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Separability, positivity, and minimum uncertainty
in time–frequency energy distributions
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Gaussian signals play a very special role in classical time–frequency analysis be-
cause they are solutions of apparently unrelated problems such as minimum uncer-
tainty, and positivity and separability of Wigner–Ville distributions. We investigate
here some of the logical connections which exist between these different features,
and we discuss some examples and counterexamples of their extension to more
general joint distributions within Cohen’s class and the affine class. ©1998
American Institute of Physics.@S0022-2488~98!00508-8#

I. INTRODUCTION

In most cases, physical signals are defined as functions of time. Until the somewhat
past, signal analysis has been mainly concerned with such a temporal description of sign
with a dual description in the frequency domain, obtained from a classical Fourier trans
Much information can, of course, be gained from both descriptions, but it is also clear
time-only and frequency-only representations, being in some sense orthogonal to each oth
not best suited for displaying mixed information about time and frequency. In fact, there are
situations in which a Fourier representation, although mathematically correct, is not able t
ture in a direct way time-dependent spectral features which may be intuitively expected. This
for instance, with music signals, for which our everyday experience suggests that the ‘‘freq
of tones is continuously changing.’’ In this case, Fourier analysis is clearly not well adapte
intuition rather calls for a joint time–frequency description, revealing not only the different
quencies occurring in a piece of music, but also their time of occurrence, their duration,..., i.
kind of information which is indeed coded on a musical score.

Although interpretation may be different, the search for a joint time–frequency descripti
signals has much to share with the problem of finding joint distributions of position and mo
tum in Quantum Mechanics. It is therefore quite natural that most of the tools which have
developed in either domain have indeed found applications in both. This is especially the ca
all the Wigner-based distributions which have been proposed and extensively studied sin
pioneering works of Wigner in quantum mechanics1 and Ville in signal theory.2 One can, how-
ever, remark that, in quantum mechanics, joint distributionsPc(q,p) are mostly used as a com
putational tool, allowing us to write

~c,Gc!5E E
2`

1`

g~q,p!Pc~q,p!dq dp,

whereG stands for the operator associated with a given classical quantityg(q,p) in the sense of
some~nonunique! correspondence rule. This nonunicity—which is due to the fact that two
variables connected by a Fourier transform relationship are associated with elementary op
which do not commute—carries over to the definition ofPc(q,p), and the situation is similar for
time and frequency. In signal theory, however, a joint distribution is basically considered
~quasi-! density function of its variables, and the main issue is much more to get a rea
time–frequency ‘‘picture’’ of a signal, which has therefore to be interpretedper seand not only
through inner products with test functions.

a!Electronic mail: flandrin@physique.ens-lyon.fr
40160022-2488/98/39(8)/4016/25/$15.00 © 1998 American Institute of Physics
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An extensive body of literature has been devoted to time–frequency analysis with Wi
type distributions, from the point of view of both theory and interpretation~for a survey, see, e.g.
Ref. 3 or 4!, and here we would like to focus further on some specific questions related to
aspects. More precisely, if we consider Gaussian signals of the form

g~ t !5Ce2at2, ~1!

with CPC anda.0, we know that, besides the fact that their Fourier transform is also Gaus
namely that

G~ f ![E
2`

1`

g~ t !e2 i2p f t dt5CAp

a
e2p2f 2/a,

such signals happen to play a very special role in classical time–frequency analysis.~Throughout
the paper, we will adopt the convention of using a lower case symbol for representing a sig
the time domain, and the corresponding upper case symbol for denoting its Fourier transfo
the frequency domain.! This is in fact so for at least three different reasons.

(1) Minimum uncertainty. Gaussians~1! are the only minimizers for the time–frequenc
uncertainty relation,5

DtxD f x>
1

4p
, ~2!

where

Dtx
25

1

Ex
E

2`

1`

t2ux~ t !u2 dt, ~3!

D f x
25

1

Ex
E

2`

1`

f 2uX~ f !u2 d f , ~4!

and

Ex5E
2`

1`

ux~ t !u2dt.

(2) Positivity. Gaussians~1! are—up to linear and quadratic phase terms—the only signals
which the Wigner–Ville distribution

Wx~ t, f ![E
2`

1`

xS t1
t

2D xS t2
t

2De2 i2p f t dt5E
2`

1`

XS f 1
n

2DXS f 2
n

2Dei2pnt dn, ~5!

is everywhere non-negative~Hudson’s theorem;6 cf. Proposition 1 below!.
(3) Separability. The Wigner–Ville distribution~5! of Gaussians~1! is separable, namely,

Wg~ t, f !5uCu2A2p

a
e22at2e2~2p2/a! f 2

. ~6!

These three properties are important ones for attaching to Gaussian signals a specifi
and for offering a nice physical interpretation of their time–frequency content by means o
Wigner–Ville distribution.

~1! Minimum uncertainty is often invoked for considering Gaussian signals as time–frequ
‘‘atoms’’ and for using them as elementary building blocks~the so-called ‘‘Gabor logons’’5! of
linear signal decompositions.

~2! Although it is known that no time–frequency distribution—be it positive or not—can
interpreted pointwise,7 positivity improves the readability of a time–frequency diagram.
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~3! Separability provides further insight in the probability picture of time–frequency distr
tions by corresponding to a notion of ‘‘independence,’’ according to which a logon is a
whose time and frequency behaviors are decoupled.8

Given these facts, an interesting question is to know whether the three mentioned pro
~minimum uncertainty, positivity, and separability! have logical reasons to be related or, on t
contrary, if their simultaneous occurrence is only fortuitous. Moreover, since many other
distributions do exist besides the Wigner–Ville distribution, a further question which is w
investigating is how the results pertaining to the pair ‘‘Gaussian/Wigner–Ville’’ can be exte
to other situations, especially in the important case of affine~scale-based! distributions.

The paper is devoted to these questions and is organized as follows. In Sec. II, the situa
the Wigner–Ville distribution is considered in some detail by reviewing and/or establishi
number of its specific properties connected in a direct way with the considered problem. In S
we address the question of a possible extension of such results to the more general ‘‘C
class,’’ whereas in Sec. IV we are concerned with similar questions within the ‘‘affine cl
framework. Finally, some conclusions are drawn, together with the possibility of getting fu
extensions in more general situations.

II. WIGNER–VILLE DISTRIBUTION

In this section, we will review and/or establish basic properties—related to positivity, s
rability, and minimum uncertainty—which hold in the case of the Wigner–Ville distribution.
far as positivity is concerned, it has to be noted that many other important results exist~see, e.g.,
Refs. 9–12!, even with extensions beyond the Wigner–Ville case. The purpose of this paper
to review all of them, and only those results which are connected in some way with the two
issues of separability and minimum uncertainty will be considered here.

A. Positivity

Proposition 1 (Hudson’s theorem6): The Wigner–Ville distribution is positive for signals o
the type

ga,b,g~ t ![e2~at21bt1g!, ~7!

with (a,b,g)PC3 and Re$a%.0, and only for them.
Proof: The fact that~generalized! Gaussian signals of the form~7! have a positive Wigner–

Ville distribution follows from a direct calculation, according to which

Wga,b,g
~ t, f !5A 2p

Re$a%
expS 22 Re$at21bt1g%2

2p2

Re$a%
@ f 2 f i~ t !#2D ,

with

f i~ t ![
1

2p
Im$2at1b%.

The original proof of the converse was first stated by Hudson in Ref. 6. It consis
introducing—according to the definition~7!—the test signalg1,z,g(t), for which the corresponding
Wigner–Ville distribution is everywhere non-negative. Making use of Moyal’s formula,4 we have

U E
2`

1`

x~ t !g1,z,g~ t !dtU2

5E E
2`

1`

Wx~ t, f !Wg1,z,g
~ t, f !dt d f,

and this quantity is guaranteed to be everywhere positive for those signalsx(t) whose Wigner–
Ville distribution is non-negative. It follows that the function

F~z!5egE
2`

1`

x~ t !g1,z,g~ t !dt ~8!

is analytic, has no zeros, and furthermore satisfies
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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uF~z!u2<Ap

2
Ex expS 1

2
~Re$z%!2D ,

as can be checked by applying the Cauchy–Schwarz inequality.
As a consequence,F(z) is an entire function of order at most 2, without zeros. Hence,

Hadamard’s factorization theorem,F(z) is necessarily the exponential of some quadratic form
z. Letting z5 i2p f and using the fact that Fourier transforms of Gaussians are still Gaussian
can deduce from~8! that x(t) is itself the exponential of some quadratic form int and the proof
is complete.

