Wavelets and Mathematical Scores

Patrick Flandrin

CNRS & École Normale Supérieure de Lyon, France

to Ingrid Daubechies, 2011 Franklin Institute Laureate

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

mathematical scores

localization

Fourier the wavelet way other roads

a "3-body system"

イロト イロト イヨト イヨト ニヨー

Fourier the wavelet way other roads

the Fourier example

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fourier the wavelet way other roads

Fourier analysis/synthesis

Fourier decomposition based on: $e_f(t) := \exp\{i2\pi ft\}$

$$x(t)
ightarrow X(f) = \langle x, e_f
angle, \ s.t. \ x(t) = \int \langle x, e_f
angle \ e_f(t) \ df$$

- mathematics: all waveforms are made of superimposed everlasting, fixed frequency tones
- physics (musical intuition): what about notes and gliding frequencies?

イロト イボト イヨト 一日

Fourier the wavelet way other roads

from tones to atoms

Way out

"**localized tones**" \Rightarrow switch to a 2-parameter group of transformations that include time

$$\mathbf{x}(t) \to \mathcal{T}(t,\lambda) = \langle \mathbf{x}, \mathbf{h}_{t,\lambda} \rangle, \ \mathbf{s}.t. \ \mathbf{x}(t) = \iint \langle \mathbf{x}, \mathbf{h}_{\mathbf{s},\lambda} \rangle \ \mathbf{h}_{\mathbf{s},\lambda}(t) \ \mathbf{d}\mu(\mathbf{s},\lambda)$$

1 time-frequency: $\lambda = f$ and $h_{s,f}(t) = h(t - s) e_f(t)$

 \rightarrow short-time Fourier transform

2) time-scale:
$$\lambda = a$$
 and $h_{s,a}(t) = |a|^{-1/2} h((s-t)/a)$

\rightarrow wavelet transform

イロト イロト イヨト イヨト ニヨー

Sar

Fourier the wavelet way other roads

a mathematical score

Fourier the wavelet way other roads

extending spectrum analysis

From stationarity...

"Wiener-Khintchine-Bochner" spectrum analysis: $\Gamma_x(f) = \mathcal{F}\{\gamma_x\}(f)$, with $\gamma_x(\tau) := \langle x, \mathbf{T}_{\tau}x \rangle$ a time-independent correlation

... to nonstationarity

 $\gamma_x \rightarrow time$ -frequency correlation $\langle x, T_{\tau,\xi}x \rangle + 2D$ Fourier transform \Rightarrow Wigner-type transforms

- Intrinsic definitions
- no dependence on a measurement device (window, wavelet)

・ロト ・ 同ト ・ ヨト ・ ヨト

в

time or frequency time and frequency sampling

3 facets

イロト イロト イヨト イヨト ニヨー

time or frequency time and frequency sampling

classical formulation

Localization trade-off

based on a second-order (variance-type) measure: $\Delta t_x = (\int t^2 |x(t)|^2 dt)^{1/2}$ and $\Delta f_x = (\int f^2 |X(f)|^2 df)^{1/2} \Rightarrow$

$$\Delta t_x \Delta f_x \geq \frac{\|x\|}{4\pi} \ (>0)$$

- variations: same limitation with other measures of spread, e.g., entropy (Hirschman, 1957)
- common feature: Gaussians are minimizers

(日) (四) (王) (王) (日)

time or frequency time and frequency sampling

from 2 \times 1 dimension to 1 \times 2 dimensions

[time-frequency spreads or entropies (e.g., De Bruijn, 1967)]

Joint energy concentration

$$\max_{x} \iint_{D} \rho_{x}(t,f) \, dt \, df \, ?$$

D elliptic \Rightarrow Hermite functions eigenfunctions of the TF concentration operator for Wigner distributions, either

- 1) on "1/0" domains (F., 1988; Lieb, 2010)
- with Gaussian kernels, i.e., Gabor spectrograms (Daubechies, 1988)

イロト イロト イヨト イヨト 二日

time or frequency time and frequency sampling

eigenvalues

Gaussians as maximizers

イロト イボト イヨト イヨト 三日

time or frequency time and frequency sampling

no pointwise TF localization

Reproducing kernel identity

$$T(t',\lambda') = \iint \langle h_{t,\lambda}, h_{t',\lambda'}
angle T(t,\lambda) d\mu(t,\lambda)$$

- $\langle h_{t,\lambda}, h_{t',\lambda'} \rangle \neq \delta(t-t') \, \delta(\lambda-\lambda') \Rightarrow$ redundancy
- time-frequency (λ = f) or time-scale (λ = a) sampling, in analogy with Shannon sampling for band-limited functions

Patrick Flandrin

Wavelets and Mathematical Scores

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

Heisenberg revisited

no pointwise localization does not mean no localization

Refined uncertainty relation (Schrödinger, 1935)

$$\Delta t_x \Delta f_x \geq \frac{\|x\|}{4\pi} \sqrt{1 + 16\pi^2 \left(\int t \,\dot{\varphi}(t) \,|x(t)|^2 \,dt\right)^2}$$

- "squeezed states" {exp(αt² + βt + γ); Re{α} ≤ 0} as minimizers, with linear "chirps" as limiting form
- **perfect** localization for Wigner distribution, with possible extensions to nonlinear chirps

《日》《圖》《王》《王》

-

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

energy ellipses

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

"chirp" signals

Model

multicomponent waveforms $x(t) = \sum_{k=1}^{K} a_k(t) e^{i\varphi_k(t)}$, with

• amplitude modulations (AM) $a_k(t)$

• frequency modulations (FM) $f_x(t) := \dot{\varphi}_k(t)/2\pi$

Aim

get a localized TF energy distribution of the form $\rho(t, f) = \sum_{k=1}^{K} a_k^2(t) \,\delta(f - f_x(t))$

