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intuition

Idea

Give a mathematical sense to musical notation

Aim

Write the “musical score” of a signal with multiple, evolutive
components with that additional constraint of getting, in the case
of an isolated chirp x(t) = a(t) exp{iϕ(t)}, a localized
representation

ρ(t, f ) ∼ a2(t) δ (f − ϕ̇(t)/2π) .
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local methods and localization

The example of the short-time FT — One defines the
local quantity

F
(h)
x (t, f ) =

∫
x(s) h(s − t) e−i2πfs ds,

where h(t) is some short-time observation window.

Measurement — The representation results from an
interaction between the signal and a measurement device
(the window h(t)).

Trade-off — A short window favors the “resolution” in time
at the expense of the “resolution” in frequency, and vice-versa.
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adaptation

Chirps — Adaptation to pulses if h(t)→ δ(t) and to tones
if h(t)→ 1 ⇒ adapting the analysis to arbitrary chirps
suggests to make h(t) (locally) depending on the signal.

Linear chirp — In the linear case fx (t) = f0 + αt, the
equivalent frequency width δfS of the spectrogram

S
(h)
x (t, f ) := |F (h)

x (t, f )|2 behaves as:

δfS ≈
√

1

δt2
h

+ α2 δt2
h

for a window h(t) with an equivalent time width δth ⇒
minimum for δth ≈ 1/

√
α (but α unknown. . . ).
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self-adaptation and Wigner-Ville distribution

Matched filtering — If one takes for the window h(t) the
time-reversed signal x−(t) := x(−t), one readily gets that

F
(x−)
x (t, f ) = Wx (t/2, f /2)/2, where

Wx (t, f ) :=

∫
x(t + τ/2) x(t − τ/2) e−i2πf τ dτ

is the Wigner-Ville Distribution (Wigner, ’32; Ville, ’48).

Linear chirps — The WVD perfectly localizes on straight
lines of the plane:

x(t) = exp{i2π(f0t+αt2/2)} ⇒Wx (t, f ) = δ (f − (f0 + αt)) .

Remark — Localization via self-adaptation leads to a
quadratic transformation (energy distribution).
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interferences

Quadratic superposition — For any pair of signals
{x(t), y(t)} and coefficients (a, b), one gets

Wax+by (t, f ) = |a|2 Wx (t, f )+|b|2 Wy (t, f ) +2 Re
{

a b Wx ,y (t, f )
}
,

with

Wx ,y (t, f ) :=

∫
x(t + τ/2) y(t − τ/2) e−i2πf τ dτ

Drawback — Interferences between disjoint component
reduce readability.

Advantage — Inner interferences between coherent
components guarantee localization.
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interferences

Janssen’s formula (Janssen, ’81) — It follows from the
unitarity of Wx (t, f ) that:

|Wx (t, f )|2 =

∫∫
Wx

(
t +

τ

2
, f +

ξ

2

)
Wx

(
t − τ

2
, f − ξ

2

)
dτ dξ

Geometry (Hlawatsch & F., ’85) — Contributions located
in any two points of the plane plan interfere to create a third
contribution

1 midway of the segment joining the two components
2 oscillating (positive and negative values) in a direction

perpendicular to this segment
3 with a “frequency” proportional to their “time-frequency

distance”.
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interferences and readability

somme des WV (N = 2) WV de la somme (N = 2)
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interferences and readability

somme des WV (N = 3) WV de la somme (N = 3)
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interferences and readability

somme des WV (N = 4) WV de la somme (N = 4)
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interferences and readability

somme des WV (N = 5) WV de la somme (N = 5)
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interferences and readability

somme des WV (N = 6) WV de la somme (N = 6)
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interferences and readability

somme des WV (N = 7) WV de la somme (N = 7)
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interferences and readability

somme des WV (N = 8) WV de la somme (N = 8)
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interferences and readability

somme des WV (N = 9) WV de la somme (N = 9)
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interferences and readability

somme des WV (N = 10) WV de la somme (N = 10)
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interferences and readability

somme des WV (N = 11) WV de la somme (N = 11)
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interferences and readability

