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The idea of scaling

Power laws and scaling

Power-law spectra. Power-laws correspond to homogeneous
functions:

S(f ) = C |f |−α ⇒ S(kf ) = C |kf |−α = k−αS(f ),

for any k > 0

Fourier transform. Frequency scaling carries over to the time
domain. If we let s(t) := (F−1S)(f ), we get:∫ +∞

−∞
S(kf ) e i2πft df = k−1

∫ +∞

−∞
S(f ′) e i2πf ′(t/k) df ′ = s(t/k)/k

It follows that s(t/k) = s(t)/kα−1 ⇒ self-similarity
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The idea of scaling

Intuitive “self-similarity”
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Beyond intuition

Definition

A process {X (t), t ∈ R} is said to be self-similar of index H (or
“H-ss”) if, for any k > 0,

{X (kt), t ∈ R} d
= kH{X (t), t ∈ R}

Invariance of statistical properties under dilations in time, up
to a renormalization in amplitude (“self-affinity”)

Any zoomed (in or out) version of an H-ss process looks
(statistically) the same ⇒ no characteristic scale
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Zooming
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Self-similarity vs. stationarity 1.

Theorem

If a process X is self-similar, it is necessarily nonstationary

Proof.

Assuming that Var{X (t = 1)} 6= 0, we have, for any t > 0,

Var{X (t)} = Var{X (t × 1)} = t2H Var{X (1)} 6= Const.
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Self-similarity vs. stationarity 2.

Theorem (Lamperti, 1962)

Stationary processes can be attached to self-similar processes, and
vice-versa:

if {X (t), t > 0} is H-ss, then {Y (t) := e−HtX (et), t ∈ R} is
(strictly) stationary

conversely, if {Y (t), t ∈ R} is (strictly) stationary, then
{X (t) := tHY (log t), t > 0} is H-ss
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Stationary increments

Definition

A process {X (t), t ∈ R} is said to have stationary increments if
and only if, for any θ ∈ R, the increment process:{

X (θ)(t) := X (t + θ)− X (t), t ∈ R
}

has a distributional law which does not depend upon t

Extension. The concept of stationary increments can be
naturally extended to higher orders (“increments of
increments”)

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.



Scaling
Self-similarity

Wavelets
Wavelets and scale invariance

Basics
Self-similarity vs. stationarity
H-sssi processes
fBm and fGn
Asymptotic self-similarity and LRD

Self-similarity and stationary increments

Definition

H-ss processes with stationary increments are referred to as
“H-sssi” processes

Theorem

The structure of the covariance function is the same for all H-sssi
processes and reads

E{X (t)X (s)} =
Var{X (1)}

2

(
|t|2H + |s|2H − |t − s|2H

)
Proof
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Covariance function of H-sssi processes
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Fractional Brownian motion

Definition (Mandelbrot & van Ness, 1968)

A process BH(t) is referred to as a fractional Brownian motion
(fBm) of index 0 < H < 1, if and only if it is H-sssi and Gaussian

fBm is an extension (anomalous diffusion) of the ordinary
Brownian motion B(t) ≡ BH(t)|H=1/2

The index H is referred to as the Hurst exponent, and its
limited range guarantees the non-degeneracy (H < 1) and the
mean-square continuity (H > 0) of fBm
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Moving average

Definition (Mandelbrot & van Ness, 1968)

fBm admits the moving average representation:

BH(t)− BH(0) =
1

Γ(H + 1
2)

{∫ 0

−∞
[(t − s)H−

1
2 − (−s)H−

1
2 ]B(ds)

+

∫ t

0
(t − s)H−

1
2 B(ds)

}

fBm results from a “fractional integration” of white noise

no specific role attached to time t = 0
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Harmonizability

Theorem

fBm admits the harmonizable spectral representation:

BH(t) = C .

∫ +∞

−∞
|f |−(H+ 1

2
) (e i2πtf − 1) W (df ),

with W (df ) the Wiener measure

The “average spectrum” of fBm behaves as |f |−(2H+1)

fBm is a widespread model for (nonstationary) Gaussian
processes with a power-law (empirical) spectrum
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Fractional Gaussian noise 1.

