Elements of time-frequency analysis

Patrick Flandrin

CNRS & École Normale Supérieure de Lyon
<table>
<thead>
<tr>
<th>observing</th>
<th>describing</th>
<th>representing</th>
<th>examples</th>
</tr>
</thead>
</table>

observing
“chirps”

- **Waves and vibrations** — Bird songs, bats, music ("glissando"), speech, "whistling atmospherics", tidal waves, gravitational waves, wide-band impulses propagating in a dispersive medium, pendulum, diapason (string, pipe) with time-varying length, vibroseismics, radar, sonar, Doppler effect,

- **Biology and medicine** — EEG (epilepsy), uterine EMG (contractions), ...

- **Disorder and critical phenomena** — Coherent structures in turbulence, accumulation of earthquake precursors, "speculative bubbless" prior a financial crash, ...

- **Mathematical special functions** — Weierstrass, Riemann, ...
describing
Definition

A “chirp” is any complex-valued signal reading
\[x(t) = a(t) \exp\{i \varphi(t)\}, \]
where \(a(t) \geq 0 \) is a low-pass amplitude whose evolution is slow as compared to the phase oscillations \(\varphi(t) \).

Slow evolution? — Usual heuristic conditions assume that:

1. \(|\dot{a}(t)/a(t)| \ll |\dot{\varphi}(t)| \): the amplitude is **almost constant** at the scale of a pseudo-period \(T(t) = 2\pi/|\dot{\varphi}(t)| \).
2. \(|\ddot{\varphi}(t)|/\dot{\varphi}^2(t) \ll 1 \): the pseudo-period \(T(t) \) is itself **slowly varying** from one oscillation to the next.
modulations

- **Monochromatic wave** — In the case of a harmonic model $x(t) = a \cos(2\pi f_0 t + \varphi_0)$, observing $x(t)$ leads in an **unambiguous** way to the amplitude a and to the frequency f_0.

- **Amplitude and frequency modulations** — Moving to an **evolutive** model amounts (intuitively) to achieve the transformation $a \cos(2\pi f_0 t + \varphi_0) \rightarrow a(t) \cos \varphi(t)$ with $a(t)$ variable and $\varphi(t)$ nonlinear. In an **observation** context, the unicity of the representation is however lost since

$$a(t) \cos \varphi(t) = \left[\frac{a(t)}{b(t)} \right] [b(t) \cos \varphi(t)] =: \tilde{a}(t) \cos \tilde{\varphi}(t)$$

for any function $0 < b(t) < 1$.

Patrick Flandrin
Elements of time-frequency analysis
Monochromatic wave — The real-valued harmonic model can be written as

\[x(t) = a \cos(2\pi f_0 t + \varphi_0) = \text{Re} \{ a \exp i(2\pi f_0 t + \varphi_0) \} , \]

with

\[a \exp i(2\pi f_0 t + \varphi_0) = x(t) + i (Hx)(t) \]

and where \(H \) is the Hilbert transform (quadrature).

Interpretation

A monochromatic wave (prototype of a “stationary” deterministic signal) is described, in the complex plane, by a rotating vector whose modulus and rotation speed are constant along time.
instantaneous amplitude and frequency

Generalisation — A wave modulated in amplitude and in frequency (prototype of a “nonstationary” deterministic signal) is described, in the complex plane, by a rotating vector whose modulus and rotation speed are varying along time, complexification mimicking the “stationary” case:

\[x(t) \rightarrow z_x(t) := x(t) + i (Hx)(t). \]

Definition (Ville, ’48)

The instantaneous amplitude and frequency follow from this complex-valued representation, called analytic signal, as:

\[a_x(t) := |z_x(t)| \quad ; \quad f_x(t) := (d/dt) \arg z_x(t)/2\pi. \]
limitations

- **Multiple components** — By construction, the instantaneous frequency can only attach **one** frequency value at a given time \Rightarrow weighted average in the case of multicomponent signals.

 Multiple components — By construction, the instantaneous frequency can only attach **one** frequency value at a given time \Rightarrow weighted average in the case of multicomponent signals.

 [freqinst2.m]

- **Trends** — Same problem with a monocomponent signal with a DC component or a very low frequency trend.

 Trends — Same problem with a monocomponent signal with a DC component or a very low frequency trend.

