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ABSTRACT

The rationale underlying the nonlinear Empirical Mode Decom-
position method is intrinsically a continuous-time approach. The
method can however only be applied in practice to discrete-time
signals. EMD is obtained through iterating a basic nonlinear op-
erator for which we derive an upper bound for the effects of sam-
pling. Finally the effects of sampling for a complete EMD are
assessed using the knowledge on the basic operator.

1. INTRODUCTION

Empirical Mode Decomposition (EMD) has been recently pio-
neered by Huang et al. [1, 2] for adaptively decomposing nonsta-
tionary and/or nonlinear time series. Its unique properties already
awarded the technique a certain popularity in various domains, es-
pecially in complex systems analysis. However the method still
lacks a theoretical basis and in particular there is no precise guar-
antees on the confidence that is to be granted to EMD. Extending
previous work in the case of sinusoidal signals [3, 4], the purpose
of this paper is to investigate a possible confidence level for EMD
with respect to sampling.

2. EMD: A CONTINUOUS PRINCIPLE,
A DISCRETE IMPLEMENTATION

2.1. EMD algorithm

Basically, Empirical Mode Decomposition (EMD) [1] considers a
signal at the scale of its local oscillations. The main idea of EMD
is then to formalize the idea that, locally: “signal = fast oscilla-
tions superimposed to slow oscillations”. Looking at one local
oscillation (defined, e.g., as the signal between two consecutive
local minima), EMD is designed to define a local “low frequency”
component as the local trend m1[x](t) that supports a local “high
frequency” component as a zero-mean oscillation or local detail
d1[x](t) so that we can express x(t) as:

x(t) = m1[x](t) + d1[x](t). (1)

By construction, d1[x](t) is an oscillatory signal and, if it is fur-
thermore required to be locally zero-mean everywhere, it corre-
sponds to what is referred to as an Intrinsic Mode Function (IMF)
[1]. Practically, this mostly implies that all its maxima are positive
and all its minima negative. On the other hand, all we know about
m1[x](t) is that it locally oscillates slower than d1[x](t). We can
then apply the same decomposition to it, leading to: m1[x](t) =

m2[x](t)+d2[x](t) and, recursively applying this on the mk[x](t),
we get a representation of x(t) of the form:

x(t) = mK [x](t) +

K∑
k=1

dk[x](t). (2)

At each step of the decomposition, we can state that dk+1[x](t)
contains approximatively as many oscillations as mk[x](t). Corre-
spondingly, mk+1[x](t) (and so dk+2[x](t)) contains less, and lo-
cally slower, oscillations than mk[x](t) (and so dk+1[x](t)). The
decomposition usually ends when the signal mK [x](t) does not
contain enough oscillations to define a meaningful local trend.
EMD performs thus a multi-scale decomposition that is fully data-
driven and that can be applied to all oscillatory time series, in-
cluding nonstationary ones and/or those generated by a nonlinear
system.

Practically the discrimination between “fast” and “slow” oscil-
lations is obtained through an algorithm referred to as the sifting
process [1] which iterates a nonlinear elementary operator S on
the signal (and then on the mk[x](t)) until some stopping crite-
rion is met. Given a signal x(t), the operator S is defined by the
following procedure:

1. identify all extrema of x(t)

2. interpolate (cubic spline) between minima (resp. maxima),
ending up with some “envelope” emin(t) (resp. emax(t))

3. compute the mean m(t) = (emin(t)+emax(t))
2

4. subtract to the signal to obtain S[x](t) = x(t) − m(t)

If the convergence criterion is met after n iterations, the local de-
tail and the local trend are defined as: d1[x](t) = Sn[x](t) and
m1[x](t) = x(t) − d1[x](t).

