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oscillations

Definition

θ̈(t) + (g/L) θ(t) = 0

Constant length L = L0 — Small oscillations are sinusoidal,
with constant period T0 = 2π

√
L0/g

“Slowly-varying” length L = L(t) — Small oscillations are
almost-sinusoidal, with varying pseudo-period
T (t) ∼ 2π

√
L(t)/g
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waves

Observation
Moving monochromatic source⇒ differential perception of the
emitted frequency

f + ! f f - ! f "chirp"

Patrick Flandrin “Chirps” everywhere



three observations representations and tools three examples waveform spectrum IA-IF time-frequency

chirps in time

Definition
We will call “chirp" any complex-valued signal of the form
x(t) = a(t) exp{iϕ(t)}, where a(t) ≥ 0 is a low-pass amplitude
whose evolution is slow as compared to the oscillations of the
phase ϕ(t)

Slow evolution ?
Usual heuristic conditions assume that

1 |ȧ(t)/a(t)| � |ϕ̇(t)| : the amplitude is almost-constant at the
scale of one pseudo-period T (t) = 2π/|ϕ̇(t)|

2 |ϕ̈(t)|/ϕ̇2(t)� 1 : the pseudo-period T (t) is itself slowly
varying from one oscillation to the next
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chirps in frequency

Theorem (Stationary phase principle)

Assuming that ϕ̇(t) has monotonic variation, with ts such that
ϕ̇(ts) = 2πf , one can approach the chirp spectrum

X (f ) =

∫
a(t) ei(ϕ(t)−2πft) dt

by its stationary phase approximation X̃ (f ) ∝ a2(ts)/|ϕ̈(ts)|

Interpretation

The “instantaneous frequency" curve ϕ̇(t) defines a one-to-one
correspondence between one time and one frequency. The
spectrum follows by weighting frequencies with durations
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towards AM-FM

Observation
Given the harmonic model x(t) = a cos(2πf0t + ϕ0),
unambiguous definition of amplitude a and frequency f0

Aim
Switch to an evolutive model x(t) = a(t) cosϕ(t), with a(t)
time-varying and ϕ(t) non linear

Problem
Given one observation, no unicity anymore for the
representation since, for any function 0 < b(t) < 1,

a(t) cosϕ(t) = [a(t)/b(t)] [b(t) cosϕ(t)] =: ã(t) cos ϕ̃(t)
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from monochromatic waves. . .

Observation
The real-valued harmonic model can indeed be written

x(t) = a cos(2πf0t + ϕ0) = Re {a exp i(2πf0t + ϕ0)} ,

with
a exp i(2πf0t + ϕ0) = x(t) + i (Hx)(t)

and H the Hilbert transform (quadrature)

Interpretation
A monochromatic wave (prototype of a deterministic
“stationary" signal) is decribed, in the complex plane, by a
rotating vector whose magnitude and rotation speed are
time-invariant quantities
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. . . to AM-FM

Idea
Go to the complex plane and describe an AM-FM waveform by
a rotating (Fresnel) vector whose magnitude and rotation speed
are time-varying quantities, while mimicking the monochromatic
construction

x(t)→ zx (t) := x(t) + i (Hx)(t)

Definition (Gabor, ’46; Ville, ’48)
The instantaneous amplitude and frequency follow from this
complex-valued representation — referred to as analytic signal
— as

ax (t) := |zx (t)| ; fx (t) :=
1

2π
d
dt

arg zx (t)
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example
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example

real−valued signal + IA (red) + IF (black)

analytic signal

Re

Im
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limitation: noise

real−valued signal + IA (red) + IF (black)

analytic signal

Re

Im
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assumption 1: monocomponent
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assumption 1: monocomponent

real−valued signal + IA (red) + IF (black)

analytic signal
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assumption 2: zero-mean
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assumption 2: zero-mean

real−valued signal + IA (red) + IF (black)

analytic signal
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alternatives

