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a “3-body system”
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« physics » 

(laws of Nature, real world applications) 

« mathematics » 

(models, proofs) 

!

« computer science » 

(algorithms) 
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the Fourier example

 

 

 

 

 

 

 

 

« physics » 
(heat equation) 

« mathematics » 
(harmonic analysis) 

 

« computer science » 
(Fast Fourier Transform) 
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Fourier
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Fourier analysis/synthesis

Fourier decomposition based on: ef (t) := exp{i2πft}

x(t)→ X (f ) = 〈x ,ef 〉, s.t . x(t) =

∫
〈x ,ef 〉ef (t) df

mathematics: all waveforms are made of superimposed
everlasting, fixed frequency tones
physics (musical intuition): what about notes and gliding
frequencies?
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the wavelet way
other roads

from tones to atoms

Way out
“localized tones”⇒ switch to a 2-parameter group of
transformations that include time

x(t)→ T (t , λ) = 〈x ,ht ,λ〉, s.t . x(t) =

∫∫
〈x ,hs,λ〉hs,λ(t) dµ(s, λ)

1 time-frequency: λ = f and hs,f (t) = h(t − s) ef (t)

→ short-time Fourier transform

2 time-scale: λ = a and hs,a(t) = |a|−1/2 h((s − t)/a)

→ wavelet transform
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a mathematical score
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other roads

extending spectrum analysis

From stationarity. . .
“Wiener-Khintchine-Bochner” spectrum analysis:
Γx (f ) = F{γx}(f ), with γx (τ) := 〈x ,Tτx〉 a time-independent
correlation

. . . to nonstationarity

γx → time-frequency correlation 〈x ,Tτ,ξx〉 + 2D Fourier
transform⇒Wigner-type transforms

intrinsic definitions
no dependence on a measurement device (window,
wavelet)
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time or frequency
time and frequency
sampling

3 facets

 

 

 

 

 

 

 

 

« physics » 
joint measurement of position and momentum 

(Heisenberg, 1925) 

« mathematics » 
any Fourier pair of variables 

(Weyl, 1927) 

 

« computer science » 
time and frequency 

(Gabor, 1946 + …) 

«

Patrick Flandrin Wavelets and Mathematical Scores



mathematical scores
uncertainty relations

localization

time or frequency
time and frequency
sampling

classical formulation

Localization trade-off
based on a second-order (variance-type) measure:
∆tx = (

∫
t2 |x(t)|2 dt)1/2 and ∆fx = (

∫
f 2 |X (f )|2 df )1/2 ⇒

∆tx ∆fx ≥
‖x‖
4π

(> 0)

variations: same limitation with other measures of spread,
e.g., entropy (Hirschman, 1957)
common feature: Gaussians are minimizers
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from 2× 1 dimension to 1× 2 dimensions

[time-frequency spreads or entropies (e.g., De Bruijn, 1967)]

Joint energy concentration

max
x

∫∫
D
ρx (t , f ) dt df ?

D elliptic⇒ Hermite functions eigenfunctions of the TF
concentration operator for Wigner distributions, either

1 on “1/0” domains (F., 1988; Lieb, 2010)
2 with Gaussian kernels, i.e., Gabor spectrograms

(Daubechies, 1988)
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Gaussians as maximizers
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no pointwise TF localization

Reproducing kernel identity

T (t ′, λ′) =

∫∫
〈ht ,λ,ht ′,λ′〉T (t , λ) dµ(t , λ)

〈ht ,λ,ht ′,λ′〉 6= δ(t − t ′) δ(λ− λ′)⇒ redundancy
time-frequency (λ = f ) or time-scale (λ = a) sampling, in
analogy with Shannon sampling for band-limited functions
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localization

from logons to chirps
reassignment(s)
sparsity
EMD and synchrosqueezing

Heisenberg revisited

no pointwise localization does not mean no localization

Refined uncertainty relation (Schrödinger, 1935)

∆tx ∆fx ≥
‖x‖
4π

√
1 + 16π2

(∫
t ϕ̇(t) |x(t)|2 dt

)2

“squeezed states"
{

exp(αt2 + βt + γ); Re{α} ≤ 0
}

as
minimizers, with linear “chirps” as limiting form
perfect localization for Wigner distribution, with possible
extensions to nonlinear chirps
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energy ellipses
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“chirp” signals

