ParTradeusiSliwa

Dảns la période de transformation que nous vivons, les algorithmes sont partout et nous les utilisons sans le savoir. Une équation datant de 1800 est pourtant présente dans chacun d'eux: la Tránsformée de Fourier inventée par Joseph Fourier (1768-1830). Si son objet d'études, en tant que physicien, fut la diffusion de la chaleur, sa méthode mathématique se révèle toujours d'une incroyable modernité, des ondes à la mécanique quantique. Son héritage scientifique est aujourd'hui très présent : télécommunications; imagerie médicale, synthèse musicale, astronomie, etc.

## LEEQUATION DU FUTUR ...QUIVIENT DU PASSE

$\because$$\rightarrow$

## UNE DIMENSION HUMAINE

Véritable exemple pour la jeunesse, Fourier représente aussi une dimension humaine. Né à Auxerre en 1768 dans une famille modeste, Joseph est orphelin à 10 ans. Recueilli par un organiste, il est élevé au
collège d'Auxerre où ses talents sont remarqués. collège d'Auxerre où ses talents sont remarqués. Il y revient comme professeur en 1785 et participera activement à la Révolution au sein de la Société populaire d'Auxerre. En 1793, lors de la levée de 300000 hommes, ses talents d'orateur provoquent tant d'enrölements volontaires que le tirage au sor
devient inutile. Préfet de l'ssere de 1802 à 1815, il publie dans le même temps La théorie de la chaleur.

〉 interprète dans le même langage, comme pour attester l'unité et la simplicité du plan de l'univers, et rendre encore plus manifeste cet ordre immuable qui préside à toutes les causes naturelles.»
Pour décrypter le langage de la nature, Fourier déroule un véritable programme. Celui-ci fait fectionnerales instruments et'on multipliera les expériences. Il insiste aussi sur le fait d'approfondir les méthodes de calcul jusqu'aux dernières applications numériques, condition nécessaire de toute recherche, sans lesquelles on n'arriverait qu'à des transformations inutiles. Cette philosophie préfigurantl'approche moderne qui combine modélisation, incessants allers-retours théorie-pratique et calcul scientifique, nétait pas du goût de tous. Peu de temps après la mort de Fourier, le mathématicien Jacobi (1804-1851) écrivait ainsi à son confrère Legendre: «I lest vrai que M. Fourier avait l'opinion que le but principal des mathématiques était l'utilité publique et l'explication des phénomènes naturels; mais un philosophe
comme lui aurait dû saisir que le but unique de la science, c'est l'honneur del'esprit humain, que sous ce titre, une question de nombres vaut autant qu'une question de système du monde., Cette dernière conception, opposant mathématiques pures et appliquées, règnera sans partage durant près de 150 ans, atteignant son apogee au xx siècle, sous la domination du groupe Bourbaki ${ }^{1}$. L'un de ses membres les plus emblématiques, le mathématicien Jean Dieudonné, écrira un livre intitulé Pour l'honneur de lesprit humain, ouvrant celui-ci sur la celebre citation de Jacobi. Ces aspects sont notamment évoqués dans Bourbaki, Une societe secrete de mathématiciens (Maurice Ma shaal, Belin 2002). Cette époque est révolue, son discours àl'Académie des Sciences en août 2005, intitulé à juste titre Le retour de Fourier Revenons donc au décryptage del'unitéet dela


1 Nicolas Bourbaki mathématicien imaginarie, sous le nom
duquel un groupe de mathématiciens francophones s sest duquel un group
forme en 1935.
simplicité du plan de l'univers, simplicité qui étonnera Albert Einstein un siècle plus tard "ce quiest incompréhensible, c'estque le monde «ce qui est incomprehensible, cest quele cononde Soit comprehensible,» Enfonçons le clou avec
les mots du mathématicien et philosophe Henri Poincaré (1854-1912): «La Théorie dela Chaleurde Fourier est un des premiersexemples d'application de l'analyse à la physique [...]. Les résultats quíl a obtenus sont certes intéressants par eux-mêmes, mais ce quil'est plus encore est la méthode qu'il a employée pour y parvenir et qui servira toujours de modèle à tous ceux qui voudront cultiver une branche quelconque de la physique mathématique.»

