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Wigner-Ville  Spectral  Analysis of Nonstationary 
Processes 

WOLFGANG MARTIN AND PATRICK FLANDRIN 

Abstmct-The Wigner-Ville spectrum has been recently introduced 
as the unique generalized spectrum for time-varying spectral analysis. 
Its properties are revised with emphasis on its central role in the anal- 
ysis of second-order properties of nonstationary random signals. We 
propose here a general class of spectral estimators of the Wigner-Ville 
spectrum: this class  is based on arbitrarily weighted covariance esti- 
mators and its formal description corresponds to the general class of 
conjoint time-frequency representations of deterministic signals with 
finite energy. Classical estimators like short-time periodograms and the 
recently introduced pseudo-Wigner estimators are shown to be special 
cases of  the general class. The generalized framework allows the cal- 
culation of the moments of general spectral estimators and comparing 
the results emphasizes the versatility of the new pseudo-Wigner esti- 
mators. The effective numerical implementation, by an N-point FFT, of 
pseudo-Wigner estimators of 2 N  points is indicated and various ex- 
amples are given. 

D 
I.  INTRODUCTION 

ESPITE  recent  interest  in  (and  development of) the 
time  domain  modeling of random  signals,  spectral 

analysis  is  still of fundamental  importance  in  the  study of 
stationary,  linear  processes.  This  is true for  several  rea- 
sons,  mainly [ l ] ,  

the  immediate physical interpretation of the  spectrum 
is  a power  frequency  distribution, 

the spectrum is  the  basis  for  (and  starting  point of) 
time  domain  modeling, 

the spectrum plays a  central role  in  linear  prediction 
and  filtering, 

the spectrum can  be  calculated  rather  efficiently by 
adequate  FFT  techniques. 

But,  in many applications,  the  assumption of stationar- 
ity fails  to  be true: the physical character of random  sig- 
nals  demands  a  nonstationary  approach  such as in acous- 
tics,  speech, geophysics, biology, biomedicine  fields, etc. 
However, a  spectrum of nonstationary  processes  cannot  be 
defined  by simply generalizing  the  ordinary  stationary 
spectrum. Loynes [2] has  discussed  desired  properties of 
a  spectrum of nonstationary  processes:  these  properties 
are known to be  a  set of contradicting  properties. In par- 
ticular,  having  a spectrum with  nonnegative  values  ex- 
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cludes  compatibility  with  linear  filtering  and  modulation 

Nevertheless,  one  has  tried  to  estimate  a  kind of “time- 
varying”  spectrum by performing  a  locally  stationary 
spectral  analysis. The most  popular  technique  to do so is 
the  short-time  periodogram  analysis [4]. 

The  approach by short-time  periodograms  brings up the 
difficulty  that  the  estimated  time-varying  spectra  depend 
on the choice of the  used  data window. Priestley  [5]  tried 
to overcome  this  problem by his  evolutionary  spectra  of 
oscillatory  processes.  Evolutionary  spectra  retain  the non- 
negativity  property of the  ordinary  spectrum and they can 
be defined  for  time-varying  linear  models like  time-de- 
pendent  autoregressive  models [6], [7 ] ,  but for  a  given 
nonstationary  process,  there is no unique  evolutionary 
spectrum  and,  in  general,  the  “frequency  variable”  can- 
not be  interpreted  as  frequency  defined by the  time-fre- 
quency duality of stationary  processes [8]. Recently,  a new 
theoretical  concept of a  conjoint  time-frequency  represen- 
tation  has  been  developed  for  deterministic  signals [9], 
[lo] which could  be  carried  over to harmonizable  random 
signals,  a  quite  wide  class of nonstationary  processes [ 111. 
Sacrifying  the  nonnegativity  property of a  time-varying 
spectrum, it  could even be  shown  that  the  resulting  Wig- 
ner-Ville spectrum is  the  unique  solution which can  be 
obtained  in  generalizing the classical  ordinary  spectrum 
under  “natural  conditions” [12]. The new theoretical  ap- 
proach  to  spectral  analysis of nonstationary  processes  im- 
plies  the  construction of  new estimators  called  pseudo- 
Wigner  estimators  [13],  [14]. We shall now develop their 
statistical  properties and consider  competing  estimators 
like  short-time  periodograms.  Practical  design  rules  and 
applications  will  also be  included. 

[31. 