 [freqinsttrend.m]

 Possible improvement with an “osculating” Fresnel representation (Aboutajdine et al., ’80).

 [freqinstosc.m]

- **Noise** — **Differential** definition very sensitive to additive noise, even faint.

 Noise — **Differential** definition very sensitive to additive noise, even faint.

 [freqinst1b.m]
A process \(\{x(t), t \in \mathbb{R}\} \) is said to be (second order) **stationary** if its statistical properties (of orders 1 and 2) are independent of some absolute time.

- **Mean value** — The expectation \(\mathbb{E}\{x(t)\} \) is constant (\(\rightarrow 0 \))
- **Covariance** — The covariance function \(r_x(t, t') := \mathbb{E}\{x(t)x(t')\} \) is such that

\[
r_x(t, t') =: \gamma_x(t - t').
\]
Result (Cramér)

\[x(t) = \int e^{i2\pi ft} dX(f) \]

with \(E\{dX(f) dX(f')\} = \delta(f - f') d\Gamma_x(f) df' \)

- **Simplification** — \(d\Gamma_x(f) \) abs. cont. wrt Lebesgue
 \(\Rightarrow d\Gamma_x(f) =: S_x(f) df \) with \(S_x(f) \) **power spectral density**.

- **Duality (Bochner, Wiener, Khintchine)** — One thus gets

\[r_x(\tau) = \int e^{i2\pi f\tau} d\Gamma_x(f) \left(= \int e^{i2\pi f\tau} S_x(f) df \right). \]
nonstationarities

- **Spectral representation** — Always valid, but **without** the orthogonality of spectral increments ⇒ the spectral distribution is no more diagonal but a function of **two** frequencies.

- **Covariance** – Depends explicitly of **two** times (e.g., one **absolute** time and one **relative** time).

Interpretation

*The “power spectrum density” becomes **time-dependent** ⇒ time-frequency.*
Chirp Spectrum

Stationary Phase — In the case where the phase derivative $\dot{\varphi}(t)$ is monotonous, one can approach a chirp spectrum

$$X(f) = \int a(t) e^{i(\varphi(t) - 2\pi ft)} \, dt$$

by its **stationary phase approximation** $\tilde{X}(f)$, leading to

$$|\tilde{X}(f)| \propto a(t_s) |\ddot{\varphi}(t_s)|^{-1/2},$$

with t_s such that $\dot{\varphi}(t_s) = 2\pi f$.

Interpretation

*The “instantaneous frequency” curve $\dot{\varphi}(t)$ puts in a one-to-one correspondence one time and one frequency. The spectrum follows by weighting the **visited frequencies** by the corresponding residence durations.*
time-frequency interpretation

Patrick Flandrin
Elements of time-frequency analysis
representing
intuition

Idea

Give a mathematical sense to musical notation

Aim

Write the “musical score” of a signal with multiple, evolutive components with that additional constraint of getting, in the case of an isolated chirp \(x(t) = a(t) \exp\{i\varphi(t)\} \), a localized representation

\[
\rho(t, f) \sim a^2(t) \delta(f - \dot{\varphi}(t)/2\pi).
\]
The example of the short-time FT — One defines the \textbf{local} quantity

$$F_x^{(h)}(t, f) = \int x(s) h(s - t) e^{-i2\pi fs} \, ds,$$

where $h(t)$ is some short-time observation window.

\textbf{Measurement} — The representation results from an interaction between the signal and a \textbf{measurement device} (the window $h(t)$).

\textbf{Trade-off} — A short window favors the “resolution” in time at the expense of the “resolution” in frequency, and vice-versa.

[spectrodemo.m]
adaption

- **Chirps** — Adaptation to **pulses** if \(h(t) \to \delta(t) \) and to **tones** if \(h(t) \to 1 \) \(\Rightarrow \) adapting the analysis to arbitrary chirps suggests to make \(h(t) \) (**locally**) depending on the signal.

