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Community shared bicycle systems, such as the Vélo’v program launched in Lyon in
May 2005, are public transportation programs that can be studied as a complex sys-
tem composed of interconnected stations that exchange bicycles. They generate digital
footprints that reveal the activity in the city over time and space, making possible a
quantitative analysis of movements using bicycles in the city. A careful study relying
on nonstationary statistical modeling and data mining allows us to first model the time
evolution of the dynamics of movements with Vélo’v, that is mostly cyclostationary over
the week with nonstationary evolutions over larger time-scales, and second to disentan-
gle the spatial patterns to understand and visualize the flows of Vélo’v bicycles in the
city. This study gives insights on the social behaviors of the users of this intermodal
transportation system, the objective being to help in designing and planning policy in
urban transportation.

Keywords: Community bicycle sharing program; Vélo’v; cyclostationarity; nonstation-
arity; dynamic network; network community.
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1. Introduction

Community shared bicycle programs have been under development in the recent
years all over Europe, as an answer to an increasing need of green and versatile
public transportation in cities. Lyon’s shared bicycle program, called Vélo’v and
operated by the JCDecaux agency [1], is a major one of its kind, having started
in May 2005. Besides their evident interest as a new means to think about public
transportation, such community shared programs offer a new way to look into the
dynamics of movements inside a city, and more generally into its activity. In a sense,
the Vélo’v system provides digital footprints that reveal the activity of people in
the city over time and space, and makes possible their analysis.

Different issues motivate the study of such a system. Some questions are about
the usage patterns of this kind of transport, with reference to social or economical
studies of transportation, while others are about the system itself: does the service
work correctly? Can it be optimized? Can one regulate the availability of bicycles?
An objective in this paper is to make first steps in such directions by proposing
relevant tools for the study of the space and time patterns of activity from all the
trips made with Vélo’v, going from an empirical point of view that can be compared
to previous studies of equivalent systems in Paris (the Vélib’ program studied in [2])
or in Barcelona (Bicing; studied in [3, 4]), to a more quantitative point of view on
the activity of the stations, and their properties.

A contribution of the paper is to use methods from signal processing and data
analysis to study the Vélo’v system, so as to exhibit some features of the system and
to begin to answer some economical questions linked to such a community system.
Many social questions can be addressed using this dataset, and some specific ones
are chosen in this study. How many trips are made using the rented bicycles, and is
there an evolution in time of the use of the system? Is it then possible to forecast the
use of the bicycles, as a help toward better regulation of the service? We will turn
to statistical signal processing to address these questions. A second set of questions
pertains to the spatial distribution of the system. The service is deployed in the
whole city which is not uniform. The objective here is to learn, from the moves of
rented bicycles, what is the dynamics of movements in the city at various hours
of the day: Where do people go? What are the main flows between different parts
of the city? As the dataset is large, data mining methods are needed to work on this
topic. Finally, if compared to what social surveys and enquiries provide, the use of
digital footprint to study the movements of bicycles gives new insights on properties
of trips with bicycles in a city (length of trips, frequency of use, influence of external
factors such as weather, etc.). On this aspect, this work shares a perspective similar
to the one in [5], using digital footprints of a given means of urban transportation,
first to understand how this method of transportation is used, and more globally
to reveal some features of the moves in a city.

The paper is organized as follows. In Sec. 2, a general presentation of the
Vélo’v program is given, highlighting its key features. Section 3 is concerned with
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a description of the data, in both time and space, that can be accessed for study-
ing the system. Section 4 is then devoted more specifically to the global activity
in time for which a predictive model is developed using signal processing tools,
whereas Sec. 5 is concerned with spatial patterns of activity, with results in terms
of clustering and communities obtained using data mining methods.

2. Vélo’v: A Community Bicycle System

The Vélo’v program is deployed in the city of Lyon,a in France, since May 2005. It
now consists of 4000 bicycles (also called Vélo’v) that can be hired at any of the
340 stations, spread all over the two cities and returned back later at any other
station. In contrast to old-fashioned rental systems, the rental operations are fully
automated: the stations are in the street and can be accessed at anytime (24 hours
a day, 7 days a week), and the rentals are made through a digital terminal at
the station using a credit card to obtain a short-term registration card, or using
a year-long subscription system. First, this makes possible the collection of the
complete data of rentals, and thus movements made with Vélo’v — a dataset not
readily available for other means of transportation. Second, a global and fine man-
agement of the program can be envisioned since a real-time survey of the system
is done. Currently, automated station reports are collected into a central database
and mostly used a posteriori, if one excepts online reports about the availability
of bicycle or free stand to return one at stations [6]. Yet, there is a strong incen-
tive to evolve toward less empirical management of the system, for instance by
being able to increase or redeploy in real-time the available bicycles to answer the
demand.

Anonymized data from May 2005 to the end of 2007 were made available to
us by JCDecaux and the “Grand Lyon” City Hall. The dataset consists of the
records of all bicycle trips, over more than two years of exploitation. During this
period, there were more than 13 million bicycle trips. Each trip is documented with
its starting time and station location, its ending time and destination station, the
duration and length of the travel (as recorded on the bicycle), and specific tags
when the movement is not a rental but a maintenance operation (first deployment
of a Vélo’v bicycle, or movement to a repair workshop).

