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Abstract. Depending on the considered range of scales, different scaling
processes may be defined, which correspond to different situations con-
nected with self-similarity, fractality or long-range dependence. Wavelet
analysis is shown to offer a unified framework for dealing with such pro-
cesses and estimating the corresponding scaling parameters. Estimators
are proposed and discussed on the basis of representations in the wavelet
domain. Statistical (and computational) efficiency can be obtained not
only for second-order processes, but also for linear fractional stable mo-
tions with infinite variance.
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1 Introduction

Signals presenting some form of scaling behaviour can be observed in a wide vari-
ety of fields, ranging from physics (turbulence, hydrology, solid-state physics, ...
) or biology (DNA sequences, heart rate variability, auditory nerves spike trains,
... ) to human-operated systems (telecommunications network traffic, finance,
... ). While sharing a common property of scale invariance, processes used to
model such observations may however differ according to the range of scales
over which the invariance is effective. Indeed, relevant concepts can be either
self-similarity (the part is, in some sense, identical to the whole), long-range de-
pendence (algebraically decaying and non-integrable correlations at “large scales”
result in power-law diverging spectra at low frequencies) or irregularity of sample
paths (“small scale” scaling results in non-integer fractal dimensions). In each
case, no characteristic scale exists (in a given range), the important feature being
rather the existence of some invariant relation between scales.

Because they may correspond to non-standard situations in signal processing

or time series analysis (non-stationarity, long-range dependence, ... ), scaling
processes raise challenging problems in term of analysis, synthesis, and process-
ing (filtering, prediction, ... ). A number of specific tools have however been

developed over the years and, in a recent past, it has been realized that a natu-
ral approach was to consider scaling processes from the perspective of the mul-
tiresolution tools which had been introduced since the mid-eighties around the
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fruitful concept of wavelet. In fact, wavelets have, by construction, a built-in
ability to look at a signal or a process at different scales, and to reveal potential
invariant relations between scales within a proper and well-understood mathe-
matical setting. The purpose of this paper is therefore to show which advantages
can be gained from using a wavelet-based perspective when dealing with scaling
processes.

More precisely, the paper is organized as follows. First, basics of wavelet
analysis are briefly recalled in Section 2. Section 3 addresses the crucial issue
of discussing scaling processes in the wavelet domain, showing that the pro-
posed framework allows to consider in a unified way different types of situations
(specifically, self-similar process with or without variance, as well as long-range
dependent processes). Section 4 is devoted to the wavelet-based estimation of
scaling parameters. Finally, a number of applications are briefly mentioned in
the Conclusion, in order to support the effectiveness of the methods previously
discussed.

2 Wavelets

Wavelet analysis [22] formalizes the idea of looking at a signal (or a process)
at different scales or levels of resolution. This is achieved by decomposing any
signal onto a set of elementary “building blocks” which are all deduced from a
unique waveform—supposed to be reasonably well localized in both time and
frequency—by means of shifts and dilations. More precisely, the Continuous
Wavelet Transform (CWT) of a signal X (t) € L?(R) is given by

Tee= 5 [ X () a @
a,t) = — s s .
X ) \/C_l . 0 a )

with @ € Ry, t € R and where to(.) stands for the mother wavelet of the
analysis. Provided that this function is zero-mean, the wavelet transform can be

inverted as
too 1 t— s\ dads
X (t) = Cy, // Tx(a,s) 751/)0 < . > 2 (2.2)

By varying the ¢ variable, the wavelet transform allows for a local analysis in
time, whereas by varying the a variable, it offers the possibility on “zooming in”
on details, thus playing the role of a “mathematical microscope” and making of
it a tool which is a priori naturally adapted to scaling processes.

Whereas the wavelet transform is highly redundant in its continuous form
(2.1), it can be efficiently discretized on the dyadic grid a = 27,¢ = 27k (j and
k € Z) of the time-scale plane. The framework developed for defining the corre-
sponding Discrete Wavelet Transform (DWT) is referred to as MultiResolution
Analysis (MRA). Roughly speaking, the MRA of a signal space is defined by
a sequence of nested subspaces ... C V; C V;_1 C ..., each associated with a
given level of resolution indexed by j and such that passing from one subspace
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to the neighbouring one is obtained by a dilation of factor 2. Provided that a
basis (given by integer translates of a low-pass waveform ¢o(.)) exists for some
subspace V; chosen as reference, the existence of a MRA guarantees that any
signal can be decomposed under the form “signal = approximation + detail”,
with the possibility of iterating the process at coarser and coarser scales, by
further decomposing successive approximations. For a decomposition of depth
J, a signal X(t) € V, can thus be written as

