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Scaling Data

spectrum”
self-similarity
long-range dependence
(multi-)fractal behaviour
cascades

Common property of scale invariance

no characteristic scale (in a given range)

invariant relations between scales




Multiresolution analysis — 1.

Basic 1dea

I_I

successive approximations (at coarser and coarser resolutions)
~ aggregated data

e details (difference in information between different resolutions)

~ Increments

Multiresolution is a natural language for scaling processes.




Multiresolution analysis — 2.

Wavelet-based formalization

A MultiResolution Analysis (MRA) of is given by

1. a series of nested approximation spaces
such that their intersection is zero and their closure is dense in

2. a dyadic scaling relation between approximation spaces :

3. a scaling function such that all of its integer translates
form a basis of




Wavelet decomposition — 1.

Given a resolution depth ./, a signal admits therefore the
decomposition :

wavelet coeffs.
dx(j, k)

with and , for and

The wavelet is constructed in such a way that its integer
translates form a basis of 11/, the complement of |/, in




Wavelet decomposition — 2.

e The wavelet coefficients are obtained as

e From a practical point of view, they can be computed
recursively with efficient pyramidal algorithms (faster than

FFT).

e An important property of a wavelet is its number of vanishing
moments, i.e., the number such that




Wayvelets and self-similarity — 1.

If a process is self-similar, i.e., if

for any , its wavelet coefficients exactly reproduce the
self-similarity through :




Wayvelets and self-similarity — 2.

e For processes whose wavelet coefficients have finite second-order
statistics (e.g., fractional Brownian motion), one has :

e For processes whose wavelet coefficients may have infinite
second-order statistics, but for which exists
(e.g., linear fractional stable processes), one has :

Estimation of // in a Logscale Diagram




Key features for estimation

e Admissibility (mean value zero) = stationarization of
nonstationary processes with stationary increments (e.g.,
fractional Brownian motion)

e Number of vanishing moments high enough = almost
decorrelation in the wavelet domain, scale by scale :

W (27 f)
|f]e

LRD in can be turned into SRD in

e Corollary : detrending




Beyond 2nd order scaling

(monoscaling)

H(q) (multiscaling)

(cascade)




Beyond 2nd Order Scaling

® Self-Similarity:
- A single scaling parameter

- Power-laws

® Multi-Scaling: H(q) H(q)
- A collection of parameters: H(q)

- Power-laws

® [nfinitely Divisible Cascade: :Awu )
- No Power-Law !

- order ¢ / scale 27 separability

Note : Scale :

Normalization : 9—3/2




Cascade
Castaing 90, 96, Arnéodo et al., 97

e Self-Similarity :

e Cascade :

kernel or propagator of the cascade
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Infinitely Divisible Cascade

e No Characteristic scale :
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e Infinite divisibility (or Continuous Self Similarity) :
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Eldx (5, k)| Cqexp [H(g)n(2)], H(q) =InGo(q)
— Separability order ¢ / Scale 2/
e Arbitrariness : InE|dx(j,k)|? = H(q)n(2)) + K,

H(q)n(27) + K, [H(q)/B] |Bn(27)+~] + [Kq — BH(q)/7]
H'(¢)n'(2)) + K,




Scale Invariant Infinitely Divisible Cascade

e Scale Invariance : Set n(a) = Ina, Then,

Multi-Scaling

e Multifractal Analysis :

e.g., Multinomial stochastic cascades, mandeibros




Infinitely Divisible Cascade : Model testing

e Power-laws are back !

- Extended Self-Similarity

o Key-Quantities : S,(j) = L+ > 2, ldx(J, k)|
J
- Estimators for v
- stationary, weak statistical dependence,

- Statistics of . e.g., able to estimate

e Model testing :
Check straight lines in versus plots.

Consider the variances of the




Infinitely Divisible Cascade : Estimation

is an arbitrary reference

o H(.)

Weighted Linear Regression in Versus plots

Consider the variances of the

o n(.)