11. CONJOINT  TIME-FREQUENCY  REPRESENTATIONS OF 
HARMONIZABLE PROCESSES 

A. Harmonizable Processes 

Harmonizable  processes have been  shown to be candi- 
dates  for  a  time-varying  spectral  analysis  [15].  This  con- 
cept  is  not  only  necessary  from  a  theoretical  point of view, 
but also  most of the  measured  random  signals enter this 
large  subclass of nonstationary  processes.  Actually,  the 
only requirement  relies on the  existence of a  bidimen- 
sional  Fourier-Stieltjes  transform f of the  autocovariance 
function K [ 161: 
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In (l), X ( t ) ,  t = * , -1, 0, 1, - is a centered com- 
plex-valued random  process  with  existing  second mo- 
ments. By E ,  we denote  the expectation operator and  the 
star indicates complex conjugation. 

We can  interpret in (1) the  autocovariance  function K as 
a time versus time representation of the  second-order 
properties of X( t )  and the  “spectral density function”fas 
a frequency  versus  frequency  representation which are  lin- 
early connected by the  Fourier transformation. We  may 
then  very intuitively postulate an  intermediate time-fre- 
quency spectrum W. In [ 111, it has  been shown that an 
adequate choice of W is given by the Wigner-Ville spec- 
trum: 

W(t,  w) = 5” e‘2Df(w + (, w - () d l  (2) 
n -7r 

which leads to 

If we can invert ( 3 ) ,  an equivalent definition of the Wig- 
ner-Ville spectrum  is given by 

-m 

~ ( t ,  w) = 2 C K(t  + 7, t - 7) e-i2WT. (4) 

These  are  the  discrete-time relations analogous to the  dis- 
crete Wigner  representation of deterministic signals intro- 
duced by Claasen  and  Mecklenbrauker [9] since  (4)  can 
be  written  in  the form 1111 

r =  - w  

The introduction of this  distribution goes back to Wigner 
[17] in quantum  mechanics  and the pioneering work  of 
Ville [ 181 in signal theory. It should be mentioned that this 
approach has  empirically  been  used by other  authors  too 
in order to define a time-varying spectral analysis (cf. [ 191 
and  [201), but one noticed neither the connection to the 
general time-frequency dualism of nonstationary  linear 
processes  nor  the attracting properties of this  approach, 
nor the possibility to prove its unicity under  appropriate 
conditions. This  is followed  up  in the next section. 

B. Properties of the Wigner- Ville ( W V )  Spectrum 

In the  case of deterministic signals with finite energy, a 
list of the properties of the Wigner-Ville representation is 
given in [9], for instance.  These properties carry over to 
the  case of harmonizable  processes [ll].  Here, we there- 
fore list only properties which are needed in the following. 

1) Transformation  properties: See (2) and (3 ) .  

a 

f(w, w) + f(O + n, w + 7r) = c W(t ,  w). (7) 
f =  --m 

Equation (7) shows one difficulty of the discrete version 
of the  Wigner  representation: in the  frequency variable, it 
is  periodic with period  n  instead of 2n.  This may be 
avoided if we oversample  the signal by a factor of at  least 
two or if we use  analytic  signals  instead of real-valued 
signals. 

3) Translation  properties: 

if Y( t )  : = X(t  - T), then Wr(t, w )  = Wx(t - 7, w); 

(8) 

if Y(t)  : = X(t )  eiwor, then Wr(t, w )  = Wx(t, w - wo). 

(9) 
4)  Local moment  properties: 

. PTI2 

K ( t  + 1, t - 1) = - e iZw W(t ,  w )  dw (10) 
2n -7rI2 

m 

= C tW(t, w) (1 1) 
f =  - w  

supposing the  expressions on the  left-hand  side  exist. 
Properties (10) and (11) can be used to define the  in- 

stantaneous  frequency  and  group delay for nonstationary, 
but harmonizable  processes [ 111. 

5 )  Negativity: The  WV  spectrum  is always real-valued, 
but can very well take on negative values.  Therefore,  it 
does not give a “true” density. 

6) Interference:  There  exist  interference effects be- 
tween structures in the time-frequency plane due  to the 
bilinearity of the definition (4). Such interference phe- 
nomena can  be removed by using a pseudo-WV spectrum 
which is  an  appropriately  smoothed version of the WV 
spectrum (cf. 1211). 

7) Unicity: The  WV  spectrum is the only time-varying 
spectrum which 

reduces to the  ordinary spectral density if the  process 
is  stationary  and satisfies the  concepts of 

linear  time-frequency  dualism, 
0 linear filtering and  modulations 

together with a proper interpretation of local moments [cf. 
4)1 [121. 

These  properties show that  the  WV  spectrum suffers 
only from the disadvantage of attaining negative values. 
All the  other properties favor the WV  spectrum  and,  fur- 
thermore,  the condition of nonnegativity  contradicts the 
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other  desirable  properties [3] which seem  more  important 
than the  mere  interpretation  as  a  true  density. However, 
the  consequence of such  a  choice is twofold. First, the  use 
of the  WV  spectrum requires  a  careful  interpretation 
which naturally  excludes  any  local  energy  signification 
(see,  e.g.,  the discussion  in [29]). Second, it will  appear 
in  the next section  that the smoothing  out of negative val- 
ues by appropriate  averaging  procedures is closely related 
to  a  practical  estimation of the WV spectrum. 