2.2. The sampling issue

In the previous description of the EMD algorithm, the signals have
implicitly been considered as continuous-time ones whereas in
practice signals are usually known in discrete-time only. When
dealing with linear operators, applying a continuous-time operator
on a signal and applying its discrete-time version on the discretized
signal are two ways to perform the same task as there is a direct
link between the two outputs. As the sifting operator S is non-
linear, there is no obvious link between the theoretic continuous-
time EMD and its practical discrete-time version. Therefore it
is generally recommended to apply EMD to signals with a large
amount of oversampling which allows to consider with a limited
prejudice that it behaves like a continuous-time operator. Given
a continuous-time signal, our purpose here is to define an upper
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bound for the difference between a continuous-time EMD and its
discrete time version as a function of the sampling frequency.

To address properly this sampling issue we first have to de-
fine some minimum requirements on the sampling parameters for
a continuous-time signal to be processed by EMD. As extrema
play a major role in the sifting operator, a natural requirement
would be for the discrete-time signal to keep as many extrema
as in the continuous-time version. In fact, losing an extremum
during the sampling process usually means losing a pair of max-
imum/minimum, which means to EMD losing a local oscillation.
To ensure there is no loss of extrema the minimum requirement
is for the sampling period to be at most one half of the minimum
distance between extrema in the signal. In all the following we
will implicitly consider that this requirement is met. It is worth
noticing the fact that this requirement is completely independent
from Shannon’s criterion for band-limited signals. Indeed a band-
limited signal can have arbitrary close extrema whatever the band.

3. A BOUND OF THE EFFECT OF SAMPLING ON THE
EMD ELEMENTARY OPERATOR

Considering a continuous-time signal x(t) with a minimum dis-
tance ∆ between its extrema, let us define its discretized versions
xfs,ϕ[n] = x(n/fs + ϕ). Given these our goal is to character-
ize the behaviour of the EMD of xfs,ϕ as a function of the sam-
pling frequency fs > 2/∆. More particularly we mainly interest
ourselves into the deviation between the sampled IMFs and the
theoretic continuous ones. As EMD is obtained by iterating the el-
ementary operator S, it seems natural to start off with studying the
effects of sampling on this elementary operator. In this section we
investigate the case of a simplified elementary operator for which
we can derive an upper bound for the sampling effects. The ob-
tained results are then assessed by simulations using the original
operator.

3.1. Model

We start off with analyzing the effects of sampling on the extrema.
If t0 is the position of a local maximum in x(t), the condition
fs > 2/∆ ensures that there is also a maximum in xfs,ϕ[n] for n
such that |n/fs + ϕ − t0| < 1/fs, i.e. either the closest sampling
point on the right or on the left of the continuous-time maximum
is a maximum for the sampled signal. Without any additional in-
formation concerning the analyzed signal, we can only state that
the discrete maximum must belong to the curve (t, x(t)) for t ∈
[t0−1/fs, t0 +1/fs]. If we separate uncertainties in abscissa and
ordinate, this results in an ∆abs. = 1/fs uncertainty in abscissa
and ∆ord. = max{x(t0)−x(t0−1/fs), x(t0)−x(t0+1/fs)} in
ordinate, the latter depending on the behavior of the signal around
the considered maximum.

Taking these uncertainties into account, the next step in our
analysis is to evaluate the impact of the latters on the envelopes
emin and emax. Usually these envelopes are computed using cu-
bic spline interpolation [1, 3]. In our model however, we will use
piecewise linear interpolation. This is the only simplification we
consider for the elementary operator S. The reason for this is sim-
ply that the value of a cubic spline interpolation between two knots
depends not only on a few knots around but also on all the knots
defining the interpolation. In this context, calculating an uncer-
tainty on the value of the interpolation at a specific position given
uncertainties on all the knots is rather complicated whereas it is

2∆abs.

2∆abs.

∆(0)
ord.

∆(1)
ord.

t0 t1

Fig. 1. Evaluating the uncertainty for the envelopes. For both max-
ima, the dashed boxes delimit the areas where the corresponding
maxima in the sampled signal can be located. The thick plain line
stands for the interpolation (piecewise linear in the model) based
on the extrema in the continuous signal. Then the dash-dot lines
delimit the area where the interpolation based on the extrema in
the sampled signal can be located. Finally, the thick dash-dot line
stands for the case that leads to the largest error.

much simpler with piecewise linear interpolation while guarantee-
ing that the obtained uncertainties generally match the observa-
tions.

