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Abstract—Signals made of the superimposition of a reduced
number of AM-FM components can be characterized by a time-
frequency signature which consists of weighted trajectories in
the plane, thus ending up with an ideal representation of their
energy distribution that is intrinsically sparse. Elaborating on
first studies that pioneered a compressed sensing solution to the
question of approaching such an ideally localized distribution by
selecting samples in the ambiguity domain and imposing sparsity
in the time-frequency domain, the present paper discusses new
advances aimed at achieving better performance in the construc-
tion of “cross-term-free” Wigner-type distributions. Improved
optimization schemes are first proposed, that both speed up the
computation and prove more versatile to accommodate for side
constraints such as positivity. A special attention is then paid
to the choice of the necessary measurements in the ambiguity
plane (in fixed or adapted geometries), emphasizing the key role
played by the Heisenberg minimum area, regardless of the signal
complexity.

I. INTRODUCTION

Sparsity-based signal processing has received a consider-
able attention over the last 10 years. Observing that many data
are sparse when transformed in an appropriate representation
space, compressed sensing techniques [1], [2] have been devel-
oped on the basis that sparse data can be reconstructed almost
perfectly with a remarkably small number of measurements
made in a dual domain. Wavelets are emblematic of such
a sparsifying transformation, but one can also think of the
Fourier transformation when applied to a limited number of
tones and, by extension, to time-frequency (TF) representa-
tions in the case of multicomponent AM-FM signals. This
observation prompted to reconsider the question of getting a
sharply localized TF distribution from the fresh perspective
of imposing sparsity in the TF domain while using only few
measurements in some Fourier transform domain. The first
work in this direction [3] has been followed by a few studies
in both deterministic [4], [5] and stochastic [6] settings. The
purpose of this paper is to go further along such lines by (i)
improving the actual implementation of the optimization-based
technique and (ii) better understanding the performance that
can be expected from this alternative approach.

II. RATIONALE

A. Time-frequency sparsity

Many natural and man-made signals can be modeled as a
superimposition of AM-FM components of the form

x(t) =

K∑
k=1

ak(t) exp{iϕk(t)} (1)

that generalizes locally (in time) a Fourier decomposition by
attaching “instantaneous amplitudes” ak(t) to “instantaneous
frequencies” ϕ̇k(t)/2π. From an energetic point of view, this
amounts to consider as an ideal TF representation the quantity

ρx(t, f) =

K∑
k=1

a2
k(t)δ(f − ϕ̇k(t)/2π) (2)

that consists of a finite collection of weighted trajectories in
the TF plane [7], [8], [9]. In the common situation where the
analyzed signal is observed as a sequence of N samples in
time and is analyzed over N frequency bins, the resulting TF
matrix is of size N × N whereas (2) suggests an occupancy
with at most N×K non-zero entries. Therefore, provided that
K � N , the TF matrix is expected to be intrinsically sparse
and, in turn, exploiting explicitly such a sparsity assumption
is a way to approach the ideal TF representation given in (2).

B. Localization vs. interference

It is well-known that quadratic TF energy distributions
may achieve a perfect localization as in (2) for some specific
phase functions ϕk(t), but only in the monocomponent case
(K = 1) [8]. As soon as K > 1, the localization of individual
components (e.g., linear chirps with a quadratic phase in
the Wigner case) is hampered by the existence of cross-
terms [10]. A convenient way of handling this problem is to
switch from the TF plane to its Fourier transformed domain.
Indeed, the 2D Fourier transform of the Wigner distribution
identifies to the so-called ambiguity function (AF), defined as
Ax(ξ, τ) = 〈x,Tξ,τx〉, with Tξ,τ a TF shift operator. The
AF appears therefore as a form of TF correlation function
and, as such, it contains interaction terms (between distinct
components) that lie away from the origin of the AF plane, at
a distance that roughly corresponds to the TF distance between
those components. This suggested long ago [11] to reduce
the influence of such cross-terms by windowing Ax(ξ, τ) with
some appropriate function w(ξ, τ) prior Fourier inversion:

ρ̂x(t, f) = F−1

ξ→t,τ→f
{w(ξ, τ)Ax(ξ, τ)} . (3)

While such a procedure proved successful in many ways, it is
faced with a severe limitation: an effective reduction of cross-
terms requires the AF window to be of limited support, which
in turn degrades the localization of the surviving contributions
when applying the inverse Fourier transformation. An illustra-
tion of this behavior is reported in Figure 1 (second row).

Different improvements have been proposed in order to
overcome this limitation, either by designing a data-driven
weighting function w(ξ, τ) (this will be discussed further in
Sect. III-B), or by finely exploiting phase informations so as
to sharpen a classical TF distribution. The latter approach
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Fig. 1. Principle of sparse reconstruction — On the first line, we present the model (left), the ambiguity function (middle) with 3 differents masks Ω of size
(s + 1)2, with s = 4 (black), s = 12 (dark gray), s = 40 (light gray), and the Wigner distribution (right). On the second line, we present the L2 inversion
for the 3 different sizes of the mask, i.e., the classical solution given by (3). On the third (resp., fourth) line, the optimization-based results associated with the
L1-magic (reps., L1-prox with λ = 0.01 and 5, 000 iterations) procedure are illustrated for the different masks. Computation times are given in each case, for
a sake of comparison.

encompasses the so-called reassignment technique [12] that
is known to achieve an almost perfect localization in many
realistic situations, and that will be used as a benchmark in the
sequel. Whereas reassigned spectrograms can be considered as
state-of-the-art distributions in terms of localization, it must
however be noted that their optimal performance depends on
the choice of a well-chosen short-time window, which might
prove difficult in blind situations.