This problem of estimation  will now be  addressed, 
keeping  in  mind  that  the  quantity  to  estimate  is  precisely 
and uniquely defined.  This was the  necessary  prerequisite 
for  any  estimation  procedure  since  some of the possible 
coming  up  estimators have yet been  considered, but aimed 
at  different  time-varying  spectra (e.g., Priestley’s evolu- 
tionary spectra). 

111. ESTIMATION OF THE WIGNER-VILLE  SPECTRUM 
A.  Quasi-Stationary,  Analytic,  Gaussian Processes 

A common  problem  in  analyzing  random  signals  con- 
sists of the  unavailability of ensemble  averages. By assum- 
ing  ergodicity,  ensemble  averages  can  be  replaced by time 
averages, but for  nonstationary  processes,  this  seems  im- 
possible since  constructing  a  time  average would smooth 
out  any  time-varying  property of the  signal. 

To overcome  this  difficulty, we shall  therefore  use  a  con- 
cept of quasi-stationarity. We shall  suppose  that  the  auto- 
covariance  function K undergoes  a  “slow  evolution,” i.e.,  
given  a  time  instant t ,  there exists  a  stationary  autocovar- 
iance  function Kt and  an  interval Ton which  we have 

I K(t + 7, t - T) - Kt(27)I < E (T) (12) 

and where E(T) is  a  measure of the  approximation. As 
time of stationarity T, we call the smallest T for which (12) 
holds. A nonstationary  process  is  called  quasi-stationary 
if T, > 0 for  a  given E > 0. 

In  order  to  derive  the  moments of the  estimators  to be 
discussed here, we shall  assume  that X( t )  is a  Gaussian 
process.  Furthermore, we will only consider  real-valued 
signals, but complexify  them by choosing  their  Hilbert 
transform as  the  imaginary  part:  this is analogous to pass- 
ing  to the analytic  signal  in  the  case of deterministic  sig- 
nals [ 161. Therefore, we shall  call  these  processes  analytic 
processes. There  are several  advantages in dealing only 
with analytic  processes. 

Instantaneous  frequency of real-valued  signals  [cf. 
(lo)] is only meaningful if passing to  the  associated  ana- 
lytic  signals [22]. 

Information  on  negative  frequencies of any  spectrum 
of a real-valued  signal  is  redundant. 

Aliasing in the  discrete version of the  Wigner  distri- 
bution is avoided [9], as well as  interference  terms  be- 
tween  positive  and  negative  frequencies. 

Calculations of moments of the  estimators  are  more 
straightforward. 

Now,  if  we want to  realize  the  estimators,  one  usually 
will  use  digital signa1 processing.  Therefore, we shall only 
treat the  discrete-time  case. 

1463 

B. A General  Class of Spectral  Estimators 
In discrete  time,  the Wigner-Ville spectrum is  the  dis- 

crete Fourier  transform of the  autocovariance  function as 
given by (4). The most  general  estimator of the  Wigner- 
Ville spectrum  relies,  therefore, on  general  covariance  es- 
timators of the  type [23] 

m 

Z?(t + k ,  t - k) := cP(m, 2k) X(t  + m + k) 
m =  - w  

* X*(t + m - kj. (13) 

In (13), 9 (m,  2k) is  an  arbitrary  data  window  determining 
the  kind of averaging  to  be  performed on the products X ( t  
+ m + k)  X*(t  + m - k )  in  order  to  estimate K .  Assum- 
ing  that CP has  a discrete  Fourier inverse 4, i.e., 

+(m, 2k) = j“ 4(n ,  2k) einm dn, (14) 

and inserting (14) in (13) and (13) in (4), a  class of esti- 
mators of the  Wigner-Ville  spectrum is given by 

21r -7r 

03 

@(t, w ;  4)  = - c c ja einm +(n, 2k) 
lr k =  - m  m =  - m  -= 

* X(t  + m + k)  X*( t  + m - k)  
. / e  dn . (15) 

Equation (15) is exactly  the  discrete-time  version of the 
general  conjoint  time-frequency  representation of deter- 
ministic  signals  with  finite  energy, as  introduced  in  quan- 
tum  mechanics by Cohen [24] and in signal  processing by 
EscudiC and Gr6a [25]. Therefore, we consider (15) as  the 
most general  class of spectral  estimators.  Since  the  Wig- 
ner-Ville spectrum of stationary  signals  reduces to the  or- 
dinary  spectrum, this  class of estimators  is valid for  both 
stationary  and  nonstationary  random  signals. 

