TD 6: Introduction to Defect measures

Exercise 1. Let $K=[-\pi, \pi]$.

1. Let $\rho: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function supported in the interval $[-1,1]$ such that

$$
\int_{\mathbb{R}} \rho^{2}(x) \mathrm{d} x=1
$$

Consider the sequence $\left(w_{n}\right)_{n}$, defined by

$$
w_{n}(x)=\sqrt{n} \rho(n x), \quad x \in K, n \geq 1
$$

Prove that $\left(w_{n}\right)_{n}$ converges weakly to zero in $L^{2}(K)$ and that for all $f \in C^{0}(K)$,

$$
\lim _{n \rightarrow \infty} \int_{K} f(x)\left|w_{n}(x)\right|^{2} \mathrm{~d} x=f(0)
$$

Is the sequence $\left(w_{n}\right)_{n}$ converging strongly ?
2. Let $\left(u_{n}\right)_{n}$ be a sequence in $L^{2}(K)$ which converges weakly to zero. Prove that there exists a sub-sequence $\left(u_{\varphi(n)}\right)_{n}$ of $\left(u_{n}\right)_{n}$ and a continuous linear form $l \in C^{0}(K)^{*}$ such that for all $f \in C^{0}(K)$,

$$
\lim _{n \rightarrow \infty} \int_{K} f(x)\left|u_{\varphi(n)}(x)\right|^{2} \mathrm{~d} x=l(f) .
$$

Deduce that $\left(u_{\varphi(n)}\right)_{n}$ converges strongly if and only if $l=0$.
3. Consider the sequence $\left(v_{n}\right)_{n}$, defined by

$$
v_{n}(x)=\sin (n x), \quad x \in K, n \geq 1 .
$$

Check that $\left(v_{n}\right)_{n}$ converges weakly to zero in $L^{2}(K)$. Prove then that there exists a continuous linear form $l \in C^{0}(K)^{*}$ such that for all $f \in C^{0}(K)$,

$$
\lim _{n \rightarrow \infty} \int_{K} f(x)\left|v_{n}(x)\right|^{2} \mathrm{~d} x=l(f) .
$$

Compute the numbers $l(1)$ and $l(\cos (5 x))$.

