
Scalable and Modular Scheduling
Paul Feautrier

Paul.Feautrier@ens-lyon.fr.

ENS Lyon

J-ORDO-04 – 1/28

The Context

Finding a schedule is a good way of finding parallelism in regular
programs:

Operations (tasks) which are scheduled at the same time
execute in parallel.
There are efficient algorithms for converting schedules into
parallel programs (Quilleré, Bastoul – Cloog).

A schedule is found by solving a linear program whose size
increases roughly like

� � � � �

where

�

is the number of
statements and

�

is the mean nesting level.

J-ORDO-04 – 2/28

Scalability

Since solving a LP of size � takes

� � � ��

(in practice), the
method does not scale well.

Observation: the constraint matrix is block sparse.

The simplex cannot make use of sparsity: it has fillup.

Find another solution algorithm.

J-ORDO-04 – 3/28

Modularity

Source program

modules 1 2 3 4 5

compiler compiler compiler compilercompiler

objects

1 2 3 4 5

linker

executable

Like in ordinary programs,
one would like to do sepa-
rate scheduling.

Modules must be designed
to minimize interferences.

The compilation is neces-
sarily incomplete. Where
to stop?

J-ORDO-04 – 4/28

Background

J-ORDO-04 – 5/28

Program Model

A program is a way of specifying the set of tasks to be executed and
the order in which they must be executed.

Regular programs:
Arbitrary loop nests with affine parametric lower and upper bounds.

Affine array subscripts. Scalars are 0-dimensional arrays.

No tests, no function calls, no pointers.

Each statement

�

has an iteration domain

��� which is deduced
from its surrounding loops and which is a polyhedron. An
iteration of

�

(i.e., a task) is written

� ��
� � � � � 	 �
� �

where � is the iteration vector.

J-ORDO-04 – 6/28

Dependences

To each operation � one associate a schedule

� � �� which gives
the start time of �. For practical and theoretical reasons,

�

is
chosen to be affine in the iteration vector of �.
There is a dependence (or a precedence) from

� � � � � to

� �
� � �

iff: � � ��� and 	 � ��
 .�
�� � � is executed before

��� 	 � .
One of

and

�

or both modify some array

�

with the same subscripts:

��� � �� � �
 	�

where

� � � and

� � � are subscript matrices (in homogeneous notations).

The conjunction of these constraints defines a dependence relation

���

which is again a polyhedron.

J-ORDO-04 – 7/28

Scheduling Constraints

The scheduling constraint expresses the fact that in case of a
dependence,

� � � � � must be executed before

� ��
� � � in the

parallel program:

� � � �� � � � � � ��� � � �
� � � � � � � � �� � � � � � ��
� ��
	

A similar constraint must be written for each pair of accesses to
each array in the program.

J-ORDO-04 – 8/28

The Farkas Algorithm

Each scheduling constraint represents in fact

� �� �� � � � � � �� � ��� �

linear constraints, which may be
enormous or even infinite.

Thanks to the fact that the schedules are affine, the quantifiers
can be eliminated, giving a small number of constraints on the
coefficients of � in the schedule

� � �
� �� . Elimination can be done

either by the vertex method, or by making use of Farkas lemma.

Let

� � be the coefficients of the schedule of

�

, and let� � � � ��� �	 	 	 �
� � � � 	

. The constraints can be written

	 �� �	

Any solution is a valid schedule. One select a schedule with
“good” properties (e.g. with the smallest coefficients).

J-ORDO-04 – 9/28

Multidimensional Time, I

If a program has an affine schedule, it can be executed in linear
time with enough processors.

This is not always possible, hence in some cases the scheduling
constraints may be unfeasible.

One has to use polynomial schedules, or, better, multidimensional
schedules.

�

is now a vector function, and

� � � � � executes
before

� ��
� � � iff � � � � �� � � � �
� �� in lexicographic order.

The dependence constraint becomes:

� � � �� � � � � � ��� � � ��
� � � � � � � � �� � � � ��
� ��	

J-ORDO-04 – 10/28

Multidimensional Time, II

The dependence constraint is rewritten

� � � �� � � � � � ��� � � ��
� � � � � � � � �� ��� � � � � � ��
� �� � � � � � � � �

and proceeds as before, selecting the solution which maximize

� � � .