## UN HÉRITAGE UNIVERSEL

Dès le départ, Fourier est conscient de luniversalité de son héritage : «Les équations du mouvement de la chaleur, comme celles qui expriment les vibrations des corps sonores, ou les dernières oscillations des liquides, appar tiennent à une des branches de la science du calcul les plus récemment découvertes.»Si les vibrations des corps sonores arrivent juste après l'équation de la chaleur, ce n'est probablement pas un hasard. Fourier connaît l'importance depuis Pythagore du problème de la vibration d'une corde tendue, suite par exemple à un pincement. Pythagore (vi siècle avant J -C) mit le premier en évidence les rapports étroits qui unissent la musique et le nombre. Platon, souvent en accord avec les Pythagoriciens d'après Aristote, préconisa la mathématisation de la musique (cf. La République). L'analyse mathématique s'est dévelop pée de concert avec l'étude du problème de la corde vibrante, jusquà Fourier qui s'y pencha aussi, posant notamment la question de la na ture de ce que nous appelons une fonction. L'Analyse de Fourier permet de résoudre la
question en décrivant à chaque instant la forme que prend la corde comme une somme d'harmoniques en cours d'amortissement. Cela illustre l'idée visionnaire de considérer tout phénomène physique comme une somme d'oscillations ( $\mathrm{co}-$-)sinusoïdales, entierement déterminées par les formules de Fourier. Aujourd'hui, la transcription du phé trique, optique, chimique) à l'aide d'un capteur autorisera l'automatisation des calculs pratiques induits par ces formules. Par exemple, sur le schéma ci-contre, le signal 4 correspond à la somme des trois oscillations $1+2+3$. Si le signal possède une période $T$, i.e s'il se répète toutes les T secondes, il y a presence d'un rythme fondamental (fréquence $\mathrm{f} 0=1 / \mathrm{T}$; unité: un Hertz correspond à une repétition par seconde) et uniquement de multiples de celui-ci (ici double et triple de la frequence du fondamental) dites harmoniques, vocable qui resonne telle l'harmonie des sphères de Pythagore ${ }^{2}$. L'amplitude des vibrations correspondantes est représentée par le diagramme en bâtons (5) tandis que le décalage, usuellement appelé déphasage et correspondant intuitivement à un retard angulaire pour un objet en rotation, est representé en bas (6). Ce dernier s'evalue generalement en degres, cf. positions décalees des planetes en rotation autour du soleil dans le modèle de Kepler (1571-1630). Exemple l'opposition de planètes correspond àun angle de $180^{\circ}$. Le mouvement des astres a de tous temps inspiré les savants. Le mathematicien perse Al-Tusi (1201-1274) avait prouvé qưune

composition de deux mouvements circulaires pouvait aboutir à un mouvement rectiligne Cela peut être vu comme un cas particulièrement simple de somme d'oscillations à même d'illustrer la puissance descriptive de ce type de procédé.
Si le signal n'est pas périodique, toutes les fréquences peuvent être présentes et l'on utilise une Transformée de Fourier en lieu et place des séries ${ }^{3}$ du même nom. L'écriture moderne de la Transformée de Fourier, avec x représen tant l'abscisse, qui peut être spatiale plutôt que temporelle, et $\xi$ la fréquence. L’utilisation de l'exponentielle complexe permet d'inclure amplitude et phase en une seule notation symbolique.
Fourier lui-même a grandement contribué à l'usage de notations symboliques aujourd'hui omniprésentes en mathématiques et en physique telles que $\sum$ pour dénoter la sommation d'une série d'eléments. Et les nombres régissent même le feu, comme cité dans le texte de la soumission de Fourier en 1811 à l'Acadé mie des Sciences : Et ignem regunt numeri ${ }^{4}$ attribuée à Platon. Cependant, si Fourier obtient en 1812 le grand Prix de mathématiques de l'Institut, ce n'est qu'en 1822 que sera publiée la version définitive de sa theorie analy tique de la chaleur.