oo

X(@t)= Y ax(Fk)¢rr(t) +> > dx(j, k) ¥ix(t), (2:3)

k=—o0 j=lk=—

where the ax and dx stand for the approximation and detail coefficients, re-
spectively, while ¢; 1 (t) := 279/2¢4(277t — k) and P x(t) = 27920 (277t — k),
the wavelet o(.) being such that its integer translates are a basis of Wy, the
complement of V5 in V_;. Up to the coarser approximation coefficients ax (J, k),
the discrete wavelet transform is therefore given by the set of all detail coeffi-
cients dx(j, k), which measure indeed a difference in information between two
successive approximations. Thanks to the dyadic structure of the sampling, they
can be written as

+oo
dx(j, k) == 2—1/2/ X(t) o (277t — k) dt, (2.4)

and they are therefore obtained as a projection of the analyzed signal onto the
corresponding wavelet subspace W;.

Asin the continuous case, wavelets have to be zero-mean for being admissible,
but their design can be controlled by a number of additional degrees of freedom.
One important wavelet property—which will prove essential in the following—is
its number of vanishing moments, i.e., the number N > 1 such that

+ oo
/ tFo(t)dt =0, k=0,1,...N—1. (2.5)
-0

Other properties may be appealing from the point of view of computational
efficiency. This is especially the case of the compact support property, which is
intimately related to the existence of FIR filterbank implementations. In fact,
a key feature of the discrete wavelet transform is that the computation of the
coefficients (2.4) can be actually achieved in a fully discrete and recursive way,
leading to extremely efficient algorithms, which even outperform FFT-type al-
gorithms.

The interested reader is referred to, e.g., [22] for a thorough presentation of
wavelet transforms.

3 Scaling processes in the wavelet domain

In the previous Section, the wavelet transforms—either continuous or discrete—
were defined for deterministic signals or functions belonging to L?(R). They
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have, however, been naturally and widely applied to the analysis of stochas-
tic processes. In such cases, the wavelet coefficients are (continuous or discrete)
random fields, raising issues concerning their existence and statistical proper-
ties. Such questions will not be addressed in detail here. Let us simply note
that the wavelet coefficients will basically inheritate of the properties of both
the analyzed process and the mother wavelet. The statistical properties of the
wavelet coefficients (existence, finiteness of moments, dependence structure) will
hence depend on joint conditions on the mother wavelet and on the statistics of
the analyzed process. Self-similarity or long-range dependence, which are under
study here, generally involve (whenever they exist) covariance functions that are
not bounded. We will assume that the mother wavelet decays at least exponen-
tially fast in the time domain, so as to guarantee the existence of the wavelet
coefficients. The interested reader is referred to, e.g., [9,12,16,17,23,26,27] for
further details.

3.1 Self-similar processes with stationary increments

Self-similarity. A process X = {X(¢),¢t € R} is said to be self-similar with
self-similarity parameter H > 0 (hereafter, “H-ss”) if and only if the processes
X; := X and X, := {c_HX(ct),t € R} have the same finite dimensional dis-
tributions for any ¢ > 0. Self-similarity means that the process is statistically
scale-invariant: it does not possess any characteristic scale of time or, equiva-
lently, it is not possible to distinguish between a suitably scaled version (in time
and amplitude) of the process and the process itself. Self-similarity also implies
that X is a nonstationary process, since it is obvious from the definition that
the variance of X, when it exists, reads: EX2(t) = [t|*7 EX?(1).

The (DWT) wavelet coefficients of an H-ss process X exactly reproduce its
self-similarity through the key scaling property:

P1: (dx(5,0),...,dx(j, N; — 1)) £ 2/(H+1/2)(dx(0,0),. .. ,dx (0, N, — 1)).
(3.6)

In the CWT framework, the same property reads (for any ¢ > 0):

Plc: (Tx(ca,ct1),...,Tx(ca,cty)) 4 cH+1/2(TX (a,t1), ..., Tx(a,tn)). (3.7)

Let us emphasize that this results (non trivially) from the fact that the
analyzing wavelet basis is designed from the dilation operator and is therefore,
by nature, scale invariant. Such a property has been originally established in the
case of the fractional Brownian motion (FBM) in [19,23, 33], more recently in the
case of the linear fractional stable motion in [16,17,26,27] and more generally,
for any self-similar process, in [9, 16].