Definition (Mandelbrot & van Ness, 1968)

The (stationary) increment process B
(θ)
H (t) of fBm BH(t) is

referred to as fractional Gaussian noise (fGn)

Autocorrelation. The (stationary) autocorrelation function

of fGn, cH(τ) := E{B(θ)
H (t)B

(θ)
H (t + τ)}, reads:

cH(τ) =
σ2

2

(
|τ + θ|2H − 2|τ |2H + |τ − θ|2H

)
.

White noise. θ = 1 and H = 1
2 ⇒ cH(k) = σ2 δ(k), k ∈ Z

Asymptotics. τ →∞⇒ cH(τ) ∼ σ2θ2H(2H − 1)τ2(H−1)

(subexponential, power-law decay)
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Autocorrelation function of fGn
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Spectrum of fGn 1.

Power Spectral Density. If θ = 1 (and, hence,
−1

2 ≤ f ≤ +1
2), the PSD of discrete-time fGn is given by:

S(f ) = C σ2 |e i2πf − 1|2
∞∑

k=−∞

1

|f + k|2H+1

Fact

We observe that S(f ) ∼ C σ2 |f |1−2H when f → 0:

0 < H < 1
2 ⇒ S(0) = 0

1
2 < H < 1 ⇒ S(0) = ∞ (spectral divergence)
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Spectrum of fGn 2.
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Sample paths of Bm
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Sample paths of fBm

Local regularity. For any (small enough) ε > 0 and any

t ∈ R, we have |B(ε)
H (t)| ≤ C |ε|H , with probability 1

Theorem

fBm is everywhere continuous but nowhere differentiable, and its
sample paths have a uniform (Haussdorf and box) fractal
dimension dim graph BH = 2− H
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From Bm to fBm

Correlation between increments. It follows from the
covariance structure of fBm that, for any t ∈ R,

CH(θ) := −
E{B(−θ)

H (t) B
(θ)
H (t)}

VarB
(±θ)
H (t)

= 22H−1 − 1

H = 1
2 : no correlation (Brownian motion, D = 1.5)

H < 1
2 : negative correlation (more erratic, limH→0 D = 2)

H > 1
2 : positive correlation (less erratic, limH→1 D = 1)

Interpretation. H is a roughness measure of sample paths.
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H as a roughness measure
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Long-range dependence

Definition

A stationary process {X (t), t ∈ R} is said to be asymptotically
self-similar of index β ∈ (0, 1) if

(Var{X (t)})−1 E{X (t)X (t + τ)} ∼ τ−β

when τ →∞

H-sssi processes are asymptotically self-similar of index
β = 2(1− H) (example: fGn with 1

2 < H < 1)
non-summability (and power-law decay) of the autocorrelation
⇒ (power-law) divergence of the PSD at f = 0
asymptotic self-similarity ⇒ long-range dependence (LRD)
(also referred to as long memory)
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fGn as a limit

Definition

Given a stationary process {X (n), n ∈ Z}, the recomposition rule

X (n) 7→ XT (n) :=
1

T

nT∑
k=(n−1)T+1

X (k)

is referred to as aggregation over T

Theorem

renormalized by TH−1, fGn is invariant under aggregation

as T →∞, aggregating any asymptotically H-ss process ends
up with a process whose covariance structure is that of fGn

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.



Scaling
Self-similarity

Wavelets
Wavelets and scale invariance

Basics
Self-similarity vs. stationarity
H-sssi processes
fBm and fGn
Asymptotic self-similarity and LRD

“1/f ” processes

Definition

A process is said to be of “1/f ”-type if its empirical PSD behaves
as f −α (α > 0) over some frequency range [A,B]

Special cases. Depending on A and B, one can end up with:

LRD, if A → 0 and B <∞
scaling in some “inertial range”, if 0 < A < B <∞
small-scale fractality, if A <∞ and B →∞

Remark. In the fBm/fGn case, the only Hurst exponent H
controls all 3 situations
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Evidencing scaling in data? 1.

Fact

Different and complementary signatures of scaling can be observed
with respect to time (sample paths, correlation, increments . . . ) or
frequency/scale (spectrum, zooming . . . ).

Idea

Use explicitly an approach which combines time and
frequency/scale ⇒ wavelets!
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Evidencing scaling in data? 2.

Fact

Iterating aggregation reveals scale invariance

Idea

Use explicitly a multiresolution approach ⇒ wavelets!
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Multiresolution analysis 1.