## L'IRM, ISSUE DE SES TRAVAUX

Le numéro de Sciences et Avenir de juin 2014 titrait sur les 17 équations qui ont changé le monde: Einstein, Newton, Fourier, etc. L'autre rançais listéparmiles dixnomsen couverture, Navier, pour léquation de la mécanique >

L'ANALYSE DE FOURIER décrit tout phénomène physique comme une
somme d'oscillations (co) sinusoídales


5 Amplitude


6 Décalage
L'heure des choix
$\|$

2 'harmonie des spheres ou Musique des sphères: :théorie Corigine pythagoricienne, fondie sur itdee que 'univers est regi Par des rapports numeriques harmonieux et quie
les distances entre les planètes dans la représentation geócentrique de 'Iunivers - Lune, Mercure, Venus, Soleleil,
 selon des proportions musicales, les distances entre
correspondant
des correspondant te des intervales musicaux.(Wiki)
3 Les series de fourier sont un outil fondamental dans letude des fonctions périodiques.
4 «Meme l e feu est régi par les nombres »: : cestla citation
 ittribuée a Platon que porte en exergue la
Analytique de la chaleur de oloseph Fourier.


L'IMAGEUR D'EXXPLANĖTES SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) dédie à la recherche systématique a ansi qu'à l'étude
d'exoplanètes et installe sur le Tres Grand Télescope (VIT) de l'ESO à al'Observatoire du Cerro Paranal dans le désert d'A Atacama au Chili d'exoplanètes et installés sur Ie Très Grand Télescope (VLT) de I 'EsS à l'Observatoire du Cerro Paranal dans le désert d'A Atacama au Chili.
Utilisant I'analyse de fourier, il permet l'étude des astres dans les longueurs d'onde allant du visible à l'infrarouge.
> des fluides, fut élève de Fourier, et tout comme lui bourguignon (Dijon pour Navier, Auxerre pour Fouriẹ). Dans ce numéro, une double page est consacrée à la transformée de Fourier, outil universel pour le traitement du signal (son, lumière, images) et véritable couteau suisse de la physique. Ainsi en va-t-il de l'imagerie médicale, et tout particulièrement de l'IRM.
Il peut paraitre surprenant que la Transformée de Fourier (TF), en sus de la fréquence et del'amplitude, fournisse la durée des signaux. De fait, l'excitation d'un système physique s'accompagne généralement d'un amortissement. Celui-ci se traduit par un étalement des fréquences observées (spectre). Non content de caractériser le signal capté, une TF spatiale, exploitant les propriétés du champ magnétique émis, permet, à partir du plan dit de Fourier, la localisation nécessaire à l'obtention de limage observée.
Ainsi, le rôle de l'Analyse de Fourier est ici double

Aujourd'hui, I'héritage de Fourier, nous permettant littéralement d'« entendre l'univers », est plus que jamais d'actualité

