
IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING. VOL 36. NO. 9, SEPTEMBER 1988 1377 

A Time-Frequency Formulation of Optimum 
Detection 

Abstract-A time-frequency formulation is proposed for the opti- 
mum detection of Gaussian signals in white Gaussian noise. By choos- 
ing the Wigner-Ville distribution as the basic time-frequency tool, it 
is shown that the corresponding receivers generally take the form of a 
correlation between time-frequency structures, matching mathemati- 
cal optimality with a physically meaningful interpretation. The case of 
low SNR is examined in some detail and various examples are consid- 
ered: deterministic signal, Rayleigh fading signal, random jitter, and 
random time-varying channel. A general class of time-frequency re- 
ceivers is also proposed, which admits as limiting cases different known 
structures, and whose suboptimum performance is evaluated. Possible 
extensions to more elaborate situations (including parameter estima- 
tion) are briefly mentioned. 

I. INTRODUCTION 
HE optimum detection of signals in noise has already T been so often considered in the literature that it could 

appear somewhat vain to address again classical problems 
for which solutions are well known. Nevertheless, if so- 
lurions are given, it is clear that a remaining question is 
that of their realization: the purpose of this paper is there- 
fore to stress the importance of alternative detector con- 
figurations which have received little attention in the past, 
namely, optimum time-frequency receivers. 

In fact, the realization problem for optimum receivers 
possesses at least two different aspects: one related to 
interpretation and the other one to implementation. Con- 
cerning interpretation, new insights can be gained by 
making use of realizations which match mathematical op- 
timality with the simplest or the most relevant physical de- 
scription of the considered situation. This is especially 
clear when we consider the detection of nonstationary 
processes, a problem for which intuition suggests com- 
parison of time-frequency descriptions, but for which 
there is no explicit standard procedure for doing so. 
Moreover, it is expected that a new approach, while lead- 
ing to known results under a more suggestive formulation 
w.r.t. interpretation, will also help in handling open prob- 
lems. Concerning implementation, the choice of a reali- 
zation is generally imposed by practical considerations re- 
lated both to feasibility and simplicity: in this respect too, 
time-frequency receivers can be of some interest, for in- 
stance, in the cases where classical architectures must be 
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discarded (such as, e .g . ,  in some animal sonar systems 
where time-frequency implementations seem more appro- 
priate, as models, than correlators or classical matched 
filters [l]). 

One further interest in formulating optimum detection 
in terms of time-frequency receivers is at last to mix to- 
gether interpretation and implementation by using the 
same tools (time-frequency representations) for both a de- 
scription of signals of interest and the decisions which can 
be inferred from their observation. In fact, this point of 
view enters a general philosophy of time-frequency rep- 
resentations which deal with signal descriptions equiva- 
lent to the classical ones (in the time or frequency do- 
main), but which are more convenient for further 
processing, since they are displayed in a representation 
space (the time-frequency plane) fit to the considered sit- 
uation. Hence, when considering time-frequency repre- 
sentations, the two degrees of freedom of the time-fre- 
quency plane should permit one (for instance) to aim the 
detection procedure at only some subregions of interest in 
the time-frequency plane, performing at once sophisti- 
cated preprocessing (such as time-varying filtering) and 
optimum detection. 

