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In speckle interferometry (SI), temporal signals are amplitude- and frequency-modulated signals and exhibit a fluc-
tuating background. Prior to phase computation, this background intensitymust be eliminated. Here our approach is
to build a complex signal from the raw one and to fit a circle through the points cloud representing its sampled
values in the complex plane. The circle fit is computed from a set of points whose length is locally adapted to the
signal. This procedure—new to our knowledge in SI—yields the background and the modulation depth and leads to
the determination of the instantaneous frequency. The method, applied to simulated and experimental signals, is
compared to empirical mode decomposition (EMD). It shows great robustness in the computation of the sought
quantities in SI, especially with signals close to the critical sampling or, on the contrary, highly oversampled,
situations where the background elimination by EMD is the most prone to errors. © 2011 Optical Society of
America
OCIS codes: 120.6165, 120.2650, 120.5050, 070.2025.

It is widely acknowledged that speckle interferometry
(SI) techniques are powerful tools to characterize rough
surface deformations, in static or quasi-static regimes,
when small displacements are involved (typically below
10 μm or so). The case of dynamic regimes with likely
large displacements (of the order of hundreds of micro-
meters) is still an actual research topic. The classical
fringe analysis techniques, including the otherwise very
efficient phase-shifting techniques [1], turn out to be un-
able to address this issue mainly because of decorrela-
tions, which are unavoidable in any SI measurement.
Decorrelations limit the range of measurement to the
correlation volume, i.e., the speckle grain, and spoil the
results by random errors. The temporal approach con-
sists in analyzing the evolution of the interferometric sig-
nal of each pixel of the recording sensor. Some data
manipulation is required to build the temporal pixel sig-
nals, but it allows us to get rid of the correlation limit,
without of course eliminating the induced random phase
errors. Genuine experimental temporal pixel signals are
shown in Figs. 1 and 4.
The analysis of such signals with the Morlet wavelet

transform gives outstanding results especially when im-
plemented through a ridge tracking algorithm [2]. This
method has shown a high noise rejection power, but
the convergence of the algorithm might be an issue when
the signal spectrum covers a large spectral bandwidth.
To overcome this issue, a totally different approach
has been followed in [3], resorting to empirical mode de-
composition (EMD) [4] with the goal to put the signal into
the ad hoc shape for subsequent phase extraction by the
analytic method (AM), i.e., the use of the Hilbert trans-
form as a quadrature operator. For SI signals, it boils
down to eliminate the fluctuating background intensity.
This method, data driven, efficient, and which implies
very simple operations [OðnÞ complexity], relies on the
computation of the signal envelopes, based itself on
the seeking of the signal extrema, a delicate operation
particularly sensitive to sampling conditions and noise.

In this Letter we report a different strategy to exploit
the analytic signal in the complex plane. The basic idea is
to process directly the signal as it is, instead of forcing it
to be centered. The first step is to build a complex valued
signal z½k$ from the original signal s½k$ by means of the
Hilbert transform as follows:

z½k$ ¼ s½k$ þ iHTfs½k$g: ð1Þ

It is useful to remind that the use of the Hilbert transform
as a quadrature operator is subject to requirements that
are not fulfilled here. The goal is simply to place the sig-
nal in the complex plane and not to compute a phase at
this early stage.

At each instant k, we consider a set of Nk points Zk ¼
fz½p$g, with p belonging to the interval ½k…kþ Nk$. A cir-
cle is then fitted through the cloud of data points by the
Kåsa method (see Fig. 1), described further in the text.
From the computation of the osculating circle, a local de-
termination of the background (the abscissa of the circle
center ak), the modulation depth (the circle radius Rk),
and the instantaneous frequency (IF) is obtained. Simi-
larly to what has been outlined in [5] and considered

Fig. 1. (Color online) Principle of the method of the osculating
circle to the signal trajectory in the complex plane.
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independently in [6], the IF, νk, said to be circular, can be
calculated by the mean value of the angles between con-
secutive radii of the fitted circle, designated by θp in
Fig. 1. The knowledge of the IF leads directly to the phase
by numerical integration.
Adjusting a circle to a points cloud in a least-square

sense is mathematically formalized as follows:

min
XNk

p¼1

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp − akÞ2 þ ðyp − bkÞ2

q
− Rk

#
2
; ð2Þ

where ðxp; ypÞ are the data coordinates in the complex
plane. The index k refers again to the frame number
and reminds us of the fact that the computation is carried
out at this instant and is thus valid for this very moment.
The problem stated in Eq. (2) is nonlinear and can be
solved by Gauss–Newton-like iterative methods. Minimiz-
ing the following quantity Jk is an alternative to Eq. (2):