An important characteristic is that this bicycle program was expanded while
already open. The Vélo’v system opened on May 19th, 2005 and stations and bicy-
cles have been introduced continuously during the take off and lifetime of the sys-
tem (no more stations are currently added, but this phase is not in the studied
dataset). Figure 1(a) depicts the capacity of the system (station and bicycles being

aMost of the stations are in downtown Lyon, in the southern and northern campuses of Lyon and in
the town of Villeurbanne in the North, all part of the “Grand Lyon” Urban Community. The rest
of the article uses simply the name “Lyon” to name the area of deployment of the program, and
Grand Lyon City Hall to name the administrative service of the “Grand Lyon” Urban Community.
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Fig. 1. (Color online) General features of the Vélo’v system (a) Time evolutions of the
numbers of stations (dashed line, in blue), of available bicycles Nv (dot-dashed line, in red), and
of year-long subscribers Ns (solid line, in magenta). (b) Map of Lyon with Vélo’v stations (dots),
their Voronoi diagram (blue lines), subway lines (thick red lines), rivers (in blue), and parks
(in green).

open/equipped regularly between May 2005 and October 2005). After this period,
deployment reaches a plateau (October 2005 to May 2006) before a new phase of
expansion that ended in January 2008 where the final number of installed stations
was reached (340 stations). It relates to the increase along time of the number
of year-long subscribed users (displayed also in Fig. 1(a)). Note that bicycles can
also be used without subscription, with short-term registration cards bought on the
spot.

Before turning to a more detailed analysis of the data, let us comment on a
spatial property of the system. Figure 1(b) displays a map of Lyon, showing the
current deployment of the Vélo’v stations in the city, and a Voronoi diagram [7]
around the stations. It gives an idea of the variation of the density, higher near
city center and major axis of transportations, yet putting almost any point of
downtown no further than 500 m from a station. However, the stations differ both
in neighborhood and number of stands, so that some inhomogeneity is expected
in their use. Vélo’v movements can then be seen as a dynamic process over the
transportation network that connects all stations. An analysis of the flows of bicycles
on this network will be useful to find spatial patterns of the Vélo’v activity.

3. Descriptive Statistics of Vélo’v Data

Let us first derive basic facts on the Vélo’v using empirical features from the
data.
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3.1. Temporal patterns

As depicted in Fig. 1(a), the increase in the number of available bicycles and stations
parallels the increase of the number of subscribers. The progressive deployment and
the increase in popularity of the program generate a nonstationary behavior of the
whole system. Figure 2(a) shows the number of rentals per hour, aggregated by
hours, days and weeks, for the whole network. A main characteristic is the nonsta-
tionary evolution of the use of Vélo’v (its increase), combined with a cyclostationary
pattern over the week. This will be studied and modeled in Sec. 4.

A first question when one is confronted to data based on a large number of
individual events is to choose a proper scale of representation in time (a question
reminiscent of studies on Internet packets [10]). Let us call ∆ the time scale over
which to aggregate the number of new rentals. The trade-off is usual: the smaller ∆
is, the larger the fluctuations are, whereas a larger ∆ may smooth the signal with
the risk of losing relevant temporal features. Figure 3(a) displays the distribution of
rental durations, and in Fig. 3(b) the same histogram is given in log–log axis. This
distribution of durations is large, yet there is a mode at 9min and the median equal
to 11min is representative of its core. Let us note in Fig. 3(b) that, for duration
between 26 and 34min (the two dashed lines), a subtle drop is seen, reflecting the
fact that the first 30 minutes are free and the bicycles beep after 25 minutes of use.

We varied ∆, typically from 15 minutes to 2 hours, so as to remain within
the scales that are sufficient to smooth out the effect of individual rentals, while
keeping the global evolutions of their collection, most importantly the one over the
day. As an example, Fig. 2(b) shows, for a typical week, the number of rentals made
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Fig. 2. (Color online) Time evolution of the number of hirings (a) Number of bicycles
hired per hour L(t), and its average per day Ad and per week Aw. (b) Image of a typical week (16
Sept. 2007 is a Saturday), at different aggregation times ∆ (the different ∆ are given in the legend
inside the graph); for the clarity, when data is aggregated at 2 hours and one day, we divided
the amplitude to renormalize it as a number of rentals per hour (yet estimated on aggregation
over ∆).
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Fig. 3. (Color online) Temporal features of Vélo’v (a) Rental duration distribution (in %).
(b) The same distribution in log–log axis (dashed red lines point on the interval [26, 34] min).

aggregated on a time scale of 15min, 30min, 1 h, 2 h and one day. The aggregation
at 1 hour gives a good trade-off between resolution of details and fluctuations. On
this specific week for instance, one sees clearly a repetition of modes each working
day. Using smaller ∆, it is less clear due to fluctuations. For ∆ = 2h, it is smoothed
out (especially the peak around noon). The aggregation scale will thus be 1h.

3.2. Spatial patterns

In Fig. 4, spatial patterns of the traffic at each station are displayed: For a given
hour, the amount of incoming and outgoing traffic is proportional to the area of the
semi-circles at each station, incoming traffic on bottom, outgoing one on top. Then
the average of the directions of incoming trips at each station is represented with a
light (green) vector whose direction and length represents the anisotropy of the set
of trips arriving at this station. Let Ωin(m) = {trips into station m}; the complex
representation of this vector is computed as the average

∑
k∈Ωin(m) eiθk/|Ωin(m)|,

where θk is the angle coordinate in the plane of the origin-destination vector (des-
tination being station m). Dark (blue) arrows represent the same average direction
computed for leaving bicycles, with Ωout(n) = {trips from station n}. Zooms on
specific parts of the city are shown in Figs. 4(2), (3) and (4).

