Wavelet Tools for Scaling Data

Patrice Abry, Patrick Flandrin and Darryl Veitch CNRS — ENS Lyon, France and SERC, Melbourne, Australia

thanks to

J. Cleary and J. Micheel (WAND, Univ. of Waikato, New Zealand) P. Chainais (CNRS — ENS Lyon), L. Huang (SERC, Melbourne),

Scaling Data

- " $1/f^{\alpha}$ spectrum"
- self-similarity
- long-range dependence
- (multi-)fractal behaviour
- cascades

Common property of scale invariance

- no characteristic scale (in a given range)
- invariant relations between scales

Multiresolution analysis — 1

Basic idea

"signal = (low-pass) approximation + (high-pass) detail" iteration

- successive approximations (at coarser and coarser resolutions)
- \sim aggregated data
- details (difference in information between different resolutions)
- \sim increments

Multiresolution is a natural language for scaling processes.

Multiresolution analysis — 2.

Wavelet-based formalization

A MultiResolution Analysis (MRA) of $L^2(\mathcal{R})$ is given by

- 1. a series of nested approximation spaces ... $V_1 \subset V_0 \subset V_{-1}$... $L^2(\mathcal{R})$; such that their intersection is zero and their closure is dense in
- 2. a dyadic scaling relation between approximation spaces:

$$X(t) \in V_j \Leftrightarrow X(2t) \in V_{j-1};$$

3. a scaling function $\varphi(t)$ such that all of its integer translates $\{\varphi(t-n), n \in \mathcal{Z}\}$ form a basis of V_0 .

Wavelet decomposition -1.

decomposition: Given a resolution depth J, a signal $X(t) \in V_0$ admits therefore the

$$\underbrace{X(t)}_{k} = \sum_{k} a_{X}(J,k) \varphi_{J,k}(t) + \sum_{j=1}^{J} \sum_{k} \underbrace{d_{X}(j,k)}_{k} \psi_{j,k}(t),$$
signal approximation J scales details

with $\{\xi_{j,k}(t) := 2^{-j/2} \zeta(2^{-j}t - k), j \text{ and } k \in \mathcal{Z}\}$, for $\xi = \varphi$ and ψ .

translates form a basis of W_0 , the complement of V_0 in V_{-1} . The wavelet $\psi(.)$ is constructed in such a way that its integer

Wavelet decomposition -2.

The wavelet coefficients $d_X(j,k)$ are obtained as

$$d_X(j,k) := \langle X, \psi_{j,k} \rangle$$
.

- FFT). From a practical point of view, they can be computed recursively with efficient pyramidal algorithms (faster than
- An important property of a wavelet is its number of vanishing moments, i.e., the number $N \geq 1$ such that

$$\int t^k \psi(t) dt \equiv 0, \text{ for } k = 0, 1, \dots N - 1.$$

Wavelets and self-similarity -

If a process $X = \{X(t), t \in \mathcal{R}\}$ is self-similar, i.e., if

$$\{X(t), t \in \mathcal{R}\} \stackrel{d}{=} \{c^{-H}X(ct), t \in \mathcal{R}\}$$

self-similarity through: for any c > 0, its wavelet coefficients exactly reproduce the

$$\{d_X(j,k), k \in \mathcal{Z}\} \stackrel{d}{=} \{2^{j(H+1/2)}d_X(0,k), k \in \mathcal{Z}\}.$$

Wavelets and self-similarity —

For processes whose wavelet coefficients have finite second-order statistics (e.g., fractional Brownian motion), one has:

$$\log_2 \mathbb{E} d_X^2(j,k) = j(2H+1) + \log_2 \mathbb{E} d_X^2(0,k).$$

For processes whose wavelet coefficients may have infinite second-order statistics, but for which $\mathbb{E} \log_2 |d_X(j,k)|$ exists (e.g., linear fractional stable processes), one has

$$\mathbb{E}\log_2|d_X(j,k)| = j(H+1/2) + \mathbb{E}\log_2|d_X(0,k)|.$$

Estimation of H in a Logscale Diagram

Key features for estimation

- Admissibility (mean value zero) \Rightarrow stationarization of fractional Brownian motion) nonstationary processes with stationary increments (e.g.,
- Number of vanishing moments high enough \Rightarrow almost decorrelation in the wavelet domain, scale by scale:

$$\mathbb{E} d_X(j,n) d_X(j,m) \propto \int \frac{|\Psi(2^j f)|^2}{|f|^{\alpha}} e^{i2\pi(n-m)f} df.$$

LRD in X(.) can be turned into SRD in $d_X(j,.)$.