The fundamental result P1 can be given two special forms that will play key
roles in the section dedicated below to the estimation of the self-similarity param-
eter. For processes whose wavelet coefficients have finite second-order statistics,
one has:

Plvar: Ed% (5, k) = 27 CEHDEG% (0, k), (3.8)
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whereas, for processes for which the quantity Elog, |dx (J, k)| exists, one obtains:

P1log: Elog, |dx (j, k)| = j(H + 1/2) + Elog, |dx (0, k)|. (3.9)

Stationary increments. A process X = {X(¢),t € R} is said to have sta-
tionary increments (hereafter, “si”) if and only if, for any A € R, the finite-
dimensional distributions of the processes X(») = {X(h)(t) =X+ h)—X(),t€ R}
do not depend on ¢. In the case of both the DWT and the CWT, this results in

a stationarization property, according to which

P2: the {dx(j, k), k € Z} form, at each octave j, a stationary sequence.
P2c: the {Tx(a,t),t € R} form, at each scale a, a stationary process.

This is a direct consequence of the fact that the mother wavelet has at least
one vanishing moment (i.e., N > 1). This has been shown in its most general
form in [9,16] and, in a more specific context, in [19,23,33] for the case of the
FBM and in [16,17,26,27] for the case of the linear fractional stable motion
(LFSM).

The stationarization property P2 can be extended to processes that do not
possess stationary increments but have increments of higher order that are sta-
tionary. If we denote by p the number of times one has to take increments to
obtain a stationary process, the wavelet coefficients form themselves a stationary
process under the condition that N > p. By stationary increments, we hereafter
mean that there exists an integer p such that the increments of order p of X are
stationary and that the condition N > p is satisfied.

Let us also note that the increments of a process X can be read as a specific
example of wavelet coefficients, since we have

1
X(@ho) () := X(t + aho) — X(t) = 767TX(a, t),
with 1o(t) = é(t + ho) — 6(¢), where 6(¢t) denotes the Dirac distribution. Such
a mother wavelet has however poor regularity, possesses only one vanishing mo-
ment (i.e., N = 1) and cannot be constructed from a multiresolution analysis.

Self-similarity with stationary increments. Among all self-similar pro-
cesses, there exists a subclass of particular interest over which we hereafter
concentrate: the class of self-similar processes with stationary increments (here-
after, “H-sssi”). For the increments Y (h,t) := X(®)(t) of a H-sssi process, one
can show that the processes {Y(h,t),t € R} and {c #Y(ch,ct),t € R} have
the same finite-dimensional distributions, for all ¢ > 0, a property that has
an analagous form to—and is highly reminiscent of—the property Plec of the
wavelet coeflicients.

In the remainder of the paper, and for a sake of simplicity, we will concentrate on
the coefficients of the DWT (the dx (7, k)) rather than on those of the CWT (the
Tx(a,t)), despite the fact that most results could be written in either framework.
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Finite variance and Gaussian processes Variance. Let X denote a zero-mean
H-sssi process with finite variance (i.e., such that EX(¢) = 0 and Var X(¢) < oo,
for any ¢t € R). From the fundamental property P1 (eq.(3.6) or eq.(3.8)), from
Edx(j,k) = 0 and from the stationarity of the wavelet coefficients (property
P2), it is straighforward to show that the wavelet coefficients of X satisfy:

Var dx (5, k) = 2CH+DVar dx(0,0). (3.10)

Covariance. Moreover, adding the usual convention that X(0) = 0, one gets
that the covariance of an H-sssi process reads:

0.2

BX()X(s) = o (P + s — [t o). (3.11)

From this form of the covariance of the process, the asymptotic behaviour of
the covariance of the wavelet coefficients can be obtained:

P3: Edx (j, k)dx (i, k') ~ |277k — 279 K/ PHE-N) 1277k — 277'}/| - co.
(3.12)

This result has been established originally for the FBM in [19,23,33]. It
shows that the range of correlation is controlled by the number N of vanishing
moments of the mother wavelet: the higher N, the shorter the range.

Finally, from the expression (3.11) of the covariance of X, it can be readily

derived [1,3,6,19] that:

Var dx (5, k) = 27CHTV62C (o, H), (3.13)

where 0% := EX?(1) and C(3o, H) := f_-l_ocf |u|2H (f_-l_ocf Po(v)o(v + u)dv) du.