Although not extensively discussed, this problem of 
performing optimum detection in the time-frequency do- 
main has already been considered in the literature. How- 
ever, one difficulty encountered in the early approaches 
was related to the choice of the time-frequency distribu- 
tions used as descriptions. By using the Rihaczek distri- 
bution [ 2 ] ,  it was shown [3] that optimum detection can 
be achieved in terms of time-frequency correlations but, 
unfortunately, at the expense of a time-frequency descrip- 
tion which shares very few of the properties that intuition 
attaches to a time-frequency representation. On the other 
hand, the use of the intuitive and classical spectrogram 
has been advocated [4], [5] for constructing time-fre- 
quency receivers (“spectrogram correlators”), but, in this 
case, the price to be paid was the loss of optimality, re- 
quiring additional deconvolution procedures for an exact 
equivalence with classical solutions. A major achieve- 
ment has resulted from the comprehensive studies per- 
formed recently on time-frequency distributions, and per- 
taining to both deterministic and random signals: the key 
point of these studies is that a suitable candidate for 
matching mathematical optimality with physical interpre- 
tation is the Wigner-Ville distribution [6], [7] 
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This paper, which extends some previous results, is in- 
tended to provide a coherent framework for Wigner-Ville 
based time-frequency receivers and is organized as fol- 
lows. Section I1 is first devoted to addressing the general 
problem of detecting a nonstationary Gaussian signal in 
stationary white Gaussian noise and to reviewing the clas- 
sical solution. Considering then Cohen's class of time- 
frequency distributions, it is shown that an equivalent 
time-frequency formulation can be given with any distri- 
bution which satisfies a certain inner product invariance 
law. It is justified that this formulation is restricted to the 
Wigner-Ville distribution and two special cases are de- 
rived: the detection of a deterministic signal and of a Ray- 
leigh fading signal. Section 111 is concerned with a more 
detailed discussion of the receiver structure when the SNR 
is small. The general detection procedure, which is shown 
to reduce to a time-frequency correlation between' two 
Wigner-Ville representations, is illustrated in two exam- 
ples: the detection of a randomly jittered signal and that 
of the output of a random time-varying channel. The so- 
lution obtained suggests the definition of a general class 
of receivers which is studied in Section IV. This class 
depends on an arbitrary smoothing function and, accord- 
ing to the choice of this function, it is shown that the cor- 
responding time-frequency receiver can vary continu- 
ously in between very different structures. The 
degradation in performance w.r.t. quadrature matched fil- 
tering is illustrated on an important example. At last, Sec- 
tion V proposes some possible extensions of the present 
approach: the reconfiguration of time-frequency detectors 
for nonwhite noise; the detection of signals with imper- 
fectly known structure and, hence, the possibility of pa- 
rameter estimation. 

11. THE DETECTION PROBLEM 
A .  Formulation 

The detection problem that we address is the following: 

E ( T ) ,  (1 )  1 H o : r ( t )  = w ( t )  

H , : r ( t )  = w ( t )  + s ( t )  

where the observed (complex) signal r ( t )  is known on 
the time interval (T ) ,  w ( t )  is zero-mean complex white 
Gaussian noise (whose real and imaginary parts are in- 
dependent and of equal power spectral densities) such that 

E [ w ( t ) ]  = 0; E [ w ( t )  w * ( u ) ]  = No6(t - u), ( 2 )  

and s ( t )  is the (complex) nonstationary Gaussian signal 
to be detected, and characterized by 

E [ s ( t ) I  = m ( t ) ;  E [ ( s ( t )  - m ( t ) ) ( s ( u )  - m ( u ) ) * ]  

= K,(t, u ) .  ( 3 )  
In (2 )  and (3), E stands for the expectation operator and 

the star for complex conjugation. 

B. Classical Solution 
The addressed problem possesses a well-known solu- 

tion (see, e.g., [SI) by means of the Karhunen-Lokve ex- 

pansion associated with the covariance function of s ( t ) .  
More specifically, s ( t )  admits a doubly orthogonal de- 
composition 

s ( t >  = C sncpn(t) (4) 

(5a) 

such that 

E [ ( %  - d ( S k  - 4 * 3  = X,6Ilkk, 

and 

j cp,(t) cpk*(t> dt = 6Ilk 

mk = i,,, m ( t )  P f ( t )  dt 

j K ( t ,  u )  du = A,cp,(t); t E ( T ) .  ( 6 )  

(5b) 
(7.) 

