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observation



Doppler effect

Motion of a monochromatic source = differential perception of
the emitted frequency = “chirp’ .
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Fixed length L. = Lo — Small oscillations are sinusoidal, with

fixed period Ty = 2w/ Lg/g.

“Slowly” varying length L = L(t) — Small oscillations

are quasi-
sinusoidal, with time-varying pseudo-period T'(t) ~ 2w/ L(t)/g.



Gravitational waves

Theory — Though predicted by general relativity, gravitational
waves have never been observed directly. They are ‘“space-time
vibrations,” resulting from the acceleration of moving masses
— most promising sources in astrophysics (e.g., coalescence of
binary neutrons stars).

Experiments — Several large instruments (VIRGO project for
France and Italy, LIGO project for the USA) are currently under
construction for a direct terrestrial evidence via laser interferom-

etry.
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Bat echolocation

System — Active system for navigation, “natural sonar’ .

Signals — Ultrasonic acoustic waves, transient (some ms) and
“wide band” (some tens of kHz between 40 and 100kHz).

Performance — Nearly optimal, with adaptation of emitted wave-
forms to multiple tasks (detection, estimation, classification, in-
terference rejection,. . .).
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More examples

Waves and vibrations — Bird songs, music ( “glissando’ ), speech,
geophysics ( “whistling atmospherics’, vibroseis), wide band pulses
propagating in a dispersive medium, radar, sonar,. ..

Biology and medicine — EEG (seizure), uterine EMG (contrac-
tions),. ..

Desorder and critical phenomena — Coherent structures in tur-
bulence, accumulation of precursors in earthquakes, ‘“‘speculative
bubbles” prior a financial krach,. ..

Mathematics — Riemann and Weierstrass functions, . ..



description



Chirps

Definition — We will call “chirp” any complex signal of the form
z(t) = a(t) expfip(t)}, where a(t) > 0 is a low-pass amplitude
whose evolution is slow as compared to the oscillations of the
phase p(t).

Slow evolution? — Usual heuristic conditions assume that:

1. la(t)/a(t)| < |@(t)| : the amplitude is quasi-constant at the
scale of one pseudo-period T'(t) = 27 /|p(t)].

2. |[p)|/¢%(t) < 1 : the pseudo-period T(t) is itself slowly
varying from one oscillation to the next.



Chirp spectrum

Stationary phase — In the case where the phase derivative ¢(t)
IS monotonic, one can approximate the chirp spectrum

X(f) = /+OO a(t) P)=27ft) gy
— OO

by its stationary phase approximation X (f). We get this way:

aQ(ts)

[B(ts)|

X7
with ts such that o(ts) = 2nf.

Interpretation — The “instantaneous frequency” curve o(t) de-
fines a one-to-one correspondence between one time and one
frequency. The chirp spectrum follows by weighting the visited
frequencies by the corresponding times of occupancy.
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representation



Time-frequency
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Idea — Give a mathematical formulation to musical notation
Objective — Write the “musical score” of a signal

Constraint — Get a localized representation in chirp cases:

p(t, f) ~ a?(t) 6 (f — p(t)/27).



Local methods and localization

The example of the short-time Fourier transform — One defines
the local quantity:

M ¢ £) = / * 2(8) h(s — 1) e i27f5 g,

— 00

Measure — Such a representation results from an interaction
between the analyzed signal and some apparatus (the window

h(t)).

Adaptation — Analysis adapted to impulses if h(t) — 6(t) and to
spectral lines if h(t) — 1 = adapting analysis to chirps requires
h(t) to be (locally) dependent on the signal.



Self-adaptation of local methods

Matched filtering — If the window h(t) is the time-reversed signal
x_(t) ;== x(—t), one gets F(x‘ (t, f) = Wx(t/2, f/2)/2, where

We(t, f) = /+ooac(t +7/2)x(t —7/2) e 2SI gr,

— 00
is the so-called Wigner-Ville Distribution (Wigner, '32; Ville,
'48).

