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1.1 THE SCALING PHENOMENA

1.1.1 Scaling issues in traffic

The presence of scaling behaviour in telecommunications traffic is striking not
only in its ubiquity, appearing in almost every kind of packet data, but also
in the wide range of scales over which the scaling holds (see e.g. [43], [18],
[78]). It is rare indeed that a physical phenomenon obeys a consistent law
over so many orders of magnitude. This may well extend further, as increases
in network bandwidth over time progressively ‘reveal’ higher scales.

While the presence of scaling is now well established, its impact on teletraf-
fic issues and network performance is still the subject of some confusion and
uncertainty. Why is scaling in traffic important for networking? It is clear,
as far as modelling of the traffic itself is concerned, that a feature as promi-
nent as scaling should be built into models at a fundamental level, if these
are to be both accurate and parsimonious. Scaling, therefore, has immediate
implications for the choice of classes of traffic models, and consequently on
the choice, and subsequent estimation, of model parameters. Such estimation
is required for initial model verification, for fitting purposes, as well as for
traffic monitoring,.

Traffic modelling however, does not occur in isolation but in the context
of performance issues. Depending on the performance metric of interest, and
the model of the network element in question, the impact and therefore the
relevance of scaling behaviour will vary. As a simple example, it is known
that in certain infinite buffer fluid queues fed by long range dependent (LRD)
On/Off sources, that the stationary queueing distribution has infinite mean,
a radically non-classical result. Such infinite moments disappear however if
the buffer is finite, intuitively because a finite reservoir cannot ‘hold’ long
memory. The LRD of the input stream will strongly affect the overflow loss
process, but cannot seriously exacerbate the conditional delay experienced
by packets which are mot lost, as this is bounded by the size of the buffer.
The importance of scaling in the performance sense, apart from being as yet
unknown in a great many cases, is therefore context dependent.

We focus here on the fundamental issues of detection, identification, and
measurement, of scaling behaviour. These cannot be ignored even if one is
interested in performance questions which are not directly related to scaling.
This is because scaling induces non-classical statistical properties which affect
the estimation of all parameters, not merely those that describe scaling. This
in turn, affects the predictive abilities of performance models, and therefore
their usefulness in practice.

The reliable detection of scaling should thus be our first concern. By de-
tecting the absence or presence of scaling, one will know whether the data
need be analysed using traditional statistics, or by special statistical tech-
niques that take the presence of scaling into account. Here is it vital to be
able to distinguish artifacts due to non-stationarities with the appearance of
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scaling, from true scaling behaviour. Identification is necessary since more
than one kind of scaling exists, with differing interpretations and implications
for model choice. Finally, should scaling of a given kind be present, an accu-
rate determination of the parameters which describe it must be made. These
parameters will control the statistical properties of estimates made of all other
quantities, such as the parameters needed in traffic modelling, or quality of
service metrics.

As a simple yet powerful example of the above, consider a second order
process X (t) which we know to be stationary, and whose mean ux we wish
to estimate from a given data set of length n. For this purpose the simple
sample mean estimator is a reasonable choice. The classical result is that
asymptotically for large n the sample mean follows a normal distribution, with
expectation equal to ux, and variance 0% /n, where 0% is the variance of X.
In the case where X is LRD the sample mean is also asymptotically normally
distributed with mean px, however the variance is given by (ﬁf;;’;a . %, where
a € [0,1) and ¢, € (0, 00) are the parameters describing the LRD ([17], p.160).
This expression reveals that the variance of the sample mean decreases with
the sample size n at a rate which is slower than in the classical case. Noting
that the ratio of the size of the LRD based variance to the classical one grows
to infinity with n, it becomes apparent that confidence intervals based on
traditional assumptions, even for a quantity as simple as the sample mean,
can lead to serious errors when in fact the data is LRD.

We focus here on how a wavelet based approach allows the threefold ob-
jective of the detection, identification, and measurement of scaling to be ef-
ficiently achieved. Fundamentally, this is due to the non-trivial fact that the
analysing wavelet family itself possesses a scale invariant feature, a property
not shared by other analysis methods. A key advantage is that quite different
kinds of scaling can be analysed by the same technique, indeed by the same
set of computations. The semi-parametric estimators of the scaling parame-
ters which follow from the approach have excellent properties: negligible bias
and low variance, and in many cases compare well even against parametric
alternatives. The computational advantages, based on the use of the Discrete
Wavelet Transform (DWT), are very substantial and allow the analysis of
data of arbitrary length. Finally, there are very valuable robustness advan-
tages inherent in the method, particularly with respect to the elimination of
superposed smooth trends (deterministic functions).

Another important issue connected with modelling and performance studies
concerns the generation of time series for use in simulations. Such simulations
can be particularly time consuming for long memory processes where the past
exerts a strong influence on the future, disallowing simple approximations
based on truncation. Wavelets offer in principle a parsimonious and natural
way to generate good approximations to sample paths of scaling processes,
which benefit from the same DWT-based computational advantages enjoyed
by the analysis method. This area is less well developed than is the case for
analysis however.
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1.1.2 Mapping the land of scaling and wavelets

The remainder of the paper is organized as follows.

Section 2, “WAVELETS AND SCALING: THEORY?”, discusses in detail
the key properties of the wavelet coefficients of scaling processes. It starts
with a brief, yet precise, introduction to the continuous and discrete wavelet
transforms, to the multiresolution analysis theory underlying the latter, and
the low complexity decomposition algorithm made possible by it. It recalls
concisely the definitions of two of the main paradigms of scaling, self-similarity
and long range dependence. The properties of the wavelet coefficients of self
similar, long range dependent, and fractal processes are then given, and it is
shown how the analysis of these various kinds of scaling can be gathered into
a single framework within the wavelet representation. Extensions to more
general classes of scaling processes requiring a collection of scaling exponents,
such as multifractals, are also discussed.

The aim of section 3, “WAVELETS AND SCALING: ESTIMATION?”, is
to indicate how and why this wavelet framework enables the efficient anal-
ysis of scaling processes. This is achieved through the introduction of the
Logscale Diagram, where the key analysis tasks of the detection of scaling,
interpretation of the nature of scaling, and estimation of scaling parameters,
can be performed. Practical issues in the use of the Logscale Diagram are ad-
dressed, with reference to examples from real traffic data and artificially gen-
erated traces. Definitions, statistical performance, and pertinent features of
the estimators for scaling parameters are then studied in detail. The Logscale
Diagram, first defined with respect to second order statistical quantities, is
then extended to statistics of other orders. It is also indicated how the tool
allows for and deals with situations/processes departing from pure scaling,
such as superimposed deterministic non-stationarities. Finally, clear connec-
tions between the wavelet tool and a number of more classical statistical tools
dedicated to the analysis of scaling are drawn, showing how the latter can be
profitably generalized in their wavelet incarnations.

Section 4, “WAVELETS AND SCALING: SYNTHESIS”, proposes a wavelet-
based synthesis of the fractional Brownian motion. It shows how this process
can be naturally and efficiently expanded in a wavelet basis, allowing, provided
that the wavelets are suitably designed, its accurate and computationally ef-
ficient implementation.

Finally in Section 5, “WAVELETS AND SCALING: PERSPECTIVES”,
a brief indication is given of what may lay ahead in the broad land of scaling
and wavelets.
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1.2 WAVELET AND SCALING: THEORY

1.2.1 Wavelet analysis: a brief introduction

1.2.1.1 The (continuous) wavelet transform The continuous wavelet
decomposition (CWT) consists of the collection of coefficients

{TX(aat) = <X)1/Ja,t>) ac R+) te ]R}

that compares (by means of inner products) the signal X to be analyzed with
a set of analysing functions

1 u—t
ﬁl/ﬂo(
This set of analysing functions is constructed from a reference pattern vy,

called the mother-wavelet, by the action of a time-shift operator (7o) (t) =
¥o(t — 7) and a dilation (change of scale) operator

{Wa(u) = ), a € RT t € R}.

(Datho)(t) = 1/\/arpo(t/a).

1o is chosen such that both its spread in time and frequency are relatively
limited. It consists of a small wave defined on a support which is almost lim-
ited in time and having most of its energy within a limited frequency band.
While the time support and frequency band cannot be both finite, there is an
interval on which they are effectively limited. The time-shift operator enables
the selection of the time instant around which one wishes to analyze the sig-
nal, whilst the dilation operator defines the scale of time (or equivalently, the
range of frequencies) over which it will be observed. The quantity |T'x (a,t)|?,
referred to as a “scalogram”, can therefore be interpreted as the energy con-
tent of X around time ¢ within a given range of frequencies controlled by a.
In addition to being well-localized both in time and frequency, the mother
wavelet is required to satisfy the admissibility condition, whose weak form is

/zbo(U)du =0, (1.1)

which shows it is a band-pass or oscillating function, whence the name “wavelet”.
Wavelets that are often used in practice include the Haar wavelet, the
Daubechies wavelets, indexed by a parameter N = 1, 2, ..., and the Meyer
wavelets. The Haar wavelet 1o (u) is discontinuous; it equals 1 at 0 < u < 1/2,
—lat 1/2 < u < 1 and 0 otherwise. The Daubechies wavelet with N = 1
is in fact the Haar wavelet, but the other Daubechies wavelets with N > 1
are continuous with bounded support, and have N vanishing moments (that
is, they satisfy Eq. (1.5) below). The Meyer wavelets do not have bounded
support, neither in the time nor frequency domain, but all their moments
vanish and they belong to the Schwartz space, that is, they are infinitely
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differentiable and decrease very rapidly to 0 as u tends to +oo.

On the condition that the wavelet be admissible, the transform can be

inverted:

X0 =Co [ [ Txte sty
where Cy, is a constant depending on . This reconstruction formula expresses
X in terms of a weighted integral of wavelets (acting as elementary atoms)
located around given times and frequencies, thereby constituting quanta of
information in the time-frequency plane. For a more general presentation of
the wavelet analysis see, for example, [24].

Because the wavelet transform represents in a plane (i.e. a 2D space) the
information contained in a signal (i.e., 1D space), it is a redundant transform,
which means that neighbouring coefficients in the time-scale plane share a
certain amount of information. A mathematical theory, the Multiresolution
Analysis (MRA), proves that it is possible to critically sample the time-scale
plane, i.e., to keep, among the {T'x (a,t), a € R, t € R}, only a discrete set of
coefficients whilst still retaining the total information in X. That procedure
defines the so-called Discrete (or non redundant) Wavelet Transform.

1.2.1.2 Multiresolution Analysis and Discrete Wavelet Transform
A multiresolution analysis (MRA) consists in a collection of nested subspaces
{Vj} ez, satisfying the following set of properties [24]:
1. N V; ={0}, U V;is dense in L*(R)
JEZL J€EZL
2. V] C Vj_1
3. X(t) e V; < X(27t) e V}y

4. There exists a function ¢g(t) in Vg, called the scaling function, such that
the collection {¢o(t — k), k € Z} is an unconditional Riesz basis for Vp

To understand the significance of these properties, observe that, from Prop-
erty 1, the V;’s are approximation subspaces of the space of square integrable
functions L2(R). Property 4 expresses the fact that the set of shifted scaling
functions {¢o(t — k), k € Z} form a “Riesz basis” for Vp, that is, they are
linearly independent and span the space Vj, but they are not necessarily or-
thogonal nor do they have to be of unit length. Finding such a function ¢q(t)
is hard, but many candidates for ¢o(t) are known in the literature.

Similarly, Properties 3 and 4 together imply that the scaled and shifted
functions

{djn(t) =279y (277t — k), k € Z}

constitute a Riesz basis for the space V;. The multiresolution analysis involves
successively projecting the signal X to be studied into each of the approxi-
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mation subspaces Vj:

approx; () = (Projy, X)(t) = Y _ ax (j,k)$;.x(t)
k

Since, from Property 2, V; C Vj_1, approx; is a coarser approximation of
X than is approx;_; (Note that some authors use the opposite convention
and set V; C Vj41.) Property 1 moreover indicates that in the limit of j —
+00, all information is removed from the signal. The key idea of the MRA,
therefore, consists in studying a signal by examining its coarser and coarser
approximations, by cancelling more and more high frequencies or details from
the data.

The information that is removed when going from one approximation to
the next, coarser one, is called the detail:

detail;(t) = approx;_, () — approx;(t).