Let us now underline the main trends among the use of bicycles. The first
comment is the non-uniformity of use of the stations: the order of magnitude of
the number of trips at less frequented station is very low as compared to the most
frequented stations in the center of the city (less than 1/100 of their use). Zones A
and C in Fig. 4(1) and in zooms (2) and (3) correspond to university campuses. On
Monday 8 am, these stations receive many bicycles whereas on Tuesday 4 pm–5 pm
(see maps 4(2) and (3)), there are more leaving trips than incoming ones (and this
usually lets the stations be in deficit of Vélo’v for the evening). In Fig. 4(1), zone
B corresponds to stations that are on the top of a hill (Croix–Rousse) and mostly
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Fig. 4. (Color online) Visualization of the traffic at all stations. For a given hour, the
amount of incoming and outgoing traffic is proportional to the area of the semi-circles at each
station, incoming in light grey (green) on bottom; outgoing in dark grey (blue) on top. The arrow
gives the average direction (as defined in Sec. 3.2) of these trips: incoming in light green; outgoing
in dark blue arrow.

have leaving trips (at all hours of the day). All these zones illustrate the unbalanced
character of many stations. Related to that, many stations show an anisotropic
activity: stations around the center of the city have usually incoming trips coming
from the center and leaving ones going to the center (hence the appearance of a field
of vector pointing toward the center of the city in Fig. 4(1)). In Fig. 4(4), mostly the
center of the city is displayed: Zones D and F correspond to railway stations, and
zone E is an active area with both shops and residential parts. All these three zones
serve also as connection hubs with major subways and buses. These zones experience
a rush of activity at almost anytime during the day. For instance, many people seem
to return or take a Vélo’v near one of the train stations on Thursday 4 pm–5pm,
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validating the idea that Vélo’v are used as one part of an intermodal transportation
system (with trains, buses or subways). These simple diagrams based on temporal
patterns visualized at each stations allow us to differentiate their behaviors. Some
stations (zones D and F in Fig. 4(3)) act like hubs for Vélo’v. At several other
stations, mostly one-way flows (reversing direction depending on the time of the
day) are found, that leave the stations unbalanced during the day. This indicates a
use of Vélo’v by people nearby the stations, using it to commute to or from works.

3.3. Individual characteristics of trips

Before aggregating the trips in space and/or time, studies can also be conducted
on individual trip level. Basic features are displayed here. Figures 5(a) and (b)
report the distribution of lengths of each journey. Like the duration distribution,
three parts can be distinguished: a sharp peak near 0m and up to 150m, which
amounts to 7.5% of the traffic, that is associated to rentals of bicycles coming
back to the departure point or that are out of order due to mechanical reasons;
a mode with median near 2.1 km corresponding to normal use; a long tail up to
more than 20 km. The tail accounts for just a small fraction of the rentals (around
5%), yet it exists and, if one would like to use some agent-based modeling, at least
three different classes of rentals should be made. In the present study, aggregated
analysis is favored rather than agent-based ones, especially because (due to privacy
issue) we also lack any identification of users or bicycles.

A complementary characteristics, in Fig. 6, is the median velocity of the user
(computed from the data reported by the Vélo’v bicycles), averaged over all the
trips that began at the same time (with an aggregation scale of ∆ = 1 h) during
the week. Here again, there is a signature of the natural cyclostationarity of the
week, people moving faster in the morning than later in the day, or faster during
weekdays than during weekends (this has been studied in more details in [9].) Also,
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Fig. 5. (Color online) Individual characteristics of trips with Vélo’v (a) Distribution of
lengths of each trip; (b) The same distribution in log–log axis.
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Fig. 6. Median speed of individual trips with Vélo’v, as a function of the day of week and
hour. The standard deviation is represented around the median.

an interesting point is that the average velocity is between 12 and 14 km/h. As a
comparison, the mean velocity in cities is 18 km/h for buses, 25 km/h for (regular)
subways and only 17km/h in the center for cars [8]. This proves that bicycles are
actually a competitive means of transportation as compared specifically to cars.

All the properties discussed so far are interesting in that they would not be
easily obtained using classical social surveys (usually with population sampling); the
digital nature of the information is here precious. It provides a full characterization
of the trips made with rented bicycles, and this is an important asset to models
transportation and moves in a city.

4. Time Dynamics

This section deals with a statistical study of the time series of the number of
bicycles hired along time, expanding upon first results reported in [11–13]. The goal
is not only to identify its temporal patterns but, going way further in the modeling
than previous studies such as [3], to propose a statistical model for the series,
encompassing their cyclostationarity and their nonstationarity. Then, this model is
used to predict the number of bicycle rentals on a daily or hourly basis.