Two remarks.
~1! In order to have finite energy signals—i.e.,x(t)PL2(R)—we have assumed that Re$a%

.0 and this, in turn, guarantees that the Wigner–Ville distribution is bounded since it is ea
show thatuWx(t, f )u<2Ex . A degeneracy can, however, be observed whenever Re$a%5Re$b%
50, a situation for which the Wigner–Ville distribution reads as

Wga,b,g
~ t, f !5exp~22 Re$g%!d„f 2 f i~ t !….

~2! Minimum uncertainty implies positivity of the Wigner–Ville distribution, but the class
signals~7! which have a positive Wigner–Ville distribution is larger than the class~1! of signals
with minimum uncertainty. In fact, the former can be seen as a modulation of the latter by m
of a ‘‘chirp’’ wave form whose phase is quadratic in time and, hence, whose instantan
frequency is linear. Precisely, we get

Dtga,b,g
D f ga,b,g

5
1

4p S 11S Im$a%

Re$a% D
2D 1/2

>
1

4p
,

with equality if and only if Im$a%50, i.e., if the Gaussian is not modulated in frequency, th
reducing to~1!.

B. Separability

Proposition 2: If a Wigner–Ville distribution is separable, it is positive and factorizable a

Wx~ t, f !5
ux~ t !u2uX~ f !u2

Ex
. ~9!

Proof: Starting from the definition~5!, it is well known ~and easy to check! that a Wigner–
Ville distribution always has correct marginals, i.e., that

E
2`

1`

Wx~ t, f !dt5uX~ f !u2, ~10!

E
2`

1`

Wx~ t, f !d f5ux~ t !u2. ~11!

Assuming that separability holds, there exist two functionsp(t) and Q( f ) such that
Wx(t, f )5p(t)Q( f ). Using ~11! and ~10!, we get P(0)Q( f )5uX( f )u2>0 and p(t)q(0)
5ux(t)u2>0. It follows thatP(0) andQ( f ) on one hand, andp(t) andq(0) on the other hand
are necessarily of the same sign. One more integration leads toP(0)q(0)5Ex.0, and this
concludes the proof.

Remark:We know from Moyal’s formula that, for any finite energy signalx(t), we have

E E
2`

1`

Wx
2~ t, f !dt d f5Ex

2.

Applying this result to the factorized distribution~9!, we are led to the conclusion that signa
with a separable Wigner–Ville distribution must necessarily be such that
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S E
2`

1`

ux~ t !u4 dtD 1/4S E
2`

1`

uX~ f !u4 d f D 1/4

5Ex ,

a property which holds for Gaussians. Gaussians are therefore solutions for separability. In
can be shown that they are the only solutions, as claimed in the following.

Proposition 3: The Wigner–Ville distribution is separable for Gaussian signals only.
Proof: This result can be viewed as a Corollary to Propositions 2 and

~‘‘separability⇒positivity⇒Gaussians’’!, but it can also be derived in a direct way as follow
Assuming that separability holds for a Wigner–Ville distribution, we can start from the facto
tion of ~9! and, after taking an inverse Fourier transform over frequency, we get

1

ux~ t !u2
xS t1

t

2D xS t2
t

2D5gx~t!, ~12!

with

gx~t![
1

Ex
E

2`

1`

xS t1
t

2D xS t2
t

2Ddt.

This defines a functional equation whose first implication is that its left-hand side must
function of t only. Writing x(t)5ux(t)uexp$i argx(t)%[exp$w(t)1ic(t)%, we end up with two nec-
essary conditions upon a modulus term and a phase term, respectively. The phase cond~of
independence upon thet variable! reads as

]

]t FcS t1
t

2D2cS t2
t

2D G50,

for any t and t, with the consequence that the phase must necessarily be of the formc(t)5at
1b, with (a,b)PR2. After a change of variables, the companion condition on the modulus le
for any v andw, to

ẇS v1w

2 D5
ẇ~v !1ẇ~w!

2
,

where the overdot indicates the~time! derivative.
We recognize in this relationJensen’s functional equation,13 whose most general~continuous!

solution in ẇ(t) is given by linear functions of the formẇ(t)5a8t1b8 with (a8,b8)PR2. It
follows that w(t)5(a8/2)t21b8t1c8, with c8PR and the requirement thata8<0 in order to
guarantee thatx(t)PL2(R).

Gaussian signals therefore appear as candidates for defining separable Wigner–Ville d
tions. In order to be admissible solutions, we have to further check that the left-hand side o~12!
is not only independent oft, but also proportional to the deterministic correlation functiongx(t),
which an elementary calculation proves to be true.

C. Minimum uncertainty

Proposition 4 (Ref. 14): Given any T.0, the Wigner–Ville distribution satisfies the time–
frequency uncertainty relation,

S t f
2 ~Wx![

1

Ex
E E

2`

1`S t2

T2 1T2f 2DWx~ t, f !dt d f>
1

2p
, ~13!

with equality if and only if x(t) is a Gaussian signal.
Proof: This follows directly from the marginal properties~10!–~11! of the Wigner–Ville

distribution and from the definitions~3!–~4!, since we can write
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S t f
2 ~Wx!5

1

Ex
F 1

T2 E
2`

1`

t2ux~ t !u2dt1T2E
2`

1`

f 2uX~ f !u2d fG
5

Dtx
2

T2 1T2D f x
25S Dtx

T
2TD f xD 2

12DtxD f x>2DtxD f x , ~14!

with equality if the arbitrary durationT is ‘‘matched’’ to the signalx(t) according toT
5ADtx /D f x. In this case, we know from~2! that the right-hand side of~14! is lower bounded too,
with equality in the only case of Gaussians, whence the result.

Remark:In the above derivation, it has been implicitly assumed that the mean time an
mean frequency of the analyzed signal are both zero, i.e., that

E
2`

1`

tux~ t !u2 dt5E
2`

1`

f uX~ f !u2 d f50.

As for the standard Gabor–Heisenberg uncertainty relation~2!, this of course does not reduc
the generality of the result, since the Wigner–Ville distribution being covariant with respe
shifts in time and frequency, uncertainty relations pertaining to signals with nonzero mean
and/or mean frequency can be establishedmutatis mutandisby introducing suitable shifts.

Because a Wigner–Ville distribution attains generally negative values, the interpretati
~13! as a measure of time–frequency energy spread can be questioned. A companion res
however, be obtained forsquaredWigner–Ville distributions, thus reinforcing the prominent ro
of Gaussians. This is given by the following.

Proposition 5 (Ref. 15): Given any T.0, the squared Wigner–Ville distribution satisfies the
time–frequency uncertainty relation

S t f
2 ~Wx

2!5
1

Ex
2 E E

2`

1`S t2

T2 1T2f 2DWx
2~ t, f !dt d f>

1

4p
,

with equality if and only if x(t) is a Gaussian signal.
Proof: The proof proceeds as previously, except that we have to evaluate second-ord

ments with respect toWx
2(t, f ). It is easy to show that

E
2`

1`

Wx
2~ t, f !d f5E

2`

1`UxS t1
t

2D U2UxS t2
t

2D U2

dt,

and, therefore,

1

Ex
2 E E

2`

1`

t2Wx
2~ t, f !dt d f5

1

Ex
2 E E

2`

1`S v1w

2 D 2

ux~v !u2ux~w!u2dv dw

5
1

4Ex
2 F2ExE

2`

1`

v2ux~v !u2dv12S E
2`

1`

vux~v !u2dv D 2G> Dtx
2

2
,

with equality for signals whose mean time is zero. It can be proved in a similar way that

1

Ex
2 E E

2`

1`

f 2Wx
2~ t, f !dt d f>

D f x
2

2
,

with equality for signals whose mean frequency is zero.
Given these two properties, the proof is finished by reorganizing terms exactly as i

nonsquared case.
Remark:The fact that both the Wigner–Ville distributionWx(t, f ) and its squareWx

2(t, f )
have a minimum time–frequency spread which is attained for Gaussian signals suggests a
link between minimum uncertainty and positivity. For simplicity, let us assume thatx(t) is of unit
energy so that bothWx(t, f ) andWx

2(t, f ) integrate to 1 in the time–frequency plane. In fact,
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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far as the spread related toWx(t, f ) only is concerned, a decrease in the spread measure coa
priori be obtained not only by concentrating positive values around the origin, but also by a
ing negative values far from the origin. This, however, turns out to be in contradiction with
spread inequality related toWx

2(t, f ) since a distribution with negative values would crea
‘‘holes’’—in between positive contributions—when squared, thus increasing the spread me
as compared to a positive distribution.

