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Gaussian signals play a very special role in classical time—frequency analysis be-
cause they are solutions of apparently unrelated problems such as minimum uncer-
tainty, and positivity and separability of Wigner—Ville distributions. We investigate
here some of the logical connections which exist between these different features,
and we discuss some examples and counterexamples of their extension to more
general joint distributions within Cohen’s class and the affine class.19@8
American Institute of Physic§S0022-24888)00508-9

I. INTRODUCTION

In most cases, physical signals are defined as functions of time. Until the somewhat recent
past, signal analysis has been mainly concerned with such a temporal description of signals, or
with a dual description in the frequency domain, obtained from a classical Fourier transform.
Much information can, of course, be gained from both descriptions, but it is also clear that
time-only and frequency-only representations, being in some sense orthogonal to each other, are
not best suited for displaying mixed information about time and frequency. In fact, there are many
situations in which a Fourier representation, although mathematically correct, is not able to cap-
ture in a direct way time-dependent spectral features which may be intuitively expected. This is so,
for instance, with music signals, for which our everyday experience suggests that the “frequency
of tones is continuously changing.” In this case, Fourier analysis is clearly not well adapted and
intuition rather calls for a joint time—frequency description, revealing not only the different fre-
guencies occurring in a piece of music, but also their time of occurrence, their duration,..., i.e., the
kind of information which is indeed coded on a musical score.

Although interpretation may be different, the search for a joint time—frequency description of
signals has much to share with the problem of finding joint distributions of position and momen-
tum in Quantum Mechanics. It is therefore quite natural that most of the tools which have been
developed in either domain have indeed found applications in both. This is especially the case for
all the Wigner-based distributions which have been proposed and extensively studied since the
pioneering works of Wigner in quantum mechaniesd Ville in signal theory. One can, how-
ever, remark that, in quantum mechanics, joint distributiBpég,p) are mostly used as a com-
putational tool, allowing us to write

o= | “aapPyapdadn

whereG stands for the operator associated with a given classical quagtltity) in the sense of
some(nonunique correspondence rule. This nonunicity—which is due to the fact that two dual
variables connected by a Fourier transform relationship are associated with elementary operators
which do not commute—carries over to the definitionRf(g, p), and the situation is similar for

time and frequency. In signal theory, however, a joint distribution is basically considered as a
(quasi) density function of its variables, and the main issue is much more to get a readable
time—frequency “picture” of a signal, which has therefore to be interprgdseand not only
through inner products with test functions.
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An extensive body of literature has been devoted to time—frequency analysis with Wigner-
type distributions, from the point of view of both theory and interpretatfona survey, see, e.g.,
Ref. 3 or 4, and here we would like to focus further on some specific questions related to both
aspects. More precisely, if we consider Gaussian signals of the form

g(t)=Ce °t’, (1)

with C e C anda >0, we know that, besides the fact that their Fourier transform is also Gaussian,

namely that
oo ' T 2:2
G(f )Ef g(t)e 2" dt=C\/;e‘7T e,

such signals happen to play a very special role in classical time—frequency andsiighout
the paper, we will adopt the convention of using a lower case symbol for representing a signal in
the time domain, and the corresponding upper case symbol for denoting its Fourier transform, in
the frequency domainThis is in fact so for at least three different reasons.

(1) Minimum uncertainty Gaussiang1) are the only minimizers for the time—frequency
uncertainty relation,

1
AtXAfXZE, (2)
where
1 [+
Atiz—f t2[x(t)|? dt, ©)
Ex — 0
1 [+
Af§=—J f2|X(f )|? df, (4)
EX — 0
and

+ oo
Exzf |x(t)|?dt.

(2) Positivity Gaussiangl) are—up to linear and quadratic phase terms—the only signals for
which the Wigner—Ville distribution

. oo
x(t— %) g i2mir dfzf X

is everywhere non-negativ@iudson’s theorerfi:cf. Proposition 1 below
(3) Separability The Wigner—Ville distribution5) of Gaussiangl) is separable, namely,

[20 o, 2 2
Wg(t,f )=|C|2 76 2at e (274l a) f ) (6)

These three properties are important ones for attaching to Gaussian signals a specific status
and for offering a nice physical interpretation of their time—frequency content by means of the
Wigner—Ville distribution.

(1) Minimum uncertainty is often invoked for considering Gaussian signals as time—frequency
“atoms” and for using them as elementary building blodkse so-called “Gabor logons®) of
linear signal decompositions.

(2) Although it is known that no time—frequency distribution—be it positive or not—can be
interpreted pointwisé positivity improves the readability of a time—frequency diagram.

+ oo

W, (t,f )Ef X

—o0

14
f+ -

42
2 2

X[ t->|e2mt dy,  (5)
2 2 ’
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(3) Separability provides further insight in the probability picture of time—frequency distribu-
tions by corresponding to a notion of “independence,” according to which a logon is a state
whose time and frequency behaviors are decoupled.

Given these facts, an interesting question is to know whether the three mentioned properties
(minimum uncertainty, positivity, and separabilitjave logical reasons to be related or, on the
contrary, if their simultaneous occurrence is only fortuitous. Moreover, since many other joint
distributions do exist besides the Wigner—Ville distribution, a further question which is worth
investigating is how the results pertaining to the pair “Gaussian/Wigner—Ville” can be extended
to other situations, especially in the important case of affswale-baseddistributions.

The paper is devoted to these questions and is organized as follows. In Sec. Il, the situation of
the Wigner—Ville distribution is considered in some detail by reviewing and/or establishing a
number of its specific properties connected in a direct way with the considered problem. In Sec. 11l
we address the question of a possible extension of such results to the more general “Cohen’s
class,” whereas in Sec. IV we are concerned with similar questions within the “affine class”
framework. Finally, some conclusions are drawn, together with the possibility of getting further
extensions in more general situations.

II. WIGNER-VILLE DISTRIBUTION

In this section, we will review and/or establish basic properties—related to positivity, sepa-
rability, and minimum uncertainty—which hold in the case of the Wigner—Ville distribution. As
far as positivity is concerned, it has to be noted that many other important result¢sexise.g.,

Refs. 9—-12, even with extensions beyond the Wigner—Ville case. The purpose of this paper is not
to review all of them, and only those results which are connected in some way with the two other
issues of separability and minimum uncertainty will be considered here.

A. Positivity

Proposition 1 (Hudson’s theoréin The WignerVille distribution is positive for signals of
the type

_ 2
ga,ﬂ,y(t)ze (et +Bt+},)! (7)

with («,8,v) € C® and Rda}>0, and only for them
Proof: The fact that(generalizell Gaussian signals of the for(@) have a positive Wigner—
Ville distribution follows from a direct calculation, according to which

) 2 5 2 2 o ,
Wo,.5,(01)= Vggap &P ~2 Relat’+ B+ vt = gr [F-HOT),
with
1
fih=5_ Im{2at+ B}.

The original proof of the converse was first stated by Hudson in Ref. 6. It consists of
introducing—according to the definitigi@)—the test signag, , ,(t), for which the corresponding
Wigner—Ville distribution is everywhere non-negative. Making use of Moyal’s forfiwa, have

+ o0 2 + o0
U X(1)g1,,(t)dt =fJ W (t,F )Wy, (1, )dt df,

and this quantity is guaranteed to be everywhere positive for those siftalerhose Wigner—
Ville distribution is non-negative. It follows that the function

+ o

_X(1)ga,(1)dt €S)

F(z)=e7f

is analytic, has no zeros, and furthermore satisfies
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IF(2)[2< \f; E, exp(% (Re(z})?

as can be checked by applying the Cauchy—Schwarz inequality.

