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Stationarity, from theory to practice

e concept of stationarity

¢ ubiquitous in signal/image processing
e prerequisite for many tasks (analysis, modeling, ...)

e theory: definition heavily constrained

1. stochastic framework, e.g., Ex(t) x(t — 7) = yx(7)
2. invariance w.r.t. any time t and any shift =

e practice: definition loosely twisted

1. deterministic frameworks as well, e.g., x(t) ~ x(t — kT)
2. invariance w.r.t. selected times f and limited shifts (7 or kT)
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A 2D eXample
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e consider stationarity as a relative concept and develop an

Ao~

operational framework

e encompassing both stochastic and deterministic situations
e incorporating an observation scale in the definition
¢ allowing for a possibility of a quantitative test

time-frequency framework
stationary reference from surrogates
distance-based test

3 variations

4.1 machine learning approach
4.2 2D time-scale extension
4.3 transient detection
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A time-frequency approach 1.

e 2nd order stationarity: frequency description via the Power
Spectrum Density (PSD)

400 )
r(f)i= [ (e P dr

—00

e (harmonizable) nonstationary processes: PSD —
Time-Varying Spectra (TVS) px(t, f), with the key property:
px(t. f) = Tx(f),Vt in the stationary case.
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estimation of TVS by means of multitaper spectrograms (or
scalograms)
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A time-frequency approach 2.

e estimation of TVS by means of multitaper spectrograms (or
scalograms)
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with the K first Hermite (or Morse) functions used as
short-time windows (or wavelets) h(t)

e rationale: “ensemble” averaging without any extra time
averaging (conflicting with nonstationarity)
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AM-AR(2) speech

e advantage: common framework for both stochastic and
deterministic situations

e rationale: relative stationarity = “homogeneity” within an
observation scale = comparison local vs. global
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Local = global?

test calls for a stationary reference: how?

e nonstationarity encoded in time evolution or, equivalently, in
spectrum phase

e stationarization via spectrum phase randomization (Richard
et al., IEEE-ICASSP’10)

new use of surrogate data technique (Theiler et al., ’92)

basic algorithm:

X = FFT(x) % x = original data

draw WGN ¢(t) and compute é = FFT(e)
X — |X| exp{iarg ¢}

4 y = IFFT(X) % y = surrogate data

W N =




Stationarization via surrogates

original 1 surrogate
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The proposed approach

[Xiao et al., EUSIPCO’07] [Xiao et al., IEEE-SSP’07]
[Borgnat et al., IEEE T-SP’10]

1. compute, from the data, a set of stationary surrogates
2. attach to both data and surrogates a series of features
aimed at comparing local vs. global behaviors

3. construct a test based on the empirical statistical
characterization of such features for surrogates (null
hypothesis of stationarity)



Principle of distance-based test
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More on distance-based test 1.

e comparison local vs. global for the data

cs = D (Sek(tn, ). (Sek(tnr))n)

with D(-,-) some dissimilarity measure
e creation of a set of surrogates and similar comparisons

(1) = {si(t),j=1,...J}

(el = (ss,.,K(t,,, ), (Ssk(tn, -)>n) J=1,...J1



More on distance-based test 2.

e measure the /¢, fluctuations of D for data and surrogates
©1 = L (e, (c)y) ;: {@0() = L (¢, (c9)n) .j =1.... I}

with
1 »
L(g,h) =5 >_ (Gn— hn)

e construct the one-sided test

©4 > v : “nonstationarity”
©1 <~ : “stationarity”

with v some threshold derived from the empirical pdf of ©¢



Associated quantities

e index of nonstationarity

INS =

(©0()));

e scale of nonstationarity
y
SNS := — argmax {INS(Tp)},
T Th

with T the observation span and T, the window length



Choosing a distance

¢ typical nonstationarities captured by time-varying spectra:
AM (level change) and FM (shape change)

e motivates a combination of log-spectral deviation (AM) and
Kullback-Leibler divergence (FM)

D(G, H) := Dx(G, H). (1 + Disp(G, H)),
with

Dx1 (G, H) ::/Q(G(f)—H(f)) IogGEgdf

log G(f)‘ af

Dusn(@.1):= [ [ oo i
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Synthetic data

signal
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Variation 1: machine learning

e approaches via distances are model-based since they
require some (parametric) knowledge of surrogates
features pdf

e possible way out by considering surrogates as a learning
set attached to stationarity

e stationarity test recast as outlier detection by using the
machinery of one-class SVM



Principle of SVM-based test

e rationale: determine the minimum volume hypersphere
that encloses (most of) the training points, up to a small
fraction of data excluded from the domain.

e optimization: trade-off between minimizing the radius r* of
the enclosing hypersphere and controlling the sum of the
slack variables &; associated with each outlier.




[llustration of SVM-based test
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Variation 2: 2D extensions

e extension 1: apply the same strategies to 2D TF spectra

e extension 2: replace mutatis mutandis TF by space-scale
(e.g., spectrograms — scalograms)

1. multiresolution = selection of observation scale

2. possibility of directional tests

3. here: undecimated dyadic (“symmlet-4”) tensor wavelet
transform, with test based on the ¢4-norm of the mixed
distance map (Kullback-Leibler + log-spectral deviation)
computed pointwise in the 3 directions



Back to the 2D example

test(p=1)
original image distance map (H)
35
[ ]
301 ° Y
251
20r

FILFA
FIFA

one surrogate image

average map (R = 50)




Back to the 2D example

original image

distance map (H)

average map (R = 50)
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Variation 3: transient detection

. TF model = localized events in smoothly spread noise

. In practice, only one observation
= statistical fluctuations in the estimated noise background
= false transients

. Way out = compare data to a TF stationarized reference
= surrogates from a 2D phase randomization with a
positivity constraint (spectrogram)

. Detection via an entropy measure (Rényi)



Algorithm

1 Ay = 2D-FFT(Sx) % Sy = spectrogram
2 draw WGN ¢(t) and compute A. = 2D-FFT(S,)
3 Ax — |Ax| exp{iarg A.} % Ax = surrogate ambiguity function

4 test = testy > thresh

5r=0

6 while test > thresh do

7 r—r+1

8 draw WGN ¢(t) and compute A. = 2D-FFT(S;)
9 Ax = 2D-FFT([2D-IFFT(Ax)]+)

10 Ax — |Ax| exp{i(arg Ax + \" arg A.)}

1 test «— vol(Sx < 0)/vol(Sx)




Example
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Concluding remarks

e stationarity revisited from an operational perspective

1. explicitly considered as a relative concept
2. tested based on data-driven surrogate data

e further variations

1. from detection to classification [Amoud et al., GRETSI'09]

2. global, features-free, learning strategies [Amoud et al.,
IEEE-SSP’09]

3. softened transitional surrogates [Borgnat et al., ICASSP’11]

e extension to generalized forms of stationarity (Lamperti)



More

(p)reprints and Matlab codes available at

http://perso.ens-lyon.fr/patrick.flandrin