The raw data here is the number L(t) of hired Vélo’v between t and t+∆ (thus,
aggregated over the time scale ∆). In the following, time instants will therefore
be discrete and understood as integer multiples of the aggregation scale, i.e., of
the form t = k∆ with k ∈ N. As seen in Fig. 2, two features are dominant: the
mean is nonstationary and evolves with time, and there is a periodic repetition
over the week. The first feature is related to the increase in size and popularity
of the program; a complementary reason is that the use of Vélo’v also depends on



June 18, 2011 19:23 WSPC/S0219-5259 169-ACS S0219525911002950

424 P. Borgnat et al.

the season (with less users during winter, or during holidays). The second feature
of cyclic evolution over the week, more properly referred to as cyclostationarity,
comes from the obvious fact that from a social point of view, days and hours
are not equivalent for people. Those two features, nonstationarity and cyclosta-
tionarity, are precisely the ones that the model proposed in this section aims at
accounting for.

4.1. Model for the cyclic temporal patterns

Let us first study nonstationary patterns on time scales larger than the day. An
estimation is obtained by computing, from the rentals L(t) aggregated on ∆, the
number of rentals Ad(d) at a given day (d is the variable of day):

Ad(d) =
∑

t∈(d)

L(t). (1)

Then, inspired from cyclostationary methodologies [14, 15], an estimate of the cyclic
mean for L over the week is the periodic average:

〈L(t)〉c =
1

Nw

Nw−1∑

k=0

L(t + k w∆), (2)

for t expressed in multiples of ∆, from 0 to one week, and w∆ is the duration of
the week in unit of ∆ (w∆ = 167h if ∆ = 1h); Nw is the number of weeks of
data used. This equation describes the periodic average of the data, evaluated over
a period of one week. The result is displayed in Fig. 7(a). It shares similarities
with observations made on the Barcelona program [3, 4]. During week-days, three
peaks are seen: in the morning (8 am–9am), at noon (12 am–1pm) and by the end
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Fig. 7. Cyclic models and comparison to data (a) Model 〈L(t)〉c giving the typical expected
evolution over the week. (b) Examples of L(t) for some chosen days, compared to the model

Lmod(t) + dF (t). Here, we choose to zoom on the days around the 8th of December, a Lyon
festivity (which was a Saturday in 2007), showing qualitatively that the model holds well.
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of afternoon (5 pm–7pm, this one being the highest and broadest). During week-
ends, the pattern changes, with mostly a large peak spread during the afternoon,
having a maximum around 5pm (with only a small increase on its top at noon).
These features match intuitive interpretations about the fact that people use bicycle
transportations mostly during the day to commute, or during lunch break, whereas
during the weekend, the major trend is to take an afternoon pleasure ride or go to
recreational area in the city.

Let us write Amod(d7) =
∑

t∈(d7)
〈L(t)〉c the average number of rentals per day

d7, where d7 simply marks the day of week, from Monday to Sunday. Mathemati-
cally, d7 is equal to d (the variable of day) modulo 7 (hence the choice of notation).
As a quantitative approach of the time activity, the model is the following:

L(t) = Lmod(t) + F (t) = Ad(d)
〈L(t)〉c

Amod(d7)
+ F (t), (3)

where F (t) is the part of the data not accounted by the cyclic model. In Fig. 7(b),
we illustrate the model for a specific range of days, to show that it usually holds well,
even when specific occasions change the flow of days, such as holidays or festivities
(here we illustrate that on the 8th of December, which is a specific festivity day
in Lyon). Quantitatively, when using the value of Ad estimated from the data,
the error (in variance) for the model is 16% (i.e, 130 bicycles per hour). For an
operational use, prediction of Ad and F is necessary; this the purpose of the next
paragraph.

4.2. Forecasting of the number of rentals, and anomalies

Let us now turn to the prediction of the evolution of the hourly number of rented
bicycles, taking into account factors that are external to the cyclic pattern. Using
the model, Eq. (3), prediction is split into two subparts: First, the prediction of
the non-stationary amplitude Ad(d) for a given day; Second, the prediction of the
fluctuations F (t) at a specific hour. The corresponding time scales being different,
it is appropriate to predict them separately.

Prediction of Ad(d) It seems fair to look for factors explaining Ad(d) among the
following ones:

(i) The weather and seasons summarized by the average temperature T (d) over
one day (in ◦C and centered according to δT (d) = T (d) − 〈T (d)〉) and the
volume of rain R(d) (in mm) during day d (for which the reference value is 0);
we used weather data collected at the weather station of Lyon.

(ii) The development and popularity of the program: the number of subscribed
users Ns(d), the number of bicycles available Nv(d); here again, we take devi-
ations δNs(d) and δNv(d) between the real value and the value at the end of
the data (December 2007) where the system is supposed to have reached its
final state.
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(iii) Specific conditions such as holidays, with a marker Jh(d) taking value 0 usually
and 1 for those specific days, or strikes with marker Js(d).

A linear regression model is written as:

Âd(d) = α0(d7) + α1δNs(d) + α2δNv(d) + α3δT (d)

+ α4R(d) + α5Jh(d) + α6Js(d), (4)

where features δNs, δNv(d), δT (d) and R have been normalized to variance 1, and
where the term α0(d7) describes the mean of the number of rentals. Because, as
seen in Fig. 7(a), the expected number of rentals each day varies from Monday to
Sunday, the term α0(d7) has to depend on position of day d7 during the week. The
rentals are, for instance, less numerous during the week-ends. A term linear with
Amod(d7) is thus added in α0(d7), with a coefficient c1, to describe this dependence:

α0(d7) = A0 + c1 (Amod(d7) − 〈Amod(d7)〉d7) . (5)

The constant A0 is finally the constant in the linear regression. Solving this prob-
lem of linear regression using standard least square minimization, we obtain the
results reported in Table 1. Confidence intervals are reported along with the esti-
mated values of the coefficients because, even though computed under Gaussian
hypothesis, which does not hold for many factors, it assists us in the interpreta-
tion of the relevance and importance of each factor. Note that errors are found to
be sub-Gaussian, i.e., the distribution is sharper and more concentrated toward 0
than the Gaussian one with the same variance. The confidence intervals are thus
over-estimated. Results call for the following comments.

