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Wavelet Analysis and Synthesis of Fractional
Brownian Motion

Patrick Flandrin, Member, IEEE

Abstract—Fractional Brownian motion (fBm) offers a convenient
modeling for nonstationary stochastic processes with long-term depen-
dencies and 1/ f-type spectral behavior over wide ranges of frequencies.
Statistical self-similarity is an essential feature of fBm and makes
natural the use of wavelets for both its analysis and its synthesis. A
detailed second-order analysis is carried out for wavelet coefficients of
fBm. It reveals a stationary structure at each scale and a power-law
behavior of the coefficients’ variance from which the fractal dimension
of fBm can be estimated. Conditions for using orthonormal wavelet
decompositions as approximate whitening filters are discussed, conse-
quences of discretization are considered and, finally, some connections
between the wavelet point of view and previous approaches based on
length measurements (analysis) or dyadic interpolation (synthesis) are
briefly pointed out.

Index Terms—Fractional Brownian motion, wavelets.

I. INTRODUCTION

In a large number of physical phenomena, long-term dependen-
cies are involved and 1/ f-type spectral behaviors are observed over
wide ranges of frequencies [14]. Although of great importance, the
modeling of processes of this type is faced with a number of
difficulties which render inadequate the use of conventional ap-
proaches such as, e.g., the ARMA approach. Among these diffi-
culties stand the slow decay of the correlation structure associated
with long-term dependencies and the fact that 1/f:type processes
have no ‘‘natural’’ description scale.

Nevertheless, a convenient modeling of such processes has been
proposed by Mandelbrot and van Ness [20]. It is referred to as
Jractional Brownian motion (fBm) and, among other properties, it
possesses that of being statistically self-similar, which means that
any portion of a given fBm can be viewed (from a statistical point of
view) as a scaled version of a larger part of the same process. Such
a property is of course reminiscent of the way in which signals or
processes can be described in terms of wavelets [5] which are all
deduced from one elementary waveform by means of shifts and
dilations.

It is, therefore, the purpose of this correspondence to explore
some of the links that exist between fBm and wavelets, for both
analysis and synthesis purposes. Moreover, it will turn out that the
“‘wavelet point of view’’ also gives new hints for interpreting
previous methods devoted to fBm and for generalizing them.

First attempts for analyzing or synthesizing fBm via wavelets go
back to [8], [18] and more recent contributions can be found in [27],
[25], and [24]. Although it would be equally possible to make use of
continuous wavelet representations [8], [25], we will here focus on
discrete and orthonormal wavelet decompositions.

II. FRACTIONAL BROWNIAN MOTION

Fractional Brownian motion (fBm) is a natural extension of
ordinary Brownian motion [20]. It is a Gaussian zero-mean nonsta-
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tionary stochastic process By (1), indexed by a single scalar param-
eter 0 < H < 1, the usual Brownian motion being recovered from
the specification H = 1/2.

The nonstationary character of fBm is evidenced by its covariance
structure [29]:

¢ (Bu(0)By(s)) = S (1112 + s = [ 1= 5]7), (1)

where & stands for the expectation operator.
It follows from the above equation that the variance of fBm is of
the type

var (B (1)) = o2 |¢]%M. (2)

As a nonstationary process, fBm does not admit a spectrum in the
usual sense. However, it is possible to attach to it an average
spectrum [29] [8]

2

P (0) = i—lT (3)

It is this power-law behavior of fBm’s average spectrum which
makes it attractive for modeling stochastic processes with long-term
dependencies, such as 1/ f-type processes.

Although nonstationary, fBm does have stationary increments,
which means that the probability properties of the process By (¢ +
§) — By (¢) only depend on the lag variable s. Moreover, this
increment process is self-similar in the sense that, for any a >0
(and with the convention B, (0) = 0), we get

By (at) = a™B, (1), (4)

where < means equality in distribution.

This self-similarity, which is inherent to the fBm structure, has
the consequence that one individual realization of such a process is a
fractal curve. It has, therefore, a fractal (i.e., noninteger) dimension
which turns out to be [19] [7]

D=2-H. (5)

According to the possible values of H, it follows that 1 < D < 2,
the scalar fBm parameter H being related to the roughness of fBm
samples.