The  properties of general  conjoint  time-frequency  rep- 
resentations have been  extensively  discussed [9], [ 101; we 
can  therefore  immediately  use  these  results  and  indicate 
the most important  properties of some  special  estimators. 
However,  new normalizations of 4 are required  since we 
have to carry  over  the  finite  energy  case to the  finite power 
case. 

In the  following, we first  calculate  the  moments of gen- 
eral  spectral  estimators,  and we then  evaluate  special 
cases. 

C. Moments of General  Spectral  Estimators 

spectral  estimator  can be derived  from (15): 

/‘ 

A general  expression of the  first  moment of the  general 

1 a’2 
a; 4 ) )  = - s w(m7 rj 2~ m= - m  -a12 

* II(m - t ,  w - r) d r  (16) 
where 

m 

n ( t ,  w)  : = 2 C +(t,  2k) e-i2wk. (17) 
k =  - m 
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Generally,  this estimator  is doubly biased in  both  time  and 
frequency. The  amount of bias in both directions  depends 
on the weighting data window 4: hence, bias can  be  con- 
trolled by an  appropriate design of 4. For a proper nor- 
malization, however, i.e., 

, m p z / 2  

-!- 1 II(t7 w )  dw = 1 ,  (1 8) 
2n 1=-m -x12 

we get the condition 

4(0, 0)  = 1 .  (19) 

The second  moments of the  general  spectral estimator will 
be  calculated by first using our assumption that X ( t )  is a 
Gaussian  and  analytic  random signal (Section 111-A). This 
avoids the  appearance of higher order cumulants in the 
expressions to  be derived. We get 

= 4 c +(m,,  2kl)  +*(m2, 2k2) e-i2(w'k' -w2k2)  
ki k2 m i  m2 

K(t l  + ml + k , ,  t2 + m2 + k2) 

K*(tl + ml - k l ,  t2 + m2 - k2). (20) 

We now use  our hypothesis of quasi-stationarity (12) and, 
as a final result, we get 

exp [-i2(k1(wl - u) 

In (21), we  have 

tl + t2 k ,  + k2 t ,  + t2 k,  + k2 
ta = - + -* t b = - - - -  2 2 '  2 2 

(22) 

a n d 5  is the spectral density of the stationary  process  ap- 
proximating X( t )  at t .  W+fi,,,+fib(~, u ) ,  7 : = t l  - t2 is the 
cross-Wigner  distribution of the windowed spectral dens- 
ities  at t, and tb, i.e., 

. P7r 

W+A,,+&, : = .! 1 P U T  4(2u, 2kI)LAU + u )  n- -7r 

* 4*(2u,   2k, ) f ; (~ - U )  du. (23) 

The sign " - " in (21) stems from the approximation of 
quasi-stationarity (12). Whereas (21) gives the  general 
expression  for  the  second  moments of the general spectral 
estimator,  it  seems to be not very useful  in  practical  ap- 
plications. We can simplify (21) if we consider T to be 
small  enough  such that 

K U ( 4  - K b ( . r )  - KtO(79, to = (tl + t2)/2 (24) 
holds. Here, the  cross-Wigner  distribution  reduces to the 
simple Wigner  distribution, to is  no longer  dependent  on 
the summation of k l  and k2, and we get,  starting with (21), 

-7r 

* ft&u + u)  f g ( u  - u)  e-i2uT du du (25) 
with 

The following diagram  summarizes  the  relationships  be- 
tween  the  windows as expressed in  the different time-fre- 
quency planes ( F  denotes  discrete Fourier  transform): 

4 (a ,  2 4  
freq. X time 

F y  yL 
@(t,  2k)  J((n7 w> 

time X time  freq. X freq. 

time X freq. 

A further simplification can be achieved if we suppose that 
the  time of stationarity  [30] is much larger  than  the cor- 
relation time [ l ] .  This ensures \E (u,  u )  to be a peaked 
function  in u and (25) is led to the simplified expression 
~ 3 1  - m n d 2  

2~ t =  -m 

n*(t  - t2, ~2 - W )  f : o ( ~ )  dw. (27) 

Equation (27) shows that the correlation between adjacent 
estimates only vanishes when the time-frequency win- 
dows 11 are nonoverlapping. Using (27), we finally get for 
the variance of the  general  estimator  the expression 

* f :<w>. (2 8) 
From (28), it clearly appears  that the  approximated vari- 
ance is ensured to  be nonnegative. 