Ideas
1 Teager, ’86 & Kaiser, ’90: define IA-IF from a local energy

operator
2 Huang, ’98: pre-process the observation by an Empirical

Mode Decomposition so as to get well-behaved modes for
IA-IF extraction

3 Equis et al., ’11: consider rotations relatively to a local,
moving center and deduce IA-IF from the estimation of an
osculating circle
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wedding time and frequency

Aim
t or f (Fourier)→ f (t) (Fresnel)→ t and f (time-frequency)

Problem (Heisenberg, ’25; Gabor, ’46)

Localization trade-off, classically based on a second order
(variance-type) measure: ∆tx ∆fx ≥ ‖x‖/4π (> 0), with
∆tx = (

∫
t2 |x(t)|2 dt)1/2 and ∆fx = (

∫
f 2 |X (f )|2 df )1/2

Interpretation
No perfect pointwise localization

Remark
Same limitation with other spreading measures, e.g., entropy
(Hirschman, ’57). Common denominator: minimum achieved
with Gaussians
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chirps as uncertainty minimizers

Remark
No pointwise localization does not mean no localization

Stronger uncertainty relation (Schrödinger, 1935)

∆tx ∆fx ≥
‖x‖
4π

√
1 + 16π2

(∫
t (∂t arg x(t)) |x(t)|2 dt

)2

bound achieved for “squeezed
states" of the form{

exp(αt2 + βt + γ)
}

, with
linear “chirps” as a limit when
Re{β} = 0 and Re{α} → 0−
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time-frequency alternatives

From stationarity. . .
Spectrum analysis “à la Wiener-Khintchine-Bochner” :
Γx (f ) = F{γx}(f ), with γx (τ) := 〈x ,Tτx〉 correlation function
independent of time

. . . to nonstationarities (Wigner, ’32; Ville, ’48)

γx → time-frequency correlation 〈x ,Tτ,ξx〉 + 2D Fourier
transform⇒Wigner-type transforms

intrinsic definitions: no dependence on some
measurement device (window, wavelet)
perfect localization for linear chirps (with possible
extensions to non linear cases)
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“distribution/correlation” duality

Definition
The 2D Fourier transform Ax (ξ, τ) of the Wigner distribution
Wx (t , f ) is referred to as the (narrowband) ambiguity function
(AF)

Interpretation

The TF-shift operator (Tξ,τx) (t) := x(t − τ) e−i2πξ(t−τ/2) is such
that Ax (ξ, τ) = 〈x ,Tξ,τx〉 ⇒ AF = TF correlation, with

“auto-terms” neighbouring the origin of the plane
“cross-terms” at a distance from the origin that equals the
TF distance between components
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the other trade-off and its “classical” way out
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from Wigner-Ville to spectrogram, and back
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spectrogram = smoothed Wigner

Wigner-Ville

time
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spreading of auto-terms

Wigner-Ville
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cancelling of cross-terms

Wigner-Ville
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reassignment (Kodera et al., ’76, Auger & F., ’95)

Wigner-Ville
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independence w.r.t. window size
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a “compressed sensing” approach

Discrete time
signal of dimension N ⇒ TF
distribution of dimension ≈ N2

Few components

K � N ⇒ at most KN � N2 non zero
values in the TF plane

Wigner-Ville

time
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y

reassigned spectrogram

time
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eq

ue
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y

Sparsity
minimizing the `0 “norm” not feasible, but almost optimal
solution by minimizing the `1 norm
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a “compressed sensing” approach”

Idea (F. & Borgnat, ’08-10)
1 choose a domain Ω neighnouring the origin of the AF plane
2 solve the program

min
ρ
‖ρ‖1 ; F{ρ} − Ax = 0|(ξ,τ)∈Ω

3 the exact equality over Ω can be relaxed to

min
ρ
‖ρ‖1 ; ‖F{ρ} − Ax‖2 ≤ ε|(ξ,τ)∈Ω
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a toy example
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Wigner
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ambiguity
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selection
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sparse solution
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comparison sparsity vs. reassignment
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1 Biology — Bats echolocation calls
2 Physics — Gravitational waves
3 Mathematics — Riemann and Weierstrass functions
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bat sonar system