III. SECOND-ORDER STATISTICS OF FBM WAVELET
COEFFICIENTS

It is clear from the previous section that two important features
are to be taken into account when analyzing fBm

e nonstationarity, which necessitates some time-dependent
analysis;

o self-similarity, which necessitates some scale-dependent
analysis.

As a result, wavelet analysis [5] which, by nature, is a time-scale
method, appears as a natural tool and second-order wavelet analysis
of fBm will now be carried out.

0018-9448/92$03.00 © 1992 IEEE
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A. Orthonormal Wavelet Decompositions

Let us consider a discrete orthonormal wavelet decomposition of
a given fBm By(7). By definition, computing the corresponding
wavelet coefficients amounts to evaluating [18], [21]

d;j[n] = 2’1/2/+wBH(t)\lx(2‘jt - n)dr,

J€Z, neZ, (6)

where (1) is the basic wavelet, required to satisfy the admissibility
condition [12]

/+m¢(t) dt =o0. (7)

The simplest example of an orthonormal wavelet basis is provided
by the Haar system for which

+1, 0=1<1/2,
v()={-1. 12=t<1, (8)
0, otherwise.

For any given resolution 27, the wavelet mean-square representa-
tion of fBm is

+ oo

By(1)=27"" % a,[n]e(27't — n)

« X 2 S afaei-n), ©)

= —-oo n=—oo

where equality is to be understood in a mean-square sense and
where the approximation coefficients

+ o
By (1)é(27/t — n) dt

a;[n] = 2‘j/2/

(10)

are computed with the help of the ‘‘scaling function’” ¢(¢) associ-
ated with y(¢) [18], [21]. In this picture, the wavelet coefficients
have an interpretation in terms of details, i.e., of difference in
information between two successive approximations.

Instead of directly evaluating wavelet coefficients via the inner
product (6), it is possible to recursively compute them by means of
cascaded discrete filters [18]. Starting from an initial sequence
ag[n] at a given resolution, successive sequences of approximations
a;{n] and details d[n] at lower resolutions obey the following
recursions

alrl = 5 #en-nla [l ()
d;[n] = ":Zojmgpn—n’]aj_l[n’], (12)

where h[n] and g[n] stand for the coefficients of the discrete filters

associated respectively with the scaling function ¢(¢) and the associ-

ated wavelet y(f). (In the case of the Haar system, only two

T/)gzero coefficients are needed: 4[0] = A[1] = g[0] = —g[1] = 1/
2)

This decomposition allows a perfect reconstruction [18], accord-

ing to the following recursion

+ o

a;[n] = ,th[z”' - nla;,[n]

n=—

b Y gl - nldylal, (13)

= — 0

provided that an initial (coarser) approximation a,[n] and the
different sequences of details d;[n] at finer scales j < J are given.

B. Correlation and Stationarity

For each scale 2/, the wavelet coefficients d ;[n] form a discrete
sequence  of random coefficients but, although the family
{2772yt — n), jeZ, neZ} constitutes an orthonormal sys-
tem, there is a priori no reason for the wavelet coefficients to be
uncorrelated. Using (1), (6) and (7), a straightforward calculation
yields

—

&(d,[n)d[m]) = %(_/wm(m-k.
r— (70— m)) 7|27 dr) @ (14)
where

Ay(arr) = \E/_:n\/z(t)w(at “na o (15)

is the so-called wide-band ambiguity function of Y (t) [9] or,
equivalently, the reproducing kernel of the analysis, i.e., the
wavelet transform of the wavelet itself [12].