The MRA shows that the detail signals detail; can be directly obtained from
projections of X onto a collection of subspaces, the W; = V; © V;_;, called
the wavelet subspaces. Moreover, the MRA theory shows that there exists a
function vy, called the mother wavelet, to be derived from ¢q, such that its
templates

{jn(t) = 27129277t — k), k € Z}

constitute a Riesz basis for W;:

detail; () = (Projy, X)(t) = > dx (j, k)b x(t) -
k

For example, if the scaling function ¢g(¢) is the function which equals 1 if
0 <t <1 and 0 otherwise, then the corresponding mother wavelet 1 (u) is
the Haar wavelet.

Theoretically, this projection procedure can be performed from j — —oo
up to j — +o00. In practice, one limits the range of indices j to j =0,...,J
and thus only considers

VycVy_iC...CVW.

This means that we restrict the analysis of X to that of its (orthogonal) pro-
jection approx,(t) onto the reference space Vp, labeled as zero by convention,
and rewrite this fine scale approximation as a collection of details at different
resolutions together with a a final low-resolution approximation which belongs
to VJ2

approxy(t) = approx;(t) + Ejzl detail;(t)

= Seax(LRos®) + T, T dx G,



viii

If X isin Vp, one can obviously replace approx, by X in the above relation.

Except in the case where X actually belongs to Vj, selecting V4 implies some
unavoidable information loss [11]. This is entirely analogous to the loss in-
duced by the necessary prefiltering operation involved in Shannon-Whittaker
sampling theory to band-limit a process prior to sampling. Note however that
there is no additional information loss after the initial projection. Varying
J simply means deciding if more or less information is written in details as
opposed to the final approximation approx;.

Since the approx; are essentially coarser and coarser approximations of
X, ¢o needs to be a low-pass function. The detail;, being an information
‘differential’, indicates rather that 1)y is a band-pass function, and therefore
a small wave, a wavelet. More precisely, the MRA shows that the mother
wavelet must satisfy [ o (¢)dt = 0 [24].

Given a scaling function ¢ and a mother-wavelet 1y, the discrete (or non
redundant) wavelet transform (DWT) consists of the collection of coefficients

X(t) - {{aX(J) k): ke Z}) {dX(])k)a ] = 1)' . '7J7 ke Z}} (13)

These coefficients are defined through inner products of X with two sets of
functions:

ax(j,k) = (Xa{)j,w} (1.4)
dx(j,k) = (X,¢jx)

where 1/01‘7'7]6 (resp., ¢]k) are shifted and dilated templates of 1710 (resp., (2)0),
called the dual mother wavelet (resp., the dual scaling function), and whose
definition depends on whether one chooses to use an orthogonal, semi-orthogonal
or bi-orthogonal DWT (see e.g., [24]). In Egs. (1.2) and (1.4) above, the
role of the wavelet and its dual can be arbitrarily exchanged, and similarly
for the scaling function and its dual. In what follows this exchange is per-
formed for simplicity of notation. The dx (7, k) constitute a subsample of the
{Tx(a,t), a € R", t € R}, located on the so-called dyadic grid

dx (j, k) = Tx(27,27k).

The logarithm (base 2) of the scale log,(a = 27) = j is called the octave j,
and a scale will often be referred to by its corresponding octave. For the sake
of clarity, we henceforth restrict our presentation to the DWT (characterized
by the dx (j, k)), which brings with it considerable computational advantages.
However, the fundamental results based on the wavelet approach hold for the
CWT, see [3, 4].

1.2.1.3 Key features of the wavelet transform In the study of the
scaling processes analysed below, the following two features of the Wavelet
Transform play key roles:
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e F1:  The wavelet basis is constructed from the dilation (change of
scale) operator, so that the analyzing family itself exhibits a scale in-
variance feature.

e F2: ¢y has a number N > 1 of vanishing moments:
/demﬁzm k=0,1,2,...,N — 1. (1.5)

The value of N can be freely chosen by selecting the mother wavelet
o accordingly. The Fourier transform Wo(v) of 1o satisfies |¥o(v)| ~
|V, v] — 0 [24].

1.2.1.4 Fast pyramidal algorithm In all of what follows, we always as-
sume that we are dealing with continuous time stochastic processes, and there-
fore that the wavelet (and approximation) coefficients are defined through
continuous time inner products (Eq. (1.4)). One major consequence of the
nested structure of the MRA consists in the fact that the dx(j,k) and the
ax(j,k) can actually be computed through a discrete time convolution in-
volving the sequence ax (5 — 1, k) and two discrete time filters hy and g;. The
DWT can therefore be implemented using a recursive filter-bank-based pyra-
midal algorithm, as sketched on Fig. 1.1, which has a lower computational
cost than that of a FFT [24]. The coefficients of the filters h; and g; are
to be derived from ¢y and 1y [24]. The use of the discrete time algorithm
to compute the continuous time inner products dx(j, k) = (X, ;) requires
an initialization procedure. It amounts to computing an initial discrete time

sequence to feed the algorithm (see Fig. 1.1): ax(0,k) = (X, gz%oyk) which
corresponds to the coefficients of the expansion of the projection of X on Vj.
From a practical point of view, one deals with sampled versions of X, which
implies that the initialization stage has to be approximated. More details can
be found in [75, 27]. The fast pyramidal algorithm is not only scalable be-
cause of its linear complexity, O(n) for data of length n, but is simple enough
to implement online and in real-time in high speed packet networks. An on-
line wavelet-based estimation method for the scaling parameter with small
memory requirements is given in [62].

1.2.2 Scaling processes: self-similarity and long range dependence

We can define scaling behaviour broadly as a property of scale invariance,
that is, when there is no controlling characteristic scale, or equivalently, when
all scales have equal importance. There is no one simple definition which
can capture all systems or processes with this property, rather there are a
set, of known classes open to expansion. In this section we briefly introduce
the most well known of these, namely self-similar, self-similar with stationary



increments, and long-range dependent processes. Please note that through-
out this paper we will use the following convention: f(z) ~ g(z) as © — a
means that lim,_,, f(z)/g(z) = 1, and f(z) ~ g(z) as * — a means that
lim,_,, f(z)/g(x) = C where C is some finite constant.

Recall that a process X = {X(¢t), t € R} is self-similar with parameter
H > 0 (H-ss) if X(0) = 0 and {X(ct), t € R} and {c? X(t), t € R} have
the same finite-dimensional distributions. Such a process, obviously, cannot
be stationary. The process X is H-sssi if it is H-ss and if, in addition, it
has stationary increments, that is, if the finite-dimensional distributions of
its increments {X (¢t + h) — X(h), t € R} do not depend on h. A H-sssi
process with H < 1 has zero mean and a variance which behaves as EX? () =
o2|t|*". The Fractional Brownian Motion (FBM), for example, is the (unique)
Gaussian H-sssi process, which is simply Brownian Motion for H = 1/2.

Long-range dependence (LRD)!, on the other hand, is associated with sta-
tionary processes. A stationary finite variance process X displays long-range
dependence if its spectral density I'x (v) satisfies

Ix(v) ~¢glv| *asv —0 (1.6)

where 0 < a < 1 and where ¢ is a non-zero constant 2. Eq. (1.6) implies that
the autocovariance r(k)=EZ(j)Z(j + k) satisfies

r(k) ~c.k* ! as k — oo, (1.7)

where ¢, = ¢;2I'(1 — a) sin(ra/2), I being (here) the Gamma function ([17],
p. 43). Egs. (1.7) and (1.6) imply that the covariances r(k) decay so slowly,
that ;- __r(k) = oo, or equivalently, I'z(0) = occ.

There is a close relationship between long-range dependence and self-similar
processes. Indeed, the increments of any finite variance H-sssi process have
long-range dependence, as long as 1/2 < H < 1, with H and « related through

a=2H-1. (1.8)

In particular, fractional Gaussian noise (FGN), which is the increment process
of fractional Brownian motion® (FBM) [50] with 1/2 < H < 1, has long-range
dependence. FGN is close to an “ideal” model because its spectral density is
close to v'~2H = =2 for a large range of frequencies v in the interval [0, 1/2],

!Long-range dependence is sometimes referred to as “long memory” or “second-order
asymptotic self-similarity”.

2The index f indicates that this constant is in force in the frequency domain. The cor-
responding constant appearing in the autocovariance is denoted c¢,. One can also replace
these constants by slowly-varying functions but for the sake of simplicity, we will not do
this here.

3Discrete standard FGN is the time series X(j) = Bg(j + 1) — By (4), j =0,1,..., where
By is FBM. Its spectral density satisfies I'x (—v) = I'x (v), and because it is a discrete-time
sequence, I'x (v) is concentrated on the interval [—1/2,1/2].
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and because its correlation function:
r(k) = 1/2{(k + 1)* — 22" 4 |k — 1?1} (1.9)

is invariant under aggregation (see section 3.5.1).

We now recall the properties of the wavelet coefficients of H-sssi processes
(such as FBM), and LRD processes (such as FGN), and show that they can be
gathered into a unified framework. We subsequently show that other stochas-
tic processes exhibiting scaling behaviour also fit into this framework, opening
up the prospect of a single approach covering diverse forms of scaling.

1.2.3 Wavelet transform of scaling processes

1.2.3.1 Discrete wavelet transform of stochastic processes Whereas
the wavelet theory was first established for deterministic finite energy pro-
cesses, it has been clearly demonstrated in the literature that the wavelet
transform can be applied to stochastic processes, see e.g. [20, 49]. More specif-
ically, for the second-order random processes of interest here, it is well-known
that the wavelet transform is a second-order random field, on the condition
that the scaling function ¢y (and hence the wavelet o) satisfy certain mild
conditions [20, 49] related to the covariance structure of the analysed process.
We will hereafter assume that the scaling functions and wavelets decay at least
exponentially fast in the time domain, so that the second-order statistics of
the wavelet transform exist for all of the random processes we discuss here.

1.2.3.2 WT of H-ss and H-sssi processes Let X be a H-ss process.
Its wavelet coefficients dx (j, k) exactly reproduce the self-similarity through
the following central scaling property, see [25, 26] or also [57]:

e PO SS: For the DWT, dx (j,k) = (X, ¢; 1), so that

1ES

(dX(ja 0))dX(j7 1)> s )dX(ja NJ - 1))
2(H+3) (dx (0,0),dx (0,1),...,dx(0,N; —1)).  (1.10)

For the CWT, Tx(a,t) = (X, 1q4,.), and hence

(Tx(ca,cty),..., Tx(ca, cty)) £

CH+1/2(TX(U/;t1)7 s 7TX(a’7tn))’ Ve > 0.

These equations mimic the self-similarity of the process. Let us em-
phasize that this, non trivially, results from the fact that the analysing
wavelet basis is designed from the dilation operator and is therefore,
by nature, scale invariant (F1). For second-order processes, a direct
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consequence of Eq. (1.10) is

Edx (j, k)? = 22TV Edx (0, k) . (1.11)

If we, moreover, add the requirement that X has stationary increments
(i.e., X is H-sssi), ingredients (F1) and (F2) combine resulting in:

e P1 SS: The wavelet coeflicients with fixed scale index {dx(j,k),k €
Z} form a stationary process and moreover are identically distributed.
This follows from the stationary increments property of the analysed
processes [20, 49, 25]. This property is not trivial given that self-similar
processes are non stationary processes and is a consequence of N > 1
(F2). In this case, Eq. (1.11) reduces to the fundamental result:

Edx (j,k)® = 2CHHDC(H, )0, VE, (1.12)
with C(H, o) = [ [t|*" ([ vo(u)ipo(u — t)du) dt and o* = EX (1)*.

e P2 SS: Using the specific covariance structure of an H-sssi process X (¢),
namely,

EX(HX(s) = T4t +|s" — e - P}, (113)

it can be shown [32, 73] that the correlations between wavelet coefficients
located at different positions is extremely small as soon as N > H +1/2
and their decay can be controlled by increasing INV:

Edx (j, k)dx (', k') ~ |27k — 277 K/ PH2N 1277 — 277 k| - +o0.
(1.14)

These two results have been obtained and illustrated originally in the case
of the FBM in [31, 32, 33, 34] (see also [73]) and have been stated in more
general contexts in [20, 49, 25, 26].

1.2.3.3 WT of LRD processes Let X be a second-order stationary pro-
cess, its wavelet coefficients dx (4, k) satisfy:

¢ PO LRD:
Edx (j k)? = / L x ()27 [T (270) P (1.15)

where I'x (v) and ¥y (v) stands for the power spectrum of X and the Fourier
transform of ¢)9. This can be understood as the classical interference formula
of the linear filter theory and receives a spectral estimation interpretation:
Edx (j,k)? is a measure of ['x (-) at frequency v; = 2771y (v depends on 1)
through the constant relative bandwidth wavelet filter [2, 3, 1, 34].