It is possible to find many other ways of formulating uncertainty relations by means o
Wigner–Ville distribution, among which we can cite the following results.

Proposition 6: Any signal x(t) of finite energy Ex satisfies the ‘‘uncertainty relation’’

ax[
1

Ex
E

2`

1`

t2uẋ~ t !u2dt>
1

4
,

with

lim
g→01

axg
5 1

4,

for signals of the form

xg~ t ![C exp~2butug!, ~15!

with CPC and (b,g)PR1
2 .

Proof: For convenience, let us introduce the quantity

J[E
2`

1`

t ẋ~ t !x~ t !dt,

whose imaginary part is sometimes referred to as the ‘‘covariance’’ of the signal.3 By applying the
Cauchy–Schwarz inequality, we getuJu2<axEx

2, whereas an integration by parts shows th
Re$J%52Ex/2, and the claimed inequality follows from the fact that we always haveuJu2

>(Re$J%)2.
From the way the lower bound has been derived, it is not clear whether it can be effec

attained. However, it can be shown by a direct calculation that signals of the form~15! are such
that axg

5(g11)/4, with the consequence that limg→01
axg

51/4, thus completing the proof.
Three remarks.

~1! Although the lower boundax5 1
4 is asymptotically sharp for signalsxg(t) when g→01 , it

has to be remarked that the bandwidthD f xg
and, hence, the usual uncertainty measure rem

finite only if g. 1
2.

~2! The ‘‘alpha moment’’ax ~a quantity which has been introduced and studied by Titlebaum
Ref. 16! is such that

ax5
1

Ex
E

2`

1`

t2uẋ~t!u2dt5
1

Ex
E

2`

1`

f 2uẊ~f !u2df.

It follows that any property ofax which holds for a given signalx(t) also holds for its Fourier
transformX( f ). In particular, the lower bound forax is also attained for signals whos
spectrum reads asX( f )5C exp(2bufug), in the limit g→01 , with the consequence that th
corresponding signals have a finite mean-square duration—and, hence, a finite usual
tainty measure—only ifg. 1

2.
~3! The uncertainty measure given by the ‘‘alpha moment’’ax is not minimum for Gaussian

signals. In fact, expandingx(t)PL2(R) as x(t)5(n50
1` xncn(t) on the orthonormal basis o

Hermite functions$cn(t);nPN% ~defined as in Ref. 17!, we get

Exax5(
n50

1` SF341
n~n11!

2 Guxnu22
A~n11!~n12!~n13!~n14!

2
Re$xnxn14%D.
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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This proves thatacn
53/41n(n11)/2 and thus that the Gaussian~associated ton50! may be

considered as a minimizer forax , but in the restricted class of Hermite functions.

Proposition 7: For any signal x(t) of finite energy Ex and of mean time and mean frequen
identically zero, the Wigner–Ville distribution satisfies the uncertainty relation

s t f
2 ~Wx

2![
1

Ex
2 E E

2`

1`

t2f 2Wx
2~ t, f !dt d f>

1

32p2 S ax2
1

2
14p2Dtx

2D f x
2D ,

with equality for signals whose ‘‘covariance’’,

covt f~x![ImS E
2`

1`

t ẋ~ t !x~ t !dtD , ~16!

is zero.
Proof: A way of proving this result is to make use of the so-called ‘‘inner interfere

formula,’’ 15 according to which

Wx
2~ t, f !5E E

2`

1`

WxS t1
t

2
, f 1

n

2DWxS t2
t

2
, f 2

n

2Ddt dn.

By making a change of variable and reorganizing terms, this leads to

s t f
2 ~Wx

2!5
1

8Ex
2 E E E E

2`

1`

K~v,w,j,z!Wx~v,j!Wx~w,z!dv dw dj dz,

with

K~v,w,j,z!5v2j21v2z212v2jz12vwj214vwjz.

The contribution of the first term ofK(v,w,j,z) to the integral reduces to

E E E E
2`

1`

v2j2Wx~v,j!Wx~w,z!dv dw dj dz5Ex
2s t f

2 ~Wx!,

and it can be shown4 that

s t f
2 ~Wx!5

1

4p2 S ax2
1

2D .

The second term contributes as

E E E E
2`

1`

v2z2Wx~v,j!Wx~w,z!dv dw dj dz

5E E
2`

1`

v2z2ux~v !u2uX~z!u2dv dz5Ex
2Dtx

2D f x
2,

whereas the third and fourth ones provide a null contribution because of the assumptions o
time and mean frequency equal to zero.

Finally, the fifth term is such that

E E E E
2`

1`

vwjz Wx~v,j!Wx~w,z!dv dw dj dz5
1

4p2 covt f
2 ~x!>0,

with ~following Cohen3!, the ‘‘covariance’’ ofx(t) defined by~16!.
Remark: If x(t) is chosen to bexg(t) as defined in~15!, we get explicitly
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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s t f
2 ~Wxg

2 !5
1

128p2 F ~g21!1g2
G~3/g!G~221/g!

G2~1/g! G ,
and a numerical estimate of theg0 minimizing the spread measure givesg0'1.33, with
s t f

2 (Wxg0

2 )'0.77/64p2. This is less than in the Gaussian case (g52) for which s t f
2 (Wx2

2 )

51/64p2.

III. COHEN’S CLASS

Some results pertaining to Wigner–Ville distributions can be generalized to membe
Cohen’s class, the general class of quadratic time–frequency energy distributions which ar
variant to time and frequency shifts. By definition, Cohen’s class can be written as4

Cx~ t, f ;w!5E E
2`

1`

w~j,t!Ax~j,t!e2 i2p~ tj1 f t!dj dt, ~17!

wherew~j,t! is some arbitrary kernel function andAx(j,t) is the so-called ‘‘ambiguity function,’’
obtained as a two-dimensional Fourier transform of the Wigner–Ville distribution and de
explicitly by

Ax~j,t!5E
2`

1`

xS t1
t

2D xS t2
t

2Dei2pjt dt.

Within this more general framework, Gaussian signals still appear to be central with resp
separability properties, as illustrated by the following claims.

Proposition 8: Smoothed pseudo-Wigner–Ville distributions—characterized by a separab
kernel—are the only members of Cohen’s class which are separable when applied to Ga
signals.

Proof: Assuming that the analyzed signalx(t) is a Gaussian, we know that its Wigner–Vil
distribution Wx(t, f ) is separable, a property which carries over to its two-dimensional Fou
transformAx(j,t). Using ~17!, we get

w~j,t!5
1

Ax~j,t!
E E

2`

1`

Cx~ t, f ;w!ei2p~ tj1 f t!dt d f,

and, if we requireCx(t, f ;w) to be separable, it follows that the kernel functionw~j,t! must itself
be separable, a situation corresponding to distributions referred to as ‘‘smoothed pseudo-W
Ville distributions.’’ 4

Proposition 9: Smoothed pseudo-Wigner–Ville distributions—characterized by a separab
kernel—are separable for Gaussian signals only.

Proof: The proof is very similar to the previous one since, according to~17!, we can write

Wx~ t, f !5E E
2`

1`S 1

w~j,t!
E E

2`

1`

Cx~ t8, f 8;w!ei2p~ t8j1 f 8t!dt8 d f8D e2 i2p~ tj1 f t!dj dt.