From the general result (14), we can deduce the following
Theorem (the proof of which is straightforward)

Theorem 1: When normalized according to (ij[n] =
(27)~H+1/2d [ n], wavelet coefficients of fBm give rise to

e time sequences which are self-similar and stationary in the
sense that, for any j, &(d;[n]ld,[m]) is a unique function of
n — m, namely

é(d;[n]d[m])

[ Tt o).

with y,(7) = A,Q, 1)

e scale sequences which are stationary in the sense that, for any
n and m = 2/"*n associated to synchronous time instants,
é”(Jj[n]Jk[m]) is a unique function of j — k, namely

¢(d;[n]d[27*n])

o2 T .

(R (17)
(It should be noted that both results have already been established

in the case of continuous wavelet transforms, the former in [8]
and the latter in [25].)
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If self-similarity and scale stationarity seem quite natural, time
stationarity of wavelet coefficients of fBm deserves some com-
ment. Time stationarity is in fact obtained because the basic
““mother’” wavelet y () has a mean value which must necessarily
be zero because of the admissibility condition (7). This indicates
that the essential cause of nonstationarity of fBm turns out to be
concentrated around the zero frequency and, hence, cannot be
revealed by a fundamentally band-pass analysis. Nevertheless,
the low-frequency nonstationarity of fBm can be characterized if
the analysis also considers the companion ‘‘father’’ wavelet ¢(¢)
(the low-pass “‘scaling function’’) associated to V() [18], [21].
We, thus, obtain

var ([ n] )
- %(—/_t:(%(T) - 2¢(r —n))|r|* dr (21-)211“’

(18)

which is now a self-similar, but time-dependent, quantity. In
other words, details are stationary, while approximations are not.

From (16), we have access to the variance of wavelet coeffi-
cients, namely

2

var ([ n]) = V()@Y (1)

where the constant V,(HY), which depends on both the chosen
wavelet and the fBm index, is defined by

- /;mw(f) 712 . (20)

It follows from the power-law behavior (19) of the wavelet
coefficients’ variance that

log, (var (d,;[n])) = (2H + 1) + constant. (21)
Therefore, the fBm index H (and hence the associated fractal

dimension D) can be easily obtained from the slope of this

variance plotted as a function of scale in a log-log plot [18].

C. Approximate Whitening Filters

We have mentioned that, in general, the wavelet coefficients of
fBm are correlated in both time and scale. However, it would be
interesting to evaluate how strong this correlation is, or even to
point out special cases for which decorrelation could be achieved. In
such a case, the wavelet decomposition would provide us with a
Kahrunen-Logve-type expansion [27] and it would then play the
role of a whitening filter especially adapted to self-similar processes.

It turns out that the simplest orthonormal wavelet system, i.e., the
Haar system, approaches such a doubly orthogonal decomposition
when H =1/2, ie., for ordinary Brownian motion. More pre-
cisely, the following result holds.

Theorem 2: Let dj[n], J€Z, neZ be the Haar coefficients
associated with ordinary Brownian motion (i.e., fBm with H =
1/2). If we fix a given time-scale index (n, /) and if we consider the
correlation of ¢ '{n] with Haar coefficients at finer scales k < J, we
have

&(d;[n]d[m]) =0 (22)

only outside of the (cone-shaped) time-scale domain defined by
indexes (m, k) such that 2/"%n < m < 2/=%(n + 1) — 1. More-
over, we get for each scale

¢(d,[n]d,[m]) = var (d,[n])s,, (23)

and the correlation in scale varies as 2°*~/2_ for synchronous time
instants.

Proof: Tt is first convenient to rewrite the correlation between
wavelet coefficients as

2
4 ; 2H
¢(d;[n]di[m]) = —-20+072(2%)
+oo

/ v(1)0, (277 % (¢t + n) — m; H) ar, (24)

with

0,(t; H) = —/+®\b(t —7)|7|*" dr. (25)

—

In the case of the Haar system (8), it can be shown that

1/4, t<0,
1/4 — £2, 0<t<1/2,
0,(1;1)2) = / ) / (26)
(r-1)"-1/4, 12=<t<1,
-1/4, t=1.

