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ABSTRACT In Sections 2 and 3, we will recall basic definitions and

properties of MST'’s an@&-MST's. The question of how to
make use ofk-MST’s in a time-frequency context will be
addressed in Section 4, where two different algorithms will
be proposed, based either on the 2D (time + frequency) pro-
jection of local maxima onto the plane, or on the complete
3D information (time + frequency + energy density).

Theoretical results have recently been established in non
parametric entropy estimation, based on asymptotic prop-
erties of minimal spanning trees (MST). A new application

is proposed for the automatic extraction of time-frequency
skeletons in the case of multicomponent chirp-like signals.
The proposed method makes use of local maxima of a time-
frequency distribution (considered as realizations of a 2D or
3D process), and exploits the efficiency of MST’s for den- 2. MST ET K-MST

sity discrimination and clustering.
Y g Let 7,, be an acyclic graph (or tree) connecting all realiza-

tions X,, = {1, 22,...,z,} Of a point process defined in
IR?. Such a graph is indeed a convenient way of coding
a set ofvertices(the pointsz;) and connections; ; be-

In a recent se_ries .Of studie}s_ [1, 2], we have a_ldc_iresse_d thetween them. The total length of the graph being obtained
problem of estimating theétiyi entropy of a multi-dimensional by adding up the lengths of all elementary connections, we

distribution from a given set of observations. It has been es-_ =\ : P
tablished thaMinimal Spanning Tree@VST), i.e., acyclic will introduce the parameterized quantity :
graphs of minimum total length connecting all points of a L o= Z lei | 1)
process sample, allow for a direct estimation of this entropy n” n
at a low computational cost. An extension of this result to

k-MST’s, i.e., subgraphs connectikgpoints only among with y €]0, d[.
all observed realizations, has been shown to permitting a  Given this measure, tidinimal Spanning Tre¢MST)
robustseparation of a statistical mixture. In this paper, we is, among all possible (acyclic and totally connected) graphs
present a new application of those tools to the detection andthat be constructed, the one with minimum length :
extraction of structured signal components from a noisy ob-

1. INTRODUCTION

€i,;€ETn

servation. The principle of the approach is to consider local T, = arg min Ly . ()
maxima of a time-frequency distribution as realizations of "

a mixture model (“signal + noise”), onto whichklaMST This MST can be exactly computed with algorithms of
strategy is applied. In the case of noisy multicomponent complexityO(nlogn).

chirp-like signals, individual “signal” components can be The above definition (2) can be extended to what is re-

associated to coherent time-frequency trajectories, as op-ferred to ask-MST's. By definition, ak-MST is a MST
posed to “noise” contributions whose maxima distributionis connecting: points only among, observed points. Equiva-
incoherent. The rationale of the proposed method is there-lently, ak-MST is the MST associated withkapoints sub-
fore that minimum length trajectories—as identified By setX,, , C &,. Inthis case, minimization concerns both the
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MST’'s—are expected to reveal a meaningful sigsiele- identification of the subseY), , := {z;,,...,z;, } and the
ton. length of the MST constructed on the points of the subset :
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In practice, this double minimization is often conducted Itis worth noting that the valug in (5) exactly identifies
jointly : this is especially true for the algorithms that we to the Reényi entropy of a uniform distribution of, 1] ¢ :
have developed [1, 2]. Of course, the computational costit is therefore a function of andd only. The parameter
of k-MST’s is increased as compared to simple MST's, and &, which controls the size (in terms of connected vertices)
it has been even proved that the problem is NP-completeof the considered MST, plays a role similar to that of the
in IR? [4]. Ravi et al. have proposed an approximate al- parameter in a-truncated mean value estimators : in the
gorithm with polynomial cost in the case of bidimensional presence of outliersy can be tuned so as to guarantee a
distributions. In [2], we have extended this work and pro- form of robustness to the entropy estimator [1, 2]. Finally,
posed an approxmate solution in thedimensional case  one canremarkthat the proposed method can be extended in
(d > 2), whose approximation ratio is bounded above by a straightforawrd manner to other entropy functionals such
O(k(l—l/d)2)_ The precise structure of the algorithm, its ro-  as, e.g., the (non-additive) structural entropy of Havrda and
bustness evaluated by means of influence curves, as well a&hanat.
proof elements of its asymptotic convergence, are detailed

in [2] : we will not, here, elaborate further on this very tech-
nical part.

3. PROPERTIES

Let L, - be the quasi-additive euclidean function of orger
defined in (1), andt’,, a set of independent realizations of a
stochastic process with Lebesgue dengity), defined on
IR?. Generalizing upon a result by Beardwood, Halton et
Hammersley [6], Steele has proved that :

L, (X,
lim M

n—oo nd_’Y/d

= gd) [ fa)t @)
md
If we now introducer := 1 — «v/d, v €]0,d[ (hence,
v €]0,1[), and if we define the quantity :

1

Hy (X ) == 7= (07" Loy (X7 4)) + B(r.d) (5)

as a statistics based on theVIST length

Loy (Xr) =Y lei |7,

ei ;€T .