Assuming therefore that both the kernel functionw~j,t! and the associated smoothed Wigne
Ville distribution Cx(t, f ;w) are separable, we get that the Wigner–Ville distribution itself
separable, which in turn implies thatx(t) is necessarily a Gaussian.

Proposition 10: When applied to Gaussian signals, spectrograms are separable if and o
their short-time window is Gaussian.

Proof: Assuming that the analyzed signalx(t) is a Gaussian, we know that both its Wigne
Ville distribution Wx(t, f ) and its ambiguity functionAx(j,t) are separable. If we now conside
a spectrogram,

Sx
~h!~ t, f ![U E

2`

1`

x~s!h~s2t !e2 i2p f s dsU2

5U E
2`

1`

X~j!H~j2 f !ei2pjt djU2
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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having a short-time windowh(t) which is Gaussian, we get that the associated kernel funct4

w(j,t)5Ah(j,t) is separable, and it follows that the spectrogram—as an inverse Fourier
form of w(j,t)Ax(j,t)—is itself separable.

Conversely, if we suppose that a spectrogram is separable when applied to a Gaussia
g(t), we get from~17! @with w(j,t)5Ah(j,t)# that

Ah~j,t!5
1

Ag~j,t!
E E

2`

1`

Sg
~h!~ t8, f 8!ei2p~ t8j1 f 8t!dt8 d f8

is separable, with the consequence thatWh(t, f ) itself—as an inverse Fourier transform o
Ax(j,t)—is separable and, hence, that the windowh(t) must be Gaussian.

More generally, we can remark that imposing the requirement of separability to spectro
leads to specific constraints which have to be jointly satisfied by the analyzed signalx(t) and the
analysis windowh(t). Starting from the definition of a spectrogram of windowh(t) and assuming
that this spectrogram is separable according toSx

(h)(t, f )5p(t)Q( f ), we get

p~ t !q~0!5E
2`

1`

Sx
~h!~ t, f !d f5E

2`

1`

ux~s!u2uh~s2t !u2ds

and

P~0!Q~ f !5E
2`

1`

Sx
~h!~ t, f !dt5E

2`

1`

uX~j!u2uH~j2 f !u2dj.

SinceP(0)q(0)5ExEh , separable spectrograms happen to be necessarily of the form

Sx
~h!~ t, f !5E E

2`

1` ux~s!u2uX~j!u2

Ex

uh~s2t !u2uH~j2 f !u2

Eh
ds dj,

a form which has to be compared to the~always valid! expression

Sx
~h!~ t, f !5E E

2`

1`

Wx~s,j!Wh~s2t,j2 f !ds dj,

or even to

Sx
~h!~ t, f !5E E

2`

1`

Cx~s,j;w!Ch~s2t,j2 f :w!ds dj,

with the requirement that the parametrization functionw~j,t! be such thatuw(j,t)u51 ~see, e.g.,
Ref. 4!.

Reasoning along the same lines in the more general case of any distribution within Co
class, we can end up with the result that a separable distribution is necessarily such that

Cx~ t, f ;w!5E E
2`

1`

Wx~s,j!P~s2t,j2 f !ds dj

5E E
2`

1` ux~s!u2uX~j!u2

Ex

F~s2t,0!c~0,j2 f !

w~0,0!
ds dj, ~18!

whereP(t, f ) stands for the two-dimensional Fourier transform ofw~j,t!, andF(t,t) andc~j,n!
for one-dimensional partial Fourier transforms of the same quantity, over frequency and
respectively. This leads to the following.

Proposition 11: If a Cohen’s class distribution has correct marginals and is separable,
positive and factorizable as
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Cx~ t, f ;w!5
ux~ t !u2uX~ f !u2

Ex
. ~19!

Proof: This can be proved either directly—as for Proposition 2—or by using~18!, since we
know4 that having correct marginals implies thatw(j,0)5w(0,t)51.

Remark:Given any signalx(t), one could imagine to formally obtain a distribution factori
able as in~19! by choosing for the parametrization function the~signal-dependent! quantity
w(j,t)[ExgX(j)gx(t)/Ax(j,t), with theg’s defined as in Proposition 3. In the general case,
would unfortunately correspond to pathologicalw’s, with singularities at those points where th
ambiguity function vanishes while the individual time and frequency correlation functions do
Regular solutions can be guaranteed by imposing to the ambiguity function to be every
positive but, as mentioned in Ref. 18, imposing positivity of the ambiguity function is equiva
to imposing positivity of the Wigner–Ville distribution, with Gaussians as only solutions.

Proposition 12: The Wigner–Ville distribution is the only member of Cohen’s class whi
both has correct marginals and is separable when applied to Gaussian signals.

Proof: By Fourier transformation,~19! becomesw(j,t)Ax(j,t)5ExgX(j)gx(t). Assuming
that x(t) is a Gaussian signal, this simplifies tow(j,t)51, thus defining the Wigner–Ville dis
tribution as the only solution.

Proposition 13 (Ref. 4): For any signal x(t) whose mean time and mean frequency are ze
and any T.0, distributions of Cohen’s class satisfy the time–frequency uncertainty relation

S t f
2 ~Cx!>

1

2p
2

1

4p2 F 1

T2

]2w

]j2 ~0,0!1T2
]2w

]t2 ~0,0!G ,
with equality if and only if x(t) is a Gaussian signal.

Proof: The proof is straightforward and follows directly from the fact thatCx(t, f ;w) has for
Fourier transformw(j,t)Ax(j,t). Defining

S t
2~Cx![

1

Ex
E

2`

1`

t2S E
2`

1`

Cx~ t, f ;w!d f D dt,

we get

S t
2~Cx!5

1

Ex
E

2`

1`

ux~s!u2S E
2`

1`

t2F~s2t,0!dtD ds

5
1

Ex
E

2`

1`

ux~s!u2S E
2`

1`

~s222su1u2!F~u,0!du D ds5w~0,0!Dtx
22

1

4p2

]2w

]j2 ~0,0!,

and, similarly,

S f
2~Cx![

1

Ex
E

2`

1`

f 2S E
2`

1`

Cx~ t, f ;w!dtD d f5w~0,0!D f x
22

1

4p2

]2w

]t2 ~0,0!.

Assuming thatCx(t, f ;w) is a valid energy distribution@i.e., thatw(0,0)51#, we are led to

S t f
2 ~Cx!5

S t
2~Cx!

T2 1T2S f
2~Cx!5S t f

2 ~Wx!2
1

4p2 F 1

T2

]2w

]j2 ~0,0!1T2
]2w

]t2 ~0,0!G ,
and therefore to the claim, from the result established previously forS t f

2 (Wx).
Proposition 14: For any signal x(t) whose mean time and mean frequency are zero, and

T.0, spectrograms with a window h(t) satisfy the time–frequency uncertainty relation,

S t f
2 ~Sx

~h!!5S t f
2 ~Wx!1S t f

2 ~Wh!>
1

p
,

with equality, if and only if x(t) and h(t) are matched Gaussian signals.
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Proof: This can be viewed as a Corollary to the previous Proposition since, in the ca
spectrograms, we get

2
1

4p2 F 1

T2

]2w

]j2 ~0,0!1T2
]2w

]t2 ~0,0!G5
1

T2

]2Ah

]j2 ~0,0!1T2
]2Ah

]t2 ~0,0!,

5S t f
2 ~Wh!

and hence

S t f
2 ~Sx

~h!!5S t f
2 ~Wx!1S t f

2 ~Wh!.

The total time–frequency spread being the sum of two independent positive quantities
minimized when each of these quantities is itself minimized, which is obtained when bothx(t)
and h(t) are Gaussian signals~see Proposition 4!. In order to ensure that the two individua
minimizations are compatible, the same arbitraryT has to be chosen for bothS t f

2 (Wx) and
S t f

2 (Wh). This leads to

T5ADtx

D f x
5ADth

D f h
,

and, hence, toDth5Dtx and D f h5D f x , since x(t) and h(t) being Gaussians,DtxD f x

5DthD f h51/4p.
Remark:Although the derivation is different, this result is equivalent to the one given

Janssen in Ref. 19.
Proposition 15: For any signal x(t) whose mean time and mean frequency are zero, and

T.0, spectrograms with a real-valued and even window h(t) are such that

s t f
2 ~Sx

~h!!5
1

4p2 @~ax1ah21!14p2~Dtx
2D f h

21Dth
2D f x

2!#.