Idea

“signal = (low-pass) approximation + (high-pass) detail”
+

iteration

Successive approximations (at coarser and coarser resolutions)
∼ aggregated data

Details (information differences between successive
resolutions) ∼ increments
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Multiresolution analysis 2.

Definition (Mallat & Meyer, 1986)

A MultiResolution Analysis (MRA) of L2(R) is given by:

1 A hierarchical sequence of embedded approximation spaces
. . .V1 ⊂ V0 ⊂ V−1 . . ., whose intersection is empty and whose
closure is dense in L2(R)

2 A dyadic two-scale relation between successive
approximations:

X (t) ∈ Vj ⇔ X (2t) ∈ Vj−1

3 A scaling function ϕ(t) such that all of its integer translates
{ϕ(t − n), n ∈ Z} form a basis of V0
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Wavelet decomposition 1.

Signal expansion. For a given resolution depth J, any signal
X (t) ∈ V0 can be expanded as:

X (t)︸︷︷︸
signal

=
∑
k

aX (J, k)ϕJ,k(t)︸ ︷︷ ︸
approximation

+
J∑

j=1︸︷︷︸
J octaves

∑
k

wav . coeffs.︷ ︸︸ ︷
dX (j , k) ψj ,k(t)︸ ︷︷ ︸

details

,

with {ξj ,k(t) := 2−j/2 ζ(2−j t − k), j and k ∈ Z}, for ξ = ϕ
and ψ

Idea

The wavelet ψ(.) is constructed in such a way that all of its integer
translates form a basis of W0, defined as the complement of V0 in
V−1 Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelet decomposition 2.

Definition

The wavelet coefficients dX (j , k) are given by the inner products:

dX (j , k) := 〈X , ψj ,k〉

In practice, they can rather be computed in a recursive
fashion, via efficient pyramidal algorithms (faster than FFT’s)

No need for knowing explicitly ψ(t): enough to characterize a
wavelet by its filter coefficients
{g(n) := (−1)n h(1− n), n ∈ Z}, with

h(n) :=
√

2

∫ +∞

−∞
ϕ(t)ϕ(2t − n) dt
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Mallat’s algorithm
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Wavelet decomposition 3.

Example. The simplest choice for a MRA is given by the
Haar basis (Haar, 1911), attached to the scaling function
ϕ(t) = χ[0,1[(t) and wavelet ψ(t) = χ[0,1/2[(t)− χ[1/2,1[(t)

Remark. When aggregated over dyadic intervals, data
samples identify to Haar approximants

Interpretation. Wavelet analysis offers a refined way of both
aggregating data and computing increments
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Wavelets as filters 1.

Result (Grossmann & Morlet, 1984)

By construction, a scaling function (resp., a wavelet) is a low-pass
(resp., high-pass) function ⇒ an admissible wavelet ψ(t) is
necessarily zero-mean:

Ψ(0) :=

∫ +∞

−∞
ψ(t) dt = 0

Definition

A further key property for a wavelet is the number of its vanishing
moments, i.e., the integer N ≥ 1 such that∫ +∞

−∞
tk ψ(t) dt = 0, for k = 0, 1, . . .N − 1

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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The example of Daubechies wavelets
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Wavelets as filters 2.

Given the statistics of the analyzed signal, statistics of its
wavelet coefficients can be derived from input-ouput
relationships of linear filters

In the case of stationary processes with autocorrelation
γX (τ) := E{X (t)X (t + τ)} and PSD ΓX (f ), stationarity
carries over to wavelet sequences and we end up with:

CX (j , n) := E{dX (j , k)dX (j , k+n)} =

∫ +∞

−∞
γX (τ) γψ(2−jτ+n) dτ

∞∑
n=−∞

CX (j , n) e−i2πfn = ΓX (2−j f ) ×
∞∑

n=−∞
γψ(n) e−i2πfn

︸ ︷︷ ︸
wavelet spectrum

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets as stationarizers 1.

Theorem (F., 1989 & 1992)

Wavelet admissibility (N ≥ 1) guarantees that, if X (t) has
stationary increments, then dX (j , k) is stationary in k, for any
given scale 2j

Proof

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets as stationarizers 2.

Extension. Stationarization can be extended to processes
with stationary increments of order p > 1, under the vanishing
moments condition N ≥ p

Application. Stationarization applies to H-sssi processes
(e.g., fBm), with ρ(t) = |t|2H ;

Remark. Nonstationarity is contained in the approximation
sequence.

