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On the Spectrum of Fractional Brownian Motions
PATRICK FLANDRIN, MEMBER, IEEE

Abstract —Fractional Brownian motions (FBM’s) provide useful models
for a number of physical phenomena whose empirical spectra obey power
laws of fractional order. However, due to the nonstationarity of these
processes, the precise meaning of such spectra remains generally unclear.
Two complementary approaches are proposed which are intended to clarify
this point. The first one, based on a time~frequency analysis, takes into
account the nonstationary nature of FBM and puts emphasis on time-aver-
aged measurements; the second one, based on a time-scale analysis, is
matched to self-similarity properties of FBM and reveals an underlying
stationary structure relative to each time-scaling.

1. INTRODUCTION

In a number of physical phenomena which involve long-term
dependencies, measured spectra exhibit laws of the type |« 2771,
0 < H <1, over a wide range of frequencies (see, e.g., [9], [13] and
references therein). An apparent contradiction exists between the
stationarity assumption upon which usual spectral concepts are
based and the fact that such spectral behaviors cannot be associ-
ated with stationary processes: thus, the precise meaning of the
notion of spectrum needs to be clarified.

Powerful models with self-similarity properties, namely frac-
tional Brownian motions (FBM’s), have been proposed [11] for
getting better insight into such issues and have been applied
successfully in different areas [5], [8], [10]. The question of
associating a spectrum has not been explicitly addressed, how-
ever. A common way of approaching it has been the use of the
following fundamental property of FBM: although FBM is not
itself stationary, its increments are (and hence its derivative);
this allows one to associate a well-defined spectral representation
[11], [14] with the increments. Starting with this observation, a
valid approach is given by Mandelbrot and Van Ness [11,
p- 436]:

This suggests that [FBM] has a “spectral density” proportional to
Jw|~2//-1. Spectral densities of nonstationary random functions
are, however, difficult to interpret. It is tempting to differentiate
[FBM] and claim that [its derivative] has a spectral density
proportional to |w| 2.

Clearly, this is not a fully satisfactory interpretation; moreover,
spectral densities of nonstationary random functions are not
obviously defined, and their definition is a natural prerequisite to
addressing the problem. A further remark is that, even if a
well-defined (time-dependent) spectrum is given, its measurement
is another problem which also must be taken into account to
establish meaningful links with data stemming from experiments.

The purpose of this correspondence is to make precise the
concept of spectrum for FBM’s by making use of measurement-
based analyses. This is achieved by first performing a
time-frequency analysis, which is well-suited to the nonstation-
ary character of FBM’s, and then a time—scale analysis aimed at
examining their self-similarity properties.

II. FRACTIONAL BROWNIAN MOTIONS

Let H be a parameter such that 0 < H<1 and B(¢) is the
ordinary Brownian motion. Following [1], we adopt as a defini-
tion of fractional Brownian motion the following (slightly special-
ized) version of the definition proposed by Mandelbrot and
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Van Ness in [11}:
1 0
By (1) BTCESYR) [fﬁw(lt -]

+f|z

This clearly generalizes ordinary Brownian motion, the latter
appearing as a special case of FBM with parameter H=1/2.
FBM possesses numerous interesting properties; among them, we
can mention the fact that its increments are stationary and
self-similar. This means that, for any scale parameter a > 0 and
any time ¢,

H-1/2 _

o1"712) dB(s)

1""2dB(s)|. (1)

(By(1-+ar) = By(1)) £ (a"B, (7)) )

in the sense of equality in distribution.

However, FBM’s themselves are not stationary processes: this
can be seen by inspection of their covariance function, which
reads (1]

"E,,(”s) = E[BH(’)BH(S)]
=V /D) [P + s = =5, (3)
with

cosmH

=T(1-2H) (4)

As a consequence, the question of associating a spectrum to
FBM cannot be solved directly by the use of a standard power
spectral density. One possible way out of the difficulty is based
on introducing a time-dependent spectrum by performing a
time-frequency analysis.

III. TiME-FREQUENCY ANALYSIS OF FBM

Although in nonstationary cases no unique tool exists for
performing a time-dependent spectral analysis (see, e.g., the
discussion in [7]), a series of recent works has emphasized the
usefulness of the so-called Wigner—Ville spectrum [12].

By definition, the Wigner-Ville spectrum (WVS) of a nonsta-
tionary process x(¢) with covariance function r.(¢,s) is given by

+ o0 T .
VV"'(t’w)=f_w rx(t+5,175)e*lw-rd,r' (5)

This (not necessarily positive) quantity possesses numerous
interesting properties [12], generalizes in a natural way the con-
cept of power spectral density for stationary cases, and reduces to
it if the process happens to be stationary.