[where hnk is the Kronecker symbol and 

(5c) 

is the projection of m ( t )  onto p,, ( t ) ] ,  if the A, and p,, ( t )  
are chosen as the eigenvalues and eigenfunctions, respec- 
tively, of the covariance function K s ( t ,  u ) ,  Le., if 

( T )  

It can then be shown that the optimum detector of s ( t ) 
can be written as 

HI 

Ho 
1R + 10 2 (7)  

where y is a threshold and 

Both terms in (8) involve inner products between the 
observed realization and known characteristics of the pro- 
cess to be detected: the first one, which is a bilinear func- 
tion of the observation, is related to the second-order 
properties of s ( t ) around its mean-value (random fluctua- 
tions); whereas the second one, which is a linear function 
of the observation, is more specifically aimed at detecting 
this mean value [which can be thought of as a determin- 
istic component of s ( t )]. 

C. Equivalent Time-Frequency Formulation 
Since the detection structure (7) involves inner products 

in the time domain, it is clear that equivalent formulations 
will be possible in the time-frequency domain with any 
transformation which preserves inner products. Among all 
the possible time-frequency representations, we will re- 
strict ourselves here to shift-invariant bilinear distribu- 
tions, Le., to members of Cohen's class [9], [ l l ] .  This 
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means that if x ( t )  and y ( t )  are any complex-valued sig- 
nals, their cross-time-frequency distribution is of the form 

m 

C.&, 0 ;  n) = j j n(t - t ’ ,  w - w ’ )  
- m  

( 9 )  
dw’ 

2 a  
* WXy(t ’ ,  w ’ )  dt’ -, 

where 
n m  I 

is their cross-Wigner-Ville distribution [ 101 and II ( t ,  w ) 
is an arbitrary (but normalized) function. 

It is worthwhile to point out that numerous proposed 
time-frequency distributions can be obtained from (9) by 
specifying the arbitrary function n (  t ,  w ) .  Of course, set- 
ting y ( t )  = x ( t )  and 

n(t, w )  = rIw(t, w )  = 2T6(t) 6 ( w )  

C,,(t, w ;  n,) = YLr(t, w ) .  

n(t, W )  = II,(~, W )  = 2e-J2*‘ 

R,(t ,  w )  = x ( t )  X * ( w ) e - j W ‘ ,  

n(t, w )  = n,(t, w )  = Whh(t, w )  

(11) 

(12) 

(13) 

(14) 

(15) 

leads to the classical (auto) Wigner-Ville distribution [ 101 

Setting 

leads to the Rihaczek distribution [2] 

whereas the choice 

(where h ( t )  is some time window) corresponds to the 
classical spectrogram 

S,( t ,  w )  = x ( u )  h*(t  - u)e- jWu du . (16) 

Therefore, in order to obtain formulations by means of 
formulas similar to (8), but expressed as inner products 
in the time-frequency plane, a natural requirement is to 
deal only with distributions (9) which satisfy an inner 
product conservation law of the type 

I !:m 12 

m 
n n  

--oo 

(17)  
for any signals xk(  r ) ;  k = 1, , 4. This should provide 
a natural counterpart, in the time-frequency plane, to usual 
correlation operations in the time domain. 

It turns out that such a relationship holds only for time- 
frequency distributions characterized by a function II ( t ,  

1379 

w ) whose two-dimensional Fourier transform is uni- 
modular, i.e., such that 

where 

A consequence of this result is that classical spectro- 
grams must be discarded for exact time-frequency for- 
mulations of (8) since, according to (15), they are char- 
acterized by 

adv, 7 )  = A/ , / , (? ,  71, (20) 
where 

is the (cross) ambiguity function between x (  r )  and y (  t ) .  
From (21), it is clear that the (auto) ambiguity function 
(20) of the window h ( t )  is a quantity whose modulus can- 
not be forced to be one everywhere. 

According to (18), both the Rihaczek [(14)] and the 
Wigner-Ville distribution [ (12)] seem equally suitable 
candidates. However, the Wigner-Ville distribution pos- 
sesses at least two advantages over Rihaczek’s: 

1) it is a real-valued function; and 
2) it possesses the least amount of spread in the time- 

frequency plane 1121, [14], which will permit us later to 
restrict time-frequency inner products to concentrated 
subregions of the plane. [An example of this time-fre- 
quency concentration property is given below by (26) and 

For these reasons, the Wigner-Ville distribution will be 
retained as the basic time-frequency tool in the rest of this 
paper. 

