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ABSTRACT

Huang’s data-driven technique of Empirical Mode Decompo-
sition (EMD) is applied to the versatile, broadband, model of frac-
tional Gaussian noise (fGn). The spectral analysis and statisti-
cal characterization of the obtained modes reveal an equivalent
filter bank structure together with Gamma distributed variances,
both sharing some properties with wavelet decompositions. These
common features are then used to mimic wavelet based techniques
aimed at estimating the Hurst exponent.

1. INTRODUCTION

Empirical Mode Decomposition (EMD) has been recently pio-
neered by Huang et.al. [1, 2] for adaptively decomposing nonsta-
tionary and/or nonlinear time series. More recently, its application
to some broadband processes has been shown to spontaneously
achieve wavelet-like decompositions [3, 4]. In this paper, we ex-
plore further this striking feature by evaluating the potential use-
fulness of this technique for estimating scaling exponents. New
EMD-based methods are proposed and quantitatively compared to
classical wavelet-based ones.

2. EMD BASICS

Basically, Empirical Mode Decomposition (EMD) [1] considers a
signal at the scale of its local oscillations. The main idea of EMD is
then to formalize the idea that, locally: “signal = fast oscillations
superimposed to slow oscillations”. Looking at one local oscil-
lation (defined, e.g., as the signal between two consecutive local
minima), EMD is designed to define a local “low frequency” com-
ponent as the local trend that supports a local “high frequency”
component as a zero-mean oscillation or local detail so that we
can express x(t) as:

z(t) = malz](t) + da[x](t), (1)

with m1[z](¢) corresponding to the local trend and di[z](t) to
the local detail. By construction, di[z](t) is an oscillatory signal
and, if it is furthermore required to be locally zero-mean every-
where, it corresponds to what is referred to as an Intrinsic Mode
Function (IMF). Practically, this mostly implies that all its max-
ima are positive and all its minima negative. On the other hand,
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all we know about m [z](t) is that it locally oscillates slower than
d1[x](t). We can then apply the same decomposition to it, leading
to: m1 [z](t) = mea[z](t) + d2[z](¢) and, recursively applying this
on the my[z](t), we get a representation of x(t) of the form:

a(t) = mrle](t) + Y di[z](2). 2
k=1

At each step of the decomposition, we can state that dy41[z](t)
contains approximatively as many oscillations as mg[z](t). Corre-
spondingly, my.41[x](¢) (and so dj42[x](¢)) contains less, and lo-
cally slower, oscillations than mg[z](¢) (and so dy41[z](t)). The
decomposition usually ends when the signal mx [z](¢) does not
contain enough oscillations to define a meaningful local trend.
EMD performs thus a multi-scale decomposition that is fully data-
driven and that can be applied to all oscillatory time series, in-
cluding nonstationary ones and/or those generated by a nonlinear
system.

Given a signal x(t), the effective EMD algorithm is given by
the following loop [1]:

1. identify all extrema of z(t)

2. interpolate between minima (resp. maxima), ending up with
some “envelope” emin (t) (resp. emaz(t))

3. compute the local trend m(t) = WM
4. extract the local detail d(t) = x(t) — m(t)
5. iterate on the residual m(t)

In practice, the above procedure has to be refined by a sifting
process, an inner loop that iterates steps 1 to 4 upon the detail sig-
nal d(t), until this latter can be considered as zero-mean according
to some stopping criterion'.

3. EMD ANALYSIS OF FRACTIONAL GAUSSIAN NOISE

3.1. The model of fractional Gaussian noise

Fractional Gaussian noise (fGn) is a generalization of ordinary dis-
crete white Gaussian noise, and it is a versatile model for broad-
band noise dominated by no particular frequency band. The fGn

IThe effective algorithm used in this study can be found together with some ex-
amplesathttp://perso.ens-1lyon.fr/patrick.flandrin/emd.html
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of parameter H (referred to as the Hurst exponent) can be defined
as the only zero-mean stationary Gaussian process with autocorre-
lation sequence rg[k] := E{zm[n]lza[n + k]} [5]:

2

rulk] = (I =1P" = 26" + |k +1P7) . @)

As it is well-known, the case H = % reduces to discrete white
noise. For all H, we can approximate the power spectrum density
of fGn by Su (f) ~ Co?|f|'~*" when |f| — 0, making of fGn
a convenient model for power-law spectra at low frequencies. In
fact, it has to be noted that the approximation is fairly well verified
over most of the Nyquist frequency band.

