Vérification du Déterminisme pour le Langage X10

Tomofumi Yuki (CSU/IRISA) Paul Feautrier (ENSL/INRIA) Sanjay Rajopadhye (CSU) Vijay Saraswat (IBM)

> ENS de Lyon Paul.Feautrier@ens-lyon.fr

> > 7 juin 2013

Le langage X10 L'analyse du flot des données Les horloges de x10 Eliminating Clocks

O mais c'est que, voyez-vous bien, je n'ai point sujet d'être mécontent de mes polyèdres $\hbox{A. Jarry}$

Le langage X10

L'analyse du flot des données

Les horloges de x10

Eliminating Clocks

Le langage X10

- développé à IBM Research (mais un clone à Rice sous la direction de Vivek Sarkar)
- dérivé de Java : langage à objet
- Partitioned Global Address Space (mais cet aspect ne sera pas développé dans cet exposé)
- parallélisme de contrôle par création d'activités (lightweight threads), hiérachique et possiblement récursif. L'acte de création d'une activité est une opération de première classe.
- synchronisation de type fork/join, ou par barrières (voir plus loin), ou par sections critiques, ou par "remote method invocation".

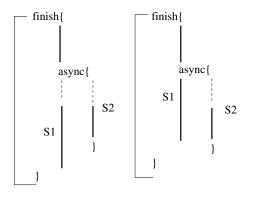
Parallelisme async/finish

- async créé une activité (lightweight thread)
- ▶ analogie avec fork / wait
- la distinction global /local résulte de la visibilité des déclarations

Le cas de X10 : ordre d'exécution

```
AST
                                              finish
 finish
   for(i in 0..n-1){
                                              for(i)
      S1;
      async
        S2;
                                                 async
                                                   S2
Position vectors : S1 : [f, i, 0] S2 : [f, i, 1, a]
```

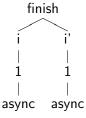
Indéterminisme



- L'ordre d'exécution dépend des décisions de l'ordonnanceur ou des performances des cœurs.
- ► La présence d'un async ne peut que retarder l'exécution de son contenu.

Ordre d'exécution de X10

- **Exemple** : comparer [f, i, 1, a] et [f, i', 1, a]
- Ecrire l'ordre lexicographique :



$$\begin{split} [f,i,1,a] & \ll & [f,i',1,a] \equiv f < f \\ & \vee & (f=f \wedge i < i') \\ & \vee & (f=f \wedge i=i' \wedge 1 < 1) \\ & \vee & (f=f \wedge i=i' \wedge 1 = 1 \wedge a < a) \end{split}$$

- ► Tous les termes sont faux sauf le second. Mais :
- ▶ Il y a un async non couvert par un finish dans la branche gauche, donc le terme doit être omis.

Les deux opérations sont incomparables et l'ordre d'exécution est partiel.

Analyse du flot des données pour X10

- On ne considère que les programmes X10 polyèdriques
- ▶ La définition de l'ensemble des sources potentielles, E reste la même
- mais comme l'ordre d'exécution est partiel, il peut ne pas exister un maximum unique
- on doit utiliser le concept d'extrema :

$$\overline{E} = \{ x \in E | \neg \exists y : x \prec y \}$$

 $ightharpoonup \overline{E}$ n'est pas obligatoirement un singleton, il peut y avoir plusieurs sources, donc indéterminisme.

Hasards

Quand il y a plusieurs sources possibles, on dit que le programme a un hasard (race en Anglais).

Classification:

- S'il y a ambiguité entre plusieurs écritures, c'est peut être un bug, mais l'ambiguité peut être levée :
 - par une écriture postérieure qui écrase la valeur ambigue
 - par des considérations sémantiques

Dans tous les cas, le dernier mot doit rester au programmeur.

Les horloges de X10

Les horloges (*clocks*) sont une variante plus souple des barrières classiques. Un programme X10 peut exploiter plusieurs barrières. Principe :

- à un instant donné, plusieurs activités peuvent être rattachées à une même horloge
- une activité qui exécute advance(); se bloque jusqu'à ce que toutes les activités rattachées aient fait de même.
- à ce moment, toute les activités redémarrent.