Starting again from (8), and using (17), it is straight- 
forward to obtain the equivalent time-frequency formu- 
lation (equation (22a) can be found in 1131): 

(271.1 

, r m  r 

n m  n 

Both terms involve an inner product, in the time-fre- 
quency plane, between time-frequency structures of the 
observation and of a reference (depending on known 
properties of the signal to detect). One can remark that 
the bilinear (respectively, linear) character of lR (respec- 
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tively, lo)  is translated to an auto (respectively, cross) 
Wigner-Ville distribution of the observation. 

D.  Two Special Cases 
We will now illustrate how the general structure (22) 

can be simplified in two classical circumstances: that of 
detecting either a known deterministic signal or a zero- 
mean (random) Rayleigh fading signal. 

I) Deterministic Signal: In this first case, we suppose 
that 

s ( t >  = f ( t L  (23) 

m ( t )  = f ( t ) ;  K,(t, u) = 0. (24) 

wheref(t) is deterministic and known, i.e., such that 

Hence, denoting by Ef the energy o f f (  t )  on ( T ) ,  we 
obtain from (22) that 

1R = 0 (25a) 

and 

The signal to detect being nonrandom, the optimum de- 
tector is linear: it consists of an inner product between the 
Wigner-Ville distribution o f f (  t )  and the cross-Wigner- 
Ville distribution of r (  t )  and f( t ) ,  a form proposed in 

An example which clearly exhibits the superiority of 
the Wigner-Ville distribution over Rihaczek’s is provided 
whenf( t )  is a linear FM sweep. In fact, if 

[71. 

f ( t )  = e i ( ~ f + ( a / 2 ) 9 )  7 (26) 

we have 

W f f ( t ,  U )  = 2 d ( w  - ( a 0  + a t ) ) ,  (27) 
whereas R f f ( t ,  0) is spread over the whole time-fre- 
quency plane [14]. In this case, (25b) reduces to 

2 
10 = Re { W r f ( t ,  wo + a t ) }  dt, (28) 

which is only a path integration in the time-frequency 
plane along the instantaneous frequency line. A localized 
evaluation of the inner product (25b) is then sufficient, 
whereas using Rihaczek’s distribution would have led to 
an optimum detector too, but involving the computation 
of an inner product over the whole time-frequency plane. 

2) Rayleigh Fading Signal: In this case, we suppose 
that 

T(N0 + T )  ( T )  

s ( t )  = bf(t), (291 

where f( t )  is deterministic and known, and b is a zero- 
mean complex Gaussian random variable (whose real and 
imaginary parts are independent and have equal vari- 

ances) such that 

E [ b ]  = 0;  E [  Ibl’] = 2a;. (30) 

It follows from (29) and (30) that 

m ( t )  = 0;  K,(t, u )  = 2a; f ( t ) f*(u)  (31) 

and, denoting again by Efthe energy o f f (  t )  on ( T ) ,  (22) 
reduces to 

and 

10 = 0, ( 3%) 

which corresponds to the form given in [6]. 
The detector is now bilinear (s ( t )  is in fact purely ran- 

dom) and, according to (17), it provides an alternative 
interpretation of quadrature matched filtering in terms of 
an inner product, or correlation, of Wigner-Ville distri- 
butions since 

(33) 

(Equation (33), which is a special case of (17), is usually 
referred to as Moyal’s formula [lo]). 

Again, in the case of a linear FM sweep, the detection 
procedure takes on an especially simple form of path in- 
tegration [6]. 

111. Low ENERGY COHERENCE CASE 
In this section, we will focus on the detection of a zero- 

mean Gaussian signal when the SNR is small, a situation 
referred to as the low energy coherence case [15], or lo- 
cally optimum detection [ 161. 