Observation
Echolocation — Active system for navigation, natural
airborne sonar
Signals — Ultrasonic acoustic waves, transient (some ms)
and wideband (some tens of kHz between 40 and 100kHz)
chirp signals
Performance — Close to optimality, with adaptation of the
waveforms to multiple tasks (detection, estimation,
recognition, interferences rejection,. . . )
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a typical pursuit sequence (Myotis mystacinus)
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a typical pursuit sequence (Myotis mystacinus)
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a typical pursuit sequence (Myotis mystacinus)

Patrick Flandrin “Chirps” everywhere



three observations representations and tools three examples bats GWs Riemann & Weierstrass more

close-up (spectrogram)
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close-up (reassigned spectrogram)
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bats and signal processing

Aim
Understand the signal design of bat echolocation calls:

1 evolution within a sequence?
2 adaptation to environment?
3 optimality if any?
4 . . .

Result
For an emitted signal of duration T and bandwidth B, the
accuracy in estimating the Doppler shift and the delay of the
returning echo is roughly given by δf ∼ T−1 and
δt ∼ (B

√
SNR)−1 (Woodward’s formula)
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bats and signal processing

Observation
1 Cruise — Importance of estimating both distance (delay)

and speed (Doppler)
⇒ broadband chirp + almost Constant Frequency part

2 Pursuit — Importance of estimating distance whatever the
Doppler
⇒ adapted chirp + progressive suppression of the almost
Constant Frequency part

3 Catch — Importance of precise localization with shorter
pulses
⇒ increasing the effective bandwidth B by lowering the
fundamental and increasing distortion (harmonics)
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chirp detection/estimation

Interpretation (time-frequency)
1 Matched filtering — Emitted signal s(t) as a template +

echo e(t) as a delayed version of s(t) embedded in wGn
⇒ optimal estimation of delay by τ̂ = arg maxτ |〈e,Tτs〉|2

2 Unitarity — Inner product equivalence
⇒ (Moyal’s formula) |〈x , y〉|2 =

∫∫
ρx (t , f ) ρy (t , f ) dt df

3 Localization — Energy along instantaneous frequency fs(t)
⇒ τ̂ = arg maxτ

∫
a2

s(t − τ) ρe(t , fs(t − τ)) dt
path integration in the time-frequency plane
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optimal integration (Wigner-Ville)
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approximation (reassigned spectrogram)
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robustness
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Doppler tolerance

Problem
Coupled errors in the joint estimation of delay and Doppler

Way out (Altes & Titlebaum, ’70)
A waveform is said to be Doppler-tolerant if it permits an
ubiased estimation of delay whatever the (unknown)
Doppler
For broadband signals, Doppler has to be considered as a
dilation (shift = approximation for narrowband signals)
Analytic solution = hyperbolic chirps
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Doppler tolerance

Graphical solution
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coalescing binaries
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coalescing binaries
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expected waveform

time

gravitational wave
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the quest

Challenge

First direct proof on Earth of the existence of gravitational
waves (GWs), as predicted by general relativity

Projects — VIRGO (France-Italy) + LIGO (USA): giant
Michelson interferometers (∼ 3 km long arms)
Measurements — GWs impinging the interferometer
modify locally the space-time geometry and result in a
differential variation of the arms length⇒ interference
fringes
Difficulties — Signals are very weak and can be efficiently
observed only in a very short time window (some seconds)
corrresponding to the frequency window above ∼ 10 Hz
(seismic noise) and below ∼ 1 kHz (photon noise)
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GW detection/estimation

Model
The inspiral part of the GW radiated by a coalescing binary
made of two objects of respective masses m1 and m2 can be
modelled as a power-law chirp