A dependence with � � � is satisfied.

If there are unsatisfied dependences, one solve a similar
problem, ignoring the satisfied dependences, until all
dependences are statisfied.

One can prove that:
The algorithm terminates in no more than

�

steps (

�

the
maximum nesting level);
The result is optimal in the asymptotic sense (F. Vivien).

J-ORDO-04 – 11/28

Scalability

J-ORDO-04 – 12/28

The Constraint Matrix is sparse

R−>S

hR hS

>= b

O O O

The constraint matrix is the incidence matrix of the dependence
graph, if taken blockwise.

J-ORDO-04 – 13/28

The Simplex has Fill-up

In Gaussian elimination, on can control fill-up by proper selection
of the pivot (see the work of Tarjan). The only constraint is that
the pivot be non-zero.

In the Simplex, in general, there is only one possible pivot:
The constant term of the pivot row must be negative.
The pivot must be positive.
The reduced pivot column must be lexicographically minimal.

Hence, the Simplex cannot make use of the sparsity of the
constraint matrix.

J-ORDO-04 – 14/28

Projection Algorithms

� �� �������

x1

x2

y

The projection of

�

along 	 is

�� � � � � 	� �	� 	 � �
 �

If

�

is a polyhedron, so is

�

.

There are many projection algo-
rithms:

Fourier-Motzkin (superexpo-
nential, redundant, easy to
program).

Pip (fast, redundant).

Chernikova (fast, no redun-
dancy).

There are backpropagation algo-
rithms, which, given � � �

, find
some 	 such that �	� 	 � �

.

J-ORDO-04 – 15/28

A Scalable Algorithm

For each statement

�

:
Collect all the rows of

where

� � has a non-zero
coefficient.
Eliminate

� � .
Remember the bounds for

� � .

If the resulting system is trivially unfeasible (�
� � �

) stop.

For each statement

�

in reverse order:
The bounds for

� � are constants.
Select a value within the bounds for

� � (e.g. the lower
bound).
Substitute these values in all other bounds.

J-ORDO-04 – 16/28

Choosing the Next Victim

One can model the elimination process by a hypergraph on the
statements of the program.

There is a hyperlink on

� � � �
� � �	 	 	 �

if there is a row in

where

� � �
� � �
� 	 �	 	 	 occur with non-zero coefficients.

Initially, the hypergraph is the Dependence Graph.

To simulate the elimination of

�

compute the new hyperlink

� � ��� � �
� � �

, add it to the hypergraph, remove all hyperlinks
incident to

�

. This is an overestimate.

Greedy heuristics: Select the
�

which generates a hyperlink of
smallest size.

There are many shortcuts.

J-ORDO-04 – 17/28

Modularity

J-ORDO-04 – 18/28

Modules: How and Why

A module is a part of a program which can be partially compiled
by itself. Traditionally, the result of partial compilation is called an
object.

When all modules have been compiled, another processor, the
linker is needed to build the complete program.

In sequential languages, a module is a function or a set of
functions.

Systems in ALPHA are similar to functions, with more restrictions
on visibility.

Modularity is obtained in ALPHA by surgery on the partial
schedules. Some opportunities for parallelism are lost in the
process.

J-ORDO-04 – 19/28

Processes as Modules

For parallelism, there is a more suitable kind of module: the
process.

A process is a toplevel object with local variables only.

Processes communicate only throught channels.

A channel is represented as an array which has one writer and
possibly many readers. Reading is not destructive.

Writing must have the write once property.

The only constraint on reading is the causality condition.

J-ORDO-04 – 20/28

Relations to KPNs

The send/receive model can be simulated by introducing
message counters to be used as subscripts to channel arrays.

Message counters are induction variables. To fit in the polytope
model, the induction must be solved and the result must be linear.

The read-once and write-once conditions are automatically
satisfied.

Since reading is destructive, the system may be
non-deterministic unless one enforce the Kahn condition: each
channel must have only one reader and one writer.