- **Linear chirp** — In the linear case \(f_x(t) = f_0 + \alpha t \), the equivalent frequency width \(\delta f_S \) of the **spectrogram** \(S_x^{(h)}(t, f) := |F_x^{(h)}(t, f)|^2 \) behaves as:

\[
\delta f_S \approx \sqrt{\frac{1}{\delta t_h^2} + \alpha^2 \delta t_h^2}
\]

for a window \(h(t) \) with an equivalent time width \(\delta t_h \) \(\Rightarrow \) minimum for \(\delta t_h \approx 1/\sqrt{\alpha} \) (but \(\alpha \) **unknown**...).
self-adaptation and Wigner-Ville distribution

- **Matched filtering** — If one takes for the window $h(t)$ the time-reversed signal $x_-(t) := x(-t)$, one readily gets that $F_{x_-(t,f)} = W_x(t/2, f/2)/2$, where

$$W_x(t, f) := \int x(t + \tau/2) \overline{x(t - \tau/2)} e^{-i2\pi f \tau} d\tau$$

is the **Wigner-Ville Distribution** (Wigner, '32; Ville, '48).

- **Linear chirps** — The WVD **perfectly** localizes on **straight lines** of the plane:

$$x(t) = \exp\{i2\pi (f_0 t + \alpha t^2 / 2)\} \Rightarrow W_x(t, f) = \delta (f - (f_0 + \alpha t)) .$$

- **Remark** — Localization via self-adaptation leads to a **quadratic** transformation (energy distribution).
Mirror symmetry — Indexing the analyzed signal with respect to a local frame as $x_t(s) := x(s + t)$, one gets:

$$W_x(t, f) := \int \left[x_t(\tau/2) x_t(-\tau/2) \right] e^{-i2\pi f \tau} d\tau,$$

Phase signal — If $x_t(s) = \exp\{i\varphi_t(s)\}$, $W_x(t, f)$ is, as a function of t, the FT of a phase signal

$\Phi_t(\tau) := \varphi_t(\tau/2) - \varphi_t(-\tau/2)$, with “instantaneous frequency”

$$\tilde{f}_{x_t}(\tau) = \frac{1}{2\pi} \frac{\partial}{\partial \tau} \Phi_t(\tau) = \frac{1}{2} [f_{x_t}(\tau/2) + f_{x_t}(-\tau/2)]$$

Localization — It follows that $\tilde{f}_{x_t}(\tau) = f_0$ if $f_{x_t}(\tau) = f_0 + \alpha \tau$, for any modulation rate α.

[spectrovsWV.m]
further properties

- **Energy**
 \[\iint W_x(t, f) \, dt \, df = \| x \|^2 \]

- **Marginals**
 \[\int W_x(t, f) \, dt = |X(f)|^2; \quad \int W_x(t, f) \, df = |x(t)|^2 \]

- **Unitarity ("Moyal’s formula")**
 \[\iint W_x(t, f) W_y(t, f) \, dt \, df = |\langle x, y \rangle|^2 \]

- **Conservation of supports, covariance wrt scaling, linear filtering and modulation, etc.**
further properties

- **Local moments**
 \[
 \int f \ W_x(t, f) \, df / |x(t)|^2 = f_x(t); \quad \int t \ W_x(t, f) \, dt / |X(f)|^2 = t_x(f)
 \]

Interpretation

\(W_x(t, f) \) **quasi-probability (joint) density** of energy in time and frequency:

\[
W_x(t, f) = W_x(t|f) \int W_x(t, f) \, dt = W_x(f|t) \int W_x(t, f) \, df
\]

\[
f_x(t) = \mathbb{E}\{f|t\}; \quad t_x(f) = \mathbb{E}\{t|f\}
\]

- **Limitation** — \(W_x(t, f) \in \mathbb{R} \) but \(\notin \mathbb{R}_+ \).
interferences

- **Quadratic superposition** — For any pair of signals \(\{x(t), y(t)\} \) and coefficients \((a, b)\), one gets

\[
W_{ax+by}(t, f) = |a|^2 W_x(t, f) + |b|^2 W_y(t, f) + 2 \text{Re} \left\{ a \overline{b} W_{x,y}(t, f) \right\},
\]

with

\[
W_{x,y}(t, f) := \int x(t + \tau/2) \overline{y(t - \tau/2)} e^{-i2\pi f \tau} d\tau
\]

- **Drawback** — Interferences between **disjoint** component reduce readability.

