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Abstract—A geometrical description is given for reassignment
vector fields of spectrograms. These vector fields are shown
to be connected with both an intrinsic phase characterization
and a scalar potential. This allows for the generalization of the
original reassignment process to a differential version based on a
dynamical evolution of time-frequency particles.

Index Terms—Reassignment method, time-frequency distribu-
tions.

I. INTRODUCTION AND NOTATIONS

T HE reassignment method has been introduced first to
improve the readability of time-frequency representations

[1], [2]. It can be considered as a postprocessing based on
the definition of a time-frequency displacement vector field

where and
stand for the coordinates of the reassignment point associated
with the time-frequency point where the distribution
has been computed. In the spectrogram case, this vector field
can be related to the phase of the short-time Fourier
transform (STFT). Precisely, it admits the quasisymmetric
form

(1)

provided that the definition of the STFT makes use of the
Weyl operator
according to

What we propose in this letter is to focus on a geometrical
description of the reassignment vector field. We show in
Section II how the reassignment vector field can be expressed
in terms of an intrinsic “geometric phase,” the reassignment
vectors being tangent to level curves of this phase. The same
vector field is shown in Section III to be connected to a
scalar potential, which relates the reassignment process to
a steepest descent method. This interpretation allows for a
differential generalization of the original reassignment method
based on a dynamical evolution of time-frequency particles,
with possible applications to problems such as the partitioning
of the time-frequency plane.
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II. GEOMETRIC PHASE AND LEVEL CURVES

Equation (1) suggests that reassignment vectors follow the
level curves of some two-dimensional (2-D) function related
to However, whereas such level curves are expected
to be covariant to shifts of the signal in the time-frequency
plane, care has to be taken in the selection of this 2-D function
since, by itself, the phase of the STFT appears to depend on
the choice of an origin in the time-frequency plane. Indeed,
if we denote the time shifted version of
a signal we get

with the result that is not covariant to shifts in time
of the signal. Similar equations can be written with frequency
shifts. This shows that the choice of the origin in the time-
frequency plane influences the phase To address this
problem, we introduce a new function that we
call geometric phase. is the phase we would
have observed, if we had chosen our origin at at the
time-frequency point with coordinates with respect to
this new frame. Moving the origin in time from zero to
means that the function value ofat a distance fromthe new
origin will be given by Similarly,
moving the time frequency origin to corresponds to
replacing by So

Since we have

we can express with the help of the symplectic
form as

This shows in a straightforward manner that the reassign-
ment vector at is tangent to the level curve through

of , as follows:

This justifies our name of “geometric” phase for
in that its local behavior near has a geometric inter-
pretation.
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III. SCALAR POTENTIAL AND STEEPESTDESCENT

Let us rewrite the STFT (we will now denote for
short) in a Bargmann-like way [3] with a function of the
complex variable and of its complex conjugate

, as follows:

(2)

The phases of and are obviously equal. Thus, by noticing
that and using (1), it is
possible to express the reassignment vectors with the partial
derivatives of

(3)

(4)

The differentiation of

gives rise to another couple of equations, as follows:

from which, when mixed with (3) and (4),one can deduce that

where the equality holds over This
result can be interpreted in the following way. Given the
Bargmann factorization (2) of the STFT, its reassignment
vector field can be decomposed in two terms, one which is
the gradient of a scalar potential (namely and an
additional one which is a measure of the nonanalyticity of

If the observation window is a Gaussian function of
unit variance (whose isocontours are circles in a Wigner
representation), i.e., if we are considering the Bargmann
representation of a “coherent states” space [3],is an entire
function of and thus (Cauchy equations). We
conclude that

(5)

which proves that in such a case, the reassignment vector
field is the gradient of the scalar potential As a
consequence, reassignment vectors are all plotting the direction
of maxima of the STFT modulus. Comparing (1) and (5), we
can furthermore remark that, up to a constant, the phase is
in this case entirely determined by the modulus, and vice-
versa. This means that the corresponding spectrogram (squared
modulus of the STFT) carries as much information as the
complete (complex-valued) STFT itself.

In the case of an arbitrary window, reassignment vectors
follow the steepest descent direction of modified by

For instance,

when analyzing with a Gaussian window of arbitrary variance
the additional term can be

written analytically with
the reassignment vector obtained with a unit variance Gaussian
window. vanishes when i.e., when returning
to the Bargmann case.

IV. DIFFERENTIAL REASSIGNMENT

The fact that a link exists between the reassignment vector
field and a scalar potential suggests to look at the system whose
dynamical behavior is governed by this potential. From this
perspective, let us consider that the reassignment vector field
is the velocity field that controls the motion of each time-
frequency contribution considered as a particle, with

as its starting position. We obtain the following motion
equations:

(6)

which define a process referred to asdifferential reassign-
ment. In the unit variance Gaussian case, (6) describe a fully
dissipative system so that each particle converges to some
maximum of Differential reassignment can be viewed
as a PDE-based processing of time-frequency “images,” or
as a generalization of the fixed point algorithm used by the
ridge and skeleton approach [4]. (Let us briefly recall that
such an algorithm is looking for maxima lines of Gabor (or
wavelet) transforms by exploring the time-frequency (or time-
scale) plane along a direction that is necessarily parallel to the
frequency or time axes, whereas we have shown here that, in
the unit Gaussian case, differential reassignment always uses
the shortest way to reach the ridge.) Taking into account the
above derived properties of the reassignment vector field, it
becomes natural to describe a signal in the time-frequency
plane in terms of attractors, basins of attraction and water-
sheds. A variety of signal characterizations can be deduced
from such a parametrization. For instance, a partitioning [5]
of the time-frequency plane in distinct signal components can
be obtained this way, each component corresponding to the
set of all time-frequency particles that converge to the same
attractor.
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