somme des WV (N = 12) WV de la somme (N = 12)
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interferences and readability

somme des WV (N = 13) WV de la somme (N = 13)
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interferences and readability

somme des WV (N = 14) WV de la somme (N = 14)
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interferences and readability

somme des WV (N = 15) WV de la somme (N = 15)
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interferences and readability

somme des WV (N = 16) WV de la somme (N = 16)
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interferences and localization

sum(WV) (N = 2) WV(sum) (N = 2)
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interferences and localization

sum(WV) (N = 3) WV(sum) (N = 3)
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interferences and localization

sum(WV) (N = 4) WV(sum) (N = 4)
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interferences and localization

sum(WV) (N = 5) WV(sum) (N = 5)
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interferences and localization

sum(WV) (N = 6) WV(sum) (N = 6)
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interferences and localization

sum(WV) (N = 7) WV(sum) (N = 7)
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interferences and localization

sum(WV) (N = 8) WV(sum) (N = 8)

Patrick Flandrin Time-frequency energy distributions, old and new



basics analysis decisions further info spectrograms Wigner classes stochastic processes

interferences and localization

sum(WV) (N = 9) WV(sum) (N = 9)
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interferences and localization

sum(WV) (N = 10) WV(sum) (N = 10)
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interferences and localization

sum(WV) (N = 11) WV(sum) (N = 11)
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interferences and localization

sum(WV) (N = 12) WV(sum) (N = 12)
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interferences and localization

sum(WV) (N = 13) WV(sum) (N = 13)
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interferences and localization

sum(WV) (N = 14) WV(sum) (N = 14)
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interferences and localization

sum(WV) (N = 15) WV(sum) (N = 15)
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interferences and localization

sum(WV) (N = 16) WV(sum) (N = 16)
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classes of quadratic distributions

Observation

Many quadratic distributions have been proposed in the literature
since more than half a century (e.g., spectrogram and DWV):
none fully extends the notion of spectrum density to the
nonstationary case.

Principle of conditional unicity — Classes of quadratic
distributions of the form ρx (t, f ) = 〈x ,Kt,f x〉 can be constructed
based on covariance requirements :

x(t) → ρx (t, f )
↓ ↓

(Tx)(t) → ρTx (t, f ) = (T̃ρx )(t, f )
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classes of quadratic distributions

Cohen’s class — Covariance wrt shifts
(Tt0,f0x)(t) = x(t − t0) exp{i2πf0t} leads to Cohen’s class
(Cohen, ’66) :

Cx (t, f ) :=

∫∫
Wx (s, ξ) Π(s − t, ξ − f ) ds dξ,

with Π(t, f ) “arbitrary” (and to be specified via additional
constraints).

Variations — Other choices possibles, e.g.,
(Tt0,f0x)(t) = (f /f0)1/2x(f (t − t0)/f0)→ affine class (Rioul
& F, ’92), etc.
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Cohen’s class and smoothing

Spectrogram — Given a low-pass window h(t), one gets the
smoothing relation:

S
(h)
x (t, f ) := |F (h)

x (t, f )|2 =

∫∫
Wx (s, ξ) Wh(s−t, ξ−f ) ds dξ

From Wigner-Ville to spectrograms — A generalization
amounts to choose a smoothing function Π(t, f ) allowing for
a continuous and separable transition between Wigner-Ville
and a spectrogram (smoothed pseudo-Wigner-Ville
distributions) :

Wigner − Ville . . . → PWVL . . . → spectrogram

δ(t) δ(f ) g(t) H(f ) Wh(t, f )
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from Wigner-Ville to spectrogram, and back
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time-frequency spectrum

Definition (Martin, ’82)

One of the most “natural” extensions of the power spectrum
density is given by the Wigner-Ville Spectrum :

Wx (t, f ) :=

∫
rx

(
t +

τ

2
, t − τ

2

)
e−i2πf τ dτ

Interpretation — FT of a local correlation.

Properties — PSD if x(t) stationary, marginals, etc.

Relation with the WVD — Under simple conditions, one
has Wx (t, f ) = E{Wx (t, f )}.
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estimation of the Wigner-Ville spectrum

Aim

Approach E{Wx (t, f )} on the basis of only one realization.