Corollary : detrending

Beyond 2nd order scaling

$$T_X(a) := 2^{-j/2} d_X(j,n) \Big|_{j = \log_2 a}$$

$$\mathbb{E}|T_X(a)|^q \sim a^{Hq} = \exp\{Hq\ln a\}$$
 (monoscaling)
 $\exp\{H(q)\ln a\}$ (multiscaling)
 $\exp\{H(q)n(a)\}$ (cascade)

Beyond 2nd Order Scaling

Self-Similarity:
$$\mathbb{E}|d_X(j,k)|^q = C_q(2^j)^{qH} = C_q \exp\left(qH\ln(2^j)\right)$$

- A single scaling parameter H
- Power-laws

Multi-Scaling:
$$\mathbb{E}|d_X(j,k)|^q = C_q(2^j)^{H(q)} = C_q \exp(H(q)\ln(2^j))$$

- A collection of parameters: H(q)
- Power-laws

Infinitely Divisible Cascade:
$$\mathbb{E}|d_X(j,k)|^q = C_q \exp\left(H(q)n(2^j)\right)$$

- No Power-Law!
- order q / scale 2^{j} separability

Note: Scale:
$$a = 2^{j}$$

Normalization:
$$d_X(j,k) = \langle x, 2^{-j/2} \psi_{j,k} \rangle$$

Cascade

Castaing 90, 96, Arnéodo et al., 97

• Self-Similarity :
$$(a < a')$$
, $P_a(d) = \frac{1}{\alpha_0} P_{a'}(\frac{d}{\alpha_0})$, $\alpha_0 = \left(\frac{a'}{a}\right)^H$

- Cascade: - $G_{a,a'}$ kernel or propagator of the cascade $(a < a'), P_a(d) = \int G_{a,a'}(\ln \alpha) \frac{1}{\alpha} P_{a'}(\frac{d}{\alpha}) d\ln \alpha$
- $G_{a,a'}(\ln \alpha) = \delta(\ln \alpha \ln \alpha_0) \rightarrow \text{Self-Similarity (Kolmogorov, 41)}$

$$\begin{array}{l} \bullet u = \ln |d|: \qquad \underline{P}_a(\ln |d|) = \int G_{a,a'}(\ln \alpha)\underline{P}_{a'}(\ln |d| - \ln \alpha) \, d\ln \alpha \\ \\ \Rightarrow \underline{P}_a = G_{a,a'} *\underline{P}_{a'} \qquad \text{Convolution} \end{array}$$

Infinitely Divisible Cascade

• No Characteristic scale :

$$a = a_0 < a_1 < \dots < a_n = a'$$
 $\underline{P}_{a_{k-1}} = G_{a_{k-1}, a_k} * \underline{P}_{a_k}$

Then $\underline{P}_a = G_{a,a'} * \underline{P}_{a'}$ with

$$G_{a,a'} = G_{a_0,a_1} * \dots * G_{a_{n-1},a_n}$$

Infinite divisibility (or Continuous Self Similarity):

$$\begin{aligned} G_{a,a'}(\ln \alpha) &= \left[G_0(\ln \alpha) \right]^{*\{n(a) - n(a')\}} \\ \tilde{G}_{a,a'}(q) &= \left[\tilde{G}_0(q) \right]^{n(a) - n(a')} \\ \mathbb{E}|d_X(j,k)|^q &= C_q \exp\left[H(q)n(2^j) \right], \ H(q) = \ln \tilde{G}_0(q) \\ &\to \text{Separability order } q \text{ / Scale } 2^j \end{aligned}$$

