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ABSTRACT

We define and study stochastic discrete scale invariance (DSI), a
property which requires invariance by dilation for certain preferred
scaling factors only. We prove that the Lamperti transformation,
known to map self-similar processes to stationary processes, is an
important tool to study these processes and gives a more general
connection: in particular between DSI and cyclostationarity. Some
general properties of DSI processes are given. Examples of ran-
domsequences with DSI are then constructed and illustrated. We
address finally the problem of analysis of DSI processes, first using
the inverse Lamperti transformation to analyse DSI processes by
means of cyclostationary methods. Second we propose to re-write
these tools directly in a Mellin formalism.

1. DISCRETE SCALE INVARIANCE

Scale invariance, also called self-similarity, is frequently
called upon. Its central point is that the signal is scale in-
variant if it is equivalent to any of its rescaled versions, up
to some amplitude renormalization [1]. More precisely, a
function���� is scale-invariant with exponent� , or�-ss,
if for any � � �: ����� � �������

This definition is given here for a deterministic signal.
The concept can be extended to stochastic signals when one
thinks of the previous equality in a probabilistic way: the
equality of the finite-dimensional probability distributions

[1]. We will write
�
� this equality.

The strict notion of scale invariance, valid for all dila-
tion factors above, is in somecases too rigid; the middle-
third Cantor set is for example invariant only by dilations
of a factor 3 (or a power of 3). Several weakened versions
of self-similarity have been proposed to enlarge scale in-
variance’s relevance and one is of special interest here: it is
to require invariance by dilation for certain preferred scal-
ing factors only, as it is the case for the Cantor set. This is
known asdiscrete scale invariance (DSI), a concept which
as been stressed upon by Sornette and Saleur [2, 3] as an
efficient model in many situations (fracture, DLA, critical
phenomena, earthquakes).

They studied DSI as a property of deterministic signals,
and provided general arguments as why should DSI nat-
urally occur: classical scenarii involve the existence of a
characteristic scale, the apparition by instability of a pre-
ferred scale or more general arguments in non-unitary field
theories [4]. They also found ways to estimate the preferred
scaling ratio in this context, based on classical spectral anal-
ysis (Lomb periodogram).

As far as weknow, this property has not been envisioned
for stochastic processes, a framework which is often fruit-
ful to dispose of when dealing with real measurements, as it
allows to use statistical signal processing methods. The ex-
tension of DSI property to stochastic processes is straigth-
forward. We propose the following definition.

A process ������ � � �
�� has discrete scale invari-

ance with scaling exponent � and scale � if

�����
�
� ������� � � �� � (1)

We will refer to this property as�����-DSI. The equal-
ity here is the probabilistic equality. In the following only
wide-sense property will be used (second-order statistical
properties only).

2. LAMPERTI TRANSFORM : DSI AS AN IMAGE
OF CYCLOSTATIONARITY

2.1. Lamperti transformation

A main issue is to find a way to studyboth theoretically and
practically DSI processes. The answer is given by a trans-
formation introduced by J. Lamperti in 1962 [5], which is
an isometry between self-similar and stationary processes.
It will be called the Lamperti transformation and is defined
as follows.

For any process�� ���� � � ��, its Lamperti transform
������ � � �

�� and its inverse are given by

���� � ��� � ��� �� ��� ��� ��� � � �
� � (2)

� ��� �
�
����

�
��� �� 	�����	��� � � �� (3)



The theorem in the paper ofLamperti is that a process
� ��� is stationary if and only if its Lamperti transform� �
�� is �-ss. The central argument of the derivation is that
the Lamperti transformation maps a time-shifted process to
the dilated version of the Lamperti transform of the original
process. Let

�
��
� �

�
��� ���������� be the dilation oper-

ator and���� � ��� ��� �� � 
� the time-shift operator. The
property is that

�
��� ��

� � �
�
���

�
� ������ � ���� (4)

Understanding this correspondence between time-shift
and dilation operators, we can propose many variations around
Lamperti’s theorem, relaxing in some way the stationarity
for � and the self-similarity for� . We will only con-
sider here the DSI property but some results about different
classes of processes and their description are proposed in
[6]. A useful property is that one can give the (potentially
nonstationary) correlation function of the Lamperti trans-
form� of a process� :

� ���������� �� ����� �� � ������� ��� �� �� ��� (5)

In the recent years some results have been obtained for
�-ss processes with this transformation. Yazici and Kashyap
proposed a general description of wide-sense self-similar
processes and linear models for�-ss [7]. Burneckiet al.
study
-stable and�-ss processes with this transform [8].
Nuzman and Poor give important results about the predic-
tion, the whitening and the interpolation of�-ss processes,
mainly applied to the fractional Brownian motion [9]. Fi-
nally Vid ács and Virtamo [10] proposed a method of esti-
mation of� for a fBm, based on the same idea. All these
authors use the inverse Lamperti transformation (3) to map
the question to a stationaryproblem and then use the known
results for stationary issues in this context. Our objective is
to show that nonstationary methods can be adapted in the
same way, especially for DSI.