Assumption — Local stationarity (in time and in frequency).

Estimators — Smoothing of the DWV :

Ŵx (t, f ) = (Π ∗ ∗Wx )(t, f )

i.e., Cohen’s class.

Properties — Statistical (bias-variance) and geometrical
(localization) trade-offs, both controlled by Π(t, f ).
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global vs. local

Global approach — The Wigner-Ville Distribution localizes
perfectly on straight lines of the plane (linear chirps). One
can construct other distributions localizing on more general
curves (ex.: Bertrand’s distributions adapted to hyperbolic
chirps).

Local approach — A different possibility consists in revisiting
the smoothing relation defining the spectrogram and in
considering localization wrt the instantaneous frequency as it
can be measured locally, at the scale of the short-time
window ⇒ reassignment.
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reassignment

Principle — The key idea is (1) to replace the geometrical
center of the smoothing time-frequency domain by the center
of mass of the WVD over this domain, and (2) to reassign
the value of the smoothed distribution to this local centröıd:

S
(h)
x (t, f ) 7→

∫∫
S

(h)
x (s, ξ) δ

(
t − t̂x (s, ξ), f − f̂x (s, ξ)

)
ds dξ.

Remark — Reassignment has been first introduced for the
only spectrogram (Kodera et al., ’76), but its principle has
been further generalized to any distribution resulting from the
smoothing of a localizable mother-distribution (Auger & F.,
’95).
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reassignment

Wigner-Ville

time
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y

spectrogram

time
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reassignment
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reassignment
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reassignment

Wigner-Ville

time
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reassigned spectrogram
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reassignment in action

Spectrogram — Implicit computation of the local centröıds
(Auger & F., ’95) :

t̂x (t, f ) = t + Re

{
F

(T h)
x

F
(h)
x

}
(t, f )

f̂x (t, f ) = f − Im

{
F

(Dh)
x

F
(h)
x

}
(t, f ),

with (T h)(t) = t h(t) and (Dh)(t) = (dh/dt)(t)/2π.

Beyond spectrograms — Possible generalizations to other
smoothings (smoothed pseudo-Wigner-Ville, scalogram, etc.).
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independence wrt window size
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an example of comparison

time

fr
eq

ue
nc

y

signal model Wigner−Ville  (log scale)

spectrogram  (log scale) reassigned spectrogram
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reassignment and estimation

Advantage — Very good properties of localization for chirps
(> spectrogram).

Limitation — High sensitivity to noise (< spectrogram).

Aim

Reduce fluctuations while preserving localization.

Idea (Xiao & F., ’06)

Adopt a multiple windows approach.
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back to spectrum estimation

Stationary processes — The power spectrum density can
be viewed as:

Sx (f ) = lim
T→∞

E

 1

T

∣∣∣∣∣
∫ +T/2

−T/2
x(t) e−i2πft dt

∣∣∣∣∣
2


In practice — Only one, finite duration, realization ⇒ crude
periodogram (squared FT) = non consistent estimator with
large variance
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classical way out (Welch, ’67)

Principle — Method of averaged periodograms

Ŝ
(W )
x ,K (f ) =

1

K

K∑
k=1

S
(h)
x (tk , f )

with tk+1 − tk of the order of the width of the window h(t).

Bias-variance trade-off — Given T (finite), increasing K ⇒
reduces variance, but increases bias
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multitaper solution (Thomson, ’82)

Principle — Computing

Ŝ
(T )
x ,K (f ) =

1

K

K∑
k=1

S
(hk )
x (0, f )

with {hk (t), k ∈ N} a family of orthonormal windows
extending over the whole support of the observation ⇒
reduced variance, without sacrifying bias

Nonstationary extension — Multitaper spectrogram

Ŝ
(T )
x ,K (f )→ Sx ,K (t, f ) :=

1

K

K∑
k=1

S
(hk )
x (t, f )

Limitation — Localization controlled by most spread
spectrogram.
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multitaper reassignment

Idea

Combining the advantages of reassignment (wrt localization) with
those of multitapering (wrt fluctuations) :

Sx ,K (t, f )→ RSx ,K (t, f ) :=
1

K

K∑
k=1

RS
(hk )
x (t, f )

1 coherent averaging of chirps (localization independent of
the window)

2 incoherent averaging of noise (different TF distributions for
different windows)
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in practice

Choice of windows — Hermite functions

hk (t) = (−1)k e−t2/2

√
π1/22k k!