Since s ( t )  is supposed to be zero mean, the optimum 
detector reduces to l R ,  and hence to (22a). According to 
the low energy coherence assumption, we have 

A, << No (34) 

for all n and, hence, (22a) admits as first-order approxi- 
mation (and up to a constant factor) the quantity [21] 

This follows from the fact that, if the random signal 
s ( t )  is decomposed as in (4) and (5), then the expected 
value of its Wigner-Ville distribution reduces to 

E[W,,(t? 4 1  = c XnWqn&’ w ) .  (36) 

Thus, for small SNR’s, we obtain the meaningful (and 
intuitive) result that optimum detection is achieved by 
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comparing the time-frequency inner product between the 
Wigner-Ville distribution of the observation and the ex- 
pected Wigner-Ville distribution (or Wiper-Ville spec- 
trum [17]) of the signal to detect with a threshold: the 
optimum detector is of the shape of a rime-frequency cor- 
relator. 

A .  Two Examples 
The general detection procedure (35) can be illustrated 

by two examples for which classical solutions will be re- 
covered: the detection of a randomly jittered signal and 
that of the output of a random time-varying channel. 

I )  Random Jitter: In this first example, we suppose 
that 

s ( t )  = b f ( t  - t r )e ' "" ,  (37) 
wheref( f )  is deterministic and known, t' and w' are ran- 
dom variables with a probability density function G ( t ' ,  
w ' ) ,  and b is as in (30). 

It follows then from the properties of the Wigner-Ville 
distribution that 

(38) 

E[W,,(r, w ) ]  = 2 d C L r ( t 9  G ) .  (39) 

W,,(t, w )  = (b12Wff(r  - t ' ,  w - a') 

and, hence, 

The resulting optimum detector is, therefore, up to the 
constant factor 2a i ,  

If we compare this result to (32a) and (9), we see that, 
in the jitter case, the time-frequency reference is simply 
the Wigner-Ville distribution of the known signal, but 
smeared by the probability density function of the jitter, 
which is exactly what intuition suggests. 

A straightforward computation [20] shows that (40) is 
equivalent to 

m 

- m  

which is the classically derived solution [4]. 
2)  Random Time-Varying Channel: In this second ex- 

ample, we suppose now that s ( t )  is the output of a ran- 
dom time-varying channel [ with time-varying impulse re- 
sponse h (  t ,  u ) ]  whose input is a deterministic and known 
signal f (  t ) .  

We have then 

s ( t )  = im -m h ( t ,  u ) f ( u )  du. (42)  

If we suppose furthermore that 

we readily obtain 

E[K,(f ,  4 1  = Cff(t, w ;  S ) ,  (44 1 
where 

S ( r ,  w )  = im - m  k ( r ,  u)e-'"'du (45 1 
is the scattering function of the channel [ 181. 

This means that the Wigner-Ville spectrum of the out- 
put of the considered channel is nothing other than the 
Wigner-Ville distribution of the input, smeared in both 
time and frequency by the scattering function, which is in 
direct accordance with physical interpretation. It should 
be noted that the result (44) appears also in [19] and, of 
course, a smearing relation of this type still holds for any 
distribution linearly related to the Wigner-Ville distribu- 
tion, such as the spectrogram [4]. Nevertheless, the key 
role played in this context by the Wigner-Ville distribu- 
tion is again related to its maximum energy concentration 
properties [24], which could be of interest for identifying 
scattering functions by means of (44). 

Once (44) has been established, it is clear that the cor- 
responding optimum detector is 

which is of the same structure as (40). 

IV. A GENERAL CLASS OF RECEIVERS 
The last two examples exhibited a similar receiver 

structure that computed the time-frequency correlation 
between the Wigner-Ville distribution of the observation 
and a smoothed Wigner-Ville distribution of a reference 
signal, which is in fact a generalization of the time-fre- 
quency equivalent quadrature matched filtering (32a). 

In this section, we will be primarily interested in con- 
sidering receivers like (40) or (46) for themselves, inter- 
preting them and evaluating their performances. 

