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Scaling

The idea of scaling

Power laws and scaling

o Power-law spectra. Power-laws correspond to homogeneous
functions:

S(f) = C|f|7* = S(kf) = C|kf|7* = k= *S(f),

for any kK > 0

@ Fourier transform. Frequency scaling carries over to the time
domain. If we let s(t) := (F~1S)(f), we get:

+o0o . +o0 o
/ S(kf) e df = k! / S(f") e R df = s(t/k)/k

—00 —00

It follows that s(t/k) = s(t)/k® ! = self-similarity
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Scaling

The idea of scaling

Intuitive “self-similarity”
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Basics

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Beyond intuition

Definition
A process {X(t),t € R} is said to be self-similar of index H (or
“H-ss") if, for any k > 0,

{X(kt),t € R} £ kM{X(t),t € R}

@ Invariance of statistical properties under dilations in time, up
to a renormalization in amplitude ( “self-affinity")

@ Any zoomed (in or out) version of an H-ss process looks
(statistically) the same = no characteristic scale
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Self-similarity

fBm and fGn
Asymptos

Zooming

RO LN

[rescaled] zoom by 2

[rescaled] zoom by 4
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Basics

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Self-similarity vs. stationarity 1.

If a process X is self-similar, it is necessarily nonstationary

Assuming that Var{X(t = 1)} # 0, we have, for any t > 0,

Var{X(t)} = Var{X(t x 1)} = t* Var{X (1)} # Const.
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Basics

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Self-similarity vs. stationarity 2.

Theorem (Lamperti, 1962)
Stationary processes can be attached to self-similar processes, and
vice-versa:
o if {X(t),t > 0} is H-ss, then {Y(t) := e HtX(e?),t € R} is
(strictly) stationary

e conversely, if {Y(t),t € R} is (strictly) stationary, then
{X(t) := t"Y(logt),t > 0} is H-ss
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Stationary increments

Definition
A process {X(t),t € R} is said to have stationary increments if
and only if, for any 6 € R, the increment process:

{X(G)(t) = X(t+0) — X(t),t € R}

has a distributional law which does not depend upon t

e Extension. The concept of stationary increments can be
naturally extended to higher orders (“increments of
increments”)
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Self-similarity and stationary increments

Definition
H-ss processes with stationary increments are referred to as
“H-sssi” processes

Theorem
The structure of the covariance function is the same for all H-sssi

processes and reads

_ Var{X(1)} (|t|2H s |t — S|2H)

E{X(0)X(s)} = 2
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s
Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Covariance function of H-sssi processes
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Self-similarity

Fractional Brownian motion

Definition (Mandelbrot & van Ness, 1968)

A process By(t) is referred to as a fractional Brownian motion
(fBm) of index 0 < H < 1, if and only if it is H-sssi and Gaussian

e fBm is an extension (anomalous diffusion) of the ordinary
Brownian motion B(t) = Bp(t)[y_1 2

@ The index H is referred to as the Hurst exponent, and its
limited range guarantees the non-degeneracy (H < 1) and the
mean-square continuity (H > 0) of fBm
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Moving average

Definition (Mandelbrot & van Ness, 1968)

fBm admits the moving average representation:

0 1 1
Bit) = Bu(0) = ey { [ _I(e=5)" "} = (=) (e
5 —00

—l—/ot(t — )Mz B(ds)}

o fBm results from a “fractional integration” of white noise

@ no specific role attached to time t =0
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sics
similarity vs. stationarity
Si processes
d fGn

Asymptotic self-similarity and LRD

Self-similarity

Harmonizability

fBm admits the harmonizable spectral representation:

+o0 .
Bu(t) = C. / £~ () (27 1) W(dF),

with W(df) the Wiener measure

@ The “average spectrum” of fBm behaves as |f|~(2H+1)

e fBm is a widespread model for (nonstationary) Gaussian
processes with a power-law (empirical) spectrum
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SEEe
Self-similarity }Sflf 17\!arwfiv' \5 stationarity
° -sssi processes
fBm and fGn
Asymptotic self-similarity and LRD

Fractional Gaussian noise 1.

