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marker of sympathetic modulation to the
heart, high frequency (HF) component of
RRI as a marker of cardiac vagal modula-
tion and the LF/HF ratio of RRI as a mark-
er of cardiac sympatho-vagal balance [2, 3].
Dynamical states, like standing position,
are accompanied by an increased sympa-
thetic activity characterized by a shift of the
LF/HF balance in favor of the LF compo-
nent; the opposite occurs during presumed
increases in vagal activity [2, 4]. Thus, spec-
tral analysis of heart rate variability has
been a widely used non-invasive tool to 
assess sympatho-vagal drive to the heart.
The most commonly used methods of spec-
tral analysis of HRV are the (fast) Fourier
transform and autoregressive models.
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1. Introduction

The analysis of fluctuations in heart rate or
in the intervals between consecutive heart
beats (RR intervals, RRI) has become in-
creasingly important in physiological stud-
ies because it could provide information
about cardiovascular neural regulation [1].
The support for using heart rate variability
(HRV) as an index of autonomic cardiovas-
cular control comes from data demonstrat-
ing that HRV is virtually abolished after
parasympathetic and sympathetic block-
ades. Human and animal studies support
the hypothesis that the low frequency (LF)
component of RRI could be used as a
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Fig. 1 RR intervals in time



However these methods are limited by im-
plicit assumptions of linearity and station-
arity. Biological oscillators rarely meet
these requirements. Thus it is necessary to
develop a more appropriate approach for
biological nonstationary processes.

We propose here to make use of a new
data analysis method developed by Huang
et al. [5] based on the Empirical Mode 
Decomposition (EMD) method, which gen-
erates a collection of intrinsic mode func-
tions.

2. Methodology

2.1 From Spectral to 
Time-Frequency Analysis
In order to investigate the regulating action
performed by the autonomic nervous
system in the heart, we analysed the RR
intervals in healthy adult men recruited 
for voluntary participation in the present
investigation. The acquisition was done
continuously during three periods (Fig. 1):
supined position (about 10 min) followed
by seated position (about 10 min) and final-
ly standing position (about 10 min). These
postural changes provoke instantaneous
changes in heart rate mainly resulting from
autonomic modifications [3].This figure ev-
idences a number of variations in the signal
history, including a very low-frequency
trend. This makes difficult (from both
points of view of computation and interpre-
tation) the extraction of frequency infor-
mations from a standard spectrum analysis.
This can nevertheless be tempted for each
of the three periods (see Fig. 2) leading – in
addition to a very low-frequency contribu-
tion below, approximately, 0.04 Hz – to a
gross characterization of two main frequen-
cy bands: a low frequency band (LF, from
0.04 to 0.15 Hz) related to sympathetic ac-
tivity and a high frequency band (HF, from
0.15 to 0.4 Hz) related to parasympathetic
activity [1].

The issue of nonstationarity, which con-
veys the key information about the evolu-
tion of the system, can be better addressed
by resorting to a time-frequency technique

?? ■■■■■■ ■■■■■

61

Methods Inf Med 1/2004

Fig. 2 RR intervals in frequency

Fig. 3 RR intervals in time-frequency (spectrogram)



as the one used in Figure 3 (although more
elaborated methods could be used, the fig-
ure has been produced by computing a sim-
ple spectogram for sake of simplicity [7]. It
also has to be noted that, for improving
readability of the diagram, the very low 
frequency contribution, associated in par-
ticular to “trends”, has been removed by 
rejecting all frequencies below 0.04 Hz). In
this case, it becomes apparent that the two
main frequency bands involved in Figure 2
are in fact related to the time evolution of
two bandpass components. Determining
the precise frequency support of these two
bands (a pre-requisite for filtering them) is
however difficult, and extracting corre-
sponding AM-FM features also requires
some extra post-processing (e.g., tracking
of local maxima, or of local centroids).

Those difficulties suggest a different
(pre-processing) approach which would
first isolate in some way each of the two
components, to which standard tools (such
as instantaneous frequency estimation via
the Hilbert transform) could be further 
applied. This point of view is the one put
forward by Huang et al. [5], and referred 
to as “Empirical Mode Decomposition”
(EMD).

2.1 Empirical Mode Decomposition
The starting point of EMD is to consider
oscillations at a very local level. In fact, if
we look at the evolution of a signal x(t)
between two consecutive extrema (say,
two minima m– and m+, occurring at times 
t– and t+, respectively), we can heuristically
define a (local) high-frequency part d(t), or
local detail, which corresponds to the oscil-
lation which terminates at the two minima
and which passes through the maximum M
which necessarily exists inbetween m– and
m+. For the picture to be complete, one still
has to identify the corresponding (local)
low-frequency part m(t), or local trend, so
that we have x(t) = m(t) + d(t) for t– < t < t+.
Assuming this is done in some proper way
for all the oscillations composing the entire
signal, the procedure can then be applied
on the residual consisting of all local trends.
Constitutive components of a signal can
therefore be iteratively extracted this way,
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Fig. 4 Empirical Mode Decomposition of RR intervals

Fig. 5 Coarse to fine EMD reconstruction of RR intervals



the only definition of such a so-extracted
“component” being that it is locally (i.e., at
the scale of one single oscillation) in the
highest frequency band. Given a signal 
x(t), the effective algorithm of EMD is as
follows [5]:

● identify all extrema of x(t)
● interpolate between minima (resp. max-

ima), ending up with some “envelope”
en(t) (resp. eM(t))

● compute the average m(t) = (en(t) + 
+ eM(t))/2

● extract the first “mode” as d(t) = x(t) – 
– m(t)

● iterate on the residual m(t)

In practice, the above procedure has to be
refined by first iterating steps 1 to 4 upon
the detail signal d(t), until this latter can 
be considered as zero-mean according to
some stopping criterion [5]. Once this is
achieved, the detail is considered as the 
effective mode, the corresponding residual
is computed and step 5 applies.