・ロト ・ 同ト ・ ヨト ・ ヨト

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

the duality "density/correlation"

Definition

by definition,
$$W_x(t, f) \xrightarrow{2D-FT} \mathcal{F}\{W_x\}(\xi, \tau) := A_x(\xi, \tau)$$
:
ambiguity function (AF)

Interpretation

given the TF shifts $(\mathbf{T}_{\xi,\tau} x)(t) := x(t-\tau) e^{-i2\pi\xi(t-\tau/2)}$, we have $A_x(\xi,\tau) = \langle x, \mathbf{T}_{\xi,\tau} x \rangle \Rightarrow AF = TF$ correlation, with

- auto-terms neighbouring the origin of the plane
- cross-terms at a distance from the origin which equals the TF separation between components

・ロト ・ 同ト ・ ヨト ・ ヨト

-

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

the other trade-off and "classical" solutions

Patrick Flandrin Wavelets and Mathematical Scores

イロト イロト イヨト イヨト 三日

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

approach 1 — reassignment(s)

Observation

(spectro/scalo)grams are smoothed Wigner distributions

Idea

- move computed values to local energy centroids
- 3 versions
 - "hard": fixed point method (Kodera, Gendrin & De Villedary, 1976; Auger & F., 1995)
 - (2) "differential": ODE (Auger, Chassande-Mottin, Daubechies & F., 1997)
 - (3) "soft": iteration with damping à la Levenberg-Marquardt (Auger, Chassande-Mottin & F., 2011)

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

reassignment in action

time

spectrogram

イロト イポト イヨト

 \exists

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

reassignment in action

time

spectrogram

イロト イポト イヨト

 \exists

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

reassignment in action

time

spectrogram

イロト イポト イヨト

 \exists

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

reassignment in action

time

reassigned spectrogram

イロト イポト イヨト

 \exists

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

approach 2 — "compressed sensing"

Discrete-time signal of dimension $N \Rightarrow TFD$ of dimension N^2 when computed over N frequency bins

Few components

 $K \ll N \Rightarrow$ at most $KN \ll N^2$ non-zero values in the TF plane

・ロト ・ 同 ト ・ 三 ト ・ 三 ト

Э

DQC

Sparsity

minimizing ℓ_0 -norm not feasible, but near-optimal solution by minimizing ℓ_1 -norm (as in "compressed sensing")

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

approach 2 — "compressed sensing"

Idea

(1) select a domain Ω neighbouring the origin of the AF plane

solve the program

$$\min_{\rho} \|\rho\|_{1}; \mathcal{F}\{\rho\} - A_{x} = \mathbf{0}|_{(\xi,\tau)\in\Omega}$$

(3) the exact equality over Ω can be relaxed according to

$$\min_{\rho} \|\rho\|_{1} ; \|\mathcal{F}\{\rho\} - A_{x}\|_{2} \leq \epsilon|_{(\xi,\tau)\in\Omega}$$

イロト イボト イヨト イヨト 三日

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

CS approach in action — principle

Patrick Flandrin Wavelets and Mathematical Scores

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

CS approach in action — comparison

イロト イポト イヨト

 \exists

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

CS approach in action — convergence % "oracle"

Patrick Flandrin Wavelets and Mathematical Scores

イロト イボト イヨト イヨト 三日

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

bat chirp example

 \exists

approach 3 — Empirical Mode Decomposition

Idea of "EMD" (Huang *et al.*, 1998) *signal = fast oscillation + slow oscillation* & *iteration*

- separation "fast vs. slow" data driven
- "local" analysis based on neighbouring extrema
- oscillation rather than frequency

Sar

nathematical scores incertainty relations localization BAD and synchrosqueezing

EMD algorithm

 deduce an upper envelope and a lower envelope by interpolation (cubic splines)

subtract the mean envelope from the signal

iterate until "mean envelope = 0" (sifting)

3 subtract the obtained mode from the signal

iterate on the residual

$$\begin{aligned} x(t) &= c_1(t) + r_1(t) \\ &= c_1(t) + c_2(t) + r_2(t) \\ &= \dots &= \sum_{k=1}^{K} c_k(t) + r_K(t), \end{aligned}$$

with the $c_k(t)$'s referred to as Intrinsic Mode Functions (IMFs)

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

Heart Rate Variability example 1

イロト イロト イヨト イヨト

3

DQC

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

Heart Rate Variability example 2

Patrick Flandrin Wavelets and Mathematical Scores

イロト イロト イヨト イヨト

3

DQC

athematical scores from lo reassi localization EMD a

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

approach 4 — synchrosqueezing

Idea (Daubechies & Maes, 1996)

concentrate wavelet **coefficients**, at **fixed times**, on the basis of **local frequency** information

- guarantees a sharply localized representation (variant of reassignment)
- allows for a **reconstruction** of identified "modes"
- offers a mathematically tractable alternative to EMD (Daubechies, Lu & Wu, 2010; Wu, F. & Daubechies, 2011)

・ロト ・ 同ト ・ ヨト ・ ヨト

from logons to chirps reassignment(s) sparsity EMD and synchrosqueezing

respiratory signal example

[courtesy of H.-T. Wu (Princeton)]

Э

DQC

イロト イロト イヨト イヨト

concluding remarks

a unifying paradigm

time-frequency as a physically meaningful framework

a computational perspective wavelets instrumental in efficiently connecting theory with practice

③ still many variations

Fourier limitations always apply \Rightarrow no unique solution multiplicity of complementary approaches

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <