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0.1 AMBIGUITY FUNCTIONS'
0.1.1 The radar/sonar problem

Let us consider the typical radar/sonar problem in which the detection of a tar-
get (and the estimation of its relative range d and velocity v with respect to the
emitter /receiver) is achieved from the analysis of the returning echo r(t) associ-
ated to a given emitted waveform z(t). Assuming a perfect reflection in the echo
formation process and a constant radial velocity between the emitter/receiver and
the target, r(t) can be modelled as an attenuated replica of x(¢), up to a (range
encoding) round trip delay, a (velocity encoding) modification due to the Doppler
effect and some observation noise. On the basis of various criteria (maximum like-
lihood, Neyman-Pearson strategy, maximum contrast,...), it is known [14] that a
basic ingredient for solving the detection problem is a measure of (linear) similarity,
in the L2-sense of a correlation, between the signal to detect and the actual echo
(“matched filter” principle). Given the assumed model, it is therefore natural to
compare the received echo with a battery of templates (Tg ) (t), where Ty o
stands for the range-velocity transformation attached to the candidate pair (d',v'),
so that estimates of d and v can be inferred from:

(d,d) := arg max |(r, Ta )| . (0.1.1)
(d'v")

As far as the deterministic part of the above inner product is concerned, the
ideal situation would be to deliver zero values for all range-velocity pairs, except
for (d',v") = (d,v). This, however, proves not to be achievable (as justified below),
leading to a joint determination of range and velocity which is intrinsically ambigu-
ous: this is the reason why a quantity of the type (z,Tq,2) is loosely referred to
as an ambiguity function (AF).

0.1.2 Definitions of ambiguity functions

In order to be more specific in defining AF’s, care has to be taken to physical
considerations about the Doppler effect, which accounts for a time stretching of the
returning echo.

Narrowband ambiguity functions. In the general case, the Doppler factor
expresses as 77 := (¢ + v)/(c — v), where ¢ stands for the celerity of the propagating
waves in the considered medium. In the radar case, the celerity of electromagnetic
waves is ¢ = 3 x 10® m/s and, even if we assume a relative target velocity as large as
v = 3,600 km/h, we end up with a Doppler factor such that n—1 = 6.66x 1076 « 1,
thus justifying the approximation n &~ 1+ 2v/c. It follows that, if the emitted signal
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is of the form z(t) := #(t) exp{i2nfot}, where Z(¢) is a complex envelope that
is narrowband with respect to the carrier fo, the deterministic part r4(¢t) of the
returning echo r(t) admits the approximation r4(t) x z(t — 7) exp{i2nvt}, with 7 a
round trip delay such that 7 := 2d/v and v a Doppler shift such that v := 27 fov/c.
The corresponding inner product

+oo

(@, ) o / 2(t) 2t (t — 1) e~ 2T g (0.1.2)
— 00

is therefore proportional to a quantity referred to as the narrowband AF of x(t).

Whereas this formulation is the one initially introduced by Woodward [16], it often

proves useful to rather adopt the following symmetrized definition:

+oo .
Ay (v,7) = / 2 (t+7/2) 7* (£ —7/2) 2™ Gt (0.1.3)

—0o0

Wideband ambiguity functions. The above definitions (0.1.2)—(0.1.3) are based
on approximations that may prove not to be relevant in contexts different from
radar. This is especially the case in airborne sonar, where the celerity of acoustic
waves is ¢ = 340 m/s, thus leading to n = 1.2 for relative radial velocities v & 100
km/h. A similar situation can also be observed (although to a smaller extent) in
underwater sonar, where the sound celerity in water ¢ = 1500 m/s and typical
relative velocities v ~ 2.6 m/s lead to n =~ 1.034. In such cases, the previous
approximation of a Doppler shift is no longer valid for wideband signals, and the
more general form

~ +(x>
Az(n,7) = \/ﬁ/_ z(t)x*(n(t —71))dt (0.1.4)

has to be preferred as a definition of a wideband AF [6].
Such a wideband definition naturally reduces to the narrowband one when the
analyzed signal is narrowband.

Ambiguity functions and time-frequency distributions. AF’s can be viewed
as two-variable generalizations of correlation functions. In this respect, they are
dual of energy distributions. In particular, it directly follows from the definition
(0.1.3) that

+oo .
/ / Ay (v, 7) e 2T dy dr = W (¢, f), (0.1.5)

where W, (, f) is the Wigner-Ville distribution (WVD)2. More generally, the whole
Cohen’s class of quadratic time-frequency distributions can be obtained as the 2D
Fourier transform of weighted (narrowband) AF’s g(v,7) A, (v, T) (see, e.g., [4]).

