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Abstract
Scale-invariant processes, and hereafter processes with broken versions of this
symmetry, are studied by means of the Lamperti transformation, a one-to-
one transformation linking stationary and self-similar processes. A general
overview of the use of the transformation, and of the stationary generators it
builds, is given for modelling and analysis of scale invariance. We put an
emphasis on generalizations to non-strictly scale-invariant situations. The
examples of discrete scale invariance and finite-size scale invariance are
developed by means of the Lamperti transformation framework, and some
specific examples of processes with these generalized symmetries are given.

PACS numbers: 02.50.Ey, 89.75.Da, 05.40.−a

1. Lamperti transformation: a new reading

1.1. Scale invariance and beyond

Scale invariance, once acknowledged as an important feature [39], has often been used as a
fundamental property to handle physical phenomena. The idea that some quantity behaves
the same at each scale, irrelevant to the scale at which it is observed, has made its way into
the study of geometrical fractal sets [21], 1/f spectra, long memory [6], simple dimensional
analysis [5] or involved analysis of critical systems in statistical physics [22], textures in
geophysics [52] or image processing [38], turbulence of fluids [27], data of network traffic
[45] and so on.

Common as this invariance may be in physics, it often eludes general and convenient
methods or models. Even though there is no single definition of scale invariance [19], it is
often described as a symmetry of the system relatively to a transformation of scale, that is
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mainly a dilation or a contraction (up to some renormalization) of the system parameters.
A first problem is that this symmetry is not always compatible with the usual symmetries such
as stationarity in space or time, or isotropy, short-term memories and so on. In those cases,
the meaning of the Fourier spectrum or correlation functions may be unclear or improper,
and simple models such as Langevin equations or auto-regressive systems are not sufficient.
Another issue is that, as with all symmetries, one expects real systems to experience symmetry
breaking: incomplete invariance under dilations because of some additive part when scale
is changed (self-affinity in fractals [21], renormalization equation of free energy in critical
systems [22]), or the invariance holds only for some part of the meaningful scales (and
sometimes infinite zooming is unmeaningful) [17, 43], else there exists some preferred scale
ratios and the invariance stands true only for those scale ratios (the so-called discrete scale-
invariance property) [51].

We propose here to give a fresh look at the methodology for scale invariances (exact
or incomplete) of stochastic processes; instead of dealing directly with the scale-invariant
signal, one may transform the signal in some image that has a better known invariance such as
stationarity. This approach comes from a generalization of the Lamperti theorem [35] which
relates stationarity and self-similarity, and it is close to the extension of the concept of what
stationarity is, as proposed by Hannan [33]: one can study invariances such as stationarity or
self-similarity in similar frameworks. We argue hereafter that there exist such stationarizing
transformations for exact or broken scale invariances and that effective methods for modelling
and analysing scale invariances can be derived from this. We advocate the use of such a
transform to define and study scale invariance, exact invariance or its many variations as
broken symmetries.

This paper is then organized to cover two aspects of the Lamperti transformation: its
usefulness for self-similarity and new insights about its generalization for broken scale
invariance. By means of the Lamperti transform, we provide a new way of handling
self-similar processes that leads to some methods of synthesis and analysis of exact self-
similarity. The stationarization of self-similar processes was studied piecewise for specific
applications by different authors and we give here a general formulation of the method, with
new comments on its numerical applicability. This is the scope of the current section. The
idea of stationarization is generalized in section 2 to encompass various forms of broken scale
invariance. The specific case of discrete scale invariance [51] is studied in section 3. The
corresponding stochastic property is defined and elaborated here by means of the Lamperti
transformation. Then a fourth section is devoted to broken scale invariances defined by a
distortion of the dilation operators; this will provide insights into generalized scaling laws,
especially the property of finite-size scale invariance [17] in the framework of the Lamperti
transformation.

1.2. Definition and property of the Lamperti transformation

The roots of this work is the paper of Lamperti on scale invariance for stochastic processes
[35], where he first pointed out a one-to-one correspondence between scale-invariant processes
and stationary processes. To define what a dilation is, and thus the precise meaning of scale
invariance, we use here the framework of stochastic representation of signals (for instance
fluctuations or noises).

The following is the proper formalism for stochastic processes [20]. A random process
{X(t), t > 0} is said to be self-similar of index H (or scale invariant, denoted ‘H-ss’) if for
any λ ∈ R

+
∗,

{(DH,λX)(t) =̂ λ−HX(λt), t > 0} d= {X(t), t > 0}, (1)
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where
d= stands for the ‘equality’ of the stochastic processes, that is equality of all joint finite-

dimensional distributions. This symmetry is an invariance under any renormalized dilation
DH,λ by a scale factor λ, DH,λ being defined in the preceding equation. The theorem introduced
by Lamperti in 1962 [35] uses the invertible transformation LH

−1, acting on {X(t), t > 0}:(
LH

−1X
)
(t) =̂ e−HtX(et ) = Y (t), t ∈ R. (2)

Considering LH
−1 as an inverse transformation, the corresponding direct transformation LH

is called the Lamperti transformation and is given by

(LHY )(t) =̂ tHY (log t) = X(t), t > 0. (3)

The theorem states that a process {X(t), t > 0} is H-ss if and only if
{
Y (t) =(

LH
−1X

)
(t), t ∈ R

}
is stationary; we call Y (t) the stationary generator of the process

X(t). We recall that stationarity is the invariance under any time shift (or space shift if the
parameter is space). For any τ ∈ R, a process

{
Y (t) = (

LH
−1X

)
(t), t ∈ R

}
has thus to

satisfy (Sτ Y )(t) =̂Y (t + τ)
d= Y (t). The core of the theorem is a mapping of operators such

that for any λ ∈ R
+
∗, the Lamperti transformation guarantees that

LH
−1DH,λLH = Slog λ. (4)

Quoted in review books or articles (e.g., [16, 53, 48, 20]), the theorem is completed by the
unicity result of the transformation mapping stationarity to self-similarity, demonstrated by
Burnecki et al [13].