Consider the variances of the

Note : Arbitrary Convention :




- Let
- Let
- Let

Infinitely Divisible Cascade : An Example
fractional Brownian motion in Multifractal time

Mandelbrot 97, Riédi, 99

be the measure of a binomial multiplicative cascade,

be its distribution function,

be a fBm with self-similarity parameter

- Define the {Bm in Multifractal time as :

- Then,

is a process with rich scaling.
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Thanks to P. Gongalves for Matlab synthesis codes for the MfBim




Cascade Analysis : log, Sq(j) versus log, Sp(7)

Estimation of IUSV = IHAo.mv_ N=3 q=1 q=15
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Multi-Scaling (or Multifractal) Analysis : In S,(j) versus j plots

Estimation de mg = mo.m. N =3, e.ﬁ_.mv =(3,8) q=1 q=15




The Data: TCP/IP over ATM

Data courtesy of Prof. Cleary and WAND), University of Waikato NZ.

(Special thanks to Jérg Micheel at WAND and Li Dong Huang of SERC for time series extraction)

The Measurement Equipment:

e Measurement of OC3 ATM link (155 Mbits/s).
e Cell capture (64 byte records) and timestamping on high
performance “DAG2.1” adaptor cards designed and built at WAND.

° timestamping and no losses.
e GPS based drift correction of clocks.

The Raw Data:

e Important link, external and internal traffic, at Auckland University.
e Busiest two hour period: 6pm - 8pm, Thursday July 8th, 1999.

e One VC, IP traffic filtered, Mbytes of raw data.

e Only first cell of each IP packet captured: header + bytes.

e TCP connections can be reconstructed, data payloads erased.




Two Extracted Time Series

From a set of raw data many different time series can be extracted.

Here we consider two:

Arrivals: The number of new TCP connections in intervals.

e series is time indexed and non-negative integer valued.
® series is long.

e low data density, zeros (average traffic rate Mbits/s).

Durations: Successive durations of TCP connections.

e series is intrinsically discrete and positive real-valued.
® series 18 long.

e mean duration is minutes.




Connection arrivals: Aggregated series

Agg level 64, Len =11250 Agg level 256, Len =2812

Agg level 1024, Len =703 Agg level 4096, Len =175




Connection arrivals: 1D Marginal

fggievel 1, Len = 720000 fggievel 2, Len = 360000 fgglevel 4, Len = 180000
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Connection arrivals: The Logscale Diagram

Spectral Estimate: VS
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e Small scales: slope [discontinuous sample path]

e Large scales: slope [long range dependence]




Stationarity check: First and second order

Timeseries
I

Means ovér the blocks. $he horizontafine gives thedoverall mean®

Variances

Block number




Stationarity check: Second order scaling




Stationarity check: Higher order scaling (
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Cascade Analysis: Divisibility and Estimation

Over all scales:

Estimation of IuSv = IHB.mv_ N=3
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Cascade Analysis: Observations

Cascade
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Conclusion: IDC model fits well over all scales, is not




Multiscale Analysis: Small scales

Estimation de Nn = No.m. N




Multiscale Analysis: Large scales

N=3, (,i,) = (8,16)

Estimation de mg = mo.m_




Multiscale Diagrams

Small scales: (j,,j,)
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Linear Multiscale Diagrams

against

Small scales: C.Hv u.m )=(3,8) Large scales: C.Hv u.m )=(8,16)
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Conclusion: Small scales: Non-trivial multiscaling, eg Multifractal.

Large scales: Trivial multiscaling, eg H-ss model.




Comparison: OSmall scales  (Connection Arrivals)

Cascade Comparison Multiscale
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Conclusion: Cascade reduces to Multiscale over small scales.




Comparison: Large scales  (Connection Arrivals)

Cascade Comparison Multiscale
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Conclusion: Cascade reduces to Multiscale over large scales!




QOE@@H@MQS” Small scales (Connection Durations)

Cascade Comparison Multiscale
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Conclusion: For Durations we see a single multiscaling range.




Conclusions

e Single IDC observed for TCP connection arrivals and durations.
Independent multiscaling models often observed in two scale ranges.

Cascade model reveals they are equivalent: If is “piecewise
log” then the two are simple multiples.

e Infinitely divisible cascades generalise multiscale analysis

When , IDC reduces to the multiscale ¢, analysis.

e Wavelets provide a statistically eftective and flexible basis for
scaling analysis of diverse types.

Matlab code for second order scaling analysis, and documentation, available at:

http://www.serc.rmit.edu.au/~darryl