Il existe deux syntaxes.

Syntaxe implicite

Les horloges n'ont pas de nom, et sont gérées d'aprés le contexte

```
clocked finish{
    ...
    clocked async{
        ...
        advance();
        ...
}
...
advance();
```

- l'activité principale créé une horloge par clocked finish à laquelle elle est rattachée
- clocked async crée une activité rattachée à l'horloge la plus proche
- les deux activités se synchronisent par advance();
- les deux activités atteignent leur accolades finales, l'horloge est détruite.

Dans ce qui suit, on ne considerera que les programmes à une seule horloge. Nous conjecturons que le cas général peut se réduire à ce cas particulier.

Le compteur d'activation

On peut visualiser le fonctionnement d'une horloge de la façon suivante :

- Chaque activité (qui ne peut être rattachée qu'à une seule horloge) entretien un compteur qui est incrémenté de 1 à chaque advance();
- ► Les activités rattachées ne peuvent "passer la barrière" que si tous les compteurs sont égaux
- L'implémentation peut évidemment être différente.
- On peut étendre la notion de compteur d'activation à toutes les opérations du programme
- u étant le vecteur de position d'une opération, on note $\phi(u)$ la valeur courante du compteur d'activation.
- ▶ Si $\phi(u) < \phi(v)$, alors u est exécutée avant v, même si ces deux opérations ne sont pas dans la même activité.

Ordre d'exécution avec horloges

- Si le programme est polyédrique, la valeur du compteur peut être calculée statiquement par des techniques classiques (E. Ehrhart, M. Brion). C'est une fonction (en général un polynome) du vecteur de position.
- L'ordre d'exécution est la fermeture transitive de l'union de l'ordre \prec et de la relation $\phi(u) < \phi(v)$, qui se simplifie en trois cas :

$$u \prec v,$$

$$\phi(u) < \phi(v)$$

$$u \prec u' , \quad \phi(u') = \phi(v),$$

Dans le dernier cas, v doit être une advance();.

FIXME: more

Déterminisme

Plutôt que d'étendre une analyse du flot de donnée au cas des horloges, on propose de décider quels sont les hasards que les horloges éliminent.

Soit u et v deux instances qui engendrent un hasard.

- Il existe une relation polyédrique H(u,v) qui exprime l'existence d'un hasard
- ▶ Il est impossible que $u \prec v$ ou $v \prec u$, et u et v ne sont pas des advance();
- Le hasard ne subsiste que si le systeme :

$$\phi(u) = \phi(v) \\
H(u,v)$$

est satisfiable

Méthodes de résolution

- Les ϕ s peuvent être des polynomes, et les variables sont entières; donc le problème est probablement indécidable (10ème problème de Hilbert)
- Utiliser des heuristiques : résoudre en rééls (Z3 ou Quepcad), puis appliquer le test du pgcd
- ightharpoonup Cas particulier : les ϕ sont linéaires
- Autres heuristiques, soit générales (voir Z3) soit propres à X10 (cas des polynomes identiques).

Un exemple, III

```
Troisième solution :
   clocked finish{
                                       clocked async{
     int x:
                                         for(i in 0..n-1){
     clocked async{
                                            advance():
        for(i in 0..n-1){
                                            advance();
          advance():
                                            G(x); //R
          x = F():
                              //W
          advance():
\phi(W,i) = 2i + 1, \phi(R,i') = 2i' + 2, l'équation \phi(W,i) = \phi(R,i')
n'a pas de solution entière (c'est le test du pgcd), le programme
est déterministe, mais il n'a plus de parallélisme.
```

Noter que le test du pgcd s'applique aussi bien à un polynome qu'à une forme linéaire.

Le langage X10 L'analyse du flot des données Les horloges de x10 Eliminating Clocks

Eliminating clocks

Motivation

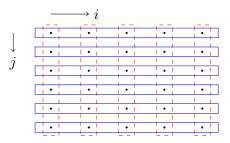
- Curiosity: X10 has two kinds of barriers
 - 1. advance()
 - 2. end of finish

Are they interchangeable?