If we consider two maxima (t0, x(t0)) and (t1, x(t1)) in the
continuous-time signal, the corresponding maxima in the sampled
signal are located in the boxes [ti −∆abs., ti + ∆abs.]× [x(ti)−
∆

(i)
ord.] (i = 0, 1) (see figure 1). In this context it is clear that

the largest error for the envelope is obtained for the thick dash-dot
line case in figure 1. Integrating this error over the range [t0, t1]
(corresponding to the shaded surface in figure 1) we get a bound
of the sampling error for the upper envelope emax(t) (referred to
as ∆emax(t)) over the latter range:

∫ t1

t0

|∆emax(t)|dt ≤ (t1 − t0)(∆
(0)
ord. + ∆

(1)
ord.)

2

+ |x(t1) − x(t0) − ∆
(1)
ord. + ∆

(0)
ord.|∆abs., (3)

which leads in turn to the looser bound:

∫ t1

t0

|∆emax(t)|dt ≤ (t1 − t0)(∆
(0)
ord. + ∆

(1)
ord.)

2

+ |x(t1) − x(t0)|∆abs. + |∆(0)
ord. − ∆

(1)
ord.|∆abs., (4)

In the last formula the first term can be read as the average uncer-
tainty caused by the uncertainties in ordinate only. Its amplitude
depends only on the behaviour of the signal around its extrema.
On the contrary, the second term depending on the uncertainties
in abscissa does not only depend on the behaviour of the signal
around its extrema but on the relative amplitudes of successive ex-
trema too. If the analyzed signal is e.g., an amplitude modulated
sinusoidal signal, then the amplitude of the first term will only
depend on the sampling frequency and the frequency of the AM
signal while the second one will depend on the frequency and am-
plitude of the modulation too. Finally the last term, depending on
both uncertainties, is generally much smaller than the two others
and can therefore be neglected in most cases.

If we compute the bound (4) on each range delimited by two
consecutive maxima, we obtain a bound of the L1 norm of the sam-
pling related effects on the upper envelope. Repeating the same
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operation for the lower envelope then results in a bound of the er-
ror on the mean of the envelopes, which is simply half the sum of
bounds on each envelope. Finally this bound is also valid for the
elementary operator defined as the difference between the signal
and the mean of the envelopes.

3.2. Estimating the parameters from the signal

Given a continuous-time signal x(t), computing the upper bound
requires only a limited set of parameters: the position (ti, x(ti))

and the uncertainty ∆
(i)
ord. for each extremum. These are rather

easy to measure from the continuous-time signal. If we only have
a discrete version of the signal, some of these parameters can not
be evaluated unless we have more knowledge on the signal. In-
deed the (ti, x(ti) can be estimated by the values corresponding
to the same extrema in the discrete signal t̂i = ni/fs + ϕ and

x̂i = ̂x(ti) = xfs,ϕ[ni]), where ni is the index of the ith ex-
tremum in the discrete signal. Concerning the ∆

(i)
ord. however,

we need information on the behaviour of the signal around its ex-
trema. Therefore it seems natural to use some information on the
regularity of the signal. If we e.g. require the signal to be two
times continuously differentiable, then we can use second order
Taylor expansions to estimate the behaviour of the signal around
its extrema. Thus, we can locally use the approximation x(t) ≈
0.5(t − ti)

2x′′(ti) which leads to ∆
(i)
ord. ≈ 0.5|x′′(ti)|/f2

s . Fi-
nally the second derivatives x′′(ti) can be estimated using finite
difference operators at the extrema of the sampled signal, leading
to x̂′′

i . Putting these approximations back into (4) results in an es-
timate of the maximum sampling error over the range [ti, ti+1] for
the upper envelope:∫ ti+1

ti

|∆emax(t)|dt ≤ (t̂i+1 − t̂i)|x̂′′
i + x̂′′

i+1|
4f2

s

+
|x̂i+1 − x̂i|

fs
+

|x̂′′
i+1 − x̂′′

i |
2f3

s

, (5)

we are thus led to the central result of this paper, i.e. we get an up-
per bound for the L1 norm of the sampling error for the elementary
operator ∆S of the form:∫

|∆S(t)|dt ≤ λ

fs
+

µ

f2
s

+
ν

f3
s

, (6)

with

λ =
1

2

(∑
i

|x̂m
i+1 − x̂m

i | +
∑

i

∣∣∣x̂M
i+1 − x̂M

i

∣∣∣
)