(1) The term depending on the day α0(d7) is simple enough: it consists of a constant
A0 whose value is close to the average number of hired bicycles per day during
the last months in the data set (17 500 during the last 4 months of 2007), with a
linear correction (with factor close to 1) that takes into account the dependence
with the day of week.

Table 1. Statistical model for Ad(d) as per Eq. (4). For the different
linear coefficients associated to the factors in play, we report the
estimated value (est.) and its Confidence Interval (under Gaussian
assumption), given by [CI−, CI+].

Variable δNs(d) δNv(d) δT (d) R(d) Jh(d) Js(d)
Unit Subscr. Bicycles oC mm

Ref. 62 250 3 000 13.0
Std. 8 030 400 7.7 0.37

Coeff. α1 α2 α3 α4 α5 α6

Est. 1 860 −120 2270 −1280 −2900 20

CI− 1 210 −720 1980 −1520 −3700 −2900
CI+ 2 560 +490 2560 −1030 −2100 +2900
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(2) A larger number of subscribers increases Ad(d).
(3) Weather factors act in an expected manner: the warmer, the larger the number

of bicycles used (and conversely) whereas, under heavy rain, Ad(d) decreases.
For the rain, the effect seems to be relatively small because of averaging over
the day: it is often the case that the rain lasts only for a part of the day. When
turning to hourly analysis, rain will have a deeper and more immediate impact.

(4) The factor pertaining to holidays Jh also impacts Ad(d): There is a decrease
(whose relevance is assessed by the confidence interval) during holidays — a
feature that appears qualitatively in Fig. 2(a) and is explained by the fact that
people are out of city during holidays.

(5) The number of available bicycles does not impact much Ad(d) and this can
interpreted by looking again at Fig. 1(a): the numbers of subscribers and the
number of bicycles follow roughly the same time evolution. This lack of influence
hence results from the fact that a part of the evolution is already accounted
for by the evolution of Ns, and by the fact that there seems to be no major
depletion of bicycles as confronted to subscribers.

(6) Strikes are a non conclusive factor, mostly because of the scarce number of such
events in the current dataset.

Using this linear regression model, it becomes possible to predict the amplitude
of the number of bicycles rented per day, depending on all the external factors pro-
posed here. If one would use only the average number of hirings Amod(d7) adjusted
only for the day of week d7, without any other non-stationary factors, the root-
mean-square error between the observed data Ad(d) and this number, as normal-
ized by the mean value of this amplitude, would conduct to 30% of mean relative
error. Using the model Âd(d), it decreases to 12%. Clearly there is still room for
improvement, yet the quantitative gain is not negligible and, more importantly,
the interpretation of the dependence with the various factors shows their relevance.
Turning to L(t), a zoom is shown in Fig. 7(b) comparing the resulting model with
actual data. The agreement is already good.

Prediction of hourly fluctuations Let us now turn to the fluctuation term F (t),
whose standard deviation is 210 (in bicycles hired per hour; it can be compared to
the mean of L(t) that is equal to 655 hired bicycles per hour). A standard empirical
spectrum analysis shows that it is well modeled by an auto-regressive process of
order 1 with exogenous input (ARX(1)) [16, 17]:

F (t) = a1F (t −∆) + β1R(t) + I(t), (6)

where a1 is the coefficient of the AR(1) part, and β1 is the linear regression
coefficient for the rain R(t) (in mm) and I(t) is a white innovation. Using a
quadratic error minimization, the estimates are a1 = 0.59 ± 0.02 and β1 = −40 ± 4
(Vélo’v/∆/mm of rain). The coefficient a1 and the order of the model were esti-
mated using a classical algorithm on correlations [17].
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Fig. 8. Hourly fluctuations of rental numbers: model and data. The actual data (thin
solid line), the model without the ARX(1) part (dashed line) and the full prediction with the

ARX(1) part for dF (t) are superimposed. On the bottom, the rain for these days is drawn (on
arbitrary scale), showing that a major correction obtained by the ARX(1) is actually due to the
rain.

This leads to a general prediction scheme for the number of hourly rentals that
follows Eq. (3) with Âd(d) obtained from Eq. (4) and

F̂ (t) = a1(L(t −∆) − Lmod(t −∆)) + β1R̂(t), (7)

where R̂(t) is the weather forecast for the hour (available from a weather station). In
Fig. 8, the displayed model is built using these estimates Âd(d) and F̂ (t) and Eq. (3).
It works satisfactorily to follow the observed variations of L(t) along time. Using this
improved scheme including prediction of the fluctuations, the standard deviation
of the error of the global prediction decreases from 210 bicycles to 120 bicycles
per hour, i.e., the standard deviation of the innovation I, which, by nature of the
approach, cannot be predicted. However, as a perspective, the model formulated
here can be used to detect unusual changes in the number of rentals, when the
measured remaining innovation is different from what is obtained here; it would be
an indication of unusual anomalies in the functioning of the system.