3.2. Filter bank structure

Following upon the preliminary findings reported in [3], we carried
out extensive numerical simulations on fGn processes, with H =
0.1,0.2,...0.9. For each value of H, J = 10000 independent
fGn sequences of length N = 2048 have been generated via the
Wood and Chan algorithm [6], resulting in a collection of IMFs.
Although the number of IMFs depends on the realization, all of
them ended up with at least 8 modes. Therefore, we will only
consider the first 8 IMFs in the study.

Given this data set, a spectral analysis has been carried out
mode by mode, using an ensemble average over the .J realizations
of a classical, correlation based, power spectrum density estimate
(see Figure 1). First, it appears that EMD presents two distinct be-
haviors depending on the value of H. For H < 0.5, some of the
IMFs seem to act as active filters amplifying the lower frequency
band. This implies also that IMFs of different indexes must be
strongly correlated. This amplification behavior contradicts the
idea of EMD as a decomposition as the frequency contents of dif-
ferent modes compensate each other when they are summed to get
back the original fGn. Taking this into account, the EMD analysis
of mostly high-pass signals should be taken very carefully. Indeed,
some low frequency contents might appear in the decomposition
although it is not in the analyzed signal. Therefore, to avoid bad
intuitions, it would be more accurate to think of EMD as a trans-
form when the analyzed signal contains mostly high frequencies.
On the contrary, for H > 0.5, all filters are passive and their max-
imum gain does not depend on the index. In this case, the IMFs
are far less correlated. Whatever the value of H, the behavior of
the first IMF contrasts with that of the others in the sense that it
presents the characteristics of a high-pass signal, while the others
look much more band-pass. This high-pass behavior has however
to be tempered by the fact that the attenuation in the stop-band is
no more than 10 dB, thus corresponding to a non-negligible con-
tribution in the lower half-band in the case H < 0.5.

For the indices k = 2, . .. 8 corresponding to band-pass IMFs,
the spectra all look quite the same, up to some shifts in abscissa and
ordinate, in a surprising reminiscence of what is currently observed
in wavelet decompositions. As for the latter, we can check for self-
similarity in the “filter bank” structure leading to the scale relation:

Swou(f)= P?{H(kl_k)skﬂ (ngkf) (€]

for 2 < k, k' < 8 and some parameters ooz and pg. As a con-
sequence, the spectra of the IMFs should collapse onto a single
curve, when properly renormalized. This can be observed in the
lower part of Figure 1 with the specific choices pz = 2 and
ag = 2H — 1. As described in [4], the choice of pm can be

refined to get better results. Nevertheless, we will use this simple
value because the precise one depends on the effective implemen-
tation of the EMD algorithm. However, it is worth stressing the
fact that the refined value is always increasing with H.

In the case H > 0.5, even if some low frequency discrep-
ancies can be observed, these graphs support the idea that EMD
on fGn acts as a dyadic filter bank of constant-Q band-pass filters.
When H < 0.5, the result is a bit different. If EMD still acts as a
dyadic filter bank, the associated filters are not band-pass and the
superimposition of the spectra is not as well checked because of
some discrepancies in amplitude.

Assuming that relation (4) is effective for any H, we can easily
derive the two following relations between the variances of the
modes Vi [k], the modes indices k and their mean period T [k]:

szH(H—nk _ 022(11—1)1«; 5)

C' (Tulk])> Y, 6)

Vulk] =
Vulk] =

this last relation being derived from (5) assuming that Tx[k'] =

pg’kf’y [k] for 2 < k, k" < 8, which is a natural consequence of
the self similar structure of the decomposition.
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Fig. 1. Top row: Mean spectra of the first 8 IMFs and theoretical
spectrum of the fGn (dash-dot). The IMFs spectra for H = 0.2
rise above the fGn spectrum indicating an amplification. Bottom
row: Renormalized spectra according to (4).