, (7)

µ =
1

8

(∑
i

(
t̂m
i+1 − t̂m

i

) ∣∣x̂m′′
i + x̂m′′

i+1

∣∣
+

∑
i

(
t̂M
i+1 − t̂M

i

) ∣∣∣x̂M′′
i + x̂M′′

i+1

∣∣∣
)

, (8)

ν =
1

4

∑
i

∣∣x̂m′′
i+1 − x̂m′′

i

∣∣ +
∣∣∣x̂M′′

i+1 − x̂M′′
i

∣∣∣ , (9)

where superscripts m and M respectively refer to minima and
maxima.
Remark: Our previous studies showed that in the specific case of
sinusoidal signals the sampling error is upper bounded by a func-
tion proportional to f−2

s [4]. The bound (6) obtained here general-
izes this result as parameters λ and ν are simply zero in this case.

Nevertheless, the µ coefficient computed with (8) for sinusoidal
signals leads to a bound that is looser than the one we obtained
in [4]. There are two reasons for this. First a sinusoidal signal is
symmetric with respect to each extremum. Therefore, the uncer-
tainty in abscissa ∆abs. can be reduced to 1/(2fs). This leads to
the reduced parameter values: λ′ = λ/2,µ′ = µ/4 and ν′ = ν/8.
Next, there generally is a partial compensation between the error
associated to the f−2

s terms coming from the upper and the lower
envelope. This can be easily controlled for the sinusoidal case,
allowing a bound reduced by half which is consistent with our for-
mer results.

3.3. Validation

To assess the performance of the upper bound model (6), we per-
formed a set of simulations using synthetic signals. The method-
ology can be summarized by the following procedure:

1. synthetize a 2N∆ points discrete-time signal x[n] with min-
imum distance between extrema ∆.

2. compute the downsampled signals: xk,l[n] ≡ x[kn+ l] for
1 ≤ k ≤ ∆ and 0 ≤ l ≤ k − 1.

3. apply the elementary sifting operator to each downsampled
signal, leading to signals Sk,l[n].

4. for each downsampled signal compute the sampling error
measure:

e(fs = 1/k, ϕ = l) ≡ k

N

∑
n

|Sk,l[n] − S1,0[kn + l]| . (10)

Ideally, the error measure should be obtained by comparing
the discrete time elementary operator output Sk,l[n] with a theo-
retic continuous time one S(t). This is almost what is done in (10)
if we assume that S1,0[n] is very close to S(t). Besides we chose
the l1 norm but other norms lead to similar results.

The test signals we used are piecewise cubic polynomials ob-
tained through interpolation of a random set of extrema. The main
property of the underlying model is that it ensures that the min-
imum distance between extrema is set by a parameter ∆. The
details are of lesser importance as the results seem to be weakly
dependent on the model.

Simulation results are plotted figure 2 for two representative
examples. As it can be seen on the figure, the behaviour of the
bound as a function of the sampling frequency can generally be
divided in two areas: for lower sampling frequencies, the bound
usually behaves like f−2

s whereas for higher frequencies it behaves
like f−1

s (cf. fig. 2 (b)). There are specific cases however where the
f−1

s area does not exist as coefficient λ (7) is typically zero when
all the maxima/minima have the same amplitude (see fig. 2 (a)).
This two-areas behaviour also applies to the measured sampling
error but either the f−1

s or f−2
s area can be missing. Moreover

when both are present the critical sampling frequency delimiting
these areas is generally not the same as the corresponding criti-
cal frequency for the bound. The evolution of the bound however
usually gives a good outline for the evolution of the sampling er-
ror. Besides, the f−3

s behaviour that we could expect from (6) has
never been observed distinctly. Quantitatively, the sampling error
measured in our simultations is always rather far from the bound.
The latter usually is around 12dB above in the f−1

s area and 25dB
in the f−2

s area. This discrepancy comes mainly from the fact that
the bound is obtained by considering a worst case error everywhere
whereas this worst case is rather improbable. Another reason is