1.3. Properties of stationary generators of H-ss processes

There have been few uses of the result of Lamperti beside mathematical works on self-
similarity. Gray and Zhang [32] or Yazici and Kashyap [57] summoned some form of
Lamperti’s theorem to study specific classes of self-similar processes; Nuzman and Poor [44]
and more recently Lim and Muniandy [36] used it extensively for fractional Brownian motions
only. But those are among the few practical uses of the transformation. We have introduced
general results on this subject in [11, 26], and we point out here their practical consequences
for the modelling and analysis of scale invariance.

1.3.1. Covariance and spectrum of H-ss processes. The covariance of a scale-invariant
random process {X(t), t > 0} admits necessarily the general form

RX(t, s) =̂ E {X(t)X(s)} = (st)HCX(t/s), (5)

where CX(e·) is some non-negative definite function. In this expression, we have
written E for the probabilistic expectation. The property (5) comes from the stationary
generator

(
Y = LH

−1X
)

correlation function. The transformation assures that RX(t, s) =
(st)HRY (log t, log s). Hence, because of the stationarity of Y, its covariance depends only
on the time difference, RY (u, v) = cY (u − v). The central identity is therefore given for the
correlation function cY (τ ) = CX(eτ ).

Our first and well-known example is the Brownian motion B(t) defined as an integral of
independent stationary Gaussian increments. B(t) is also self-similar of index 1/2 and thus
it has a stationary generator. Its covariance is RB(t, s) = σ 2 max(t, s), σ 2 being its variance.
A simple calculus of the covariance of

(
LH

−1B
)
(t) gives cLH

−1B(τ) = σ 2 e−|τ |/2 and proves
that this generator is the Ornstein–Uhlenbeck (OU) process, solution of the stationary linear
Langevin equation driven by white noise. Consequently, the properties of the Brownian
motion derive from the properties of the OU process [16, 20].



2084 P Borgnat et al

The power spectrum ΓY (f ) of Y (t) is the Fourier transform of the correlation function
of a stationary process: ΓY (f ) = (FcY )(f ). The Fourier transform is known as a suited
representation for stationarity, but not for self-similarity. Starting from an H-ss process, the
following algebra expresses the power spectrum of the stationary generator of a self-similar
process:(
FcLH

−1X

)
(f ) =

∫ +∞

−∞
CX(eτ ) e−i2πf τ dτ =

∫ ∞

0
CX(u)u−i2πf −1 du = (MCX)(i2πf ), (6)

where M stands for the Mellin transform of the function. The definition of M, for any function
g(u) and any variable s ∈ C, is (Mg)(s) = ∫ ∞

0 g(u)u−s−1 du.

The Mellin transform plays the same central role for self-similarity as the Fourier transform
plays for stationarity because of the relation established in (6), which indeed is general for any
quantity g(u), given some index H:

(Mg)(H + i2πf ) =
∫ ∞

0
g(u)u−i2πf −H−1 du = (

FLH
−1g

)
(f ). (7)

The basis functions are the Mellin chirps {tH+i2πf , t > 0}, with f ∈ R. Using this equivalence,
note that one can obtain a harmonic-like representation of a self-similar process X(t) as an
inverse Mellin transform, namely an integral of uncorrelated spectral increments dξX(f ) on
the Mellin basis [10, 26]:

X(t) =
∫ ∞

0
t i2πf +H dξX(f ). (8)

This is the Cramér representation for self-similar processes, mapped by LH from the usual
result known for stationary processes. It is valid under the assumption of the Loève condition,
that is the summability of the integral representation for the second-order statistics of the
process [37].

Here is obtained a spectral representation of an H-ss process with no assumption on
stationarity (which is not compatible with self-similarity), nor on stationarity of the increments.
With the added hypothesis of stationarity of the increments of the process, defined for any
τ as {X(t + τ) − X(t), t ∈ R}, a good method to model the process is to use the wavelet
transform [15]. It was proved really suited to study self-similar processes with stationary
increments [1]. But, lacking this property, one cannot use the wavelet transform properly
because there will not be convenient decorrelation between the coefficients. Also, because
the wavelet transform with a wavelet ψ reads as T (a, t) = ∫

ψ(u)X(t − au) du, the scale a
defined with the wavelet transform is mainly based on the difference between two times. This
is revealed by the underlying affine structure of the wavelet transform or by taking a look at
one of the crudest wavelets: ψ(u) = (δ(u)− δ(u− τ0))/2. In this case, the wavelet transform
is T (a, t) = (X(t) − X(t − aτ0))/2 (an expression close to the increment of the process) and
the scale a is probed by the difference of two times: t1 = t − aτ0 and t2 = t .

In contrast, the variable f defined in (8) which is also a scale, named the Mellin scale
(see for instance [24], p 210), is built on a ratio of times. It gives a simple description of
how a process has changed between two times t1 and t2: each component with Mellin scale
f has been multiplied by (t2/t1)

H+i2πf . As dilations are defined by changing t in λt , the
decomposition in Mellin scale is well suited to probe the behaviour under those dilations by
the importance given to the ratio of two times, t2/t1 = λ. The Mellin scale f is the spectral
variable associated with the dilation ratio, in the same sense that a Fourier frequency allows the
effects of a time-shift to easily described. Thus, this Mellin scale is adapted to self-similarity
where invariant properties under dilations are expected. Moreover, a spectral decomposition
on Mellin scales will be an interesting tool for processing of self-similar processes.
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1.3.2. Scale-invariant filters and models. A further consequence is that scale-invariant linear
systems are found as images by LH of stationary (linear) filters. Applying LH on a stationary
filter H that has the usual action on Y (t) as a convolution: (HY )(t) = ∫ +∞

−∞ h(t − u)Y (u) du,

one defines systems having the form of a multiplicative convolution,

(GX)(t) =
∫ ∞

0
g(t/s)X(s)

ds

s
=

∫ ∞

0
g(s)X(t/s)

ds

s
. (9)

They are related to usual filters by means of LH because we obtain this equation by setting
(LHh)(s) = g(s). Note that it is not a wavelet transform because it says nothing about time
shifts here (we only have one variable). We put together the defining property of stationary
filters which is that they commute with any time shift Sτ (i.e., for any τ ∈ R, HSτ = SτH)
and the equivalence (4). Then one finds that a defining property of the scale-invariant filters
G is that they commute with dilations (covariance with dilations), i.e., GDH,λ = DH,λG for
any λ ∈ R

+
∗ . As such they preserve self-similarity and are a good tool to process self-similar

signals without disturbing this key property.
Taking the Mellin transform of (9) one formally obtains a transfer function for those

systems: dξGX(f ) = (Mg)(i2πf ) dξX(f ). From this, it is possible to design parametric
models built on scale-invariant filters, by taking a rational function for the transfer function
(Mg)(s). The models are mapped by LH from the ARMA models, and are found to follow
Euler–Cauchy systems. A theory of parametric modelling for self-similarity may be written
on these premises [11] and some issues were covered in [26] and in previous works [12, 56, 57]
that did not use the Lamperti correspondence explicitly.

