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Euler's disk pendulum Doppler
oscillations

Definition }

6(t) + (g/L)0(1) = 0

T

o Constant length L = Ly — Small oscillations are sinusoidal,
with constant period To = 27+/Lo/9

o “Slowly-varying” length L = L(t) — Small oscillations are
almost-sinusoidal, with varying pseudo-period

T(t) ~ 2r/L(1)/9
(=] = = =

DEE



three observations representations and tools three examples Euler’s disk pendulum Doppler

Patrick Flandrin “Chirps” everywhere






Euler's disk pendulum Doppler
waves

Observation

Moving monochromatic source = differential perception of the
emitted frequency

f+Af f- Af

| "chirp"
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chirps in time

Definition

We will call “chirp" any complex-valued signal of the form

x(t) = a(t) exp{ip(t)}, where a(t) > 0 is a low-pass amplitude
whose evolution is slow as compared to the oscillations of the
phase ¢(t)

o Slow evolution ?
o Usual heuristic conditions assume that

@ |a(t)/a(t)| < |¢(t)| : the amplitude is almost-constant at the
scale of one pseudo-period T(t) = 27 /|4(1)]

@ |(1)|/¢2(t) < 1 : the pseudo-period T(t) is itself slowly
varying from one oscillation to the next
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chirps in frequency

Theorem (Stationary phase principle)

Assuming that ¢(t) has monotonic variation, with ts such that
&(ts) = 2nf, one can approach the chirp spectrum

X(f) = [ a(t) ele0-20 o

by its stationary phase approximation X(f) « a(ts)/|3(ts)]

Interpretation

The “instantaneous frequency" curve ¢(t) defines a one-to-one
correspondence between one time and one frequency. The
spectrum follows by weighting frequencies with durations
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towards AM-FM

Observation

Given the harmonic model x(t) = a cos(2rfyt + ¢g),
unambiguous definition of amplitude a and frequency f

Aim
Switch to an evolutive model x(t) = a(t) cos ¢(t), with a(t)
time-varying and ¢(t) non linear

Problem

Given one observation, no unicity anymore for the
representation since, for any function 0 < b(t) < 1,

a(t) cos o(t) = [a(t)/b(t)] [b(t) cos p(t)] =: a(t) cos (1)
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from monochromatic waves. ..

Observation
The real-valued harmonic model can indeed be written

x(t) = a cos(2rfyt + o) = Re{a expi(2nfyt + o)},
with
aexpi(2rfot + @o) = x(t) + i (Hx)(t)

and H the Hilbert transform (quadrature)

Interpretation

A monochromatic wave (prototype of a deterministic
“stationary” signal) is decribed, in the complex plane, by a
rotating vector whose magnitude and rotation speed are
time-invariant quantities
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...to AM-FM

Idea

Go to the complex plane and describe an AM-FM waveform by
a rotating (Fresnel) vector whose magnitude and rotation speed
are time-varying quantities, while mimicking the monochromatic
construction

x(t) — zx(t) == x(t) + i (Hx)(t)
Definition (Gabor, '46; Ville, '48)
The instantaneous amplitude and frequency follow from this

complex-valued representation — referred to as analytic signal
—as

all) =z K(D) ::;T;argzx(t)
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real-valued signal + IA (red) + IF (black)

analytic signal
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real-valued signal + IA (red) + IF (black)
analytic signal
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real-valued signal + IA (red) + IF (black)
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real-valued signal + IA (red) + IF (black)

analytic signal

Im

_

Re

«0O0)>» «F)»

it
a
i

DEE



three observations representations and tools three examples waveform spectrum |A-IF time-frequency

alternatives

Ideas

@ Teager, ‘86 & Kaiser, '90: define IA-IF from a local energy
operator

@ Huang, '98: pre-process the observation by an Empirical
Mode Decomposition so as to get well-behaved modes for
IA-IF extraction

@ Equis et al., ’11: consider rotations relatively to a local,

moving center and deduce IA-IF from the estimation of an
osculating circle
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wedding time and frequency

Aim
t or f (Fourier) — f(t) (Fresnel) — t and f (time-frequency)

Problem (Heisenberg, '25; Gabor, ’46)

Localization trade-off, classically based on a second order
(variance-type) measure: Aty Af > ||x||/47 (> 0), with
Aty = ([ 2 |x(1)2 dt)'/? and Af, = ([ 2 |X(f)[? df)!/?

Interpretation
No perfect pointwise localization

Remark

Same limitation with other spreading measures, e.g., entropy
(Hirschman, ’57). Common denominator: minimum achieved
with Gaussians
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chirps as uncertainty minimizers

Remark
No pointwise localization does not mean no localization

Stronger uncertainty relation (Schrédinger, 1935)

2
Aty Afy > ”4);” \/1 + 1672 </t (Orarg x(1)) |x(t)[? dt)

bound achieved for “squeezed
states” of the form
{exp(at? + Bt +7)}, with
linear “chirps” as a limit when
Re{f} =0 andRe{a} — 0_
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time-frequency alternatives

From stationarity. . .