5. Spatial Patterns

5.1. The Vélo’v system as a dynamical network

Following [13], the Vélo’v system can be interpreted as a dynamical network, where
bicycles move from a station to another. Stations are seen as nodes. A central
question is to understand how the flows are distributed spatially along the network.
Keeping in mind the dominant cyclic and nonstationary features, analyses in time
should be combined with analyses in space.
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For that, data is studied in the form of the matrix of the flows between stations,
also standing for a directed graph or a complex network, where the dimension of
time is added: T [n, m](t) denotes the number of trips from station n to station
m, at time t (aggregated over a time duration ∆). Let N stand for the number of
stations, there are N2 directed edges in the full network (including trips back to
departure station), whose weights at time t are the number of trips T [n, m]. Edges
have different weights for each direction. Let us define W =

∑
n,m T [n, m], the total

of weights in the network.
In order to study the evolution of this network of stations along time, stations

will first be arranged in groups that exchange a large number of bicycles at coarse
time scales (∆ ≥ 1 week), using a classification based on the trips, to and from
each of them (cf. Sec. 5.2). Second, we will turn to the flows between stations and
assess, on a finer time scale (∆ = 1h), which pairs are most active, depending on
the time in the week (cf. Sec. 5.3).

A first remark is that the Vélo’v directed network is asymmetric and not self-
regulated, because some stations have incoming and leaving traffics unbalanced.
Indeed, to avoid saturation in some specific places that were evidenced in the anal-
ysis of Sec. 3.2, a small number of trucks are equipped with trailers to move bicycles
from one station to another in order to balance the distribution on the network.
From the data, we identify stations that reveal an unbalanced traffic. A station n
will be considered as unbalanced if the absolute value of the difference between their
number of incoming and leaving trips, |

∑
t

∑
m(T [m, n](t) − T [n, m](t))|, is larger

than three times the standard deviation of the distribution of these values over all

Fig. 9. (Color online) Unbalanced stations in Lyon: the stations where the number of incoming
trips is much larger (resp. smaller) than outgoing one are in light (green) circles (resp. dark blue
circles); see text, Sec. 5.1 for more details.
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the stations. This procedure finds 12 unbalanced stations, shown in Fig. 9. Among
them, eight have more leaving trips (dark blue circles) that are located on the top
of the two hills that surround Lyon. The four remaining unbalanced stations (light
green circles) have more incoming trips and are located near the central railway
station (close also to the biggest shopping center), and on the university campus.

5.2. Clustering stations in communities

As seen in Sec. 4, the choice of ∆ depends on whether one is interested in long
trends (days or weeks) or short term details (intra-day). Section 5.2 focuses on long
periods (typically on one month to one year), while Sec. 5.3 will concentrate on
finer time scales.

To understand the impact of the inhomogeneities of the city on the long-term
activity of individual stations, let us look for groups of stations exchanging many
bicycles. This amounts to detecting communities of stations in a network [18]. Com-
munities are defined as dense subgraphs with few edges with other communities.
They are found in many complex networks and they can correspond to groups with
similar behaviors or interests (for people), with similar contents (for web pages),
etc. Moreover studies shows that information (rumors for instance) spread more
rapidly within communities than between communities. In the Vélo’v context, find-
ing communities will help to aggregate spatially the individual stations on the basis
of an objective criterion. Automated detection of communities in graph is a difficult
problem that received recently considerable research effort, issues being both theo-
retical (conceptual definition of communities) and practical (definitions should end
up with quantities that can actually be computed at a reasonable load). Reviewing
the literature reveals that proposed algorithms often suffer from either high com-
putational costs, and hence cannot be used on an actual large database such as
the Vélo’v one, or from a significant sensitivity to minor topology modifications,
lacking robustness.

This review of the literature led us to resort to a definition of communities based
on Newman’s modularity [18, 19] The efficient algorithm proposed in [20] has been
customized to the spatial analysis of the Vélo’v dataset. In this approach, graph
modularity is defined as the average, over all pairs of nodes, of the difference between
the actual T [n, m] and that expected under the absence of community [18, 19]. For
a directed and weighted network, modularity Q takes the form:

Q =
1

2W

∑

n,m

[
T [n, m]−

∑
j $=n T [j, n] ·

∑
k $=m T [m, k]

2W

]
δcn,cm (8)

where cn is the community where station n is assigned, and δ the Kronecker delta
symbol. Community definitions result from the maximization of the modularity
over the set of possible partitions.

However, this optimization problem is NP-complete [21]. Approximations, such
as the greedy approach of [22], tend to produce too large communities. The
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hierarchical algorithm proposed in [20] is used here because it builds a hierarchy
of communities of increasing sizes (small community are grouped into larger ones).
Also, it uses a local computation of the gain of modularity when increasing the size
of the communities by merging some together, and hence shows a tractable compu-
tational efficiency. Finally, the method’s output reads as a hierarchy of embedded
communities: the first level of the hierarchy is the less detailed grouping into com-
munities (the one that is found last in the unfolding of the algorithm); then each
community of this first level can be split into several sub-communities on the sec-
ond level. Then, in some cases, a third level breaks second-level communities in
several parts. The number of communities at each level of the hierarchy cannot be
decided a priori by the practitioner and per se constitutes an important result of
the analysis. The practical use of this output consists of first plotting the higher
level communities. Then, information can be refined by considering the second level
of the hierarchy that split the higher level communities into sub-communities, and
so on and so forth. Therefore, the only choice left to practitioners is that of the
level in the hierarchy at which the refinement superimposition should be stopped
(often guided by readability of the result).