As a consequencé;(z) is an entire function of order at most 2, without zeros. Hence, by
Hadamard'’s factorization theorefi(z) is necessarily the exponential of some quadratic form in
z. Lettingz=i2#f and using the fact that Fourier transforms of Gaussians are still Gaussians, we
can deduce fron(8) that x(t) is itself the exponential of some quadratic formtiand the proof
is complete.

Two remarks.

(1) In order to have finite energy signals—i.&(t) € L?(R)—we have assumed that Ré
>0 and this, in turn, guarantees that the Wigner—Ville distribution is bounded since it is easy to
show that|W,(t,f )|<2E,. A degeneracy can, however, be observed whenevés}R&e{S}
=0, a situation for which the Wigner-Ville distribution reads as

W, , (LT )=exp(—2 Re[y}) 6(Ff —fi(1)).

(2) Minimum uncertainty implies positivity of the Wigner—Ville distribution, but the class of
signals(7) which have a positive Wigner—Ville distribution is larger than the cld$of signals
with minimum uncertainty. In fact, the former can be seen as a modulation of the latter by means
of a “chirp” wave form whose phase is quadratic in time and, hence, whose instantaneous
frequency is linear. Precisely, we get

At ! (1+<'m{a}

2\ 1/2 1
Af =—— S =
90,8y Bapy 41 Re{a} ) A7’

with equality if and only if I{a}=0, i.e., if the Gaussian is not modulated in frequency, thus
reducing to(1).

B. Separability

Proposition 2: If a WignerVille distribution is separable, it is positive and factorizable as

WX(tif ): E
X

9

Proof: Starting from the definitior{5), it is well known (and easy to chegkhat a Wigner—
Ville distribution always has correct marginals, i.e., that

| waetde=ixiof, 10

fmwx(t,f ydf=|x(t)|2. (12)

Assuming that separability holds, there exist two functigrg) and Q(f ) such that
W,(t,f )=p(t)Q(f ). Using (11) and (10), we get P(0)Q(f )=|X(f )|?>=0 and p(t)q(0)
=|x(t)|?=0. It follows thatP(0) andQ(f ) on one hand, ang(t) andq(0) on the other hand,
are necessarily of the same sign. One more integration lead®Q9q(0)=E,>0, and this
concludes the proof.

Remark:We know from Moyal's formula that, for any finite energy signét), we have

+ o
f J W2(t,f )dt df=E2.

Applying this result to the factorized distributidf), we are led to the conclusion that signals
with a separable Wigner—Ville distribution must necessarily be such that
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+o0 1/4 oo 1/4
[ o] [k ar] e

a property which holds for Gaussians. Gaussians are therefore solutions for separability. In fact, it
can be shown that they are the only solutions, as claimed in the following.

Proposition 3: The Wigne#Ville distribution is separable for Gaussian signals anly

Proof: This result can be viewed as a Corollary to Propositions 2 and 1
(“separability=positivity=Gaussians), but it can also be derived in a direct way as follows.
Assuming that separability holds for a Wigner—Ville distribution, we can start from the factoriza-
tion of (9) and, after taking an inverse Fourier transform over frequency, we get

T T
WX t+§ X(t—z)z’yx(T), (12
with
1 f*w T T d
’yX(T)—E—X _OOX t+§Xt > t.

This defines a functional equation whose first implication is that its left-hand side must be a
function of 7 only. Writing x(t) = |x(t) |exp{i argx(t)}=exp{¢(t)+iy(t)}, we end up with two nec-
essary conditions upon a modulus term and a phase term, respectively. The phase c@fdition
independence upon thevariable reads as

ofregl-olis)-e

for any t and 7, with the consequence that the phase must necessarily be of the/{ajm at
+b, with (a,b) e R2. After a change of variables, the companion condition on the modulus leads,
for anyv andw, to

ot

v+W
2

p(0)+p(w)
o _

2 ’

where the overdot indicates tligme) derivative.

We recognize in this relatiodensen’s functional equatidi whose most generatontinuous
solution in ¢(t) is given by linear functions of the formp(t)=a’t+b’ with (a’,b’) e R?. It
follows that ¢(t)=(a’'/2)t>+b’t+c’, with ¢’ eR and the requirement tha' <0 in order to
guarantee that(t) e L3(R).

Gaussian signals therefore appear as candidates for defining separable Wigner—Ville distribu-
tions. In order to be admissible solutions, we have to further check that the left-hand $id® of
is not only independent df but also proportional to the deterministic correlation functiQ(r),
which an elementary calculation proves to be true.

C. Minimum uncertainty

Proposition 4 (Ref. 14): Given any>0, the WignerVille distribution satisfies the time
frequency uncertainty relation,

2 1 e
Etf(VVx)E E. f f_w

with equality if and only if xt) is a Gaussian signal
Proof: This follows directly from the marginal properti€20)—(11) of the Wigner—Ville
distribution and from the definition&3)—(4), since we can write

t2
? +T2f2

1
Wy (t,f)dt df=——, (13
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2 111 i 2 2 2 i 2 2
2iWo=g |32 J,wt Ix()|?dt+T J, f2X(f )[*df

oo

2
X

A At 2
=7+T2Af§=<TX—TAfX

+2ALAT,=2ALAT,, (14)

with equality if the arbitrary durationl is “matched” to the signalx(t) according toT
= /At /Af,. In this case, we know fror2) that the right-hand side df.4) is lower bounded too,
with equality in the only case of Gaussians, whence the result.
Remark:In the above derivation, it has been implicitly assumed that the mean time and the
mean frequency of the analyzed signal are both zero, i.e., that

f+xt|x(t)|2 dt=f+mf|X(f |2 df=0.

—co0 —o0

As for the standard Gabor—Heisenberg uncertainty relg#nrthis of course does not reduce
the generality of the result, since the Wigner—Ville distribution being covariant with respect to
shifts in time and frequency, uncertainty relations pertaining to signals with nonzero mean time
and/or mean frequency can be establishedatis mutandidy introducing suitable shifts.

Because a Wigner—Ville distribution attains generally negative values, the interpretation of
(13) as a measure of time—frequency energy spread can be questioned. A companion result can,
however, be obtained faguaredWigner—Ville distributions, thus reinforcing the prominent role
of Gaussians. This is given by the following.