In the specific context of LRD processes, (F1) and (F2) together yield the
two following key properties:
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¢ P1 LRD: Using I'x (v) ~ ¢¢|v|”*, v = 0 in (1.15) above, we obtain:
IEdX (.]7 k)2 ~ 2jacfc(aa'¢}0)7 .] — +OO: (116)

where C(a, 1) = [ |v|~¥|¥o(v)|*dv, a € (0,1). The case of & = 0
is well defined, corresponding to trivial scaling at large scales, leaving
only short range dependence at small scales. Again, this asymptotic
recovering of the underlying power-law is not a trivial result. It would
not, for instance, be obtained with periodogram based spectral estimates
[3] and is due to (F1).

e P2 LRD: It can also be shown [3] that the covariance function of any
two wavelet coefficients is controlled by N and therefore can decay much
faster than that of the LRD process itself and is no longer LRD as soon
as N > «a/2. Since a € [0, 1), this is in fact always satisfied.

Edx (j, k)dx (j', k') ~ 277k — 277 k'|*7 172N 277k — 277 k! | — +o0.
(1.17)

Observe that the exponents in P1 LRD and P2 LRD are different from
those in P1 SS and P2 SS respectively.

1.2.3.4 WT of generalized scaling processes The results above can
be generalized in a straightforward manner to processes which are neither
strictly H-sssi nor LRD but whose wavelet coefficients share equivalent scaling
properties. Some important cases are detailed here.

e Start with a H-sssi process X, and define Y as

t tp_1 t
Y(t):/ dtp_l/ ot [ du X ().
\0 0 0 ,,

p—integrals

Then Y is a Hy-ss process with self-similarity parameter Hy = H + p
and with stationary increments of order p + 1. We say that Z is the
pth—order (p > 0) increment process of Y if Z(t) = Y@~ D (¢t + 1) —
Y®E-D(t) and YP-D(t) = d®DY/dtP~D (note that we use such a
“mixed” definition because an H-sssi process (i.e., with 0 < H < 1)
is not differentiable, whereas its integrals are). Then, properties (P1
SS) and (P2 SS) still hold replacing H by Hy. The condition for (P1
SS) becomes N > p+ 1 [10] and can be rewritten as N > Hy [10]. We
hereafter say that X is a H-sssi(p) process if it is H-ss and has stationary
increments of order p + 1. Note that with this definition H-sssi(p = 0)
and H-sssi are equivalent.

e Let X be a second-order stationary 1/f-type process, ie., I'x(v) =
crlv|™%, v1 < Jv] < va, @ > 0. Note that the term 1/ f implicitly implies
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the physicist point of view where the power-law behaviour is supposed
to hold for a wide range of frequencies, i.e., v; < v5. Recall that the
mother wavelet is a band-pass function whose frequency content is es-
sentially concentrated between v4 and vp, and negligible elsewhere, if
non zero. In the case of 1/f processes, it is therefore assumed that
|v2 —v1| > |vB — val|. We henceforth have:

Edx (4, k)? :/ Cx (v)27|%(27v)|*dv.

2-iva<|v|<2-ivg

This means that for all j’s such that v; < 277y, < 279y < vy, the
wavelet coefficients of X will reproduce the power-law: Edy (j, k)% ~
27%¢;C'(a,1hg). Strictly speaking, this last relation holds for wavelets
whose frequency support is finite, but it is generally valid to an excellent
approximation. 1/f-type processes with a < 1 and v; = 0 can be seen
as a special case of LRD processes. Note that the definition of 1/f
processes naturally extends to include a < 0.

Let X be such that Cx (v) ~ ¢f|v|”*,v = 0,a > 0. For @ > 1, the vari-
ance does not exist (the integral of the spectrum diverges). X can how-
ever be seen as a generalized second-order stationary 1/ f-type process,
in the sense that the variance of the wavelet coefficients remains finite
Bdx (j,k)® = [ Tx ()2 |Wo(290)2dv = 2i% [ |v] 2| Wo(v) Pdv < oo,
on condition that N > (o — 1)/2. This is possible as the power law de-
crease of the spectrum of the wavelet at the origin |¥o(v)| ~ vV, || — 0
balances the divergence of I'x (v) (see [3, 4] for details). Then, just as
before, we have: Edx (j, k)* ~ 27%¢;C(a, 1), j — +00.

Let X be such that T'x (v) ~ ¢|v|~%, v = 00,a > 1, (i.e., v2 = 00). Its
autocovariance function reads: EX ()X (t +7) ~ o%(1 — C|7|*"), 7 —= 0,
with h = (a—1)/2. Equivalently, it implies that E (X (t +7) — X (£))* ~
|7|?",7 — 0. If X is moreover Gaussian, this implies that the sample
path of each realization of the process is fractal, with fractal dimension
(strictly speaking Hausdorff dimension) D = (5—«)/2 [28]. This means
that the local regularity of the sample path of the process, or equiva-
lently, its local correlation structure, exhibits scaling behaviour. Such
processes are called fractal. Fractality is reproduced in the wavelet do-
main (generalization of P1) through Edy (j, k)? ~ 2/ j — —00, or
equivalently for the CWT: E|Tx (a,t)|* ~ a®"*1, a — 0 [36, 35], which
allows an estimation of the fractal dimension through that of the scaling
exponent « = 2h +1=5—-2D.

1.2.3.5 Summary for scaling processes Let X be either a H-sssi(p)
process, or a LRD process, or a (possibly generalized) second-order stationary
1/ f-type process or a fractal process, then the wavelet coefficients will, due to
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the combined effects of (F1) and (F2), exhibit the two following properties,
which will play a key role in the estimation of the scaling exponent presented
below:

e P1: The {dx(j,k),k € Z} is a stationary process if N > (a —1)/2 and
the variance of the dx (j, k) accurately reproduces, within a given range
of octaves j1 < j < jo2, the underlying scaling behaviour of the data:

]EdX (.]7 k)2 = 2jacfc(aa'¢}0)7 (118)
where

— in the case of an H-sssi(p) process, @ = 2H + 1, C(a, ¢y) is to be
identified from Eq. (1.12), and j; = —o0 and j» = +o0;

— in the case of a LRD process, « is defined as in (1.6), C'(a, ¢y) is to
be identified from Eq. (1.16), and jo = +o00, ji is to be identified
from the data;

— in the case of a (generalized) second-order stationary 1/ f-type pro-
cess, a is defined from I'x (v) = ¢r|v|™%, 1 < V| < v, C(a, o) =
S v|7¥|¥o(v)|?dv and (j1,j2) are to be derived from (v, vs);

— in the case of a fractal process, a = 2h+ 1, expressions for C(a, 1)
can be found in [36, 35] and j; = 1, jo is to be identified from the
data.

e P2: {dx(j,k),k € Z} is stationary and no longer exhibits long-range
statistical dependences but only short term residual correlations, i.e., it
is short-range dependent (SRD) and not LRD, on condition that N >
a/2. Moreover the higher N the shorter the correlation:

Edx (j, K)dx (, ) = [k — K[* 12N, [k = k| = +oo.

Note that these two properties of the wavelet coefficients do not rely on an
assumption of Gaussianity. In P2 above, we used only weak reformulations
(setting j = j') of P2 SS and P2 LRD. Their general versions (j not nec-
essarily equal to j') can be used to formulate a stronger idealisation of strict
decorrelation:

ID1: [Edx(j,k)dx(j',k") =0 if (',k") # (J, k).

The relevance of this idealisation has already been illustrated in, for in-

stance, [32, 33, 3, 5], and will play a key role in the next section.

1.2.3.6 Multiple exponents, Multifractal processes. Property P1
(wavelet reproduction of the power law) extends further to classes of gen-
eralized scaling processes whose behaviour cannot be described by a single
scaling exponent, but which requires a collection, even an infinite collection,
of exponents. We briefly describe three classes of examples.
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The first example is in the spirit of the simple fractal processes described
in section 2.3.4. Consider a generalisation where the exponent h, which de-
scribes the statistics of local scaling properties, is no longer constant in time:
E(X(t+7)— X(t))> ~ |7]2"® 7 — 0. One consequence is that the local
regularity of sample paths is no longer uniform, but depends on ¢. A class
of processes called Multifractional Brownian Motion has been proposed in
[56] which satisfies such a property, with h being a continuous function of
t. As detailed in [35, 36], the time evolution of h can be traced through
an analysis of the continuous wavelet transform coefficients at small scales:
E|Tx (a,t)]? ~ a**®+1 a — 0. This relation is to be understood as a time
dependent generalization of P1.

The second class, multifractal processes, is one which allows an extremely
rich scaling structure at small scales, far richer than simply fractal in general.
There is not the space here to give precise definitions of such processes, nor
of the related multifractal formalism. We aim rather to give some intuition of
their relation to wavelets, and refer the reader to [60, 59] and to chapter ?? of
the present volume, and references therein, for a thorough presentation. For
multifractal processes, the local regularity of almost every (that is with proba-
bility one) sample path, which we write as | X (w,t + 7) — X (w, t)| & |7]#«1)
7 — 0 (where w denotes an element of the probability space underlying the
process) exhibits an extraordinary variability over time, indeed it is itself
fractal-like. One therefore abandons the idea of following the time variations
of h, since this is realisation dependent and in any case is too complex, but
instead studies it statistically. Classically this has been done through the so-
called Hausdorff multifractal spectrum D(h), which consists of the Hausdor(f
dimension of the set of points where h(w,t) = h. The same multifractal spec-
trum is obtained for almost all realisations and is therefore a useful invariant
describing the scaling properties of the process. A classical tool to obtain the
multifractal spectrum is to calculate, from any typical sample path, the struc-
ture functions or partition functions: Sy(1) = [|X (w,t +7) — X (w,t)|%dt. Tt
is known that for given classes of multifractal processes [42], such S, (7) ex-
hibit power-law behaviour S,(r) ~ |7|¢@,7 — 0, ¢ € R which is deeply
related to their multifractal nature. Another multifractal spectrum, namely
the Legendre multifractal spectrum, can then be obtained by taking the Leg-
endre transform of ((¢q). Although it is possible that the Legendre spectrum
be different and in fact less rich than the Hausdorff spectrum, it is used as it
is far more numerically accessible. The connection between multifractals and
wavelets arises from the fact that the increments involved in the study of the
local regularity of a sample path can be seen as simple examples of wavelet
coefficients [52]. It has therefore been proposed heuristically [52] to replace
increments by wavelet coefficients in the partition functions and shown theo-
retically that, in some cases, the multifractal formalism can be based directly
on wavelet coefficients [42, 60, 16]. For the Legendre multifractal spectrum,
this amounts to using wavelet-based partition functions that exhibit, for small
scales, power-law behaviour: [ |T'x (., (a,t)|?dt ~ al@D+a/2 g 5 (. This last
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relation can be thought of as a generalization of P1 to statistics of order
both above and below 2. In addition, it is important to understand that even
though the relation describes a property of a single (typical) realisation, it
deals directly with the object ¢(w,q) central to the description of the scaling,
and not to an estimator of it. This is in contrast to self-similar processes for
example, and the fractal class of the previous paragraph, where the fundamen-
tal scaling relations and exponents are defined at the level of the ensemble.
Such a change of perspective is meaningful for multifractals as almost all re-
alisations yield a common function ((¢g). Finally let us note that more refined
wavelet-based partition functions have been proposed to overcome various dif-
ficulties arising in signal processing, the reader is referred to e.g., [52, 16].

The third example is that of multiplicative cascades, a paradigm introduced
by Mandelbrot [51] in 1974. It involves a recursive procedure whereby an ini-
tial mass is progressively subdivided accorded to a geometric rule and assigned
to subsets of an initial set, typically an interval. It provides a powerful tool
to define multifractal processes and was originally considered as a natural
synthesis procedure for them. Indeed cascade based methods of generating
multifractals have been the preferred option thus far in tele-traffic applica-
tions (see Chapter ??). However the infinitely divisible model proposed by
Castaing [21] shows that multiplicative cascade processes can also very ef-
fectively model scaling phenomena in other cases, even where the scaling is
barely observable in the time domain. Again, the wavelet tool has proved use-
ful for the analysis of such situations, as comprehensively detailed in [15, 14].
This tool has been applied for instance in the study of turbulence, [63, 22].

1.2.3.7 Processes with infinite second-order statistics - a—stable
processes. The existence of the wavelet coefficients, the extensions of PO
SS, P1 SS and P2 SS, to H-sssi processes without second-order statistics,
such as a—stable processes, for instance, have recently been obtained [25, 26,
58] (see also [57]) but will not be detailed here.