C. An optimization framework

The observation above about the “localization vs. cross-
terms” trade-off, together with the idea that the target dis-
tribution (2) should be intrinsically sparse, was the key for
proposing in [3] an alternative approach to (3). More precisely,
ρ̂x(t, f) was proposed to be defined as the solution of an opti-
mization problem in which sparsity is imposed by minimizing
the `1-norm of the distribution, while the values of its 2D
Fourier transform are constrained to equal those of the actual
AF in a domain Ω of reduced support, that is neighboring
the origin of the plane so as to reject most of cross-terms.
This initial formulation, with the exact constraint F{ρ} = Ax
over the set Ω, has been shown [3] to be too strict, leading to
discontinuous, over-spiky solutions. This justified the use of a
relaxed constraint that will be used in the present work. More
specifically, considering from now on a discrete-time setting in
which TF distributions as well as AFs are defined as matrices,
the approach we will adopt can be formulated as

ρ̂ε ∈ Argmin
ρ∈RN×N

‖ρ‖1 subj. to ‖MΩ ◦ (F{ρ} −Ax)‖2F ≤ ε

(4)

where ◦ denotes the pointwise matrix product and ‖ · ‖F the
Frobenius norm, ‖ · ‖1 modeling the TF `1-norm defined as

‖ρ‖1 =

N∑
n=1

N∑
m=1

|ρnm|,

and MΩ the AF mask such that MΩ(ξ, τ) = 1 if (ξ, τ) ∈ Ω
and 0 otherwise. An equivalent formulation of (4) reads

ρ̂λ ∈ Argmin
ρ

‖ρ‖1 + λ ‖MΩ ◦ (F{ρ} −Ax)‖2F , (5)

where λ, as in any inverse problem, is a regularization pa-
rameter that balances the constraints regarding sparsity in the
TF domain and fidelity in the AF domain. In order to impose
some additional constraint (such as, e.g., positivity), we can
further modify (5) as

ρ̂λ,C ∈ Argmin
ρ

‖ρ‖1 + ιC(ρ) + λ ‖MΩ ◦ (F{ρ} −Ax)‖2F ,

(6)
with C a non-empty closed convex subset of RN×N and ιC(ρ)
the indicator function that is equal to 0 if ρ ∈ C and +∞
otherwise.

The algorithmic solution1 proposed in [3] was based on
the L1-magic toolbox2 whose algorithmic core consists in
reformulating the sparse minimization problem as a second-
order cone program and uses a log barrier algorithm [1]. While
the achieved results were convincing, the computational cost
proved to be high. Numerous algorithms, which belong to the

1perso.ens-lyon.fr/patrick.flandrin/sparseTFR.html
2users.ece.gatech.edu/˜justin/l1magic/



class of proximal methods [13], [14], [15], have been recently
developed to deal more efficiently with large scale problems
and non-smooth criteria. In order to obtain a faster algorithm
and to easily deal with additional constraints as in (6), we
can use the forward-backward algorithm [16]. This algorithm
is well suited for a minimization problem involving a smooth
data term having a Lipschitz gradient (the most right term of
(6)) and a non-smooth penalization (the sum of the `1-norm
and of the indicator function) [17].

In Figure 1, we contrast the proposed L1-prox3 solution of
(5) with that obtained with L1-magic for the 256-points signal
used as a test example in [3]. The results are very similar for
several choices of Ω (here chosen as a square domain of size
(s + 1)2, with s = {4, 12, 40}), with the notable difference
that the computational time is significantly lower and that the
convergence to a sparse solution is better when s is small.

III. CONSTRAINTS GEOMETRY AND PERFORMANCE

A. Measurements vs. uncertainty

Reasoning along a “compressed sensing” line, the sparsity
assumption attached to the model (2) would suggest that the
number of measurements, i.e., the size of the domain Ω in
the AF plane, be dependent on the number K of components.
However, it turns out that the TF situation is different from a
classical compressed sensing problem in which the issue would
be to reconstruct some sparse function from a reduced number
of measurements. In the present case where measurements
are done in the AF domain, there would be no point in
addressing such a reconstruction problem, since this would
lead to the Wigner distribution as the solution. What is aimed at
is indeed the construction of a new object that best approaches
a “cross-term-free” distribution which can be thought of as the
skeleton of the Wigner distribution. By Fourier duality, the 2D
transforms of the components of this TF skeleton all collapse
around the origin of the AF plane, with a phase structure that
encodes their respective locations while the magnitude of their
combination extends over a domain whose area is of the order
of Heisenberg lower bound. It can be therefore expected that,
in the present context, it is this Heisenberg limit that will play
a key role. Such an interpretation, that is supported by the
behavior reported in the example of Figure 1, will now be
precised further.