III ­ 446



−2 −1.5 −1 −0.5 0
−100

−80

−60

−40

−20

0

log10 fs

← fs = 2/∆

(a)
e(

f s
,ϕ

)
–

dB

−2 −1.5 −1 −0.5 0

log10 fs

← fs = 2/∆

(b)

Fig. 2. Sampling error and bound estimate as a function of the
sampling frequency. On both graphs, each dot stands for a mea-
sure of sampling error according to (10). For each sampling fre-
quency and phase, a bound is also estimated according to (6) from
the downsampled signal: the mean of these with respect to the
phase is plotted against sampling frequency as a full line. Cases
(a) and (b) correspond to rather close signals, the difference be-
ing that (a) has constant maxima/minima amplitudes while (b) has
random maxima/minima values centered around 1/-1 with variance
0.1. Asymptotic f−1

s or f−2
s behaviours are evidenced by dotted

lines.

that the sampling error on the upper envelope generally partially
compensates the sampling error on the lower envelope while the
two corresponding bounds are summed in the model.

4. IMPACT ON THE DECOMPOSITION

In the previous sections we analyzed the effects of sampling on
the elementary operator underlying EMD. Here we intend to eval-
uate how the properties of this operator can explain the effects of
sampling on a full decomposition, where the operator is iterated
several times to compute each IMF. Therefore, some simulations
have been carried out based on the same procedure as for the el-
ementary operator in section 3.3. The only difference with the
latter procedure is that the sampling error measure (10) no longer
compares outputs of the elementary operator but IMFs. A repre-
sentative example is proposed figure 3.

Analyzing the simulation results reveals a few interesting fea-
tures. First, as in the case of the figure, there usually is a set of
couples (fs,ϕ) for which the sampling error for the IMFs (at least
the first few) behaves almost as in the case of the elementary op-
erator. To understand this result we have to remind that an IMF is
obtained by iterating the elementary operator until some stopping
criterion is met. When varying the sampling parameters the stop-
ping criterion also varies and this results in a fluctuating number of
iterations for each IMF. Unfortunately, the precise number of itera-
tions performed to extract an IMF is generally unpredictable. Thus
the behaviour close to the one of the elementary operator reported
above occurs when the number of iterations for the observed IMF
and the previous ones exactly match the corresponding numbers of
iterations for the reference signal assumed to be continuous-time.
Conversely, different numbers of iterations lead to larger discrep-
ancies (see the “branches” for log10 fs � −1). Provided the num-
bers match however, it seems that iterating the elementary opera-
tor does not significantly increase the sampling error for the first
IMF, as if the error mostly came from the first iteration. Moreover
there is no significant increase when considering IMFs of higher
indices. The reason for this is that IMFs of higher indices are ex-
tracted from the “slow” component of the signal which is therefore
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Fig. 3. Sampling error for a complete EMD. Example of sampling
error for the 4 first IMF. For each IMF, dots stand for sampling
error measures as a function of the sampling frequency for vari-
ous phases. The bound computed from the downsampled signal
according to (6) is also plotted as a full line. The signal used for
this example is the same as the one used for figure 2 (b).

less sensitive to sampling. As this component is the difference be-
tween the signal and the first IMF however, the sampling error for
the latter propagates in IMFs of higher indices.

5. CONCLUSION

Although based on a continuous-time rationale, EMD can only be
applied in practice in a discrete-time context because of its non-
analytic definition. When the effects of sampling can be well con-
trolled for the basic operator that is iterated to obtain EMD, the
impact on the final decomposition is difficult to assess because the
number of iterations performed to obtain an IMF depends on the
input signal and therefore on sampling. If there may be some ways
to improve the robustness of EMD with respect to sampling, ba-
sic resampling is not recommended because it often creates low
amplitude extrema pairs that might be not relevant for EMD.
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