By construction, the number of extrema
is decreased (on the average, by a factor 
of 2) when going from one residual to 
the next. Modes and residuals are deter-
mined on spectral arguments, but it is worth
stressing the fact that their high vs. low 
frequency discrimination applies only lo-
cally and corresponds by no way to a pre-
determined sub-band filtering (as, e.g., in a
wavelet transform). Selection of modes
rather corresponds to an automatic and
adaptive (signal-dependent) time-variant
filtering.

3. Results
Application of EMD to the RRI signal of
Figure 1 is illustrated in Figure 4. Alterna-
tive ways of displaying the same informa-
tion consists in evaluating partial recon-
structions, either from coarse to fine (i.e.,
by adding more and more details to low 
frequency modes), or from fine to coarse.
This is given in Figures 5 and 6.

One specific interest of the fine to
coarse reconstruction of Figure 6 is that it 
allows for a quantitative approximation of
the overall signal by means of a limited
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Fig. 6 Fine to coarse EMD reconstruction of RR intervals

Fig. 7 Three first modes of RR intervals in time-frequency



number of essential modes. In the consid-
ered case, comparing the time-frequency
representation of the overall “detrended”
signal (see Fig. 3) with that of the partial 
reconstruction built on the 3 first intrinsic
modes (Fig. 7) reveals a striking agreement,
thus justifying that most of the LF and HF
structure of the signal has been captured.
Moreover, it turns out that the obtained
representation does not suffer from any 
arbitrary high-pass filtering aimed at re-
moving the very low-frequency component
attached to trends. This component is in-
deed adaptively removed (in a time-vary-
ing way) while not perturbating the adja-
cent LF component we are interested in.As
a result, we can consider that the effective,
time-varying, HF component can be identi-
fied by the first intrinsic mode of the de-
composition, while the LF component is
correctly described by the superposition of
the second and third intrinsic modes.

This identification achieved, it becomes
possible to process each of the two compo-
nents independently, either by evaluating
their AM-FM features, or by computing the
LF/HF ratio of RRI as a marker of cardiac
sympatho-vagal balance. The HF vs. LF
separation is of particular importance if we
consider in closer detail Figures 3 and 7,
where it appears that, at the precise time 
instant (namely, t = 1200 s) where the posi-
tion is changed from seated to standing, the
most energetic contribution does not clear-
ly belong to what is usually referred to the 
LF band (0.04-0.15 Hz) or the HF band
(0.15-0.4 Hz), but rather sits on the border-
line 0.15 Hz. Figures 8 and 9 display the
time-frequency representations of both HF
and LF components of RR intervals, evi-
dencing the fact that this contribution is
considered by the EMD as belonging to the
HF part of RRI. The consequence of this
identification is that the LF/HF ratio is like-
ly to be diminished as compared to what
would have been obtained with a crude 
filtering which would have attached part of
the energy below 0.15 Hz to the LF compo-
nent. The overall signal being nonstation-
ary, and especially at changing points (with
respect to position), this observation stress-
es the limitation of any conventional fixed
filtering in a time-varying situation.
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Fig. 8 HF component of RR intervals in time-frequency, identified as intrinsic mode 1 of the EMD

Fig. 9 LF component of RR intervals in time-frequency, identified as intrinsic modes 2+3 of the EMD



4. Conclusion
A link appears to exist between cardiac 
vagal or sympathetic activity and HF or LF
oscillations of RRI.A number of approach-
es are currently available for analysing 
periodic components of RRI like the (fast)
Fourier transform or autoregressive mod-
els. These methods can provide valid esti-
mates of periodic components of HRV
when the target rhythm is sinusoidal and
the data is stationary. In recent years the
study of data analysis has tended to focus
far more on the methods that do not need
linearity and periodicity of the signal. This
comes from the fact that it has been quite
difficult to satisfactorily handle the nonsta-
tionary mechanisms regulating the cardio-
vascular system using conceptualisations
based on stationarity. In order to cope with
nonstationarity issues and to adaptively
separate the (time-varying) HF and LF
components of RRI, we proposed here 
to make use of the recently introduced
method of Empirical Mode Decomposition
(EMD), so as to analyze the cardiac sympa-

tho-vagal balance on automatically extract-
ed modes. Using this method and visualiz-
ing the result in the time-frequency plane,
we can identify local events due to chang-
ing position, and we can assess a (time-
varying) HF vs. LF discrimination without
resorting to some fixed high-pass/low-pass
filtering.
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