D. Short-Time Periodograms 
The most popular  estimators of "time-varying  spectra" 

are certainly  short-time  periodograms (cf. [4]). They are 
defined by 

2 J 2 N -  I(t, a) : = ~ 1 5 X ( k )  hN(k - t )  e?' . 
2N - 1 k = - m  1' 

(29) 
One  also  considers  smoothed  short-time  periodograms, 
1.e., 

m 

J2b- ( t ,  w )  : = g,(m) J:,+ l ( t  + m, w). (30) 2 2 M -  1 

I N  = - a 
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In (29)  and (30),  hN and g, are windows  with 2 N  - 1, Under  the  reasonable  assumption  that  the  length  of  the 
respectively 2 M  - 1,  nonzero  values.  Smoothed and un- window  hN  is  large  enough  to  ensure HN to  be  a  peaked 
smoothed  short-time  periodograms  are  special  cases of the function, we obtain  the  final  result: 
general  spectral  estimator: if one  chooses m 

m c - G( ) * 1 &?,dm) 
w1 + w2 

4STP(n, 2k) := E l c  j =  -m 
m =  -a 

. .  
* h N ( j  + k)  h$( j  - k )  elnJ (31) - &(a2 - w1, 7 + m) (39) 

then (15) reduces to (29)' This weighting function has the From  this  equation,  it  appears  that  both  the  smoothed and 
form of an  ambiguity  function  and we can denote the  unsmoothed  short-time  periodograms  give  estimates 

4STP(n, 2k) = : M n ,   2 4 .  (32) being  correlated in both  time  and  frequency.  The corre- 
lation is described by the  ambiguity  function of the  chosen 

the  variance of the  short-time  periodogram  is  given by 
The smoothed short-time  periodograms (30) by a window h,. For a properly  normalized  window [cf. (35)], 
choice of 

m 

m m If g, is a  rectangular  window,  the  second  term  is  of  order 
2 2M- 1 

E { J 2 h ' - 1  (t, w)> = 2N - 1 m = - m  n = - m  
l 1  c c  1/(2M - 1) such  that,  as  a  crude  approximation, we  have 

TI2 

* g,(m) j W(n + m, 0 
- TI2 

- Wh(t - n, w - l) d {  (34) 

where wh denotes  the Wigner  distribution of the  data  win- 
dow hN. The normalization  condition (19) imposes  on 
windows g ,  and  hN to satisfy 

1 m m 

c 1hN(k)I2 ' c gM(m) = 1. (35) 2N - 1 k = - a  m =  -m 

Equation (34) expresses  that even the unsmoothed  short- 
time  periodogram ( M  = 1) is  a doubly biased  estimator of 
the  Wigner  distribution by the window hN.  The  smoothed 
short-time  periodogram (M > 1) undergoes  a  second  bias 
contribution  in  the  time  direction  due  to  the  smoothing by 
the  window g,. 

The second  moments  will only be  stated if the  approx- 
imation (24) holds, i.e., if T = t l  - t2 is  small  enough. 
We can  then  start  with (25); denoting 

m 

we can write (26)  in  the  form 
m 

. e-mi2u HN(U + u )  H $ ( u  - u). (37) 

Then  setting (37) in  (25), we get 

Hence, short-time  periodograms  give  doubly biased esti- 
mates of the  Wigner-Ville  spectrum  due  to  the  weighting 
function c $ ~ ~ ~  which is an  ambiguity  function.  This  allows 
us to  get  rather  smooth estimates, but refined  signal struc- 
ture is smoothed out.  The variance of short-time  perio- 
dograms  decreases  with  the  order of additional  smoothing 
applied  to  the  signal by the  window gM(m).  This induces 
a  further  decrease of resolution  power  for  detection of re- 
fined structures. 

E. Pseudo- Wigner Estimators 
Recently,  smoothed  and  unsmoothed  pseudo-Wigner 

estimators have been  introduced  [13], [14]. They are  de- 
fined by 

m 

* X*(t + m - k)  (42) 

where h,(k) and  gM(m) again denote windows  with 2 N  - 
1,  respectively 2 M - 1, nonzero  values.  This  estimator 
has  been  called the smoothed  pseudo-Wigner  estimator if 
M > 1. An  estimator  like  this  is  a  member of the  general 
class of spectral  estimators;  it  is  defined by the  weighting 
function 

m 

4spw(n,  2k) = lhN(k>12 * giv(m) e-inm. (43) 
m =  -m 

Comparing c$spw and qhSSTP, it appears  that 4spw offers  the 
(38) advantage of being  a  separable  weighting  function, 
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whereas &STP is  governed by “uncertainty  relations”: 
+SSTP is defined  via an ambiguity  function.  This  results in 
a combined time-frequency smoothing,  and  therefore  the 
performance in one direction  can only be  altered  at  the 
expense of an alteration of the  performance in the other 
direction. The weighting function of the  smoothed pseudo- 
Wigner estimator overcomes  this difficulty: it allows an 
independent  smoothing in both directions,  time and  fre- 
quency. 