(Dkγ)(t); γ(t) = et2

rather than Prolate Spheroidal Wave functions

Two main reasons
1 WVD with elliptic symmetry and maximum concentration

in the plane.
2 recursive computation of hk (t), (T hk )(t) and (Dhk )(t) ⇒

better implementation in discrete-time. In particular:

(Dhk )(t) = (T hk )(t)−
√

2(k + 1) hk+1(t)
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example 1
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average mean spectro. average mean reass. spectro. average Wigner
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example 2
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example 2
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example 2
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chirp enhancement

Idea

Reassigned chirps globally invariant wrt tapers ⇒ “differences”
wrt successive tapers mostly non-zero in noisy regions

1 average ratios (∼ log-differences)

RSDx ,K (t, f ) =
1

K − 1

K−1∑
k=1

RS
(hk+1)
x (t, f )

RS
(hk )
x (t, f )

.

2 threshold and mask
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example 3

S1 RS1 RS

RSP RSM RSF
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a “compressed sensing” approach

Discrete time

signal of dimension N ⇒ TF
distribution of dimension ≈ N2

Few components

K � N ⇒ at most KN � N2

non zero values in the TF plane

Wigner-Ville

time

fr
eq

ue
nc

y

reassigned spectrogram

time

fr
eq

ue
nc

y

Sparsity

minimizing the `0 “norm” not feasible, but almost optimal solution
by minimizing the `1 norm
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a “compressed sensing” approach”

Idea (F. & Borgnat, 2008-2010)

1 choose a domain Ω neighnouring the origin of the AF plane

2 solve the program

min
ρ
‖ρ‖1 ; F{ρ} − Ax = 0|(ξ,τ)∈Ω

3 the exact equality over Ω can be relaxed to

min
ρ
‖ρ‖1 ; ‖F{ρ} − Ax‖2 ≤ ε|(ξ,τ)∈Ω
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a toy example
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Wigner
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ambiguity
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selection
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sparse solution
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comparison sparsity vs. reassignment
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detection/estimation of chirps

Optimality — Matched filtering, maximum likelihood,
contrast,. . . : basic ingredient = correlation “received signal
— copy of emitted signal”.

Time-frequency interpretation — Unitarity of a
time-frequency distribution ρx (t, f ) guarantees the
equivalence:

|〈x , y〉|2 = 〈〈ρx , ρy 〉〉.

Chirps — Unitarity + localization ⇒ detection/estimation via
path integration in the plane (e.g., Wigner-Ville and linear
chirps). Approximation = reassigned spectrogram and “any”
chirp.
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Euler’s disk
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Euler’s disk — Hough 1

Idea

Path integration along power-law trajectories f = f0(t0 − t)α

Patrick Flandrin Time-frequency energy distributions, old and new



basics analysis decisions further info chirp estimation stationarity tests time-frequency machines

Euler’s disk — Hough 2

Result

Coarse and refined estimation of parameters f0, t0 and α
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revisiting stationarity

Observation

Discrepancy between theory (invariance over all times, stochastic
framework) and practice (observation scale, deterministic signals)

Aim

Get an operational (i.e., equipped with interpretation + test)
definition of stationarity

Idea

Operate in the time-frequency plane and compare with a
stationarized reference
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time-frequency stationarity

Principle

2nd-order stationarity ⇒Wx (t, f ) = Γx (f ) (PSD) for any t
adaptation to sub-regions of the TF plane, in time
(observation scale) and/or in frequency (subbands)
test by comparing local vs. global spectral features

Significance

nonstationarity = structured organization of spectral content
over time: local “6=” global
null hypothesis of stationarity = stationarized (i.e.,
unstructured in time) reference: local “=” global
phase randomization in the Fourier domain (method of
surrogate data)
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stationarization via surrogates
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a distance-based test