Gaussianity. If ones moreover requires that the zero-mean H-sssi process is
Gaussian, one is led to the only FBM [24]. In this case, the wavelet coefficients
are Gaussian too.

From Gaussian to stable processes Stable processes. Let us suppose that
we are now interested in (zero-mean) H-sssi processes with (possibly) infinite
variance. Stable motions [30] offer an interesting framework to model H-sssi
processes whose second-order statistics do not exist. By definition, such processes
admit the representation

+ oo
X)) = / f(t, w)M(du),
-0
with M (du) some symmetric a-stable (hereafter, “SaS”) measure, with scale pa-
rameter o, and f(¢,u) an integration kernel that controls the time dependence
of the statistics of X. For instance, if f(¢,u) = f(0,u —t), then X(¢) is a sta-
tionary process; if f(ct,cu) = ¢ ¥ f(t,u) for any ¢ > 0, then X(t) is a H-ss
process. Two examples are of particular interest, namely the Lévy flights and
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the linear fractional stable motion (LFSM) [30]. The first one is defined through
f(t,u):=1if u <t, and 0 otherwise. It is a H-ss process with H = 1/a, and its
increments are stationary and independent. The second one is defined through
a parameter d < 1/2 and the kernel f(¢,u) := (¢ — u)fll_ - (—u)fll_, where (t)1 =¢
if t > 0, and 0 otherwise. It is a H-ss process with H = d + 1/a. Its increments
are stationary but dependent, the dependence being controlled by d. It has been
shown [9,16,17,27] that, under mild joint conditions on the mother wavelet 1
and the kernel f(¢, u), the wavelet coefficients of a stable motion are SaS random
variables with integral representation:

+o0 +oo
dx(j, k) = / th(u)M(du) 3 th(u) = /_ f(t, u)¢j7k(t)dt.

-0 oo

H-sssi stable processes. If X is a H-sssi stable process, then, from the sta-
tionarity of its increments and from property P1, one can show that the scale
parameters of its wavelet coefficients satisfy the following scaling relation:

Plinfvar: o} = 2j<H+1/2)a0&0, (3.14)

where ¢ o is a quantity that depends on both the mother wavelet 9o(¢) and the
function f(¢, ), and therefore on d for the LFSM [4, 16, 17]. This relation plays
a role that is equivalent to eq.(3.10) in the finite variance case.

Logarithm of H-sssi processes. The property (and mainly the dependence
structure) of the wavelet coefficients of H-sssi stable processes will not be further
detailed here, and the reader is referred to [4, 5,16, 18]. Instead, we will turn to
logarithmic transformations of H-sssi processes. It is well-known [25,30] that,
if X is a stable variable, then the variable Y = log, |X| has a finite variance,
yielding the idea of considering the random variable log, |dx (7, k).

Let X denote a H-sssi process with arbitrary (finite or infinite) variance,
then it results from the fundamental properties P1 and P2 that [16]:

Elog, |[dx(j, k)| = j(# +1/2) + Elog, |dx(0,0)| . (3.15)

This equation plays a role analogous to that of eq.(3.10). Let us moreover
note that, while eq.(3.10) involves the variance of dx (7, k) because of their mean
which is identically zero, the equation above directly reproduce the self-similarity
of X through the means of log, |dx(j, k)|

The covariance of log, |dx(j, k)| has also been studied in the case of the
LFSM. It has been shown in [16, 18] that:

P3log: |Cov log, |d.(j, k), log, |du (j, ¥)]| < (3.16)
Clk— k|~ (/HWV-H) 1} _ /| - o0, (3.17)
evidencing again that the number of vanishing moments N controls the correla-

tion of the log-coefficients log, |dx (7, k)|, which can be made as small as desired
by increasing N.
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3.2 Long-range dependent processes

Second-order stationarity. Let X be a second-order stationary stochastic
process (supposed to be zero-mean, for a sake of simplicity), with stationary
covariance function cx(7) and spectrum I'x(v). The covariance of its wavelet
coefficients can be expressed as [19]:

+oo
B (i, (1K) = [ [ ex(u o) dia(0) dyra) dudo,
whereas its variance reads:

Ed%c(j,k):/ I'x(v) 27 |%(27v) 2 dv,
—00

where Wy(v) stands for the Fourier transform of 4o(¢). The above relation may
receive a standard speciral estimation interpretation within the time-invariant
linear filtering theory, with & seen as a time index and ¢ as a band-pass filter

[1].
Long-range dependence. A second-order stationary process X is said to be
long-range dependent (LRD) if its covariance satisfies [11]:

CX(T) ~ Cr T_ﬁa T — —|—OO,

with 0 < 3 < 1. An equivalent definition amounts to saying that the spectrum
of a LRD process satisfies:

I'x(v)~c¢p V|77, v—0, (3.18)

with 0 < v < 1.