- fournir une information sur la composition chimique grâce à une technique dite de spectroscopie par Résonance Magnétique Nucléaire (RMN),
- visualiser la morphologie interne de lorganisme. L'Imagerie par Résonance Magnétique révolutionne ainsi la médecine en permettant littéralement d'observer lintérieur du corps (illustration: CentredeCultureScientifique Tech nique et Industrielle de Bourgogne, CCSTIB). SiliRM combine spectroscopie et imagerie, la TF se retrouve dans un très grand nombre de techniques spectroscopiques ou spectrométriques, procédés permettant de révéler et quantifier la nature intime de la matière (contrôle de pollution par exemple) grâce le
plus souventà an interaction (dispersion plus souvent à son interaction (dispersion, ab-
sorption, émission, diffusion, etc.) avec une onde électromagnétique (dontlumière visible, infrarouges, rayons X, etc.), comme dans un très grand nombre de techniques d'imagerie (dont l'acquisition tomographique que la TF améliore). Nous ne rentrerons pas dans le détail des techniques existantes, il suffit de comprendre qu'une onde (lumière par exemple) est naturellement composée d'oscillations ou de sommes d'oscillations (co-)sinusoïdales, généralement temporelles et spatiales (on parle alors de longueur d'onde $\lambda$ plutôt que de période). La TF étant conçue pour l'étude de ces composantes, il n'est pas surprenant qu'elle intervienne. Si lon ajoute que la physique est dans une bonne part ondulatoire, $l$ 'expression couteau suisse de la physique s'éclaire, que cela
soit pour comprendre les phénomènes, les mesurer oules manipule
La spectroscopie à Transformée de Fourier moins onéreuse que des techniques moins cal culatoires, est basée sur un interféromètre Lorsque des ondes se «somment", elles provoquent des interférences constructives ou destructives. Il suffit de penser à des vagues ou ondulations à la surface de l'eau : si deux familles, provenant de deux sources d'agitations différentes, se rencontrent, alors creux et bosses se somment. Deux bosses ou creux donnent une bosse ou creux plus grand tandis que bosses et creux se compensent. Nous re trouvons une sommation d'oscillations telle qu'exprimée dans la TF. Cette technique est apparue en astronomie où le spectre était difficilement séparable dubruitde fond sans passer par l'Analyse de Fourier. Ainsi, le Planetary Fourier Spectrometer est un spectromètre in frarouge permettant d'étudier la compositio chimique de l'atmosphère de Mars ou Vénus.
des applications en biologie ET ASTRONOMIE
Dans le livre Les mathématiciens de lantiquité au xxf siècle (éditions Belin en 2012) est évo qué Joseph Fourier, ainsi que sa protégée So phie Germain, parmi les genies déclinés. De figures de diffraction par rayons X nous rap pellent que les techniques de l'Optique dite de Fourier ont notamment permis pour la pre mière fois de révéler la structure en double hélice de l'ADN. Une diffraction a lieu lorsqu'une onde rencontre un obstacle d'un


L'IEEE FOURIER AWARD FOR SIGNAL PROCESSING est décerne tous les ans par la plus importante
organisation mondiale pour 'araanisement technologique au service de I'humanite.
ordre de grandeur comparable à sa longueur d'onde. Elle se disperse alors en interférant avec elle-même comme si chaque point de lobstacle se comportait telle une nouvelle ource et reémettait 'onde. Cela donne lieu a une figure dite de diffraction, correspondant TF). Il ne reste plus quà effectuer une $T F$ in verse pour retrouver la structure de l'obstacle qui a diffracté le rayonnement utilisé. Cette technique est très utile en cristallographie ou ncore pour la visualisation de proteines. Le principe des interférences est aussià la base de Yholographie, application de l'Optique de Fourier. Elles peuvent se réveler utiles pour combiner les signaux en provenance de plusieur télescopes afin de dépasser les limitations de diamètre qui contraignentleurs performances, L'astronomie ad'une manière générale joué un

grand rôle dans le développement de l'utilisation des techniques dites de Fourier:
En acoustique, où les creux et les bosses correspondent à des dépressions et des suppressions, contrôler les interférences permet notamment la mise au point de techniques anti-bruit actives, aujourd'hui disponibles dans de nombreux équipements professionnels etgrand-publics. Pour quele haut-parleur puisse renvoyer des sons qui se compensent, c'est-à-dire des ondes de pression en opposition de phase, il estnécessaire de connâtre les caractéristiques de ceux captés par le hautparleur, grâce à une TF.
D'une manière générale, tout l'univers du son numérique en estimprégné, de l’accordeuràla reconnaissance de la parole, en passant par 'analyse sonore et la synthèse musicale ou le format MP3 pour ne citer que les applications les plus connues.

## SON INFLUENCE DANS LA

téléphonie et l'électronique
Dans le domaine des ondes électromagnetiques, les outils de Fourier sont omniprésents: aussi bien radiodiffusion ou télédiffusion, transmission (annulation decho, compensaion de déformation, etc.) et communication (filtration, modulationd'amplitude, etc.) d'une manière generale, que traitement des données médias (compression/décompression, débruitage, correction, authentification, etc.). A tel oint que les processeurs des tatephones portables, a instar de ceux inclus dans d'autres equipements embarqués, comme dansles véhicules, etant specialises dans le traitement du signal en temps-réel (DSP : Digital Signal Processor), ont été à lorigine conçus pour et autour des calculs de transformees de Fourier apides (FFT:FastFourier Transform). À signaler que ${ }^{\prime}$ OFDM (Orthogonal FrequencyDivision Multiplexing), codage utilisé en présence de trajets multiples comme pour l'ADSL, Wifioulesréseauxmobilesàsource multiple (4G par exemple) est aussi basé Transformée Fourier (TF). Limportance de cette dernière est telle qu'une entreprise australienne de services en technologies de 'information et de la communication a directement pris le nom de Fourier: Son slogan : simplifier, transformer, optimiser ;à limage de la TF quipermet de résoudre des problèmes en les décomposant en éments aisés à manipuler.
De nos jours, grâce aux progrès de lélectronique, les TF sont réalisées à l'aide d'analyseurs numériques. Un capteur transforme la grandeur observée en signal électrique. Pour