3.3. Variance distributions

An experimental evidence of relations (5) and (6) is reported in
Figure 2 which presents the classical empirical variance estimate

N
Vi [k] :== Z (dm[n (7)

as a function of the mode index k in a semi-log plot and of an
empirical (zero-crossing based) estimation of the mean period (8)

distance between the first and the last zero-crossing

Trlk] ==
i [K] number of zero-crossings — 1

(®)
in a log-log plot. It can be seen on both diagrams that a straight
line can be fitted to all curves for IMF indices k& > 1, in accordance
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Fig. 2. Simulation results: (a) relation between Vi [k] and T [k].
(b) relation between Vi [k] and the mode index.

with relations (5) and (6). As before, whereas the fit is reasonable
for large values of H, it is less significant for H < 0.3.

To progress further in the study of the variance properties of
the IMFs, we will now establish the associated distribution func-
tions. First, let us remind, as reported in [4], that the IMFs asso-
ciated with fGn of indices k£ > 1 are in fact stationary zero-mean
Gaussian processes. As it is well-known, the energy of a zero-
mean unit variance stationary independent Gaussian time series of
length N has a chi-square distribution with N degrees of freedom.
More generally, the energy of such a time series dilated by a scalar
factor o has a Gamma distribution with parameters « and 3:

P(X =) x 2z e 7, witha = N/2and 8 = 20°. (9)
Therefore, the distribution of the energy-based variance estimate
(7) of the last process is Gamma with parameters « = N/2 and
B = 20°/N. There seems to be no such result for an arbitrary
correlated stationary Gaussian time series. However, extending
the results obtained by Wu et al. [7] in the case of white noise, our
experiments show that the variance distributions of the IMFs asso-
ciated with fGn have a Gamma distribution too. An evidence of
this behavior is reported in Figure 3 for 3 representative values of
H. Moreover, these results have been validated by Kolmogorov—
Smirnov tests in almost all cases, for values 0.1 < H < 0.9. The
latter modelings result in a series of Gamma density parameters
which will be referred to as ar[k] and B [k] in the following.

4. EMD-BASED ESTIMATION OF HURST EXPONENT

4.1. Construction of the estimators

Based on the above results, we propose two estimators of the Hurst
exponent, based either on (5) or on (6): given a self-similar signal
z(t) with Hurst exponent H, we compute its EMD and, using the
estimates of the variances and mean periods of the associated IMFs
V[k] (7) and T[k] (8), we define the estimator i (resp. H>)
based on the slope value of a linear fit on the linear part (indices
2 < k < 8) of the diagram log, V[k] vs. k (resp. log, V[K]
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Fig. 3. Variance distributions of the IMFs and fit with Gamma
density. For a sake of readiness, the curves have been shifted in
ordinates and scaled in abscissa to have a unit mean.

vs. log, f’[k]) In both cases, the fits are obtained through the
minimization of a weighted least squares merit function:

(1og2 VIk] — ark — bl)

s o[k |

NE

10)

(1og2 k] — aslog, T[k] — b2)
H2 :

2 + ax20 H k)2 ’

™

an

k=2

where o [k]? (resp. o [k]?) stands for the variance of log, Vi [k]
(resp. log, Tr [k]), and a1k + by (resp. as log, T[k] + b2) for the
fitting polynomial for H (resp. H>). Assuming relations (5) and
(6) to hold, the slopes of the polynomials minimizing (10) and (11)
should then verify """ = a5"" = 2(H — 1), thus leading to the
proposed estimators: H; = 1+ a{*" /2 and H> = 1 + a3"" /2.

Assuming that the distributions of Vi [k] are Gamma, it can
be proved that the so-built estimators are in fact biased. More pre-
cisely, for a random variable X that has a Gamma distribution with
parameters « and /3, we can express the expected value of its base 2
logarithm as follows:

Elog, X =log, EX + c(a), with ¢(a) = % —log, ()
12)
where 1(2) = I'(2)/T(2) is the Psi function. Taking the latter

into account, we can easily define unbiased estimators of the Hurst
exponent with the same procedure as described above by replacing

log, V[k] with log, V[k] — c(ax[k]), thus resulting in the merit
functions:
. 2
(1og2 VK] - clank]) — ark — bl)
vk

Hy: 13)

(108, VK — c(an[k]) — azlog, Tk — b2)

)
ol [k]? + a22c 2 [K]?
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estimator | DWT EMD H; EMD H>