- **Advantage** — Inner interferences between **coherent** components guarantee localization.
interferences

- **Janssen’s formula (Janssen, ’81)** — It follows from the **unitarity** of $W_x(t, f)$ that:

$$|W_x(t, f)|^2 = \int \int W_x \left(t + \frac{\tau}{2}, f + \frac{\xi}{2} \right) W_x \left(t - \frac{\tau}{2}, f - \frac{\xi}{2} \right) d\tau \, d\xi$$

- **Geometry (Hlawatsch & F., ’85)** — Contributions located in any two points of the plane plan interfere to create a third contribution

 1. midway of the segment joining the two components
 2. oscillating (positive and negative values) in a direction perpendicular to this segment
 3. with a “frequency” proportional to their “time-frequency distance”.

[WV2trans.m, WVinterf.m]
interferences and readability

somme des WV (N = 16)

WV de la somme (N = 16)
interferences and localization

sum(WV) (N = 16)

WV(sum) (N = 16)
classes of quadratic distributions

Observation

Many quadratic distributions have been proposed in the literature since more than half a century (e.g., spectrogram and DWV): none fully extends the notion of spectrum density to the nonstationary case.

Principle of conditional unicity — Classes of quadratic distributions of the form $\rho_x(t, f) = \langle x, K_{t,f}x \rangle$ can be constructed based on covariance requirements:

\[
\begin{align*}
x(t) \quad \rightarrow \quad & \rho_x(t, f) \\
(Tx)(t) \quad \rightarrow \quad & \rho_{Tx}(t, f) = (\tilde{T}\rho_x)(t, f)
\end{align*}
\]
classes of quadratic distributions

- **Cohen’s class** — Covariance wrt shifts
 \[(T_{t_0,f_0}x)(t) = x(t - t_0) \exp \{i2\pi f_0 t \} \text{ leads to Cohen’s class (Cohen, ’66):}
 \]
 \[
 C_x(t, f) := \int \int W_x(s, \xi) \Pi(s - t, \xi - f) \, ds \, d\xi,
 \]
 with \(\Pi(t, f) \) “arbitrary” (and to be specified via additional constraints).

- **Variations** — Other choices possibles, e.g.,
 \[(T_{t_0,f_0}x)(t) = (f/f_0)^{1/2} x(f(t - t_0)/f_0) \rightarrow \text{affine class (Riou & F, ’92), etc.}\]
an alternative interpretation of Cohen’s class

- **Duality between distribution and correlation** — In the “stationary” case, the **frequency** energy distribution can be estimated as the Fourier image of the **time** correlation \(\langle x, T_\tau x \rangle \), possibly weighted.

- **Extension** — In the “nonstationary” case, one must consider a **time-frequency correlation** \(A_x(\xi, \tau) \propto \langle x, T_{\tau,\xi} x \rangle \) (ambiguity function) which, after weighting and Fourier transformation, leads again to Cohen’s class:

\[
C_x(t, f) = \int \int \varphi(\xi, \tau) A_x(\xi, \tau) e^{-i2\pi(\xi t + \tau f)} \, d\xi \, d\tau.
\]
why “Cohen-type” classes?

- **Unification** — Specifying a kernel (i.e., $\Pi(t, f)$) defines a distribution: unifying framework or most propositions of the literature (Wigner-Ville, spectrogram, Page, Levin, Rihaczek, etc.).

- **Parameterization** — Properties of a distribution are directly connected with admissibility conditions of the associated kernel \Rightarrow simplified possibility of evaluation and design.
an example of definition

Spectrogram — If we consider the case of the **spectrogram** with window \(h(t) \), one can write:

\[
S_x^{(h)}(t, f) = \left| \int x(s) h(s - t) e^{-i 2\pi f s} \, ds \right|^2
\]

\[
= \left| \langle x, T_{t,f} h \rangle \right|^2
\]

\[
= \iint W_x(s, \xi) W_{T_{t,f} h}(s, \xi) \, ds \, d\xi
\]

\[
= \iint W_x(s, \xi) W_h(s - t, \xi - f) \, ds \, d\xi
\]

⇒ a spectrogram is a member of Cohen’s class, with kernel

\[
\Pi(t, f) = W_h(t, f)
\]
Marginal in time — If one wants to have $\int C_x(t, f) \, df = |x(t)|^2$, one can write:

\[
\int C_x(t, f) \, df = \int \left(\int \varphi(\xi, \tau) A_x(\xi, \tau) e^{-i2\pi(\xi t + \tau f)} \, d\xi \, d\tau \right) \, df \\
= \int \varphi(\xi, 0) A_x(\xi, 0) e^{-i2\pi \xi t} \, d\xi \\
= \int \varphi(\xi, 0) \left(\int |x(\theta)|^2 e^{i2\pi \xi \theta} \, d\theta \right) e^{-i2\pi \xi t} \, d\xi \\
= \int |x(\theta)|^2 \left(\int \varphi(\xi, 0) e^{i2\pi \xi (\theta - t)} \, d\xi \right) \, d\theta
\]

