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0.1 TIME-FREQUENCY REASSIGNMENT!'

Time-frequency and time-scale representations [1] aim to extract relevant information from
a signal by representing it over a two-dimensional plane. These tools have been extensively
studied in the past twenty years, resulting today in many useful analysis methods. Among
them, the spectrogram and the smoothed versions of the Wigner-Ville distribution [1] are
probably the most widely used, but their applicability is limited by localization trade-offs,
which may be troublesome in some applications. For the spectrogram, a shorter analysis
window yields a better time resolution and henceforth a poorer frequency resolution, as
a consequence of the Gabor-Heisenberg inequality [1]. For the smoothed versions of the
Wigner-Ville distribution, a larger smoothing kernel yields reduced cross-terms, but also a
poorer localization of the signal components [2].

These shortcomings must be overcome in order to obtain time-frequency “pictures” that
can be both easily read by non-experts and easily included in a signal processing applica-
tion. This is exactly what the reassignment principle has been devised for. Initially intro-
duced in 1976 by Kodera, Gendrin and de Villedary [3], this idea first remained little known
and rarely used. But recently, advances obtained during the eighties in time-frequency anal-
ysis have made its rebirth possible [4], which considerably extended its applicability, both
conceptually and computationally.

0.1.1 Basic principle

For a sake of simplicity, we will first present the basics of reassignment in the case of the
spectrogram, which was the only case considered by Kodera et al [3]. Its application to
other representations will be discussed afterwards. The spectrogram, which is the squared
modulus of the short—time Fourier transform

St f) = |FMGL DI 0.1.1)
Fh(t, f) / x(u) h*(t — u) e 2™ dy (0.1.2)

can also be expressed as a two-dimensional smoothing of the Wigner—Ville distribution [1]

Sh(t, f) = // W (u, v) Wi (t — u, f — v) du dv. (0.1.3)

In these expressions, ¢ and f are respectively the time and frequency running variables,
x(t) is the analysed signal, and h(t) is the analysing window. All integrals have integration
bounds running from —oo to +o00. The latter expression shows explicitly that the value of
the spectrogram at a given point (¢, f) is a weighted sum of all the Wigner—Ville distribution
values at the neighboring points (t — u, f — v/). The number S" (¢, f) is therefore the sum
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of a whole energy distribution located around its geometrical center (¢, f). Reasoning
with a mechanical analogy, the situation is as if the total mass of an object was assigned
to its geometrical center, an arbitrary point which except in the very specific case of an
homogeneous distribution, has no reason to suit the actual distribution. A much more
meaningful choice is to assign the total mass of an object — as well as the spectrogram
value S"(t, f) — to the center of gravity of their respective distribution. This is exactly
what the reassignment performs : at each time—frequency pomt (t, f) where a spectrogram
value is computed, we also compute the coordinates (t f) of the local centroid of the
Wigner—Ville distribution W, as seen through the time—frequency window W, centered at

(t, f):
~ 1
tw(t,f) - m//uwx(u,u) Wh(t—u,f—l/) du dv (014)
~ 1
fw(t,f) - m//yw‘%(u,l/) Wh(t—u,f—u) dudv. (015)

Then, the spectrogram value S" (¢, f) is moved from (¢, f) to (Z, f) This leads us to define
the reassigned spectrogram as

Sh(t, f) = / Sh(u,v) t—t (u,v)) J(f—fm(u,y)) du dv. (0.1.6)

Originally, the reassignment operators  and ]?have been equivalently related to the phase
of the STFT, an information which is generally discarded when computing the spectrogram:

to(t,f) = —% g—*j(t,f) (0.1.7)
~ 0
Foltd) = f+ o o000, (0.18)

with ¢(t, f) = arg F"(t, f). These expressions may be interpreted respectively as the
local group delay and the local instantaneous frequency of the signal observed inside the
time-frequency domain imposed by the analysis window h. But it has been shown in [4]
that a much more efficient implementation is possible thanks to a third expression involving
two additional STFTs with particular analysis windows :

th
ta(t, f) = t—%{%}, (0.1.9)
. dh/dt
fao(t, f) = f+%{2er((tt,,f))} (0.1.10)