From the Fourier transform, we have § = 1—v and ¢, = ¢;2I'(1—a) sin(7wa/2),
I' denoting (here and only here) the Gamma function [11, p. 43]. Both defini-
tions imply that f_-l_ocf cx(r)dr = oo or, equivalently, that I'x(0) = oo, the
specific marks of LRD. Note that LRD is sometimes also referred to as “long
memory” or “second-order asymptotic self-similarity,” for a reason made clearer
in the following.

The variance of the wavelet coefficients of a LRD process reproduces the
underlying power-law:

Var dx (j, k) ~ 297¢;C(%0,7),j — oo, (3.19)
with
+oo
Cloon) = [ I ol P (3.20)

This relation shows that the wavelet coefficients catch the power-law be-
haviour of the LRD spectrum, and it is equivalent —in form, spirit and con-
sequences— to the eqs.(3.10) or (3.13), which hold for H-sssi processes with
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finite variance. Moreover, the covariance of wavelet coefficients can be explicitly
computed, yielding the following asymptotic behaviour:

P3LRD: Edx (j, k)dx (5, k') ~ 277k — 279K/ |7"172N | 277k — 277'F/| > oo.
(3.21)

This shows again that the number of vanishing moments N controls the
range of correlation and that long-range correlation within X can be turned to
short-range correlation within its wavelet coefficients, under the condition that
N > 4/2, an inequality which is satisfied for any wavelet since, by definition,
N>1.

Beyond long-range dependence. In the definition (3.18) of LRD, one has
assumed that 0 < 4 < 1. The extension to v < 0 leads to a spectrum I'x which
still exhibits a power-law behaviour at the origin, but the corresponding process
X has no longer long-memory in this case. Nevertheless, the wavelet analysis
described above still holds in a straightforward manner. The situation where
v > 1is technically more difficult, since X has no longer a finite variance (this
situation is sometimes referred to as that of “generalized processes”). Wavelet
analysis is however equally valid in this case, since the wavelet coefficients still
have finite second-order statistics and eq.(3.19) still holds, on condition that
C(%o,7) is finite: this is satisfied as soon as N > (y — 1)/2, a condition which
will be always assumed to hold in the following.

Long range dependence and self-similarity. Let us finally note that, de-
spite the fact that LRD is defined independently, it has deep relations with
self-similarity. It is indeed easy to check that the increments of an H-sssi process
with finite variance are LRD processes, with v = 2H — 1.

3.3 A unified framework

Let X be either a H-sssi or a LRD process, then its wavelet coefficients exhibit
the following key properties for the analysis of the underlying scaling:

— The wavelet coefficients form stationary sequences in time, at every scale.
This is true on condition that N > p, p being the number of times one has
to take increments of a H-sssi process to obtain stationarity.

— The wavelet coeflicients exactly reproduce the scale invariance, through ei-
ther

Var dx(j,%) = 2j7ch’

or

E10g2 |dx(],k)| = ](H + 1/2) +C.

While the second of these two equations only applies to H-sssi processes with
either finite or infinite variance, the first one gathers long-range dependence
and self-similarity (with finite variance) into a single framework. In the case
of self-similarity, v has to be read as 2H + 1 and ¢; as o%. The constant
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C depends on the mother wavelet and on the scaling exponent, and it has
to be read according to eq.(3.10) or (3.19), accordingly. Note, moreover,
that the first equality holds, gathering the various cases, on condition that
N> (y-1))/2.

— The wavelet coeflicients are weakly correlated—i.e., they exhibit no LRD—as
soon as N > /2. This decorrelation is idealized into the approximation:

ID1: the wavelet coefficients dx (7, k) are exactly uncorrelated.

An equivalent decorrelation effect holds for log, |dx (4, k)| and, again, it can
be idealized into an exact decorrelation approximation:

ID2: the log-wavelet coefficients log, |dx (7, k)| are exactly uncorrelated.