This will provide a coherent framework for dealing in 
a unique and physically meaningful formulation with re- 
ceivers which, otherwise, could be thought of as totally 
different and unrelated. 

A. Interpretations and Limiting Cases 
Given an observation r (  r )  on a time interval ( T )  and 

some reference signal f ( r ) ,  we consider the general class 
of receivers [20] 

n m  R 

where Il ( t ,  w )  is some arbitrary smoothing function. 
The first interpretation, which has already been men- 

tioned, is to compare the time-frequency structure of the 
observation to a smoothed time-frequency structure of a 
reference signal, in order to handle, for instance, an a 
priori distribution of parameters. If the smoothing func- 
tion I I ( t ,  a) is real valued and even (which is not a re- 
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TABLE I 
DETECTOR CONFIGURATIONS RESULTING FROM THE CHOICE OF DIFFERENT SMOOTHING FUNCTIONS IN (47) 

2?rS(r) 6 ( w )  Quadrature matched filtering 

strictive assumption), it is straightforward to verify that 
we have in an equivalent way 

If we apply Schwarz inequality to the numerator of (51), 
we conclude that 

This leads to a second interpretation in which the func- 
tion ll ( t ,  w )  plays the role of an a posteriori smoothing 
on the observation, as it is known to be necessary if we 
want at the same time to make an estimate of the time- 
frequency structure of the observation [ 171. 

In both cases, it is interesting to look at what the unique 
formulation (47) or (48) is equivalent to, when the 
smoothing function is forced to simple limiting cases: this 
is summarized in Table I (examples of the second and 
third configurations can be found, respectively, in [22]  
and r231). 

Ef 
NO' 

d l -  ( 5 3 )  

where, as previously, Ef is the energy of the reference 
signal f ( t ) on the considered time interval ( T ). 

As expected, it follows from (53)  that the general re- 
ceiver (47) is suboptimum w.r.t. quadrature matched fil- 
tering (33)  for which (53)  is an equality. 

The loss of performance which occurs when passing 
from (33)  to (47) can be quantitatively evaluated in some 
cases. For instance, if we consider the FM signal with a 
Gaussian envelope 

f ( t )  = e-*(l  -iQfTf/Z)(t/Tf)* (54) 
~ -I 

We see from this that very different receivers can be 

In any other case different from those mentioned, the cor- 
responding receiver lies somewhere in between these lim- 
iting structures. For instance, if we assume some smear- 
ing in frequency according to 

and the doubly Gaussian smoothing function 

7 ( 5 5 )  
viewed in fact as special cases of a unique formulation. n(t, w )  = e - * ( ( t / T d *  + ( w / Q r Y )  

we obtain, when Qf Tf >> 1, the following results: 

Ef 
NO 

T, = ( 2 ~ T f / Q f ) ' / ~ ,  Q, = ( 2 ~ Q f / T f ) ' / ~ *  d = - 

q t ,  w) = qt) H ( w ) ,  (49) 
we obtain a detector structure of the type 

( 5 0 )  
where h (  t )  is the inverse Fourier transform of H (  w ) .  

B. Pelformances 

evaluated by means of a deflection criterion [8] 
Performances in this general class of receivers can be 

(51) 
)E[AlHII - E[AIHoI 1 

d =  1/2 ' 

(var [A I %I)  
According to the definition (47), we obtain as a result 

and 

Ef 114 

NO T, = T f ,  Q, = Qf * d = - 2 ( 2 n 2 / 9 )  

- O ( ( Q f T f ) + * ) .  (57) 

This gives an indication of the asymptotic behavior, for 
large bandwidth-duration products of f( t ) ,  of the 
smoothed time-frequency receiver (48) when the smooth- 
ing is either matched to the FM rate [(56)] or equivalent 
to its time-frequency spread [(57)]. This latter situation 
corresponds essentially to an energy detector. 

V. POSSIBLE EXTENSIONS 
The theory developed up to this point has focused on 

the detection of a Gaussian signal of known structure in 
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white Gaussian noise. In fact, it can be also adapted to 
take into account more elaborate situations and to give 
new insights into some decision problems. 