2.2. DSI and cyclostationarity

A process is called cyclostationary [11] or periodically-cor-
related [12, 13], if its correlation function is periodic in
time. More precisely, if a period � is given, a process
�� ���� � � �� is wide-sense cyclostationary if it satisfies
for anytimes�� �

� � ��� � � � � � ����

� �� ��� � �� ��� � �� � � �� ���� ���� � (6)

The correlation function�� ��� � � 
� is then periodic in �
of period� and one can decompose�� in a Fourier series

�� ��� �� 
� �

���
����

���
�	
	�
���� � (7)

Using the definitions of cyclostationarity and�����-
DSI and the correspondance (4), we can state the following
important result.

A process �� ���� � � �� is cyclostationary of period
� if and only if its Lamperti transform of parameter�:
����� � ��� ��� ��� � � ���� is ��� 	� �-DSI.

This is one possible extension of Lamperti’s theorem,
one of importance in our study of DSI. A first consequence,
using (5), is that the general form of covariance of�����-
DSI processes is naturally expressed on a Mellin basis:

����� ��� � �����
���

����

������
	�
�� ���� (8)

Note that if the process� is real-valued, a necessary
condition is imposed:������ � ������. TheMellin func-
tion ���	�
�� ��� in (8) is central in the study of DSI pro-
cesses. This is not a surprise: Lamperti transformation maps
the Fourier basis (invariant up to a phase by time-shift) to
the Mellin basis (invariant up to a phase by dilation and hav-
ing also the deterministic DSI property). We stress the fact
the Mellin functions are a basis and that they have an asso-
ciated transformation whichcan be numerically computed
[14].

3. EXAMPLES OF PROCESSES AND SEQUENCES
WITH DSI

Continuous-time systems with DSI property are easily con-
structed. Applying� to an ARMA(�,�) system,we obtain
a generalization of the Euler-Cauchy (EC) system. It is a
model for self-similar processes [7], driven by a multiplica-
tive Gaussian noise����, whose correlation is� �����������
���Æ��� ��. Theprocess���� verifies


�
���

���
� d�

d��
���� �

��
���

���
��� d�

d��
����� (9)

In the same manner that a nonstationary ARMA model with
periodic time-varying coefficients is cyclostationary [15],
one obtains a DSI model when taking log-periodic time-
varying coefficients�� and �� in the (EC) system. This
will be not detailed further.

In order to obtain DSI processes in discrete time (ran-
dom sequences with self-similarity and log-periodicity), a
possibility is to consider a discrete-time system analog to
(EC) (�-ss in a certain way), then introduce log-periodicity
in the coefficients. We describe two approaches here.

A direct discretization in time of the (EC) system is
given by the integration of its evolution between two in-
stants. This was proposed in [16] for the first order. This
nonstationary�-ss system is written as�� � �	�
���� �
	�� where�	�
 � � � 
�� and	� is a time-decorrelated
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Fig. 1. Typical realizations of DSI random sequences. On the left
the model is a (EC) system of order 2 discretized, in cascade with
a log-periodic AR(1). On the right it is constructed on fractional
difference (see text). The length is 5000 points,� � ���, � �

���. The oscillations above the signals are indicative of the log-
periodicity of the AR.�� � ���, � � ���, �� � ���� and�� � �.

Gaussian noise with variance� 	�� 	 �����, when� is
large. The generalization to the discretization of (EC) of or-
der� is straightforward. The result is of the form, for the
large times�

�������� � ���
��������������

� ���AR��� ������ � 	� �
����� (10)

where� is the backward operator, and AR is an AR model.
Such a system with log-periodicity in the coefficient��

and in the AR, or in cascade with a log-periodic AR sys-
tem (see for example the AR(1) proposed hereafter, equa-
tion 12), will present an approximate DSI property. The
reader can see on the left of figure 1 a realization of such a
process.

