

cH(λ) = σ2 λ−H

∫ +∞

0

g(θ) g(λθ) dθ/θ2H+1, (10)

and the power spectrum density of the stationary counter-
part{(L−1

H X)(t), t ∈ R} of {X(t), t > 0} is simply given
by

ΓL−1
H X(f) = σ2 |(Mg)(H + i2πf)|2, (11)

where

(Mg)(s) :=
∫ +∞

0

g(t) t−s−1 dt (12)

stands for the Mellin transform.
The fact that the Mellin transform appears in this context

just results from the Lamperti transformation of (7), thanks
to which self-similar processes can be expanded on a ba-
sis of “chirps”tH exp(i2πf log t), obtained as the Lamperti
image of “tones”exp(i2πft).

2.2. Examples

2.2.1. Fractional Brownian motion

Fractional Brownian motion (fBm) BH(t) [12] is the most
well-known example of a “H-sssi” process and it is in fact
the onlyH-sssi process which is Gaussian. Its covariance
function reads

RBH
(t, s) =

σ2

2
(
t2H + s2H − |t − s|2H

)
, (13)

with σ2 := IEB2
H(1) and0 < H < 1, thus offering an

extension of ordinary Brownian motionB(t) ≡ B1/2(t)
(known to have uncorrelated increments) to situations where
increments may be correlated (negatively if0 < H < 1/2
and positively if1/2 < H < 1).

Since fBm isH-ss, its covariance function (13) can be
factorized asRBH

(t, s) = (ts)H cH(t/s), with

cH(λ) =
σ2

2
[
λH + λ−H

(
1 − |1 − λ|2H

)]
, (14)

and it follows that the covariance function of the inverse
Lamperti transform{YH(t) := (L−1

H BH)(t), t ∈ IR} ex-
presses as [8, 19]:

γYH
(τ) = σ2

(
cosh(H|τ |) − [2 sinh(|τ |/2)]2H/2

)
. (15)

Manipulating (nonstationary) fBm is usually made eas-
ier by resorting to its (stationary) increments, although this
may be at the expense of facinglong-range dependence
(LRD) when1/2 < H < 1. In contrast, it follows from
(15) that

γYH
(τ) ∝ e−min(H,1−H)τ (16)

whenτ → ∞, which means that the stationary counterpart
of fBm is indeedshort-range dependent for anyH ∈ (0, 1),
since its correlation function decreases exponentially fast at
infinity.

As shown in [14, 15], using the Lamperti transforma-
tion in the context of linear estimation of self-similar pro-
cesses makes possible a number of manipulations (such as
whitening or prediction) which otherwise prove much more
difficult to handle. Factoring the Fourier transform of (15)
and using representations ofH-ss processes as in (6), it then
becomes possible to, e.g., re-derive representation formulæ
for fBm on a finite interval using a finite interval of ordinary
Bm (and vice-versa), as well as to get explicit prediction
formulæ for fBm.
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2.2.2. Ornstein-Uhlenbeck processes

If we let H = 1/2 in (15), we readily get for the (sta-
tionary) covariance function the simple exponential form
γY1/2

(τ) = σ2 exp{−|τ |/2} which is characteristic of the
Ornstein-Uhlenbeck process{Y1/2(t), t ∈ IR}, known to be
the Lamperti image of ordinary Brownian motion and solu-
tion of the Langevin equation:

dY (t) + α Y (t) dt = dB(t), (17)

with α = 1/2. Lamperti transforming the general Langevin
equation (17), and definingX(t) := (LHY )(t), it follows
that the process{X(t), t > 0} is H-ss and solution of

t dX(t) + (α − H) X(t) dt = dV (t), (18)

wheredV (t) is covariance-equivalent to the “modulated white
noise”dṼ (t) := tH+1/2 dB(t).

Alternatively, for a givenα > 0, Ornstein-Uhlenbeck
processes admit the integral representation

Yα(t) =
∫ t

−∞
e−α(t−s) dB(s), (19)

whose Lamperti transform reads

Xα,H(t) =
∫ +∞

0

[(t/s)H−α u(t/s − 1)] [sH+1/2 dB(s)]/s,

(20)

with u(.) the unit step function.
We recognize in (20) an example of the general repre-

sentation (6), with the identificationg(θ) := θH−α u(θ−1)
and dV (t) := tH+1/2 dB(t). This H-ss process has for
(nonstationary) covariance function:

RXα,H
(t, s) = σ2 (min(t, s))H+α (max(t, s))H−α. (21)

In the general case of arbitraryα andH, this makes of
{Xα,H(t), t > 0} a versatile 2-parameter model [13], in
which H controls self-similarity whereasα may be related
to long-range dependence.