Proof: Let us introduce the time–frequency spread measure,

s t f
2 ~Cx![

1

Ex
E E

2`

1`

t2f 2Cx~ t, f ;w!dt d f, ~20!

whereCx(t, f ;w) stands for any distribution within Cohen’s class. This spread measure~20! can
be equivalently expressed as

s t f
2 ~Cx!5

1

16p4Ex

]4

]j2]t2 „w~j,t!Ax~j,t!…U
~0,0!

,

with

]4

]j2 ]t2 ~wAx!5
]4w

]j2 ]t2 Ax1
]2w

]t2

]2Ax

]j2 1
]2w

]j2

]2Ax

]t2 1 f
]4Ax

]j2 ]t2

12S ]3w

]j ]t2

]Ax

]j
1

]3w

]j2 ]t

]Ax

]t
1

]w

]t

]3Ax

]j2 ]t
1

]w

]j

]3Ax

]t ]t2D .

This holds for any distribution within Cohen’s class and, in particular, for spectrogr
Sx

(h)(t, f ) with a window h(t). Given such a window,~normalized! spectrograms are known t
correspond to the kernel functionw(j,t)5Ah(j,t)/Eh . Assuming, furthermore, that the window
is real valued and even, we can show that

]Ah

]j
~0,0!5

]Ah

]t
~0,0!50
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and

]3Ah

]j2 ]t
~0,0!5

]3Ah

]j ]t2 ~0,0!50,

whereas, for any signalx(t),

]2Ax

]j2 ~0,0!54p2ExDtx
2,

]2Ax

]t2 ~0,0!54p2ExD f x
2,

and

]4Ax

]j2 ]t2 ~0,0!54p2ExS ax2
1

2D .

It thus follows that, in the case of spectrograms, the overall spread measure~20! reads as
announced.

Remark:Positivity of spectrograms guarantees thats t f
2 (Sx

(h))>0. In the special case wher
h(t)5x(t) ~matched spectrograms!, we get 2ax2114p2(2Dtx

2D f x
2)>0 and thereforeax>1/2

24p2Dtx
2D f x

2>1/4, as already proved in Proposition 6.

IV. AFFINE TIME–FREQUENCY DISTRIBUTIONS

The Wigner–Ville distribution and, more generally, all members of Cohen’s class, all be
to a family of time–frequency distributions which are covariant with respect to shifts in time
frequency. Moreover, assuming that an energy distribution depends quadratically on the si
can be shown that covariance with respect to shifts in time and frequency is sufficient to r
the class of admissible solutions to Cohen’s class. Following this line, it becomes the
possible to generate other classes of distributions by modifying in a suitable manner the c
ance requirement. Among the various solutions which have been derived this way, a prom
example is given by the class of the so-calledaffine time–frequency distributions, whose co
struction relies basically on the consideration of dilations in place of frequency shifts.

According to Ref. 20, the general class of affine time–frequency distributionsPX
(k)(t, f )

which are covariant with respect to each solvable three-parameter extension of the affine g
defined onR3R1 and can be parametrized by

PX
~k!~ t, f !5 f 2~r 11!2qE

2`

1`

mk~u!X„lk~u! f …X„lk~2u! f …e2 i2pt f zk~u! du, ~21!

with zk(u)5lk(u)2lk(2u), and wherer andq are real-valued free parameters. In this expr
sion, X( f ) stands as before for the Fourier spectrum of the analyzed signal, but only po
frequencies are considered. The parametrization functionlk(u) is given explicitly by

lk~u!5S k
e2u21

e2ku21D 1/~k21!

, ~22!

with kPR, whereasmk(u) is a weight function whose value can be made dependent onlk(u) so
as to guarantee specific requirements forPX

(k)(t, f ).20

From ~21!, it is apparent that affine distributions depend naturally on the product variablt f ,
a quantity which can be interpreted as a Mellin variable. To justify this point, let us recall t
definition of the Mellin transformXI (s) of X( f ) can be given by21

XI ~s![E
0

1`

X~ f ! f i2ps1r d f ,
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thus corresponding to an expansion of the spectrumX( f ) on ‘‘hyperbolic chirps,’’

C0~ f ![ f re2 i2ps log f , f >0,

whose group delay is

tC0
~ f !52

1

2p

d

d f
~22ps log f !5

s

f
.

In this picture, the Mellin variables appears therefore as ahyperbolic chirp raterelated to
time and frequency by a relation of the types5t f .

A companion interpretation amounts to consider the Mellin variables asa scalevariable.22,3

This comes from the fact that, choosing, e.g., Weyl’s correspondence rule, the operatorS asso-
ciated tos5t f can be written as

S 5
T F 1F T

2
,

whereT and F stand for the time and frequency operators, defined, respectively, by (T x)(t)
5tx(t) and (F x)(t)5(2 i /2p) ẋ(t). It thus follows that, for anyl.0,

~ei2plSX!~ f !5e2l/2X~e2l f !,

which allows us to interpretS as the infinitesimal generator of a scaling operator~whose eigen-
functions are precisely hyperbolic chirps!.

Whatever the interpretation, and whilePX
(k)(t, f ) is usually considered as a time–frequen

distribution, it can equally well be reparametrized as

P̃X
~k!~s, f ![PX

~k!S s

f
, f D , ~23!

so that it becomes a function of~Mellin! scale and~Fourier! frequency variables.

A. Minimum uncertainty

Because the operators attached to scale and frequency do not commute, namely

@S ,F #[S F 2F S 5
i

2p
F ,

the corresponding variables obey a specific form of uncertainty relation. Precisely, letX( f ) be an
analytic signal such that

EX[E
0

1`

uX~ f !u2f 2r 11d f,1`,

1

EX
E

2`

1`

suXI ~s!u2ds5s0 ,

and

1

EX
E

0

1`

f uX~ f !u2d f5 f 0 .

If we denote byDsX and D f X its mean-square deviations in scale and frequency, defi
respectively, by
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DsX
2[

1

EX
E

2`

1`

~s2s0!2uXI ~s!u2 ds ~24!

and

D f X
2[

1

EX
E

0

1`

~ f 2 f 0!2uX~ f !u2f 2r 11 d f , ~25!

we can prove the following.3,21–23

Proposition 16: Scale and frequency satisfy the uncertainty relation

DsXD f X>
f 0

4p
, ~26!

with equality if and only if X( f ) is a ‘‘Klauder wavelet’’ of the form

X~ f !5C fae2b f f igU~ f !, ~27!

with CPC, (a,b,g)PR13R13R and U(•) the unit step function.
Proof: In order to get simplified notations, let us introduce the quantitiesS 0[S 2s0I and

F 0[F 2 f 0I , with I the identity operator. It follows from the unitarity of the Mellin transfor
that

DsX
25E

0

1`

u~S0X!~ f !u2f 2r 11 d f ,

so that we can write, by using the Cauchy–Schwarz inequality,

EX
2DsX

2D f X
25E

0

1`

u~S0X!~ f !u2f 2r 11 d fE
0

1`

u~F 0X!~ f !u2f 2r 11 d f

>U E
0

1`

~S0X!~ f !~F 0X!~ f ! f 2r 11 d fU2

5U E
0

1`

X~ f !~S0F 0X!~ f ! f 2r 11 d fU2

.

Defining the anticommutator of any two operatorsA andB as@A,B#1[AB1BA and
remarking that@S 0 ,F 0#5@S ,F #, we get, in the specific case of scale and frequency, that

S 0F 05 1
2~@S 0 ,F 0#1@S 0 ,F 0#1!5 1

2S i

2p
F 1@S 0 ,F 0#1D ,

and it follows that

DsX
2D f X

2>
f 0

2

16p2 ,

with equality if

@S 0 ,F 0#150, ~28!

and for those signalsX( f ) which satisfy, for somelPC,

~S 0X!~ f !5l~F 0X!~ f !. ~29!

