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ABSTRACT

This paper presents a 2D transposition of the Hilbert-Huang
Transform (HHT), an empirical data analysis method de-
signed for studying instantaneous amplitudes and phases of
non-stationary data. The principle is to adaptively decom-
pose an image into oscillating parts called Intrinsic Mode
Functions (IMFs) using an Empirical Mode Decomposition
method (EMD), and them to perform Hilbert spectral anal-
ysis on the IMFs in order to recover local amplitudes and
phases. For the decomposition step, we propose a new 2D
mode decomposition method based on non-smooth convex
optimization, while for the instantaneous spectral analysis,
we use a 2D transposition of Hilbert spectral analysis called
monogenic analysis, based on Riesz transform and allowing
to extract instantaneous amplitudes, phases, and orientations.
The resulting 2D-HHT is validated on simulated data.

Index Terms— Hilbert-Huang Transform, empirical mode de-
composition, convex optimization, proximal algorithms, Riesz trans-
form, monogenic analysis

1. INTRODUCTION

The 1D Hilbert-Huang Transform (1D-HHT), introduced by
Huang et al. [1], is an empirical method for data analysis.
Compared to usual time-frequency/time-scale method such as
wavelet analysis or Wigner-Ville distribution, which aims at
analysing non-linear and non-stationary signals, this method
favours adaptivity.

Formally, the objective of 1D-HHT is to extract the instan-
taneous amplitudes (Oz(k))1gk§1< and phases (f(k))lngK
from a signal 2 € R built as a sum of elementary functions
(d(k))lg r<x oscillating around zero, called Intrinsic Mode
Functions (IMFs), and a trend a(*) € RY i.e.,

K
r=a® + Z a® cose®)
k=1 M
d)

To achieve this goal, the ID-HHT consists in a two-step
procedure combining (i) a decomposition step, whose objec-
tive is to extract the IMFs (d(k))lgkg x from the data x, with
(ii) a Hilbert spectral analysis of each extracted IMF d(¥)
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in order to estimate the instantaneous amplitudes o(*) and
phases ¢(®). Regarding the first step, an efficient decompo-
sition procedure known as Empirical Mode Decomposition
(EMD) has been proposed in [1]. It aims at sequentially ex-
tracting the IMF d*) from a temporary trend a(*~1), defined
as

a® =g,
(Vke{1,...,K}) a*1 =gk 4 gk
through a sifting process that is based on the computation of
a mean envelope of a(*~1) (mean of the upper and lower en-
velopes obtained by interpolating the maxima, resp. minima,
of a(F— 1),

The aim of this work is to propose the counterpart of
the Hilbert-Huang transform for image analysis in order to
decompose an image into elementary components and extract
their instantaneous amplitudes, phases, and orientations. Af-
ter a short review of related works in Section 2, we detail the
proposed 2D-HHT method in Section 3. In Section 4, we
illustrate the efficiency of the proposed method compared to
the state-of-the art techniques on simulated data.

Notations We denote y = (YHJVL)lS’nSNH71§’"LSN2 € RN1xN2
the matrix expression of an image whose size is N1 X No,
the n-th row of the image y is denoted y, o € RNz and
Y = (Yn)1<n<n € RY is the vector expression of y, such
that N = N]_ X NQ.

2. RELATED WORKS

The Riesz-Laplace transform proposed in [2], which consists
in a multiresolution 2D spectral analysis method, refers to the
method with the closest goal to 2D-HHT. More precisely, this
method aims at combining a two-dimensional wavelet trans-
form with a monogenic analysis [3], which is based on Riesz
analysis and appears to be a 2D extension of the Hilbert trans-
form. The counterpart of using a wavelet framework is the
lack of adaptivity and consequently this method is less suited
for analysing non-stationary signals such as AM-FM signals.
To build a genuine 2D-HHT method, a solution is to combine
Felsberg and Sommer monogenic analysis [3] with a robust
2D-EMD. However, to the best of our knowledge, there is no
such a solution in the literature.



Before detailing the proposed 2D-HHT, we will discuss
the robustness of the existing EMD methods in order to
highlight the necessity to propose a new robust 2D mode de-
composition procedure. On the one hand, existing 2D-EMD
methods are based on the sifting procedure whose main draw-
back is the lack of a rigorous mathematical definition, and
consequently of convergence properties [4, 5, 6, 7, 8, 9]. On
the other hand, efficient 1D mode decomposition procedures
based on convex optimization have been recently proposed
in order to get stronger mathematical guarantees [10, 11, 12].
For instance, [12] proposed a mathematical formalism for
EMD based on a multicomponent proximal algorithm that
combines the principle of texture-geometry decomposition
[13, 14, 15] with some specific features of EMD: constraints
on extrema in order to extract IMFs oscillating around zero,
sequential aspect of EMD, or IMFs quasi-orthogonality. This
methods appears to have better performance (in terms of
extraction or convergence guarantees) than the other convex
optimization procedures as discussed in [10, 11]. For this rea-
son, we propose to extend this method to a 2D mode decom-
position formalism and thus to combine it with a monogenic
analysis in order to build a complete 2D-HHT.