- Efficiency :
 - creating activities is cheap, clock management is expensive
 - ▶ reducing overhead → target finer grain activities
- Enabling scheduler optimizations :
 - task-based parallelism
 - end-of-life synchronization only

Idea

Rewrite the program in order of increasing "dates"



▶ Replace successive "phases" of "S...; advance()" sequences with finish blocks (→ use only end-of-finish barriers)

Assumptions

- Only one clock at a time (clocked finish/async)
- As many clocked asyncs and advances as necessary
- Nested finish allowed

known start state

General solution

Iterate on time steps for (d=0; <some work is left>; d++) finish { execute a copy of the program where - "advance" becomes "++ ϕ " -"S;" becomes "if (d == ϕ) S;" Requires : • maintaining clock values (advance $\rightarrow ++\phi$) → repeatedly reproducing control ▶ changing state at approriate times (S \rightarrow if (d == ϕ) S) → conditionally reproducing effects Valid only on constant control programs

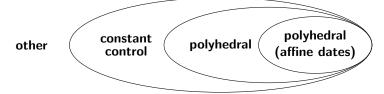
no side-effect in control (loop and branch conditions)

Correctness

- ▶ On constant control programs :
- All instructions are "executed" (including advances)
- ▶ Take any two instructions instances S and T :
 - if $\phi(S) < \phi(T)$, they are executed during distinct iterations of the outermost loop (on d, which is monotonically increasing)
 - if $\phi(S) = \phi(T)$, they are executed during the same iteration of the outermost loop, but in original program order

Variations

- ▶ The general solution may not be the most efficient...
- but there are sub-classes of program that can be optimized
- ► The space we consider is :



- ▶ Polyhedral programs are made of :
 - ▶ loops with affine bounds
 - branches on affine conditions
 - arbitrary instructions

```
finish {
  async {
    for(i in 0..N-1) {
      SO(i);
      if (a0[i] > 0) advance;
 } }
  async {
    for(i in 0..N-1) {
      S1(i);
      if (a1[i] > 0) advance;
} } }
```

► Input dependent synchronization

```
for ( d=0 ; ??? ; d++ ) {
  finish {
    async {
      for(i in 0..N-1) {
        SO(i);
        if (a0[i] > 0) advance;
   } }
    async {
      for(i in 0..N-1) {
        S1(i);
        if (a1[i] > 0) advance;
 } } }
```

- Input dependent synchronization
- Wrap a loop around the block

```
for ( d=0 ; ??? ; d++ ) {
  int \phi = 0;
  finish {
    async {
      int \phi_0 = \phi;
      for(i in 0..N-1) {
         SO(i);
         if (a0[i] > 0) advance ++\phi_0;
    } }
    async {
      int \phi_1 = \phi;
       for(i in 0..N-1) {
         S1(i);
         if (a1[i] > 0) advance ++\phi_1;
  } } }
```

- Input dependent synchronization
- Wrap a loop around the block
- Maintain date (local dates capture enclosing date on startup)

```
for ( d=0 ; ??? ; d++ ) {
  int \phi = 0;
  finish {
    async {
       int \phi_0 = \phi;
       for(i in 0..N-1) {
         SO(i) if (d == \phi_0) SO(i);
         if (a0[i] > 0) ++\phi_0;
    } }
    async {
       int \phi_1 = \phi;
       for(i in 0..N-1) {
         S1(i) if (d == \phi_1) S1(i);
         if (a1[i] > 0) ++\phi_1;
  } } }
```

- Input dependent synchronization
- Wrap a loop around the block
- Maintain date (local dates capture enclosing date on startup)
- ► Guard statements

```
for ( d=0 ; ??? ; d++ ) {
  int \phi = 0;
  finish {
    async {
       int \phi_0 = \phi;
       for(i in 0..N-1) {
         if (d == \phi_0) SO(i);
         if (a0[i] > 0) ++\phi_0;
    async {
       int \phi_1 = \phi;
       for(i in 0..N-1) {
         if (d == \phi_1) S1(i);
         if (a1[i] > 0) ++\phi_1;
  } } }
```