Proposition 5 (Ref. 15): Given any=10, the squared Wigne#Ville distribution satisfies the
time-frequency uncertainty relation

1 +oo
ThHW) = gz f f

with equality if and only if Xt) is a Gaussian signal
Proof: The proof proceeds as previously, except that we have to evaluate second-order mo-
ments with respect twi(t,f ). It is easy to show that
t T
X2

t2 2¢2 2 1
T2+ T2 | Wit f )dt df= o,

2 2

dr,

+ o + T
fwi(t,f)df=f x(t+—

2

and, therefore,

1 e 1 +oo
E_iffoot Wi (t,f )dt df_E_)z(ffoc

+ o
2Exf v2|x(v)|2dv +2

2
[x(0) [ x(w)|*dv dw

o 2
f, v|X(v)|2dv)

with equality for signals whose mean time is zero. It can be proved in a similar way that

vtw
2

2
X
=

2

:4—E)2(

2
X
1

1 Y
— =
E2 J Jiocf Wi (t,f )dt df >
with equality for signals whose mean frequency is zero.
Given these two properties, the proof is finished by reorganizing terms exactly as in the
nonsquared case.
Remark:The fact that both the Wigner—Ville distribution,(t,f ) and its squar&Va(t,f )
have a minimum time—frequency spread which is attained for Gaussian signals suggests a natural
link between minimum uncertainty and positivity. For simplicity, let us assumextts of unit
energy so that botkV,(t,f ) andW)z((t,f ) integrate to 1 in the time—frequency plane. In fact, as
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far as the spread related V8,(t,f ) only is concerned, a decrease in the spread measure aould
priori be obtained not only by concentrating positive values around the origin, but also by accept-
ing negative values far from the origin. This, however, turns out to be in contradiction with the
spread inequality related t@v2(t,f ) since a distribution with negative values would create
“holes”—in between positive contributions—when squared, thus increasing the spread measure
as compared to a positive distribution.

It is possible to find many other ways of formulating uncertainty relations by means of the
Wigner—Ville distribution, among which we can cite the following results.

Proposition 6: Any signal &) of finite energy E satisfies the “uncertainty relation”

1 (+= 1
= 215(1)]2 -
o= g f_wt [x(1)] dt>4,
with
i =1
for signals of the form
X,(1)=C exp(— Bt]), (15

with Ce C and (8,7) e R?.
Proof: For convenience, let us introduce the quantity

J= fmtk(t)x(_t)dt,

whose imaginary part is sometimes referred to as the “covariance” of the Sigyahpplying the
Cauchy—Schwarz inequality, we ggl|?< afo, whereas an integration by parts shows that
Re[Jl=—E,/2, and the claimed inequality follows from the fact that we always hglé
= (Re[JN)2.

From the way the lower bound has been derived, it is not clear whether it can be effectively
attained. However, it can be shown by a direct calculation that signals of the(i@nare such
that axyz(y-l- 1)/4, with the consequence that l,im0+axy= 1/4, thus completing the proof.

Three remarks

(1) Although the lower boundr,= % is asymptotically sharp for signais,(t) when y—0, , it
has to be remarked that the bandwiua‘kthxy and, hence, the usual uncertainty measure remain
finite only if y>3.

(2) The “alpha moment’a, (a quantity which has been introduced and studied by Titlebaum; see
Ref. 16 is such that

_l BT 2_1 BPP 2
e ch IX(F )2l

It follows that any property of, which holds for a given signad(t) also holds for its Fourier
transform X(f ). In particular, the lower bound fow, is also attained for signals whose
spectrum reads a$(f )=C exp(—g|f|"), in the limit y— 0, , with the consequence that the
corresponding signals have a finite mean-square duration—and, hence, a finite usual uncer-
tainty measure—only ify> 3.

(3) The uncertainty measure given by the “alpha momemnt; is not minimum for Gaussian
signals. In fact, expanding(t) € L3(R) asx(t)==,"oX,¢n(t) on the orthonormal basis of
Hermite functions ¢,(t);ne N} (defined as in Ref. )7 we get

23 nn+1) JiIn+ D) (n+2)(n+3)(n+4)
Exax:%( Z+ ( 2 ( 2( Re{xnxn+4} .

|Xn|2_
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This proves thatx¢n= 3/4+n(n+ 1)/2 and thus that the Gaussi@ssociated ta=0) may be
considered as a minimizer far,, but in the restricted class of Hermite functions.

Proposition 7: For any signal &) of finite energy k and of mean time and mean frequency
identically zero, the WignesVille distribution satisfies the uncertainty relation

1 oo 1 1
aff(wi)zg ff t2F2W2(t, f )dt df?m(ax—§+4w2At)2(Aff ,
% —

with equality for signals whose “covariance”,
+o -
covtf(x)zlm(f tx(t)x(t)dt), (16)

is zera
Proof: A way of proving this result is to make use of the so-called “inner interference
formula,” *° according to which

wiet)= [ [,

By making a change of variable and reorganizing terms, this leads to

T - Zldrd
) _ETV.

14
5| Wi t=3

.

t+ E, f+ 5
1 4o

A== [ [ | [ kwweoww.owmodo aw de o

with
K(v,W,&0) =028+ 0202+ 20260+ 2oWE2+ dowEL.

The contribution of the first term df(v,w, &,{) to the integral reduces to
+ oo
[ [ ][ e ommoo dw e dz-ezohw),
and it can be showrthat
5 1 1
O'tf(WX) = m Ay~ E .
The second term contributes as

f f f fj:vzézwxw,g)wx(w,g)dv dw d¢ d¢

:J J+WUZ§Z|X(U)|2|X(§)|2dU A= E2ALAf2)

whereas the third and fourth ones provide a null contribution because of the assumptions of mean
time and mean frequency equal to zero.
Finally, the fifth term is such that

T OWEW (0, &)W, (w,0)dv dw g di = iz COVi(x)=0,
o 47

with (following Coheri), the “covariance” ofx(t) defined by(16).
Remark If x(t) is chosen to bex,(t) as defined in15), we get explicitly
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1 F(3/7)F(2—1/'y)
1282 | (v DT T'2(1ly) ’

2
(th(W y)

and a numerical estimate of thg, minimizing the spread measure giveg~1.33, with
o-tf(W2 )~0.77/647”. This is less than in the Gaussian case=@) for which crtf(WZ)

= 1/6471'

lll. COHEN'S CLASS

Some results pertaining to Wigner—Ville distributions can be generalized to members of
Cohen’s classthe general class of quadratic time—frequency energy distributions which are co-
variant to time and frequency shifts. By definition, Cohen’s class can be writfen as

cutfior= [ | eenademne v oy an

whereg(&,7) is some arbitrary kernel function aig (&, 7) is the so-called “ambiguity function,”
obtained as a two-dimensional Fourier transform of the Wigner—Ville distribution and defined

explicitly by
Aé,1)= f ( (t_ E

Within this more general framework, Gaussian signals still appear to be central with respect to
separability properties, as illustrated by the following claims.

Proposition 8: Smoothed pseudo-Wign¥ille distributions—characterized by a separable
kernel—are the only members of Cohen’s class which are separable when applied to Gaussian
signals.

Proof: Assuming that the analyzed signdlt) is a Gaussian, we know that its Wigner—Ville
distribution W, (t,f ) is separable, a property which carries over to its two-dimensional Fourier
transformA,(&,7). Using (17), we get

I2’7T§t dt

1 +o )
QD(gyT)Zm f f_m Cx(t,f;¢)e'2”(t§+f7)dt df,

and, if we requireC,(t,f;¢) to be separable, it follows that the kernel functig(,7) must itself
be separable, a situation corresponding to distributions referred to as “smoothed pseudo-Wigner—
Ville distributions.” *

Proposition 9: Smoothed pseudo-Wign¥ille distributions—characterized by a separable
kernel—are separable for Gaussian signals only.