3. PROPOSED 2D-HHT

3.1. 2D proximal mode decomposition

As discussed previously, the mode decomposition aims at
splitting up the trend a*~1 into a component having IMF
properties (i.e. d*)), and a residual component, denoted a*).
To obtain such a decomposition we propose to solve

(a®,d®)) e Argmin ¢ (a) + i (d) + pr(a, d;a* D)
a€RN deRN

where ¢y, and v, denote convex, lower semi-continuous, and
proper functions from R¥ to | —o0, +o0] that impose the trend
and IMF behaviour to the components a(*) and d*) respec-
tively, while ¢y (-, -;a*~1)) denotes a convex, lower semi-
continuous, proper function from RY x R¥ to ] — oo, +0o0]
that aims to model that a*~) is close to a*) + d(*).

The smoothness of the k-order trend is obtained by im-
posing a constraint on its total variation, i.e.,

N1 N3

a) :n(k)ZZ\/bn—lvm — apm2+]anm—1 — an,ml?

n=Im=1

with n(®) > 0.

The tricky step in order to propose a 2D extension of
the 1D proximal decomposition procedure [12] lies in the
definition of the zero mean envelope constraint through the
function 1. Here we propose a ’Pseudo 2D-EMD” approach,
where lines, columns and diagonals extrema are separately
constrained. For instance, the extrema-based constraint can
be written for each row n € {1,...,Ny}, ||R£lk)d )

where R e RN2%N2 denotes the linear combination of
some elements of d,, o allowing to impose a zero mean enve-
lope of the component dk) (cf. [12] for the construction of

%k) that is similar due to the fact that a row d,, o behaves like
a 1D signal). Considering the entire image, the constraint can
be written || R(*)d||, where R(*) = diag(ng), e Rg\],?) isa
block diagonal matrix in RV > which is highly sparse. We
apply the same type of constraint to the columns (C'(*)), the
diagonals (D®)), and the anti-diagonals (A()) of the image,
leading to the penalization:

4
=2 APl
i=1

where Ml(k) = RW), MQ(k) o), (k)
A®) denote matrices in RN <,

As proposed in [16], the coupling term is chosen quadratic:
(k—1) ||2

= DWW, M =

pr(a,d;a* V) = la+d—a

The solution of the resulting minimization problem is ob-
tained with Condat-Vi primal-dual splitting algorithm [17]
that allows to deal with linear operators and non-smooth func-
tionals. The iterations are specified in Algorithm 1. For fur-
ther details on the algorithmic solution and proximal tools,
one may refer to [16].

3.2. Monogenic analysis of the extracted IMFs

Given a real-valued 1D signal y, the associated analytic sig-
nal y,(t), which by definition involves the signal itself and
its Hilbert transform, can also be written under a polar form
involving instantaneous phase and amplitude respectively de-
noted ¢ and a such as: y, = y + jH(y) = ae’s. These two
formulations allow to easily compute the instantaneous am-
plitude and the instantaneous phase as the absolute value of
the analytic signal and its argument.

The Riesz transform is the natural 2D extension of the
Hilbert transform [3]. The Riesz transform of a 2D signal y
can be expressed as y g = (y(1, y?) = (bW x y, (2 5 y),
where the filters (h(i))lglgg are characterized by their 2D
transfer functions Hg) = —jw;/||lw| with w = (w1, ws).
On the other hand, the counterpart of the analytic signal in
2D is called the monogenic signal. It consists in the three-
component signal defined by y, = (y,y™",y®) [3]. Ina
similar way to the analytic signal, the monogenic signal en-
ables to compute easily the local amplitude, phase, and orien-
tation at each pixel through the relations, for every (n,m) €

{1,...,N1} X {1,...,N2},

G = )+ )+ (2
( (2

1) 2

€n,m = arctan (\/(Yn,m) (y ,771) > o
Ynm

Onm = arctan(yZ, /yil),) )



However, the estimation of the orientation proposed in (3)
lacks of robustness because it does not take into account the
orientation of neighbouring pixels. Unser et al. [2] derived
an improved estimation based on a minimization procedure
including a smoothness neighbourhood constraint. In our ex-
periments, this robust technique is used.

3.3. 2D-HHT Algorithm

We now summarize the proposed 2D-HHT. In order to
lighten the notations, we rewrite the total variation penal-
ization as ¢, = n®)||L - ||2.1, with L = [H*V*]* where
H and V denote the operators associated to the horizon-
tal and vertical finite differences. We denote M®*) =
diag(Ml(k),MQ(k),M?Ek),Mik)). Parameters o and 7 are
chosen so as to ensure the convergence of the algorithm,
see [17] for details. The 2D-HHT method is summed up in
Algorithm 1.

Algorithm 1 2D-HHT Algorithm

STEP 1 — Initialization

Seta(®) = b’

Choose the number of IMFs K to be extracted,

| Setk =1.