1.3 WAVELETS AND SCALING: ESTIMATION

In this section it is shown in detail how the statistical properties of the wavelet
detail coefficients, summarized in the previous section in the form of properties
P1 and P2, can be applied to the related tasks of the detection, identification,
and measurement of scaling. The estimation of scaling exponents, ‘magnitude
of scaling’ parameters, and the multifractal spectrum is discussed. Practical
issues in the use of the estimators are addressed and comparisons are made
with other estimation methods. Robustness of different kinds is also discussed.
It is shown how wavelet methods allow statistics other than second order to be
analysed, with applications in the identification of self-similar and multifractal
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processes. It is explained how the wavelet framework allows a re-interpretation
and a fruitful extension of the natural idea of aggregation in the study of
scaling. It is shown how the Allan variance, an effective time domain estimator
of scaling, belongs in fact to this framework. Finally it is shown how the same
analysis methods can be applied to the measurement of generalised forms of
the Fano factor, a well known descriptor of the burstiness of point processes.

1.3.1 An Analysis Tool: The Logscale Diagram

1.3.1.1 The legacy of P1 and P2. The property P2 is the key to the sta-
tistical advantages of analysis in the wavelet domain. In sharp contrast to the
problematic statistical environment in the time domain due to the long-range
dependence, non-stationarity, or fractality of the original process X (t), in the
wavelet domain we need only deal with the stationary, short-range dependent
(SRD) processes dx (j, ) for each j. (Due to the admissibility condition of the
mother wavelet these processes each have zero mean.) The stationarity allows
us to meaningfully average across ‘time’ within each process to reduce vari-
ability. The short-range dependence results in these average statistics having
small variance. An example of central importance here is given by

1 & _
pi=—>_ldx(j, k), (1.19)
vt

where n; is the number of coeflicients at octave j available to be analysed. The
random variable p1; is a non-parametric, unbiased estimator of the variance of
the process dx (j,-). Despite its simplicity, because of the SRD the variance
of p; decreases as 1/n; and it is in fact asymptotically efficient (of minimal
variance). The variable u1; can therefore be thought of as a near-optimal way of
concentrating the gross second order behaviour of X at octave j. Furthermore,
again from P2, the p1; are themselves only weakly dependent, so the analysis
of each scale is largely decoupled from that at other scales. To analyse the
second order dependence of X (t) on scale therefore, we are naturally lead to
study p; as a function of j.

Property P1 now enters by showing explicitly, in the case of scaling, the
underlying power-law dependence in j of the variance (second moment) of the
processes at each scale, of which the ;1; are estimates. The importance of P1
is that its pure power-law form suggests that the scaling exponent a could
be extracted simply by considering the slope in a plot of log, (1) against j.
Here it is essential to understand that, although log-log plots are a natural
and familiar tool whenever exponents of power-laws are at issue, using them
as a basis for semi-parametric estimation of the exponent is only effective
statistically if properties equivalent to P1-P2 hold. This is typically not the
case. For example for the correlogram, a time domain semi-parametric esti-
mator [17] based on direct estimation of the covariance function, covariance
estimates at fixed lag are biased, resulting in bias in the exponent estimate.
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Furthermore, across lags the covariance estimates are strongly correlated, re-
sulting in misleadingly impressive ‘straight lines’ in the log-log plot, which in
reality are symptomatic of high variance in the resulting estimate. In addi-
tion to these issues, the complication that in general E[log ()] # log(E[-]) is
overlooked in the correlogram and in many other estimators based on log-log
plots. For simplicity of presentation we set y; = log(p;) for the moment, but
address this refinement in the estimation section below. We now introduce
a wavelet-based analysis tool, the Logscale Diagram, which exploits the key
properties P1 and P2, and serves as an effective and intuitive central starting
point for the analysis of scaling.

Definition. The (second order) Logscale Diagram (LD) consists in the graph
of y; against j, together with confidence intervals about the y;.

Examples of Logscale Diagrams analysing synthesized scaling data are
given in Fig. 1.2, where the plot on the left is of a LRD series, and that
on the right of a self-similar series. It follows from the nature of the dilation
operator generating the wavelet basis that the number n; of detail coeflicients
at octave j halves with each increase in j (in practice the presence of bor-
der effects results in slightly lower values). Confidence intervals about the
y; therefore increase monotonically with j as one moves to larger and larger
scales, as seen in each of the diagrams in Fig. 1.2. The exact size of these
intervals depend on details of the process and in practice are calculated using
additional distributional and quasi-decorrelation assumptions. If necessary
they could also be estimated from data.

Generalisations to ¢'" order Logscale Diagrams can be defined, ¢ > 0,
where the second moment of the details in Eq. (1.19) is replaced by the ¢*".
Here we mainly concentrate on the second order Logscale Diagram or simply
‘Logscale Diagram’, both as an illustrative example, and because it is the
most important special case, being central for LRD and 1/f processes by
definition, definitive for Gaussian processes, and sufficient for exactly self-
similar processes. Like any second order approach, it is of course insufficient
for processes whose second moments do not determine all the properties of
interest. We discuss this further in section 4.3 in the particular context of
multifractals.

The Logscale Diagram is first of all a means to visualize the scale depen-
dence of data with a minimum of preconceptions. Scaling behaviour is not
assumed but detected, through the region(s) of alignment, if any, observed in
the log-log plot. By an alignment region we mean a range of scales where,
up to statistical variation, the y; fall on a straight line. Estimation of scaling
parameters, if relevant, can then be effectively performed through weighted
linear regression over the region(s). Finally, the identification of the kind
of scaling is made by interpreting the estimated value in the context of the
observed range. These different aspects of the aims and use of the Logscale
Diagram are expanded upon below.
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1.3.1.2 The detection of scaling. A priori it is not known over which
scales, if any, a scale invariant property may exist. By the detection of scaling
in the Logscale Diagram we mean the identification of region(s) of alignment,
and the determination of their lower and upper cutoff octaves, j1 and 7,
respectively, which are taken to correspond to scaling regimes. In a sense
this is an insoluble problem, as scaling often occurs asymptotically, or has an
asymptotic definition, with no clear way to define how a scaling range begins
or ends. Nonetheless experience shows that good estimates are possible. Note
the semantic difference between the term scaling region or range, a theoretical
concept which refers to where scaling is truly present (an unknown in real
data), and alignment region or range, an estimation concept corresponding to
what is actually observed in the Logscale Diagram for a given set of data.

The first essential point here is that the concept of alignment is relative
to the confidence intervals for the y;, and not to a close alignment of the y;
themselves. Indeed, an undue alignment of the actual estimates y; indicates
strong correlations between them, a highly undesirable feature typical of time
domain log-log based methods such as variance-time plots. As mentioned ear-
lier the 115, and hence the y;, are weakly dependent, resulting in a natural and
desirable variation around the calculated regression line as seen, for example,
in Fig. 1.2. Using weighted regression incorporates the varying confidence in-
tervals into the estimation phase, however the selection of the range of scales
defining the alignment region is prior to this, and great care is required to
avoid poor decisions.

We now discuss the selection, in practice, of the cutoff scales j; and j. A
preliminary comment is that for the regression to be well defined at least two
scales are required, for a Chi-squared goodness of fit test three, and in practice
four are needed before any estimate can be taken seriously: it is simply too
easy for three points to align fortuitously if the confidence intervals are not
very small. A useful heuristic in the selection of a range is that the regression
line should cut, or nearly so, each of the confidence intervals within it. This
can help avoid the following two errors: (1) the non-detection of an alignment
region due to the apparently wild variation of the y;, when in fact to within
the confidence intervals the alignment is good (this typically occurs when the
slope is small, such as in the right hand plot in Fig. 1.4, as the vertical scale
on plots is reduced, increasing the apparent size of variations), and (2) the
erroneous inclusion of extra scales to the left of an alignment region, as to
the eye they appear to accurately continue a linear trend, whereas in fact the
small confidence intervals about the y; for small j reveal that they depart
significantly from it.

The above heuristic can be formalised somewhat by a Chi-squared goodness
of fit test [9], where the critical level of the goodness of fit statistic is monitored
as a function of the endpoints of the alignment range. At least in the case
of the lower scale, this can make a very clear and relatively objective choice
of cutoff possible, eliminating the error of type (2) above. An example of
this is afforded by the left hand plot of Fig. 1.2, where the octave j = 3,
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if included, results in a drop in the Chi-squared goodness of fit of several
orders of magnitude! An even subtler example is that of the right hand plot
in Fig. 1.3 where 7 = 2 was excluded from the alignment region for the same
reason, whereas in the left hand plot in the same figure it is clear even to
the eye that, given the small size of the confidence interval about octave
j = 8, that it should not be included. Further work is required to develop
reliable automated methods of cutoff scale determination. This is especially
true for upper cutoff scales, where the difficulties are compounded by a lack
of data. On the other hand at smaller scales the technical assumptions used
in the calculation of the confidence intervals (see below) may be less reliable,
whereas at large scales the data is highly aggregated and therefore Gaussian
approximations are reasonable.

1.3.1.3 The interpretation of scaling. By the interpretation of scaling
we mean the identification of the kind of underlying scaling phenomenon,
LRD, H-ss, etc, generating the observed alignment in the Logscale Diagram.
The task is one of the meaningful interpretation of the estimated value of «
in the context of the range of scales defining the alignment region, informed
where possible by other known or assumed properties of the time series such
as stationarity. It is in fact partly a question of model choice, and there
may be no unique solution. We now consider, non-exhaustively, a number of
important cases.

If an estimate of the scaling exponent « is found to lie in (0,1), and the
range of scales is from some initial value j; up to the largest one present
in the data, then the scaling could be said to correspond to LRD with a
scaling exponent which is simply the measured a. Examples are afforded by
the left hand plots in each of Fig. 1.2 and Fig. 1.3. If there were a priori
physical reasons to believe that the data were stationary, then LRD would be
an especially relevant conclusion. This applies to the left hand plot in Fig. 1.3,
as the series corresponds to successive inter-arrival times of Ethernet packets,
which under steady traffic conditions one would expect to be stationary (the
Ethernet data in Fig. 1.3 is from from the ‘pAug’ Bellcore trace [43]).

Another key example, illustrated in the right hand plots in Fig. 1.2 and
Fig.1.3, is a value of a greater than 1 but also measured over a range including
the largest scales. Such a value precludes LRD, and may indicate that a self-
similar or asymptotically self-similar model is required, implying that the
data is non-stationary. The exponent would then be re-expressed as H =
(a — 1)/2, the Hurst parameter. Again conclusions should be compared with
a priori physical reasoning. The right hand plot in Fig. 1.3 is the analysis
of a cumulative work process for Ethernet traffic, that is the total number of
bytes having arrived by time ¢. Such a series is intrinsically non-stationary,
though under steady traffic conditions one would expect it to have stationary
increments. Thus a conclusion of non-stationarity is a natural one, and the
estimated value of H = 0.80, being in (0,1), indeed corresponds to a H-
sssi process. It would have been problematic however if underlying physical
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reasons had indicated that in fact stationarity was to be expected. Such an
apparent paradox could be resolved in one of two ways. It may be that the
underlying process is indeed stationary and exhibits 1/f noise over a wide
range of scales, but that the data set is simply not long enough to include the
upper cutoff scale. The alternative is to accept that empirical evidence has
shown the physical reasoning concluding stationarity to be invalid.

If on the other hand the scaling were concentrated at the lowest scales
(high frequencies), that is j; = 1 with some upper cutoff j,, then the scaling
may best be understood as indicating the fractal nature of the sample path.
The observed a should then be re-expressed as h = (a — 1)/2, the local
regularity parameter. Values of h in the range (0, 1] for example would then
be interpreted as indicating continuous but non-differentiable sample paths
(under Gaussian assumptions [28]), as observed in the leftmost alignment
region in the Internet delay data in the left plot in Fig. 1.4. The stationarity
or otherwise of the data in such a case may then not be relevant. Note that
j = 1 has been excluded from the leftmost alignment region in each plot in
Fig. 1.4. This is not in contradiction with interpretations of fractality, as it is
known that the details at j = 1 can be considerably polluted due to errors in
the initialisation of the multiresolution algorithm (see section 2.1.4).

If scaling with a > 1 is found over all or almost all of the scales in the data,
such as in the right hand plot in Fig. 1.2, then exact self-similarity could be
chosen as a model, again with H = (a — 1)/2 being the relevant exponent.
However in this case one could equally well use the local regularity parameter
h = (a — 1)/2, with the interpretation that the fractal behaviour at small
scales is constant over time, and happens to extend right up to the largest
scales in the data.