The result of the unfolding of hierarchical communities, applied to one year of
data, is displayed in Fig. 10, for the three higher levels of the hierarchy of com-
munities. The most striking feature is that the communities are mostly organized
as groups of stations close in space, even though the method uses no geographical
information. This is in accordance with the short typical trip length (see Fig. 5):
many trips are local. Inside the higher-level communities (found, by community
clustering, to closely match the administrative districts of the city), finer-level com-
munities reveal details such as groups of stations lined along major boulevards (and
subway lines or bicycle paths often follow them). The stations on the Croix–Rousse
hill (the zone on the north) are clearly grouped in a specific community, as are the
ones near the northern campus of the Science University (La Doua).

Note that we have checked that removal of stations with an unbalanced behavior
did not change the results reported in this sections about communities (nor would
it change the results of the flow clustering in Sec. 5.3).

The conclusion is that grouping the stations by geographical proximity is a cor-
rect intuition. Indeed, close stations exchange more bicycles than distant stations:
this is the meaning of the communities found by maximizing the modularity. These
hierarchical communities provide guidelines to automatically group communities
given a level of granularity in space that is wanted, instead of trying to do this task
by hand and intuition only. The method provides us with a quantitative means of
spatial aggregation.

5.3. Clustering flows of activity between stations

The second step of spatial analysis is the clustering of the flows between stations
at finer time-scales. The objective is now to highlight the distribution in time along
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Fig. 10. (Color online) Hierarchical communities of stations in Lyon for 2006, obtained
by maximization of the modularity Q, as defined in Eq. (8). The higher level communities are
represented by colors and are separated by (red) thick lines; 5 communities are found at this level.
At a second level, sub-comminities inside these 5 ones are distinguished by different marker shapes.
Whenever they exist, third level communities are made explicit by a tag consisting of an integer
value nearby the colored (1st level)-shaped (2nd level) station markers. (Note also that the colored
dot inside the marker is an indication of the same third level in the hierarchy of communities.)
The communities are found to be mostly grouped by geographical proximity in the city. Stations
not associated to a community were not yet in service in 2006.

the week of the main spatial features of the Vélo’v use. Therefore, the T [n, m](t)
are now aggregated with ∆ = 1h, as in Sec. 4. Also, because of the nonstationary
evolution at scales larger than the week, data used are either one specific week, or
a mean over several weeks if one wants to study aggregated trends.

The high-dimensionality of the data involved (N2 flows times 168 hours per
week) calls for a dimensionality reduction. Thanks to the time analysis done, we
know that the most important activities of the stations are characterized by three
peaks every ordinary days (8 am–9 am, 12 am–1pm and 5 pm–7pm) and two peaks
for week-ends (1 pm–2pm and 4pm–6 pm). We select these 19 times stamps to be
the features in time. Note that dimension reduction using Principal Component
Analysis on T [n, m](t) was performed in [13]. The PCA transforms the original
attributes into a set of Principal Components (PC) that are non-correlated and
obtained as linear combinations of the original variables. The first three obtained
PCs along time are displayed in Fig. 11: one recognizes without surprise for the
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Fig. 11. PCA analysis of T [m, n](t). The first 3 principal components of T are represented
along time. One recognizes in the first one the cyclic part of the model, 〈L(t)〉c (without its
mean). The next components are mostly corrections on some of the peaks of this model: the
second component changes mostly the mornings in the week-days, the third one brings corrections
of opposite signs on noon and afternoon.

first PC the cyclic model (minus its mean) that was studied in Sec. 4; it accounts
for 54.6% of the variance. The following components (accounting for 13.4%, then
5.6%) are corrections on this cyclic pattern, mostly on the various peaks of activity:
the second component changes mostly the mornings in the weekdays, the third one
brings corrections of opposite signs on noon and afternoon. This leads us to retain
these 19 peaks of activities during the week as the dominant time features. Then,
we keep only 1046 pairs of stations where traffic is large enough between the pairs,
meaning that the number of trips is at least one every three weeks.

In order to uncover the main properties of flows on the Vélo’v stations network,
a K-means algorithm (see, e.g., [23]) is run on T [n, m](t) for t equal to the 19
selected time-features and (n, m) being in the 1046 pairs of stations that are kept.
The distances between every couples of pairs of stations were evaluated classically
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by the correlation between the temporal vectors of number of rentals [24]. Silhouette
measures in a classical manner [25] the quality of a clustering by estimating how a
pair of stations is similar to other pairs in its own cluster vs. pairs in other clusters,
and ranges from −1 to 1. Silhouette is defined as

S(i) =
mink(dB(i, k)) − dW (i)

max(dW (i), mink(dB(i, k)))
, (9)

where dW (i) is the average distance from the ith point to the other points in its own
cluster, and dB(i, k) is the average distance from the ith point to points in another
cluster k. The procedure finds four well-separated clusters whose silhouette values
of pairwise stations are shown in Fig. 12. Pairs of stations are closer to the ones of
the same cluster than to pairs of others clusters, except for 25 among 1046 pairs —
this attests of the quality of the clustering.