Another class of discrete-time self-similar systems is
given by models constructed on the fractional difference op-
erator. The usual method is to use its moving average repre-
sentation written as a binomial expansion. We prefer to use
the discretization proposed in [17], constructed with some
generalization of the bilinear transformation in order to de-
fine a scaling operator for sequences. The fractional differ-
ence operator is then a filter��	�
 whose impulse reponse
is

��	�
 �

��
���

�������� � ������ � �� ��

��� � ������ � � �����������
� (11)

This filter is in cascade with a nonstationary AR filter
whose coefficients are log-perodic. For example we may
limit ourselves to the first order (coefficient��), taking care
that the filter is stable at each instant:

�� �

�
�� �� 
��

�� �� �

���

�
		�
��	���� 
��	�


�� �
���



� (12)

We propose an example of such a signal fig. 1 on the right.

4. ANALYSIS BY DELAMPERTIZATION

In front of a general class of processes (or random sequences
in the context of numerical processing) which are nonsta-
tionary, or of unknown structure, one has to find methods to
analyse those. Given a sequence�� suspected of DSI, the
simplest way of analysis is to find the presumed cyclosta-
tionary process associated by applying���.

Generally speaking, classical stationary methods are use-
ful to analyse self-similar process after “delampertization”
of the signal. This was the essence of papers on�-ss pro-
cesses cited before [7, 8, 9]. Nonstationary methods can
then beused tu study classes of processes which have not
proper self-similarity, but which have some kind of nonsta-
tionarity with regards to dilation - a nonstationarity in scale.
DSI is thenonly a first interesting example of a precise kind
of nonstationarity in scale.

Before using cyclostationary methods, a practical prob-
lem must be considered : how to compute in discrete time
the inverse Lamperti transformation ? First, it needs a non
linear sampling� � �� of the data (but such is not often
the case with real signals), or an interpolation to find the
data with this geometrical sampling, given a signal�� with
usual arithmetic sampling: the corresponding sequence��
is known for � � ���, with � � � and we want it for
� � �, � � �. Figure 2 shows on the left the sequence�
constructed from the second process on figure 1.

A second difficulty is that� is a priori unknown. Using
the transformation of parameter� seems tricky... In fact
the tools used thereafter have not been found to be sensitive
to this amplitude effect. The cyclostationary tools are found
unaffected if one uses� � ��� to delampertize the process
in place of the real� .

We tried the applicability of these ideas on synthetic se-
quences. As an example of a classical cyclostationary tool,
weimplemented the methods proposed in [18]. In a nutshell
the algorithm to estimate a time-smoothed cyclic cross pe-
riodogram is as follows. First the signal is decomposed in
� segmentsof length in order to average on these parts.
A filtered and decomposed version is computed, where! is
a data tapering window:

��� ��� "� �

����
������

!���� ��� ��	�	�
�	���
�� (13)

Then the spectral components��� ��� �� are correlated at
frequencies" � #��� and" � #��� by a multiplier followed
by a low-pass filter$:

%��� �&� "� �
�
�

��� ��� " �
#�
�
� �� �� ��� " �

#�
�
�$�& � ���

This is an estimate of the spectral cross correlation. The
usual spectrum is distributed on the main diagonal#� � �
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Fig. 2. On the left is shown the cyclostationary sequence after
using��� on the signal plotted on the right of fig. 1. The marginal
in cyclic frequency is represented on the right. The main peak on
the center is the total energy of the signal. The two symmetric
peaks (pointed on by arrows) are an indication of cyclostationarity
and situated tofrequencies���� �	�.

and for cyclostationary sequences it presents non-zero dis-
tributions on#� � ���� (and eventually on higher har-
monics). The marginal in cyclic frequency of this spectrum
has then sharp peaks on��� where� � 	� for DSI and
gives a reliable estimation of�. See figure 2 the result of
this procedure for the synthetic model described before.

5. TOWARD MELLIN-BASED TOOLS

Another way of thinking might be fecund to analyse DSI
processes. We can formulate directly the methods in a Mellin
formalism, with no geometrical resampling. That is to say
that we oper a “lampertization” of the tools where the first
way proposed to “delampertize” the signal studied.

By direct interpolation we have few details for the short
times (in fact we can’t reconstitute� ' �) and we ignore
many details in the long times (taking one point among
many). To obtain statistical relevance, one has to have a
huge number of points in the original data to make some
processing. The avantage, remarked in [8, 10], is that there
are fewer points in� , then�� after geometrical resampling
and this keeps the computational cost low.

Whenone does not dispose of a large number of points,
using a geometric sampling loose much information on the
signal. As the Fourier transform of a process is related to
the Mellin transform of the process transformed by�, many
methods for cyclostationary processes can be written with
Mellin transformation and used on processes with DSI. For
self-similar signals (� � �), estimators constructed in this
way were given in [19] and can be adapted to take into ac-
count an exponent� and DSI.
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