Finally, more than one alignment region is certainly possible within a single
Logscale Diagram, a phenomenon which we refer to as biscaling. One could
imagine for example fractal characteristics leading to an alignment at small
scales with one exponent, and LRD resulting in alignment at large scales
with a separate scaling exponent. Examples of this phenomenon are shown
in Fig. 1.4 in the context of delays (left) and losses (right) experienced by
consecutive User Datagram Protocol (UDP) packets sent over the Internet
in a regular stream (see [12] for details of such data sets). In both figures
the alignment at large scales corresponds to LRD, whereas at small scales
it is associated with highly irregular sample paths. Note that when second
order properties are insufficient to fully describe the scaling nature of the
process (an extreme example is afforded by multifractals), then the correct
interpretation of each branch of the biscaling will require the examination of
Logscale Diagrams across a range of orders, as discussed in section 3.3.

1.3.2 Estimation within the Logscale Diagram

In this sub-section it is assumed that a scaling range j € [ji,j2] has been
correctly identified. Sums over j, and regressions, are always taken over this
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range. The estimators to be defined are semi-parametric, as they depend on
the range of scales j € [j1, j2] where scaling is deemed to be present, and the
scaling property P1 valid there, but not on any tightly specified parametric
model.

1.3.2.1 Estimating the scaling exponent a. Because of property P1,
the measurement of « is reduced to the determination of the slope over the
alignment region in the Logscale Diagram. A natural way to achieve this
in a statistical estimation context is through linear regression, the defining
hypothesis of which is Ey; = aj + a where a is a real constant. Because in
general E[log(-)] # log(E[-]), this condition is not exactly satisfied however.
We therefore introduce small corrective deterministic factors g(j), discussed
below, and redefine the y; as y; = log(p;) — g(j), so that Ey; = aj + a by
definition.

Any kind of linear regression of y; on j constitutes an unbiased estimator
of a, as the lack of bias does not require decorrelation between the y;, nor the
knowledge of their variances or distributions. A weighted regression where the
weights are related to the variances 0]2 of the y; is preferable however, as this is
the minimum variance unbiased estimator (MVUE) for the regression problem
[48]. Intuitively this refinement is significant as we know that the a? are far
from equal. To exploit the optimality however, the correction factors g(j) and
the variances 0]2- must be calculated, a difficult task. They can nonetheless be
well approximated, provided simplying idealised properties are adopted. The
particular idealisations chosen here are:

ID1a: For each fixed j the dx (j,-) are stationary sequences of uncorre-
lated variables.

ID1b: The processes dx(j,-) and dx(j',+), j # j', are uncorrelated.

ID2: The process X, and hence the processes dx (j,-), are Gaussian.

The above conditions may appear unduly restrictive at first, however the
underlying effectiveness of the method is based on P1 and P2, ID1 — ID2
being added mainly to extend the quantitative analysis. Robustness with
respect to departures from these idealisations is discussed in detail below.
Note that ID1a and ID1b together make ID1, the idealisation of complete
decorrelation. It is split here to highlight the fact that ID1b, independence
between scales, is not needed for the key results.

Under ID1a and ID2 it can be shown [75] that g(j) is a negative, increasing
function of n; only, given by

9(4) = ¥ (n;/2)/ In2 — logy(n; /2), (1.20)

where 9(z) = I'(2)/I'(2) is the so called Psi function and I'(z) the Gamma
function. This function be easily calculated for all values of n;.
Under ID1a and ID2, with g(j) as above, the variables y; = log(u;) — g(3)
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are scaled and shifted logarithms of Chi-squared variables, satisfying

Ey; = ja+log,cC, (1.21)
¢(2,m;/2)/ n*2, (1.22)

where ((z,v) is a generalised Riemann Zeta function (see [38], page 1072).

There may be other sets of idealisations under which the g(j) and o3, if
they cannot be expressed in closed form, may nonetheless be accurately calcu-
lated. In such cases the estimator would have the same properties including a
variance which is known, although no longer expressible in terms of standard
functions.

The estimator & of « is the slope of a weighted linear regression of y; on j
given by

Var (y;) = o5

> yi(Sj—8;)/0F _
SS;—57 2 wit;

where S = 21/012', S; = Zj/%? and Sj; = ZJQ/UJQ"

jo)

(1.23)

1.3.2.2 Properties of the estimator. By construction, & is unbiased
under ID1a and ID2, and if in addition we assume ID1b its variance is
simply

Var(&) = Z 0'32-’11)]2-. (1.24)

Note that the variance is a function of the amount of data, the n;, but is
independent both of the data itself (1.22), and of the actual (unknown) value
of a. It is also independent of the precise choice of mother wavelet, except
indirectly through the choice of N, the number of vanishing moments. A
quantitative study of this dependence is given in [27].

It has been shown [75], in the limit of n; large for each j in [ji, jo], that
the Cramér-Rao bound for the full problem is attained, showing that & is
asymptotically the minimum variance unbiased estimator under ID1-ID2.
The decrease in variance of & as a function of the size of the data is then
explicitly seen to be 1/n, a remarkable result, being the rate of decay typical
of short-range dependent problems, yet appearing in a difficult scaling context.
Numerical comparisons [75] show that away from the limit the variance of &
remains extremely close to the Cramér-Rao bound. This is not surprising as
the assumption that n; is large is a very good one, except possibly for the
n; corresponding to the largest j, since nj;q1 ~ n;/2. Examining the limit in
more detail, for large n; we have [75]:

. log, e
9(j) —= (1.25)
n;
2
o2 - 2logy €)” (1.26)

]
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The first of these relations indicates that for n; large, y; can be identified with
log, (). It has moreover been shown [3] that, under ID1 and ID2, log, (1)
is asymptotically normally distributed:

d . 2(log; e)”

logy (1) ~ N(Ja +log,(cr0), T2 )

Since & consists of a sum of the y;, most of which are approximately Gaus-

sian and weighted according to their (known) variances, & can be considered

as approximately Gaussian distributed. Confidence intervals for the y; and &
have been calculated using these arguments.

1.3.2.3 Robustness with respect to ID1 and ID2. Simulation studies
show [5, 75] that the above properties hold to an excellent approximation, even
for small size data, upon the mild departures from ID1 characteristic of the
FGN series used.

Numerical simulations presented in [5] as well as those described below show
that the above properties also hold to an excellent approximation when the
Gaussian hypothesis ID2, as well as ID1, is dropped. The robustness with
respect to ID2 can be justified using the following asymptotic arguments.
Let Y = f(X), and 0% and 0% be the variances of X and Y respectively.
Standard approximation formulae for a change of variable [54] are Ef(X) ~
F(EX) + f"(EX)o% /2 and o3 ~ |f'(EX)|?c%. Because Var p; decreases as
1/n; in the limit of large n;, we can apply those formulae to log,(;). Using
ID1 we obtain:

Elogyp; =~ logyEu; — %%2
_ log, e ar dx (j,
= log, Ep; — ( 5 )W(]Edi)zj(,-)))z (1.27)

= log, Ep; — (log, 6)71+C:,7.(j)/2

where Cy(j) is the (normalised) fourth-order cumulant of the random process
dx (j,") given by Cu(j) = (Edx (j,k) — 3(EdX (j, ))*) /(Ed% (j, k))*. From
Eq. (1.25) it can be seen that the term (log,e) HC;QM plays the role of

g(j) from the Gaussian case and, up to the Cy(j) term, has the same form.
Performing the regression of y; = Elog, uj on j we obtain, using n; = 27/n
and under ID1:

Ba =EY wilogy; = a—((logye) X;(1+Calj)/Dw;27) /n
(1.28)
which 1) shows that the estimate is asymptotically unbiased irrespective of the
Gaussian hypothesis and ii) allows us to subtract a first order approximation
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of that bias. Similarly
Var logy u; =~ 2(log,e)’ HC;‘%M (1.29)

which again shows the similarity of form with the corresponding Gaussian
case, Eq. (1.26), in the asymptotic limit. It follows that

Var & = Var ), w;log, pj, =~ (2 (log, e)? >+ C’4(j)/2)w322j) /n
(1.30)
which again is identical, up to the Cy term, to what would be obtained asymp-
totically from Eq. (1.24) under ID2.

The C4 term can be estimated for each octave using the sample moment
estimators of the fourth and second moments of the details, combined as per
the definition. Due to the quasi-decorrelation in the wavelet plane this simple
estimator will have low bias.

The above arguments clearly show that in the limit of a large number
of samples, the key statistical features of the estimator, namely lack of bias
and low variance, are retained and are therefore not ID2 dependent. Nu-
merical simulations, summarized in Table 1.3.2.3, show that this asymptotic
behaviour is moreover reached for a relatively small number of samples. The
simulations were performed using 1000 realizations of FARIMA(0, d,0) pro-
cesses (of length n = 2'* = 16384) with a variety of probability density
functions for the marginals. We used a Daubechies3 [24] wavelet and j; was
set to j1 = 4 from a preliminary analysis involving the Chi-squared goodness
of fit test described above. Table 1.3.2.3 shows that the performance obtained
with the non Gaussian processes is quite close to that obtained from Gaussian
processes. Note that the four last chosen (Pareto and a-stable) processes are
infinite variance processes. The estimates remain however unbiased and the
variances, though larger, remain controlled as explained in [25, 58].

1.3.2.4 Estimating the second parameter of scaling. The scaling
exponent, « is a dimensionless parameter which can be thought of as charac-
terising the qualitative nature of the scaling phenomena in question. Although
« is clearly the key, defining parameter of scaling, it is not sufficient to fully
characterise a given scaling phenomenon, nor therefore the effect that scaling
may have on the distributions of various statistics, nor the impact of scal-
ing on performance issues in applications. There is a need for, at the very
least, a second parameter to describe the quantitative aspect of the scaling,
a magnitude or ‘volume’ of scaling parameter. This was illustrated in the
introduction in the context of the variance of the sample mean of a LRD pro-
cess. There ¢, was introduced as a second parameter with the dimensions of
variance describing the relative role that LRD plays. Similarly, for self-similar
processes the variance o2 of the marginal at t = 1 is a free parameter which
also requires estimation. These ‘magnitude’ parameters are also problematic
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I RV | Bias | Variance | MSE ||
I Gaussian | 0.015 | 0.039 | 0.039 |
I Uniform | 0.017 | 0.036 | 0.036 |
|  Exponential | 0.016 | 0.039 | 0.039 ||
| LogNormal | 0.017 | 0.045 | 0.045 ||
| Paretoa=1.75 | 0.015 | 0.149 | 0.150 ||
| Paretoa=1.25 | 0.019 | 0.131 | 0.132 ||
|| a-stable « =1.75 || 0.013 | 0.122 | 0.122 ||
|| a-stable @ =1.25 || —0.004 | 0.228 | 0.228 ||

Table 1.1 Robustness with respect to Gaussianity (ID2). It can be
seen that the residual bias and variance of the wavelet-based estimator of
the scaling exponent o are not very sensitive to the form of the marginal
of the process X (t). They are moreover very close to the theoretical per-
formance derived assuming exact decorrelation of the wavelet coefficients
and Gaussianity of X (t).

to estimate using traditional methods, however as with « they can be simply
and effectively estimated from the Logscale Diagram. For simplicity we will
continue the discussion for the LRD case only, however an essentially iden-
tical procedure, estimator definition, and properties hold in the self-similar
case. For other kinds of scaling also, magnitude parameters can be defined
and estimated in a similar way, however this will not be discussed here.

We briefly summarize the results of [75, 74] for a two dimensional joint esti-
mator (&, ¢p) of LRD. One of the powerful properties of & is that its statistics
are entirely independent of the specific form of the mother wavelet, depend-
ing only on the coefficients of the linear regression, and the amount of data
n; at each scale. It is this feature which allows an explicit expression for its
variance to be obtained independently of the wavelet basis. It is clear that
this property is shared by @ = ) vjy;, the unbiased estimator of the intercept
a of the same linear regression defining a. (The coefficients v; are given by
v = Y.(Sj; — 8j4)/(05(SSj; — S3)), cf. equation 1.23). From Eq. (1.16) it
is apparent that whereas « is simply the slope in the Logscale Diagram, the
magnitude parameter ¢ is related to the intercept, being essentially propor-
tional to 2%, a quantity which retains the wavelet independence advantages
of a. Unfortunately, 2% does not correspond exactly to ¢; but rather to the
dimensionless quantity c;C(a, 90), and an attempt to isolate the former nec-
essarily brings in a wavelet dependence. It is advantageous however to study
¢ C as the largest “wavelet independent part” of ¢f, and to define subsequently
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the estimator of ¢y as ¢y = cf/b /C where C is an estimator of the integral
C(a,1bp) which will not be detailed here. It can be shown [75] that C' has
small variance, so that the properties of ¢; closely resemble those of cyC'.

