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Abstract — We consider the difference means {Da,b(x, y) ; a, b ∈ IR, x, y ∈ IR+} introduced
by Stolarsky and we characterize all pairs (a, b) guaranteeing that the property of bisymme-
try : Da,b (Da,b(x1, x2), Da,b(x3, x4)) = Da,b (Da,b(x1, x3), Da,b(x2, x4)) is satisfied. We show
that the power means with exponent k ∈ IR are the only bisymmetric difference means.

Difference means have been introduced by Stolarsky [7] as a way of generalizing the

logarithmic mean. For any pair of distinct positive numbers x and y, the basic form of their

difference mean is given by

Da,b(x, y) =
(
b

a

xa − ya

xb − yb

) 1
a−b

(1)

if ab(a − b)(x − y) 6= 0, with a continuous extension to the whole domain defined by

{(a, b, x, y) |a, b ∈ IR ;x, y ∈ IR+} (see [6] for detailed expressions). Apart from the log-

arithmic mean D0,1, numerous standard means happen to be special cases of difference

means : for instance, D2,1, D0,0 and D−2,−1 correspond to the arithmetic, geometric and

harmonic means, respectively, whereas power means with exponent k 6= 0 can be obtained

as D2k,k. Difference means offer therefore a nice and versatile framework for most of the

useful means, as well as a unified setting for evaluating their properties.

By construction, difference means are symmetric in the sense that, for any pair of

numbers x, y ∈ IR+, we have Da,b(x, y) = Da,b(y, x). However, it is not guaranteed that,
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for any x1, x2, x3, x4 ∈ IR+, they all satisfy the further property of bisymmetry :

Da,b (Da,b(x1, x2), Da,b(x3, x4)) = Da,b (Da,b(x1, x3), Da,b(x2, x4)) . (2)

From a point of view of interpretation, such a property may nevertheless be desirable

since it corresponds to an independence of the mean with respect to ordering. The purpose

of this note is to make explicit the conditions on a and b which guarantee the bisymmetry

of a difference mean. These conditions are given by the following Theorem and Corollary

(which generalize a result given in [4] for the specific case a = 1) :

Theorem Difference means Da,b(x, y) are bisymmetric if and only if a+ b = 0, a = 2b or

b = 2a.

Corollary Power means with exponent k ∈ IR are the only bisymmetric difference means.

Proof of the Theorem. A result due to Aczél [1] states that, for a single-valued function of

two variables M(x, y), the conditions

1. Strict monotony : x1 < x2 ⇒ M(x1, y) < M(x2, y) and y1 < y2 ⇒ M(x, y1) <

M(x, y2) ;

2. Continuity ;

3. Reflexivity : M(x, x) = x ;

4. Symmetry : M(x, y) = M(y, x) ;

5. Bissimmetry : M(M(x1, x2),M(x3, x4)) = M(M(x1, x3),M(x2, x4))

are necessary and sufficient for the existence of an increasing and continuous function ϕ(x)

such that

M(x, y) = ϕ−1
(
ϕ(x) + ϕ(y)

2

)
, (3)

i.e., for identifying M with a Kolmogorov-Nagumo “quasi-arithmetic” mean [5].
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If we consider the difference mean Da,b(x, y), we know [7] that conditions 1 to 4 are

satisfied, with the consequence that requiring the extra condition of bisymmetry guarantees

for (1) a quasi-arithmetic representation of the form (3). We can therefore apply to it the

characterization due to de Finetti [3], according to which a function M(x, y) is a quasi-

arithmetic mean (i.e., admits a representation of the form (3)) if and only if

∂M(x, y)/∂x
∂M(x, y)/∂y

=
g(x)
g(y)

, (4)

with

g(x) = dϕ(x)/dx. (5)

In the case of the difference mean (1), we have

∂Da,b(x, y)/∂x
∂Da,b(x, y)/∂y

=
h(x, y)
h(y, x)

,

with

h(x, y) = (a− b)xa+b−1 − axa−1yb + bxb−1ya. (6)

Setting x = αy, we get
∂Da,b(x, y)/∂x
∂Da,b(x, y)/∂y

= ψ(α),

with

ψ(α) =
(a− b)αa+b−1 − aαa−1 + bαb−1

(a− b)− aαb + bαa
. (7)