⇒ the associated kernel must necessarily satisfy

\[\varphi(\xi, 0) = 1, \forall \xi\]

(true for Wigner-Ville but not for spectrograms)
Cohen’s class and smoothing

- **Spectrogram** — Given a low-pass window \(h(t) \), one gets the smoothing relation:

\[
S^{(h)}_{\chi}(t, f) := |F^{(h)}_{\chi}(t, f)|^2 = \int \int W_{\chi}(s, \xi) W_h(s-t, \xi-f) \, ds \, d\xi
\]

- **From Wigner-Ville to spectrograms** — A generalization amounts to choose a smoothing function \(\Pi(t, f) \) allowing for a continuous and separable transition between Wigner-Ville and a spectrogram (smoothed pseudo-Wigner-Ville distributions):

\[
\text{Wigner} \rightarrow \text{Ville} \rightarrow \text{PWVL} \rightarrow \text{spectrogram}
\]

\[
\delta(t) \delta(f) \quad g(t) H(f) \quad W_h(t, f)
\]
Definition (Martin, '82)

One of the most "natural" extensions of the power spectrum density is given by the Wigner-Ville Spectrum:

\[W_x(t, f) := \int r_x \left(t + \frac{\tau}{2}, t - \frac{\tau}{2} \right) e^{-i2\pi f \tau} \, d\tau \]

- **Interpretation** — FT of a local correlation.
- **Properties** — PSD if \(x(t) \) stationary, marginals, etc.
- **Relation with the WVD** — Under simple conditions, one has \(W_x(t, f) = \mathbb{E}\{ W_x(t, f) \} \).
estimation of the Wigner-Ville spectrum

Aim

Approach $\mathbb{E}\{W_x(t, f)\}$ on the basis of only one realization.

- **Assumption** — **Local** stationnarity (in time and in frequency).
- **Estimators** — Smoothing of the DWV:

 $$\hat{W}_x(t, f) = (\Pi \ast \ast W_x)(t, f)$$

 i.e., Cohen’s classe.

- **Properties** — **Statistical** (bias-variance) and **geometrical** (localization) trade-offs, both controlled by $\Pi(t, f)$.

 Patrick Flandrin
 Elements of time-frequency analysis
global vs. local

- **Global approach** — The Wigner-Ville Distribution localizes perfectly on **straight lines** of the plane (linear chirps). One can construct other distributions localizing on more general **curves** (ex.: **Bertrand**’s distributions adapted to hyperbolic chirps).

- **Local approach** — A different possibility consists in revisiting the smoothing relation defining the spectrogram and in considering localization wrt the instantaneous frequency as it can be measured **locally**, at the scale of the short-time window ⇒ **reassignment**.
Principle — The key idea is (1) to replace the geometrical center of the smoothing time-frequency domain by the center of mass of the WVD over this domain, and (2) to **reassign** the value of the smoothed distribution to this local centroïd:

\[
S_x^{(h)}(t, f) \mapsto \int \int S_x^{(h)}(s, \xi) \delta \left(t - \hat{t}_x(s, \xi), f - \hat{f}_x(s, \xi) \right) \, ds \, d\xi.
\]

Remark — Reassignment has been first introduced for the only spectrogram (Kodera et al., '76), but its principle has been further generalized to **any** distribution resulting from the smoothing of a localizable mother-distribution (Auger & F., '95).
reassignment

Wigner-Ville

spectrogram

Patrick Flandrin

Elements of time-frequency analysis
reassignment

Wigner-Ville

reassigned spectrogram
reassignment in action

- **Spectrogram — Implicit** computation of the local centroids (Auger & F., '95):

\[
\hat{t}_x(t, f) = t + \text{Re} \left\{ \frac{F_x^{(Th)}}{F_x^{(h)}} \right\}(t, f)
\]

\[
\hat{f}_x(t, f) = f - \text{Im} \left\{ \frac{F_x^{(Dh)}}{F_x^{(h)}} \right\}(t, f),
\]

with \((Th)(t) = t \: h(t)\) and \((Dh)(t) = (dh/dt)(t)/2\pi\).