More specifically, define c/fZ' = p2%, where p is a wavelet independent bias
T(n; /2) exp(¥(n; /2)v;)
U(v+n;/2) ’
which is typically close to 1 (here ¢ is the Psi function, not the wavelet!). This
estimator is unbiased, and complex but explicit expressions for the variance
of ¢;C (and covariance of (&,cyC)) are obtainable, and again the Cramér-
Rao bound is attained in the limit n; large, provided the additional condition

vj/n; — 0 is also satisfied for each j in [j1,j2]. Based on these explicit ex-

correcting (and variance reducing) factor given by p =[]

pressions for (a, c/fz'), very accurate approximate expressions (which to first
order are also wavelet independent), can be derived for the covariance matrix
of (d, éf).

The estimator ¢ is asymptotically unbiased and efficient, and approxi-
mately lognormally distributed. The correlation coefficient of (&, és) is neg-
ative and large in magnitude: typically around —0.9. As before, simulation
studies show [75] that the above properties hold to an excellent approxima-
tion, even for small size data, upon mild departures from ID1. An example
of the joint estimation is given in the left hand plot of Fig. 1.2.

1.3.2.5 Comparisons with other estimators. In the evaluation of an
estimator both statistical and computational aspects must be considered.
The Logscale Diagram based estimators are essentially optimal computation-
ally speaking, as they have a complexity of only O(n), and a direct, non-
problematic implementation which can even be performed in real-time [62].
Simple estimators of scaling such as the variogram [17] also have excellent
computational properties, however they suffer from significant bias and high
variance [68]. At the other end of the spectrum, fully parametric maximum
likelihood estimators require the inversion of a n X n autocovariance matrix,
an O(n3) operation, which is unsuitable for anything but small data sets.
Even approximate forms such as the Whittle estimator, or discrete versions
of it [17, 5], involve numerical minimisation and are prohibitively slow for the
large (n > 2'*) data sets now routinely encountered in teletraffic studies.
Statistically, the best performing estimators are fully parametric, such as
those based on maximum likelihood, which offer zero bias and optimal vari-
ance provided that the data fits the chosen parametric model. As mentioned
above, to avoid extreme computational difficulties encountered for all but
small data sets, approximate forms are used in practice which retain these
desirable statistical properties asymptotically [17, 5]. In [68] and [71] a com-
parative discussion of the statistical properties of a variety of estimators of
LRD is given. It is shown that approximate maximum likelihood-based esti-
mators such as the Whittle, Aggregated Whittle and Local Whittle Methods,
still offer the best statistical performance when compared against alterna-
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tives such as the Absolute Value Method, the Variance Method, the Variance
of Residuals Method, the R/S Method, and the Periodogram Method (see
also [69], [72], [66]). We therefore compare against such parametric alterna-
tives. Being parametric based, such estimators can make full use of the data
and will therefore outperform Logscale Diagram based estimators, which are
constrained to use only those scales where the scaling is both present, and
apparent. Although it is possible that all the data may be accessible to a
Logscale Diagram based estimator, that is that [j1, j2] can be correctly cho-
sen as [J1,J2] = [1,logy(n)], this is unlikely in general. It is even possible
that a data set be too short to contain scales in the scaling range, in which
case the Logscale Diagram based estimators, or indeed any semi-parametric
estimator of scaling, will be useless. On the other hand, in practice typically
one cannot know the ‘true’ model for the data, and parametric estimators
based on the wrong model can yield meaningless results. In contrast Logscale
Diagram based estimation is not sensitive to non-scaling details of the data
provided the scaling range is correctly identified, and are also more robust
in other ways, as discussed below. Another key advantage is the ability to
measure in a uniform framework both stationary and non-stationary forms of
scaling.

A detailed comparison of the performance of & against that of the dis-
crete Whittle estimator for the FGN and Gaussian FARIMA(0,d,0) processes
is given in [5]. In [75] (&,¢&f) is compared against a joint discrete Whittle
estimator for the Gaussian FARIMA(0,d,0) process, and (&,c/fb) against a
joint maximum likelihood estimator for a ‘pure’ scaling process defined in the
wavelet domain [79]. The main conclusion is that the Logscale Diagram based
estimators offer almost unbiased estimates, even for data of small length, with
far greater robustness, for the price of a small to moderate increase in variance
compared to that of the parametric alternatives. They can also be used to
treat data of arbitrary length both from the computational complexity and
memory requirement points of view [5, 75, 62]. Comparisons against para-
metric estimators for processes which are further from such “ideal” processes
will appear elsewhere.

1.3.3 The Multiscale Diagram and multifractals

1.3.3.1 The need for statistics other than second order. It is nat-

ural and straightforward to generalize the Logscale Diagram to the study
(@) _
i =
1/n; ¥, ldx(4,k)|9, ¢ € R. The resulting ¢*" order Logscale Diagrams are,
naturally enough, of interest in situations where information relevant to the
analysis of scaling is beyond the reach of second order statistics. Let us con-

centrate on two important examples: self-similarity and multifractality.

of statistics other than second order, by replacing Eq. (1.19) with pu

Self-similarity From the definition of self-similarity, the moments of X (¢)
satisfy E|X (¢)|7 = E|X(1)]7 - |[¢t|7], Vt. As for the wavelet coefficients, it
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follows from Eq. (1.10) that E|dx (j, k)|? = E|dx (0, k)| - 27(¢H+4/2) "implying
that ENE.Q) = C’q2j(<(4)+q/2), V4, with ((q¢) = ¢H. This relation suggests that
self-similarity can be detected by testing the linearity of {(q) with q.

Multifractal processes For the class of multifractal processes, assum-
ing that [ [Tx()(a,t)|?dt ~ a¢@+4/2 ¢ — 0, can be related to the mul-
5}1)
’ug_q) ~ 2/(0)+4/2) for small j. From these relations one can measure ((g) in
practice and therefore estimate the Legendre multifractal spectrum. A partic-
ularly interesting question in the multifractal formalism is to test whether, in
the range of ¢ where [ |T'x () (a,t)|?dt is finite, ((q) takes a simple linear form:
¢(q) = gh, or not. Clearly in such cases the Legendre spectrum is somewhat
degenerate as it is entirely determined by h and the range of ¢ where ((q) is

tifractal properties of the process, pu:’ is expected to behave according to

defined. For instance, self-similar processes, for which ug.'I) ~ 21(aH+q/2) for
all scales, satisfy ((¢) = qH and are therefore fractal processes with h = H.
More specifically the self-similar Lévy processes have infinite variance and are
multifractal [41], yet their spectra are parameterised by H and are therefore
derivative of the strong self-similar property. The FBM is another, even sim-
pler example, often referred to as ‘monofractal’, confirming the intuition that
a single scaling parameter controls all of its scaling properties.

1.3.3.2 The Multiscale Diagram and its use. In both the self-similar
and multifractal cases therefore, accurately measuring the deviation of ((gq)
from a simple linear form is a crucial issue. To test this, and to investigate
the form of ((q) in general, the ¢*" order scaling exponent a;; = ((g) + ¢/2 can
be estimated in the ¢'* order Logscale Diagram for a variety of ¢ values, and
then the ¢ dependence examined in the following tool:

Definition. The Multiscale Diagram (MD) consists in the graph of ((q) =
&g — q/2 against ¢, together with confidence intervals about the ((g).

A lack of alignment in the Multiscale Diagram strongly suggests multifrac-
tal scaling which is not of the simple type where ((¢) = ¢H. Alignment in the
Multiscale Diagram may indicate the presence of the simple type of multifrac-
tal scaling, or of self-similarity, or both simultaneously as in the self-similar
Lévy processes above. It is important to note that the question of alignment,
just as in the Logscale Diagram, is relative to confidence intervals, and that
conclusions cannot be drawn in their absence. The confidence intervals shown
are derived through approximations presented in [27].

To better examine the presence of alignment, it is also of interest to use
an alternative Linear Multiscale Diagram (LMD) where hy = ay/q — 1/2 is
plotted against g. In the LMD the linear form is detected as a horizontal
alignment, and the value of h obtained by estimating its level. Although the
LMD is more convenient for visual inspection of alignment, the two forms of
Multiscale Diagram are statistically equivalent in terms of the determination
of the linearity or otherwise of ((q).
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Fig. 1.5 illustrates the use of the Multiscale Diagrams by superimposing an
analysis of a synthesized FBM and that of actual Internet data (delays of UDP
packets as described in section 3.1.3, see Fig. 1.4). The regressions in the un-
derlying Logscale Diagrams were performed for small scales: [j1, j2] = (2,6),
for each of eleven different ¢ values (as discussed in section 3.1.3, the lowest
scale is problematic due to initialisation issues). The Multiscale Diagram in
the left plot shows a clear alignment for the FBM series, consistent with its
self-similar nature, and a clear absence of alignment for the Internet data,
indicating that it is not monofractal and that a multifractal model may be
appropriate. These conclusions are confirmed in the right hand plot where the
same data is analysed in the Linear Multiscale Diagram. A clear horizontal
alignment of the FBM data is observed while it is confirmed that the Internet
data cannot obey ((q) = qH.

The Internet data example in the figure is given to illustrate the use of the
Multiscale Diagrams, although the presence of possible multifractal scaling
behaviour in such traffic is of interest in its own right [76]. More generally
however, multifractals have recently attracted considerable attention in traf-
fic modelling because of their ability to flexibly model highly variable local
behaviour in a natural way. Multifractal processes can also have positive in-
crements which are approximately lognormally distributed, in agreement with
a number of empirical traffic studies. For more details on these empirical find-
ings the reader is referred to [61, 45] where such analyses were first performed
or to [60, 76, 29, 30, 37, 70] for further investigations, and where connections
to multiplicative cascade models are presented. Chapter 7?7 of this volume
and references therein can also be consulted and Chapter 7?7 for details of
lognormal distributions in traffic.

1.3.4 Departures from scaling

There are two broad categories of departures from models possessing a pure
scaling feature. One is the presence of non-stationarities which are not in
themselves of a scaling nature, and in the presence of which a scaling exponent
continues to be well defined. Here the issue is one of the correct measurement
of the constant underlying scaling parameter(s), despite the non-stationary
“noise”. The other category is the possibility that the scaling is itself chang-
ing in time, that is that the parameters of constant-in-time scaling are not
well defined. A central issue in that case is the reliable detection of such a
variation. In the following, special properties of the wavelet approach are ex-
ploited to yield partial, but nonetheless significant and useful, replies to these
two different challenges.

1.3.4.1 Superimposed trends. In many situations of practical interest,
the assumption that the data is fully described by a scaling model — be it
self-similar, fractal or LRD — is much too restrictive to be realistic. This is
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especially the case when an observed time series is in fact the result of an
additive contamination of a scaling process X (t) by some extraneous contri-
bution T'(t), that is Y'(¢t) = X (¢) + T(t). We will not consider here the case
where T'(t) is random (this situation of a scaling process corrupted by some
“observation noise” is considered, e.g., in [79]), but will comment on the case
when T'(t) is deterministic and can be thought of as a “trend”.

A simple model for a trend amounts to choosing T'(t) as a polynomial, say
of order p. If no care is taken when analyzing a scaling process corrupted by
such a trend, important features of interest (stationarity of the increments,
for instance) are likely to be lost, thus impairing the estimation of the rele-
vant scaling parameters. Power-law trends can even mimic LRD correlations
when added to a stationary short-range process, leading to entirely erroneous
conclusions ([5], [17], [65]). It is therefore desirable, prior to any analysis, to
eliminate possible trends or, at least, to be able to evaluate and control their
effects on the final estimates: wavelets offer a versatile and easy way of doing
so.