Proof: The proof is very similar to the previous one since, accordingl®, we can write

wan=f [

Assuming therefore that both the kernel functig(#, ) and the associated smoothed Wigner—
Ville distribution C,(t,f;¢) are separable, we get that the Wigner—Ville distribution itself is
separable, which in turn implies thaft) is necessarily a Gaussian.

Proposition 10: When applied to Gaussian signals, spectrograms are separable if and only if
their short-time window is Gaussian.

Proof: Assuming that the analyzed signd(lt) is a Gaussian, we know that both its Wigner—
Ville distribution W, (t,f ) and its ambiguity functiol\,(¢,7) are separable. If we now consider
a spectrogram,

1 e H ’ ! .
@(&7) f f Cy(t' ;)2 e gy df |e 27+ g dr.

+ o0 - 2 +o0 2
Sg(h)(t’f )E‘f X(S)h(s_t)e—iZﬂ'fS ds :‘J X(f)H(f—f )ei2ﬂ—§t df
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having a short-time windova(t) which is Gaussian, we get that the associated kernel fuffction
o(&,1)=A,(&,7) is separable, and it follows that the spectrogram—as an inverse Fourier trans-
form of ¢(&,7)A. (&, 7)—is itself separable.

Conversely, if we suppose that a spectrogram is separable when applied to a Gaussian signal
g(t), we get from(17) [with ¢(&,7)=An(&,7)] that

1 +oo o
Ah(é:’T):Ag(g,T) f le S(gh)(t/,fr)eIZﬁ(’[ E+f T)dtr df’

is separable, with the consequence thd@i(t,f ) itself—as an inverse Fourier transform of
A,(&,7)—is separable and, hence, that the windoi) must be Gaussian.

More generally, we can remark that imposing the requirement of separability to spectrograms
leads to specific constraints which have to be jointly satisfied by the analyzed s{ghahd the
analysis windowh(t). Starting from the definition of a spectrogram of windb{) and assuming
that this spectrogram is separable accordin@if?)(t,f )=p(t)Q(f ), we get

+ o + o
t>q<0>=f7x SEUA )df=ﬁx [x(s)|?[h(s—1)|?ds

and

PQ()= [ s at= [ XM= 1)

SinceP(0)q(0)=E,E,,, separable spectrograms happen to be necessarily of the form

+e= [X(S)[2IX(&)]? [n(s—1)[?[H(E—1 )2
sret)=[ [ P s o

X

a form which has to be compared to tf@ways valid expression
sPt)= [ | ws owns—te-ds
or even to
sPtt)= [ [ s aeCistE Tods

with the requirement that the parametrization functigg,7) be such thate(£,7)|=1 (see, e.g.,
Ref. 4.

Reasoning along the same lines in the more general case of any distribution within Cohen’s
class, we can end up with the result that a separable distribution is necessarily such that

cutfior= [ | wisamis-te-tds &

o 2
ff |x(s)? |X(§)| F(s—t,004(0,6— f)ds &, 18)

¢(0,0

wherell(t,f ) stands for the two-dimensional Fourier transformpf, ), andF(t,7) and {(&,v)
for one-dimensional partial Fourier transforms of the same quantity, over frequency and time,
respectively. This leads to the following.

Proposition 11: If a Cohen’s class distribution has correct marginals and is separable, it is
positive and factorizable as
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X(t)[?|X(f)|?
X

Proof: This can be proved either directly—as for Proposition 2—or by ugl@), since we
know" that having correct marginals implies thaté,0)= ¢(0,7)=1.

Remark:Given any signalx(t), one could imagine to formally obtain a distribution factoriz-
able as in(19) by choosing for the parametrization function ttEgnal-dependeptquantity
e(&, 1) =Eyx(&) v (1) A&, 7), with the y's defined as in Proposition 3. In the general case, this
would unfortunately correspond to pathologigas, with singularities at those points where the
ambiguity function vanishes while the individual time and frequency correlation functions do not.
Regular solutions can be guaranteed by imposing to the ambiguity function to be everywhere
positive but, as mentioned in Ref. 18, imposing positivity of the ambiguity function is equivalent
to imposing positivity of the Wigner—Ville distribution, with Gaussians as only solutions.

Proposition 12: The WignetVille distribution is the only member of Cohen’s class which
both has correct marginals and is separable when applied to Gaussian signals.

Proof: By Fourier transformation(19) becomesp(&,7)Ax(&,7) =E,yx(&) yx(7). Assuming
that x(t) is a Gaussian signal, this simplifies ¢g ¢, 7) =1, thus defining the Wigner—Ville dis-
tribution as the only solution.

Proposition 13 (Ref. 4): For any signa®) whose mean time and mean frequency are zero,
and any T>0, distributions of Cohen’s class satisfy the tiafieequency uncertainty relation
1 4 92
?E"; (00+T2 2 (0,0)},

3%4(CY= o A2

with equality if and only if Xt) is a Gaussian signal
Proof: The proof is straightforward and follows directly from the fact tkg(t,f;¢) has for
Fourier transformp( &, 7) Ay (&, 7). Defining

) 1 + o + o
zt(cx)EE_f t2< Lc C,(t,f;p)df )dt,

—o0

we get

S2(Cy= Ei f_+:|x(s)|2< fj:tzF(s—t,O)dt> ds

X
_1f+°° ZJMZZ (6,006 ds= (0,008 -~ - (0,0
“E _m|X(S)| (s°—2s6+ 6°)F(6,00d0 |ds=¢(0,0)At; ma—gz( 0,

— oo

and, similarly,

EZ(C)=i +001‘2 +OOC(tf- dt|df= OOAfz—i&z—(p 0.0
(CI=g G(LTig)dt|df= (0,041 7~ (00.

—o0

Assuming thatC,(t,f; ¢) is a valid energy distributiofi.e., thate(0,0)=1], we are led to

2 2

¢ , 7@
T2 582 (0,0+T 7z (0,01,

S2(CY
TZ

SA(CY= +T222(C) =35 (W,) —

4m?

and therefore to the claim, from the result established previousI¥ fgiw, ).
Proposition 14: For any signal ¢) whose mean time and mean frequency are zero, and any
T>0, spectrograms with a window(h) satisfy the timefrequency uncertainty relation,

1
SEHSM) =W + ZE(Wy)=

with equality, if and only if xt) and h(t) are matched Gaussian signals
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Proof: This can be viewed as a Corollary to the previous Proposition since, in the case of
spectrograms, we get

L& 2 OO+T2§2¢ 0,0 _ 1P 00+T2a2A_h 0,0
477_2 T2 &gz( !) (77_2( 1) _T2 agz ( 1) (77_2 ( !);
=X (W)

and hence
SZ(SM) =S A (W) + S5 (W).

The total time—frequency spread being the sum of two independent positive quantities, it is
minimized when each of these quantities is itself minimized, which is obtained whemnx{dth
and h(t) are Gaussian signalsee Proposition }4 In order to ensure that the two individual
minimizations are compatible, the same arbitrdryhas to be chosen for botBZ%(W,) and

32(W,). This leads to
. /Atxz /ﬂ,
Af, Af,

and, hence, toAt,=At, and Af,=Af,, since x(t) and h(t) being GaussiansAt,Af,
:AthAfh: 1/47T

Remark: Although the derivation is different, this result is equivalent to the one given by
Janssen in Ref. 19.