Plugging ~29! into ~28! yields that l is necessarily purely imaginary~namely thatl2

52DsX
2/D f X

2!. By developing explicitly Eq.~29! which characterizes the signals with minimu
uncertainty in scale and frequency, we end up with the differential equation

2 f Ẋ~ f !5@4p Im$l%~ f 2 f 0!212 i4ps0#X~ f !,
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whose solution is given by

X~ f !5K exp~2p Im$l% f 2~2p Im$l% f 01 1
21 i2ps0!log f !,

with KPC and Im$l%,0, so that the signal is of finite energy. This solution, which is only defi
for positive frequencies, is of the form~27!, and this concludes the proof.

In order to get an analog of Proposition 4 in the case of Mellin–Fourier variables, it is na
to consider theunitary Bertrand distributionBX(t, f )[PX

(0)(t, f ), which, in many respects, is th
counterpart of the Wigner–Ville distribution in the Mellin–Fourier domain. By definition,
unitary Bertrand distribution~also referred to as thetomographicdistribution20! is obtained from
~21! by settingk50 in ~22!, and it reads explicitly as

BX~ t, f !5 f 2~r 11!2qE
2`

1`S u/2

sinh~u/2! D
2~r 11!

XS ~u/2!eu/2f

sinh~u/2! DXS ~u/2!e2u/2f

sinh~u/2! Dei2p f tu du. ~30!

With this definition, we are led to the following.
Proposition 17: Given any S.0, the unitary Bertrand distribution satisfies the Mellin

frequency uncertainty relation,

Ss f
2 ~B̃X![

1

EX
E

2`

1`E
0

1`F S s2s0

S D 2

1S2S f

f 0
21D 2G B̃X~s, f ! f q21ds d f>

1

2p
,

with equality, if and only if X( f ) is a Klauder wavelet.
Proof: The proof relies on marginal properties of the unitary Bertrand distribution, accor

to which

E
2`

1`

B̃X~s, f !ds5 f 2~r 11!2quX~ f !u2

and

E
0

1`

B̃X~s, f ! f q21 d f5uXI ~s!u2.

Using the definitions~24! and ~25!, it follows directly from these relations that

Ss f
2 ~B̃X!5

DsX
2

S2 1S2
D f X

2

f 0
2 5S DsX

S
2S

D f X

f 0
D 2

12
DsXD f X

f 0
>2

DsXD f X

f 0
,

with equality ifS is ‘‘matched’’ to the signal according toS5Af 0DsX /D f X. In this case, we know
from ~26! that the productDsXD f X is lower bounded too, with equality in the only case of Klaud
wavelets, whence the result.

B. Separability

The question we are interested in here can be stated as follows: is it possible to get
distributions~23! which are separable in their Mellin and Fourier variables for some signalX( f ),
i.e., such that they can be put in the form

P̃X
~k!~s, f !5p~s!Q~ f !, ~31!

wherep(s) andQ( f ) are functions to be determined?
A first answer to this question can be looked after in the spirit of Proposition 3, which

been established thanks to the correct marginal properties of the Wigner–Ville distributio
both time and frequency. In the specific case of the unitary Bertrand distribution~30!, we have, in
fact,20 the two marginal properties
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E
2`

1`

BX~ t, f !dt5 f 2r 112quX~ f !u2 ~32!

and

E
2`

1`E
0

1`

BX~ t, f !dS t2
s

f D f q21 dt d f5uXI ~s!u2. ~33!

Within this new context, and considering first the frequency marginal property~32!, it is easy
to show that the separability condition~31! leads to

uX~ f !u25 f q22r 21E
2`

1`

BX~ t, f !dt

5 f q22~r 11!E
2`

1`

B̃~s, f !
ds

f
5 f q22~r 11!E

2`

1`

p~s!Q~ f !
ds

f
5 f q22~r 11!P~0!

Q~ f !

f
>0,

whereas, by using the Mellin marginal~33!, we obtain, in a similar way,

uXI ~s!u25E
2`

1`E
0

1`

BX~ t, f !dS t2
s

f D f q21dt d f

5E
0

1`

B̃X~s, f ! f q21 d f5p~s!E
0

1`

Q~ f ! f q21 d f>0.

Combining these two marginals, we get

P~0!E
0

1`

Q~ f ! f q21 d f5EX>0,

with the consequence that

B̃X~s, f !5
uXI ~s!u2f 2~r 11!2quX~ f !u2

EX
>0.

We could therefore think of having proved that, as for Wigner–Ville, separability imp
positivity. The situation is, however, different since, unfortunately, the assumption of separa
can be proved not to be admissible for unitary Bertrand distributions. This is evidenced b
following.

Proposition 18: The only affine distributions which are compatible with separability
characterized by (21) and (22) with k521, 1/2,or 2.

Proof: Assuming that separability holds, we can take the Fourier transform of~31! with
respect tos, and we get

P~s!Q~ f !5E
2`

1`

P̃X
~k!~s, f !e2 i2pss ds

5 f 2~r 11!2qE
2`

1`

mk~u!X„lk~u! f …X„lk~2u! f …d„s2zk~u!…du

5 f 2~r 11!2qmk„zk
21~s!…w~s!X~lk„zk

21~s!…f !X~lk„2zk
21~s!…f !,

with w(s)5(d/ds)zk
21(s). Settingzk

21(s)5u, we end up with

P„zk~u!…Q~ f !5 f 2~r 11!2qmk~u!w„zk~u!…X„lk~u! f …X„lk~2u! f …,

a relation which implies that
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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X„lk~u! f …X„lk~2u! f …5
P„zk~u!…

mk~u!w„zk~u!…

Q~ f !

f 2~r 11!2q [ P̃~u!Q̃~ f !. ~34!

We know from Ref. 20 thatlk(0)51. Imposingu50 in ~34!, we get thereforeuX( f )u2

5 P̃(0)Q̃( f ) and, hence,

X„lk~u! f …X„lk~2u! f …

uX~ f !u2
5

P̃~u!

P̃~0!
. ~35!

This states that the left-hand side of~35! is necessarily a function ofu only. In order to find
solutions~and conditions for their existence! to the functional equation~35!, we can factorX( f )
in a ~non-negative! modulus term and a phase term according toX( f )5uX( f )uexp$i argX(f )%
[exp$F(f )1iC(f )%, thus leading to

X~lk~u! f !X~lk~2u! f !

uX~ f !u2
5e$F„lk~u! f …1F„lk~2u! f …22F~ f !] 1 i [C„lk~u! f …2C„lk~2u! f …%.

Within this formulation, imposing~35! to hold requires that both the real and imaginary pa
of the above exponential do not depend uponf . The condition on the phaseC( f ) is

]

] f
@C~lk~u! f !2C~lk~2u! f !#50,

or, equivalently@by letting lk(u) f 5j and lk(2u) f 5z#, jĊ(j)5zĊ(z) for any (j,z)PR1
2 .

This does not impose any restriction on the admissible distributions but constrains the phas
of the form

C~ f !5a log f 1b, ~36!

with (a,b)PR2. Concerning the modulus, the condition can be written as

]

] f
@F~lk~u! f !1F~lk~2u! f !22F~ f !#50,

or, equivalently,

Ḟ~ f !5
lk~u!Ḟ„lk~u! f …1lk~2u!Ḟ„lk~2u! f …

2
.

This expression can be rewritten by introducing, as before,lk(u) f 5j andlk(2u) f 5z, thus
defining f as theStolarsky’s generalized meanof j andz,24 whose expression reads explicitly a
f 5Q(j,z), with

Q~j,z!5S 1

k

jk2zk

j2z D 1/~k21!

. ~37!

What we get isQ(j,z)Ḟ„Q(j,z)…5„jḞ(j)1zḞ(z)…/2, and finally, if we let

m~ f ![ f Ḟ~ f !, ~38!

we end up withm„Q(j,z)…5„m(j)1m(z)…/2 or, equivalently,

Q~j,z!5m21S m~j!1m~z!