If we apply this definition to FBM, we get, by substituting (3)
into (5), the following expression:

1
WB (I w) —(l 2= 2”(2052(4)[) m. (6)

A number of interesting properties can now be deduced from this
time-frequency description.

A. Self-Similarity
If we introduce scaled FBM’s
By (1) = By(at), a>0, (7
we know from the properties of the WVS that

1 w
WBu;u(t’“’)=;WBu(m’;)' (8)
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It follows from (6) that
We, (t,0) =W, (1,0),

©)
which is a second-order manifestation of FBM’s self-similarity.

B. Fractional Gaussian Noise

In a way similar to the definition of white Gaussian noise as
the derivative of ordinary Brownian motion it is possible to
define fractional Gaussian noise (FGN) as the derivative of FBM
[11]. Denoting by x’ the derivative of a process x, we can deduce
from the structure of the WVS that

2

14
Wo(t,0) =W, (t,0)+—-— W,(1,w). (10)

49r°
In the case of FBM this yields
1
Wy (1,0) = i (11)

The quantity obtained represents the desired spectral behavior
of FGN [11]. It does not depend upon time, and this fact
expresses the stationarity of the process considered, resulting
from that of the increments of FBM.

Stationarity of the increments is also attested to by the WVS:
if we let

X7 (1) =By (t+T)— B, (1),

(12)

we obtain, from the definition (5),

(13)

This is a time-independent nonnegative quantity which corre-
sponds to the power spectral density of a stationary process.
Noting that the derivative of FBM can be viewed as

T 2 1
WX”:T(t,w)=4(sm7> W

(14)

1
B (1) = lim = Xy 5(1),
4 (1) .sinob‘ s 1)
we can check from (13) that
(15)

which is exactly the expression (11) obtained before, and corre-
sponding to the spectrum of FGN.

Bh—IvnO u/zl/s)xﬂ;a(t’w) = |w|2H~1 4

C. Average Spectra

Since the WVS provides us with a time-dependent spectrum, it
is possible to deduce from it an average spectrum over a time
interval of length T. This operation may be expressed as

1 7
S T) =5 [W(10)dr (16)

Applying this definition to FBM, we get from (6)
sin2wT
20T

(17)

1
LTy = 1-2H
$m(w,T)—[1—2 : ]'E;ﬁﬁ7~
A first consequence of this is that, if T is chosen in a suitable
way, the oscillations of (17) vanish, namely,

4 1
SBH(“’; k%) = e

From a practical point of view, the definition of (16) can be
viewed as related to a measurement [12]; indeed, measurement at
a given frequency requires an analysis time interval whose dura-
tion is related to the inverse of that frequency. Therefore, the

k=--,=1,0,+1,---. (18)
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second consequence of (18) is that, for any given frequency w,,

(19)

1
T =S, (0:T) = —r
W, H |w0|2H+1

and, obviously,

SB}:((‘)) = T]i—omoo SBH(w; T) = (20)

|m|21{+ 1°

The desired spectral behavior of FBM (power law of fractional
order) is thus obtained as the result of a measurement process
associated with a time-dependent spectrum.

D. Positivity
We note that

Wp,(1,0) 20 H21/2. (21)

This shows that FBM’s with parameter 1/2 < H <1 are exam-
ples of nonstationary processes with a nonnegative WVS [3]. This
gives us an alternative way of thinking about this range of values
of the parameter H [11].

IV. TIME-SCALE ANALYSIS OF FBM

Due to the self-similarity properties of FBM’s, a second ap-
proach is to analyze them by means of a time-scale method,
aimed at examining their behavior relative to different observa-
tion scales. A simple way of performing such an analysis is to
make use of the so-called wavelet transform [2], [4], [6] which, for
a process x(¢), is expressed as

T.(1,a) =%f_+:x(s)g(%’) ds. (22)

In (22), a > 0 is the scale parameter and g(t¢) is an arbitrary
(but localized) analyzing wavelet, normalized so that its Fourier
transform G(w) satisfies G(0) = 0 and

JRCGIE (29)

Given a basic wavelet g(t), (22) exhibits a multiscale analysis by
filtering x(r) with dilated and compressed versions of a unique
observation system.

In the case of a zero-mean random process, the transform (22)
is itself a zero-mean random process, and a quantity of interest is
its second-order behavior with respect to time. Introducing

R(t,5a) = E[T,(t.a)T,(s, )]
and using the fact that G(0) = 0, we obtain from (3)
© t—s
yg('r . -—a )|T]2" dr,

(29)

(24)

.
Ry, (t,5:a) = =(V,/2)a*" " [

with

v(r) = [ "5(0)5(0 - 7) do. (26)

Equation (25) exhibits two features worth noting. The first is
that, when analyzed relative to a given scale, FBM appears to be
stationary. The second is that the relevant parameter in (25) is the
ratio (¢ — 5)/a, which is a new expression of self-similarity in the
sense that second-order statistical properties, relative to a scaled
time interval b(z —s), b> 0, are identical (up to a scale-depen-
dent factor) to those of the unchanged interval but observed
relative to an accordingly modified scale a /b.

