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Abstract. The concept of stationarity is revisited from an operational perspective that explicitly takes into
account the observation scale. A general framework is described for testing such a relative stationarity via
the introduction of stationarized surrogate data.

1. Introduction

The concept of stationarity is ubiquitous in the signal and image processing literature, but its actual
theoretical definition fails to be operational when confronted to practice. Strictly speaking, stationarity
is a stochastic concept and—even when restricted to second order—its definition relies on an invariance
with respect to any shift (in time or space), no matter how large this shift may be. This obviously
contrasts with common practice which often accepts to loosely extend the definition to deterministic
periodicities and to implicitly restrict its application to some finite observation range. As a result,
practical “stationarity” turns out to be a relative concept, the very same physical object having the ability
of appearing as stationary or not, depending on the observation scale. A schematic example of this
situation is given in Fig. 1, in which zooming in on a scene makes successively appear, in an intertwined
way, “stationary” and “nonstationary” features.!

2. A general framework
In order to cope with the aforementioned issues, a methodology has recently been proposed [8, 9], that
basically relies on two ingredients:

(i) selecting an appropriate representation space in which local features can be compared to global ones
SO as to assess variability;

(ii) giving this assessment a statistical significance by comparing the actual observation with
stationarized data sharing the same global structure.

2.1. A time-frequency/space-scale approach

Considered from either a stochastic or a deterministic point of view, stationarity of a time series is usually
meant for an invariance of spectral properties over time. This naturally makes of the time-frequency plane
[3] a natural representation space, with stationarity defined as an equivalence between local spectra and
the global spectrum obtained by marginalization (see, e.g., [4, 5] for early attempts in this direction).
Whereas the initial setting was developed for 1D time series only, with spectra considered the usual

' The images used in Figs. 1 to 3 of this paper have been downloaded from http://maps.google.com/.
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Figure 1. Zooming in on a given scene makes appear structures that, depending on the corresponding
observation scale, can be interpreted as “stationary” or “nonstationary”. In this example, observation at
a large scale (top left) evidences large distinct regions that make the overall scene “nonstationary”. At
some smaller scale (top right), the scene is dominated by roughly periodic structures that turn it into a
“stationary” one. Zooming in further (bottom left) turns back to “nonstationarity” whereas an observation
at an even smaller scale (bottom right) reveals again a “stationary” structure attached to an homogeneous
texture.

way as a function of frequency (via the Fourier transform), it is clear that the proposed picture extends
trivially to scale-based spectra (via the wavelet transform) as well as to 2D data in space. In any case, the
rationale is to test for the variablity of differences (in a sense to be precised further) between local and
global features over a given observation domain.

2.2. Stationarization via surrogates

From a practical point of view, local frequency/scale features will always exhibit fluctuations, and the
question is to give them some statistical significance. For this to make sense, there is a need for some
reference for the null hypothesis of stationarity. Since, in general, such a reference is not available,
it is proposed to create it in a data-driven way by synthesizing a set of surrogate data that all share
with the actual one the same global structure while being stationarized. For a given marginal spectrum,
“nonstationary” processes differ from “stationary” ones by some organized structure in time or space.
Recognizing that such an organization is encoded in the spectrum phase, stationarized surrogates can then
be easily constructed by randomizing uniformly the phase of the actual data spectrum while keeping its
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magnitude unchanged (this is in fact a new way of using the technique of surrogate data that has been
primarily introduced in the physics literature and mostly used for testing nonlinearity [6]).

3. Tests
Within the above general framework, the principle of any surrogates-based test is therefore very simple,
since it essentially amounts to

(i) creating a suitable set of stationarized surrogates from the observed data under test;

(i1) elaborating from this set a statistical characterization of what the distribution of natural fluctuations
is supposed to be in the corresponding stationary situation;

(iii) computing the actual fluctuation for the observed data and deciding whether it is an outlier or not
with respect to this distribution.