Proposition 15: For any signal ¢) whose mean time and mean frequency are zero, and any
T>0, spectrograms with a real-valued and even windoft) lare such that

1
oS = 77 [(axt an— 1)+ An*(AGATR+ AGA D) ].
Proof: Let us introduce the time—frequency spread measure,
1 +o
o%(Cy= = f f t2f2C,(t,f; o)dt df, (20)
X — 00

whereC,(t,f; ) stands for any distribution within Cohen'’s class. This spread me&20yean
be equivalently expressed as

1 9
2 _
Utf(Cx)_—leﬂAEx 982972 (e(&,1)ALE,7)) (00)’
with
ot Patts P PA, 9P 97A, A,

= + + +
98 92 (PAN= g g At T e T g G T G

P aAX+ P aAX+a¢ P3A +(9(p A,
IE a2 9 9E2 ar ar  ar €2 ar  IE It IT2)

This holds for any distribution within Cohen’s class and, in particular, for spectrograms
siV(t,f ) with a windowh(t). Given such a window(normalized spectrograms are known to
correspond to the kernel functias( &, 7) = A, (&, 7)/Ey, . Assuming, furthermore, that the window
is real valued and even, we can show that

A, IA
—(0,0=

h p—
% (0,0=0

T
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and

PAn PAn
7—- (0,0=
&% It € IT°

(0,0=0,

whereas, for any signai(t),

A, o 2
(9—52—(0,0)247T EXAtX,

2
X

Fre

(0,0 =47E,Af2Z,

and

7 0,00=47°E !
W(’)_ TEL ax— 5]

It thus follows that, in the case of spectrograms, the overall spread me@&ireeads as
announced.

Remark:Positivity of spectrograms guarantees tbé‘t(sg(h))zo. In the special case where
h(t)=x(t) (matched spectrogramswe get Zv,—1+472(2At2Af2)=0 and thereforer,=1/2
—4772At)2(Af)2(> 1/4, as already proved in Proposition 6.

IV. AFFINE TIME-FREQUENCY DISTRIBUTIONS

The Wigner—Ville distribution and, more generally, all members of Cohen’s class, all belong
to a family of time—frequency distributions which are covariant with respect to shifts in time and
frequency. Moreover, assuming that an energy distribution depends quadratically on the signal, it
can be shown that covariance with respect to shifts in time and frequency is sufficient to reduce
the class of admissible solutions to Cohen’s class. Following this line, it becomes therefore
possible to generate other classes of distributions by modifying in a suitable manner the covari-
ance requirement. Among the various solutions which have been derived this way, a prominent
example is given by the class of the so-calbftine time—frequency distributions, whose con-
struction relies basically on the consideration of dilations in place of frequency shifts.

According to Ref. 20, the general class of affine time—frequency distribuf§fist,f )
which are covariant with respect to each solvable three-parameter extension of the affine group is
defined onRxR, and can be parametrized by

PR(t,f )=f2rTH-a f +O(’Mkw)xm(u)f IX(\(—u)f )e 27w gy, (22)

— o0

with £, (u)=\,(u) —\(—u), and where andq are real-valued free parameters. In this expres-
sion, X(f ) stands as before for the Fourier spectrum of the analyzed signal, but only positive
frequencies are considered. The parametrization funatjgn) is given explicitly by

e U_1\Uk-1)
)\k(u):(km) , (22
with ke R, whereasu,(u) is a weight function whose value can be made dependeit@n so
as to guarantee specific requirementsPgP(t,f ).2°

From (21), it is apparent that affine distributions depend naturally on the product vatigble
a quantity which can be interpreted as a Mellin variable. To justify this point, let us recall that a
definition of the Mellin transfornX(s) of X(f ) can be given b§

+ o i
)_((S)Ej X(f )f|27rs+r df,
0
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thus corresponding to an expansion of the spectkffn) on “hyperbolic chirps,”
Co(f )Efre—iZﬂ'Slogf, fZO,

whose group delay is

1d s
tCO(f )=—E—f(—27TS log f )=?

In this picture, the Mellin variable appears therefore ashgperbolic chirp raterelated to
time and frequency by a relation of the type tf.

A companion interpretation amounts to consider the Mellin variatdsa scalevariable???
This comes from the fact that, choosing, e.g., Weyl's correspondence rule, the opérasso-
ciated tos=tf can be written as

atral
u»/

3

S

o TT+.
o 2

where.7 and.”7 stand for the time and frequency operators, defined, respectively7By(f)
=tx(t) and (7x)(t)=(—i/2m)x(t). It thus follows that, for any\»>0,

(eiZW)\SX)(f ): ef)\IZX(ef}\f ),

which allows us to interpret” as the infinitesimal generator of a scaling operdtdnose eigen-
functions are precisely hyperbolic chijps

Whatever the interpretation, and whid(t,f ) is usually considered as a time—frequency
distribution, it can equally well be reparametrized as

~ S
P (s, f )Epgp(?, f), (23

so that it becomes a function @¥lellin) scale andFourie frequency variables.

A. Minimum uncertainty

Because the operators attached to scale and frequency do not commute, namely

v — POF—_ G F—e I o
[ TN=S T~ TS = 5= 7,

the corresponding variables obey a specific form of uncertainty relation. Precisedyf I¢tbe an
analytic signal such that

+ o
EXEf IX(f )22t f<+eo,
0

1 [+
= | oxo s,
EX — 00

and

1 [+
—f FIX(F )[2df=1,.
Ex Jo

If we denote byAsy and Afy its mean-square deviations in scale and frequency, defined,
respectively, by
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1 [+
ASiEE—Xf (s=s0)?|X(s)|* ds (24
and
1 [+
Afis—f (f—fo)?[X(f |21 df, (25)
Ex Jo

we can prove the following?!~23
Proposition 16: Scale and frequency satisfy the uncertainty relation

f
AsyAfy= ﬁ, (26)

with equality if and only if Xf ) is a “Klauder wavelet” of the form
X(f )=Cfre Afru(f ), (27)

with Ce C, («,8,7) e R, XR, XR and U(-) the unit step function

Proof: In order to get simplified notations, let us introduce the quantitigss.”"—sy.7 and
Fo=7—1,.7, with .7 the identity operator. It follows from the unitarity of the Mellin transform
that

+ o0
Asi=f |(SoX)(F )2+ df,
0
so that we can write, by using the Cauchy—Schwarz inequality,

+ o + o0
E§A5§Af§=f0 I(SOX)(f)|2f2f+1o|fJO (7oX)(f )|2F2 1 dif

2

4+o___ 2 »
ZUO (SX)(F)(FX)(F)F2r ™ df :Uo+ X(F)(So7oX)(F ) f2 1 dif

Defining the anticommutator of any two operatovsand.” as[. 4, %], =.4.%+.%.# and
remarking thaf.”,,.7]1=[.7..7], we get, in the specific case of scale and frequency, that

2

vZre oz et 2 I Vel G el
Y07 0= 3([S0. 701+ [ 0.7 0)+) = %(_ T+[750:T0l+

and it follows that

o

ASiATA= T6.2
with equality if

[“0+70]+=0, (28)
and for those signalX(f ) which satisfy, for some. € C,

(LX) (F)=MTX)(F). (29

Plugging (29) into (28) yields that\ is necessarily purely imaginargnamely that\?
= —Asf(/Afi). By developing explicitly Eq(29) which characterizes the signals with minimum
uncertainty in scale and frequency, we end up with the differential equation

2FX(f )=[4m IM{\}(f—fo)—1—idmse]X(f ),
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whose solution is given by
X(f )=K exp(27 Im{\} — (27 Im{\}fo+3+i2msp)log f ),

with K e C and Im{A}<0, so that the signal is of finite energy. This solution, which is only defined
for positive frequencies, is of the forf27), and this concludes the proof.