Therefore, provided that the condition & < J is satisfied, the
non-constant part of ©,(¢;1/2) is restricted in time to the interval
25 im—n<t=< 25im + 1) — n and, hence, the integral in-
volved in the computation of &(d ,[n]d,[m]) is nonzero for all
indexes such that this time interval has some overlap with the
nonzero part of the Haar wavelet, i.e., with the interval [0, 1]. This
results in the range 2/ *n < m < 27" *(n + 1) - 1.

If we now fix k = j, the previous inequality reduces to m = 7.
This indicates that, at a given scale, distinct Haar coeflicients of
Brownian motion are uncorrelated with, moreover,

0.2

var (d,[n]) = —122j. (27)
2 6

This is the second result of Theorem 2.

If we are now interested in correlations in scale (k < j), we can
fix a given time index, say n, and compare d;[n] with other
wavelet coefficients d,[m], which are synchronous in time. This
amounts to consider time indexes m such that m = 2/~ %p and it is
then easy to show that

/+m¢(t)®¢(2j"‘(t +n) —m;1/2)dr =257, (28)

from which we get

62

. 1 . ‘
&(dj[ n] dk[zj—kn] ) = - 222J25<k~/)/2,

(29)

whence the last result. O
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The Haar system does not provide, stricto sensu, a doubly
orthogonal decomposition of ordinary Brownian motion. However,
we can conclude from Theorem 2 that the correlation between
distinct Haar coefficients decays as a power-law of scale and is zero
for a given scale. We will now consider possible extensions of this
behavior by retaining the Haar system as the wavelet basis while
replacing the particular value H = 1/2 by different values in the
range 0 < H < 1.

For a given scale 27 and for | n — m| = 1, a direct calculation
yields

&(d;[n] d;[m])

_ 2 ;)E[n _ m](Zj)ZHH,

2 2H+1)QH+2 (30)

with
E[n] = (In] = 1)*"*2 —a(|n| - 1/2)*"*? 4+ 6| n| 24+

(1)

—4(Inl + 1727 4+ (1] + )M,
and the corresponding constant (20) is

1—2724

W)= G ea

(32)

The behavior of this correlation function of Haar coefficients is
depicted in Fig. 1 for different values of the fBm index within the
range 0 < H < 1. It reveals in fact three different regimes associ-
ated to the three possible situations 0 < H < 1/2, H = 1/2 and
1/2 < H < 1. The first two cases correspond, respectively, to an
approximate decorrelation (fast decay) and a perfect decorrelation
(only one nonzero coefficient), whereas the last one is associated
with a long-term correlation (slow decay). This last point can be
checked from the closed-form expression (31) of the Haar coeffi-
cients’ correlation, since a fourth-order expansion in 1/ | n| for
(30) results in the asymptotic behavior

¢(d;[n]d,[m]) ~ O(|n— m|>H D) (33)

when |n — m| > 1.

Another way of looking at the decay properties of the coefficients’
correlation is to adopt a frequency point of view. Since we have
from (16)

¢(d;[n]d;[m]) = % (2sin(1rH)I‘(2H+ 1)

e Y(w)|? dw .
_/ elm(n~m)| ( )I (21)2H+l’ (34)

. [wIZH-HE

where ¥(w) is the Fourier transform of y(r), it is clear that the
decay of the correlation heavily depends on the behavior of ¥(w) at
the zero frequency, and, hence, on the number of vanishing mo-
ments of y(¢).

e T T
‘\‘H“““”
i

A ,“*_Hm“\\'\

<’_/_’— o

-5 lag
Fig. 1. Correlation of Haar coefficients for continuous-time fBm. At a
given scale, the correlation of Haar coefficients is given by (30)-(31). The
(normalized) result is plotted here for a number of fBm indexes H. Range
0 < H < 1/2 corresponds to an approximate decorrelation (fast decay).
Perfect decorrelation (only one nonzero coefficient) is achieved for H = 1/2
whereas the range 1/2 < H < 1 is associated to a long-term correlation
(slow decay).

More precisely, if ¥(¢) has at most R vanishing moments, i.e.,
if

+ oo
/ t"y(t)dt=0, r=<R,

— o

(35)

then it is not possible to prevent divergence of
| ¥(w)|?] @] “@H+D at the zero frequency if the fBm index H is
such that

H>R-1)2.