1.3.3. Fractional Brownian motions. From the above results, one can study a typical model
of H-ss stochastic processes: the fractional Brownian motion (fBm) {BH(t), t > 0}. The fBm
is the only (up to a multiplicative constant) Gaussian process that is H-ss, and has stationary
increments [20, 41]. When H = 1/2, the fBm collapses onto the usual Brownian motion, the
increments being therefore independent in that case. Its covariance has the form

RBH
(t, s) = σ 2

2
(|t |2H + |s|2H + |t − s|2H ) (10)

= σ 2

2
|st |H (|t/s|H + |s/t |H + |

√
t/s −

√
s/t |2H ), (11)

which has the expected form of (5). Using the inverse Lamperti transform, the stationary
generator {YH (t), t ∈ R} of the fBm is shown to be a stationary Gaussian process with zero
mean and covariance function given by [26, 36, 44]

RYH
(τ) = σ 2

2
[cosh(Hτ) − (2 sinh(|τ |/2))2H /2]. (12)

When H = 1/2, we recognize the covariance function of the Ornstein–Uhlenbeck process,
else we obtain some kind of generalized OU process. For the point of view adopted here, the
fBm has the following Mellin spectrum (or Fourier spectrum of its associated generator):

(
MCBH

)
(i2πf ) = ΓYH

(f ) = σ 2

H 2 + 4π2f 2

∣∣∣∣�(1/2 + i2πf )

�(H + i2πf )

∣∣∣∣
2

, (13)

where � is the Euler gamma function. Characterizations of the generalized OU process can
be found in [26, 36, 44].
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Figure 1. Example of fractional Brownian motion, with H = 0.3, computed by means of its
stationary generator. Top left: the generator Y (t), synthetized from its stationary correlation
function, (equation (12)) (using the method of the circulant matrix). Bottom left: the fBm deduced
from the preceding process, by B(t) = (LH Y)(t). Top right: the increments B(t + 1)−B(t) of the
fBm, known to be stationary. Bottom right: the logarithm of the histogram of the increments of
the fBm that shows they are Gaussian as expected (the curve is the Gaussian on this lin–log scale).

1.4. Use of Lamperti transform for numerical operations

The Lamperti transform is twofold: a multiplication by a non-stationary factor tH and a change
of the way the time variable is measured, from t to log t . The first part captures the general
growth of the statistics driven by the H exponent. The second part is a kind of clock change in
order to find the natural scale for measuring the evolution of the process (which here is log t),
and is referred as a warping of the time in signal processing [4].

It is then possible to use this feature for numerical analysis or synthesis of discrete-time
sequences. Because of the stationarity of the generator, a good way of synthesis for self-similar
processes is to compute a realization of the generator by means of fast algorithms requiring
stationarity (e.g., Levinson algorithm or the circulant matrix of Wood and Chan [55]). The
generator is obtained as a uniformally sampled sequence Y (t = nτ) with a fixed τ and the
indices n in a subset of Z. The transformed process is then known at times t = enτ = (eτ )n,
thus with a geometrical sampling. By resampling the process, one can obtain a realization
of the H-ss process with a uniform sampling. Figure 1 shows a typical snapshot of an fBm
obtained this way and its associated generalized OU generator. Figure 2 illustrates that this
method may also be used for models with no stationary increments (whereas an fBm has
stationary increments), and therefore in situations where a fast algorithm is lacking.
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Figure 2. Example of a self-similar process, with H = 0.8, computed by means of its stationary
generator having covariance cY (τ ) = exp(−α|τ |). Top left: the generator Y (t), synthesized from
its stationary correlation function. Top right: the H-ss process deduced from the preceding process,
implementing X(t) = (LH Y)(t). Bottom left: estimated variance of the process, EX(t)2, done
empirically on 1024 realizations; the expected curve in σ 2t2H is drawn by a dashed line. Bottom
right: the increments X(t + 1) − X(t), which are not stationary (so cannot be used to synthesize
the process conveniently). This process is also the output of an Euler–Cauchy system of order 1,
and has been studied in [42, 26].

For the sake of analysis, in figure 3 we illustrate that the Mellin spectrum may be more
meaningful than a Fourier spectrum for an unknown self-similar process. On the one hand, the
Fourier spectrum hardly says a thing where there is no stationarity, and is usually broadband.
For self-similar processes, with an added assumption of stationary increments, one may deduce
the H exponent of the Fourier spectrum [6]. We indeed expect that it behaves as f −2H−1 over
a large range of frequencies, but no other features are easy to understand with regard to
self-similarity. On the other hand, one can expect H-ss processes to have a Mellin spectrum
that could be modelled by Euler–Cauchy systems (in the same way that stationary processes
are well modelled by auto-regressive systems), involving a reduced number of parameters. A
numerical inverse Lamperti transform may be used in practical implementation [11]. A central
argument is the possibility of using a fast Mellin transform algorithm (based on FFT), as was
studied in [8]. The exponent H is an external parameter of the transform and should be given
a priori, estimated from a Fourier spectrum, or found by trying several exponents H until one
matches. Another argument in favour of the practical use of the Lamperti transform is the not
so great sensitivity of the spectral analysis to the choice of the renormalization index H: being
mistaken in the choice of H broadens a little the peaks in the Mellin transform. For instance,
the numerical transform of tH+i2πf0 would not be the Dirac mass in f0 but a Lorenzian function
of width