B. On adaptive kernels

The selection of a relevant domain Ω in the AF plane
involves two degrees of freedom, namely shape and area. With-
out any specific prior information about the signal structure,
simple shapes such as squares or disks can be adopted, while
one might think of possible improvements based on an adaptive
choice of the domain that would be data-driven. A classical
solution in this direction [18] is provided by choosing for
w(ξ, τ) in (3) a weighting function such that

w∗(ξ, τ) = arg max
w

∫ ∫ +∞

−∞
|w(ξ, τ)Ax(ξ, τ)|2 dξ dτ, (7)

under the constraint ‖w‖2 = 1. The rationale of this technique
is to favor the selection of AF contributions nearby the origin
of the plane, for a constrained total volume that makes of

3perso.ens-lyon.fr/patrick.flandrin/proxTFR.html
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Fig. 2. Fixed vs. adaptive kernels (1) — In the top diagram, the `1-distance to
the model is plotted for fixed (square) and adapted kernels of the same size (in
Heisenberg units), together with the “best” result obtained with a reassigned
spectrogram. The subplots of the bottom row display the TF model and the
corresponding optimal solutions.

the resulting distribution an adapted spectrogram. An efficient
solution has been proposed in [18] in the case where w(ξ, τ)
is assumed to be radially Gaussian.

Figure 2 compares the results obtained with either square
or adapted masks of the same size. In both cases, the `1-
distance to the model is plotted as a function of the typical
length attached to the mask, measured in Heisenberg units4.
For a sake of comparison, the best performance of a reassigned
spectrogram is displayed too. What can be learnt from this
example is at least threefold. First, the performance curves
attain a minimum, in both cases of fixed and adapted masks,
for a typical size which is of the order of Heisenberg’s.
Second, the value of this minimum evidences that combining
the optimization-based approach with an adapted kernel is
optimal as compared to reassigned spectrograms (let us recall
that the best reassigned spectrogram requires the use of an
optimal window that is unknown in practice). Third, one
can observe for the fixed kernel a jump for a size such
that the cross-term between the 2 tones enters the mask,
thus starting reconstructing unwanted oscillations in the TF
solution. Finally, one can remark that the model chosen for
this example is particularly favorable to the radially Gaussian
adaptation of the kernel, while supporting the versatility of a
fixed square kernel whose effectiveness is almost comparable.

A companion example is given in Figure 3, where a 3-tone
signal is considered. The 3 chosen frequencies being not har-
monically related, the AF structure is made of 3 distinct cross-
terms (“xterm1”, “xterm2” and “xterm3”) whose locations are
identified on the diagram. When increasing enough the number
of iterations in the algorithm (from 100 for thin lines to 5, 000
for thick ones), we observe again the distinctive features of
transitions in the error that are coupled with the locations
of cross-terms. Fixed kernels happen to attain the optimal
localization (i.e., that of the best reassigned spectrogram). The

4In this system of units, lengths are normalized so that a square of length
1 has an area which equals the minimum TF occupancy authorized by
Heisenbergs’s uncertainty principle.
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Fig. 3. Fixed vs. adaptive kernels (2) — In the case of a 3-tone signal,
the `1-distance to the model is plotted for square and adapted kernels of the
same size (in Heisenberg units), together with the best result achievable with a
reassigned spectrogram. The different curves correspond to different numbers
of iterations in the algorithm (from 100 for thin lines to 5, 000 for thick ones),
the regularization parameter being fixed to λ = 0.01.

same behavior is reported for the adapted kernel with a much
smaller mask, but this is quite specific of the chosen model.

C. On positivity

Given a mask in the AF domain, neither a Fourier inversion
nor a simple `1 minimization guarantees the positivity of the
solution, a property that is satisfied by (reassigned) spectro-
grams and that might be important for a sake of interpretation.
As suggested above, such a property can however be imposed
by resorting to (6) in place of (5) in the optimization process.
As illustrated in Figure 4 (same example as in Figure 1),
investigating this issue leads to two main conclusions. On the
one hand, unconstrained solutions end up for free with positive
solutions as long as the mask is of the order of Heisenberg.
On the other hand, solutions constrained to be positive (with
C = [0,+∞)N×N in (6)) behave the same, but with an error
that stabilizes to a plateau for larger values of the mask size.

IV. CONCLUSION

An improved version of the sparsity-based approach to
TF energy distributions has been proposed, and elements
supporting its versatility have been provided. The main finding
is that, for a tuning of the free parameters that is almost signal-
independent (namely, a mask size of the order of Heisenberg’s
uncertainty, a regularization parameter λ ≈ 0.01, and about
5,000 iterations), the method is able to attain state-of-the-
art performance of signal-dependent techniques. As compared
to the original work reported in [3], resorting to proximal
methods is more versatile, it easily allows for accommodating
additional constants such as positivity, and it also guarantees
a moderate computational time, making of the proposed ap-
proach an effective addition to the toolkit of TF practitioners.
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