The moments of the smoothed  pseudo-Wigner  estimator 
can  again  be calculated by using the  general expressions 
(16), (25), and (28) when taking care of the necessary 
conditions for the  approximations used.  The final results 
are 

1 - m  

(44) 

m 

(47) 

In [ 131, these  results have been  obtained by directly eval- 
uating (42). 

Due to the separability of the weighting function 4spw, 
the bias in (44) is now split up into two contributions which 
can  be controlled  separately. In  particular,  the un- 
smoothed  pseudo-Wigner  estimator ( M  = 1) has no bias 
in the  time direction. A second  advantage of the  smoothed 
pseudo-’Nigner estimators consists of their noncorrelation 
in the frequency  direction for an  appropriate spacing:  this 
is given by (45). 

According to the  marginal  distribution (7), we  have as 
an approximation of (46) (valid if M is  sufficiently large) 

Hence, the  variance decreases with the order of U ( 2 M  - 
1) as  in the case of the  smoothed  short-time  periodograms. 
Nevertheless, pseudo-Wigner  estimators allow us look at 
the  data  giving a lot of detailed structures: this smoothing 
brings up only the  same  amount of  loss  of resolution as in 
the  case of the smoothed  short-time  periodograms [cf. 
(41)], but the unsmoothed  pseudo-Wigner  estimator is su- 
perior to the  unsmoothed  short-time  periodograms as 
shown by (34)  and  (44). By their flexibility due to the sep- 
arable  weighting  function $spw, they  offer an interesting 
alternative to smoothed  short-time  periodograms when re- 
fined structures of the data  are to be evaluated. 

The major problem of nonstationary spectral analysis is 
then not the choice of an observation window as in the 
case of short-time periodograms, but only the  estimation 
of the  amount of smoothing over neighboring estimates 
where  we have a tradeoff between  variance reduction and 
loss of nonstationary properties. We have proposed else- 
where [13] an Akaike-type  criterion as a solution, which 
works especially well in  mixtures of signals and noise [30]. 

F. Examples 
As a first  example, we consider  nonstationary  white 

noise. This is a random signal X ( t )  with  autocovariance 
function 

K ( t  + k ,  t - k)  = a;6(k), a: > 0 for all t .  (49) 

According to  (4),  its Wigner-Ville spectrum is  given by 

W(t ,  w )  = 2 4 .  (50) 

Equation (50) depicts the Wigner-Ville spectrum of non- 
stationary white noise as the  ordinary spectral density of 
a stationary white noise if t is fixed. 

If 0: is a sufficiently smooth  function, X ( t )  is a quasi- 
stationary  signal.  Then we can evaluate  the  variance of 
special spectral  estimators.  Let  the spectral density J ( w )  
of the tangential  stationary (analytic) process be given by 

J(w) = 20:, 0 < w < P. (5 1) 

We have then  from (23) with $ = 1 

0 < w < PI2 

and,  from (41) and  (46), 

o < w < n -  (53) 
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Equations (53) and (54) show  that  the  variance of the 
pseudo-Wigner  estimator  depends  on  the  frequency  vari- 
able. It is always lower  than  that of the  short-time  perio- 
dograms  other  than at  the frequency w = 7r/2 where  both 
variances are  equal. 

As a  second  example,  a  multiplicative  MA model of the 
form 

X(t) = g(t)  (€( t )  - Q€(t  - 2)), 0 < 01 < 1, g(t) > 0 
(55) 

is discussed. If g(t)  = 1, X(t )  is a  stationary  MA model 
with spectral  density 

f (w)  = uel 2 1 - ae-i2w12 (56) 

where a: is  the  variance of the  Gaussian  centered  white 
noise E (t) .  If g(t)  is  any  time-varying  function, X(t)  is 
nonstationary  and  possesses  an  evolutionary  time-varying 
spectrum  in  the  sense of Tjdstheim  and MClard [6], [8]: 

~ ( w )  = g2(t) a:ll - ae-i2w12 , (57) 

and  a  Wigner-Ville spectrum  (based on the real  signal 
only 1 

W(t,  w )  = 203g2(t)  (1 + a2) 

- 201g(t + 1) g(t - 1) cos 2w). 

(58) 

Note  that  both spectra reduce  to  the  ordinary  stationary 
spectrum if g(t)  = 1, but clearly,  both  spectra  differ.  This 
causes  problems if one  wants  to  compare  the  numerical 
performances of general  spectral  estimators  to  estimates 
based  on  time-varying  models:  the  theoretical  spectra  to 
be  estimated by these  two  different  classes of estimators 
are different if the signals are nonstationary. 