2.2.3. Euler-Cauchy processes

As a third example, we can briefly mention that (17) can
be rewritten as a stochastic (first-order) differential equa-
tion, from whichY (t) is usually interpreted as the output of
afirst-order linear system whose input is white noiseW (t).
Such a system constitutes a building block for more compli-
cated ones (with elementary sub-systems in cascade and/or
in parallel), and it can also be generalized to higher orders,
as in ARMA(p, q) processes. The (self-similar) Lamperti
counterparts of such (stationary) processes are referred to as
Euler-Cauchy processes, and we refer the interested reader
to [19] (or [8]) for more details.

3. BROKEN SCALE INVARIANCE

In many cases, exact self-similarity (or exact stationarity) is
however a too strong requirement for a proper modeling of
real-life situations. In this respect, we propose to enlarge the
Lamperti transformation in order to study processes which
are not exactly self-similar.

Before pursuing this program, we can first remark that
a process with any form of broken scale invariance can no
longer be the Lamperti image of a stationary process. It
is however always possible to apply the Lamperti trans-
formation to nonstationary processes, resulting in specific
classes of processes with broken scale invariance. As a gen-
eralization of (7), it is known that nonstationary processes
{Y (t), t ∈ IR} still admit a Cŕamer-like decomposition, but
with correlated spectral increments:

IEdξ(f)dξ(ν) = d2ΦY (f, ν), (22)

i.e., with spectral masses which are not located along the
only diagonal of the frequency-frequency plane. Provided
that the Lòeve’s condition [16]

∫ ∫ +∞

−∞
|d2ΦY (f, ν)| < ∞ (23)

is satisfied, the corresponding nonstationary processes are
referred to asharmonizable, and such that

RY (t, s) =
∫ ∫ +∞

−∞
ei2π(ft−sν) d2ΦY (f, ν). (24)

As a follow-up, a companion concept ofmultiplicative
harmonizability can be introduced [2] in the case of pro-
cesses{X(t), t > 0} deviating from exact self-similarity.
This readily follows from the “lampertization” of (7) which,
together with (23), leads to

(LHY )(t) =
∫ +∞

−∞
tH+i2πσ dξ(σ), (25)

whereas the restriction of this general expression to the spe-
cial case of independent spectral increments leads to the
representation considered, e.g., in [7, 9, 19].

3.1. Discrete scale invariance

An important example of broken self-similarity which en-
ters the above framework of multiplicative harmonizability
is that ofDiscrete Scale Invariance (DSI), i.e., scale invari-
ance for some preferred scaling factors only. While rou-
tinely present in toy systems (think of the triadic Cantor
set, for which exact replication can only be achieved for
scale factors{λ = 3k, k ∈ ZZ}, or of the Mellin “chirps”
of the formtH exp(i2πf0 log t), for which scale invariance
applies for{λ = (exp(1/f0))

k
, k ∈ ZZ} only), DSI has

3



in fact been recently put forward as a central concept in
the study of many critical systems [17], and it has received
much attention in a deterministic context. An extension
of the DSI concept to stochastic processes has been pro-
posed [2], according to which a process{X(t), t > 0}
is said to possess a discrete scale invariance of indexH
and of scaling factorλ0 > 0 (or to be “(H, λ0)-DSI”) if

{(DH,λ0X)(t), t > 0} d= {X(t), t > 0} for some preferred
scale factorλ0 (and, hence, for anyλ = λk

0 , k ∈ ZZ).
Given this definition, it is straightforward to establish

[2] that the Lamperti transformation guarantees a one-to-
one correspondence between DSI processes andcyclosta-
tionary (or periodically correlated) processes, i.e., those pro-

cesses for which{(ST0Y )(t), t ∈ IR} d= {Y (t), t ∈ IR}
for some preferred periodT0 only (and all integer multi-
plesT = kT0, k ∈ ZZ) [10]. More precisely, if a process
{Y (t), t ∈ IR} is T0-cyclostationary, its Lamperti trans-
form {(LHY )(t), t > 0} is (H, eT0)-DSI. Conversely, if a
process{X(t), t > 0} is (H, λ0)-DSI, its inverse Lamperti
transform{(L−1

H X)(t), t ∈ IR} is (log λ0)-cyclostationary.
It is well-known that, in contrast with the stationary case

for which the spectral distribution function is entirely con-
centrated along the main diagonalν = f of the frequency-
frequency plane, that of cyclostationary processes is also
non-zero along equally spaced parallel lines [10]:

d2ΦY (f, ν) =
∞∑

n=−∞
cn(ν) δ(ν − (f − n/T0)) df dν.

