TD 6: INTRODUCTION TO DEFECT MEASURES

EXERCISE 1. Let $K = [-\pi, \pi]$.

1. Let $\rho \colon \mathbb{R} \to \mathbb{R}$ be a continuous function supported in the interval [-1,1] such that

$$\int_{\mathbb{R}} \rho^2(x) \, \mathrm{d}x = 1$$

Consider the sequence $(w_n)_n$, defined by

$$w_n(x) = \sqrt{n\rho(nx)}, \quad x \in K, \ n \ge 1.$$

Prove that $(w_n)_n$ converges weakly to zero in $L^2(K)$ and that for all $f \in C^0(K)$,

$$\lim_{n \to \infty} \int_K f(x) |w_n(x)|^2 \, \mathrm{d}x = f(0)$$

Is the sequence $(w_n)_n$ converging strongly ?

2. Let $(u_n)_n$ be a sequence in $L^2(K)$ which converges weakly to zero. Prove that there exists a sub-sequence $(u_{\varphi(n)})_n$ of $(u_n)_n$ and a continuous linear form $l \in C^0(K)^*$ such that for all $f \in C^0(K)$,

$$\lim_{n \to \infty} \int_K f(x) |u_{\varphi(n)}(x)|^2 \,\mathrm{d}x = l(f).$$

Deduce that $(u_{\varphi(n)})_n$ converges strongly if and only if l = 0.

γ

3. Consider the sequence $(v_n)_n$, defined by

$$v_n(x) = \sin(nx), \quad x \in K, n \ge 1.$$

Check that $(v_n)_n$ converges weakly to zero in $L^2(K)$. Prove then that there exists a continuous linear form $l \in C^0(K)^*$ such that for all $f \in C^0(K)$,

$$\lim_{n \to \infty} \int_K f(x) |v_n(x)|^2 \,\mathrm{d}x = l(f).$$

Compute the numbers l(1) and $l(\cos(5x))$.