These three key properties hold regardless of the precise features of the
mother wavelet, except for its number of vanishing moments that plays a role
for both the stationarization property, the reproduction of the power-law and
the decorrelation effect. What is noteworthy is also that they do not depend on
some a priori assumption about the nature of the analyzed process: in any of the
considered situations, the existence of a scaling behaviour is indeed evidenced by
the analysis, the corresponding interpretation (in terms of either self-similarity,
small scale scaling or LRD) depending on the range of scales over which it is
actually observed. The following section is devoted to make use of these results
for estimating scaling parameters evidenced by a wavelet analysis.

4 A wavelet framework for the estimation of scaling
parameters

4.1 Finite variance and Gaussian processes

Focusing first on finite variance processes, a wavelet-based estimation of scaling
parameters can be designed, that takes full advantage of the various properties
which have been established so far. In particular, and as far as estimation is
concerned, the stationarization property (P2) of the wavelet transform allows
for using the quantity

1 & ,
pi=3D= > di(jk) (4.22)
J r=3D1

as an estimator of the variance Var dx(j, k) at scale j, based on the n; coeffi-
cients available at that scale. Moreover, the coefficients involved in (4.22) can
be considered as almost uncorrelated for an appropriate choice of the analyzing
wavelet (in terms of its number of vanishing moments, see P3), making of (4.22)
a potentially efficient estimator.

Given these attractive properties, estimating the scaling structure of a process
amounts to studying the scale dependence (in j) of the variance estimator p;.
Since power-law behaviors are expected to occur, it proves more interesting to
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rather consider the quantity y; := 3Dlog, u;, thus reformulating the problem
in a simple linear regression framework: together with appropriate confidence
intervals about the y;, the graph of y; against j has been referred to as the
(second order) Logscale Diagram [6].

The Logscale Diagram is based in fact on the logarithm of the estimated
variance p;, but theory only guarantees that the logarithm of the true variance
Ed%(j, k) is linear in j. Since, in general, Elog,{.} # log,{E .}, the quantity y;
cannot be expected to be unbiased, unless some correction is applied. Assum-
ing that the analyzed process is Gaussian, and that its wavelet coeflicients are
uncorrelated (ID1), a way out [3] is to redefine y; as y; = 3Dlog, it; — g;, with

gj := 3D (n;/2) /log 2 —log, (n;/2), (4.23)

where 9(.) is the logarithmic derivative of the Gamma function. Doing so, we
readily get that the theoretical scaling relation (3.10) leads to

Ey; = 3Dvyj +log,c;C. (4.24)

Moreover, the Gaussianity of the process carries over to the associated wavelet
coefficients, so that the y; are scaled and shifted logarithms of chi-squared vari-
ables, with variance

o} := 3DVar y; = 3D((2,n,/2)/log” 2, (4.25)

where ((z,v) is a generalized Riemann Zeta function.
Any kind of (weighted) linear regression of y; on j:

§=3DY w;y, (4.26)
i
with
1 Soj—51
=3D— 4.27
i a; 505y — S2° (4:27)

where the a; are arbitrary non-zero numbers, and S, := 3D E]' 7™ /a; for m =
3D 0,1, 2, constitutes therefore an unbiased estimator of the scaling parameter
7. Among them, we will let the weights a; be precisely the variances 0]2» of the
Y;, since this choice actually leads to the minimum variance unbiased estimator
for the regression problem.

By construction, (4.26) is an unbiased estimator:

E4 = 3Dy (4.28)

! Tt has to be observed that such an estimator shares with many other ones the common
feature of characterizing straight lines in a log-log plot. Its main originality relies on
the fact that wavelets allow for a well-controlled splitting of the analyzed process
in a number of sub-processes at different scales, each of those being much better
behaved than the original process considered as a whole.
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and, if we assume—as we did—that the sequences of wavelet coefficients at
different scales are uncorrelated (ID1), we obtain that

Var 4 =3D) o} w}. (4.29)
i

This is an important result, since this variance only depends on the amount
of data (through the n;), but not on the data itself (the y;), not on the chosen
wavelet (provided that its number of vanishing moments is high enough), nor on
the actual (unknown) value of . It can be shown [1, 34] that, for data of size n,
Var 4 decreases as 1/nin the limit of large n; at each scale j under consideration.
Moreover, the Cramér-Rao lower bound is attained in this case, and the estimate
% is (asymptotically) normally distributed [1,34]. Under the assumptions made,
this permits therefore to associate confidence intervals with the points on which
the linear regression is performed, thus allowing for designing tests aimed at
justifying the relevance of a linear fit, as well as determining the range of scales
on which such a fit makes sense [6].