This implies that the ratio involved in (4) must satisfy

g(αy) = ψ(α)g(y). (8)

We are thus led to

g(αβy) = ψ(α)g(βy)

= ψ(α)ψ(β)g(y)

on one hand, and

g(αβy) = ψ(αβ)g(y)
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on the other hand, so that the function ψ(x) must verify the equation

ψ(αβ) = ψ(α)ψ(β),

the (continuous) solution of which is of the form [2]

ψ(α) = αc, c ∈ IR. (9)

Plugging this result in (7), the problem reduces to finding the triples (a, b, c) which are

solution of the equation

(a− b)αa+b−1 − aαa−1 + bαb−1 − (a− b)αc + aαb+c − bαa+c = 0. (10)

Since this equation is trivially satisfied for α = 0, and since it must be verified for any

α 6= 0, we can factor out any of the powers of α, e.g., αa+c in the above equation (10), so

that it simplifies to

(a− b)αb−c−1 − aα−(c+1) + bαb−c−a−1 − (a− b)α−a + aαb−a = b. (11)

The left-hand side of (11) must therefore be independent of α, leading by differentiation

to the new condition :

(a− b)(b− c− 1)αb−c−2 + a(c+ 1)α−(c+2) + b(b− c− a− 1)αb−c−a−2 +

a(a− b)α−(a+1) + a(b− a)αb−a−1 = 0. (12)

As compared to the initial equation (10), its simplified form (12) is of the very same

nature, except that it involves only five terms instead of six. Iterating four times the

procedure used for obtaining (12) from (10), we clearly see that we will finally end up with

a one term equation, involving—as a pre-factor of some power of α—the product of the

different powers which appear in (11). It is thus enough to start from (11) and to study,

case by case, the different possibilities of making either b − c − 1, c + 1 or b − c − a − 1

vanish (the cases a = 0, b = 0 or b = a are also solutions of (10), but they have not to

be considered here since, according to (6), they would all lead to h(x, y) = 0 and would

therefore correspond to a function ϕ(x) which would be constant and, hence, not invertible).
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1. Case c = b− 1.

In this case, the procedure outlined above leads to the equation

abαa−2b − abα−b + a(a− b)αb = a(a− b),

and therefore (since we have a 6= 0 and b 6= 0) to the only solution b = a/2.

2. Case c = −1.

The equation to be considered in this situation reads

(a− b)αa+b − aαa + bαb + aα−2 − bαa−1 = a− b,

with the general solution b = −a (since the specific solution attached to a = 1 naturally

leads to b = −1, and happens to be nothing but a special case of a+ b = 0).

3. Case c = b− a− 1.

Proceeding as for Case 1, we find that we must have b = 2a.

Proof of the Corollary. We can remark that, thanks to the symmetry property Da,b(x, y) =

Db,a(x, y), the solutions of Cases 1 and 3 define in fact the same difference mean. In the

case where b = a/2 or b = 2a, the functions ϕa,b(x) which are such that we can write

Da,b(x, y) = ϕ−1
a,b

(
ϕa,b(x) + ϕa,b(y)

2

)
, (13)

can be evaluated according to (4), (5) and (6). The result is that (up to an affine transfor-

mation)

ϕa,a/2(x) = xa/2 (14)

and

ϕa,2a(x) = xa, (15)

leading to difference means which both belong to the class of power means with exponent

k 6= 0 :

Mk(x, y) =

(
xk + yk

2

)1/k

. (16)
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(We have indeed Da,a/2 = Ma/2 and Da,2a = Ma, and we assumed that a 6= 0.)

If we now turn back to the case b = −a, the evaluation of h(x, y) in (6) leads to consider

g(x) = x−1 in (5), with the consequence that (up to an affine transformation)

ϕa,−a(x) = log x. (17)

In this case, the associated difference mean reduces, for any a ∈ IR, to :

Da,−a(x, y) =
√
xy, (18)

i.e., to the geometric mean, which is itself the power mean of exponent 0. Power means

with exponent k ∈ IR are therefore the only bisymmetric difference means.
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[6] Losonczi, L. and Páles, Z. (1998). Minkowksi’s inequality for two variable difference

means. Proc. Amer. Math. Soc. 126, 779–789.

[7] Stolarsky, K.B. (1975). Generalizations of the logarithmic mean. Math. Mag. 48, 87–92.

6