Jk ¼
XNk

p¼1

fðxp − akÞ2 þ ðyp − bkÞ2 − R2
kg2: ð3Þ

It has been demonstrated in [7] that this latter formula-
tion comes to a linear least-squares problem, simpler and
faster to solve and, last but not least, more robust to out-
liers. The cancellation of the derivates of Jk with respect
to ak, bk, and Rk gives immediately a 3 × 3 matrix equa-
tion whose inversion leads to the sought-after circle para-
meters. Kåsa derived the equations from this latter
formulation in [8] and also proposed a thorough error
analysis. A slightly different formulation is given in [9]
for a significant gain of accuracy when the data are loca-
lized on a small circle arc, but at the cost of an increased
computation load.
To minimize the fitting errors, the length of the data

set, Nk, must be adjusted to the signal, so that n local
periods are covered. The angle θp is computed for each
couple of vectors ðv; vpþ1Þ as follows (see Fig. 1):

θp ¼ arctanðdetðv; vpþ1Þ=ðv · vpþ1ÞÞ: ð4Þ

The algebraic mean of the angles θp gives the average IF
in the considered data set. The length of the data set is
adjusted from one instant k to the next by

Nkþ1 ¼ 2nπ=νk: ð5Þ

Choosing n is making a trade-off between temporal and
spectral localizations, as usual. Moreover, it is possible to
smooth further Nk with a moving average over its past
values. In addition, carrying out the computation every
uk time samples may still reduce the computation load.
Finally, SI signals, in the dynamic regime, feature una-
voidable losses of modulation. In those regions of low
signal-to-noise ratio (SNR), the extracted phase is spoiled
by random errors and possibly completely meaningless.
It is thus preferable to discard the points located too
close from the circle center, according to an empirically
set threshold (typically taken equal to five gray levels,
which corresponds in our case to three times the stan-
dard deviation of the black signal of the camera), and

to keep all the algorithm parameters unchanged for
the next instant. We incidentally mention that a solution
to this modulation loss issue in SI has been proposed in
[3,10]. The circle fit (CFIT) procedure is summarized
in Fig. 2.

The CFIT procedure necessitates at least three points,
and it is thus not possible to process critically sampled
signals. In the same manner as what has been done in
[11], the sampling influence on the EMD and the CFIT
procedure is studied. To quantitatively evaluate the influ-
ence of sampling, we consider a single tone embedded in
white noise, defined as follows:

s½k$ ¼ cosð2πk=2r þ φrÞ þ σ½k$; ð6Þ

where 1=2r is the tone frequency, φr a random phase
term uniformly distributed over [−π; π], and σ the noise.
The comparison criterion is the standard deviation of the
quantity δϕ defined below:

δϕ ¼ hϕex − 2πk=2riφr
; ð7Þ

where ϕex stands for the extracted phase either with the
CFIT method or with the combination of EMD and AM.

The simulation is actually carried out for 20 realiza-
tions of the random phase term ϕr . Figure 3 illustrates
the behavior of the two methods with respect to the

Fig. 2. (Color online) CFIT procedure of phase extraction
in SI.

Fig. 3. (Color online) Phase error as a function of the sampling
frequency.
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sampling frequency when the SNRs of 30 dB (solid
curves) and 3 dB (dotted curves) are considered. For
comparison purposes, we also placed in Fig. 3 the error
corresponding to a tenth and a hundredth of fringe (green
dashed curves). Figure 3 clearly evidences the potential
benefits of CFIT.
The proposed technique has been further tested on

experimental SI signals. A Leendertz-type setup with
in-plane sensitivity is used to measure the continuous ro-
tation of a roughmetal plate around the z axis (see Fig. 4).
Temporal signals located at different distances from the
rotation center O are also shown. In such an experiment,
the equiphase lines are parallel to the sensitivity vector,
i.e., parallel to the x axis.
We compare in Fig. 5 the results obtained with the pro-

posed method CFIT (thick blue line) and the combination
of EMD and AM (thin black line). We observe a much
better rendering of the central part of the plate with
the CFIT technique, where the pixels experience few
fringes of displacement. The proposed method allows
us thus to extract the phase from nonstationary SI signals
on a much wider bandwidth than the AM associated with
EMD. On the computation load aspect, the combination
of EMD with the AM keeps a slight advantage over the
CFIT method, the latter being not yet optimized. To fix
the ideas, processing 200 temporal pixel signals located
along the dotted lines in Fig. 5 takes 7 s with the
“EMDþ AM” method (on a PC equipped with a Q9400
CPU and 3GB of RAM) and 25% more with the CFIT tech-
nique, with the parameters uk, μ, and n set to N=2, 5, and
2, respectively (parameters taken to obtain the results
shown in Fig. 5).
As already noticed, a filtering technique based on the

Delaunay triangulation has been proposed in [3] as a pos-
sible solution to the modulation loss issue specific to SI.
Any phase extraction method has to cope with this issue,

and the outlook is now to combine CFIT with the Delau-
nay interpolation method in order to optimize conjointly
the spatial resolution and the accuracy of the phase
extraction.
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Fig. 4. (Color online) Leendertz SI setup with in-plane sensi-
tivity vector S.

Fig. 5. (Color online) Phase maps corresponding to the total
displacement (given in radians) and the cross sections (along
dotted lines) shown with the theoretical phase.
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