Model

multicomponent waveforms x(t) =
∑K

k=1 ak (t) eiϕk (t), with
amplitude modulations (AM) ak (t)
frequency modulations (FM) fx (t) := ϕ̇k (t)/2π

Aim
get a localized TF energy distribution of the form
ρ(t , f ) =

∑K
k=1 a2

k (t) δ (f − fx (t))
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the duality “density/correlation”

Definition

by definition, Wx (t , f )
2D−FT−→ F{Wx}(ξ, τ) := Ax (ξ, τ):

ambiguity function (AF)

Interpretation

given the TF shifts (Tξ,τx) (t) := x(t − τ) e−i2πξ(t−τ/2), we have
Ax (ξ, τ) = 〈x ,Tξ,τx〉 ⇒ AF = TF correlation, with

auto-terms neighbouring the origin of the plane
cross-terms at a distance from the origin which equals the
TF separation between components
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the other trade-off and “classical” solutions
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approach 1 — reassignment(s)

Observation
(spectro/scalo)grams are smoothed Wigner distributions

Idea
move computed values to local energy centroids
3 versions

1 “hard”: fixed point method (Kodera, Gendrin & De
Villedary, 1976; Auger & F., 1995)

2 “differential” : ODE (Auger, Chassande-Mottin,
Daubechies & F., 1997)

3 “soft”: iteration with damping à la Levenberg-Marquardt
(Auger, Chassande-Mottin & F., 2011)
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reassignment in action

Wigner-Ville
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reassignment in action

Wigner-Ville

time
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reassigned spectrogram
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approach 2 — “compressed sensing”

Discrete-time
signal of dimension N ⇒ TFD of
dimension N2 when computed over N
frequency bins

Few components

K � N ⇒ at most KN � N2 non-zero
values in the TF plane

Wigner-Ville

time

fr
eq

ue
nc

y

reassigned spectrogram

time

fr
eq

ue
nc

y

Sparsity
minimizing `0-norm not feasible, but near-optimal solution by
minimizing `1-norm (as in “compressed sensing”)
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approach 2 — “compressed sensing”

Idea
1 select a domain Ω neighbouring the origin of the AF plane
2 solve the program

min
ρ
‖ρ‖1 ; F{ρ} − Ax = 0|(ξ,τ)∈Ω

3 the exact equality over Ω can be relaxed according to

min
ρ
‖ρ‖1 ; ‖F{ρ} − Ax‖2 ≤ ε|(ξ,τ)∈Ω
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CS approach in action — principle
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CS approach in action — comparison
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CS approach in action — convergence % “oracle”
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bat chirp example
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approach 3 — Empirical Mode Decomposition
signal = slow oscillation ... + fast oscillation

Idea of “EMD” (Huang et al., 1998)

signal = fast oscillation + slow oscillation
&

iteration

separation “fast vs. slow” data driven
“local" analysis based on neighbouring extrema
oscillation rather than frequency
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from logons to chirps
reassignment(s)
sparsity
EMD and synchrosqueezing

EMD algorithm

1 identify local maxima and local minima
2 deduce an upper envelope and a lower envelope

by interpolation (cubic splines)
1 subtract the mean envelope from the signal
2 iterate until “mean envelope = 0" (sifting)

3 subtract the obtained mode from the signal
4 iterate on the residual

x(t) = c1(t) + r1(t)
= c1(t) + c2(t) + r2(t)
= . . . . . . . . . . . . . . . . . . =

∑K
k=1 ck (t) + rK (t),

with the ck (t)’s referred to as Intrinsic Mode Functions (IMFs)
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Heart Rate Variability example 1
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Heart Rate Variability example 2

seated standing

RR

time
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global
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approach 4 — synchrosqueezing

Idea (Daubechies & Maes, 1996)
concentrate wavelet coefficients, at fixed times, on the basis
of local frequency information

guarantees a sharply localized representation (variant of
reassignment)
allows for a reconstruction of identified “modes”
offers a mathematically tractable alternative to EMD
(Daubechies, Lu & Wu, 2010 ; Wu, F. & Daubechies, 2011)
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respiratory signal example

(a) via ECG and (b) reference

[courtesy of H.-T. Wu (Princeton)]
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concluding remarks

1 a unifying paradigm
time-frequency as a physically meaningful framework

2 a computational perspective
wavelets instrumental in efficiently connecting theory with
practice

3 still many variations
Fourier limitations always apply⇒ no unique solution
multiplicity of complementary approaches
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