TD 10: Fourier transform and tempered distributions

Exercise 1. Let $A \in S_{n}^{++}(\mathbb{R})$ be a definite positive real matrix. Prove that the function u defined on \mathbb{R}^{n} by $u(x)=e^{-\langle A x, x\rangle}$ belongs to the Schwartz space $\mathscr{I}\left(\mathbb{R}^{n}\right)$ and that its Fourier transform is given by

$$
\forall \xi \in \mathbb{R}^{n}, \quad \widehat{u}(\xi)=\sqrt{\frac{\pi^{n}}{\operatorname{det} A}} e^{-\frac{1}{4}\left\langle A^{-1} \xi, \xi\right\rangle} .
$$

Hint: Begin by considering the case $n=1$, and diagonalize the matrix A to treat the general case.

Exercise 2.

1. Let $A \subset \mathbb{R}^{n}$ be a measurable subset with finite measure. Prove that $\widehat{\mathbb{1}_{A}}$ belongs to $L^{2}\left(\mathbb{R}^{n}\right)$ but not to $L^{1}\left(\mathbb{R}^{n}\right)$.
2. Are there two functions $f, g \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ not being identically equal to zero and satisfying the relation $f * g=0$? Same question for some functions f et g with compact supports.
3. Prove that the equation $f * f=f$ has no non trivial solution in $L^{1}\left(\mathbb{R}^{n}\right)$, but has an infinite number of solutions in $L^{2}\left(\mathbb{R}^{n}\right)$.

Exercise 3. By computing the Fourier transform of the functions $f=\mathbb{1}_{[-1 / 2,1 / 2]}$ and $f * f$, show that

$$
\int_{\mathbb{R}}\left(\frac{\sin t}{t}\right)^{2} \mathrm{~d} t=\pi
$$

Exercise 4 (Heisenberg's uncertainty principle). Prove that for all $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ and $j \in\{1, \ldots, n\}$,

$$
\inf _{a \in \mathbb{R}}\left\|\left(x_{j}-a\right) f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \inf _{b \in \mathbb{R}}\left\|\left(\xi_{j}-b\right) \widehat{f}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \geq \frac{(2 \pi)^{n}}{4}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{4}
$$

When is this inequality an equality?
Exercise 5. Let us consider the interval $I=[-1,1]$ and the following subspace of $L^{2}(I)$

$$
\operatorname{BL}^{2}(I)=\left\{u \in L^{2}(\mathbb{R}): \widehat{u}=0 \text { almost everywhere on } \mathbb{R} \backslash I\right\} .
$$

1. Prove that $\mathrm{BL}^{2}(I)$ is a Hilbert space.
2. Check that $\mathrm{BL}^{2}(I) \subset C_{\rightarrow 0}^{0}(\mathbb{R})$ and that the corresponding embedding is continuous.
3. Let us consider the continuous extension of $x \mapsto \sin x / x$, denoted sinc.
(a) Prove that the family $\left(\pi^{-1 / 2} \tau_{2 \pi k} \text { sinc }\right)_{k \in \mathbb{Z}}$ is a Hilbert basis of $\operatorname{BL}^{2}(I)$.
(b) Prove (sampling theorem) that any element $u \in \mathrm{BL}^{2}(I)$ can be decomposed as follows

$$
u(x)=\sum_{k \in \mathbb{Z}} u(2 \pi k) \operatorname{sinc}(x-2 \pi k),
$$

the convergence being uniform in \mathbb{R}, and also holds in $L^{2}(\mathbb{R})$.

Exercise 6. Give the example of a function $f \in C^{\infty}(\mathbb{R})$ such that
(i) There is no polynomial P such that $|f| \leq|P|$.
(ii) The linear form

$$
\varphi \in \mathscr{S}(\mathbb{R}) \mapsto \int_{\mathbb{R}} f(x) \varphi(x) \mathrm{d} x
$$

defines a tempered distribution.
Exercise 7. Prove that the following distributions are tempered and compute their Fourier transform:

1. δ_{0}
2. H (Heaviside),
3. $|x|$ in \mathbb{R}.
4. 1 ,
5. p. v. $(1 / x)$,

Indication : p.v. $(1 / x)$ is an odd distribution, so its Fourier transform is also odd.
Exercise 8. The aim of this exercice is to compute the Fourier transform of the following tempered distribution on \mathbb{R}^{2}

$$
\langle T, \varphi\rangle_{\mathscr{S}^{\prime}, \mathscr{Y}}=\int_{\mathbb{R}} \varphi(x, x) \mathrm{d} x, \quad \varphi \in \mathscr{S}\left(\mathbb{R}^{2}\right)
$$

1. Let $\psi \in \mathscr{S}\left(\mathbb{R}^{2}\right)$. Prove that

$$
\langle\widehat{T}, \psi\rangle_{\mathscr{Y}^{\prime}, \mathscr{Y}}=\lim _{\varepsilon \rightarrow 0^{+}} I_{\varepsilon} \quad \text { où } \quad I_{\varepsilon}=\int_{\mathbb{R}} e^{-\varepsilon x^{2}} \widehat{\psi}(x, x) \mathrm{d} x .
$$

2. By using the expression of $\widehat{\psi}(x, x)$, show that

$$
I_{\varepsilon}=2 \sqrt{\pi} \int_{\mathbb{R}^{2}} e^{-\zeta^{2}} \psi(\xi, 2 \sqrt{\varepsilon} \zeta-\xi) \mathrm{d} \xi \mathrm{~d} \zeta .
$$

3. Deduce the expression of \widehat{T}.

Exercise 9. We consider the Schrödinger equation

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=0, \quad(t, x) \in \mathbb{R}^{*} \times \mathbb{R}^{n} \tag{1}\\
u_{t=0}=u_{0}
\end{array}\right.
$$

1. For $u_{0} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, solve the equation (1) in $C^{0}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left(\mathbb{R}^{*}, \mathscr{S}\left(\mathbb{R}^{n}\right)\right)$.
2. Justify that the Fourier transform of the function $e^{i t|\xi|^{2}}$ is well defined.
3. Show that for $\alpha \in \mathbb{C}$ with negative real part,

$$
\mathscr{F}^{-1}\left(e^{\alpha|\xi|^{2}}\right)=\frac{1}{(-4 \alpha \pi)^{d / 2}} e^{\frac{|x|^{2}}{4 \alpha}} .
$$

4. Check that this formula also holds in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ when $\alpha \in i \mathbb{R}$.
5. Deduce that there exists a constant $C>0$ such that for all $t>0$,

$$
\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \frac{C}{t^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} .
$$