- Input dependent synchronization
- Wrap a loop around the block
- Maintain date (local dates capture enclosing date on startup)
- Guard statements
- Flag any action (either Si or ++φ), go on as long there is some

Polyhedral programs I

- Nested loops with affine bounds, arbitrary instructions
- Dates are polynomials over counters and parameters

```
Example :
    for ( i in 0..(N-1) ) {
      async {
        for ( j in 0..(M-1) ) {
          SO(i,j);
          for ( k in 0..(i-1) ) {
            S1(i,j,k);
            advance();
      advance();
```

Polyhedral programs I

- Nested loops with affine bounds, arbitrary instructions
- ▶ Dates are polynomials over counters and parameters

```
Example :
    for ( i in 0..(N-1) ) {
      async \{ // \phi = i \}
        for ( j in 0..(M-1) ) {
          SO(i,j); // \phi = i + (j(j-1)/2)
          for (k in 0..(i-1))
             S1(i,j,k); // \phi = i + j(j-1)/2 + k
             advance();
      advance();
```

Polyhedral programs II

Polyhedral programs with affine dates I

 When all times are affine, instructions+dates can be manipulated as (abstract) polyhedra

```
Example :
  finish {
    for ( i in 0..(N-1) ) {
      async
        for ( j in i..(N-1) ) {
          SO(i,j);
          advance();
       advance
      async
        for ( j in 0..(i-1) ) {
          S1(i,j);
          advance();
```

Polyhedral programs with affine dates I

 When all times are affine, instructions+dates can be manipulated as (abstract) polyhedra

```
Example :
  finish {
    for ( i in 0..(N-1) ) {
       async // \phi = i
         for ( j in i..(N-1) ) {
           SO(i,j); // \phi = i+j-i = j
           advance():
       advance
       async // \phi = i+1
         for ( j in 0..(i-1) ) {
           S1(i,j); // \phi = i+1+j
           advance();
```

Polyhedral programs with affine dates I

 When all times are affine, instructions+dates can be manipulated as (abstract) polyhedra

```
Example :
   finish {
                                                  SO := [N] \rightarrow
     for ( i in 0..(N-1) ) {
                                                          {[i,j,t,0]}:
       asvnc // \phi = i
                                                           0 \le i \le N and
          for ( j in i..(N-1) ) {
                                                           i \le j \le N and
            SO(i,j); // \phi = i+j-i = j
                                                           t=i }:
            advance():
                                                  S1 := [N] ->
                                                          \{[i,i,t,1]:
                                                           0 \le i \le N and
        advance
       async // \phi = i+1
                                                           0 \le j \le i and
          for ( j in 0..(i-1) ) {
                                                           t=i+j+1 };
            S1(i,j); // \phi = i+1+j
            advance();
                                                  M := \{[i,j,t,p]\}
                                                          -> [t,i,j,p]};
                                                  R := M(SO+S1):
                                                  codegen R;
```

Polyhedral programs with affine dates II

 Final result provided by CLoog (+ finish around) d-iterations, + async around statements): for (int d = 0; $d \le N - 1$; d += 1) finish for (int c1 = 0; $c1 \le d$; c1 += 1) { if (d >= c1 + 1 && 2 * c1 >= d)async S1(c1, d - c1 - 1); async SO(c1, d); for (int d = N; $d \le 2 * N - 2$; d += 1) finish for (int c1 = d - d / 2; $c1 \le N - 1$; c1 += 1) async S1(c1, d - c1 - 1);

▶ Note : $2D \rightarrow 2D$

Conclusion

- L'analyse async / finish est correcte et complète pour un programme polyèdrique
- L'introduction des horloges rend l'analyse incorrecte (il peut y avoir des faux signalements)
- Il en sera de même si on tente d'élargir le modèle polyédrique (par exemple, advance(); sous condition)

Il faudra traiter les autres traits de X10 : atomic et at. Y a-t-il d'autres applications du modèle polyédrique à X10 : recherche de parallélisme supplémentaire, transformations de programmes, tuilage?