As presented here, the reassignment principle can be used with a large number of distri-
butions, beyond the spectrogram case. For example, if the WVD of the short—time window
h(t) in eq. (0.1.3) is replaced by an arbitrary (low—pass) kernel IT(u, v), one recognizes the
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general form of the quadratic time—frequency energy distributions that are covariant under
time and frequency shifts, referred to as the Cohen’s class [1] :

p(t, f) = // Wy (u,v)II(t — u, f — v) dudy. (0.1.11)

The local centroids are then given by

to(t, f) = m//qu(u,l/)H(t—u,f—y)dudy (0.1.12)

~

1
Rt f) = m//VWx(u,u)H(t—u,f—y)dudu. 0.1.13)

and the corresponding reassigned distribution becomes

pil(t, f) = //pg(u,l/)(s(t—fw(u,l/)) ) (f—ﬁ(u,y)) du dv. (0.1.14)

From a theoretical point of view, this reassigned representation is no longer bilinear,
but it still remains an energy distribution covariant under time and frequency shifts. One
of the most important properties of the reassignment principle is that the application of
the reassignment process defined by eqs (0.1.12), (0.1.13) and (0.1.14) to any distribution
of the Cohen’s class yields perfectly localized distributions for chirp signals, frequency
tones and impulses, since the WVD does so, and since the centroid of a linear distribution
necessary lies on the line. When applied to multicomponent signals, reassignment improves
readability by overcoming — to a certain extent — the usual trade-off between cross-term
level and localization: the underlying smoothing of the standard distribution guarantees
some cross-term reduction, whereas reassignment acts as a squeezing that re-focuses the
signal terms that had been spread out by smoothing (see Figure 1).

Among the examples of Cohen’s class members studied in [4], the case of the smoothed
pseudo Wigner—Ville distribution yields a very versatile signal analysis tool, with indepen-
dently adjustable time and frequency smoothings:

SPWVSI(t, f) = //g(t—u)H(f—l/) W, (u,v) dudv (0.1.15)

Its reassigned version can be computed easily with two additional SPWDs:

_ SPWVeh(t, f)

to(t f) =t — ———2 2] 0.1.16
I = b ) O-L1
R g,dh/dt

f=(t, f) = f+iSPWV$ (¢, /) (0.1.17)

21 SPWVEM (¢, f)

A different kind of generalization can be obtained when switching to time-scale energy
distributions of the affine class [1], i.e., the quadratic distributions covariant under time
shifts and dilations:

O(t,a) = //Wz(u,y)ﬂ <t_“,au> du dv (0.1.18)

a



Figure 1: (a) Instantaneous frequency laws of a two-component signal; (b) Wigner-Ville
distribution; (c) spectrogram; (d) reassigned spectrogram.

Within this framework, the reassignment operator in time is given directly by

to(t,a) = m //qu(u,l/)H (t;“,au> du dv, (0.1.19)

whereas the reassignment operator in scale requires an intermediate step in the frequency
domain

N T
Go(t,a) = T ith fo = / FII(, f) dt df (0.1.20)
and f/l;‘(t,a/) = m //VWx(’U,,V)H<t;u,GJ/> du dv

The most important case among this class is the scalogram (the squared modulus of the
wavelet transform) [1], obtained by choosing for II the WVD of the chosen wavelet. Simple
and efficient expressions of the reassignment operators also exist in this case [4] [5].
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0.1.2 Variations and related approaches
0.1.2.1 Two variations

The original purpose of the reassignment principle was the design of time-frequency distri-
butions with increased readability. But some useful information on the signal structure can
also be directly extracted from the reassignment operators, as shown by the following two
extensions:

Signal/noise discrimination and supervised reassignment. When the analysed signal
includes broadband noise, the reassignment process yields peaked areas in noise-only re-
gions, whereas rather smooth energy distributions are expected there. For such situations,
an improved reassignment algorithm referred to as supervised reassignment [6] has been
designed. This approach first attempts to discriminate between “signal+noise” and “noise
only” regions in the time-frequency plane by means of a detector applied to the reassign-
ment operators. Reassignment is then only performed for the points considered to belong
to “signal+noise” regions.