The present model is thus incomparable to the Kahn model. The
bonus is that compile time analysis is possible.

J-ORDO-04 – 21/28

Channel Clocks

Since output channels have the write once property, one can
assign an availability date or clock to each cell of the channel: if �

is a valid subscript for

�

,

� � � �

is guaranteed to be available no
later than

� � �
� �� .

If

�� � �� � � � � �� � � is a statement, then:

� � �
� � � �� � � � �
� �� � �	

A statement

�� � � � � �� � � � �� � � �� � � can read only available
elements: � � � � �� � � � �

� � � ��
	

J-ORDO-04 – 22/28

The Constraint Matrix

P Q

R

A B

P Q R A B

One can eliminate the local schedule of each process independently.

The result is a relation between the clocks of its input and output channels (the
input/ouput constraints).

One can then interconnect the channels (i.e. identify variables in the channel
clocks) and solve the global scheduling problem.

Once the global schedule is known, one can find the local schedules by
backpropagation.

J-ORDO-04 – 23/28

Modularity as Incremental Compilation

Suppose one modifies one process. What are the consequences?

One must redo the elimination for the modified process.

One must solve again the global scheduling problem.

One must redo backpropagation for all processes. This is a
polynomial algorithm and there may be shortcuts.

J-ORDO-04 – 24/28

Toward a Library Format

What is the content of a process object?

The process statements, with their domains.

The upper and lower bounds for the local schedules.

The input/output constraints.

What happens for IP’s, where the local schedules are fixed at
implementation time? Under which conditions is the backpropagation
phase stable (i.e., modifies only constant terms)?

J-ORDO-04 – 25/28

The Multidimensional Case, I

Let us consider the scheduling problem, before any elimination. It
may not be feasible, for two reasons:

There is a deadlock in the system.

There is no affine schedule for complexity reasons.

One can resort to the same trick as above: replace the unit
delays by � . After all eliminations, one get a system of constraints
on the � . There are three cases:

The all-ones solution is feasible: the system has an affine schedule.

The only feasible point is all zeroes: the system probably has a deadlock.

One can select a feasible point where some � are non-zero (some
dependences are satisfied). One must proceeds to compute the next
component of the schedule, ignoring the satisfied dependences.

How does this interfere with modularity?

J-ORDO-04 – 26/28

The Multidimensional Case, II

Modularity is preserved if all the � associated to communication
edges are 1. Multidimensional scheduling occurs only inside
processes.

One can prove that this is always possible if the communication
graph is a DAG.

But there are counterexamples in the general case.

What can one do?
Forbid cycles in the communication graph, i.e. fuse strongly
connected components in the CG, perhaps changing the
semantics!
Waive modularity.

J-ORDO-04 – 27/28

Conclusion: A Roadmap

An implementation is under way.

Quantify the compilation speed-up due to scalability.

Explore the advantages of modularity: speed-up, reuse, process
libraries.

Investigate the problems of modular multidimensional schedules.

Is there a way, when solving the global scheduling problem, to
bound the size of the channel arrays?

Is there a way of taking into account ressource constraints when
solving the local scheduling problem?

Code generation for processors (VLIW, SuperScalar, EPIC, DSP)
is well understood (Chamsky, Quilleré, Bastoul) but is not
modular. Is there a hope for a modular Cloog?

Code generation for special purpose hardware (FPGA, ASIC).

J-ORDO-04 – 28/28

	The Context
	Scalability
	Modularity
	Background
	Program Model
	Dependences
	Scheduling Constraints
	The Farkas Algorithm
	Multidimensional Time, I
	Multidimensional Time, II
	Scalability
	The Constraint Matrix is sparse
	The Simplex has Fill-up
	Projection Algorithms
	A Scalable Algorithm
	Choosing the Next Victim
	Modularity
	Modules: How and Why
	Processes as Modules
	Relations to KPNs
	Channel Clocks
	The Constraint Matrix
	Modularity as Incremental Compilation
	Toward a Library Format
	The Multidimensional Case, I
	The Multidimensional Case, II
	Conclusion: A Roadmap