In order to understand where the effectiveness of wavelets comes from in
the context of trend removal, it is worthwhile to start from the admissibility
condition, Eq. (1.1), satisfied by any wavelet t¢y: saying that a wavelet is
zero-mean is in fact equivalent to saying that it is orthogonal, and therefore
“blind,” to non-zero mean values. A natural generalization consists of consid-
ering wavelets with more than one vanishing moment, in the sense of Eq. (1.5),
since assuming that the number of vanishing moments is N allows the analysis
to be blind to polynomials of order up to N — 1. In other words, the removal
of a polynomial trend of order p is guaranteed by a wavelet with N > p+ 1.
From a practical point of view, when p is the unknown order of a polynomial
approximation of a trend, trend removal amounts to analyzing the data with
different wavelets such that N = 1,2,.... Until the effective value N = p+1is
reached, the analysis is governed by the trend and gives N-dependent results
whereas, as soon as N > p + 1, stabilized results are obtained and reveal rel-
evant features of the detrended data. Exact detrending is expected to occur
in the case of polynomial trends, but it is worthwhile to remark that the pro-
cedure still remains effective in the case of non-polynomial trends, including
many power-law trends, and oscillatory functions. In Fig. 1.6 an example is
given of an FGN series contaminated with linear and sinusoidal trends. Al-
though the Logscale Diagram with N = 2 is free from the effects of the linear
trend (top right), higher values of N are required to effectively remove the
sinusoidal trend (bottom right). Note that increasing N unfortunately also
decreases the number of scales available for the analysis. The usefulness of an
ability to effectively remove smooth non-polynomial trends is again illustrated
in Fig. 1.7, where, using a value of N as low as 2, a change in mean level in
Ethernet byte data is shown to not affect the estimation of the exponent a of
LRD. (see [74], Fig. 9 for further discussion. The data set is derived from the
‘pOct’ Bellcore trace [43]).

The versatility of wavelets with respect to the freedom of choice of N makes
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them an easy and efficient tool for trend removal. This contrasts with other
methods, such as the Whittle estimator and parametric estimators in general,
whose performance is heavily affected by trends (see [5], Fig. 2 and Table 1).
An important advantage is that one can choose N to eliminate pre-selected
trends, without having to know if they are actually present a priori, nor to
jointly estimate their characteristics.

1.3.4.2 Time varying scaling exponents. Because of the high vari-
ability inherent in scaling processes, instances of scaling behaviour can be
incorrectly judged as ‘non-stationarity’, in the broad sense of unstructured
time variation, or conversely, variability due to non-stationarity may be er-
roneously taken to be scaling in nature. There is a strong need therefore to
monitor the value of scaling parameters over time to distinguish between these
possibilities, and to test if constancy of scaling can be concluded or not. A
basic approach is to split a data set into a number m of adjacent blocks, and to
examine the corresponding Logscale Diagrams. If alignment is found in each
over roughly the same range of scales, then separate estimations &) of the
scaling exponent could be performed for each block. A null hypothesis might
be that the (unknown) values a(™ share a common value. The difficulty is
how to combine these estimates in a well defined statistical test, given that
the problematic statistical nature of scaling processes would in general imply
strong correlations between the &(™). Because of the quasi-decorrelation in
the wavelet plane however, it can be shown [77] that the &™) can be treated
as almost independent, and moreover that they are approximately normally
distributed with known variances. The difficult problem of the constancy of
the scaling exponent can thereby be reduced to a simple model inference prob-
lem, to which an optimal (uniformly most powerful invariant) test exists [77]
(see also the discussion in [5]).

1.3.5 Relations to other tools

1.3.5.1 Aggregation procedure Let X(¢) be a centred second-order
stationary process with finite variance and form the discrete-time process
XT)(n),n € Z, defined by

1 nT
XM (n) = 7 /( 1)TX(t) dt.

Such a quantity, referred to as the aggregated process of X with aggregation
level T', turns out to play a key role with respect to self-similarity and LRD.
In fact, if we assume that X is LRD in the sense that its autocovariance
decreases asymptotically as in eq.(1.7), it can be shown [23] that, in the limit
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of arbitrarily large aggregation levels T', the normalized autocovariance

~EXD (n) XD (n + k)

(T)
r ) Var X(T)(n) ’

k=1,2,...

of the aggregated process tends to a well-defined limiting form which coincides
with that of a FGN with unit variance (see Eq. (1.9)), while its variance
satisfies

Var XD(n) x T, T — +oo. (1.31)

Aggregation appears therefore as a natural renormalization tool which re-
veals, in a well-defined manner, the possible occurrence of LRD in an observed
process. By construction, aggregation amounts to averaging the analyzed
process over adjacent blocks of larger and larger support. This is of course
reminiscent of the way the Haar MRA, whose scaling function is simply the
indicator function of [0, 1], is built. More precisely, we have the exact equiva-
lence [6]

XCD (k) = 2792 (x, g1,

from which we can deduce that
Var a0 (j, k) & 27%, j = +o0.

Revisiting the aggregation procedure from the Haar perspective allows for
two levels of generalization [6]. We can first relax the choice of the Haar
system and move towards any MRA. Second, we can replace approximation
coefficients by details, since we also have, for any admissible wavelet 1),

Var dx (j, k) ~ 2/%, j = +o0.

1.3.5.2 Allan variance Although well rooted in wavelet theory, this idea
of using details rather than approximations can itself be viewed as a general-
ization of a method put forward by Allan in 1966 [13]. Specifically, whereas
(1.31) shows the theoretical link between variance and the scaling behavior as-
sociated with LRD, Allan showed that the estimation of « is greatly improved
when the standard variance estimate (1/N) Y (X(T)(n))? is replaced by the
“Allan variance”, defined as (1/N) Y (XD (n + 1) — X(T)(n))2. In wavelet
words, this just amounts — when dyadic intervals of the form T' = 27 are
considered — to computing Haar details [32]. As explained previously, the
reason for the improved efficiency of such an approach is to be found in the
ability of wavelets to almost decorrelate LRD processes. Moreover, revisiting
the Allan variance in the light of the Haar system suggests that more versa-
tile generalizations could be considered based on wavelets with more vanishing
moments. This indeed not only guarantees smaller residual correlations but
also an increased robustness of the analysis to polynomial trends.
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1.3.5.3 Fano factor Apart from aggregation and the Allan variance, wavelets
also offer a way of generalizing standard approaches in other areas, e.g., in
the case of point processes [4]. Let us consider for instance processes of the
form

+oo
P(t)y= > G(t—ty),

k=—o00

where the ¢;, are Poisson distributed, with a stationary (but possibly time-
varying) density A(t), and G(¢) is the impulse response of some filter. With
such a model, it turns out that scaling features or LRD may result from the
joint properties of A(t) and G(¢). This is especially the case when G(t) = 4(t)
and A(t) is FGN with non-zero mean. A classical way of revealing the scaling
structure of such a “fractal point process” amounts to looking at how it de-
parts from an ordinary Poisson process when observed over larger and larger
scales. With the ordinary Poisson process, the associated counting process
N(T) is such that Var N(T) = EN(T), no matter how large T is, thus
guaranteeing the “Fano factor,” defined as

_ Var N(T)
PO ="Evay

to be constant. This situation contrasts with the fractal case for which we
have
F(T)~T* 7' T 5 400. (1.32)

We use H here rather than a as the process N(t), which has stationary
increments, is not LRD but rather asymptotically self-similar.

By definition, the Fano factor is a ratio between fluctuations and averages
at a given observation scale. As such, it naturally admits a wavelet-based
alternative definition :

Var dp(j, k)

WF(j) = 27/2 _
(]) EaP(Jak)

in which details (resp. approximations) play the role of fluctuations (resp.
averages). Given this definition, the scaling relation (1.32) now reads

WE(j) m 20CH-D 0 400,

and moreover we have the explicit equivalence WF(Haar)(5) = p(Allan) (97,
Again, this wavelet revisiting of the Fano factor allows for versatile generaliza-
tions with increased performance, in which the Haar wavelet is to be replaced
by a wavelet with a larger number of vanishing moments.

From the above examples, it is worthwhile stressing the fact that wavelets
provide the user with a unified framework which i) possesses increased versa-
tility and performance as compared to the earlier methods it generalizes, and
ii) is equally applicable to continuous processes and point processes.
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1.4 WAVELETS AND SCALING: SYNTHESIS

After having allocated the greater part of this paper to the wavelet analysis
of scaling processes, we now turn to the question of their synthesis. To do
so, we focus here on a wavelet-based synthesis of the FBM. This may seem
restrictive, however unfortunately generation is more difficult than analysis
and the area is less well developed. Although it is not difficult to generate
time series with approximate scaling properties using wavelets, there are very
few examples where a specific process can be accurately reproduced. We
discuss this further at the end of this section.

There exist a number of methods dedicated to the synthesis of the FBM
which are not based on wavelets. Among these, the so-called Choleski or
Durbin-Levinson methods [19, 39, 68] are notable as they are exact. They
have severe computational drawbacks however which make them unsuitable
to the generation of long traces, particularly the enormous series required
in tele-traffic simulations. Various approximate synthesis methods with rea-
sonable computational loads are known, for example the so-called spectral
synthesis method (for a recent variant, see [55]), the On-Off superposition
method [78], a method based on the discretization of the integral representa-
tion, and recently a refined random midpoint displacement method [53] with
has a number of advantages. These methods yield tractable practical im-
plementations (sometimes on-the-fly implementations), but often suffer from
the drawback that the errors (due to approximations made) cannot be con-
trolled and that it is not clear which property of the FBM has been lost.
Wavelet-based methods have also already been proposed [79, 80] to produce
stationary 1/f-type processes. We present here a wavelet-based synthesis of
the FBM, introduced in [64], which is developed and implemented in [7, 47].
The method relies on an exact wavelet expansion of the FBM. This allows
the generation of approximate sample paths, but with controlled errors, in a
practical implementation framework using a fast pyramidal algorithm similar
to that underlying the inversion of the DWT [46, 24]. This method reproduces
accurately the key features that characterize the FBM: stationarity of the in-
crements, self-similarity, long range dependence, and allows new and clearer
insights into them, as described in [7, 47]. We detail below the key steps of
this synthesis.

1.4.1 Wavelet expansions for the FBM

When 0 < H < 1, and H # 1/2, FBM has an integral representation [50, 67],

st = Z{ [ Ooo (=) = (-0)"2] ) - [ i 0" 245
(1.33)
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From this integral representation, one can see FBM as a fractionally integrated
version of a Gaussian white noise (denoted dB). The starting point of the
wavelet-based representation of FBM lies in the fact that, in an orthonormal
wavelet basis expansion of a Gaussian white noise process (in the sense of
distributions), the weights of the expansion are simply Gaussian i.i.d. random
variables. To obtain the wavelet expansion of the FBM, one can fractionally
integrate the wavelet Gaussian white noise expansion, which basically amounts
to fractionally integrating the wavelets. One may therefore conjecture that it
can be represented as

BH(t)@ i i 2050 (277t — k)ejp (1.34)

j=—00 k=—o00

where ¢ is a suitable wavelet and the €; ; arei.i.d. N(0,03) random variables.
One can check that the RHS of (1.34) scales correctly at dyadic points, namely
By (at) 4 aBg(t) fora =27* ¢ =-1,0,1,..., as can be easily verified by
making the change of variables j — j' = j + £ and using the fact that the
€jr’s are i.i.d. However, the RHS of (1.34), as written, does not converge
because of the growth of 277 as j — oo, that is, because of its behaviour at
low frequencies. The representation (1.34) is almost correct however. It is
just necessary to add an “infrared correction,” namely to write

o0

But)= 5 S 2T n@ it —k) — u(—K)eu.  (135)

j=—00 k=—00

It is shown in [47] that, for a suitable function ¢ g (see below), the RHS of
(1.35) converges to fractional Brownian motion. Not only does the scaling by
a = 27 hold, but in fact (1.35) scales (in the sense of the finite-dimensional
distributions) for any a > 0. Observe that the infrared correction also ensures
that the resulting process has stationary increments and equals 0 at ¢ = 0. We
are, in fact, representing the increment By (t) — By (0), which equals By ()
because B (0) = 0, a similar idea is behind the integral representation (1.33).

Whereas the representation (1.33) involves integration with respect to “con-
tinuous” white noise dB, the representation (1.35) involves a summation over
discrete white noise (i.i.d. €;1), and as such, is very close to the intuition of
a so-called “Karhunen-Loeéve representation” of the process. It is based on
translations (by k) and dilations (by j) of the function ¢g. A value k > 0
corresponds to translation to the right, & < 0 to the left, 7 > 0 to dilation
and j < 0 to compression. Thus the limit j — —oo captures the high fre-
quencies and the limit 7 — oo captures the low frequencies. Note that paper

[47] use j' = —j instead of j. The function 1y is continuous, and in fact, the
RHS of (1.35) converges to By (t) uniformly on every closed bounded interval
te[-T,T].