(36)

As a consequence, the correlation of the corresponding wavelet
coefficients has a slow decay and the asymptotic behavior

#(@[n)dm]) ~ O(In— m|24-0)

(37)

when | n — m| > 1. This is exactly what happens in the Haar case
R =1 for which the associated divergence situation corresponds to
the fBm range 1/2 < H < 1.

Nevertheless, as soon as a wavelet with R = 2 is chosen, the
quantity R — 1/2 is ensured to exceed the maximum value of H
within its range, i.e., 1. Therefore, it is to be expected that the
pathological situation of a slow decay of the wavelet coefficients’
correlation, which results jointly from the low regularity of the Haar
system and from a particular range of H, will be overcome for
more regular choices (e.g., any Daubechies’ wavelet [6] such- that

"R = 2). As proved by Tewfik and Kim [24], it turns out that this

guess is true and that the number of vanishing moments directly
controls the correlation at a given scale and between scales, large
R’s leading to almost uncorrelated coefficients. (A simulation illus-
trating this fact is given in [10].)

D. Discrete Evaluations and Sampling

Let us suppose now that we are given a discrete sequence
considered as an initial approximation at the best available resolu-
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tion. If this initial approximation is obtained from a continuous-time
fBm B(t) as

+ o

wln] = [ Bu(0ya(e—m)ar. (38)

it follows from the linear transformations involved in the wavelet
decomposition that the coefficients’ recursions (11)-(12) give rise to
related recursions concerning coefficients’ correlations. Applying
(11)-(12) to the discrete sequence (38) yields the following results

e the approximation coefficients are such that

£(amalm]) =% (an] + A lm] - D,ln - m]),

(39)
with
Al = [ oG -misiar ()
A;[n] = ‘/f,,,:zlh[z” -nlA;_|[n],jz1 (41)
and

+

Do[n] =/w'y¢(7—n)|T[2HdT

(42)
va[2n ~ ] Dy [n],j=1; (43)

o the detail coefficients are such that

S@lnldlm]) - Seln-ml. (@)

with

+ oo

Cin]=- X Ye[2n -nD;,_\[n],j=1, (45)

n'=—o

where vy,[7] and Y[ 7] are the discrete-time autocorrelation func-
tions of the impulse responses of the filters h[n] and g[n], respec-
tively,

+ oo

> h[w]h[n - n);

n=—oo

(46)

valn] =

+ oo

wlnl = 3 eln]elnw - n].

(47)

Because, by construction of @[ n], B, () has been forced to live
in an approximation space ¥V, spanned by {¢({ — n), neZ } and
has been sampled accordingly, there is no difference between the
coefficients a,[n] and d;[n] on one hand, and the a;[n] and d/[n]
considered previously on the other hand. However, if the discrete

sequence dy[n) now corresponds to a sampled fBm [17], i.e., is
such that
dy[n] = By(nT,), (48)

where T is some sampling period which can be chosen arbitrarily
as unity, the situation is quite different. Obviously, aliasing prob-
lems occur when defining such a discrete-time process, and the
corresponding sequences of approximations @ ;[n] and details d i[n]
now differ from the a;[n} and d,[n] deduced from the continuous-
time process.

Nevertheless, it can be shown that (39) and (44) still hold,
provided that the initializations (40) and (42) of the recursions (41),
(43), and (45) are changed according to

Ao[n] = Do[n] = |n|?2. (49)

As a consequence, the power-law behavior (19) of the wavelet
coefficients’ variance is generally modified. In particular, it can be
shown that, in the case of the Haar system, the variance of d [n] is
still of the form (19), but with the constant V,(H) replaced by a
scale-dependent quantity. Precisely, we get

var((?j[n]) = %17¢(H,j)(2j)2H+l,

(50)
with
24711
V(H,j)y=2"U2D11 + 5 (1-2'""m)
m=1
(1 +2"m |2 — 22" m |2 4 |1 = 21 m | 2H) [ (51)