- **Beyond spectrograms** — Possible generalizations to other smoothings (smoothed pseudo-Wigner-Ville, scalogram, etc.).
independence wrt window size

spectro
window = 21
63
127 points

signal model
128 points

Wigner-Ville

reass. spectro
window = 21
63
127 points
an example of comparison

- Signal model
- Wigner–Ville (log scale)
- Spectrogram (log scale)
- Reassigned spectrogram

Patrick Flandrin
Elements of time-frequency analysis
comparison with noise
comparison with noise

signal (RSB = 20 dB)

pseudo–Wigner–Ville

pseudo–Wigner–Ville liss

spectrogramme

spectrogramme rallou
comparison with noise

signal (RSB = 13 dB)

pseudo-Wigner-Ville

pseudo-Wigner-Ville liss

spectrogramme

spectrogramme rallou
comparison with noise

- Signal (RSB = 7 dB)
- Pseudo-Wigner-Ville
- Pseudo-Wigner-Ville liss
- Spectrogramme
- Spectrogramme rallou
comparison with noise

.signal (RSB = 0 dB)

pseudo–Wigner–Ville

pseudo–Wigner–Ville liss

spectrogramme

spectrogramme rallou

Patrick Flandrin Elements of time-frequency analysis
reassignment and estimation

- **Advantage** — Very good properties of localization for chirps (> spectrogram).
- **Limitation** — High sensitivity to noise (< spectrogram).

Aim

Reduce fluctuations while preserving localization.

Idea (Xiao & F., ’06)

Adopt a multiple windows approach.
Observing, describing, representing time-frequency, from Fourier to Wigner beyond Wigner the stochastic case localization time-frequency decisions

Back to spectrum estimation

Stationary processes — The power spectrum density can be viewed as:

$$S_x(f) = \lim_{T \to \infty} \mathbb{E} \left\{ \frac{1}{T} \left| \int_{-T/2}^{+T/2} x(t)e^{-i2\pi ft} \, dt \right|^2 \right\}$$

In practice — Only one, finite duration, realization ⇒ crude periodogram (squared FT) = non consistent estimator with large variance.
classical way out (Welch, ’67)

- **Principle** — Method of *averaged periodograms*

\[\hat{S}_{x,K}^{(W)}(f) = \frac{1}{K} \sum_{k=1}^{K} S_{x}^{(h)}(t_k, f) \]

with \(t_{k+1} - t_k \) of the order of the width of the window \(h(t) \).

- **Bias-variance trade-off** — Given \(T \) (finite), increasing \(K \) ⇒ reduces variance, but increases bias
multitaper solution (Thomson, ’82)

- **Principle** — Computing

\[
\hat{S}_{x,K}(f) = \frac{1}{K} \sum_{k=1}^{K} S_x^{(h_k)}(0, f)
\]

with \(\{h_k(t), k \in \mathbb{N}\} \) a family of orthonormal windows extending over the whole support of the observation \(\Rightarrow \) reduced variance, without sacrificing bias

- **Nonstationary extension** — Multitaper spectrogram

\[
\hat{S}_{x,K}(f) \rightarrow S_{x,K}(t, f) := \frac{1}{K} \sum_{k=1}^{K} S_x^{(h_k)}(t, f)
\]

- **Limitation** — Localization controlled by most spread spectrogram.
Multitaper reassignment

Idea

Combining the advantages of reassignment \((\text{wrt localization})\) with those of multitapering \((\text{wrt fluctuations})\):

\[
S_{x,K}(t, f) \rightarrow RS_{x,K}(t, f) := \frac{1}{K} \sum_{k=1}^{K} RS_{x}^{(h_k)}(t, f)
\]

1. **coherent averaging of chirps** (localization independent of the window)
2. **incoherent averaging of noise** (different TF distributions for different windows)
in practice