√
3|H − r|/(πT ) at half-height if the renormalization exponent is r instead of H, and
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Figure 3. Modelling of a self-similar process with H = 0.8. Top left: the stationary generator Y (t)

is computed as an ARMA model of order (5,2), synthetized from the filtering of a white noise by the
transfer function of the ARMA. Top right: the H-ss process deduced from the preceding process,
implementing numerically X(t) = (LH Y)(t). Bottom (left and right): estimated spectrum of X
and of its inverse Lamperti transform Y = LH

−1X (done also numerically); left is in linear scale,
right in log scale. The Fourier spectrum of LH

−1X is an estimation of the Mellin spectrum of X,
according to equation (6). Here, the spectrum of X (which is not properly defined because neither
X nor its increments are stationary) appears complex because it has a rather large band and many
small resonances and gives only an indication of H by being close to the model f −2H−1 (as shown
in the graph). On the other hand, the estimated Mellin spectrum (that is the usual spectrum of Y)
may be modelled well with more details, here an AR(5) whose accurate parameters may be found
by an identification on the system (see the model curve on the right).

T is the length of the signal analysed. It has usually small effects. Thus, the relative robustness
of the Mellin transform regarding H allows it to be used even if the proper H is not known
with great accuracy.

Because using the Lamperti time warping from t to log t for discrete-time systems is
equivalent to using geometric sampling {qn, n ∈ Z} for the H-ss process (and thus the usual
arithmetic process for the stationary generator: {n log q, n ∈ Z}), designing procedures of
estimation with geometrical sampling for self-similar processes is equivalent to designing
procedures with arithmetic sampling for the stationary generator. This last factor is helped by
all the amount of work done on digital signal processing. Consequences of this resampling
were examined in specific situations in several works: direct estimation of correlation function
CX [32], estimation of the self-similarity index H [54], estimation of spectrum from random
geometric sampling [30]. In all cases, the estimation was shown or proved to work. Finally, we
have shown that a joint Fourier–Mellin analysis is also possible by means of time–frequency
analysis. This method combines both kinds of information: stationarity or non-stationarity in
time and stationarity in scale [25].
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2. Generalized Lamperti transformations for broken scale invariances

The equivalence (4) opens a window on generalizations of the Lamperti transformation for
broken scale invariance. Indeed, this usual Lamperti correspondence offers perspectives to
study any property built on dilations as an image of some property built on shifts: homogeneity,
time invariance or even some nonstationarity.

There are two possibilities to extend the relation (4). First, one can suppose some
weakened symmetry for the generator besides exact stationarity. For instance, discrete
translation invariance (the kind that occurs in a crystal lattice) of the generator leads by
LH to discrete periodicity in scale, and in the next section we will elaborate on this symmetry,
known as discrete scale invariance (DSI). This solution draws upon classical results on some
classes of nonstationary signals: the properties of cyclostationary signals are mapped to DSI;
local stationarity is mapped to local self-similarity (see below).

Another possibility is to make full use of the extended notion of stationarity proposed by
Hannan [33]. If stationarity is understood as invariance under any group of transformation
{Tg, g ∈ G} where G is a group (in the case of self-similarity, Tg is a dilation DH,λ and G
the multiplicative group (R+

∗,×)), one can ask whether there exists an invertible mapping L
such that L−1TgL = Sφ(g). A first general answer is that the group G and the group (R, +)

should have the same underlying structure, because this relation implies they are isomorphic.
We examine the consequences of this remark to study scale invariance with finite-size effects
in section 4.

Finally, let us note that reducing any nonstationary process to its stationary generator is
addressed from a mathematical point of view (with a strong hypothesis of continuity on the
correlation) in geostatistics [49] and statistics [46]. We point out here that the method has
practical consequences for the modelling and analysis of scale invariance. Hereafter we deal
only with one-dimensional signals, but the study of stationary generators of scale-invariant
two-dimensional fields is possible from the same point of view [9].

2.1. Nonstationary time-scale representations

General nonstationary methods built on Fourier representation (related to time-shifts) lead
to corresponding methods for Mellin representation. As an example, the time-dependent
Wigner–Ville spectrum WY (t, f ) [24], where t is the local time and f the local frequency,
given by the Fourier transform of the (nonstationary) covariance of the process,

WY (t, f ) =̂
∫ +∞

−∞
RY (t + τ/2, t − τ/2) e−i2πf τ dτ, (14)

is mapped by LH to a time-Mellin scale representation:

WH ss
X (t, f ) =

∫ +∞

0
RX(t

√
τ , t/

√
τ)τ−i2πf −1 dτ

= t2HWLH
−1X(log t, f ). (15)

The proof lies in equation (7) that shows that one has to change the Fourier transform for a
Mellin one, and consequently that addition of time is replaced by a multiplication in scale. This
recovers the scale-invariant Wigner spectrum WH ss

X (t, f ) [23], and f has then the meaning of
a Mellin scale, which is well adapted to describe invariant properties under dilations as argued
before.
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An interest of WY (t, f ) and WH ss
X (t, f ) lies in the fact that for a stationary Y process, one

recovers via the first one the stationary power spectrum ΓY (f ),

WY (t, f ) =
∫ +∞

−∞
cY (τ ) e−i2πf τ dτ = ΓY (f ), (16)

and for self-similar X process, the corresponding property is that the scale-invariant Wigner
spectrum factorizes simply as WH ss

X (t, f ) = t2HΓLH
−1X(f ). Note that the scale-invariant

Wigner spectrum also has the property of invariance under dilations by a ratio λ for any
process X (even if it is nonstationary and not H-ss):

WH ss
DH,λX

(t, f ) = λ−2H WH ss
X (λt, f ), (17)

which could be used as a defining property of WH ss
X (t, f ).

This representation WH ss gives the evolution in time of a process with respect to
scale invariance; thus, it disregards the part of nonstationarity that is linked only to the
tH renormalization term of scale invariance. If a signal is scale invariant, one obtains
a time-invariant WH ss; if not, the time evolution informs about the modifications of the
scale composition of the process. Examples of such evolution are given in the following
sections.