IV. NUMERICAL IMPLEMENTATION AND APPLICATION OF 

PSEUDO-WIGNER  ESTIMATORS 

A .  Numerical Implementation 

It  has  been  shown  in  Section I11 that  pseudo-Wigner  es- 
timators  form  a  very  attractive  special  class of general 
spectral  estimators  recommending  its  practical  applica- 
tion. We shall  therefore  indicate  the  implementation of an 
adequate  algorithm  for  its  numerical  realization. 

We start  with  (42)  and  set  at  first M = 1. When having 
in  mind to apply FFT  techniques, we set w, : = a(n /N)  

and we get 

N - 1  

* x ( t  + k) x*(t - k ) .  (59) 

In  (59), x ( t )  denotes  the  analytical  signal  of  the  sampled 
realization  of  the  random  signal X(t).  We can  split up the 
sum going from -N + 1 to N - 1 into two sums  running 
from 0 to N - 1. This  results in 

PW2~-l(t ,  W,) = 2  2  Re  e-i2kr(n’N) ( gra lhN(k>I2 

x(t  + x*(t - k)]  - lX(t)l2). 

(60) 
Hence, if N is  a power of two, we can  calculate  the  pseudo- 
Wigner  estimator  over 2 N  - 1 data  points by one  ordi- 
nary FFT over N data  points.  This  reduces  the  computa- 
tional  burden  and  allows  an  efficient  evaluation of pseudo- 
Wigner  estimates. 

If the  smoothed  pseudo-Wigner ( M  > 1) is to  be  cal- 
culated, we only have to add  a  smoothing  over  neighbored 
pseudo-Wigner  estimates just  like  in the  case of smoothed 
short-time  periodograms. 

In many applications,  one  wants  to  perform  a  real-time 
analysis or at  least  a  quasi-real-time  one.  This  can  also be 
done by the pseudo-Wigner  estimator.  In  order  to  evaluate 
(60), we have first to  calculate  the  analytic  signal of a  real- 
valued  realization of X ( t ) :  this  costs  two  FFT’s,  each  over 
2 N  points  in  order to  calculate  the  Hilbert  transform. 
Then, we calculate  (60) by one FFT over N points.  The 
time  necessary  to  perform all  these  operations now dic- 
tates  the  temporal  resolution we  may obtain in a  real-time 
application. Thus,  the required  frequency  resolution  and 
the rapidity of the  device  performing the  FFT gives us the 
best  temporal  resolution we can  obtain. 

B. Examples 
We shall now consider  numerical  examples  dealing  with 

signal + noise  mixtures  and  with  time-varying  linear 
models.  All  computations  presented  here have been  per- 
formed  on  a  Floating  Point  Array  Processor FPS-164 at 
RHRZ of the  University of Bonn,  Germany;  the  Hilbert 
transformer and the complex FFT of the  library  were  used. 

As a  first  example,  Figs. 1 and  2  present  pseudo-Wigner 
estimates  for 

\ 567 < t < 951 
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- t  

(b) 

Fig. 1. Signal defined by (64) (a)  and its pseudo-Wigner  spectrum (M = 1) 
(b). 

L.15 I 

(b) 
Fig. 2. Signal dcfined by (64) plus noise (SNR,,,,,, = 5 dB) (a) and its es- 

timated  pseudo-Wigncr  spectrum (M = 13) (b) .  

where p ( t )  is a  parabola  taking its maximum at t = 488; 
u ( t )  is the unit step function. To get a noisy signal, we 
have blurred S , ( t )  with a  Gaussian centered white noise 
such  that  the  maximal SNR at t = 488 is 5 dB.  Signals 
like this can  be found in bioacoustical problems [26].  The 
observation window hN is a  rectangular window with N = 
64 and  a  12s-point zero padding  has  been  applied.  Fre- 
quency and  time  increments are, respectively, Au = T/ 
128 and A t  = 12. The time  origin  and  the degree of 
smoothing of the  pseudo-Wigner estimator  are specified 
on each figure as t ,  and M .  

As a  second  example,  Fig.  3 gives a fourth-order AR 
model modulated by a  Gaussian  amplitude: 

t, = 89 

(b) 
Fig. 3. Pseudo-Wigner  estimates of the  Wigner-Ville  spectrum 01 X ( t )  (a) 

and &(t) (b) defined by (65 ) .  In  both  cases, M = 25. 