2 D .
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We recognize therefore that the Stolarsky’s generalized mean~37! must necessarily be of th
form of a quasiarithmetic generalized mean~in the sense of Kolmogorov and Nagumo!, a situa-
tion we know to be true only ifk521, 1/2, or 2, as proved in~Ref. 25, Appendix A!. This
concludes the proof.

It appears therefore that the unitary Bertrand distribution (k50) is excluded from the class o
affine distributions which may be separable in their Fourier and Mellin variables. The three
mentioned in the Proposition can, however, be studied in further detail by specifying the
sponding generalized means and the associated distributions, and by identifying the signals
guarantee separability.

1. Case k52

The generalized mean~37! reduces in this case to the arithmetic mean25

Q~j,z!5
j1z

2
⇔m~ f !5a f1b,

and, according to~38!, Ḟ( f )5a1b/ f , which leads toF( f )5a f1b log f1c. Together with
~36!, the associated class of signals is therefore of the form

X2~ f !5C fae2b f f igU~ f !,

with CPC, (a,b,g)PR3, andU(•) the unit step function, thus corresponding to the family
the ‘‘Klauder wavelets’’~27! whena andb are both positive.

Assuming thatX( f ) is analytic, i.e., vanishes for negative frequencies, it is known20,25 that
the case~k52, q50, r 521/2! corresponds to the Wigner–Ville distribution,

WX~ t, f !5E
22 f

12 f

XS f 1
n

2DXS f 2
n

2Dei2pnt dn,

for a suitable choice of the weighting functionm2(u), namelym2(u)5cosh22(u/2). In this case,
a direct calculation shows that

W̃X2
~s, f !52uCu2f 2a11e22b fE

21

11

~12w2!aS 11w

12wD ig

ei4psw dw U~ f !.

One can remark that, in the real case whereg50, this result can be given a closed form express
which reads as

W̃X2
~s, f !52uCu2ApG~a11! f 2a11e22b f

Ja11/2~4pusu!
~2pusu!a11/2 U~ f !,

whereJn(•) stands for the Bessel function of the first kind.26

Remark:Whereas in this special case,W̃X2
(s, f ) is separable and is of the formW̃X2

(s, f )
5k(s) f uX( f )u2, it can be checked thatk(s) is neither proportional to the Mellin densityuXI (s)u2

nor positive.

2. Case k521

The generalized mean~37! reduces in this case to the geometric mean,25

Q~j,z!5Ajz⇔m~ f !5a log f 1b,

and, according to~38!, Ḟ( f )5a(log f )/f1b/f, which leads toF( f )5(a/2)log2 f1b log f1c.
Together with~36!, the associated class of signals reads as

X21~ f !5C fae2b log2 f f igU~ f !, ~39!
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



e

ve
lem of
se

val-
nerally,
d

gner–
t

4035J. Math. Phys., Vol. 39, No. 8, August 1998 Patrick Flandrin

Downloaded 1
and it generalizes a family of wave forms defined by Altes27 ~the special case of the abov
expression witha50 andb.0!.

It is known20,25 that the case~k521, q50, r 521/2! corresponds to the so-calledUnter-
berger distribution, which, in its ‘‘active form’’ @i.e., when settingm(u)5cosh(u/2)20#, reads as

ŨX~s, f !5 f E
2`

1`S 11
1

g2DX~g f !XS f

g Dei2p~g21/g!s dg. ~40!

A direct calculation shows that

ŨX21
~s, f !5uCu2f 2a11e22b~ log2 f 1g2/4!E

2`

1`

e22b„a sinh w2 i ~g/2!…2ei4psw dw U~ f !.

Remark:The family of wave forms~39! has been introduced by Altes in a context of acti
sonar, such as encountered in bat echolocation. They are, in fact, solutions to the prob
‘‘Doppler tolerance,’’ which consists in estimating at best~no bias and the highest signal-to-noi
ratio! a time delay in the presence of some unknown Doppler shift.

3. Case k51/2

The generalized mean~37! reduces in this case to the square-root mean25

Q~j,z!5SAj1Az

2 D 2

⇔m~ f !5aAf 1b,

and, according to~38!, Ḟ( f )5a/Af 1b/ f , which leads toF( f )52aAf 1b log f1c. Together
with ~36!, the associated class of signals reads as

X1/2~ f !5C fae2bAf f igU~ f !.

It is known20,25 that the case~k51/2, q50, r 521/2! comprises the so-called ‘‘D distribution:’’

D̃X~s, f !5 f E
24

14F12S g

4D 2GXS S 11
g

4D 2

f DXS S 12
g

4D 2

f Dei2psgdg,

and a direct calculation shows that

D̃X1/2
~s, f !54uCu2f 2a11e22bAfE

21

11

~12w2!aS 11w

12wD ig

ei8psw dw U~ f !.

If g50, this result can be simplified to

D̃X1/2
~s, f !54uCu2ApG~a11! f 2a11e22bAf

Ja11/2~8pusu!
~4pusu!a11/2 U~ f !.

C. Positivity

It has already been mentioned that Wigner–Ville distributions attain generally negative
ues, but that they are everywhere positive when applied to a Gaussian signal and, more ge
to the exponential of a quadratic polynomial.6 It is our purpose in this section to point out relate
results in the case of affine time–frequency distributions.

1. Unitary Bertrand distributions

We will first show that, in the case of the~unitary! Bertrand distribution~30!, ‘‘Klauder
wavelets’’ play a role which has much to share with the one played by Gaussians in the Wi
Ville case. To this end, it is convenient to generalize and reparametrize the Klauder wavele~27!
as
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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X2~ f ![C f2~r 11!e2pl~ f 0 log f 2 f !e2 i2p~b0 log f 1j f !U~ f !, ~41!

with CPC, and r , l, f 0 , b0 , and j real-valued parameters such thatl>0 and f 0.0. This
reformulation allows a simple physical interpretation of the parameters since the mean freq
f m and theQ factor defined byQ[ f m /D f are given, respectively, byf m5 f 0 and Q254pl.
Moreover, the phase term is written so as to correspond to a modulation with a hyperbolic
delay tX2

( f )5j1b0 / f .
Given these notations, we have the following.
Proposition 19: The unitary Bertrand distribution of the Klauder wavelet (41) is everywh

non-negative.
Proof: The proof relies on properties of characteristic functions~which are Fourier transforms

of non-negative functions!, and it proceeds as follows. We first start from the definition~41! of the
Klauder wavelet and we plug it into the definition~30! of the Bertrand distribution. After some
manipulations, the result can be expressed as

BX2
~ t, f !5uCu2f a2qE

2`

1`

Ma,b~u!e2 i2pzu du U~ f !, ~42!

with

Ma,b~u![S u/2

sinh~u/2! D
a

exp$2bu coth~u/2!% ~43!

and

a[4pl f 0 ; b[2pl f ; z[b02~ t2j! f . ~44!

In order to prove that~42! corresponds to a non-negative quantity, it is then sufficient to s
that Ma,b(u) is—up to a positive constant—a characteristic function, a property which
obviously hold if each of the two factors of~43! is itself proportional to a characteristic function.28

Using first the fact that29

sinh x5x)
k51

` S 11
x2

k2p2D ,

we can write

S u/2

sinh~u/2! D
a

5)
k51

` S 11 i
u

2kp D 2aS 12 i
u

2kp D 2a

.

This is clearly a characteristic function since,a being positive, each of the factors of th
infinite product is the characteristic function of a Gamma distribution.28 Using then the fact that29

coth px5
1

px
1

2x

p (
k51

`
1

x21k2 ,

we can write.

exp$2bu coth~u/2!%5e22b)
k51

`

expH 4bS 1

11~u/2kp!221D J . ~45!

Since (11(u/2kp)2)21 is a characteristic function~namely the characteristic function of
Laplace distribution! andb>0, it suffices to make use of a theorem by Lukacs28—stating that, if
g(u) is a characteristic function andg a positive real number, exp$g(g(u)21)% is itself a charac-
teristic function—for guaranteeing that each of the factors of~45! and, hence,~45! itself is a
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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characteristic function. The two factors of~43! each being a characteristic function, the Four
transform of their product is everywhere non-negative and the proof is complete.

Two remarks.