2.2. Local self-similarity

General nonstationary models admit corresponding non-scale-invariant models through LH .
A first example is the model for the correlation of locally stationary processes [50] that reads
as RY (t, s) = mY

(
t+s
2

)
cY (t − s) with mY (t) � 0 and cY (u) a non-negative definite function.

The second function is an ordinary stationary covariance whereas RY fluctuates with the
mean local time (t + s)/2 by means of the first function. By Lamperti mapping, a class of
non-scale-invariant processes is introduced that has the general covariance

RX(t, s) = mX(log
√

ts)(ts)HCX(t/s). (18)

The mapping is obtained from CX(eu) = cY (u) and mX(t) = mY (t). A comparison with
(5) reveals that it is a generalized form allowing some evolution with the local mean time√

ts and the corresponding scale-invariant Wigner spectrum expresses as WH ss
X (t, f ) =

mX(t)t2H (MC)(i2πf ), illustrating both the mean evolution imposed by the function mX(t)

and the scale behaviour given by the second term, a local scale spectrum.
We will not detail other aspects, except for discrete scale invariance hereafter, and the

reader will find elsewhere details on higher order distributions that can be introduced on
this grounding [3], on multiplicative harmonizability for non-H-ss processes [10], or on the
analysis of locally asymptotically self-similar processes by the use of LH [26, 11].

3. Discrete scale invariance

An application of the Lamperti correspondence has received more attention, namely the study
of discrete scale invariance, i.e., scale invariance for some preferred scale factors only. Some
fractals such as the triadic Cantor set, or some simple signals such as the Mellin chirps of
the form tH exp(if0 log t), are naive examples of this symmetry which is the invariance under
dilations of scale factors

{
λn

0, n ∈ N
}

(λ0 = 3 for a triadic Cantor set and λ0 = exp(2π/f0) for
Mellin chirps). This was advocated as a central concept in the study of many critical systems
[47, 51, 52]. More attention has been given to the deterministic framework and we rely here
on the stochastic extension of the property [10].
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A process {X(t), t > 0} is said to possess discrete scale invariance (DSI) of index H

and scaling factor λ0 > 0 if {DH,λ0X)(t), t > 0} d= {X(t), t > 0}. Mapping this property
back to Y (t) = (

LH
−1X

)
(t), it is straightforward to establish that, provided that T0 = log λ0,

we have
{
ST0Y )(t), t ∈ R

} d= {Y (t), t ∈ R}. This property is a statistical periodicity of
Y of period T0 (and hence for any time-shift nT0, n ∈ N) and it defines cyclostationary (or
periodically correlated) processes [29, 31]. The Lamperti correspondence is such that a
process has (H, λ0)-DSI if and only if its inverse Lamperti transform is cyclostationary of
period T0 = log λ0. This is an extension to stochastic DSI of the Lamperti result on H-ss.

3.1. Characterization of DSI

The theory of cyclostationary processes is well established [28]. A known characterization
uses the periodicity of the covariance, RY (t + T , s + T ) = RY (t, s), to write it as a Fourier
series

RY (t, t + τ) =
+∞∑

n=−∞
cn(τ ) ei2πnt/T0 . (19)

A corresponding first characterisation of DSI is thus obtained on the covariance which has to
read for a process X(t) with (H, λ0)-DSI

RX(t, kt) = (kt)H
+∞∑

n=−∞
cn(log k)tH+i2πn/log λ0 . (20)

Furthermore, using time-Mellin scale analysis, one obtains a simple expansion of the
covariance on Mellin chirps.

WH ss
X (t, f ) =

∑
n

(Fcn)

(
f − n

log λ0

)
t2H+i2πn/log λ0 . (21)

This equation offers direct possibilities of studies of processes with DSI in a time–frequency
space. Any DSI signal may be thus decomposed on a Mellin chirp expansion.

3.2. Discrete-time sequences with DSI

An important feature of stochastic DSI is that one can analyse discrete-time sequences that
might have this property by using standard cyclostationary tools on the stationarized process.
Estimation of the cyclostationary period of this process, e.g., by means of the marginal of the
cyclic periodogram, will give an estimate of the preferred scale ratio λ0. From equation (21),
a weighted time average on the Mellin functions reads∫ ∞

0
WH ss

X (t, f )t−2H−i2πβc−1 dt =
∑

n

(Fcn)

(
f − n

log λ0

)
δ(βc − n/log λ0). (22)

Taking then the sum over all the scales f leads to the marginal cyclic spectrum that should
show peaks on specific Mellin scales related to the preferred scale ratio:

S(βc) =
∫ +∞

−∞
df

∫ ∞

0
WH ss

X (t, f )t−2H−i2πβc−1 dt =
∑

n

Enδ(βc − n/log λ0). (23)

Here, En = ∫ +∞
−∞ Γn(f ) df = ∫ +∞

−∞(Fcn)(f ) df is, thanks to the Wiener–Khintchin relation,
the total energy of a process having cn(τ ) as correlation function. Thus, there are peaks in this
cyclic spectrum, localized on Mellin scales βc = n/log λ0.



2092 P Borgnat et al

0 2000 4000 6000 8000
–10

–5

0

5

10

15
Sample realization of EC DSI

time
0 2000 4000 6000 8000

0

10

20

30

40

50
Estimated variance of the EC DSI with time

time

Figure 4. Example of parametric system with discrete scale invariance. The model is based
on a time-varying scale invariant filter (or Euler–Cauchy system), with a time representation as
tX′(t)+a(t)X(t) = ε(t). ε(t) is white noise with time-varying variance (tH σ(t))2 and we impose
that a(t) and σ(t) have deterministic DSI with exponent 0, i.e., a(λ0t) = a(t). This model,
known as a DSI Euler–Cauchy system of order 1, is studied in details in [11], along with its
proper discretisation in time. Left: sample path of the process with H = 0.2 and λ0 = 1.05; a
figuration of the oscillations of the coefficients is shown above it. Right: estimated variance of the
process, done empirically with 1024 realizations. The log-periodic oscillations of the variance are
a signature of DSI for this model.

In addition, there exist various models, parametric or not, of random sequences having
DSI [11] that may serve as benchmarks. As an example, we plot in figure 4 one realization of
a stochastic process with DSI, with its estimated variance on the right. If one wants to resort
to cyclostationary methods for the DSI problem for instance, a statistical comparison of the
estimates found for some real data and the results obtained on sequences with or without DSI
will escape the difficulties and the possibilities of artefacts regarding DSI studied in [34].