## L'ANNEE fourier

A 'occasion du $250^{\circ}$ anniversaire de la naissance de oseph Fourier de nombreuses manifestations son organisées dans 'hexagone. LLe 14 mars 2018, Cédric Iliani a souligne sa modemite lors dune conference de lintelligence artificielle » donnée à Auxerre.

## MARS

«SUR LES TRACES DE JOSEPH FOURIER DANS SA VILLE NATALE D'AUXERRE " Parcours urbain permettant de découvrir les richesses du patrimoine auxerrois et la présence de Joseph Fourier, hier comme aujiourd"hui.
En accompagnement: :xposition «Fourier 1768-2018 au Muséum d'Auxere. A partir du 21 mars 2018

## AVRII

FOURIER, DE LA RÉVOLUTION
FRANCAISE À LA RÉVOLUTION
UMERQUE"
Exposition à l'Institut Henri Poincare
11 rue Pierre et Marie Curie
«FOURIER AUJOURD'HUI»
Conférence organisée par Stéphane Jaffard dans le cadre de Mathématiques en mouvement (Fondation sciences Mathématiques de Paris), avec le parrainage de l'Académie des sciences.
intervenants
Claire Boyer, Éric Chassande-Mottin, Jean Dhombres, Céline Esser, Patrick Flandrin, Thomas Hélie. e 7 avril 2018 de 10 a a 1 Tha a Institut Henri Poincaré 11 rue Pierre et Marie Curie, 75005 Paris

## JUILLET

"CURVES AND SURFACES $2018 »$ Conférence où les thématiques de l'analyse d Fourier seront représentées dans des exposés d'Emmanuel Candes et de Phillip Grohs, ainsi que dans le mini-symposium « Advances on Prony's methods » animé par Stefan Kunis.
Du 28 juin au 4 juillet à Arcacho
Programme complet sur: cs2018.sciencesconf.org

## OCTOBRE

## FOURIER L'ÉGYPTIEN

Conférence par Alain Cattagni, président de la Société des Sciences Histiques enatureles de I Yonne.

## «L'HERTTAGE DES OUTILS DE FOURIER

 EN PHYSIQUE ET EN ASTRONOMIE » de Physique Bourgogne Franche-Conté et la Socié Astronomique de Bourgogne, avec le parrainage el'Académie des sciences.Le 11 octobre à 14 h, Université de Bourgogne, Dijon

》 Pour un micro, il s'agit d'une membrane lié à une bobine qui se déplace autour d'un aimant, provoquantune circulation de courant par induction (comme pour les variations de champ dans une antenne). Le signal électrique est ensuite amplifié puis numérisé. Cette der nière opération comporte unéchantillonnage, ce qui revient à prélever régulièrement une valeur, puis une quantification, c'est-à-dire que cette valeur est convertie en nombre, avec un codage plus ou moins fidèle (exemple 8-16-32 unités d'information/bits). Pour ne pas perdre d'information, léchantillonnage respecte le critere de Shannon : sa fréquence est supérieure à deux fois la fréquence utile maximale présente dans le signal (cf. cepen dantles travaux récents de T. Tao et E. Candes outrepassant cette limite). Ensuite, une FFT est appliquée.
Les analyseurs sont des dispositifs courants, souvent portables, comme par exemple pour la maintenance industrielle sur site de production. Lanalyse des vibrations, captée a raid par exemple d'un piezzo electrique (trans forme une contrainte mécanique en tensio électrique), permetle diagnostic des défautse la prevention des pannes des machines sans besoin de les ouvrir.

