TD 1: Sobolev spaces and Elliptic equations on the whole space
Exercise 1. Let us consider the function

$$
\gamma_{0}: \varphi\left(x^{\prime}, x_{n}\right) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \mapsto \varphi\left(x^{\prime}, x_{n}=0\right) \in C_{0}^{\infty}\left(\mathbb{R}^{n-1}\right)
$$

Prove that for all $s>1 / 2$, the function $\gamma_{0}$ can be uniquely extended as an application mapping $H^{s}\left(\mathbb{R}^{n}\right)$ to $H^{s-1 / 2}\left(\mathbb{R}^{n-1}\right)$.
Hint: For all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, begin by computing the Fourier transform of the function $\gamma_{0} \phi$.
Exercise 2.

1. Show that $H^{1}\left(\mathbb{R}^{2}\right)$ is not included in $L^{\infty}\left(\mathbb{R}^{2}\right)$.

Hint: Consider a function of the form $x \mapsto \chi(|x|)|\log | x\left|\left.\right|^{1 / 3}\right.$.
2. Show that there exists a positive constant $c>0$ such that for all $u \in \mathcal{S}\left(\mathbb{R}^{2}\right)$,

$$
\|u\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq c\left(1+\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)} \sqrt{\log \left(1+\|u\|_{H^{2}\left(\mathbb{R}^{2}\right)}\right)} .\right.
$$

Exercise 3. Let $\lambda>0$. Prove that for any $s>0$, the differential operator $-\Delta+\lambda$ is an isomorphism from $H^{s+2}\left(\mathbb{R}^{n}\right)$ to $H^{s}\left(\mathbb{R}^{n}\right)$.

ExERCISE 4. Let $\rho$ be a compactly supported $C^{\infty}$ function on $\mathbb{R}^{3}$. We are looking for a function $u \in C^{2}\left(\mathbb{R}^{3}\right)$ satisfying

$$
\begin{equation*}
-\Delta u=\rho, \tag{1}
\end{equation*}
$$

under the following decreasing conditions at infinity

$$
\begin{equation*}
x \mapsto|x| u(x) \text { is bounded, } \quad x \mapsto|x|^{2} \nabla u(x) \text { is bounded. } \tag{2}
\end{equation*}
$$

1. Check that the function $x \mapsto 1 /|x|$ is of class $C^{2}$ on $\mathbb{R}^{3} \backslash\{0\}$ and compute its Laplacian.
2. Let $\Omega$ be a smooth open subset of $\mathbb{R}^{3}$. We denote by $n(x)$ the unit normal vector exiting at $x \in \partial \Omega$ and $\mathrm{d} \sigma$ the measure surface on $\partial \Omega$. We consider two functions $u, v$ of class $C^{2}$ on $\bar{\Omega}$. By using Stokes' formula, prove Green's formula for the Laplacian:

$$
\int_{\Omega}(v \Delta u-u \Delta v) \mathrm{d} x=\int_{\partial \Omega}\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) \mathrm{d} \sigma(x) .
$$

3. For $0<\alpha<\beta$, we define the following sphere and annulus

$$
S_{\alpha}=\left\{x \in \mathbb{R}^{3}:|x|=\alpha\right\} \quad \text { and } \quad A_{\alpha, \beta}=\left\{x \in \mathbb{R}^{3}: \alpha \leq|x| \leq \beta\right\} .
$$

Let $0<\varepsilon<R$. We consider $u \in C^{2}\left(\mathbb{R}^{3}\right)$ satisfying (2). For all $x \in \mathbb{R}^{3}$, prove the following identity

$$
\frac{1}{\varepsilon^{2}} \int_{S_{\varepsilon}} u(x+y) \mathrm{d} \sigma(y)=\int_{A_{\varepsilon, R}} \frac{(-\Delta u)(x+y)}{|y|} \mathrm{d} y+\mathcal{O}\left(\frac{1}{R}\right)+\mathcal{O}(\varepsilon) .
$$

4. Prove that the unique solution of (1) satisfying (2) is given for all $x \in \mathbb{R}^{3}$ by

$$
u(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\rho(y)}{|x-y|} \mathrm{d} y
$$

5. Let $p \in[1,3)$. Check that there exists a constant $C_{p}$ independent of $\rho$, such that

$$
\|\nabla u\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq C_{p}\|\rho\|_{L^{p}\left(\mathbb{R}^{3}\right)}^{p / 3}\|\rho\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}^{1-p / 3} .
$$

Hint: Consider the domains $\{|x-y| \leq r\}$ and $\{|x-y|>r\}$, and optimize with respect to $r$.
6. Prove the following formula:

$$
\|\nabla u\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(x) \rho(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y .
$$

Exercise 5. The purpose of this exercice is to prove with a variational method that given a positive real number $p>1$ and a function $f \in L^{2}(\mathbb{R})$, there exists a unique function $u \in H^{2}(\mathbb{R})$ satisfying

$$
\begin{equation*}
-u^{\prime \prime}+u+|u|^{p-1} u=f \quad \text { in } L^{2}(\mathbb{R}) \tag{3}
\end{equation*}
$$

1. In this question, we prove that there exists a unique $u \in H^{1}(\mathbb{R})$ such that

$$
\begin{equation*}
\forall v \in H^{1}(\mathbb{R}), \quad \int_{0}^{1}\left(u^{\prime}(x) v^{\prime}(x)+u(x) v(x)+|u(x)|^{p-1} u(x) v(x)-f(x) v(x)\right) \mathrm{d} x=0 . \tag{4}
\end{equation*}
$$

To that end, we introduce the functional $J: H^{1}(\mathbb{R}) \rightarrow \mathbb{R}$ defined for all $u \in H^{1}(\mathbb{R})$ by

$$
J(u)=\frac{1}{2} \int_{0}^{1}\left(|u(x)|^{2}+\left|u^{\prime}(x)\right|^{2}\right) \mathrm{d} x+\frac{1}{p+1} \int_{\mathbb{R}}|u(x)|^{p+1} \mathrm{~d} x-\int_{\mathbb{R}} f(x) u(x) \mathrm{d} x .
$$

a) Check that the functional $J$ is well-defined, strictly convex and coercive.
b) Prove that the functional $J$ is differentiable on $H^{1}(\mathbb{R})$ and give the expression of its derivative.
c) Deduce from the preliminary question that the variational problem (4) admits a unique solution $u \in H^{1}(\mathbb{R})$.
2. Prove that the unique function $u \in H^{1}(\mathbb{R})$ satisfying (4) belongs to $H^{2}(\mathbb{R})$ and is also the unique function that satisfies (3).
3. When the function $f$ is continuous on $\mathbb{R}$, check that $u \in C^{2}(\mathbb{R})$ is a strong solution of (3), in the sense that

$$
\forall x \in \mathbb{R}, \quad-u^{\prime \prime}(x)+u(x)+|u(x)|^{p-1} u(x)=f(x) .
$$