(26)

This is a direct consequence of the existence of a Fourier
series expansion for the covariance function of cyclostation-
ary processes. Therefore, since DSI processes result from
a “lampertization” of cyclostationary processes, we readily
get that(H, λ0)-DSI processes{X(t), t > 0} have a co-
variance function of the form:

RX(t, kt) = (kt)H
∞∑

n=−∞
Cn(log k) tH+i2πn/T0 , (27)

with T0 = log λ0.
Stochastic DSI processes can be considered from two

different perspectives. On the one hand, “delampertizing”
DSI processes make them enter the better known world of
cyclostationary processes to which numerous tools have been
dedicated (e.g., cyclic spectrum analysis). On the other
hand, DSI processes can be viewed as resulting from the
“lampertization” of cyclostationary processes, so that it can
be imagined to apply to them specific tools which would
themselves result from the lampertization of classical ones.
We will here not comment further on both aspects, and we
refer the interested reader to [3] for a more detailed account
including analysis, synthesis, modeling and examples.

3.2. Local self-similarity

Another possibility that we will just mention is to connect
locally self-similar processes, among them the multifrac-
tional Brownian motion (mfBm) (and its generalizations)
[5], to locally stationary processes. As shown in [3, 8],
this can be achieved via the introduction of a local Lam-
perti transformation around some timet0, thanks to which
a locally stationary generator of the mfBm can be obtained.

3.3. Finite size scale invariance

A third variation is concerned with the experimental evi-
dence that scale invariance is usually only observed over
some finite range for scales and/or fields. In order to cope
with this issue, it is worth noting that, whereas the renor-
malized dilation operatorDH,λ usually acts on the “natural”
representation of a processX(t), other representations may
prove more useful for a sake of generalization. Introduc-
ing indeed the modified representationUX := log(X/X0)
(whereX(t) > 0 andX0 is some reference for the field1)
and the associated logarithmic time warpings := log(t/t0)
(wheret > 0 andt0 is some reference for time), it happens
that self-similarity is turned into the equality:

UX(s) d= UX(s + µ) − Hµ (28)

or, in other words, into the stationarity ofUX(s) − Hs.
Following Nottale and Dubrulle [6], the “additive” rep-

resentation obtained this way can then be modified so as
to accommodate for finite size effects pertaining to scale
and/or fields. To this end, the idea is to generalize addition
to other composition laws so that restriction to a finite inter-
val still guarantees a group structure. In this respect, if we
first restrict scales to belong to some finite interval]s−, s+[,
the solution is given by the composition law [6]:

s1 � s2 :=
s1 + s2 − s1s2(1/s− + 1/s+)

1 − s1s2/s−s+
, (29)

which of course reduces to addition when the cutoffss− and
s+ go to infinity. A companion composition law⊗ can be
introduced the same way for fields, thus leading to define
finite size scale invariance by generalizing (28) according
to:

UX(s) d= UX(s � µ) ⊗ g(µ). (30)

In this expression, the functiong(.) accounts for a renor-
malization analogous to theλ−H pre-factor of the ordinary
(renormalized) dilation, and it can be further expressed as
g(µ) = S−1

⊗ (−HS�(µ)), whereS⊗ andS� stand for the

1Due to space limitations, the discussion is limited here to positive pro-
cesses, but this positivity restriction can be alleviated at the expense of
considering more complicated groups based on modulus and sign [3].
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morphisms from the groups defined by the considered inter-
val (in scale or field, respectively) equipped with the corre-
sponding composition law to the real line equipped with the
addition [3].

The finite size dilation operatorDfs
H,λ involved in the

right-hand side of (30) can therefore be given the additive
representation:

(Dfs
H,λUX)(s) := UX(s � µ) ⊗ S−1

⊗ (−HS�(µ)), (31)

from which, mimicking (1), a generalizedfinite size Lam-
perti transformLfs

H can be defined via the equivalence:

(Lfs
H )−1Dfs

H,λL
fs
H = SS�(log λ). (32)

This transform can finally be written in terms of the
original process indexed by the ordinary time variable:

(Lfs
H Y )(t) = exp S−1

⊗ {log Y (S�(log t)) + HS�(log t))} .
(33)

Specific examples of processes exhibiting such a finite
size scale invariance as the result of this generalized lam-
pertization of a given stationary process (e.g., an Ornstein-
Uhlenbeck process) will be detailed in [4].

4. CONCLUSION

Because of the ubiquity of scale invariance in a large variety
of fields ranging from physics or biology to human activ-
ity (network traffic [1], finance [17],. . . ), self-similar pro-
cesses deserve a special attention. Dealing with self-similar
processes is however faced with two different difficulties.
The first one is that self-similarity goes along with nonsta-
tionarity, and the second one is that truely self-similar pro-
cesses are unlikely to be observed in real-world situations.
We have here discussed general frameworks for overcom-
ing such limitations by introducing suitable transformations
aimed at putting scale invariance (complete or broken) in
correspondence with stationarity (in a strict or weakened
form). Among the many issues related to this approach
and that have not been addressed here, it is worth to men-
tion that switching from continuous-time to discrete-time is
a challenging problem that has already received some par-
tial attention [2, 3] but which will need further studies so as
to make of theoretical considerations effective tools for the
modeling, analysis or manipulation of processes with bro-
ken scale invariance.
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