~1! Assuming as we did thatl.0, we haveX2( f )PL2(R1 , f 2r 11 d f ) and BX2
(t, f ) is a

bounded square-integrable function. A degeneracy is, however, observed in the case
‘‘hyperbolic chirps’’ C0( f ) corresponding toX2( f ) with l50, and for which we know20

that

BC0
~t,f !5uCu2f2q21dSt2Sj1

b0

f DDU~f !,

a result which also follows directly from~42!, ~43!, and~44!, since we have thena5b50,
and henceMa,b51.

~2! According to the definition~27!, the nonzero frequencyf 0 can be interpreted as the centr
frequency of the~envelope of the! Klauder wavelet. Within the narrow band assumptionQ2

54pl@1, we get the approximation

X2~f !;C8 expH2 p

f0
~l2ib0!df 22i2pSj1

b0

f0
DdfJ,

whered f [ f 2 f 0 andC8 is some suitable~complex-valued! constant. This means that narro
band Klauder wavelets reduce to Gaussians, in clear accordance with the fact that the B
distribution reduces to the Wigner–Ville one for narrow band signals,20 and that Wigner–
Ville distributions are non-negative for Gaussians.

2. Unterberger distributions

A result similar to the one of the previous Proposition can be obtained in the case of the
Unterberger distribution~40!, but it requires replacing the Klauder wavelet by the signal

X21~ f ![C f2~r 11!e22pl~a0 / f 1 f !e2 i2p~j f 2a/ f !U~ f !,

with a0.0. More precisely, we can prove the following.
Proposition 20: The active Unterberger distribution of X21( f ) is everywhere non-negative
Proof: The proof follows from a direct calculation according to which

UX21
~ t, f !52uCu2f 2~2r 11!E

2`

1`

e24pl~a0 / f 1 f !A11~w/2!2
ei4p~ t f 2j f 2a/ f !w dw U~ f !,

a result which can be equivalently expressed as~see, e.g., Ref. 30!

UX21
~ t, f !54uCu2f 2~2r 11!GbS 4pS t f 2j f 2

a

f D DU~ f !,

with b[4pl( f 1a0 / f ) and

Gb~y![
2b

Ab21y2
K1~b21y2!, ~46!

K1(•) being a modified Bessel function of the first kind.26 Positivity of the distribution is therefore
guaranteed by the simple fact that modified Bessel functionsKn(z) are known to be positive if
n.21 andz.0.26

Unterberger distributions also exist under a ‘‘passive’’ form,20 whose definition reads as

VX~ t, f !5 f E
2`

1`

X~g f !XS f

g Dei2p~g21/g!t f
dg

g
.

‘‘Active’’ Unterberger distributions are known to be perfectly localized for signals wh
group delay is defined by squared hyperbolas of the forma1g/ f 2, but they are also known not to
7 Nov 2006 to 140.77.240.220. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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be unitary~in fact, it can be shown20 that unitary Bertrand distributions are the only distributio
guaranteeing both localization and unitarity!. ‘‘Passive’’ Unterberger distributions share a lot
properties with ‘‘active’’ ones, at the notable exception of localization. Both forms are, in
‘‘dual’’ in the sense that, whereas none has simultaneously properties similar to the u
Bertrand distribution, they can be combined so as to satisfy the Moyal-type formula

E
2`

1`E
0

1`

UX~ t, f !VY~ t, f !dt
d f

f
5U E

0

1`

X~ f !Y~ f !
d f

f U2

.

With the above definition forVX(t, f ), the following can be proved.
Proposition 21: The passive Unterberger distribution of X21( f ) is everywhere non-negative
Proof: This can be checked by a direct calculation, according to which

VX~ t, f !52uCu2f 2~2r 11!K0SAb214p2S t f 2j f 2
a

f D
2DU~ f !,

which concludes the proof exactly as in the previous Proposition.
Remark:The closed form expression given above can be found almost exactly in Re

where the authors introduce a time-scale energy distribution whose definition has essentia
form of a passive Unterberger distribution.

In the case of the Wigner–Ville distribution, Hudson’s theorem guarantees that Gau
signals are the only ones ensuring positivity, whereas the question is left open to prov
Klauder wavelets would be the only signals with a~unitary! Bertrand distribution everywhere
positive. In the case of the~active! Unterberger distribution, a class of signals ensuring positiv
has been evidenced in Proposition 20, but it can be proved that this solution is not unique
counterexamples to unicity for positive Unterberger distributions are provided by the two fo
ing claims.

Proposition 22: The active Unterberger distribution of

Y21~ f ![C f2~r 11!e22pl f 2
e2 i2p~j f 2a/ f !U~ f !,

is everywhere non-negative.
Proof: The active Unterberger distribution~40! admits the~time–frequency! equivalent form

UX~ t, f !52 f E
2`

1`

coshuX~euf !X~e2uf !ei4pt f sinh u duU~ f !.

Plugging the definition ofY21( f ) into this expression yields

UY21
~ t, f !5

uCu2

A2l
f 2~2r 11!e24pl f 2

e~22p/l!~ t2j2a/ f 2!2
U~ f !,

whence the result.
Remark:When applied toY21( f ) with a50 ~a constant group delay!, the active Unterberge

distribution is not only positive, but also separable in time and frequency.
Proposition 23: The active Unterberger distribution of

Z21~ f ![C f2~r 11!e22pl fe2 i2p~j f 2a/ f !U~ f !

is everywhere non-negative.
Proof: The proof follows from a direct calculation, according to which

UZ21
~ t, f !52uCu2f 2~2r 11!G4pl f S 4pS t f 2j f 2

a

f D DU~ f !, ~47!

with G(•) defined as in~46!, and positivity stemming from the usual assumptionl.0.
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V. CONCLUDING REMARKS

In this paper, a number of results have been given which—although still preliminary in m
respects and far from exhausting the subject—are believed to clarify some of the links which
between positivity, separability, and minimum uncertainty in time–frequency energy distribu
In fact, whereas in the case of the Wigner–Ville distribution, these features may admit
relations of the type ‘‘separability⇒positivity⇒minimum uncertainty,’’ it has been shown that th
situation of other distributions is more intricate, with possible incompatibilities between the
different properties. Affine distributions~based on frequency and on a Mellin variable, in place
the usual time variable! have especially been considered in some detail, with two main co
quences which make them depart from the Wigner–Ville case.

~1! In comparison with the known fact that minimizers of the classical time–freque
uncertainty—Gaussians with a linear phase—have a positive and separable Wigner
distribution, signals with minimum frequency-scale uncertainty—namely, Klau
wavelets—do possess a positive~unitary! Bertrand distribution, but this latter is not separab

~2! Whereas positivity is an exception in the Wigner–Ville case and can be observed with G
ian signals only, it turns out that this situation of unicity is no longer true in the affine c
different classes of signals having been evidenced to lead to positive distributions.

As already mentioned, many questions are still left open, such as, e.g., the question of
for the positivity of unitary Bertrand distributions. From another perspective, it can be fin
mentioned that other types of extensions~e.g., to the hyperbolic class32 and, more generally, to
‘‘warped’’ classes33! could have been considered, but have not, since the corresponding resu
be readily anticipated from those given here. In fact, such extensions being related to usual
~Cohen of affine! by a warping operation, all the results obtained in one case can be transfo
mutatis mutandis, to get the corresponding results in the other case. For instance, the A
Marinovic distribution,34

QX~s, f !5 f E
2`

1`

X~eu/2f !X~e2u/2f !ei2psu du,

which is known to belong to~and be a central member of! the hyperbolic class,32 can be expressed
as well in terms of the usual Wigner distribution as

QX~s, f !5WX̃S s

f 0
, f 0 log

f

f 0
D ,

with X̃( f )5ef /2 f 0X(ef / f 0) and f 0.0. It follows that any result pertaining to the Wigner–Vill
distribution can be transposed to the Altes–Marinovic distribution, provided that it is applie
signals warped the suitable way. In particular, an analog of Hudson’s theorem can be given~no
new proof is really necessary!

Proposition 24: The Altes–Marinovic distribution is positive for ‘‘Altes signals’’ of the typ
(39), and only for them.
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