In order to get an analog of Proposition 4 in the case of Mellin—Fourier variables, it is natural
to consider thaunitary Bertrand distributiorBy(t,f )=P{)(t,f ), which, in many respects, is the
counterpart of the Wigner—Ville distribution in the Mellin—Fourier domain. By definition, the
unitary Bertrand distributiofalso referred to as th®mographicdistributiorf®) is obtained from
(21) by settingk=0 in (22), and it reads explicitly as

u/2 >z(r+1) ((U/Z)eu/2f>((uTeu/2f) _—
sinh(u/2) sintr2) ) X “sintrarzy )€ 44 (30

Bx(t,f ): .f2(r+il.)—qj1+:>C

With this definition, we are led to the following.
Proposition 17: Given any $0, the unitary Bertrand distribution satisfies the Mellin-
frequency uncertainty relation,
f 2
%‘1>

$2(By= o |7
Sf( X)_EX —»Jo

with equality, if and only if Xf ) is a Klauder wavelet.
Proof: The proof relies on marginal properties of the unitary Bertrand distribution, according
to which

2
+S?

By(s,f )f9 lds df= 1
x(s,1) sd=o—,

S—Sy
S

+oo,
J By(s,f )ds=f2r+D-9x(f )|?

and
+oo_
f By(s,f)f9" 1 df=|X(s)|%
0

Using the definitiong24) and (25), it follows directly from these relations that

~ A8 Af2  [As Af |2 As.Af AsyAf
R A e

g s T, fo 5 fy

with equality if Sis “matched” to the signal according 8= \fyAsy/Afy. In this case, we know
from (26) that the producAsyAfy is lower bounded too, with equality in the only case of Klauder
wavelets, whence the result.

B. Separability

The question we are interested in here can be stated as follows: is it possible to get affine
distributions(23) which are separable in their Mellin and Fourier variables for some si§ffa),
i.e., such that they can be put in the form

PY(s,f )=p(s)Q(f ), (31)

wherep(s) andQ(f ) are functions to be determined?

A first answer to this question can be looked after in the spirit of Proposition 3, which has
been established thanks to the correct marginal properties of the Wigner—Ville distribution, in
both time and frequency. In the specific case of the unitary Bertrand distrid@@rwe have, in
fact?° the two marginal properties
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f+OCBX(t,f ydt="f2"+179x(f )| (32

and

f+mf+mBX(t,f )5(t—?)fq1 dt di=|X(s)[2 33
—o JO

Within this new context, and considering first the frequency marginal prop@®jyit is easy
to show that the separability conditig81) leads to

+

IX(f )|2=fq‘2"1f_:Bx(t,f ydt
Q(f)
f

=0

+oo ds +oo ds
:fq—2(r+l)f7 B(S,f ) T:fq—Z(r+1)J7 p(S)Q(f ) T:.l:q—Z(r-*—l)F)(o)

whereas, by using the Mellin margingd3), we obtain, in a similar way,

fa-1dt df

x| [ Bt

S
F

+oo + o
:J By(s,f )fa~1 df:p(s)f Q(f )yfa~tdf=o0.
0 0
Combining these two marginals, we get
+ oo
P(O)J Q(f )f9" 1 df=Ex=0,
0

with the consequence that

- X(s 2f2(r+1)—q X(f 2
5 or) KO XOF_,
Ex

We could therefore think of having proved that, as for Wigner—Ville, separability implies
positivity. The situation is, however, different since, unfortunately, the assumption of separability
can be proved not to be admissible for unitary Bertrand distributions. This is evidenced by the
following.

Proposition 18: The only affine distributions which are compatible with separability are
characterized by (21) and (22) with=k—1, 1/2,0r 2.

Proof: Assuming that separability holds, we can take the Fourier transforg8Dfwith
respect tes, and we get

P(0)Q(f )=f+°cf><k>(sf )27 s
% X !

=f2““*‘*ﬁ:nk(u)X(Ak(u)f X =W )d(o— (w))du

=20 D79 (G HoW(0) XN o)X= & Ho))F ),

with w(o) = (d/do) ¢, *(0). SettingZ, *(o)=u, we end up with

P(£(u)Q(f )= fA D= (WL (W)X (W) X (—w)f),

a relation which implies that
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P({(u) Q(f)

LW () F207D-a =P(u)Q(f ). (34)

XA (W )XA(—wf )=

_We know from Ref. 20 thah,(0)=1. Imposingu=0 in (34), we get thereforgX(f )|
=P(0)Q(f ) and, hence,

XOu(WXO(—WF) _ P(w)
IX(F)]? P(0)

(39

This states that the left-hand side (86) is necessarily a function af only. In order to find
solutions(and conditions for their existence the functional equatiof85), we can factoX(f )
in a (non-negative modulus term and a phase term according<{d ) =|X(f )|exp{i argX(f )}
=exp{®(f ) +iV(f )}, thus leading to

XMW )X(N(—u)f )

| (f )|2 :e{q)()\k(u)f )+ PN (—u)f )=20(f )] +HiI[P\(W)f )= TN (—u)f )}
X .

Within this formulation, imposing35) to hold requires that both the real and imaginary parts
of the above exponential do not depend ugohe condition on the phask(f ) is

d
77 Y (W) =¥ (M(—w)f)]=0,

or, equivalently[by letting \ (u)f=¢& and \ (—u)f={], g\if(g)zg\if(g) for any (£,0) e Ri.
This does not impose any restriction on the admissible distributions but constrains the phase to be
of the form

Y(f )=alog f+b, (36)

with (a,b) e R?. Concerning the modulus, the condition can be written as
J
27 LW )+ (M (—w)f ) —20(F )]=0,

or, equivalently,

MU DU )+ N (— W) DO (—u)f )

O(f )= 5

This expression can be rewritten by introducing, as befog@y) f=¢& and\ (—u)f={, thus
defining f as theStolarsky’s generalized meani ¢ and £, whose expression reads explicitly as

f=0(&¢), with
B 1 gk_gk) 1/(k—1)
@(5.@)—(; =, (37
What we get is9 (£,)P(O(&,¢))= (£D(&)+ {D(L))/2, and finally, if we let
m(f )=fd(f ), (39

we end up withm(®(£,£))=(m(£&)+m({))/2 or, equivalently,

0(¢&H=m*

m(§)+m(§))
—
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We recognize therefore that the Stolarsky’s generalized rf@@mmust necessarily be of the
form of a quasiarithmetic generalized medim the sense of Kolmogorov and Naguma situa-
tion we know to be true only ik=—1, 1/2, or 2, as proved ifRef. 25, Appendix A This
concludes the proof.

It appears therefore that the unitary Bertrand distribution Q) is excluded from the class of
affine distributions which may be separable in their Fourier and Mellin variables. The three cases
mentioned in the Proposition can, however, be studied in further detail by specifying the corre-
sponding generalized means and the associated distributions, and by identifying the signals which
guarantee separability.