Definition (Mandelbrot & van Ness, 1968)

The (stationary) increment process B,(f)(t) of fBm Bpy(t) is
referred to as fractional Gaussian noise (fGn)

e Autocorrelation. The (stationary) autocorrelation function
of fGn, cu(7) = E{BD ()BY)(t + 1)}, reads:
o? 2H 2H 2H
cu(r) = 5 (Ir +0P" =2/ + |r — 02%).
o White noise. § =1 and H =1 = cy(k) = 02 0(k),k € Z

e Asymptotics. T — 00 = cy(7) ~ 0202H(2H — 1)72(H-1)
(subexponential, power-law decay)
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ics

P imilarity vs. stationarity
Self-similarity ' ?

fBm and fGn
Asymptotic self-similarity and LRD

Autocorrelation function of fGn
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Spectrum of fGn 1.

e Power Spectral Density. If § =1 (and, hence,
—% <f< —I—%) the PSD of discrete-time fGn is given by:

. o 1
_ 2| i2wf 2
S(f)— Co ]e —1‘ Z W

k=—0o0

We observe that S(f) ~ C o2 |f|*=2H when f — 0:

e 0<H<3=580)=0
o 2 <H< 1= 8(0) = oo (spectral divergence)
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3asics
P elf-similarity vs. stationarity
Self-similarity Sel 5: p‘ro 1ty ?5 stationarity

Asymptotic self-similarity and LRD

Spectrum of fGn 2.

1Gn (log) power spectral density

10 T T
H=09
3
10° H=08 1
H=07
s H=06 \_A_"_‘\_“R““h‘¥\\‘h\\\\\\h\;i |
H=05
H=04
10' 1
H=03
H=02
10° 1
H=01
1071 3 - 2 - 1 0
10° 10° 10° 10

normalized (log) frequency
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similarity vs. stationa

Self-similarity H

-sssi processes

fBm and fGn
Asymptotic similarity and LRD

Sample paths of Bm

1sample path 100 zample paths

/
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Sample paths of fBm

o Local regularity. For any (small enough) ¢ > 0 and any
t € R, we have |[BY)()] < C|e|", with probability 1

fBm is everywhere continuous but nowhere differentiable, and its
sample paths have a uniform (Haussdorf and box) fractal
dimension dim graph By =2 — H
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Self-similarity H-ss

fBm and fGn
Asymptotic self-similarity and LRD

From Bm to fBm

@ Correlation between increments. It follows from the
covariance structure of fBm that, for any t € R,

Co0) -~ BB O BPO} _ pony

VarB,(_,ie) (t)

o H=
o H<
o H>

no correlation (Brownian motion, D = 1.5)
negative correlation (more erratic, limy_o D = 2)
. positive correlation (less erratic, limy_1 D = 1)

NN =

o Interpretation. H is a roughness measure of sample paths.
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cs
similarity vs. stationa
-SSSI processes
fBm and fGn
Asymptotic similarity and LRD

Self-similarity H

H as a roughness measure

fractional Brownian motion
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

Long-range dependence

A stationary process {X(t),t € R} is said to be asymptotically
self-similar of index 3 € (0,1) if

(Var{X()H)TE{X()X(t +7)} ~ 7P

when 7 — o0

@ H-sssi processes are asymptotically self-similar of index
B =2(1— H) (example: fGn with 1 < H < 1)

@ non-summability (and power-law decay) of the autocorrelation
= (power-law) divergence of the PSD at f =0

@ asymptotic self-similarity = long-range dependence (LRD)
(also referred to as long memory)
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

fGn as a limit

Given a stationary process {X(n),n € Z}, the recomposition rule

1 nT
X(n) — XT(n) = — > X(k)

k=(n—1)T+1
is referred to as aggregation over T

o renormalized by TH=, fGn is invariant under aggregation

@ as T — oo, aggregating any asymptotically H-ss process ends
up with a process whose covariance structure is that of fGn
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SEEe

Self-similarity vs. stationarity
H-sssi processes

fBm and fGn

Asymptotic self-similarity and LRD

Self-similarity

“1/f" processes

Definition
A process is said to be of “1/f"-type if its empirical PSD behaves
as f~® (o > 0) over some frequency range [A, B]

@ Special cases. Depending on A and B, one can end up with:

e LRD, if A—0and B<
e scaling in some “inertial range”, if0 < A< B < >
e small-scale fractality, if A < oo and B — o

e Remark. In the fBm/fGn case, the only Hurst exponent H
controls all 3 situations
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Exploratory data analysis

Wavelets L
properties

Evidencing scaling in data? 1.

Fact

Different and complementary signatures of scaling can be observed
with respect to time (sample paths, correlation, increments ...) or
frequency/scale (spectrum, zooming ... ).