This results in an inequality

var (d,;[n]) = var (d,[ n]) (52)

according to which the “‘local’” (scale-dependent) fractal dimension
of a sampled fBm

D(Jj) = log, (var ( AjH[n])) — log, (Var(ti/—[n])) (53)

always exceeds that of its corresponding continuous-time counter-
part (see Fig. 2(a)). Moreover, it turns out that the strength of the
inequality is diminished when coarser scales are involved and/or
when the fBm index H is increased. This can be explained if we
consider the asymptotic behavior of (51) for large scale indices j. In
this case, the quantity in brackets in (51) behaves approximately as

2/’*'/01(1 =) [+ x)*" =22 4 (1 - x)*"] ax

22H _

N 2j(H+ )2H+1) (54)

and, therefore,

lim V,(H. ) = V,(H).

(55)
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local dimension

=
w
&
w

o

log(scaley

(a)

) Daubechies 6

local dimension

[
=
J

o>

togtscaley

b

Fig. 2. Fractal dimension estimation for sampled fBm. In the case of
sampled fBm, the variance of wavelet coefficients is given by (50)-(51).
**Local’” fractal dimensions are plotted (continuous lines) according to (53)
and compared to the corresponding theoretical values (dotted lines) in three
different cases: D = 1.2, D= 1.5, and D = 1.8. (a) Haar wavelet; (b)
Daubechies wavelet with six vanishing moments.

with V,(H) as in (32). This means that the difference existing
between the continuous and sampled cases is mostly concentrated at
the finer scales and is progressively ‘‘forgotten’” when coarser and
coarser scales are involved.

If we fix now a given scale and if we allow H to vary, the
convergence, as a Riemann sum, of the discrete sum in (51) to the
integral (54) is accelerated if the function | x| 2% is made smoother
at x =0, i.e., if H is increased: this is precisely the second effect
observed. This behavior is not specific to the Haar system and is
encountered as well in the case of wavelets with a higher number of
vanishing moments. This is illustrated in Figure 2(b) where a
Daubechies’ wavelet with R = 6 has been chosen.

IV. CoNNECTION WITH OTHER APPROACHES

A. Analysis via Length Measurements

The question of estimating the spectral exponent of 1/f-type
processes, or even the fractal dimension of fBm, is not new.
Various approaches have been proposed, most of which consider
realizations of 1/ f-type processes as fractal curves whose length has
to be measured. This is generally performed by means of some
elementary ruler, the fractal dimension-being deduced from the
variation of this length as the length of the ruler is changed [19],
[7].

An example related to such a measuring process is given by the
so-called Allan variance [1]

o, (T) :%g([-/,er”(s) ds~ftr+TBH(s) ds]z). (56)

It can be easily shown that v,(T) does not depend upon ¢ and
varies as O(T?H) as T — . A measure of fluctuation, correspond-

ing to a measure of ‘‘length’’ of the signal considered as a curve, is
obtained if the squared difference in (56) is replaced by an absolute
value. Because of the Gaussianity of {Bm, this results in a variation
as O(TH) as T oo,

It is clear that this kind of approach, which measures contribu-
tions of increments associated with increasingly smoothed pro-
cesses, seems more or less equivalent to the evaluation of the
standard deviation of Haar coefficients. This equivalence can be
exactly quantified if we consider the discrete-time counterpart of
Allan variance, as introduced by Burlaga and Klein [3], who
consider a discrete-time sequence d,[ 7] corresponding to data with
the best available resolution. Increasingly smoothed versions are
then constructed by locally averaging @,[n] over nonoverlapping
intervals of length k. For every such ‘‘scale’” index k, a mean
value of the (absolute value of the) corresponding increment process
is finally computed.

More precisely, given a sequence dg[n] of length N, what is
evaluated by the algorithm of Burlaga and Klein is the following
“‘length’’ function of &

Lpx[k] = 77—

Zo(ao[n +ik] — ao[n + (i + 1)k])

(57)

and what is expected is a behavior varying as k2, where D = 2
~ H is the fractal dimension.
This definition allows us to establish the following general result.