Since the covariance (25) is a function of ¢ and s only through
the difference (¢ — s), it is possible to obtain from this expression
a power spectral density by taking the Fourier transform. The
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result is
(27)
which corresponds to the FBM spectrum, as seen through the

filter of nominal scale a.
In fact, since (22) is related to x(¢) by a linear filter with

impulse response
h,(1) ! t) 28
ty=—gl-—1,
‘ - g( p (28)

it would have been possible to obtain the result of (27) by using
the fact that, in this case,

, . 2
S, (w;a) =a|G(aw)] e

+ o0
S,;”(w;a)=fA W, (1—s,0) W, (s,0)ds.  (29)

Equation (29) results from the compatibility of the WVS with
linear filtering and its reduction to power spectral density in the
case of stationary processes [12]. It can be checked by direct
computation that substitution of (6) and (28) into (29) leads to
2.

Since the spectral content of FBM is characterized relative to
each scale by (27), it is at last possible to obtain a global
spectrum by adding up the contributions pertaining to each scale.
Taking into account the natural measure associated with the
energy distribution of the wavelet transform in the scale direction

[6]), we end up with the result
, + 00 , da
SB,,(w)=f0 SBH(“’;“)'?=W’ (30)

which is again the desired behavior for a spectrum of FBM.

V. CONCLUSION

Two approaches have been proposed for the analysis of FBM’s.
The first one focused on their nonstationary character; by means
of a time-frequency analysis, it was shown that their spectral
behavior can be described in terms of average spectra. The
second approach focused on self-similarity properties of FBM’s;
by means of a time—scale analysis, a decomposition in terms of
self-similar stationary processes was effected. In both cases, the
description of a global spectral behavior of FBM’s relative to a
measurement process (either a time average or a scale filter) was
achieved, providing new insight into investigations of such pro-
CESSES.
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Optimum Linear Causal Coding Schemes for Gaussian
Stochastic Processes in the Presence
of Correlated Jamming
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Abstract —The complete solution is obtained to the following problem.
A Gaussian stochastic process {,, ¢ €[0, 1]} satisfying a certain stochas-
tic differential equation is to be transmitted through a stochastic channel to
a receiver under minimum mean-squared error distortion measure. The
channel is to be used for exactly 7, seconds and, in addition to white
Gaussian noise with a given energy level, the channel is corrupted by
another source whose output may be correlated with the input to the
channel and which satisfies a given power constraint. There is an input
power constraint to the channel, and noiseless feedback is allowed between
the receiver (decoder) and the transmitter (encoder). We determine the
linear causal encoder and decoder structures that function optimally under
the worst admissible noise inputs to the channel. The least favorable
probability distribution for this unknown noise is found to be Gaussian and
is correlated with the transmitted signal. Also included is a comparative
study of these results with earlier ones that addressed a similar problem
without a causality restriction imposed on the transmitter.

I. INTRODUCTION AND PROBLEM DESCRIPTION

Consider the communication system depicted in Fig. 1. A
stochastic process {6, }, t € [0, ¢], which satisfies the equation

db,=a(t)6,dr+b(t)dV,;  6,~ N(0,v), (1)

where V, is a standard Wiener process and is independent of §,,

and a(¢) and b(7) are uniformly bounded (ie., for some k > 0,
la(#)] < k, |b(2)| < k), is to be transmitted through a continuous-
time stochastic channel which is corrupted by additive white
Gaussian noise and is also tapped by an intelligent jammer. The
jammer sends a stochastic process (possibly correlated with the
encoded message process) at a certain power level so as to
maximize the interference to the channel. The transmission chan-
nel is to be used for exactly #; seconds and has an instantaneous

Manuscript received July 10, 1987; revised August 2, 1987. This work was
supported in part by the Joint Services Electronics Program under Contract
N00014-84-C-0149 through the University of Illinois. This paper was pre-
sented at the 1986 Conference on Information Sciences and Systems, Prince-
ton University, Princeton, NJ, March 19-21.

T. U. Bagar is with the Electrical and Computer Engincering Department,
Illinois Institute of Technology, Chicago, IL 60616.

T. Basar is with the Coordinated Science Laboratory and the Department of
Electrical and Computer Engineering, University of Illinois, 1101 West Spring-
field Avenue, Urbana, IL 61801.

IEEE Log Number 8825353.

0018-9448 /89 /0100-0199$01.00 ©1989 IEEE