Use explicitly an approach which combines time and
frequency/scale = wavelets!
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Exploratory data analysis
Wavelets s

Wavelets Wavele properties

Evidencing scaling in data? 2.

Iterating aggregation reveals scale invariance

Use explicitly a multiresolution approach = wavelets!
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Exploratory data analysis
Wavelets basics

Wavelets Wavelet key properties

Multiresolution analysis 1.

“signal = (low-pass) approximation + (high-pass) detail”
+
iteration

@ Successive approximations (at coarser and coarser resolutions)
~ aggregated data

@ Details (information differences between successive
resolutions) ~ increments
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Exploratory data analysis
Wavelets basics

Wavelets Wavelet key properties

Multiresolution analysis 2.

Definition (Mallat & Meyer, 1986)
A MultiResolution Analysis (MRA) of L2(R) is given by:
@ A hierarchical sequence of embedded approximation spaces

...V € Vo C V_;..., whose intersection is empty and whose
closure is dense in L2(IR)

© A dyadic two-scale relation between successive
approximations:

X(t) e V; & X(2t) € Vi1

@ A scaling function ¢(t) such that all of its integer translates
{¢(t — n),n € Z} form a basis of V
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Wavelets

Wavelet decomposition 1.

e Signal expansion. For a given resolution depth J, any signal
X(t) € Vp can be expanded as:

J Wav coeffs.
=Y xR e+ > Y KGR dilo)
signal k j=1 k
approximation J octaves details
with {& x(t) .= 279/2¢(27t — k),j and k € Z}, for £ = ¢
and ¢

The wavelet 1(.) is constructed in such a way that all of its integer
translates form a basis of Wy, defined as the complement of Vy in
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a
Wavelets Wavelet key properties

Wavelet decomposition 2.

Definition

The wavelet coefficients dx(j, k) are given by the inner products:

dx(j, k) = <X7¢j7k>

@ In practice, they can rather be computed in a recursive
fashion, via efficient pyramidal algorithms (faster than FFT's)

@ No need for knowing explicitly 1(t): enough to characterize a
wavelet by its filter coefficients
{g(n) :=(=1)"h(1 — n),n € Z}, with

“+oo
h(n) =2 /_ o(t) p(2t — n) dt
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Exploratory data analysis
Wavelets basics
Wavelet key properties

Wavelets

Mallat's algorithm

e ——-

cooooo0O00DOO0O00G0 s s s 5 8 8 8 8 8

stgnal

-
-
-

-~ seals

details
= = =

anproximaion

- high-pass filter + decimation

low-pass filter + decimation
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Wavelets

Wavelet decomposition 3.

o Example. The simplest choice for a MRA is given by the
Haar basis (Haar, 1911), attached to the scaling function
o(t) = x[o,1(t) and wavelet 1(t) = x[0,1/2{(t) — X[1/2,1((%)

o Remark. When aggregated over dyadic intervals, data
samples identify to Haar approximants

o Interpretation. Wavelet analysis offers a refined way of both
aggregating data and computing increments
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Exploratory data analysis
Wavelets basics
Wavelet key properties

Wavelets

Wavelets as filters 1.

Result (Grossmann & Morlet, 1984)

By construction, a scaling function (resp., a wavelet) is a low-pass
(resp., high-pass) function = an admissible wavelet (t) is
necessarily zero-mean:

A further key property for a wavelet is the number of its vanishing
moments, i.e., the integer N > 1 such that

+oo
/ tky(t)dt =0, for k=0,1,...N -1
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Explorato
/ lets

V
Wavelets Wavelet key properties

The example of Daubechies wavelets

Haar Daubechies 2 Daubechies 4 Daubechies 10

scaling function

wavelet

Patrick Flandrin Wavelet Tools for Scaling Processes —




Ex ta analysis
Wi s

Wavelets Wavelet key properties

Wavelets as filters 2.

@ Given the statistics of the analyzed signal, statistics of its
wavelet coefficients can be derived from input-ouput
relationships of linear filters

@ In the case of stationary processes with autocorrelation
vx (1) == E{X(t)X(t + 7)} and PSD T x(f), stationarity
carries over to wavelet sequences and we end up with:

+o00
Cx(j, 1) = E{dx(j, K)dx (j. k-n)} = / () (2 r+n) dr

o0

S Cxlim) e P =T (277F) x 3 () e R

n=—oo n=—oo

wavelet spectrum
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Exploratory data analysis
Wavelets basics

Wavelets Wavelet key properties

Wavelets as stationarizers 1.