21t is worth noting that the symmetrized AF (0.1.3) has in fact been pionneered by J. Ville [15]
as a form of “time-frequency characteristic function”.
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Similarly, a properly symmetrized version of the wideband ambiguity function
(0.1.4) can be shown [2] to be in Mellin-Fourier duality with a wideband time-
frequency distribution, referred to as Altes’ Q-distribution Q,(t, f). More precisely,
if we let

~ +OO ~
Aqg(n,7) ==/ 22t +7/2)) 2 (T2 (t = 7/2)) dt = As(n,n™/?7), (0.1.6)

—0o0

we have [2]
+oo  ptoo . )
/ Az(ﬂ, 7_) e—i2mfT nz27rt—1 dndr = Qz(t, f)’ (0_1‘7)
0 —o0

with the warping equivalence Q,(t, f) = Wi (t,log f), if X(f) := X (ef).

Another interesting connection can be pointed out between AF’s and linear time-
frequency (or time-scale) representations. In fact, the right-hand side of (0.1.2) can
be viewed as the short-time Fourier transform of x(t), with window h(t) := z(t); in
the same respect, (0.1.4) is nothing but the wavelet transform of z(t), with wavelet
¥(t) := z(t) (and scale a := 1/n). In both cases, the AF is exactly identical to the
reproducing kernel of the corresponding linear transform [4].

0.1.3 Properties of narrowband ambiguity functions

Invariances and covariances. Whereas members of Cohen’s class are covariant
with respect to time and frequency shifts, the squared modulus of the AF (a quantity
referred to as the ambiguity surface (AS)) is invariant to such transformations (i.e.,
|4y (v, 7)* = |Az (v, 7)|? for any shifted version y(t) := z(t—6) exp{i2m&t} of a given
signal z(t)). In a similar way, the AF inherits—by Fourier duality—from a number
of properties satisfied by the WVD, such as covariance with respect to dilations,
rotations or chirp modulations [4] [8].

Cross-sections. As it has been mentioned, the narrowband AF can be seen as
a correlation function with respect to time and frequency shifts. As such, it is
hermitian symmetric: A,(—v,—7) = A%(v,7), and it satisfies the inequality

|4z (v, 7)[ < |42(0,0)] = [|z[f3. (0.1.8)

Although this interpretation cannot be pushed too far (in particular, the AF is
not a non-negative definite quantity, since its 2D Fourier transform—namely, the
WVD—can attain negative values), cross-sections of the AF are meaningful 1D
correlation functions, since we have:

+oo
Am(o,f)=/ s(t+1)2) 2" (t—1/2) dt (0.1.9)
and oo
Aw0) = [ X(F+v/2) X*(f—v/2) df. (0.1.10)

—00



This idea of a time-frequency correlation function (which is illustrated in Figure
1) is instrumental in the design of reduced interference distributions within Cohen’s
class [5].
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Figure 1: Ambiguity functions as time-frequency correlation functions.
Subplots (b) to (d) display the ambiguity surfaces attached respectively to the three
signals plotted in (a), namely (from top to bottom): two Gabor logons, a linear
chirp and a sample of white Gaussian noise. All three surfaces share the common
property of attaining their maximum value at the origin of the plane, with values
off the origin that reveal correlations in the signal structure, with respect to both
time and frequency shifts (referred to as delay and Doppler).

Volume invariance and self-transformation. Using Parseval’s relation and
Moyal’s formula [4], we readily get that, for any two signals = and y,

2

//j Ay (v,7) A%, 7) dv dr = ‘/:m 2(t)y* (t) dt (0.1.11)
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Setting y = x in this equation, it follows that

+oo
// Ay (v, )2 dv dr = |||, (0.1.12)

i.e., that the AS has an invariant volume that is only fixed by the signal’s energy.
More remarkably, (0.1.12) is just a special case of Siebert’s self-transformation prop-
erty [11]:

+oo .
// |4z (v, 7) P 27D dy dr = | A, (f, 1) (0.1.13)

from which it can be inferred that an AF is a highly structured function.

Uncertainty principles. If we combine the “correlation” inequality (0.1.8) and
the “volume invariance” property (0.1.12), it is clear that an AS cannot be perfectly
concentrated at the origin of the plane. This limitation, that is sometimes referred
to as the radar uncertainty relation [13], admits a more precise LP-norm formulation
(p > 2) as follows [7]:

+oo 2
Lo)= [[ 1w P dvar <2 (0.1.14)

with equality if and only if  is a linear chirp with a Gaussian envelope. A sim-
ilar result holds on the basis of an entropic measure of sharpness, leading to the
inequality

+oo
S, = _// |40 (v, 7) 2 log | Ay (v, 7)|? dv dr > 1 (0.1.15)

for unit energy signals.