Let us now comment on the identified clusters. Figure 13(a) shows the mean
and standard deviation of the number of moves for the flows in each cluster. The
peaks of activity of each cluster are easily identified:

(1) Cluster 1 corresponds to rentals on Sundays at noon at 5 pm.
(2) Cluster 2 corresponds to travels at 8 am–9 am, mostly on working days.
(3) Cluster 3 corresponds similarly to hirings around noon.
(4) Cluster 4 gathers afternoon travels at 5 pm–7pm.

The clusters take a clear meaning as being a classification of the dynamics on the
network in space and time.
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Fig. 12. K-means silhouettes (Eq. (9)) of the clustering of Flows. Computed for the
4 clusters of flows. Almost all values are positive: this is an indication of good and relevant
clustering.
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Fig. 13. Clustering of the flows between stations. (a) Activities in Time: At the 19 selected
time-features, the mean and variance of the sum of the flows of the station are displayed for the
4 clusters. (b) Activities in Space: The map is coded in areas of different color background, each
area being a community of the second level of the hierarchy displayed in Fig. 10. Then, in each
sub-figure, a line is drawn between the centers of 2 communities if, in the displayed cluster, there
exists a flow between stations of the 2 communities. For clusters 2 and 4, the solid lines are the
ones appearing in both clusters 2 and 4; dashed lines are flows only in one of these clusters.

Figure 13(b) locates on the map of Lyon the pairs of stations that are part of each
cluster. To make the picture clearer, we grouped nearby stations according to their
community (computed in Sec. 5.2) and plot a line between two communities if there
exists at least one station in each forming a pair that belongs to the corresponding
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cluster. Communities are shown with the same code as in Fig. 10. The interpreta-
tions of the clusters follow:

(1) Trips in Cluster 1 are mainly along the two rivers and around the main parks
of the city (in the north and the south of the map). We can also observe some
travels between the university campus (or the periphery of the city) and the
center of the city (North-east and the land between the two rivers).

(2) Clusters 2 and 4 share many similarities (the solid lines in Fig. 10 are the edges
they have in common): they correspond to commuting to and from work (respec-
tively Clusters 2 and 4). We identify the main network hubs (train stations,
campus, business center, etc.) in the communities reached in these clusters.

(3) Cluster 3 is less dense; it includes short travels related to lunch break rides,
and moves are often between close communities.

It is worth noting that these clustering results seem to be stable: similar results
are obtained when applying the same methodology on a monthly basis.

6. Conclusion

The dataset made available to us by JCDecaux and the Grand Lyon City Hall is
huge and unique in nature, consisting of the records of each and every Vélo’v trip
over a two-year long period. The exhaustive digital footprint kept by the system
is unmatched by usual social enquiries, hence permitting real statistical and data
analysis on issues pertaining to trips in bicycles.

Two kinds of analyses were performed. First, carefully combining standard sta-
tistical signal processing tools dedicated both to cyclostationarity or nonstationary
trend analysis and to forecasting, enabled us to model the time evolution of hourly-
aggregated bicycle rentals. It yielded a temporal pattern for the typical week mixing
days and intra-days periodicities, most being naturally interpretable as related to
professional activity rhythms (weekdays) or leisure (weekend) activities. This pat-
tern closely resembles those observed in studies of different sharing programs in
other cities. In addition, it enabled the forecasting of the number of bicycles rented
in the next hour, based on the knowledge of factors both internal to the deployment
program (number of available bicycles or subscribers) and external (weather condi-
tions), down to a 10% fluctuation accuracy. Second, computer science data mining
tools were tailored to the analysis of the Vélo’v dataset to extract clusters of sta-
tions based either on an intra versus inter community preferred exchanges measure
(modularity), yielding communities of stations exchanging regularly a large number
of bicycles, or on a similarity measure in the time patterns of bicycle flows. Such
analyses enabled us to gain a significant understanding on the social usage of the
Vélo’v program in Lyon: Communities remain geographically concentrated (hence
indicating a preferred short-range use of the bicycles) while time patterns of flows
between stations display similarities so that they are grouped in clusters separating
trips related to professional activities (weekdays and major communication hubs)
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from those used during leisure time (weekends and parks). Finally, they showed
that, depending on the time in the week, some stations are alternatively sinks or
sources of Vélo’v.

Besides the usage conclusions they enabled us to yield, these contributions are
also of methodological values: Notably, community mining for stations, and time
pattern clustering for flows remain intricate issues both at the theoretical and prac-
tical levels. Also, the tools used here depend on a aggregation or resolution scale ∆
at which analyses are conducted and that can be tuned to further address different
questions and issues.

A large number of open questions remain, some of them being currently under
investigations. Regular contacts with JCDecaux (the Vélo’v private operator) and
the Grand Lyon City Hall (the political leader of the program), enabled the iden-
tification of various operational investigation objectives, ranging from the system
optimization of bicycle removal/balancing operations to the evaluation and certi-
fication that the prescribed quality of service is actually achieved, most of them
however not qualifying for public disclosure. Further developments will be oriented
toward analyzing the Vélo’v system with respect to socio-economical information
and quantitative data related to Lyon City, and collected by the French INSEE
(Institut National de la Statistique et des Études Économiques).
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