STEP 2 - 2D prox. mode decomp. : extract a(®) and d®) from a(*—1),
k—1)

Compute (Ml.(k))lgiSAI from af
Compute 8 = 1 + |[M*)|2,
Seto > OandletT =0.9/(cf +2),

Initialize al® and d[°® in RV,

Initialize y([)e] in R2N and yzm eRNfori=1,---,4.
For¢=0,1,---

| ale+1] — o _ QT(a[Z] 44l a(k—l)) _ TL*y([f]

| dlett] = gl — 27 (ald + gld — g(k=1)y) — 7—2;1:1 M;,iyy]

| 5 = prox, 000 o+ (9 + o L(2al 1) — alf]))

| Fori=1,---,4
L Lyyﬂ] = Proxa(w-,>|ull)*(yy] + oMy, ;(2al6H1] — glfly)

| Setd®) =limy_, oo di¥ and a(¥) = limy_, o, alf.
STEP 3 — Monogenic Analysis

Compute local amplitude o(*), phase .E(k) and orientation 6(*)
using Eqgs (1), (2), (3). (O(k) can also be computed using Unser’s
L improved method).
While k£ < K, set k < k + 1 and return to STEP 2.

4. EXPERIMENTS

The image to be analyzed (Figure 1) consists in a sum of a
trend and two localized texture components x(*) and x(2).
The trend is formed with one rectangular patch and one el-
lipsoidal patch. The component x*) (resp. x(2)) models a
modulated signal of central frequency f; = 120/512 (resp.
f2 =60/512).

We apply the proposed 2D-HHT method to extract the
two resulting IMFs and their local orientation estimates. In
order to fairly compare with the state-of-the-art methods, we
propose to replace the STEP 2 in Algorithm 1 with other de-
composition methods such that Image Empirical Mode De-

Compute monogenic signal of d®) : d¥) = (d(®), d(*1) d(*:2))

composition [5], a natural 2D extension of 1D EMD based on
2D interpolation of extrema using thin-plate splines, and two
texture-cartoon decomposition methods that are total varia-
tion and Gilles-Osher texture-geometry decomposition [14].
On the other hand we compare the extracted orientation with
the results obtained from the Riesz-Laplace analysis proposed
in [2]. Total variation decomposition consists in solving the
optimization problem Argmin,cpx~|la — a*~Y|3 + ¢ (a),
where ¢, is the total variation constraint as defined in 3.1.
Gilles-Osher is an iterative algorithm designed for solving
Meyer’s G-norm texture-cartoon decomposition model (we
denote ;%) the texture regularization parameter and A(*) the
cartoon regularization parameter). We use the following opti-
mal regularization parameters for our 2D-HHT : (1) = 0.3,
)\El) =037 =1, )\52) = 0.1. For Total Variation de-
composition method, we use : ) = 70 and V) = 100.
For Gilles-Osher method, we set uV = 10%, () = 103,
1?) =10, and A(®) = 10. Results are shown on Figs 2 and 3.

First of all, our method provides a good separation of the
different components. It has the expected behaviour of a 2D-
HHT: the locally fastest oscillating components are extracted
at each step of the decomposition, even if their frequencies
are non stationary. Our proposed 2D-EMD method proved to
perform better than previous 2D-EMD methods. For instance,
the IEMD does not manage to separate at all the components
x; and xo. In comparison with other approaches like wavelet
decomposition and texture-cartoon decomposition, the 2D-
EMD approach provides more adaptivity and a better man-
agement of non-stationary signals. The Total Variation based
approach does not give a good separation of the three oscillat-
ing components. Gilles-Osher solution is not suited for non-
stationary signals: some of the slower part of the frequency
modulated component x5 is on the 2nd IMF, while its faster
part are localized on the first IMF. Finally, the Riesz-Laplace
solution provides good results but this method is not adaptive
and less suited for non-stationary signals. For instance, we
can observe that some area of the same component but with
different frequencies end up on different wavelet scales : here,
the faster part of x5 is on the first scale, while the rest is on
the second and third scale.

5. CONCLUSION

This paper proposes a complete 2D-HTT to extract local am-
plitudes, phases, and orientations of non-stationary images.
This method is based on a 2D variational mode decomposi-
tion combined with a monogenic analysis using Riesz trans-
form. This method has been tested on simulated data. In term
of local orientation analysis, the proposed proved to be more
efficient than existing 2D EMD methods and more adaptive
than other decomposition approaches. In a future work, we
will focus on the study of instantaneous frequencies consid-
ering the derivation of the local phase along the direction pro-
vided by the orientation.
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Fig. 1. Simulated data and its components : texture components x*), x(2) and their local orientations.
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Fig. 2. Decomposition and local orientation of the simulated data presented in Fig. 1 obtained with different methods. 1st row:
proposed solution, 2nd row: Image Empirical Mode Decomposition, 3rd row: Total Variation based decomposition, and 4th
row: Gilles-Osher based decomposition. From the left to the right the columns present d(1), 0, d®, 0@ anda®.

Ist scale orientation 2nd scale orientation 3rd scale orientation
‘ ,/ A

Fig. 3. Orientations estimated on 3 scales with Riesz-Laplace wavelet transform.
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