There exist different wavelet representations which differ (a) by the way the
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low frequencies are represented, and (b) by the choice of wavelets. Instead of
using ¢y for both the low and high frequencies, it is possible to generate the
low frequencies by using a different function. As shown in [47], one also has

Bu(t,w) = Y éu(t—kBu(kw)

k=—o00

0 00
+ 3N 2y (29t — k)ejn(w’) — bo(w) (1.36)

j=—00 k=—o0

for some suitably chosen function q~SH. The function g is as before and the
random variable bo(w) is a random level shift, independent of ¢, necessary to
ensure that By (0,w) = 0. We write here By (t,w) instead of By (t) not only
to underline the fact that By is random (w is an element of the probability
space), but also because { By (k,w'), k € Z} and {¢; x(w"), 7 <0, k € Z} are
assumed independent and w = (w’,w”). Thus, to generate continuous time
{Bu(t), t > 0}, one generates first a discrete sequence By (k,w') in addition to
the i.i.d. €j ;. It is the sum Y oo ér(t—k)B(k,w') that generates the low
frequency components and hence the corresponding long-range dependence.
Observe that By (k,w) is not equal to By (k,w') because By (k,w) depends
also on the €;;. Here again, convergence to Bg(t) holds uniformly for any
te[-T,T).

The sequence {Bp(k,w'), k € Z}is a discrete time series whose increments
{ABg(k) = Bg(k+1,0w") — Bu(k,w'"), k € Z} are stationary and have long-
range dependence. It is possible to replace {Bgy(k,w’), k € Z} by a sum of
other stationary time series with long-range dependence, in particular, by a
Gaussian FARIMA(0, d, 0) time series with d = H — 1/2 [40].

Let then {Zi(H), i € Z} represent this mean zero FARIMA time series
independent of the €; ;s and let

0
s =0, s == 3z g =3 20 for k> 1,
i=—k+1 i=1

denote the partial sums. Then fractional Brownian motion can also be repre-
sented as

[e%s) 0 o)
Bpt)= > on(t-0)S{"+ 3 N 27yg(27t —k)ej — by (1.37)

k=—00 j=—00 k=—00

for some suitably chosen function ¢z. The function g is as before and the
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random variable by is such that By (0) = 0, that is

o] 0 00
b= > or(-k)Sy"+ SN 2 Hyy(—k)ejp

k=—o00 j=—00 k=—00

Once again, convergence holds uniformly for ¢ € [-T,T].

Eq. (1.37) is a corrected version of a representation in [64]. It describes the
FBM as a trend Y ;7 ou(t — k)S,(CH) over which are superimposed (high
frequency) details Z?:_oo > e 27H4pg (277t — k)€ .. The non stationarity
property of the FBM is already apparent in the expression of the trend which
involves S(). The self-similarity is carried in the actual variance of the
wavelet coefficients of the expansion dp,, (j, k) = 2/(H+1/?)¢; ;.. which follows
a power-law of the scale 2/. Moreover, ¢y is tailored in such a way that
the wavelet basis it generates exactly catches the correlation of the FBM so
that the wavelet coefficients are strictly uncorrelated. This specific wavelet
basis therefore acts as a Karhunen-Loeve basis for the high frequencies of the
process.

1.4.2 Wavelet Design

It remains to indicate what are the functions ¥y, ¢y and aH They are
derived from a scaling function ¢o(t) and a corresponding wavelet function
1o(t), yielding an orthonormal wavelet basis. Using the Fourier transform
notation U(v) = [ u(t)e "dt, start with the Fourier transforms ¥y and
® of ¢y and ¢y and let

. 1/2—H
. _ w
‘1’0,1/27H(V) = (W)1/2 H‘I’O(V)a ‘1’0,1/27H(V) = <7> ®o(v),

1—e

Going back to the time domain, get the functions ¢ and ¢g by integration:

t
Yu(t) = [ Yo,1/2—m(W)du = o _(my1/2)(t)

and

t
du(t) = /tfl bo,1/2—m(u)du = ¢o _(41/2)(t)-

The expression for &4 is more involved and we refer the reader to [47].
There are many possible choices for the pair (1, ¢o). Because the spectral
density [50, 67] of the increments of FBM may diverge at the frequency v = 0,
it is necessary that the Fourier transform ¥q(v) of the wavelet 1 tend to 0
as v — 0 relatively fast. In [47], the Meyer (or Lemarié-Meyer) wavelets are
used. Their Fourier transforms vanish not just at the origin but in a whole
neighborhood of the origin. The Meyer scaling and wavelet functions ¢g(t)
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and vo(t) as well as ¢y (t) and ¥y (t) are very smooth: they are infinitely
differentiable and, while they do not have bounded support, they tend to 0
as t — +oo faster than any polynomial.

Instead of the Meyer wavelets, one can use, to obtain ¢g and g, any or-
thonormal wavelet basis with enough vanishing moments, such as the Daubechies
wavelets with N > H + 1/2, that is N > 2. One can also use the so-called
Lemarié-Battle orthonormal spline wavelets [24].

1.4.3 Fast implementation

It is known from the wavelet literature [24] that the synthesis in Eq. (1.37),
that we rewrite for convenience

Bu(t)+b = Y. S ou(t—k)

0
+ > i (QJ'(H“/Q)@,,@) 27912 (279t — k),

j=—00 k=—00

can be implemented using a discrete-time fast pyramidal algorithm on condi-
tion that ¢ (t) and ¢ (t) are designed from a multiresolution analysis (see
section 3). The implementation we present here is based on a slightly modified
version of the one developed in [7].

The coefficients of the discrete time filters hy and g involved in the syn-
thesis depend on ¢g and ¢ g through

hQZUH

1.38
g2 = UHg ( )

where ug and vy are the generating sequences of ¢ and g respectively:

¢H(t/2) = \/izkuH(k)‘f)H(t_k) (1 39)
br(t/2) = V2X,vn(k)én(t —k). '

This means that we do not necessarily need to provide explicit expressions
for these functions. Let us denote by ¢o(t) and ¥o(t) a scaling function and
a mother wavelet giving birth to an orthonormal wavelet basis with sufficient
regularity and by u and v their generating sequences:

Yo(t/2) V2 v(k)do(t — k). '

We have shown in [7] that ug and vy can be obtained from u and v by:

ug = [fOxu, FO(z) = 275(1+z71)" } (1.41)

o= gPrv, GOE) = 21—z
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where the % denotes the discrete time convolution, s = H + 1/2, %) and
g'®) are infinite length sequences whose z—transform are labeled F(*)(z) and
G (z). From a practical point of view, the discrete time convolution above
are computed using an approximation technique described in [7].

By using the pyramidal algorithm sketched in Fig. 1.8, we end up with an
approximation of fractional Brownian motion which is computationally effi-
cient and conceptually simple. The “trend” part involves the cumulated sum
of a FARIMA(0,d,0) time series, which can be obtained from i.i.d. Gaussian
random variables, with zero mean and variance 0. The “details” (successive
high frequencies) are labeled here by the indices j = 0,—1,.... We include
them up to some level —J. Observe that the details at levels j =0, ..., —J in-
volve independent Gaussian random variables n; i = 2j(H+1/2)ej,k, 1<0,ke
Z}, ii.d. in k, with zero mean and variances that follows a power law in j:
Var 21’(H+1/2)€j7,C = g22/CH+1)

1.4.4 Synthesis of other scaling processes

Athough the FBM is an important scaling process, it is of course very specific,
and unsuitable for many modeling purposes. It is of great interest to be able to
rapidly and accurately synthesize other scaling processes that are not strictly
FBM but which may have looser constraints (e.g., 1/ f type processes) or richer
scaling properties (e.g., multifractal processes), or more flexible non-scaling
features together with scaling features (e.g., LRD processes with flexible short
range dependent structure). Despite these broader needs, the highly focused
understanding of the wavelet synthesis described above remains of interest,
because it shows where to modify the synthesis scheme either to give up, or
to maintain, certain properties of the FBM. For instance in [80] a wavelet
based synthesis is presented which is in the same spirit as that given here, but
which produces only 1/ f type processes. In fact there exists in the tele-traffic
literature a variety of wavelet based syntheses of scaling processes, which
typically amount to producing 1/f type processes, though in a loose and
poorly controlled manner. However, wavelets can also be used to implement
multiplicative cascades, which are themselves capable of generating processes
with rich scaling behaviour. This has been exploited in recent work in [60] for
the synthesis of multifractal processes, and in [15] for the synthesis of a large
variety of multiplicative cascades processes.
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Fig. 1.1 Fast filter-bank based pyramidal algorithm. The DWT can be
computed using a fast pyramidal algorithm, i.e., given that we have approximation
ax(j—1,k) at level j — 1, we obtain approximation ax (j, k) and detail dx (J, k) at
level j by convolving with h; and gi, respectively, and decimating. The coefficients
of the filters hy and g; are derived form the chosen scaling function and wavelet ¢q
and Yg. The downarrow stands for a decimation by a factor of 2 operation: one drops
the odd coefficients. An initialization step is required to go from the process X to the
approximation of order 0: ax (0, k).
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Fig. 1.2 Logscale Diagrams. Left: An example of the y; against j plot and
regression line for a LRD process with strong SRD. The vertical bars at each octave
give 95% confidence intervals for the y;. The series is simulated FARIMA(0,d,2) with
d = 0.25 and second order moving average operator ¥(B) = 1+ 2B + B2, implying
(a, cp) = (0.50,6.38). Alignment is observed over scales [j1, j2] = (4,10), and a
weighted regression over this range allows an accurate estimation despite the strong
SRD: & = 0.53 +£0.07, ¢5 = 6.0 with 4.5 < ¢¢ < 7.8. The scaling can be identified
as LRD as the value is in the correct range, & € (0,1), and the alignment region
includes the largest scales in the data. Right: Alignment is observed over the full
range of scales with & = 2.57, corresponding to H = 0.79, consistent with the
self-similarity of the simulated FBM (H = 0.8) series analysed.
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Fig. 1.3 LRD and H-sssi behaviour in Ethernet traffic data. Logscale
Diagrams for Left: the discrete series of successive interarrival times, showing a range
of alignment and an « estimate consistent with LRD, and Right: the cumulative work
process (bytes up to time %), consistent with an asymptotically self-similar (close to
exactly self-similar) process with stationary increments.
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Fig. 1.4 Logscale Diagrams with biscaling. Internet UDP packet data
displaying two scaling regimes, examples of biscaling Left: Delay series: Regime
I on the left (small j’s) is related to continuous but non-differentiable sample paths
(h € (0,1)) and regime II (large j’s) to LRD. Right: Loss series (1 for lost packets,
else 0). Regime I corresponds to discontinuous sample paths (h < 0). In regime II
there is trivial white noise scaling (o = 0) indicating stationary short-range dependent

behaviour.
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Fig. 1.5 Testing for Multifractality. Each plot superposes results for a syn-
thesized FBM (dashed line) and actual Internet data (solid line). Left Multiscale
Diagram: Alignment for the FBM series is consistent with its known self-similar na-
ture, and no alignment for the Internet data suggests non-degenerate multifractal
behaviour. Right: Linear MD: Horizontal alignment for the FBM series suggests
even more clearly that ((q) = qH, whereas it is even more clearly not the case for
the Internet data.
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Fig. 1.6 Robustness with respect to trends. Left: Synthesized FGN
with H = 0.80 (top), and with superimposed sinusoidal and linear trends (bottom).
Right: Logscale Diagrams of the data with trends using a Daubechies2 (ie N = 2)
wavelet (top), and Daubechies9 wavelet (bottom). It is seen that increasing IV allows
the effects of superimposed trends to be removed from the Logscale Diagram, enabling
uncontaminated estimates of the scaling exponent. Here, with N = 9, & = 0.59 and

therefore H = 0.795.
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Fig. 1.7 Eliminating mean level shifts. Upper: Ethernet byte data ag-
gregated over 10s intervals. A marked, but smooth, level shift seems to occur around
1050 seconds. Lower: Logscale Diagram of the byte data aggregated over 10ms
intervals. With N = 2, estimates to the left and the right of the shift, and over
the whole series, are consistent, showing that smooth level shifts can be effectively
eliminated in practice.
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Fig. 1.8 Wavelet-based synthesis for FBM. The FBM can be numerically
synthetized using a fast pyramidal algorithm based on discrete time filters. The co-
efficients of the filters ho and go depend on functions ¢r and g obtained by the
fractional integration of order H + 1/2 of an orthonormal wavelet basis. The in-
puts of the filters, denoted {ej} in the figure, stand for independent random vectors
{nj,k: k € Z}, labeled by j, whose components are i.i.d. Gaussian random variables
with zero-mean and variance 0(2) QI (2H+1) e uparrow operator indicates an upsam-
ple by a factor of two operation obtained by inserting a zero between each sample.
One gets, for example, ag (2, k) by adding the upsampled ag (1, k) convolved with

hs to the upsampled €; convolved with gs.
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