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Self-similarity in wavelet space

Theorem

The multiresolution nature of wavelet analysis guarantees that, if
X (t) is H-ss, then

{dX (j , k), k ∈ Z} d
= 2j(H+1/2) {dX (0, k), k ∈ Z}

for any j ∈ Z

Spectral interpretation. Given a “1/f ” process, the wavelet
tuning condition N > (α− 1)/2 guarantees that

SX (f ) ∝ |f |−α ⇒ E{d2
X (j , k)} ∝ 2jα

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets as decorrelators 1.

Theorem (F., 1992; Tewfik & Kim, 1992)

In the case where X (t) is H-sssi, the condition N > H + 1/2
guarantees that wavelets coefficients are almost uncorrelated:

E{dX (j , k)dX (j , k + n)} ∼ n2(H−N), n →∞

Interpretation. Competition, at f = 0, between the
(divergent) spectrum of the process and the (vanishing)
transfer function of the wavelet:

E{dX (j , k)dX (j , k + n)} ∝
∫ +∞

−∞

|Ψ(2j f )|2

|f |2H+1
e i2πnf df

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets as decorrelators 2.
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Wavelets as decorrelators 3.

Corollary

Long-range dependence (LRD) of a process X (t) can be
transformed into short-range dependence (SRD) in the space of its
wavelet coefficients dX (j , .), provided that the number N of the
vanishing moments is high enough

Remark. Residual LRD in the approximation sequence

The case of H-sssi processes. LRD when H > 1/2 ⇒ SRD
when N > 1 ⇒ Haar not suitable

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelet correlation of fBm in the Haar case (theory)
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Wavelet correlation and vanishing moments (experiment)
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Rationale

Result

Given the variance vX (j) := E{d2
X (j , k)}, scale invariance is

revealed by the linear relation log2 vX (j) = α j + Const.

Idea (Abry, F. & Gonçalvès, 1995)

The further properties of 1) stationarization and 2)
quasi-decorrelation suggest to use as estimator of vX (j) the
empirical variance

v̂X (j) :=
1

Nj

Nj∑
k=1

d2
X (j , k),

where N0 stands for the data size and Nj := 2−jN0

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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LogScale Diagram

Definition (Abry & Veitch, 1998)

Given that log E{.} 6= E{log .}, the effective estimator (“LogScale
Diagram”) is yX (j) := log2 v̂X (j)− g(j), with

g(j) = ψ(Nj/2)/ log 2− log2(Nj/2)

and ψ(.) the derivative of the Gamma function

Bias. E{yX (j)} = αj + Const.: no bias in the uncorrelated
case
Variance. Assuming stationarization and quasi-decorrelation
guarantees furthermore that

σ2
j := Var{yX (j)} = ζ(2,Nj/2)/ log2 2,

where ζ(z , ν) is the generalized Riemann functionPatrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Scaling exponent estimation

From yX (j) to α̂. The slope α is estimated via a weighted
linear regression in a log-log diagram:

α̂ =

jmax∑
j=jmin

S0 j − S1

S0 S2 − S2
1

1

σ2
j

yX (j),

with Sk :=
∑

j k/σ2
j , k = 0, 1, 2

Bias and variance. We have E{α̂} ≡ α, by construction.
Assuming Gaussianity, the estimator is moreover
asymptotically efficient in the limit Nj →∞ (for any j), with

Var{α̂} ∼ 1/N0

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Example 1 (H-ss)

fBm with H = 0.8 ⇒ α = 2H + 1 = 2.6

1 2 3 4 5 6 7 8 9 10
−35
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Octave j

y j

α = 2.57

 1 ≤ j ≤ 10
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Example 2 (LRD)

FARIMA (1, d , 0) with d = 0.3 ⇒ α = 2d = 0.6

1 2 3 4 5 6 7 8 9 10
0
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y j

α = 0.55

 c
f
 = 4.7

 4 ≤ j ≤ 10
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Robustness

Cancellation. The vanishing moments condition∫ +∞

−∞
tk ψ(t) dt = 0, for k = 0, 1, . . .N − 1,

guarantees that dT (j , n) ≡ 0 for any T (t) of the form

T (t) =
N−1∑
k=0

ak tk

Interpretation. A wavelet with enough vanishing moments
makes the transform of Z (t) := X (t) + T (t) blind to a
superimposed polynomial trend

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Robustness to polynomial trends

y = x + P(3) Daubechies2 Daubechies4

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets and . . . 1.