Theorem 3: When evaluated at dyadic scales, the average
“‘length’’ (in the sense of Burlaga and Klein) of a Gaussian se-
quence with stationary increments is proportional to the standard
deviation of the corresponding Haar coefficients.

Proof: Let us assume for convenience that N = 2X. Using the
stationarity of increments, we have then, for dyadic scales k =
2/-Y

2K-J

FLale ) =2 Y

n=1

2

3 (alm s 2 on)

—ag[m+2/7"(2n - 1)])} . (58)

On the other hand, if we consider Haar coefficients d ;I n] associ-
ated to dy[n], we have

1 ~ ~
ﬁ("j—l[Z”] —a;_y[2n - 1]), (59)

with

>

O

—
N

il
It

(a,_,[2n] + a,_,[2n —1]). (60)

1
V2
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Therefore, by induction, we end up with

J=1_

afn) =277 S (a2 @) - ]

—a[277'(2n = 1) = m]) (61)

|

=2/2¢(1d)[n]]). (62)

and, using again the stationarity of fBm increments,

Using finally the Gaussianity of fBm, it follows from (58) and
(62) that

E(Lgg[277']) = 23*51/2\/2 Vvar(d;[n]). O (63)

This equivalence can be used to explain the reported behavior
[13] of the Burlaga-Klein estimate in the case of sampled fBm.
According to (50) and (51), the average length (63) is proportional
to 2/-H)~P only for large j’s, and not for all of them, as expected.
As a consequence, the scale dependence of the local fractal dimen-
sion leads to overestimated D’s [13], [11].

,,,Z::,l (@o[m +2/7"(2n = 1)] = ay[m + 27" (2n)])

B. Synthesis via Dyadic Interpolation

The wavelet analysis carried out in the previous sections can be
thought of as a decomposition from which perfect reconstruction can
be achieved. This suggests, therefore, to use such a reconstruction
as a synthesis tool, provided that its inputs have identical statistical
properties to that of the coefficients deduced from the analysis.

As suggested by Wornell [27] and as validated by the results of
Section III-C, a convenient simplification is to ignore the correlation
. which exists between different wavelet coefficients. Considering
then a collection of uncorrelated Gaussian coefficients d ;[n] such
that

var (d,[ n]) =az(2j)2HH, (64)
i.e., such that their variance follows precisely the power-law (19),
Wornell has shown [27] that the process

By(r) = im i 272 :Xi:omdj[n]\[/(Z’jt—n) (65)

e S,

has a time-averaged spectrum yir,,(“’) that satisfies

0? 02

"5t = 5,(0) < o7 (66)
|| ||
where v, and vy, are constants depending on y/(¢). Therefore,
wavelets offer a new possibility for synthesizing nearly-1/ f-type
and, hence, fBm-like processes. It is worthwhile to point out that the
idea of constructing a self-similar function by adding up finer and
finer details, all similar except for scale, is not new: it is even the
essence of basic fractal constructions. Nevertheless, in this case too,
wavelets provide new insights on such approaches and allow us to
get a better understanding of some limitations of more conventional
techniques.
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In this regard, a popular method for constructing random fractals
approximating fBm is the so-called random midpoint displace-
ment method [23]. Its principle is the following': given an initial
interval [0, 1], the value at O is set to O and that at 1 is selected as a
sample of a Gaussian variable with a given variance o>. The
interpolated value at 1/2 is then constructed as the average of the
values at 0 and 1 plus an offset selected as a sample from a Gaussian
distribution with variance o2 /22#*!, and the procedure is iterated.
This fails however to provide stationary increments when H # 1/2
and the resulting process is only an approximation of a fBm [23]. In
any case, the random midpoint displacement method can be given a
wavelet interpretation. It can be easily seen that it fits into the
framework (13), provided that the discrete filters A[n] and g[n] are
defined with the only nonzero coefficients being A[0] = 1, A[—1]
= hA[1] = 3 and g[1] = 1. Unfortunately, this does not give rise to
an orthonormal system [6] and, even if uncorrelated coefficients are
used as inputs, fBm-type behavior cannot be guaranteed as is
possible for an orthonormal system.