1. Case k=2

The generalized meai37) reduces in this case to the arithmetic mean

CICNIE %@m(f )=af+b,

and, according td38), d)(f )=a+b/f, which leads tod(f )=af+b log f+c. Together with
(36), the associated class of signals is therefore of the form

X,(f )=Cfee Fifivy(f),

with CeC, (a,B,7) e R%, andU(-) the unit step function, thus corresponding to the family of
the “Klauder wavelets”(27) when a and 8 are both positive.

Assuming thatX(f ) is analytic, i.e., vanishes for negative frequencies, it is krf@#tthat
the casdk=2, g=0, r=—1/2) corresponds to the Wigner-Ville distribution,

_Z i2muvt
iy 5 X(f 2)6 dv,

Wit f )=f+2fx(f+3

for a suitable choice of the weighting functigry(u), namelyu,(u)=cosh ?(u/2). In this case,
a direct calculation shows that

A 2¢2a+1,—2p8f t 2\ 1+w|" i4msw
Wy, (s, f )=2|C|*f e 71(1—W ) T-wl € dw U(f ).

One can remark that, in the real case whete0, this result can be given a closed form expression
which reads as

~ g sl 4mls)
Wy (s,f ) =2|C|2\al (a+1)f2+1e 24" (;ﬂsbam u(f),

whereJ,(-) stands for the Bessel function of the first kitfd. 5
Remark:Whereas in this special casel,xz(s,f ) is separable and is of the forwxz(s,f )

=Kk(s)f|X(f )|, it can be checked th&(s) is neither proportional to the Mellin densibX(s)|?
nor positive.

2. Case k=-1
The generalized mea87) reduces in this case to the geometric m&an,

O(&,0)=éErem(f )=alog f+b,

and, according tq38), Ci)(f y=a(log f )/f+b/f, which leads tod(f )=(a/2)log? f+blog f+c.
Together with(36), the associated class of signals reads as

X_,(f )=Cfae Alo@iiny(f ), (39
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and it generalizes a family of wave forms defined by Alfeghe special case of the above
expression withw=0 and3>0).

It is knowrf®?® that the casék=—1, q=0, r=—1/2) corresponds to the so-callddhter-
berger distribution which, in its “active form” [i.e., when setting.(u) = cosh(#/2)?°], reads as

x(s,f —ff

A direct calculation shows that

1+

f
')/f )X( 7) i2m(y—1ly)s d)/. (40)

~ +oo
Ux_l(S.f ):|C|2f2a+1e—25(logzf+y2/4)f e~ 28@ sinhw—i(y/2))zei4wsw dw U(f ).

— o0

Remark:The family of wave formq39) has been introduced by Altes in a context of active
sonar, such as encountered in bat echolocation. They are, in fact, solutions to the problem of
“Doppler tolerance,” which consists in estimating at b&sbd bias and the highest signal-to-noise
ratio) a time delay in the presence of some unknown Doppler shift.

3. Case k=1/2

The generalized meai87) reduces in this case to the square-root riean

2
@; @) em(f )=af+b,

0(&0)=

and, according td38), ®(f )=a/+f+b/f, which leads tob(f )=2a\f+b log f+c. Together
with (36), the associated class of signals reads as

Xy f )=Ctre ATty (f ).
It is knowrf%?*that the casék=1/2, q=0, r = — 1/2) comprises the so-calledD' distribution:”
~ +4 Y 2 Y 2 Y 2 i2ms
Dy(s,f) le4 4> }x((1+ 4) fIX(|1-g) |e2m™dy,

and a direct calculation shows that

1—

+w\l”
) e'®™sW dw U(f ).

~ L [*1 1
Dyyy(s.f )=4|C[22 g 26 L (1—w2>“(—1_w

If y=0, this result can be simplified to

~ _ a+1/2A87[8])
Dy, (s.f )=4|C]2{aT (a+1)f2e+1e 2" *W u(f).

C. Positivity

It has already been mentioned that Wigner—Ville distributions attain generally negative val-
ues, but that they are everywhere positive when applied to a Gaussian signal and, more generally,
to the exponential of a quadratic polynomfidt.is our purpose in this section to point out related
results in the case of affine time—frequency distributions.

1. Unitary Bertrand distributions

We will first show that, in the case of th@nitary) Bertrand distribution(30), “Klauder
wavelets” play a role which has much to share with the one played by Gaussians in the Wigner—
Ville case. To this end, it is convenient to generalize and reparametrize the Klauder wavglet
as
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Xz(f )ch—(r+1)e2w)\(fo log f—f )e—iZW(BO log f+&f )U(f )' (41)

with CeC, andr, \, fy, Bg, and ¢ real-valued parameters such that0 and fy>0. This
reformulation allows a simple physical interpretation of the parameters since the mean frequency
fm, and theQ factor defined byQ=f,/Af are given, respectively, bf,=f, and Q?=4mx\.
Moreover, the phase term is written so as to correspond to a modulation with a hyperbolic group
delaytxz(f )=§&+Bolf.

Given these notations, we have the following.

Proposition 19: The unitary Bertrand distribution of the Klauder wavelet (41) is everywhere
non-negative.

Proof: The proof relies on properties of characteristic functigmBich are Fourier transforms
of non-negative functionsand it proceeds as follows. We first start from the definitidh of the
Klauder wavelet and we plug it into the definitigB0) of the Bertrand distribution. After some
manipulations, the result can be expressed as

By, (t.f )=|c|21‘“*qu°c|v|M(u)e*iz’ﬂfgu du U(f), (42)
with
u/2 «
Maﬁ(u)z(m) exp{— Bu coth(u/2)} (43
and
a=4xm\fy; B=2w\f; [(=By—(t—¥§)f. (44

In order to prove that42) corresponds to a non-negative quantity, it is then sufficient to show
that M, 5(u) is—up to a positive constant—a characteristic function, a property which will
obviously hold if each of the two factors 643) is itself proportional to a characteristic functiéh.
Using first the fact th&?

X2
Yier)

w
sinhx:xH
k=1

we can write

1 i 70{1 i h
+|2k77 _|2k77 )

This is clearly a characteristic function sinae,being positive, each of the factors of this
infinite product is the characteristic function of a Gamma distribuffddsing then the fact that

u2 o\ -
sinhu/2)] =1

[

th rx— 1 +2x 1
oM™= 7 & X+
we can write.
_ —a—28 - -
exp{— Bu cothu/2)}=e k]l exP 48| T3 kL J (45)

Since (1+(u/2km)?) "1 is a characteristic functiomnamely the characteristic function of a
Laplace distributionand 8=0, it suffices to make use of a theorem by Lukiesstating that, if
g(u) is a characteristic function angda positive real number, exp(g(u)—1)} is itself a charac-
teristic function—for guaranteeing that each of the factorg4® and, hence(45) itself is a
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characteristic function. The two factors @f3) each being a characteristic function, the Fourier
transform of their product is everywhere non-negative and the proof is complete.
Two remarks.

(1) Assuming as we did thak >0, we haveX,(f )eL?(R, "1 df) and By (t,f) is a
bounded square-integrable function. A degeneracy is, however, observed in the case of the
“hyperbolic chirps” Cy(f ) corresponding tX,(f ) with A=0, and for which we knof
that

Bg,(tf )=|C|2fq15(t— §+%
a result which also follows directly frort42), (43), and(44), since we have ther= =0,
and henceM , ;=1.