Spectrum analysis “a la Wiener-Khintchine-Bochner” :

Mx(f) = F{x }(f), with~vx(7) := (x, T, x) correlation function
independent of time

...to nonstationarities (Wigner, ’32; Ville, ’48)
v — lime-frequency correlation (x, T, ¢x) + 2D Fourier
transform = Wigner-type transforms
o Intrinsic definitions: no dependence on some
measurement device (window, wavelet)

o perfect localization for linear chirps (with possible
extensions to non linear cases)
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“distribution/correlation” duality

Definition
The 2D Fourier transform Ax(§, ) of the Wigner distribution

Wi (t, ) is referred to as the (narrowband) ambiguity function
(AF)

Interpretation
The TF-shift operator (T¢ . x) (t) := x(t — 7) e~"278(t=7/2) js such
that Ax(&,7) = (x, T¢ -x) = AF = TF correlation, with

o ‘“auto-terms” neighbouring the origin of the plane

o ‘cross-terms” at a distance from the origin that equals the
TF distance between components
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the other trade-off and its “classical” way out

Wigner-Ville Distribution Ambiguity Function

Doppler

frequency

delay

time
RGK mask ¢

Data-adaptive TFR

Doppler

frequency

time delay
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spectrogram = smoothed Wigner

Wigner-Ville spectrogram

frequency
frequency

N

©)

time time
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spreading of auto-terms

Wigner-Ville spectrogram

frequency
frequency

time time
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cancelling of cross-terms

Wigner-Ville spectrogram

frequency
frequency

time time
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reassignment (Kodera et al., ’76, Auger & F., ’95)

Wigner-Ville reassigned spectrogram

frequency
frequency

time time
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independence w.r.t. window size

7

window = 21 127 points

e

128 points

signal model
Wigner-Ville

reass. spectro

window = 21 127 points
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a “compressed sensing” approach

Discrete time

signal of dimension N = TF
distribution of dimension ~ N?

frequency

Few components

K < N = at most KN < N2 non zero
values in the TF plane tme

Sparsity
minimizing the £y “norm” not feasible, but almost optimal
solution by minimizing the ¢1 norm
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a “compressed sensing” approach”

Idea (F. & Borgnat, '08-10)

@ choose a domain Q neighnouring the origin of the AF plane
@ solve the program

min{lpll1; F{p} — Ax = Ole )en
@ the exact equality over Q can be relaxed to

minloll ; 17{p} = Axlz < €lie.yeq

Patrick Flandrin “Chirps” everywhere



three observations representations and tools three examples waveform spectrum |A-IF  time-frequency

a toy example

signal

TF model

frequency

time
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Wigner

wv

frequency

time
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ambiguity

wv

frequency

time

total AF

Doppler

delay
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selection

wv

frequency

time

total AF AF over Q

Doppler
Doppler

delay delay
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sparse solution

Wy | —arr

Irequency
frequency

time time

Total AF AF over o

Dopples
Doppler

delay delay
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comparison sparsity vs. reassignment

Trequency
Trequency

frequency
frequancy

tirne tirn e
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@ Biology — Bats echolocation calls
@ Physics — Gravitational waves

@ Mathematics — Riemann and Weierstrass functions
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bat sonar system

Observation

o Echolocation — Active system for navigation, natural
airborne sonar

o Signals — Ultrasonic acoustic waves, transient (some ms)
and wideband (some tens of kHz between 40 and 100kHz)
chirp signals

o Performance — Close to optimality, with adaptation of the
waveforms to multiple tasks (detection, estimation,
recognition, interferences rejection,. . . )
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a typical pursuit sequence (Myotis mystacinus)
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a typical pursuit sequence (Myotis mystacinus)

e
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close-up (spectrogram)

cruise
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pursuit

)
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cafch
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close-up (reassigned spectrogram)

cruise

pursuit

cafch
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bats and signal processing

Aim
Understand the signal design of bat echolocation calls:
@ evolution within a sequence?
@ adaptation to environment?
@ optimality if any?
@ ...

Result

For an emitted signal of duration T and bandwidth B, the
accuracy in estimating the Doppler shift and the delay of the
returning echo is roughly given by 6f ~ T~ and

6t ~ (BVSNR)~" (Woodward'’s formula)
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bats and signal processing

Observation
@ Cruise — Importance of estimating both distance (delay)
and speed (Doppler)

= broadband chirp + almost Constant Frequency part

@ Pursuit — Importance of estimating distance whatever the
Doppler
= adapted chirp + progressive suppression of the almost
Constant Frequency part

@ Catch — Importance of precise localization with shorter
pulses
= increasing the effective bandwidth B by lowering the
fundamental and increasing distortion (harmonics)
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chirp detection/estimation

Interpretation (time-frequency)

@ Matched filtering — Emitted signal s(t) as a template +
echo e(t) as a delayed version of s(t) embedded in wGn
= optimal estimation of delay by + = argmax; |(e, T,s)|?