3.3. DSI and stationary increments

The property of DSI is compatible with the property of stationary increments. This is known
since studies on the Weierstrass–Mandelbrot random function [7, 25]:

W(t) =
+∞∑

n=−∞
λ−nH

0

(
1 − eiλn

0 t
)

eiφn , (24)

where the φn are i.i.d. random variables, uniform in [0, 2π [. An immediate property is the
invariance of W(t) under dilations DH,λ, but only of λ = λm

0 with m ∈ Z, that is DSI. Analysed
as such, the Weierstrass–Mandelbrot random functions admit a decomposition on a Mellin
basis. In figure 5, we illustrate this property by showing a sample realization of this random
process and the corresponding cyclic Mellin spectrum that was defined in (23). A less known
property concerns the increment process and reads

E|W(t + τ) − W(t)|2 =
+∞∑

n=−∞
λ−2nH

0 2
(
1 − cos λn

0τ
)
. (25)

This expression is given by a straightforward calculus on the possible random phases. A
striking feature is that the structure function of order 2 of W(t) does not depend on t but
only on τ ; that is known as (second-order) stationary increments. This property is interesting
because it allows a proper definition to the Fourier spectrum of this otherwise non-stationary
process to be given.
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Figure 5. Example of a random Weierstrass–Mandelbrot function, as defined in equation (24) on
the left, with H = 0.4 and λ0 = 1.4. The simulation is made with a limited number of modes, the
ones of higher frequency being n = 50. Elements of analysis are shown on the right by means of
(LH

−1W)(t). Upper part: an estimate of the Fourier spectrum of (LH
−1W)(t), superimposed with

the long-range dependence model for the spectrum in f −1−2H —this spectrum shows no striking
feature of preferred scale ratio; lower part: an estimate of the cyclic spectrum S(βc) as defined
in (23) is represented. The estimation was first made by doing numerically an inverse Lamperti
transform, and then a double Fourier transform is made to estimate the quantity appearing in (22).
Finally, a sum is made on the frequency f . An average was also made by cutting the time series
into several blocks and averaging the result over those blocks. The peaks are separated in Mellin
scale by 1/ log λ � 2.97. For an exactly self-similar process, one would find only a peak around
βc = 0, so they are here relevant to measure the DSI.

This process can also be used as a starting model for DSI processes with stationary
increments, changing

(
1 − eiλn

0 t
)

in its expression for a more general form
(
g(0) − g

(
λn

0t
))

,

with any periodic function continuously differentiable at t = 0. DSI and some kind of
stationarity might then coexist in physical models needing both. The reader is referred to [25]
for a more detailed lecture on the properties on the Weiertrass–Mandelbrot function and the
possibilities of uncovering its properties by time–frequency methods.

4. Warped Lamperti transformation for broken self-similarity

We have said that the Lamperti transform can be adapted to other forms of symmetry than
proper scale invariance, by modifying LH so that an equivalence similar to (4) remains
valid. An interesting approach to tackle broken scale invariant signals is to postulate that
the usual composition of scales (λ � t = λ × t) is no longer valid, and that another way of
composing scales underlies the physics: this postulates an unusual law and action on scales.
A symmetry of this kind was first adopted by Nottale in his theory of scale relativity [43],
and further developed by Dubrulle and Graner in another context [17, 18]. The symmetry
in scale is broken because of the existence of bounds in scale and amplitude of the studied
processes.

We present here a general setting that allows us to put in correspondence stationary
stochastic processes with generalized scale-invariant processes with finite size effects or
bounding. The setting is presented before constructing the generalized Lamperti transform
associated with this law, and we give details on finite-size scale-invariant processes in section
4.3. This generalized stationarizing transform gives new insights into this symmetry because
it opens the subject to results coming from stationary modelling.
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4.1. Generalized scale laws and the associated dilation operator

The stochastic processes X(t) we consider describe the evolution in scale of some physical
quantities. Therefore, the transformation of scales e1 � e2 = e3 and the transformation of
the process must belong to a group of transformations (or at least to a semi-group, such as
happens in multiplicative cascades [14]).

We restrict the discussion here to the case for which scales belong to a group. Behind the
hypothesis of an invertible law for the scales, the idea is that changing scale is an operation
meaningful both as zooming out and zooming in so that each zooming ratio has to possess
an inverse. The simplest choice is to take a group isomorphic to (R+,×). Let A be the set
of scales that we consider and let � be the law of composition of scales. Since we postulate
that (A,�) is isomorphic to (R+

∗,×), there exists a morphism S� : A −→ R
+
∗ such that

S�(e1 � e2) = S�(e1) × S�(e2). Any diffeormorphism from A onto R
+ is a good candidate

and for any α ∈ R, (S�(·))α is also a convenient morphism.
A similar hypothesis is made on the amplitude of the process. For instance, instead of a

process valued in R, we may assume that it takes values in an interval X = ]X−, X+[ included
in R

+
∗ . A discussion concerning this restriction is provided below. We will show later that

there exists a law ⊗ of composition on this interval that makes (X,⊗) a group isomorphic to
(R+

∗,×). Let S⊗ : X −→ R
+
∗ be the associated morphism. Note here that the morphism S⊗

depends explicitly on the bounds of interval X: in this formalism, we study finite size effects.
We can now define a generalized dilation operator following the construction of the

usual dilation operator: time is dilated using the composition of scales (×) and the process is
renormalized properly using the composition law for amplitudes (×). Let λ be a dilation factor
in A. We then define the generalized dilation operator Dg

H,λ, acting on stochastic processes
indexed by A with values in X, as(

Dg

H,λX
)
(t) = g(λ) ⊗ X(λ � t), (26)

where g(λ) is the renormalization function. This function is not arbitrary and indeed depends
on the morphisms S� and S⊗. To prove this, we note that going from time t to time λ1 �λ2 � t

can be done at least in two ways: directly by applying Dg

H,λ1�λ2
or indirectly by applying

successively Dg

H,λ1
and Dg

H,λ2
. Mathematically, this means that the generalized dilation

operator is a representation of the group (A,�). It also implies that the function g satisfies
g(λ1 �λ2) = g(λ1)⊗g(λ2), meaning that S⊗ ◦g = S�α is an acceptable morphism for �. For
reasons that will be clear later, we choose the exponent α = −H so that g(λ) = S−1