(2) According to the definitior(27), the nonzero frequencfy can be interpreted as the central
frequency of thgenvelope of theKlauder wavelet. Within the narrow band assumpth
=4m\>1, we get the approximation

e+,
fo

wheresf=f—f, andC’ is some suitablécomplex-valuegiconstant. This means that narrow
band Klauder wavelets reduce to Gaussians, in clear accordance with the fact that the Bertrand
distribution reduces to the Wigner—Ville one for narrow band sigffaimd that Wigner—

Ville distributions are non-negative for Gaussians.

u(f),

o
Xo(f )~C' exq— £ (N—iBo)5f >—i2m

2. Unterberger distributions

A result similar to the one of the previous Proposition can be obtained in the case of the active
Unterberger distributio§40), but it requires replacing the Klauder wavelet by the signal

X—l(f )chf(r+1)672w)x(a0/f+f )efiZ'rr(.fffa/f )U(f ),

with ag>0. More precisely, we can prove the following.
Proposition 20: The active Unterberger distribution of X f ) is everywhere non-negative.
Proof: The proof follows from a direct calculation according to which

—

“+ 00
e 4m\(ag/f+1 )v1+(w/2>zei4w(tf—§f—a/f W dw u(f ),

U t1)=2lcr e |

[

a result which can be equivalently expressedsa®, e.g., Ref. 30
Ux ,(t,f )=4|C|2f(z”l)GB(4w(tf—§f—%>)U(f ),

with B=4m\(f+ ay/f ) and

(46)

Gply)= Ny Ki(B%+y?),

K,(-) being a modified Bessel function of the first kifftPositivity of the distribution is therefore
guaranteed by the simple fact that modified Bessel functioy(g) are known to be positive if
y>—1 andz>025

Unterberger distributions also exist under a “passive” fdftwhose definition reads as

+ o0

Vy(t, f )=fJ X(yf )X

i) ei27r(7— 1/y)tf d_y )
Y Y

“Active” Unterberger distributions are known to be perfectly localized for signals whose
group delay is defined by squared hyperbolas of the fermy/f2, but they are also known not to
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be unitary(in fact, it can be showf! that unitary Bertrand distributions are the only distributions
guaranteeing both localization and unitayityPassive” Unterberger distributions share a lot of
properties with “active” ones, at the notable exception of localization. Both forms are, in fact,
“dual” in the sense that, whereas none has simultaneously properties similar to the unitary
Bertrand distribution, they can be combined so as to satisfy the Moyal-type formula

2

oo [+ L R —T
J f Uy(t, T )Vy(t,f )dtT:‘J X(f)Y(f) T
— oo 0 0

With the above definition fow(t,f ), the following can be proved.
Proposition 21: The passive Unterberger distribution of Xf ) is everywhere non-negative.
Proof: This can be checked by a direct calculation, according to which

2
Vy(t,f )=2|C|2f(2”1)K0( \/,82+4772<tf—§f—;) )U(f )

which concludes the proof exactly as in the previous Proposition.

Remark:The closed form expression given above can be found almost exactly in Ref. 31,
where the authors introduce a time-scale energy distribution whose definition has essentially the
form of a passive Unterberger distribution.

In the case of the Wigner—Ville distribution, Hudson’s theorem guarantees that Gaussian
signals are the only ones ensuring positivity, whereas the question is left open to prove that
Klauder wavelets would be the only signals with(umitary) Bertrand distribution everywhere
positive. In the case of th@ctive Unterberger distribution, a class of signals ensuring positivity
has been evidenced in Proposition 20, but it can be proved that this solution is not unique. Two
counterexamples to unicity for positive Unterberger distributions are provided by the two follow-
ing claims.

Proposition 22: The active Unterberger distribution of

Y,l(f )ECf—(r+1)e—2w}\fze—i27r(§f—a/f )U(f ),

is everywhere non-negative.
Proof: The active Unterberger distributidd0) admits the(time—frequency equivalent form

+

Uy(t,f )=2ff coshuX(e'f )X(e™Uf )el 47t shu quu(f ).

—0o0

Plugging the definition ol _(f ) into this expression yields

2
UY_l(taf )= |C| f—(2r+1)e—4m\fze(—27r/>\)<t—§—a/f2)2U(f )

V2\

whence the result.

Remark:When applied tor _1(f ) with =0 (a constant group delaythe active Unterberger
distribution is not only positive, but also separable in time and frequency.
Proposition 23: The active Unterberger distribution of

Z_l(f )ECf*(r+l)e72w)\fefi217(§f7a/f )U(f )

is everywhere non-negative.
Proof: The proof follows from a direct calculation, according to which

Uz (t,f)=2|C[*f 2 1G, U(f), (47)

4 a
et

with G(-) defined as in46), and positivity stemming from the usual assumption 0.
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V. CONCLUDING REMARKS

In this paper, a number of results have been given which—although still preliminary in many
respects and far from exhausting the subject—are believed to clarify some of the links which exist
between positivity, separability, and minimum uncertainty in time—frequency energy distributions.
In fact, whereas in the case of the Wigner—Ville distribution, these features may admit order
relations of the type “separabiliggpositivity=minimum uncertainty,” it has been shown that the
situation of other distributions is more intricate, with possible incompatibilities between the three
different properties. Affine distributiondased on frequency and on a Mellin variable, in place of
the usual time variab)ehave especially been considered in some detail, with two main conse-
guences which make them depart from the Wigner—Ville case.

(1) In comparison with the known fact that minimizers of the classical time—frequency
uncertainty—Gaussians with a linear phase—have a positive and separable Wigner—Ville
distribution, signals with minimum frequency-scale uncertainty—namely, Klauder
wavelets—do possess a positiumitary) Bertrand distribution, but this latter is not separable.

(2) Whereas positivity is an exception in the Wigner—Ville case and can be observed with Gauss-
ian signals only, it turns out that this situation of unicity is no longer true in the affine case,
different classes of signals having been evidenced to lead to positive distributions.

As already mentioned, many questions are still left open, such as, e.g., the question of unicity
for the positivity of unitary Bertrand distributions. From another perspective, it can be finally
mentioned that other types of extensiqesy., to the hyperbolic cla¥sand, more generally, to
“warped” classes’) could have been considered, but have not, since the corresponding results can
be readily anticipated from those given here. In fact, such extensions being related to usual classes
(Cohen of affing by a warping operation, all the results obtained in one case can be transformed,
mutatis mutandisto get the corresponding results in the other case. For instance, the Altes-
Marinovic distribution®*

+ o0 -
Qx(s,f )=fJ x(eu/2f )X(er/zf )e|27-rsu du,

which is known to belong téand be a central member)dhe hyperbolic clas& can be expressed
as well in terms of the usual Wigner distribution as

S f
Qx(s,f )=Wx| +—,fg log —|,
fo fo

with X(f )=e"2fox(ef0) and f,>0. It follows that any result pertaining to the Wigner—Ville
distribution can be transposed to the Altes—Marinovic distribution, provided that it is applied to
signals warped the suitable way. In particular, an analog of Hudson'’s theorem can be dinen as
new proof is really necessary

Proposition 24: The AltesMarinovic distribution is positive for “Altes signals” of the type
(39), and only for them.
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