 $H(q)n(2^{j}) + K_{q} = [H(q)/\beta] [\beta n(2^{j}) + \gamma] + [K_{q} - \beta H(q)/\gamma]$ Arbitrariness : $\ln \mathbb{E}|d_X(j,k)|^q = H(q)n(2^j) + K_q$ $= H'(q)n'(2^j) + K'_q$

Scale Invariant Infinitely Divisible Cascade

Scale Invariance : Set $n(a) = \ln a$, Then,

Le Invariance : Set
$$n(a) = \ln a$$
, Then,
$$\tilde{G}_{a,a'}(q) = \exp\left[\left(\ln \tilde{G}_0(q)\right)(n(a) - n(a'))\right]$$

$$= \left(\frac{a}{a'}\right)^{\left(\ln \tilde{G}_0(q)\right)}$$

$$= C_q(2^j)^{\ln \tilde{G}_0(q)}$$

$$\to \text{Multi-Scaling}$$

Multifractal Analysis : $\mathbb{E}|d_X(j,k)|^q = C_q(2^j)^{\zeta_q}, 2^j \to 0$ $-n(a) = \ln(a)$ $-G_0(q) = \exp(\zeta_q),$

e.g., Multinomial stochastic cascades, Mandelbrot

Infinitely Divisible Cascade: Model testing

$$H(q) = \ln \tilde{G}_0(q),$$

Power-laws are back!

$$\mathbb{E}|d_{X}(j,k)|^{q} = C_{q,p} (\mathbb{E}|d_{X}(j,k)|^{p})^{(H(q)/H(p))}$$

$$\ln \mathbb{E}|d_{X}(j,k)|^{q} = \frac{H(q)}{H(p)} \ln \mathbb{E}|d_{X}(j,k)|^{p} + \kappa_{q,p}$$
- Extended Self-Similarity

- Key-Quantities: $S_q(j) = \frac{1}{n_j} \sum_{k=1}^{n_j} |d_X(j,k)|^q$
- Estimators for $\mathbb{E}|d_X(j,k)|^q$,
- $d_X(j,k)$ stationary, weak statistical dependence,
- Statistics of $\ln S_q(j)$: e.g., able to estimate Var $\ln S_q(j)$
- Model testing:

Check straight lines in $\ln S_q(j)$ versus $\ln S_p(j)$ plots.

Consider the variances of the $\ln S_q(j)$!

Infinitely Divisible Cascade: Estimation

p is an arbitrary reference

H(.): $\ln \mathbb{E}|d_X(j,k)|^q = H(q)/H(p) \ln \mathbb{E}|d_X(j,k)|^p + \kappa_{q,p}$ Weighted Linear Regression in $\ln S_q(j)$ versus $\ln S_p(j)$ plots $\hat{H}(q)/H(p) = \text{slope}_{q,p}$

Consider the variances of the $\ln S_q(j)$!

• n(.): $\ln \mathbb{E}|d_X(j,k)|^q = H(q)n(2^j) + C_q$

$$H(p)\hat{n}(2^j) = \langle \frac{H(p)}{\hat{H}(q)} \left(\ln S_q(j) - \langle \ln S_q(j) - \frac{\hat{H}(q)}{H(p)} \ln S_p(j) \rangle_j \right) \rangle_q$$

Consider the variances of the $\ln S_q(j)$!

Note: Arbitrary Convention: $H(q)n(2^j) \equiv (H(q)/H(p)) (H(p)n(2^j))$

fractional Brownian motion in Multifractal time Infinitely Divisible Cascade: An Example Mandelbrot 97, Riédi, 99

- Let $\mu(t)$ be the measure of a binomial multiplicative cascade,
- Let $\mathcal{M}(t) = \int_{-\infty}^{\infty} d\mu(s)$ be its distribution function,
- Let $B_H(t)$ be a fBm with self-similarity parameter H,
- Define the fBm in Multifractal time as : $\mathcal{B}(t) = B_H(\mathcal{M}(t))$,
- Then, $\mathcal{B}(t)$ is a process with rich scaling.