- **Choice of windows — Hermite functions**

 \[h_k(t) = (-1)^k \frac{e^{-t^2/2}}{\sqrt{\pi^{1/2} 2^k k!}} (D^k \gamma)(t); \gamma(t) = e^{t^2} \]

 rather than **Prolate Spheroidal Wave functions**

- **Two main reasons**
 1. WVD with **elliptic symmetry** and **maximum concentration** in the plane.
 2. **recursive** computation of \(h_k(t), (\mathcal{T} h_k)(t) \) and \((D h_k)(t) \) ⇒ better implementation in **discrete-time**. In particular:

 \[(D h_k)(t) = (\mathcal{T} h_k)(t) - \sqrt{2(k+1)} h_{k+1}(t) \]
example 1

1 taper

sample spectro.
sample reass. spectro.
sample Wigner

10 tapers

sample mean spectro.
sample mean reass. spectro.

average mean spectro.
average mean reass. spectro.
average Wigner

10 samples

Patrick Flandrin

Elements of time-frequency analysis
example 2

spectro. (M = 1)

spectro. (M = 2)

spectro. (M = 3)

spectro. (M = 4)

spectro. (M = 5)

spectro. (M = 6)

reass. spectro. (M = 1)

reass. spectro. (M = 2)

reass. spectro. (M = 3)

reass. spectro. (M = 4)

reass. spectro. (M = 5)

reass. spectro. (M = 6)
detection/estimation of chirps

- **Optimality** — Matched filtering, maximum likelihood, contrast, ... basic ingredient = **correlation** “received signal — copy of emitted signal”.

- **Time-frequency interpretation** — **Unitarity** of a time-frequency distribution $\rho_x(t, f)$ guarantees the equivalence:

$$|\langle x, y \rangle|^2 = \langle \langle \rho_x, \rho_y \rangle \rangle.$$

- **Chirps** — Unitarity + localization \Rightarrow detection/estimation via **path integration** in the plane (e.g., Wigner-Ville and linear chirps).

[detectTF.m]
VIRGO example

chirp de binaire coalescente + référence pour le filtre adapté

observation bruitée, SNR = −10 dB

enveloppe de la sortie du filtre adapté
VIRGO example (Chassande-Mottin & F., ’98)
time-frequency detection?

- **Language** — The time-frequency viewpoint offers a natural language for addressing detection/estimation problems beyond nominal situations.

- **Robustness** — Incorporation of uncertainties in the chirp model by replacing the integration curve by a domain (example of post-newtonian approximations in the case of gravitational waves).
Localization of a moving target — When estimating a delay by matched filtering with some unknown Doppler effect, estimations of delay and Doppler are coupled ⇒ bias and contrast loss at the detector output.

Addressed problem — Suppress bias on delay and minimize contrast loss.

Signal design — Specification of performance via a geometric interpretation of the time-frequency structure of a chirp.

[dopptol.m, faTFdopp.m]
monographs

collective books

preprints & Matlab codes

- http://tftb.nongnu.org/
- http://perso.ens-lyon.fr/patrick.flandrin/
Patrick.Flandrin@ens-lyon.fr
pendulum
\[\ddot{\theta}(t) + \left(\frac{g}{L}\right) \dot{\theta}(t) = 0 \]

- **Constant length** — \(L = L_0 \Rightarrow \) small oscillations are sinusoidal, with **constant** period \(T_0 = 2\pi \sqrt{L_0/g} \).

- **“Slowly” varying length** — \(L = L(t) \Rightarrow \) small oscillations are quasi-sinusoidal, with **varying** pseudo-period \(T(t) \sim 2\pi \sqrt{L(t)/g} \).
gravitational waves

Corotating Neutron Stars

Radiate Gravity Waves and Merge

To form a Black Hole
gravitational waves

gravitational wave

time
bat echolocation
bat echolocation

bat echolocation call + echo

bat echolocation call (heterodyned)
bat echolocation

- **System** — *(Active)* navigation system, natural sonar
- **Signals** — Ultrasound acoustic waves, *transient* (a few ms) and “*wideband*” (some tens of kHz between 40 and 100kHz)
- **Performance** — Close to optimality, with *adaption* of the waveforms to multiple tasks (detection, estimation, recognition, interference rejection,...)
Doppler effect
Doppler effect

- Moving monochromatic source — Differential perception of the emitted frequency.

\[f + \Delta f \quad f - \Delta f \quad "chirp" \]
Riemann function
Riemann function

\[\sigma(t) := \sum_{n=1}^{\infty} n^{-2} \sin \pi n^2 t \]