@ Unitarity — Inner product equivalence
= (Moyal’s formula) |(x, y)12 = [[ px(t,f) py(t, f) dt df

@ Localization — Energy along instantaneous frequency fs(t)
=+ =argmax, [ a(t — 1) pe(t, fs(t — 7)) dt
path integration in the time-frequency plane
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Doppler tolerance

Problem
Coupled errors in the joint estimation of delay and Doppler

Way out (Altes & Titlebaum, '70)

o A waveform is said to be Doppler-tolerant if it permits an
ubiased estimation of delay whatever the (unknown)
Doppler

o For broadband signals, Doppler has to be considered as a
dilation (shift = approximation for narrowband signals)

o Analytic solution = hyperbolic chirps
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Graphical solution
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coalescing binaries
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Corotating
Néutron Stars

To form a Black Hole

Patrick Flandrin

“Chirps” everywhere






gravitational wave

time

«O» «Fr «=>»

<

v

fHac




three observations representations and tools three examples bats GWs Riemann & Weierstrass more

the quest

Challenge

First direct proof on Earth of the existence of gravitational
waves (GWs), as predicted by general relativity

o Projects — VIRGO (France-ltaly) + LIGO (USA): giant
Michelson interferometers (~ 3 km long arms)

o Measurements — GWSs impinging the interferometer
modify locally the space-time geometry and result in a
differential variation of the arms length = interference
fringes

o Difficulties — Signals are very weak and can be efficiently
observed only in a very short time window (some seconds)
corrresponding to the frequency window above ~ 10 Hz
(seismic noise) and below ~ 1 kHz (photon noise)
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GW detection/estimation

Model

The inspiral part of the GW radiated by a coalescing binary
made of two objects of respective masses my and m, can be
modelled as a power-law chirp

Cas(t) = a(te — 1) exp{i(b(tc — 1) + )} U(ts — 1),
with (o, 8) = (—1/4,5/8)

Parameters
@ the coalescence time t;

@ the chirp mass defined as
M = (my + mp)?/5(m;" + my")=3/5, and related to the
“chirp rate” b according to b ~ 38.6 (M /M) %8, where
M., stands for the solar mass
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reassigned spectrogram + path integration

c N B2 OO @

3.5

chirp mass

0.6 —0.5

time (s)

(Chassande-Mottin & F., ACHA 9
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a very special function
Definition
o(t) =32, n2 sinmn?t

Result

o(t) non differentiable ift # to = (2p+1)/(29+ 1), p,g € N
(Hardy, ’16) but differentiable in t = ty (Gerver, '70)

Theorem (Meyer, '96)

In the vicinity of z = 1, the holomorphic version of Riemann’s
function can be expressed as a combination of local chirps:

o(1+2)=o(1) _Wz/2+ZK,, ) Cs/2.1(2),

leading to o(1 4+ t) = o(1) — wt/2 + O(|t|*/?) when t — 0
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power-law chirps
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from Fourier to Mellin

Definition
The Mellin Transform (MT) of a signal x(t) € L2(R+, t—2a+1 dt)
can be defined as the projection:

(Mx)(s) := /0 o x(t) t2ms=2 gt =: (x, c)

Interpretation
@ Analysis over hyperbolic chirps c(t) := t~*exp{i2rslog t}

@ ¢q(t)/2n = s/t = the Mellin parameter s can be
interpreted as a hyperbolic modulation rate

@ The MT can also be viewed as a warped FT, since
x(1) := e(I=) x(el) = (Mx)(s) = (FX)(s)
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Karl Weierstrass (1815-1897)
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another very special function

Definition (Weierstrass, 1872)
Geometrically spaced Fourier modes

W(t):=> A" cos A"t A > 1

n=0

Definition (Mandelbrot, 1977)
Wy() := 3~ A" (9(0) — g(A"1) €7, A > 1,
n=0

with g(-) 2r-periodic and ¢, € U(0, 27)

see also (Berry & Lewis, Proc. Roy. Soc. London A, 1980)
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Weierstrass meets Mellin

Result (Borgnat & F,, '03)

The Weierstrass-Mandelbrot admits the equivalent Mellin
decomposition:

log \ mH,m/Iog/\(t)7

m=—oo

with G(t) == g(0) — g(1)

Interpretation

Natural co-existence of two readings (Fourier and Mellin) in the
time-frequency plane
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Fourier vs. Mellin
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Fourier model

frequency
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Mellin model
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back to Euler
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Hough transform
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chirps “everywhere”

bird songs

ocean waves

“whistling atmospherics"

wideband impulses propagating in a dispersive medium
vibroseismics

EEG (epileptic seizure)

uterine EMG

coherent structures in turbulence

precursors accumulation in earthquakes

“speculative bubbles" prior a financial crash
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