Returning to Wornell’s orthonormal synthesis (65), we can re-
mark that the result in (66) requires no assumption on the particular
order of h[n] giving rise to ¥(?), the desired fractal structure of the
synthesized process stemming only from the variance power-law
(64). However, it is known [6] that the number of vanishing
moments of a wavelet is also related to its regularity. In particular,
if R =2, the Daubechies’ wavelet turns out to be fractal itself [6]
and it is expected that the corresponding synthesized process should
exhibit fractal properties mixing those of the construction algorithm
and of the elementary building blocks on which the synthesis relies.
In this respect, large R’s should improve fBm synthesis, both for
validating the assumption of decorrelation between coefficients (cf.
Section II-C) and for rendering the influence of the wavelet regular-
ity negligible. Let us remark that interconnections between R and
the variance power-law of wavelet coefficients have also been
considered by Cohen {4] who stated that, if a process whose power
spectrum is bounded (up to a constant) by |« | ~?#*+1 is analyzed
with a wavelet with R vanishing moments and R > H — 1, the
variance of the corresponding wavelet coefficients is bounded (up to
a constant) by (2/)2#*!. This is, however, of little consequence for
fBm-like processes (65) with 0 < H < 1, since the above inequality
is then satisfied for any R = 0 (this always holds because of the
admissibility condition).

V. CONCLUSION

A number of results have been provided for characterizing,
analyzing or synthesizing fBm via wavelets. Beyond the mere
results, the wavelet point of view has proven useful for incorporat-
ing previous methods devoted to fBm into a general framework and
for evaluating and generalizing them. Moreover, some of the most
promising uses of this framework are as the basis for actually
solving signal processing problems such as detection in 1/f back-
ground noise, estimation of fractal dimensions or multiscale optimal
filtering (see e.g., [28], [15], or [11]).

One of the key reasons for which wavelets are well fitted to fBm
is the self-similarity of such a process. Strictly speaking, this
self-similarity is global in the sense that scaling laws are supposed
to hold uniformly at all scales and fractal dimension is not allowed
to change with time. From a physical point of view, this can be,too
strong an idealization and it could be desirable to account for
modifications of the model allowing muitifractal [19] or locally
self-similar situations. It is believed that, in this direction too,

"In fact, motivation for this construction can be traced back to [16] or
[26].
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wavelets offer a promising and flexible tool, as early attempts
indicate [2], [25], [22].
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Application of the Wavelet Transform for
Pitch Detection of Speech Signals

Shubha Kadambe and G. Faye Boudreaux-Bartels

Abstract— An event detection pitch detector based on the dyadic
wavelet transform is described. The proposed pitch detector is suitable
for both low-pitched and high-pitched speakers and is robust to noise.
Examples are provided that demonstrate the superior performance of
this event based pitch detector in comparison with classical pitch detec-
tors that use the autocorrelation and the cepstrum methods to estimate
the pitch period.

Index Terms—Glottal closure, event, dyadic wavelet transform, pitch
detection, local maxima.

I. INTRODUCTION

The pitch period is an important parameter in the analysis and
synthesis of speech signals. Pitch period information is used in
various applications such as 1) speaker identification and verifica-
tion, 2) pitch synchronous speech analysis and synthesis, 3) linguis-
tic and phonetic knowledge acquisition and 4) voice disease diagnos-
tics. The task of estimating the pitch period is very difficult since a)
the human vocal tract is very flexible and its characteristics vary
from person to person, b) the pitch period can vary from 1.25 ms to
40 ms, c) the pitch period of the same speaker can vary depending
upon the emotional state of the speaker and d) the pitch period can
be influenced by the way the word is pronounced (accent). There-
fore, no one algorithm that has been developed so far performs
perfectly for 1) different speakers (male, female, children and
people with different native languages), 2) different applications and
3) different environmental conditions [1].

The pitch detectors that have been developed so far, can be
broadly classified into either event detection pitch detectors or
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