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ABSTRACT

Empirical Mode Decomposition (EMD) has recently been in-
troduced as a local and fully data-driven technique aimed at
decomposing nonstationary multicomponent signals in “in-
trinsic” AM-FM contributions. Although the EMD principle
is appealing and its implementation easy, performance analy-
sis is difficult since no analytical description of the method is
available. We will here report on numerical simulations illus-
trating the potentialities and limitations of EMD in two signal
processing tasks, namely detrending and denoising. In both
cases, the idea is to make use of partial reconstructions, the
relevant modes being selected on the basis of the statistical
properties of modes that have been empirically established.

1. INTRODUCTION AND MOTIVATION

Empirical Mode Decomposition (EMD) has been recently pi-
oneered by Huang et al. [2] for adaptively decomposing sig-
nals in a sum of “well-behaved” AM-FM components. The
technique has already received some attention in terms of
both applications [1, 2, 7, 9, 11] and interpretation [3, 4, 5, 8].
The method consisting in a local and fully data-driven split-
ting of a (possibly nonstationary) signal in fast and slow os-
cillations, the purpose of this paper is to investigate further
its capabilities in terms of detrending and denoising.

2. BASICS OF EMPIRICAL MODE
DECOMPOSITION

2.1 Principle

Empirical Mode Decomposition (EMD) [2] is a technique
which has been designed primarily for obtaining AM-FM
type representations in the case of signals which are oscil-
latory (possibly nonstationary and/or generated by a nonlin-
ear system), in some automatic, fully data-driven, way. In a
nutshell, the starting point of EMD is to consider oscillatory
signals at the level of their local oscillations and to formalize
the idea that:

“signal = fast oscillations superimposed to slow
oscillations,”

and to iterate on the slow oscillations component considered
as a new signal.

2.2 Algorithm

More precisely, if we look at the evolution of a signal x(t)
between two consecutive local extrema (say, two minima oc-
curring at times t− and t+), we can heuristically define a

(local) “high-frequency” part {d(t), t− ≤ t ≤ t+}. This de-
tail d(t) corresponds to the oscillation terminating at the two
minima and passing through the maximum which necessar-
ily exists in between them. For the picture to be complete,
we also identify the corresponding (local) “low-frequency”
part m(t), or local trend, so that we have x(t) = m(t)+d(t)
for t− ≤ t ≤ t+. Assuming that this is done in some proper
way for all the oscillations composing the entire signal, we
get what is referred to as an Intrinsic Mode Function (IMF)
as well as a residual consisting of all local trends. The proce-
dure can then be applied to this residual, considered as a new
signal to decompose, and successive constitutive components
of a signal can therefore be iteratively extracted.

Given a signal x(t), the effective algorithm of EMD can
therefore be summarized as the following main loop [2]:
1. identify all extrema of x(t);
2. interpolate between minima (resp. maxima), ending up

with some “envelope” emin(t) (resp. emax(t));
3. compute the average m(t) = (emin(t)+emax(t))/2;
4. extract the detail d(t) = x(t)−m(t);
5. iterate on the residual m(t).

In practice, the above procedure has to be refined by a
sifting process, an inner loop that iterates steps (1) to (4) upon
the detail signal d(t), until this latter can be considered as
zero-mean according to some stopping criterion1. Once this
is achieved, the detail is considered as the effective IMF, the
corresponding residual is computed and only then, step (5)
applies. Eventually, the original signal x(t) is first decom-
posed through the main loop as

x(t) = d1(t)+m1(t), (1)

and the first residual m1(t) is itself decomposed as

m1(t) = d2(t)+m2(t), (2)

so that

x(t) = d1(t)+m1(t)
= d1(t)+d2(t)+m2(t)
= . . .

=
K∑

k=1

dk(t)+mK(t). (3)

1It is not the purpose of this paper to address algorithmic issues which
have been considered in some detail elsewhere [2, 8]. Let us just mention
that the main reason for which a proper IMF has to be zero-mean is that
this is a pre-requisite for its AM-FM demodulation with Hilbert transform
techniques [2], a post-processing aspect of EMD that will not be considered
here.
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2.3 Interpretations

Modes and residuals have been heuristically introduced on
“spectral” arguments, but this must not be considered from
a too narrow perspective. First, the decomposition makes no
assumption about the harmonic nature of oscillations, and it
can thus guarantee a compact representation (i.e., with fewer
modes than a Fourier or wavelet decomposition) in situations
involving nonlinear oscillations. Second, it is worth stress-
ing the fact that, even in the case of harmonic oscillations,
the high vs. low frequency discrimination mentioned above
applies only locally and corresponds by no way to a pre-
determined sub-band filtering. Indeed, selection of modes
rather corresponds to an automatic and adaptive (data-driven)
time-variant filtering.

