TD 10: Logarithmic Sobolev inequality

Let γ denote the centered normalized Gaussian measure

$$
\mathrm{d} \gamma(y)=\frac{1}{(2 \pi)^{d / 2}} e^{-|y|^{2} / 2} \mathrm{~d} y .
$$

For $f \in C_{b}\left(\mathbb{R}^{d}\right)$ (continuous and bounded), set

$$
\begin{equation*}
P_{t} f(x)=\int_{\mathbb{R}^{d}} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) \mathrm{d} \gamma(y) \tag{1}
\end{equation*}
$$

The formula (1) has also the probabilistic representation

$$
P_{t} f(x)=\mathbb{E} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} Y\right),
$$

where Y is a real-valued random variable of normal law $\mathcal{N}(0,1)$. Note that $P_{t}: C_{b}\left(\mathbb{R}^{d}\right) \rightarrow C_{b}\left(\mathbb{R}^{d}\right)$. We recall the following property:

If X, Y are two independent random variable of normal law $\mathcal{N}(0,1)$ and $\alpha, \beta \in \mathbb{R}$ satisfy $\alpha^{2}+\beta^{2}=1$, then the random variable $\alpha X+\beta Y$ follows the normal law $\mathcal{N}(0,1)$.

1. Show that $\left(P_{t}\right)_{t \geq 0}$ is a semigroup on $C_{b}\left(\mathbb{R}^{d}\right)$.
2. Prove the invariance property for all $f \in C_{b}\left(\mathbb{R}^{d}\right)$

$$
\left\langle P_{t} f, \gamma\right\rangle_{L^{2}}=\langle f, \gamma\rangle_{L^{2}} .
$$

3. Prove the following inequality for all $f \in C_{b}\left(\mathbb{R}^{d}\right)$

$$
\left|P_{t} f\right|^{2} \leq P_{t}\left(f^{2}\right)
$$

4. Let $L^{2}(\gamma)$ be the set of measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\|f\|_{L^{2}(\gamma)}=\left(\int_{\mathbb{R}^{d}}|f(y)|^{2} \mathrm{~d} \gamma(y)\right)^{1 / 2}=\left(\mathbb{E}|f(Y)|^{2}\right)^{1 / 2}
$$

is finite (Y there has the normal law $\mathcal{N}(0,1)$). Prove that, for all $f \in C_{b}\left(\mathbb{R}^{d}\right)$ and $t \geq 0$,

$$
\begin{equation*}
\left\|P_{t} f\right\|_{L^{2}(\gamma)} \leq\|f\|_{L^{2}(\gamma)} \tag{2}
\end{equation*}
$$

Justify that we can then extend the semigroup $\left(P_{t}\right)_{t \geq 0}$ by density as a semigroup of contractions on $L^{2}(\gamma)$
5. * Prove that the semigroup $\left(P_{t}\right)_{t \geq 0}$ has the generator T given by

$$
T f(x)=-\Delta f(x)+x \cdot \nabla f(x)
$$

6. Check that for all $f, g \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$

$$
\langle T f, g\rangle_{L^{2}(\gamma)}=\langle\nabla f, \nabla g\rangle_{L^{2}(\gamma)} .
$$

7. Show that for all $x \in \mathbb{R}^{d}$ and $f \in C_{b}\left(\mathbb{R}^{d}\right)$,

$$
P_{t} f(x) \rightarrow\langle f, \gamma\rangle:=\int_{\mathbb{R}^{d}} f \mathrm{~d} \gamma \quad \text { as } t \rightarrow+\infty .
$$

8. Show that P_{t} satisfies for all $f \in C_{b}^{1}\left(\mathbb{R}^{d}\right)$ and $t \geq 0$ that

$$
\nabla P_{t} f(x)=e^{-t} P_{t} \nabla f(x) .
$$

In the following questions, we will use an interpolation procedure, by means of $t \mapsto P_{t} f(x)$, between $f(x)$ and $\langle f, \gamma\rangle$, to show the two following results:
Poincaré inequality for the Gaussian measure:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f^{2} \mathrm{~d} \gamma-\langle f, \gamma\rangle^{2} \leq \int_{\mathbb{R}^{d}}|\nabla f|^{2} \mathrm{~d} \gamma . \tag{3}
\end{equation*}
$$

Logarithmic Sobolev inequality for the Gaussian measure:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f \ln f \mathrm{~d} \gamma-\langle f, \gamma\rangle \ln \langle f, \gamma\rangle \leq \frac{1}{2} \int_{\mathbb{R}^{d}} \frac{|\nabla f|^{2}}{f} \mathrm{~d} \gamma . \tag{4}
\end{equation*}
$$

Both inequality are understood for smooth functions, positive in the case of (4).
9. Let D be an open convex subset of $\mathbb{R}, \Phi: D \rightarrow \mathbb{R}$ be a smooth function and $f \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$ be a function taking values in D. Prove the successive identities

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \Phi(f) \mathrm{d} \gamma-\Phi(\langle f, \gamma\rangle) & =-\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \frac{\mathrm{~d}}{\mathrm{~d} t} \Phi\left(P_{t} f\right) \mathrm{d} \gamma \mathrm{~d} t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \Phi^{\prime \prime}\left(P_{t} f\right)\left|\nabla P_{t} f\right|^{2} \mathrm{~d} \gamma \mathrm{~d} t .
\end{aligned}
$$

10. Establish (3) and (4).