Theorem (F., 1989 & 1992)

Wavelet admissibility (N > 1) guarantees that, if X(t) has
stationary increments, then dx(j, k) is stationary in k, for any
given scale 2
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Exploratory data analysis
Wavelets basics

Wavelets Wavelet key properties

Wavelets as stationarizers 2.

o Extension. Stationarization can be extended to processes
with stationary increments of order p > 1, under the vanishing
moments condition N > p

@ Application. Stationarization applies to H-sssi processes
(e.g., fBm), with p(t) = |t|?";

@ Remark. Nonstationarity is contained in the approximation
sequence.
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Self-similarity in wavelet space

Theorem

The multiresolution nature of wavelet analysis guarantees that, if
X(t) is H-ss, then

{dx(j, k), k € Z} £ 2i(H+1/2) {4, (0, k), k € Z}

for any j € 7

e Spectral interpretation. Given a “1/f" process, the wavelet
tuning condition N > (a — 1)/2 guarantees that

Sx(f) o< [f|7* = E{d} (j, k)} o 2
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Wavelets as decorrelators 1.

Theorem (F., 1992; Tewfik & Kim, 1992)

In the case where X(t) is H-sssi, the condition N > H +1/2
guarantees that wavelets coefficients are almost uncorrelated:

E{dx(j, k)dx(j, k + n)} ~ =N n _

o Interpretation. Competition, at f = 0, between the
(divergent) spectrum of the process and the (vanishing)
transfer function of the wavelet:

()P

i2wnf
F|2A+L © mdf

E{dx(j, k)dx(j, k + n)} /

—00
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inciple
Key properties
Example
Wavelets and scaling estimation
Related techniques
ond self-similarity

Wavelets and scale invariance

Wavelets as decorrelators 2.

wavelet

spectrum

detail -
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Wavelets as decorrelators 3.

Long-range dependence (LRD) of a process X(t) can be
transformed into short-range dependence (SRD) in the space of its
wavelet coefficients dx(j,.), provided that the number N of the
vanishing moments is high enough

@ Remark. Residual LRD in the approximation sequence

@ The case of H-sssi processes. LRD when H > 1/2 = SRD
when N > 1 = Haar not suitable
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Principle
Key properties

s and scaling estimation
Wavelets and scale invariance Rela techniques
Beyond self-similarity

Wavelet correlation of fBm in the Haar case (theory)

N
||||||||\|\|\““““‘|‘:‘:"le m‘““‘““%
ool ||||“ ()

I iyt
““““““:‘ “‘-““"‘}

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.



Principle
Key properties
Example

Wavelets and scaling estimation
Wavelets and scale invariance Related t

hniq
Beyond self-similarity

Wavelet correlation and vanishing moments (experiment)

H=0.15 H=05 H=0.95

Haar
£
N
=
18

TN
Ll

v VY

Daubechies2
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Principle
Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Rationale

Given the variance vx(j) := E{d%(j, k)}, scale invariance is
revealed by the linear relation log, vx(j) = aj + Const.

Idea (Abry, F. & Gongalves, 1995)

The further properties of 1) stationarization and 2)
quasi-decorrelation suggest to use as estimator of vx(j) the
empirical variance

N.
n 1 « .
ix () = ﬁzd)%(./ak)a
J k=1

where Ny stands for the data size and N; := 27Ny
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

LogScale Diagram

Definition (Abry & Veitch, 1998)

Given that log E{.} # E{log.}, the effective estimator (“LogScale
Diagram”) is yx(j) := log, Vx(j) — g(j), with

g(j) = ¥(N;/2)/ log 2 — logy(N;/2)

and 7(.) the derivative of the Gamma function

e Bias. E{yx(j)} = aj + Const.: no bias in the uncorrelated
case

@ Variance. Assuming stationarization and quasi-decorrelation
guarantees furthermore that

of == Var{yx(j)} = ¢(2, N;/2)/ log® 2,

»)
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Scaling exponent estimation

e From yx(j) to a. The slope « is estimated via a weighted
linear regression in a log-log diagram:

S-S5 1

with S := 3", k/a k=0,1,2

e Bias and variance. We have E{a} = «, by construction.
Assuming Gaussianity, the estimator is moreover
asymptotically efficient in the limit N; — oo (for any j), with