Estimating v may not be the only issue when characterizing a scaling process.
In particular, it may be most useful to also estimate a “magnitude” parameter
(02 in eq.(3.13), or ¢4 in eq.(3.19)), which clearly measures in practical situa-
tions the quantitative importance of scaling effects in observed data. According
to (4.24), the magnitude parameter ¢; is related to the intercept of the fitted
straight line in the Logscale Diagram. Unfortunately, this intercept also involves
the quantity C, which depends on both the chosen wavelet and the actual scal-
ing parameter v (see €q.(3.20)). A two-step procedure can however be used
[34], which consists first in estimating (;E’ from the intercept of the regression
and, second, in estimating ¢; as @/é, where C is, given ¥, an estimator of
the integral C(v,%o). The estimator constructed this way can be shown to be
asymptotically unbiased, efficient and log-normally distributed [34].

4.2 From Gaussian to stable processes

In the case of processes with arbitrary variance (not necessarily finite), the anal-
ysis conducted so far cannot be followed. However, it has been shown previously
that a number of key properties of wavelet transformed processes still apply in
very general situations, irrespectively of the existence of second-order moments.
In particular, the reproduction identity P1 (eq.(3.6)) for H-ss processes guaran-
tees that (3.15) holds. This allows us again to estimate H by measuring a slope
in a log-log plot, with the notable difference that Elog, |dx (7, k)| needs now to
be estimated. If we restrict ourselves to the class of H-sssi processes (such as
H-sssi SaS processes), the stationarization property of the wavelet transform
still holds, thus suggesting to make use of the quantity

K&

1 .
Y;:=3D— > log, |dx(j, k)| (4.30)
™ v Zsp1
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as an estimator of Elog, |[dx(7, k)|, with the obvious consequence that
EY; = 3D(H + 1/2)j + Elog, |dx(0,0)|. (4.31)

We know [18] that, whereas SaS processes (and, hence, the sequences of
their wavelet coefficients at any scale) have infinite variance, the log-coefficients
log, |dx(J, k)| have finite second-order statistics. Moreover, we have seen that,
in the specific LFSM case, the covariance of those log-coefficients can be made
arbitrarily small when using a wavelet with a high enough number of vanishing
moments (see eq.(3.16))2. This results in behaviors similar to what had been
established for second-order processes, the exact decorrelation idealization ID2
leading for the variance of Y; to the closed form expression:

2\ (rlogye)® 1
Var Y; = 3D <1 + —> (rlogze)” 1 (4.32)

a? 12 n;

In this more general context of processes with a possibly infinite variance,
stationarization and almost decorrelation are again the key ingredients for guar-
anteeing a relevant estimate of the scaling parameter H. More precisely, the
estimate H follows from the linear relation (4.31) and can be written as:

R 1
H:=3D) wY; - 5 (4.33)
J

with the weights w; defined as in (4.27).

Since we have, by construction, E]' w; = 3D0 and E]' Jw; = 3D1, it is easy
to check that EH = 3DH, a result which is exact regardless of the data length
and of 0 < @ < 2.

Assuming (ID2) an exact decorrelation between the log-coefficients, one ob-
tains:

ro_ 2\ (rlog,e)? Wy
Var H = 3D <1 + §> =2 N (4.34)

This variance is minimum for the choice a; = 3DVar Y; ~ 1/n;. Since n;, the
number of data points available at scale j, behaves basically as n; = 3D277n for
a total number n of data points, we see that Var H decreases as 1/n, regardless
of the possible LRD nature of the analyzed process. Finally, numerical investi-
gations support the claim that the wavelet-based estimate His (asymptotically)
normally distributed, thus allowing the derivation of confidence intervals from
the knowledge of the variance [4].

2 It has however to be noted that, for a given H, the decorrelation effect requires larger
N’s for smaller a’s, since N has basically to behave as 1/a.
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4.3 Additional benefits

Besides the effectiveness of wavelet-based tools (such as the Logscale Diagram)
for the analysis of “perfect” scaling processes, a number of additional benefits
are offered by the proposed framework, which can prove of particular interest in
more realistic situations.

Robustness to non-Gaussianity. Among the various assumptions which have
been made for deriving analytic performance of the estimators, one concerns the
Gaussianity of wavelet coefficients. Except for processes which are by themselves
Gaussian, such an assumption has no reason to be relevant, but it has been shown
in [6] that formulee of the type (4.28) and (4.29) still apply in non-Gaussian cases,
up to correction terms which can be explicitly included in the analysis, or even
neglected in the limit of large data samples.