3. MODE MANIPULATIONS

By construction, the number of extrema decreases when go-
ing from one residual to the next, thus guaranteeing that the
complete decomposition is achieved in a finite number of
steps (typically, at most O(log2 N) for N data points). More-
over, the whole decomposition being only based on elemen-
tary subtractions, it obviously allows for a perfect reconstruc-
tion of the initial signal x(t), given the collection of details
{dk(t),k = 1, . . .K} and the residual mK(t).

This property of perfect reconstruction, together with the
spectral interpretation outlined above, suggests to achieve
partial reconstructions only, so as to selectively remove slow
or fast oscillations (detrending or denoising, respectively).

3.1 Detrending

In the case where the analyzed signal x(t) consists in a
slowly varying trend superimposed to a fluctuating process
y(t), the trend is expected to be captured by IMFs of large
indices (+ the final residual). Detrending x(t), which corre-
sponds to estimating y(t), may therefore amount to comput-
ing the partial, fine-to-coarse, reconstruction

ŷD(t) =
D∑

k=1

dk(t),

where D is the larger IMF index prior contamination by the
trend. Each of the IMFs {dk(t);k = 1, . . .D} being zero-
mean, a rule of thumb for choosing D is to observe the evolu-
tion of the (standardized) empirical mean of ŷd(t) as a func-
tion of a test order d, and to identify for which d = D it
departs significantly from zero. An example of this approach
is given in Figure 1, where a 7000 data point segment of a
Heart-Rate Variability signal is considered.

3.2 Statistics

The procedure outlined above is a rough approach that can be
improved upon when a more precise model can be advocated
for the signal + noise mixture. To this end, a detailed knowl-
edge of IMFs statistics in noise only situations can help iden-
tifying the significance of a given mode. This idea, which has
been pioneered by Wu and Huang [10], can be followed in
two directions, namely detrending as in the previous section
(by keeping only those modes which are identified as noise)
and denoising (by removing them).

Previous EMD studies have considered in some detail
white Gaussian noise [10] and, more generally, fractional
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Figure 1: Detrending of a Heart-Rate Variability signal.
Left: standardized empirical mean of the fine-to-coarse
EMD reconstruction, evidencing D = 5 as the change
point. Top right: original signal. Middle right: estimated
trend obtained from the partial reconstruction with IMFs
6 to 9 + the residual. Bottom right: detrended signal ob-
tained from the partial reconstruction with IMFs 1 to 5.

Gaussian noise (fGn) [3, 5, 6] as a versatile class for broad-
band noise with no dominant frequency band. What has been
shown in this context is that EMD acts spontaneously as a
dyadic filterbank [3, 5, 6, 10]. Furthermore, the expected
IMFs log-variance has been shown to admit a simple linear
model controlled by the Hurst exponent H of the considered
process:

log2 VH [k] = log2 VH [2]+2(H −1)(k−2) log2 ρH (4)

for k ≥ 2, with ρH ≈ 2.
As far as the variability of this quantity is concerned, a

quantitative yet empirical appreciation can be gained from
the upper part of Figure 2 where, in 3 typical cases (H = 0.2,
0.5 and 0.8), the experimental mean, median and various
confidence intervals have been reported, together with the
model (4). This series of simulations (which has been car-
ried out on 10000 realizations of 2048 data points in each
case) evidences larger and larger fluctuations for modes of
larger and larger indices, in agreement with (and generaliza-
tion of) the findings reported in [10] for the only case of white
noise. (Interestingly, it has to be remarked that the skewed
(marginal) distribution of these “modegrams” reveals a better
agreement when fitting the linear model (4) with the median
rather than the mean of the realizations.)

The lower part of Figure 2 precises further how the rela-
tive confidence intervals can be given a semi-analytical form
as a function of the IMF index: the quasi-linear dependences
reported in the diagram allow for a parameterization of the
curve TH [k] corresponding to a chosen confidence interval
according to a functional relationship of the form

log2(log2(TH [k]/Wh[k])) = aHk + bH , (5)

where WH [k] stands for the H-dependent variation of some
IMF mean energy, considered as a variance estimator. In ac-
cordance with what has been said previously, the best linear
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Figure 2: Experimental “modegrams” in the case of frac-
tional Gaussian noise. Top: for the 3 considered values of
the Hurst exponent H , statistical characteristics (mean,
median, confidence intervals) of the logarithm of the es-
timated EMD variance have been plotted as a function of
the IMF index, together with the linear model given by
(4). Bottom: the logarithm of the relative confidence in-
tervals, i.e., the quantity log2 (log2 (TH [k]/WH [k])), be-
haves almost linearly as a function of the IMF index k,
leading to the semi-analytical form (5). For each of the
3 considered values of H , crosses (resp., circles) corre-
spond to a confidence interval of 95% (resp., 99%), dot-
ted (resp., dashed) lines refer to the cases where the ref-
erence W [k] is chosen as the mean (resp., median) of the
IMF energies over the realizations, and the full lines in-
dicate the corresponding best linear fits.