Aggregation. Wavelets offer a natural generalization to
aggregation: Haar approximants 7→ Haar details 7→ wavelet
details with higher N

Variogram. — Wavelets generalize as well variogram
techniques (Matheron, 1967), which are based on the
increment property E{(X (t + τ)− X (t))2} = σ2|τ |2H , since
increments can be viewed as constructed on the “poorman’s
wavelet”:

ψ(t) := δ(t + τ)− δ(t)

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets and . . . 2.

Definition (Allan, 1966)

A refined notion of variance — introduced in the study of atomic
clocks stability — is the so-called Allan variance, defined by

Var
(Allan)
X (T ) :=

1

2T 2
E

{∫ t

t−T
X (s) ds −

∫ t+T

t
X (s) ds

}2

In the case of H-ss processes, Allan variance is such that

Var
(Allan)
X (T ) ∼ T 2H when T →∞

When evaluated over dyadic intervals, Allan variance identifies
to the variance of Haar details:

Var
(Allan)
X (2j) = Var{d (Haar)

X (j , k)}

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets and . . . 3.

Definition

In the case of a Poisson process P(t) of counting process N(.), one
can define the Fano factor as:

F (T ) := Var{N(T )}/E{N(T )}

For a uniform density λ, we have F (T ) = 1 for any T

whereas, for a “fractal” density λ(t) = λ+ B
(θ)
H (t), we have

F (T ) ∼ T 2H−1 when T →∞
Interpretation as fluctuations/average suggests the wavelet
generalization given by:

F (T ) 7→ FW (j) := 2j/2 Var{dP(j , k)}/E{aP(j , k)} ∼ 2j(2H−1)

when j →∞, and F
(Haar)
W (j) ≡ F (Allan)(2j)

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Higher-order moments

Exact model. LogScale Diagram 2nd order but H-ss ⇒

E{|dX (j , k)|q} ∝ (2j)Hq

for any q (and all j ’s).

Variations. Restrict scaling to intervals and/or make the
scaling exponent a nonlinear function of q:

Hq → ζ(q).

Issues. Assessment? Models? Estimation?

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Example (turbulence)
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à suivre. . . (P. Abry)
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Covariance of H-sssi processes

Proof.

Assuming that X (t) is H-sssi, with X (0) = 0 and X (1) 6= 0, we
have necessarily:

EX (t)X (s) =
1

2

(
EX 2(t) + EX 2(s)− E (X (t)− X (s))2

)
=

1

2

(
EX 2(t) + EX 2(s)− E (X (t − s)− X (0))2

)
=

VarX (1)

2

(
|t|2H + |s|2H − |t − s|2H

)
.

Back
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Wavelets as stationarizers (1/3)

1. Assuming that X (t) is a s.i. process with X (0) = 0 and
Var{X (t)} := ρ(t), we have:

E{X (t)X (s)} =
1

2

(
E{X 2(t)}+ E{X 2(s)} − E{(X (t)− X (s))2}

)
=

1

2

(
E{X 2(t)}+ E{X 2(s)} − E{(X (t − s)− X (0))2}

)
=

1

2
(ρ(t) + ρ(s)− ρ(t − s))

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets as stationarizers (2/3)

2. It follows that:

E{dX (j , n)dX (j ,m)} =

∫ ∫ +∞

−∞
E{X (t)X (s)}ψjn(t)ψjm(s) dt ds

=
1

2

∫ +∞

−∞
ρ(t)ψjn(t)

(∫ +∞

−∞
ψjm(s) ds

)
︸ ︷︷ ︸

=0

dt

+
1

2

∫ +∞

−∞
ρ(s)ψjm(s)

(∫ +∞

−∞
ψjn(t) dt

)
︸ ︷︷ ︸

=0

ds

−1

2

∫ ∫ +∞

−∞
ρ(t − s)ψjn(t)ψjm(s) dt ds

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.
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Wavelets as stationarizers (3/3)

3. And then:

E{dX (j , n)dX (j ,m)} = −1

2

∫ ∫ +∞

−∞
ρ(t − s)ψjn(t)ψjm(s) dt ds

= −1

2

∫ +∞

−∞
ρ(τ) γψ(2−jτ − (n −m)) dτ

Back
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