3.1. The 1D case

Two variations have been proposed in the 1D case, both based on (multitaper) spectrograms. In the
first one [8], local and global frequency spectra are compared via a suitable “distance” combining
the Kullback-Leibler divergence and the log-spectral deviation [7]. The mean-square deviation in
time (over the considered interval) of this dissimilarity measure has been shown to follow a Gamma
distribution. For a given confidence level, this modelling allows for the determination of an objective
threshold on the basis of the two Gamma parameters, as estimated (e.g., in a maximum likelihood
sense) from a limited number of surrogates (typically, about 50) [8]. (Matlab routines are available
athttp://perso.ens-lyon.fr/patrick.flandrin/stat_test.html.)

A second variation [9] is aimed at by-passing the pre-requisite of the null hypothesis distribution
modelling by directly considering the family of surrogates as a learning set. This viewpoint makes
possible the use of (kernel-based) machine learning methods, and in particular of one-class support
vector machines [10]. For the sake of learning, different time-frequency features can be envisioned but,
as previously, nonstationarity is assessed by the fact that the actual data feature vector lies outside the
domain of the empirical distribution derived from the training.

3.2. Some 2D extensions

Going from 1D to 2D can be made in a straightforward manner, replacing mutatis mutandis time by
space and spectrograms by scalograms (i.e., squared magnitude of wavelet transforms). An example—in
the spirit of the distance-based approach—is given in Figs. 2 and 3: it makes use of an undecimated
dyadic wavelet transform, the overall test being constructed as the ¢;-norm of a distance map computed
pointwise. In order to compensate for the estimation variability, the wavelet transform is dyadically
weighted in scale and, for both the distance map and its fluctuations, the comparison “local vs. global” is
achieved in a directional way, ending up in fact with 3 different test measures attached to the horizontal,
vertical and “diagonal” features extracted by the (tensor) 2D wavelet transform.

One further example is given in Fig. 4, dealing with a 2D fractional Brownian motion (fBm) with
Hurst exponent H = 0.3. From a strictly theoretical point of view [1], such a self-similar process
is classically referred to as nonstationary whereas, within the framework considered here, it appears
as “stationary”. This result is however in accordance with the principles underlying the approach
proposed here, since identifying “stationarity” with a statistical equivalence between local and global
properties tends naturally to label as stationary those fractal processes (such as fBm) for which “the
part is identical to the whole”. Moreover, the distance measure aimed at quantifying the difference
local vs. global is based on derail wavelet coefficients only, getting rid of the companion approximation
coefficients that are known to carry the nonstationary part of processes with stationary increments [2].
Revisiting stationarity this way appears therefore as operational, adding a quantitative characterization
to a meaningful interpretation.
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Figure 2. A “nonstationary” scene and one of its stationarized surrogates are displayed in the left
column, while the middle column represents the corresponding (horizontal) distance maps between local
and global scalogram spectra, the bottom one being an average based the use of 50 surrogates. The
“nonstationary” nature of the scene at the considered scale is assessed in the far right diagram by the 3
test values (in horizontal (H), vertical (V) and “diagonal” (D) directions) for the actual scene (red dots)
that appear as outliers when compared to the distributions boxplots of the corresponding surrogates test
values.

4. Conclusion

A general methodology has been proposed for testing stationarity in an operational way, i.e., in a relative
sense that explicitly includes the observation scale, and with a statistical significance stemming from the
construction of an adequate set of surrogate data. Only the principle has been outlined, and the efficiency
of the approach has been supported by simple, schematic examples. Whereas more details can be found
in [8, 9], further studies are necessary to thoroughly evaluate performance and to make comparisons with
related approaches.
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Figure 3. Same as in Fig. 2 when zooming in on a “stationary” region. At such a refined scale,
stationarity is assessed by the test values for the actual scene (red dots) that lie within the corresponding
distributions of the surrogates test values.
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Figure 4. Same as in Fig. 2, but in the case of a 2D fractional Brownian motion with Hurst exponent
H = 0.3. Within the considered framework, such a self-similar process appears as stationary.