Cα,β(t) = a (tc − t)α exp{i(b (tc − t)β + c)}U(tc − t),

with (α, β) = (−1/4,5/8)

Parameters
1 the coalescence time tc
2 the chirp mass defined as
M = (m1 + m2)2/5(m−1

1 + m−1
2 )−3/5, and related to the

“chirp rate” b according to b ≈ 38.6 (M/M�)−5/8, where
M� stands for the solar mass
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reassigned spectrogram + path integration

(Chassande-Mottin & F., ACHA ’98)
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Bernhard Riemann (1826-1846)
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a very special function

Definition

σ(t) :=
∑∞

n=1 n−2 sinπn2t

Result
σ(t) non differentiable if t 6= t0 = (2p + 1)/(2q + 1), p,q ∈ N
(Hardy, ’16) but differentiable in t = t0 (Gerver, ’70)

Theorem (Meyer, ’96)
In the vicinity of z = 1, the holomorphic version of Riemann’s
function can be expressed as a combination of local chirps:

σ(1 + z) = σ(1)− πz/2 +
∞∑

n=1

Kn(z) C3/2,−1(z),

leading to σ(1 + t) = σ(1)− πt/2 + O(|t |3/2) when t → 0
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power-law chirps
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from Fourier to Mellin

Definition

The Mellin Transform (MT) of a signal x(t) ∈ L2(R+, t−2α+1dt)
can be defined as the projection:

(Mx)(s) :=

∫ +∞

0
x(t) t−i2πs−α dt =: 〈x , c〉

Interpretation
1 Analysis over hyperbolic chirps c(t) := t−α exp{i2πs log t}
2 ϕ̇c(t)/2π = s/t ⇒ the Mellin parameter s can be

interpreted as a hyperbolic modulation rate
3 The MT can also be viewed as a warped FT, since

x̃(t) := e(1−α)t x(et )⇒ (Mx)(s) = (F x̃)(s)
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Mellin as warped Fourier

tone

chirp
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Karl Weierstrass (1815-1897)
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another very special function

Definition (Weierstrass, 1872)
Geometrically spaced Fourier modes

W (t) :=
∞∑

n=0

λ−nH cosλnt , λ > 1

Definition (Mandelbrot, 1977)

Wg(t) :=
∞∑

n=0

λ−nH (g(0)− g(λnt)) eiϕn , λ > 1,

with g(·) 2π-periodic and ϕn ∈ U(0,2π)

see also (Berry & Lewis, Proc. Roy. Soc. London A, 1980)
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“de-warping” (Lamperti, ’62)

Weierstrass function (H = 0.5)

"Delampertized" Weierstrass function
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Weierstrass meets Mellin

Result (Borgnat & F., ’03)
The Weierstrass-Mandelbrot admits the equivalent Mellin
decomposition:

Wg(t) =
∞∑

m=−∞

(MHG)(m/ logλ)

logλ
mH,m/ logλ(t),

with G(t) := g(0)− g(t)

Interpretation
Natural co-existence of two readings (Fourier and Mellin) in the
time-frequency plane
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Fourier vs. Mellin

Fourier model

time

fre
qu

en
cy

Mellin model

Patrick Flandrin “Chirps” everywhere



three observations representations and tools three examples bats GWs Riemann & Weierstrass more

back to Euler
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Hough transform
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chirps “everywhere”

bird songs
ocean waves
“whistling atmospherics"
wideband impulses propagating in a dispersive medium
vibroseismics
EEG (epileptic seizure)
uterine EMG
coherent structures in turbulence
precursors accumulation in earthquakes
“speculative bubbles" prior a financial crash
. . .
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(p)reprints, Matlab codes & contact

http://perso.ens-lyon.fr/patrick.flandrin/

http://tftb.nongnu.org/

Patrick.Flandrin@ens-lyon.fr
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