Signal component extraction and differential reassignment. Many signal processing
problems such as denoising and signal classification can be solved by a relevant tiling of
the time-frequency plane, so as to isolate each signal “component” (although this concept is
not clearly defined). For such applications, a new reassignment process called differential
reassignment [7] has been considered. Whereas the original reassignment principle moves
each value by one finite jump, differential reassignment considers each time-frequency
point as the starting point of an elementary particle whose velocity field is deduced from
the reassignment operators. The final points called asymprotic reassignment points are
gathered and lead to a time-frequency map in which each cell indicates a signal component.

0.1.2.2 Related approaches

Although original in many respects, the concept of reassignment is obviously connected
with several approaches that have been proposed independently. We lack space to discuss
these interactions precisely, but we cite:

e The instantaneous frequency density [8], which yields at each time sample an his-
togram of the frequency reassignment operator of the spectrogram.

o The extraction of ridges and skeletons out of the phase structure of the wavelet trans-
form [9] [10]. These ridges are made of the fixed points of the reassignment opera-
tors, either horizontally (a, (t,a) = a) or vertically (¢, (¢,a) = t).

o The synchrosqueezed plane [11], which also moves the scalogram values, but by a

scale displacement only.

0.1.3 Summary and Conclusions

Reassignment can be viewed as the second step of a process whose goal is to build a read-
able time—frequency representation. It consists of:



1. a smoothing, whose main purpose is to rub out oscillatory interferences, but whose
drawback is to smear localized components;

2. asqueezing, whose effect is to refocus the contributions which survived the smooth-
ing.

As a result, this approach yields — without a drastic increase in computational complex-
ity — enhanced contrast (when compared to smoothed distributions such as spectrograms)
with a much reduced level of interferences (when compared to the Wigner-Ville distribu-
tion). This is especially true when the signal-noise ratio is not too low, and when the signal
components are not “too close” to each other. Finally, MATLAB implementations of the
algorithms discussed here are included in a freeware available at
http://iut-saint-nazaire.univ-nantes.fr/ auger/tftb.html

References

[1] P. Flandrin. Time-frequency/time-scale analysis. Academic Press, San Diego (CA),
1999.

[2] P.Flandrin. Cross-terms and localization in quadratic time-frequency distributions. in B.
Boashash ed, Time-frequency signal analysis and processing (this volume), Prentice Hall,
2001.

[3] K. Kodera, C. De Villedary, R. Gendrin. A new method for the numerical analysis of
nonstationary signals. Phys. Earth and Plan. Int., 12:142-150, 1976.

[4] E. Auger, P. Flandrin. Improving the readability of time-frequency and time-scale rep-
resentations by the reassignment method. IEEE Trans. Signal Proc., SP-43(5):1068—1089,
1995.

[5] P. Flandrin, E. Chassande-Mottin, P. Abry. Reassigned scalograms and their fast algo-
rithms. Proc. SPIE-95, Vol. 2569, pp. 152—158.

[6] E. Chassande-Mottin, F. Auger, P. Flandrin. Supervised time-frequency reassignment.
In Proc. of the IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis, pp 517-520,
Paris (France), 1996.

[7] E. Chassande-Mottin, I. Daubechies, F. Auger, P. Flandrin. Differential reassignment.
IEEE Signal Proc. Lett., SPL-4(10):293-294, 1997.

[8] D. Friedman. Instantaneous frequency distribution vs. time : An interpretation of the
phase structure of speech. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Proc., 1121-1124, Tampa (FL), 1985.

[9] R. Carmona, W.L.. Hwang, B. Torrésani. Practical Time-Frequency Analysis. Academic
Press, 1998.



0.1. Time-frequency reassignment 7

[10] P. Guillemain, R. Kronland-Martinet. Horizontal and vertical ridges associated to con-
tinuous wavelet transforms. In Proc. of the IEEE Int. Symp. on Time-Frequency and Time-
Scale Analysis, pp 63—66, Victoria (Canada), 1992.

[11] S. Maes. The synchrosqueezed representation yields a new reading of the wavelet
transform. In Proc. SPIE 95 on OE/Aerospace Sensing and Dual Use Photonics, pp 532—
559, Orlando (FL), 1995.