H=0.1 -0.011£0.031 | 0.2540.037 | 0.1910.042
H=0.2 0.15 £0.03 0.31£0.037 | 0.26+0.04
H =0.3 0.28 +0.031 | 0.384+0.037 | 0.3440.04
H =04 04 +0.03 0.461+0.038 | 0.43£0.04
H =0.5 0.51 +0.03 0.5440.037 | 0.5340.04
H=0.6 0.62 +£0.03 0.63+0.039 | 0.6340.041
H =0.7 0.72 £0.03 0.73£0.039 | 0.731+0.041
H =0.8 0.82 £0.031 | 0.824+0.042 | 0.8310.042
H =0.9 0.92 £0.031 | 0.924+0.043 | 0.9310.042

Table 1. Expected values and standard deviations of the estima-
tors (“expected value £ standard deviation”). For each H, we
highlighted the best values.

[ estimator | DWT | EMD A, | EMD H»
H=0.1 ] 0013 [ 0.024 0.01
H =0.2 || 00034 | 0.014 0.0055

H =0.3 | 00013 0.0078 0.0035
H =0.4 || 0.00093 | 0.0048 0.0027
H =10.5 | 0001 0.0033 0.0024
H =10.6 || 00012 0.0025 0.0023
H=0.7 || 0.0013 0.0022 0.0023
H=0.8 [ 0.0015 0.0022 0.0025
H=0.9 [ 0.0015 0.0024 0.0025

Table 2. Mean square errors of the estimators (bias® +variance).
For each H, we highlighted the best value.

It has to be noted that the above procedure assumes some
knowledge about H in the definition of the merit functions, namely
ol k)%, o [k]* and c(ax[k]). This drawback can be overcome
by considering a 2-step procedure:

1. make a coarse estimation of H by minimizing the merit
function (13) (resp. (14)) using average values for o{f [k]2,

o2 [k]? and c¢(apm[k]), resulting in an estimated value H
taken as the nearest in the set 0.1, 0.2, ...,0.9.

2. make a finer estimation by minimizing (13) (resp. (14))

using a{;{ [%]?, UQI:{ [k]? and c(a g [K]), resulting in the final

estimate H; (resp. H»).

4.2. Results and comparison with wavelets

The above defined estimators have been tested on 5000 fGn real-
izations of size N = 2048 and for H = 0.1,0.2, ..., 0.9, together
with an estimator based on Discrete Wavelet Transform (DWT)
[8]. To compare evenly the DWT and EMD based estimators, we
decided to exploit the same range of scales in both cases. Because
of the dyadic filter bank structure of EMD, the modes indices are
in fact equivalent to the scale indices (or octaves) of the DWT.
The results presented here (Tables 1 and 2) are based on the oc-
taves/modes 2 to 7. For all the values of H, we estimated the
expected value, the standard deviation and the mean square error
of each estimator.

Generally, it turns out that the DWT based estimator overper-
forms the EMD ones. More precisely, its standard deviation is
always the lowest and so is its bias with the noticeable exception
of the value H = 0.1. For that value, the EMD fIg estimator
low bias even allows it to get the lowest mean square error despite

its higher standard deviation. The better achievement of the EMD
estimator Hy is mainly due to the great bias of the DWT based
estimator. The latter may be linked to the fact that the approxima-
tion sequence at scale O is generally identified with the analyzed
time series. However, for time series with a significative high fre-
quency content, the discrepancy between the two latters may be
more important. This is precisely the case involved for a fGn with
H = 0.1. In fact, the DWT based estimator used in the present
study contains a procedure trying to correct this discrepancy but
it does not seem to improve meaningfully the results. Finally, the
EMD estimators have the drawback that they require an evaluation
of the three parameters oy [k], ot [k]? and o7 [k]? which depends
on the length of the analyzed time series while the DWT based
estimator is self-sufficient.

5. CONCLUSION

Although based on no a priori, the EMD method applied to broad-
band noise reveals a wavelet-like decomposition structure. As for
the latter, the variance distributions are Gamma too. These two
common properties allowed us to propose new EMD-based esti-
mators of Hurst exponent. The behavior of the two methods (EMD
and wavelets) proved to be similar when H > 1/2. In the case
where H < 1/2, our study revealed that the dyadic filter bank
structure which underlies the EMD approach is only an approxi-
mation that has to be refined further.
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