The common interpretation of those inequalities is that an AS cannot be zero
everywhere except at the origin of the plane. In the case where all of the AS is
supposed to be concentrated around the origin, it has necessarily to extend over
a domain (whose area is non-zero) which defines the joint accuracy of any delay-
Doppler measurement [10] [14]. However, AS’s which are more sharply peaked at
the origin can be found, provided that non-zero values are accepted somewhere off
the origin in the plane: for unit energy signals, AS’s with null values except in (0, 0)
can be obtained on convex domains whose clear area cannot however be greater
than 4 [9]. An example is given in Figure 2.

Delay /Doppler estimation. The best achievable performance in joint estimation
of delay and Doppler is bounded. The actual Cramér-Rao bounds on variances and
covariances can be derived from the Fisher information matrix of the problem,
whose terms can themselves be expressed as partial derivatives of the AS, in the
case of additive white Gaussian noise [14]. Since the AS is basically the maximum
likelihood estimator for delay and Doppler, and since this estimator can be shown to
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Figure 2: Sharpening the central peak of an ambiguity surface. Whereas
a single Gaussian pulse has an ambiguity surface whose central peak cannot have
an effective area A smaller than a limit fixed by the “radar uncertainty principle”
(left), a signal defined by the superposition of a number of replicae of such a pulse,
periodically shifted in time and frequency, may guarantee a sharper central peak
(right). This has however to be paid at the price of auxiliary peaks off the origin,
with a “clear area” of the order of A.

be asymptotically efficient, it thus follows that the AS geometry is a direct indicator
of the expected accuracy in the estimation. Roughly speaking, variances in delay

and Doppler estimation are given by the effective widths of the central peak of the
AS.

Signal design. In active problems, in which the emitted signal can be freely chosen
(up to a certain extent), an important issue is to design waveforms with a prescribed
AF (or AS), so that some desired performance can be guaranteed. From a purely
theoretical point of view, a signal is entirely determined (up to a pure phase term)
by its AF, since we can invert the definition (0.1.3) according to:

1 oo
z*(0) J_o

Unfortunately, as it has been said before, an AF is a highly structured function
and an arbitrary 2D function has in general no reason to be admissible, i.e., to be the
actual AF of some signal. Different approaches have been proposed to overcome this
limitation. One can first think of looking for the signal #(t) whose AF approaches
at best a given time-frequency function F(v,7), according, e.g., to a L?-distance
[12):

z(t) = Az (v, ) e ™ dv. (0.1.16)

+oo
#(t) = arg min / / A (v, 7) = Fu, 7)2 dv dr. (0.1.17)
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One can also rely on the physical interpretation of the AF as a time-frequency
correlation function and promote waveforms with adapted time-frequency charac-
teristics. In this respect, a large bandwidth (resp., a long duration) is required
for an accurate estimation of delay (resp. Doppler). The simultaneous considera-
tion of these two design principles advocates the use of chirp signals with a large
bandwidth-duration product [10].

0.1.4 Remarks on wideband ambiguity functions

In many respects, properties of the wideband AF can be seen as natural generaliza-
tions of the narrowband case (although some properties, such as volume invariance,
may no longer be satisfied), reducing to them in the narrowband limit.

In parallel with what has been previously mentioned in the narrowband case,
the best achievable performance in the joint estimation of delay and Doppler can be
expressed, in the wideband case, in terms of geometrical properties of the wideband
AS [3].

A companion problem is that of Doppler tolerance, which consists in obtain-
ing an unbiased estimate of delay in the presence of any unknown Doppler [1].
Doppler acting as a stretching on the emitted signal, the condition for no bias can
be translated into the fact that the effective time-frequency structure of the emitted
waveform is invariant under stretching. It turns out that the hyperbola is the only
curve of the plane which is invariant under dilation/compression transformations:
in terms of chirps, assumed to be conveniently described on the plane by a time-
frequency skeleton, this justifies [4] the use of logarithmic phases, i.e., of hyperbolic
chirps resembling those commonly observed in natural sonar systems (bats) [1].

Finally, it must be pointed out that computing an AF proves more involved in
the wideband case than in the narrowband case. Efficient solutions, based on the
Mellin transform, have been proposed in [3].
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