⊗ (S�(λ)−H ).
Given the notions introduced above, we will say that a stochastic process satisfies a

generalized scale-invariance property if

X(t)
d= (

Dg

H,λX
)
(t) = g(λ) ⊗ X(λ � t). (27)

This equation is directly a generalization of (1). Note that imposing the equality for a
deterministic function x(t) allows us to obtain the form of the scale-invariant function (analogy
with power laws for the usual dilation operator). Indeed, a scale-invariant function satisfies
x(t) = S−1

⊗ (S�(λ)−H ) ⊗ x(λ � t),∀λ ∈ A. Let e be the identity element for �. Then setting
λ so that λ � t = e (the group structure implies the existence of the inverse λ = e �−1 t)
allows us to write

x(t) = x(e) ⊗ S−1
⊗ (S�(e �−1 t)−H ) (28)

= x(e) ⊗ S−1
⊗ (S�(t)+H ) = S−1

⊗ [S⊗(x(e))S�(t)H ]. (29)
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This expression has two free parameters once the morphisms are fixed: the exponent H and
the multiplicative constant S⊗(x(e)) that defines the initial value. In the usual case, � = ×
and the morphisms are the identity. We recover the usual power law as the deterministic
scale-invariant function and g(λ) = λ−H . This recovers expression (1) for the dilation and
this explains the choice α = −H previously adopted.

4.2. Generalized Lamperti transformation

We have shown in the previous sections the usefulness of the Lamperti transformation to study
scale invariant processes (and their broken versions). The fundamental fact behind this is that
dilation and shift operators are equivalent through LH , according to (4). The same idea can be
applied for generalized dilation operators. We hence seek an operator Lg

H , acting on stationary
signals Y indexed by R such that

(
Lg

HY
)
(t) satisfies the generalized scale-invariance property.

This operator must be invertible, and generalized dilation and shift should be equivalent
through its application. The expressions for the generalized Lamperti transformation and its
inverse are easily shown to be(

Lg

HY
)
(t) = S−1

⊗
(
Y (log S�(t))) ⊗ S−1

⊗ (S�(t)H
)

(30)

= S−1
⊗ (S�(t)HY (log S�(t))) (31)(

Lg

H

−1
X

)
(t) = e−HtS−1

⊗
(
X

(
S−1

� (et )
))

(32)

making Dg

H,λ and Slog S�(λ) equivalent operators, since

Lg

H

−1Dg

H,λL
g

H = Slog S�(λ). (33)

The structure of the generalized Lamperti transformation is interesting, since it can also be
written as a function of the usual Lamperti transformation. Indeed, we have(

Lg

HY
)
(t) = S−1

⊗ ((LHY )(S�(t))). (34)

Therefore, a signal that has a generalized scale-invariance property can be constructed from
its stationary generator or can be obtained by time and amplitude warping of the associated
H-ss process.

Note that the morphisms are indeed deterministic functions. We could imagine replacing
in the definition above deterministic morphisms by random morphisms (Devil’s staircase
associated with a random measure, for example). In this way, we recover approaches taken
by processes with multifractal times [40] (see also [14] for more recent applications) in
some definitions of multifractal processes. The link between the ideas developed here and
multifractals remains however to be explored.

4.3. Finite-size scale-invariant fractional Brownian motion

As an illustration of the ideas presented above, we consider the approach initiated by Notalle
in his theory of scale relativity [43], and further developed by Dubrulle and Graner [18, 17].
In these works, it is argued that the law for composition of scales may be more complicated
than the usual product. Scale has the behaviour of a velocity when considered logarithmically,
as a = log λ. A natural generalization is to consider that the logarithm of the scale does not
follow the Galilean transformation of velocities but the Lorentz law. In this setting, scale is
limited to a finite size range, and Dubrulle has developed the formalism of finite size scale
invariance using this.
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However, this scale invariance was applied directly to deterministic functions, or to the
moments of random variables. As the invariance is only studied as a possible model for
those moments, the method does not give tools of synthesis or of analysis beyond testing
the goodness-of-fit of the finite-size scaling laws for some data. Our approach is slightly
different in that we impose scale invariance on the random variables themselves. This results
in probabilistic scale invariance where the statistics will follow deterministic laws of finite-
size scaling studied by Dubrulle; but as we work jointly on the scale evolution of the process
and its probability law by means of a Lamperti correspondence with a stationary generator,
we obtain general methods to synthesize and analyse those processes. Our framework is
more constrained, but gives better insights into the studied stochastic processes because of
the correspondence with stationary processes. Thus, there exists the possibility of adapting
methods of stationary signal processing to finite-size scale invariance.

If scale is constrained to live in the finite size interval, let A = ]a−, a+[ ⊆ R
+
∗ . Then, the

Lorentz composition law for two scales reads

a1 � a2 = exp
log a1 + log a2 − log a1 log a2

(
1

log a−
+ 1

log a+

)
1 − log a1 log a2

log a− log a+

. (35)

The associated morphism can be shown to be

S�(a) =




exp
{ log a− log a+

log a−−log a+
log

( 1−log a/ log a−
1−log a/ log a+

)}
exp

{
log 1

a±
log

(
1 − log a

log a±

)}
, if log a∓ → +∞

a, if furthermore log a± −→ −∞
.