Linear chirps — The WVD localizes perfectly on straight lines
in the TF plane:

z(t) = exp{i2n(fot + at®/2)} = Wa(t, f) =6 (f — (fo + at)).

Remark — Localization via self-adaptation ends up in a quadratic
transformation (energy distribution).



Beyond linear chirps

Global approach — The principle of self-adaptation via phase
compensation can be extended to non linear chirps (Bertrand &
Bertrand, '84 ; Goncalves et F., '94).

Limitations — Specific models and heavy computational burden.
[.ocal approach — Spectrogram/scalogram = smoothed WVD

= |ocalized distributions via reassignment towards local centroids
(Kodera et al., '76 ; Auger & F., '94).
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manipulation



Chirps and dispersion

Example — Acoustic backscattering of an ultrasonic wave on
a thin spherical shell = frequency dispersion of elastic surface
WaVes.
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Pulse compression

Limitation — Correlation radius ~ 1/spectral bandwidth, V signal
duration.

“Reception” — Post-processing by matched filtering (radar, sonar,
vibroseismics, non destructive evaluation).

“Emission” — Pre-processing by dispersive grating (production
of ultra-short laser pulses).



Chirps and detection/estimation

Optimality — Matched filtering, maximum likelihood, contrast,. . .:
basic ingredient = correlation “observation — template’.

Time-frequency interpretation — Unitarity of a time-frequency
distribution pz(t, f) guarantees the equivalence:

(@, y)[* = ((pa, py)).

Chirps — Unitarity 4 localization = detection/estimation via
path integration in the plane.



Time-frequency detection?

[Language — Time-frequency offers a natural language for deal-
ing with detection/estimation problems beyond nominal situa-
tions.

Robustness — Uncertainties in a chirp model can be incorporated
by replacing the integration curve by a domain (example of post-
newtonian approximations in the case of gravitational waves).

gravitational wave

frequency

time



Doppler tolerance

Signal design — Specification of performance by a geometrical
interpretation of the time-frequency structure of a chirp.
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Chirps and “atomic” decompositions
Fourier — The usual Fourier Transform (FT) can be formally
written as (Fx)(f) := (z,ep), with ef(t) := exp{i2n ft}, so that:

x(t) = /_—;00@3, er)er(t) df.

Extensions — Replace complex exponentials by chirps, consid-

ered as warped versions of monochromatic waves, or by ‘chirplets”
(chirps of short duration) = modified short-time FTs or wavelet

transforms modifiées.



Modified TFs — Example

Mellin Transform — A Mellin Transform (MT) of a signal x(t) €
L2(Rt,t=20F14) can be defined as the projection:

(Mz)(s) = /O—l_oo o () tTRTSTA gy = (x, c).

e Analysis on hyperbolic chirps c(t) := t~“exp{i2nslogt}.

e ©.(t)/2m = s/t =, the Mellin parameter s can be interpreted
as a hyperbolic chirp rate.

e The MT can also be seen as a form of warped F T, since
7(t) 1= e(l=t g (et) = (M2)(s) = (FZ)(s).



“Chirplets”

From ‘“gaborets” and “wavelets” to “chirplets” — Localization
+ modulation lead to 4-parameter representations such as, e.qg.,
(T, Tt f0) With

Ty, fra(8) o exp{—m(y +ia)(s — )+ i2nf(s — t)}.

Decomposition as estimation — Constitutive chirplets can be se-
quentially identified by “matching (or basis) pursuit” techniques
(Mallat & Zhang, '93; Chen & Donoho, '99; Bultan, '99; Gribon-
val, '99). They can also be estimated in the maximum likelihood
sense (O'Neill & F., '98-"00).