Thanks to P. Gonçalvès for Matlab synthesis codes for the MfBm

Cascade Analysis : $\log_2 S_q(j)$ versus $\log_2 S_p(j)$

Multi-Scaling (or Multifractal) Analysis : $\ln S_q(j)$ versus j plots

The Data: TCP/IP over ATM

(Special thanks to Jörg Micheel at WAND and Li Dong Huang of SERC for time series extraction) Data courtesy of Prof. Cleary and WAND, University of Waikato NZ

The Measurement Equipment:

- Measurement of OC3 ATM link (155 Mbits/s).
- Cell capture (64 byte records) and timestamping on high performance "DAG2.1" adaptor cards designed and built at WAND
- $\sim 0.1 \mu s$ timestamping and no losses.
- GPS based drift correction of clocks.

The Raw Data:

- Important link, external and internal traffic, at Auckland University.
- Busiest two hour period: 6pm 8pm, Thursday July 8th, 1999
- One VC, IP traffic filtered, 137 Mbytes of raw data.
- Only first cell of each IP packet captured: header + 40 bytes.
- TCP connections can be reconstructed, data payloads erased.

Two Extracted Time Series

From a set of raw data many different time series can be extracted. Here we consider two:

Arrivals: The number of new TCP connections in 10 ms intervals.

- series is time indexed and non-negative integer valued.
- series is n = 720,000 long.
- low data density, 90.2% zeros (average traffic rate 1.13 Mbits/s).

Durations: Successive durations of TCP connections

- series is intrinsically discrete and positive real-valued.
- series is n = 66,370 long.
- mean duration is ~ 3 minutes.

Connection arrivals: Aggregated series

Agg level 1024, Len = 703

Agg level 256, Len = 2812

Agg level 4096, Len = 175

M HAMMAN MANAMAN MANAM

Connection arrivals: The Logscale Diagram

Spectral Estimate: $\log_2(S_2(j)) = \log_2(\frac{1}{n_j} \sum_{k=1}^{n_j} |d_X(j,k)|^2) vs j$

- Small scales: slope $\sim 0.063 \pm 0.005$ [discontinuous sample path]
- Large scales: slope $\sim 0.49 \pm 0.04$ [long range dependence]

Stationarity check: Second order scaling

$$\log_2(S_2(j)) = \log_2\left(\frac{1}{n_j}\sum_{k=1}^{n_j}|d_X(j,k)|^2\right) \quad vs \quad j$$

Stationarity check: Higher order scaling (q = 6)

$$\log_2(S_q(j)) = \log_2\left(\frac{1}{n_j} \sum_{k=1}^{n_j} |d_X(j,k)|^q\right) \quad vs \quad j$$

တ

ω

Cascade Analysis: Divisibility and Estimation

Over all scales:

 $\log_2(S_q(j))$ vs $\log_2(S_1(j))$, $q = 0.5, \dots, 6$.

Cascade Analysis: Observations

Multiscale Analysis: Small scales

$$\log_2(S_q(j)) = \log_2\left(\frac{1}{n_j} \sum_{k=1}^{n_j} |d_X(j,k)|^q\right) vs j, \quad q = 0.5, \dots, 6.$$

Multiscale Analysis: Large scales

$$\log_2(S_q(j)) = \log_2\left(\frac{1}{n_j} \sum_{k=1}^{n_j} |d_X(j,k)|^q\right) vs j, \quad q = 0.5, \dots, 6.$$

Multiscale Diagrams

 ζ_q against q

Linear Multiscale Diagrams ζ_q/q against q

Large scales: Trivial multiscaling, eg H-ss model.

Conclusions

- Single IDC observed for TCP connection arrivals and durations log" then the two $\zeta(q)$ are simple multiples. Cascade model reveals they are equivalent: If n(a) is "piecewise Independent multiscaling models often observed in two scale ranges.
- Infinitely divisible cascades generalise multiscale analysis

$$E \log_2 S_q(j) \sim H(q)n(2^j) + C_j$$

When $n(a) = c \log(a) + d$, IDC reduces to the multiscale ζ_q analysis.

• Wavelets provide a statistically effective and flexible basis for scaling analysis of diverse types

Matlab code for second order scaling analysis, and documentation, available at: http://www.serc.rmit.edu.au/~darry.