The same form of composition laws is adopted for the amplitudes of the signals, leading
to the same form of morphism, replacing variables a by X in X = ]X−, X+[. There is however
a difficulty concerning the application of this formalism to the amplitude of the signals: these
laws are based on the equivalence between the multiplicative and the additive groups via a
logarithm. Therefore, they are restricted, as mentioned above, to the case of positive variables.
This restriction is not a real problem for time, since we are satisfied to work with signals
indexed by R

+
∗ only. It is more problematic when considering the amplitude of the signals

that can be either positive or negative. To manipulate signed signals, the composition law has
to separate the positive part from the negative part of the amplitude. Hence, the elements of
the groups are represented as two-parameter elements X = (|X|, Sign(X)). In this case, the
morphism is defined as

S⊗ : (X∗,⊗) −→ (R∗,×)

X −→ S⊗(X) = θSθ (|X|) where θ = Sign(X)

and where S+1 (resp. S−1) is a function between ]0, X+[ (resp. ]0, X−[) onto R
+∗. In the case

of the special relativity-like laws, the details of the laws can be found in [2], and the functions
Sθ are given by{

S+1(X) = exp
(− log X+ log

(
1 − log |X|

log X+

))
if X � 0

S−1(X) = exp
(− log X+ log

( log X−−log |X|
log X+

))
if X < 0.

The inverse of the morphism is given by

S−1
⊗ : (R∗,×) −→ (X∗,⊗)

x −→ S−1
⊗ (x) = θS−1

θ (|x|) where θ = Sign(x).
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There is no real separation between the positive and the negative part; the morphism remains
continuous in 0 and we may set S⊗(0) = 0. The separation was made to respect the group
structure, and to obey the fact that 0 has a specific role with regards to the multiplication. The
only specificity left is the fact that the valid scale ratios are taken positive only (because here
the time is positive only), so there is no way for a dilation to change the sign of a function.
But as the equality is imposed in law, a given realization of a process is allowed to explore
without restriction both the positive and the negative values.

These results allow us to study a generalization of the fractional Brownian motions;
the stationary generator of the fBm (generalized Ornstein–Uhlenbeck process, gOU), whose
correlation function is given by (12), can be used to create an fBm with a generalized scale-
invariance property, with finite-size effects. Using the explicit forms of the morphisms
corresponding to the finite-size scale composition law provided above, we define the finite-
size scale-invariant fractional Brownian motion as the generalized Lamperti transform of the
gOU. We plot in figure 6 several examples depending on the finiteness of the bounds in scale
(and thus in time) and/or in amplitude. According to equation (34), the finite-size scale-
invariant process can be obtained directly from the scale-invariant process sharing the same
stationary generator. Therefore, the different snapshots in the figure are obtained by applying
the warpings to numerically generated fBms (using the middle point displacement method,
even if the snapshots obtained with this method are just approximations of fBm). Some of the
snapshots have a strange look, and their usefulness to describe real processes is of course under
question (and study). To assess the usefulness of some of the models, we could imagine that
the fssi–fBm bounded in time and unbounded in amplitude could model a critical phenomenon
presenting a rupture. In this view, the upper bound a+ could represent the critical time.

The complete study of the processes is quite difficult to perform. When there is no
warping in amplitude, the study is easy since the only transformation acts on time. Hence,
the fBm with a generalized scale-invariant property (restricted to scale) is a Gaussian process
with covariance directly obtained from that of the fBm by properly warping the time lags of
the covariance function. From equation (11), the covariance reads

R(t, s) = σ 2

2
(|S�(t)|2H + |S�(s)|2H + |S�(t) − S�(s)|2H ), (36)

and fully describes the process. In particular, the variance of the process reads σ 2|S�(t)|2H ,
close to the model studied in [18, 17] for moments of a finite-size process. When the scale is
far from the bounds, the morphism is close to a power law: |S�(t)|2H � t2H . We obtained
thus a form of intermediate asymptotic [5] with a specific departure from the power law given
by the morphism law S�.

When a warping of the amplitude is present, the probabilistic structure can be obtained
but is practically restricted to a few point statistics. For example, let Z be a scale-invariant
process with stationary generator Y. Since Y is a stationary signal, its one point probability
density function PY does not depend on time. Therefore, the one point probability density
function of Z reads PZ(z, t) = PY (z/tH )/|t |H . Therefore, the one point probability density
function of X reads

PX(x, t) = 1

|S�(t)|H PY

(
θSθ (x)

|S�(t)|H
) ∣∣∣dSθ (x)

dx

∣∣∣, (37)

where again θ = Sign(x). This departs from the framework of [17], because we characterize
the probability law directly. As an illustration, we plot in figure 7 two of these functions for
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Figure 6. Example of fractional Brownian motion with a finite-size scale-invariance property.
Top left: an fBm with H = 1/3, Hölder exponent for the velocity in fully developed turbulence.
Middle left: same fBm after a time warping, time is bounded below. Bottom left: same fBm but
warped to a finite-size interval. Top right: same fBm but warped in amplitude between −2 and
5. Middle right: same fBm after an amplitude warping between −2 and 5, and bounded below
in time. Bottom right: same as middle right but defined on a finite interval of time. The top-left
panel corresponds to the usual self-similar processes, whereas the other five depict snapshots of
processes that possess some kind of finite-size scale invariance (fssi).

H = 1/2: in the first case, we choose −X− �= X+, implying that the nonlinear distortion is
asymmetric. The nonlinear function is depicted in the top-left figure, whereas the Gaussian
and the density of the transformed process are plotted in the top-right figure. The symmetric
case is depicted in the bottom row of the figure.
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Figure 7. The figures on the left depict the static nonlinearity used to warp the amplitude of the
signals, for two cases. The figures on the right give the corresponding probability density functions
obtained, when the initial signal is Gaussian.

5. Conclusion

We have addressed here some reflections to use the Lamperti correspondence and the stationary
generators of self-similar processes, but a furthermore important feature is the existence of
enlarged correspondences with broken or weakened self-similarities. An incentive to delve
further into the practical use of this framework is that some specific examples, namely discrete
scale invariance and finite-size scale-invariance, were put forward in previous works as relevant
properties of physical systems: geophysics, fracture and growth problems for the former
([19, 52] and references herein), turbulence or fundamental physics for the latter [43, 17].

Here, our point of view was stochastic modelling and signal processing. We have paved
the way by showing the general framework of stationary correspondence and generators,
and given some detailed consequences. From this point of view, numerical models have been
obtained and characterized that have the broken scale invariance envisioned here. The future of
this work is to study specific physical systems and signals therefrom by means of the methods
constructed with the Lamperti transformation, in order to find, or rule out, the appearance of
broken scale invariance in problems of physics.
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