fit is obtained when choosing for WH [k] the median of the
IMFs energy over the realizations, which is in this case very
close from the model VH [k]. The parameters aH and bH that
are used as ingredients for modelling the confidence intervals
can be deduced from simulation results, and their values are
reported in the following Table:

H aH(95%) bH(95%) aH(99%) bH(99%)
0.2 0.46 -2.43 0.45 -1.95
0.5 0.47 -2.45 0.46 -1.92
0.8 0.50 -2.33 0.50 -1.83

3.3 Denoising

The considerations above can be used for denoising a signal
embedded in fGn of known Hurst exponent H , based on the
empirically observed energy WH [k] of the IMFs dk[n].

In practice, WH [1] can be estimated as

ŴH [1] =
N∑

n=1

d2
1[n], (6)

and the subsequent values of WH [k] follow as

ŴH [k] = CH ρ
−2(1−H)k
H , k ≥ 2, (7)

where CH = ŴH [1]/βH and βH values can be found in [6].
Given these results, a possible strategy for denoising a

signal corrupted by fGn (with known H) is as follows:
1. assuming that IMF 1 captures mostly noise, estimate the

noise level in the signal + noise mixture by computing
ŴH [1] as in (6);

2. estimate the “noise only” model from (6) and (7);
3. estimate the corresponding model for the chosen confi-

dence interval from (5) and the Table;
4. compute the EMD of the signal + noise mixture and

compare the IMF energies with the confidence interval
used as a threshold;

5. compute a partial reconstruction by keeping only the
residual and those IMFs whose energy exceeds the
threshold.
A toy example of the EMD approach to denoising is

given in Figure 3, in the case of an oscillatory low frequency
waveform embedded in fGn with H = 0.3.

This Figure suggests of course that a dual strategy can
be used for detrending a fGn-type noise process by comput-
ing the complementary partial reconstruction based on only
those IMFs whose energy is below the threshold. In this re-
spect, the HRV example used in Section 3.1 can be revisited
from a more quantitative perspective. Indeed, the inspection
of the signal spectrum (top of Figure 4) suggests that a fGn
model is qualitatively admissible in the mid-frequency range,
with a spectral exponent 2H −1 ≈ 0.79, leading to H ≈ 0.9.
The resulting detrending (which can be compared with profit
to Figure 4) has been obtained by letting H = 0.9 and using a
confidence interval of only 95% because of the approximate
relevance of the fGn model.

4. CONCLUDING REMARKS

Empirical Mode Decomposition (EMD) is an appealing new
technique for adaptively decomposing signals in a sum of
AM-FM modes. Because the selection of these modes is
fully data-driven and very local in time, EMD paves the way
for new automatic approaches to detrending and denoising
in nonstationary situations. In this perspective, we have re-
ported here on exploratory quantitative results that demon-
strate effective and potential usefulness of EMD-based tech-
niques. The current status of EMD, which still lacks from
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Figure 3: Denoising. An example of an amplitude mod-
ulated low frequency oscillation embedded in fractional
Gaussian noise of Hurst exponent H = 0.3 is plotted in
(b). The estimated energies of the 7 IMFs are plotted in
(a) as the thick line, together with the “noise only” model
corrsponding to H = 0.3 (thin line) and the 99% confi-
dence interval (dotted line). The partial reconstruction
obtained by adding the EMD residual and IMFs 5 to 7
(the only ones whose energy exceeds the threshold in (a))
is plotted in (c) as the full line, and this denoised signal
is superimposed to the actual signal component (dotted
line). The partial reconstruction of IMFs 1 to 4 (noise
estimate) is plotted in (d).

solid theoretical grounds, imposed to conduct the present
study on the basis of extended numerical experiments. In
order to elaborate on our present findings, extended stud-
ies are necessary, both in terms of experiments (in particu-
lar, comparisons with existing competing approaches), and
theory developments.

Software. The Matlab codes used in this study are avail-
able, and they can be downloaded for free from the URL:
perso.ens-lyon.fr/patrick.flandrin/emd.html.
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empirique,” Proc. Coll. GRETSI sur le Traitement du Signal
et des Images, Vol. 1, pp. 149–152, Paris, 2003.
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