“Parametric” limitation — Necessary trade-off between dictio-
nary size and algorithmic complexity.
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“Chirplet” decomposition — An example
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Chirps and self-similarity

Dilation — Given H,\ > 0, let DH’/\ be the operator acting on
processes {X(t),t > 0} as (Dy X)(t) := A" X ().

Self-similarity — A process {X (t),t > 0} is said to be self-similar
of parameter H (or “H-ss") if, for any A > 0O,

{(Dy X)), t > 0} = {X(#),t > O}.

Self-similarity and stationarity — Self-similar processes and sta-
tionary processes can be put in a one-to-one correspondence

(Lamperti, '62).



Lamperti

Definition — Given H > 0, the Lamperti transformation Ly acts
on {Y(t),t € R} as:

(LrY)(@) :=t" Y (logt),t > 0,
and its inverse Lﬁl acts on {X(t),t > 0} as:

(LG X)) = e X (D), t e R.

Theorem — If {Y (t),t € R} is stationary, its Lamperti transform
{(LygY)(t),t > 0} is H-ss. Conversely, if {X(t),t > 0} is H-ss, its
(inverse) Lamperti transform {(ﬁI}lX)(t),t € R} is stationary.
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“Spectral” representations

Fourier — (Harmonisable) stationary processes admit a spectral
representation based on Fourier modes (monochromatic waves):

vy = [T eI ag(p).

@)

Mellin — (Multiplicatively harmonisable) self-similar processes
admit a corresponding representation based on Mellin modes
(hyperbolic chirps):

X(t) — /+OO tH—I—iQﬂ‘f df(f)

— o0



Weierstrass functions as an example

Discrete invariance — For any i.i.d. phases ¢, € U(0,27) and
any 2m-periodic g, functions of the form

©. @)

Waat) = Y A Hmg(\") e,

n=—0o0
have a discrete scale invariance for any fixed )\, i.e., they are
H-ss only for u =\ k € ZZ.

Consequence —Such “(H,\)-DSI" processes have cyclostation-
ary Lamperti images and they can be represented on a discrete
basis of Mellin chirps (Borgnat et al., '01).
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Weierstrass-Mandelbrot

Fourier — In the case where g(t) = 1 — expit, one gets the so-
called Weierstrass-Mandelbrot function, whose usual representa-
tion is given by a superposition of Fourier modes (in geometrical

progression).

Mellin — An equivalent representation exists (Berry and Lewis,
'80), as superposition of Mellin modes, i.e., of hyperbolic chirps.
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Chirps and power laws
A general model — C,, 5(t) = at® exp{i(bt’ + c)}.

Example — Newtonian approximation of the inspiraling part of
gravitational waves — (o, 38) = (—1/4,5/8).

Typology — At t = 0: divergence of amplitude if o« < 0, of
“instantaneous frequency” if 8 <1 and of phase if 3 < 0.

Oscillating singularities. The case (a > 0,8 < 0) is beyond a
simple HOlder characterization = development of specific tools
(2-microlocal analysis, wavelets).



he Riemann function as an example

Definition — o(t) 1= Y.°% ; n=2 sin mn?t

Differentiability — o(t) happens to be non-differentiable if ¢t #£
to=02p+1)/(2¢g+1), p,g € N (Hardy, '16) but differentiable in
t = tg (Gerver, '70).

L.ocal chirps — One can show (Meyer, '96) that, in the vicinity
of z= 1, the holomorphic version of Riemann function reads

0'(1 —I— Z) == 0'(1) — 7TZ/2 —|— Z Kn(Z) 03/2’_1(2),

n=1

leading to o(1 +t) = o(1) — wt/2 + O(|t|3/?) when ¢ — O.
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conclusion



Chirps and time-frequency

Signals — Chirps ‘“everywhere”

Representations — Natural description framework = the time-
frequency plane

Models — "Chirps = time-frequency trajectories’ = the notion
of instantaneous frequency can be approached as a by-product
of representations in the plane (e.g., “ridges”, or fixed points of
reassignment operators)



