TD 10: LOGARITHMIC SOBOLEV INEQUALITY

Let γ denote the centered normalized Gaussian measure

$$d\gamma(y) = \frac{1}{(2\pi)^{d/2}} e^{-|y|^2/2} dy.$$

For $f \in C_b(\mathbb{R}^d)$ (continuous and bounded), set

$$P_t f(x) = \int_{\mathbb{R}^d} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) \,\mathrm{d}\gamma(y).$$
(1)

The formula (1) has also the probabilistic representation

$$P_t f(x) = \mathbb{E} f(e^{-t}x + \sqrt{1 - e^{-2t}}Y),$$

where Y is a real-valued random variable of normal law $\mathcal{N}(0,1)$. Note that $P_t \colon C_b(\mathbb{R}^d) \to C_b(\mathbb{R}^d)$. We recall the following property:

If X, Y are two independent random variable of normal law $\mathcal{N}(0,1)$ and $\alpha, \beta \in \mathbb{R}$ satisfy $\alpha^2 + \beta^2 = 1$, then the random variable $\alpha X + \beta Y$ follows the normal law $\mathcal{N}(0,1)$.

- 1. Show that $(P_t)_{t>0}$ is a semigroup on $C_b(\mathbb{R}^d)$.
- 2. Prove the invariance property for all $f \in C_b(\mathbb{R}^d)$

$$\langle P_t f, \gamma \rangle_{L^2} = \langle f, \gamma \rangle_{L^2}.$$

3. Prove the following inequality for all $f \in C_b(\mathbb{R}^d)$

$$|P_t f|^2 \le P_t(f^2).$$

4. Let $L^2(\gamma)$ be the set of measurable functions $f: \mathbb{R}^d \to \mathbb{R}$ such that

$$||f||_{L^{2}(\gamma)} = \left(\int_{\mathbb{R}^{d}} |f(y)|^{2} \,\mathrm{d}\gamma(y)\right)^{1/2} = \left(\mathbb{E}|f(Y)|^{2}\right)^{1/2}$$

is finite (Y there has the normal law $\mathcal{N}(0,1)$). Prove that, for all $f \in C_b(\mathbb{R}^d)$ and $t \ge 0$,

$$\|P_t f\|_{L^2(\gamma)} \le \|f\|_{L^2(\gamma)}.$$
(2)

Justify that we can then extend the semigroup $(P_t)_{t\geq 0}$ by density as a semigroup of contractions on $L^2(\gamma)$

5. * Prove that the semigroup $(P_t)_{t\geq 0}$ has the generator T given by

$$Tf(x) = -\Delta f(x) + x \cdot \nabla f(x).$$

6. Check that for all $f, g \in C_0^1(\mathbb{R}^d)$

$$\langle Tf, g \rangle_{L^2(\gamma)} = \langle \nabla f, \nabla g \rangle_{L^2(\gamma)}.$$

7. Show that for all $x \in \mathbb{R}^d$ and $f \in C_b(\mathbb{R}^d)$,

$$P_t f(x) \to \langle f, \gamma \rangle := \int_{\mathbb{R}^d} f \, \mathrm{d}\gamma \quad \text{as } t \to +\infty.$$

8. Show that P_t satisfies for all $f \in C_b^1(\mathbb{R}^d)$ and $t \ge 0$ that

$$\nabla P_t f(x) = e^{-t} P_t \nabla f(x).$$

In the following questions, we will use an interpolation procedure, by means of $t \mapsto P_t f(x)$, between f(x) and $\langle f, \gamma \rangle$, to show the two following results:

Poincaré inequality for the Gaussian measure:

$$\int_{\mathbb{R}^d} f^2 \,\mathrm{d}\gamma - \langle f, \gamma \rangle^2 \le \int_{\mathbb{R}^d} |\nabla f|^2 \,\mathrm{d}\gamma.$$
(3)

Logarithmic Sobolev inequality for the Gaussian measure:

$$\int_{\mathbb{R}^d} f \ln f \, \mathrm{d}\gamma - \langle f, \gamma \rangle \ln \langle f, \gamma \rangle \le \frac{1}{2} \int_{\mathbb{R}^d} \frac{|\nabla f|^2}{f} \, \mathrm{d}\gamma. \tag{4}$$

Both inequality are understood for smooth functions, positive in the case of (4).

9. Let D be an open convex subset of \mathbb{R} , $\Phi: D \to \mathbb{R}$ be a smooth function and $f \in C_0^1(\mathbb{R}^d)$ be a function taking values in D. Prove the successive identities

$$\int_{\mathbb{R}^d} \Phi(f) \, \mathrm{d}\gamma - \Phi(\langle f, \gamma \rangle) = -\int_0^\infty \int_{\mathbb{R}^d} \frac{\mathrm{d}}{\mathrm{d}t} \Phi(P_t f) \, \mathrm{d}\gamma \, \mathrm{d}t$$
$$= \int_0^\infty \int_{\mathbb{R}^d} \Phi''(P_t f) |\nabla P_t f|^2 \, \mathrm{d}\gamma \, \mathrm{d}t.$$

10. Establish (3) and (4).