Insensitivity to polynomial trends. A common limitation of standard tech-
niques aimed at scaling processes is that their results can be severely impaired
by perturbations with respect to the ideal model of a “perfect” scaling process.
This is especially the case when deterministic trends are superimposed to a pro-
cess of interest, with consequences such as invalidating the stationary increments
property of an actual LRD process, or mimicking LRD correlations when added
to a short-range dependent process [3]. Wavelets are a nice and versatile solution
to this crucial issue, since they offer the possibility of being blind to polynomial
trends. As it has already been said, a wavelet needs, for being admissible, to
be zero-mean (i.e., to have one, zero-th order, vanishing moment) or, in other
words, to be orthogonal to constants. A natural extension of this requirement
consists in imposing a higher number of vanishing moments, say N, so that the
resulting wavelet be blind to polynomials up to orders p < N — 1.

Computational efficiency. The analysis of scaling processes is often faced (as
it is the case with network traffic) with enormous quantities of data, thus re-
quiring methods which are efficient from a computational point of view. Because
of their multiresolution structure and their pyramidal implementation, wavelet-
based methods are associated with fast algorithms overperforming FFT-based
algorithms (complexity O(n) vs. O(nlogn), for n data points).

5 Conclusion

Wayvelet analysis has been shown to offer a natural and unified framework for
the characterization of scaling processes. One of its main advantages is that
it allows for a unique treatment of a large variety of processes, be they self-
similar, fractal, long-range dependent, Gaussian or not, ... Further extensions
can even be given to the results presented so far. For instance, it has been shown
in [2,32] how point processes with fractal characteristics can enter the same
framework, on the basis of versatile generalizations of the Fano factor, which
is of common use in this context. Other developments have been conducted for
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taking into account situations where one scaling exponent is not sufficient for a
proper description and modelling. In such multifractal scenarii [21, 28], analyses
based on higher-order statistics of wavelet coefficients are a key for efliciently
computing quantities such as Legendre singularity spectra [10].

As far as applications are concerned, telecommunications network trafficis a
domain in which wavelet-based analysis proved most useful in different respects.
First, it permits to evidence in a well-controlled way the non-standard features
of traffic (self-similarity, long-range dependence) which have been observed since
a recent past, and to accurately estimate the corresponding scaling parameters
[3,6]. Second, its versatility allows for using, in a common framework, different
aspects of traffic data (work process, interarrival delays, loss, ... ) [3], as well as
for being a basis for new (wavelet-based) models [29]. Finally, its computational
efficiency allows for a fast processing (with possible on-line implementations) of
the very large amounts of data which are commonly encountered in this domain.

Other areas have benefited from the same tools. Among them, one can cite
turbulence, a field in which the identification of scaling phenomena is of primary
importance [20]. The equations (Navier-Stokes, ... ) that govern fluid motion
are characterized by nonlinear terms that insure energy transfers from the in-
jection to the dissipation scales, giving birth to the so-called “inertial scaling
range”. Scaling exponents within this range have been estimated using wavelet
tools generalized to statistics different from two (see, e.g., [13]). The multifractal
formalism has also been considered to model scaling within the inertial range,
and refined wavelet tools have been widely used in this kind of analysis [10].
More recently, cascade models [14] have been invoked to describe a much wider
variety of scaling phenomena where scaling on the time series themselves may
even be barely observable. These cascades were recently rephrased in the wavelet
framework [8] and used to give new insights on scaling in turbulence [7,15].

In biology, scaling processes were used to model, for instance, spike trains
discharges of neurons. In this context, wavelet tools such as those presented
here were used to estimate the scaling parameters, directly from the observed
point-processes, and to decide whether the responses are pathological or not [32].

More recently, the proposed wavelet analysis of scaling has been applied to
the study of extremal models [31]. Such models describe in a common language a
large variety of physical phenomena (wetting front motion, roughening of crack
front in fracture, solid friction, fluid invasion in porous media, ... ). In all these
situations, key ingredients are the competition between elastic restoring force and
nonlinear pining forces, and the assumption that the dynamic of the systems is
controlled, at each time step, by its extremal part. Wavelet analysis allowed to
evidence, amongst the times series produced by extremal models, the existence of
temporal statistical dependence and self-similarity, to estimate the corresponding
parameters and to show the relevance of the use of LFSM models.

For any of these applications, using wavelets is in some sense “natural”, in
terms of a structural adequacy between the mathematical framework they offer
(multiresolution) and the physical nature of the processes under study (scaling).
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