In this section, we will mention, without entering into 
details, two of the natural extensions suggested by the 
preceeding discussion: the reconfiguration of time-fre- 
quency detectors for nonwhite noise; and the detection of 
signals with imperfectly known structure and, hence, the 
possibility of parameter estimation. 

A .  Nonwhite Noise 

A first possible modification is to replace in (1) w ( t )  
by some colored noise 

n ( t )  = c ( t )  + w ( t ) ,  ( 5 8 )  
with 

K,(t, U )  = K,(t ,  U )  + No6(t - u). (59) 
Classically [8], the detection of the Rayleigh fading 

signal (29) is then achieved by preserving the structure 
(33), but withf( t )  replaced by its whitened version 

g ( t )  = s,T) K $ - ' ) ( t ,  u ) f ( u )  du, (60) 

where I$')( t ,  u )  is the inverse kernel of the covariance 
K,,(t ,  u )  of the colored noise, i.e., the function which 
satisfies 

K $ - ' ) ( t ,  U )  K , * ( u ,  U )  du = 6 ( t  - u ) .  (61) 

Given K,,(t ,  u ) ,  and hence K L - ' ) ( f ,  u ) ,  a detector 

S ( T )  

equivalent to (33) is then given by 
I n m  n 

(62) 
with 

In fact, denoting the eigenvalues and eigenfunctions of 
the covariance function K, ( t ,  u )  by p,, and $n ( t ) ,  respec- 
tively, we have 

and, hence, labeling by L D  the complex quantity upon 
which the real part operator is acting in (22b), we get 

where f (  t )  plays the role of the deterministic component 
of s( f ) ,  and K,(  t ,  u )  that of its centered covariance func- 
tion. 

Thus, the result (62) is similar to (22b), but with the 
real part operator replaced by a square law device for tak- 
ing into account the multiplicative random variable b. 

B. Parameter Estimation 
Considering again the Rayleigh fading signal (29), it 

has been shown [6] that the corresponding optimum time- 
frequency detector (33) could be extended to the case 

S ( t )  = W ( t ;  e ) ,  (66) 

where 8 is a vector of unknown parameters. The detector 
structure is then based on a generalized likelihood ratio 
test [25] and takes on the form 

dw 
l ( 0 )  = S r n  Wrr( t ,  W )  Wff(r, W ;  e ) d t - - .  (67a) 

--m ( T )  27r ' 
H I  

0 Ha 
m a x l ( 8 )  Z y, ( 67b 1 

where Wff ( t ,  w ;  0 )  stands for the Wigner-Ville distri- 
bution o f f ( t ;  e ) .  

This permits one to perform simultaneously a maxi- 
mum likelihood estimation eML of 8 according to 

em = { a r g r x  @) /HI} .  (68) 

Wigner-Ville based receivers can then be used for both 
the optimum detection of signals with some unknown pa- 
rameters and the maximum likelihood estimation of these 
parameters. 

VI. CONCLUSION 

We have shown that classical receiver structures de- 
signed for the optimum detection of Gaussian signals in 
Gaussian noise admit equivalent formulations in the time- 
frequency plane. These alternative realizations take on the 
general form of a time-frequency correlator which dem- 
onstrates the great advantage of matching optimality with 
physical interpretation if the Wigner-Ville distribution is 
used as the basic time-frequency tool. A versatile general 
class of time-frequency receivers has also been proposed, 
which admits as special cases different receivers which, 
otherwise, would be thought of as completely unrelated. 

Apart from unifying interpretations, and providing pos- 
sible implementations when classical structures are not 
feasible, the proposed approach permits one to handle 
simultaneously the analysis of signals and the decisions 
inferred from their observation. This can be of special in- 
terest when some learning process is necessary prior to 
the detection itself, such as, e.g. ,  in fault detection prob- 
lems for which the method has already proved useful [26]. 
More generally, it is believed that the time-frequency for- 
mulation of optimum detection can provide new hints for 
handling open problems in a comprehensive way. 
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