Dissimilarity measures

κKL(G ,H) :=
∫

Ω
(G (f )− H(f )) log(G (f )/H(f )) df

(Kullback-Leibler divergence)
κLS(G ,H) :=

∫
Ω
| log(G (f )/H(f ))| df (log-spectral deviation)

κ(G ,H) := κKL(G ,H). (1 + λκLS(G ,H)) (combined)

Comparison local vs. global

{c(y)
n := κ (Sy ,K (tn, .), 〈Sy ,K (tn, .)〉n=1,...N) , n = 1, . . .N}

with either

y(t) = x(t) (observed signal)
{y(t) = sj (t); j = 1, . . . J} (stationarized surrogates)
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proposed test

Fluctuations — “Nonstationarity” assessed by the l2-norm
L(g , h) :=

∑N
n=1 (gn − hn)2 /N

Θ1 = L
(
c(x), 〈c(x)〉n=1,...N

)
(signal)

Θ0(j) = L
(
c(sj ), 〈c(sj )〉n=1,...N

)
, j = 1, . . . J (surrogates)

Test {
Θ1 > γ : “nonstationarity”;
Θ1 < γ : “stationarity”.

with threshold γ deduced from the distribution of Θ0(j) for a
given level of significance (probability of rejecting the null
hypothesis of stationarity)

From detection to estimation

index of nonstationarity: INS :=
√

Θ1
1
J

PJ
j=1 Θ0(j)

scale of nonstationarity: SNS := 1
Nx

arg maxNh
{INS(Nh)}
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test in action (stochastic case)
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test in action (deterministic case)
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a kernel-based test

Idea

Surrogates = learning set ⇒ kernel methods machinery

Nonlinear mapping ϕ(.) from input space to feature space,
with a kernel such that K (xi , xj ) = 〈ϕ(xi ), ϕ(xj )〉
One-class SVM (Support Vector Machines)

implicit density estimation for outlier rejection
optimal hyperplane solution of the quadratic program

minw ,ρ,ξ
1
2‖w‖

2 + 1
νJ

∑J
j=1 ξj − ρ

subject to 〈w , ϕ(xj )〉 ≥ ρ− ξj , ξj ≥ 0

decision function given by d(z) = sgn(〈w , ϕ(z)〉 − ρ)
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feature space

Normalized spectral “slices” of multitaper spectrograms

S̃n(f ) = Sx ,K (tn, f )/

∫ ∞
0

Sx ,K (tn, f )df ; n = 1, ...,N

Time evolution of local power Pn and frequency Fn

Pn =< 1 >S̃n
; Fn =< f >S̃n

; F 2
n =< f 2 >S̃n

Local vs. global features{
P = std({Pn}n=1..N)/mean({Pn}n)

F = std({Fn}n=1..N)/mean({
√
{F 2

n − (Fn)2}}n)
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an example
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monographs

L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1995.

S. Mallat, A Wavelet Tour of Signal Processing, Academic
Press, 1997.

R. Carmona, H.L. Hwang & B. Torrésani, Practical
Time-Frequency Analysis, Academic Press, 1998.

F. Hlawatsch, Time-Frequency Analysis and Synthesis of
Linear Signal Spaces, Kluwer, 1998.

P. Flandrin, Time-Frequency/Time-Scale Analysis, Academic
Press, 1999.
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collective books

A. Papandreou-Suppappola (ed.), Applications in
Time-Frequency Signal Processing, CRC Press, 2003.

B. Boashash (ed.), Time-Frequency Signal Analysis and
Processing, Elsevier, 2003.

Ch. Doncarli & N. Martin (eds.), Décision dans le Plan
Temps-Fréquence, Traité IC2, Hermes, 2004.

F. Auger & F. Hlawatsch (eds.), Temps-Fréquence —
Concepts et Outils, Traité IC2, Hermes, 2005.
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(p)reprints, Matlab codes & contact

http://perso.ens-lyon.fr/patrick.flandrin/

http://tftb.nongnu.org/

Patrick.Flandrin@ens-lyon.fr
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