Var{a} ~ 1/Ny
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

yond self-similarity

Example 1 (H-ss)

fBmwith H=08=a=2H+1=26

-5

>=20

_35 L L L L L L L L L L
1 2 3 4 5 6 7 8 9 10

Octave j
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Principle

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques
Beyond self-similarity

Example 2 (LRD)

0 L L L L L L L L L

5 6
Octave j
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Robustness

e Cancellation. The vanishing moments condition

+oo
/ thop(t)dt =0, for k=0,1,...N —1,

—00

guarantees that dr(j, n) = 0 for any T(t) of the form

o Interpretation. A wavelet with enough vanishing moments
makes the transform of Z(t) := X(t) + T(t) blind to a
superimposed polynomial trend
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Principle

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Robustness to polynomial trends

y=x+P(@3) Daubechies2 Daubechies4

‘\ H ‘ H\ “HHH J h\

i
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Wavelets and ... 1.

o Aggregation. Wavelets offer a natural generalization to
aggregation: Haar approximants — Haar details — wavelet
details with higher N

o Variogram. — Wavelets generalize as well variogram
techniques (Matheron, 1967), which are based on the
increment property E{(X(t + 7) — X(t))?} = o?|7|?", since
increments can be viewed as constructed on the “poorman’s
wavelet”:

P(t) :=6(t+71)— (1)
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Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Wavelets and ... 2.

Definition (Allan, 1966)

A refined notion of variance — introduced in the study of atomic
clocks stability — is the so-called Allan variance, defined by

4T 2
Varg?”an)(T)' 27_2 {/ X(s ds—/ X(s) ds}

@ In the case of H-ss processes, Allan variance is such that
Varl™™)(T) ~ T2H when T — oo

@ When evaluated over dyadic intervals, Allan variance identifies
to the variance of Haar details:

(Allan) rnjy _ (Haar) -
Var (2) = Var{dy U,k)}




Principle

Key properties

Example

Wavelets and scaling estimation
Wavelets and scale invariance Related techniques

Beyond self-similarity

Wavelets and ... 3.

Definition
In the case of a Poisson process P(t) of counting process N(.), one
can define the Fano factor as:

F(T):=Var{N(T)}/E{N(T)}

@ For a uniform density A\, we have F(T) =1 for any T
whereas, for a “fractal” density A\(t) = A + B,(_,G)(t), we have
F(T)~ T?H=1 when T — o0

@ Interpretation as fluctuations/average suggests the wavelet
generalization given by:

F(T) — Fw(j) := 2/2Var{dp(j, k)} /E{ap(j, k)} ~ 2/(H-1)

when j — oo, and F\(/\,/—Iaar)(j) = F(Allan) (2]
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Higher-order moments

e Exact model. LogScale Diagram 2nd order but H-ss =
E{ldx(j, k)| 7} o< (27)1

for any ¢ (and all j's).

e Variations. Restrict scaling to intervals and/or make the
scaling exponent a nonlinear function of g:

Hg — ((q).

@ Issues. Assessment? Models? Estimation?
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Covariance of H-sssi processes

Assuming that X(t) is H-sssi, with X(0) =0 and X(1) # 0, we
have necessarily:

EX(t)X(s) = %(EX2(t)+EX2(s)—IE(X(t)—X(s))z)

— % (Ex2(t) +EX?(s) —E(X(t —s) — X(O))2)

VarX(1)
— ? (|t|2H+ ’S|2H _ ’t— S‘2H> )

Patrick Flandrin Wavelet Tools for Scaling Processes — 1.



Principle

Wavelets and scale invariance Related techniques

Beyond self-similarity

Wavelets as stationarizers (1/3)

1. Assuming that X(t) is a s.i. process with X(0) =0 and
Var{X(t)} := p(t), we have:

E(X(OX(s)} = 5 (B{X3(0)} +E{X3(s)} — E{(X(1) - X(5))*})
(E{X3(0)} + E{X%(s)} ~ B{(X(¢ - 5) - X(0))’}

(p(t) + p(s) = p(t = 5))

\

/

NIRLRNIRN| -~
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Wavelets as stationarizers (2/3)

2. It follows that:
+oo
E{dx(j, n)dx(j, m / / E{X(£)X(5)} tyn(£) jm(s) dt ds
+oo
= 5o ([ i) as) o

=0
w3 [ oot ([ umterae) as
=0
[ e vty s s
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Wavelets as stationarizers (3/3)

3. And then:
“+oo
E{dx(j,n)dx(j,m)} = — / / ) jn(t) jm(s) dt ds
= 5 [ (- myor
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