## de La Cybernétique

## A L'EFFET DE SERRE

De manière générale, la notion dite de filtre intervient dans tous les domaines de l'EEA (electronique, electrotechnique, automa tique). Toutes sortes de manipulations son effectuees sur les signaux. Ils servent à com mander des actionneurs qui transforment les signaux electriques en action physique haut-parleur (idem micro, le courant provo quant le mouvement de la membrane), fou (résistance chauffante), bras robotisé, etc. Laction observée peut être observée par un capteur et réinjectée dans le système. C'estla notion de retroaction introduite par Norbert Wiener (1894-1964), père de la cyberne tique, qui a longuement etudie et mis à profit les outils de Fourier. Apres ajustement à la tâche désiree, le systeme est contrôlé. Ce techniques se sont considérablement déve loppees lors et apres la seconde guerre mondiale (radar, missiles, etc.). Elles sont presentes aussi bien dans les systèmes electrotechniques, les systèmes de production automatisés que dans les systèmes électroniques embarqués dans les vehicules. Le traitement du bruit et autres perturbations present dans nombre de ces systemes a for tement contribué à la science du traitement du signal.

que l'activité humaine puisse avoir une influence sur le climat. Moderne, la philosophie de Fourier, à côté de l'étude approfondie de la nature, tient aussi compte de ce que Jacobi avait décrié comme l'utilité publique, assumant pleinement son rôle de savant dans la cité. Ainsi, au service de l'État en tant que préfet, Fourier irajusquả effectuer des calculs de chauffage des bâtiments, réfléchissant à usage de l'energie solaire et de la geothermie, et mettant au point des formules de calcul d'isolation des parois toujours utilisées de nos jours.

## HOMMAGES RENDUS

osephFourier est devenul'un des plus grands oms des sciences, comme lattestent les plus célèbres vulgarisateurs : Stephen Hawking 'incluait au sein de son choix des 17 personnages aux textes commentés dans Et Dieu créa es nombres. Il fitpartie de la première promoion de l'Ecole normale supérieure, celle de an III, fut professeur à l'Ecole Polytechnique (X), secrétaire perpétuel de l'Académie des ciences, membre de l'Académie française et de la Royal society.
1 joua aussi un rôle important dans la naisance de l'égyptologie scientifique en langue française, non seulement comme chargé de edition de la Description de l'Egypte, premier t monumental ouvrage du genre, mais aussi comme ami des frères Champollion, protecur determinant dans la vocation du cadet, Jean-François, déchiffreur des hiéroglyphes. e dernier, comme en reconnaissance, se fit enterrer au Père Lachaise à proximité de son héros, Fourier mort à Paris en 1830. Devant 'Académie, au décès de Joseph Fourier, c'est Arago qui prononce 1 'hommage du défunt.
Un comité a été constitué, sous la présidence de Patrick Flandrin de l'Académie des ciences, pour coordonner les commémoraons nationales en 2018. $\diamond$ T.S
médicale). Cela s’applique aussi àlélectroma gnétisme avec les radars (y compris certain radars de contrôle de vitesse routière). L encore, les outils de Fourier se révèlent utiles Jusquảa la détection toute récente des ondes gravitationnelles. Ainsi, aujourd'hui, 'héri tage de Fourier, nous permettant littérale ment d'《 entendre runivers », est plus qu jamais d'actualité.
Que dire des débats sur le réchauffement climatique et le developpement durable? Outre le fait que Fourier soit a lorigine du concep deffet derre (c.Surlesorigines de eff La ville qui brûle), il est le premier à signale

## Pour aller plus loin...

## , <br> A URE

MDPI Entropy consacrera un numéro spécial en anglais à oseph Fourie.. II explorera des sujets modemens líes à l'analyse de Fourier et à 'équation de la chaleur: : «Joseph Fourier 250th Bithday: Modern Fourier Analyssis and Fourier YXIst Centitun in Information Sciermations : www. the com/journal/entropy/special issues/fourier
17 équations qui ont changé le mondé 17 equations qui ont chang
lan Stewart, Ed. Robert laffont
 www.ccstib.frr/category/joseph-fourier/