(6)

the following central result can be established :

Theorem [2]. Let Enw()(;’k) be an estimate of the length
Ly (&, 1), obtained by th&-MST approximation described
in [2], with & := an, a € [0,1]. Plugging this estimate in

(5), we end up with a consistent and robust estimate of the

Réenyi entropy of the densit/.) :

. 1
min

H, (X )%
(Xe) A:P(A)>a 1l —v

In /A @) dz, (D)

where the minimization is conducted on all Borel subgets
defined orf0, 1]¢, and whose probability?(A) is such that

P(A) = /A f(@)de > o ®)

4. MST'SAND TIME-FREQUENCY

In order to apply a MST strategy in a time-frequency con-
text, all local maxima of a given time-frequency distribu-
tion E(t,v) are first identified. Each of those relative max-
ima is indeed considered as a realization of a 3D stochas-
tic process, the considered variables being of the type

[t,v, E(t,v)], witht € T, v € FandE(t,v) € R. The
assumed model is a mixture model “signal + noise”, with
density

9)

whereg(z|.) is the conditional probability density function
of local maxima. The problem of extracting a signal part
from the observation reduces therefore to a problem of mix-
ture separation.

A crucial issue consists in defining a relevant norm in
the spacel’ x F' x IR. A natural constraint is that such
a norm should not depend upon the sampling rate in the
time-frequency plane : in other words, the “distandey,
between two energy contributions located{ at;, v;); 1 =
1,2} should be independent of the sampling frequehcy
of the time series, as well as of the numbgrof frequency
bins. This can be achieved by introducing two normaliza-
tion constantsk’ and K’ (dimensionally homogeneous to
time), thus defining :

ti—t,\>  (K'F,

D”‘\/( KF., > +<2Nb
wheret;, v; refer to sample indexes. In the following, and
for a sake of simplicity, we will také’, = 1 andK = K' =
1,i.e.,, N, = N/2frequency bins folV time samples. It has
however to be remarked that the dynamic range of the third
variableE(t, v) is totally arbitrary.
A 2D approach. A first possibility is to directly apply two-
dimensional techniques which have been previously pro-

posed. The method is based on the construction of a 2D
MST in the time-frequency plane (only the locations of the

f =1 —¢)g(z|signal) + eg(z|noise),

(1 — V2)> 2 (10)



most energetic local maxima are considered), and on its re-
cursive pruning with Banks’ algorithm [9]. The set of most

6. REFERENCES

energetic local maxima is determined by thresholding, the [1] A.O. Hero, O. Michel, “Robust entropy estimation

rejection threshold being fixed by a change point detection
criterion applied to the second derivative of the cumulative
distribution function of local maxima heights [7]. Alterna- 2]
tively, a detection based dnMST only is presented, which

relies on identifying the most important increase in the en-
tropy as a function ok, see figures 1 and 2.

A 3D approach. A second possibility is to jointly exploit

the 3D nature of a time-frequency distribution. In this case, [3]
the energy density is normalized so that the dynamic ranges
are numerically identical on the three axes. Gifeh the

MST constructed on the total sétof local maxima of the [4
time-frequency distribution, anée; ;} the set of the cor-
responding segments, the objective is to split the complete
MST into two parts .S = S; U S,, so thatS; andS; are
maximally different while being, individually, maximally ~ [5]
coherent. In other words, the question is to find a separa-
trix ¢ on the MST, defined by :

¢ = argmin max{H (S1), H(S2)}, (11)

€i,j

whereH (.) is some cost function. If the constraint is to min-
imize the maximum entropy of the resulting distributions, (71
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5. CONCLUSION

A novel method has been proposed for the automatic skele-
tization of spectrograms. The approach, which relies on
information-theoretic criteria, presents the advantage of be-
ing fully non-parametric and robust. In particular, no a pri-
ori knowledge is required concerning statistical properties
of the noise distribution in the time-frequency plane.
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Figure 3: Example of a two-component frequency modu-
lated signal, at 5dB SNR. Left : spectrogram; Right : (2D)
distribution of the relative maxima

Figure 1. Example of a monocomponent frequency modu-
lated signal, at 5dB SNR. Left : spectrogram; Right : (2D)
distribution of the relative maxima
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Figure 2: Component separation usingrigi entropy. Top

Left : Entropy estimated frorh-MST length, and threshold
detection (largest entropy increasé := 28). Top right :
3D 28-MST. Bottom : 2D MST’s of identified components.