X(t) := 0.5X(t - 1) - 0.3X(t - 2) + 0.4X(t - 3 )  

- 0.5X(t - 4) + E ( t )  

where ~ ( t )  is a centered normed  Gaussian  white  noise. 
The  same window and the  same  parameters  as for Figs. 1 
and  2 have been  chosen  (but  without zero padding).  It can 
be observed that the pseudo-Wigner  estimators are sensi- 
ble to refined signal structures, but this sensibility is  not 
always adequate when analyzing  time-varying models. 
Having inspected various examples, it seems that pseudo- 
Wigner estimators  are a good device for pilot studies  and 
for deciding  whether an analysis by time-varying models 
is adequate for a given signal. 

For further examples and  numerical  comparisons be- 
tween smoothed  short time periodograms  and pseudo- 
Wigner estimators, we confer to [14], [21],  [30], and [31]. 

C. Application 
When  studying  the  dynamics of  biological oscillators, 

input-output experiments are  often  used.  The  interest 
mainly consists of the estimation of the ranges of synchro- 
nization of the biological oscillator to  an  external periodic 
cue  [27]. In this kind of experiment, nonstationary phe- 
nomena occur if the external  cue is switched on. Fig. 4 
gives an example: the input signal is temperature  [Fig. 
4(a)]; the output signal is motility of a culture of  unicel- 
lular  green  algae  [Fig.  4(b)].  The smoothed pseudo-Wig- 
ner spectrum  (Fig.  4(c), M = 13) depicts the  time-vary- 
ing structure of the output  signal. Motility gets slowly 
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QC INPUT SIGNAL : T = 8 h 

I 

A 

Fig. 4. Example of an  input-output  analysis  for  studying  the  dynamics of 
biological oscillators. (a) Input  signal  (temperature)  with a frequency X, 
= 0.125 h-’  in  part (B).  (b)  Output  signal  (motility of a culture of uni- 
cellular  green  algae  (Euglena  gracilis)  after  detrending).  The  signal  cor- 
responds  to  the cutoff  part of the  input  signal. (c)  Wigner-Ville spectrum 
of the  output  signal  estimated by a  smoothed  pseudo-Wigner  estimator 
(M = 13, N = 128, N doubled by zero  padding).  The  indicated  sections 
A ,  E ,  and C correspond to the  same  sections  marked  in  parts (a) and  (b) 
of this  figure. 

phase locked to  the forcing temperature signal with fre- 
quency ho = 0.125 h-I.  This  is indicated by the increas- 
ing amplitude of the Xo-frequency component. At the  same 
time,  higher harmonics of X. show a decreasing  amplitude 
[cf. the 2X0 component  in  Fig. 4(c)]. Higher  harmonics 
are  due  to nonlinearities of the transfer  system.  The Wig- 
ner-Ville spectrum now shows  the disappearance of these 
nonlinear  properties of this system.  When  stopping the 
temperature periodicity [part (C)] ,  there is  no reappear- 
ance of the biological oscillator  controlling motility under 
constant  light  and temperature conditions.  According to 
the Wigner-Ville spectrum of part (C), the output signal 
can  be considered as  white noise. Thus,  the forcing peri- 
odic cue  has  altered  the  structure of  biological system  re- 
sponsible for the generation of the  oscillations.  The bio- 
logical interpretation of results  like  this will be published 
elsewhere  [28]. 

V. CONCLUSION 
Using the Wigner-Ville theory of conjoint time-fre- 

quency representations,  we have defined a general class of 
spectral  estimators of the Wigner-Ville spectrum of non- 
stationary  random signals.  As special cases, the  class in- 
cludes  short-time  periodograms  and  pseudo-Wigner  esti- 
mators.  The unifying  framework allows the calculation of 
general expressions  for the first and  second  moments of 
general  spectral  estimates.  The  results emphasize the ver- 
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satility of pseudo-Wigner estimators: they are defined via 
a separable  weighting  function and, in contrast  to short- 
time periodograms,  this  permits  more flexibility  in a prac- 
tical design. Pseudo-Wigner estimators  are especially well 
equipped to visualize refined nonstationary structures, but 
if the  spectral properties of the underlying process  are 
more smooth, short-time  periodograms are preferable, 
whereas their variance  is often  higher than  that of com- 
parable  pseudo-Wigner estimators. 

Furthermore,  the separability of the weighting  function 
defining the pseudo-Wigner estimator avoids the tradeoff 
between a required  frequency  resolution  and  the bias. The 
only critical  quantity  rests  with  the appropriate  degree of 
smoothing  between  neighbored  pseudo-Wigner estimates: 
this knowledge is  necessary for deciding  between the nec- 
essary reduction of variance  and  the  smoothing out of 
nonstationary  phenomena.  As a solution, we have pro- 
posed elsewhere [13] an Akaike-type criterion for esti- 
mating  the time of stationarity;  numerical  results have 
shown  that our  procedure works well, especially when sig- 
nal plus noise mixtures are  present  [30]. 
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