
Automatic Storage Management for Parallel ProgramsVincent Lefebvre and Paul FeautrierLaboratoire PRiSM, Universit�e de Versailles-St. Quentin,45, Avenue des �Etats-Unis, 78 035 Versailles c�edex, FRANCE.e-mail : fVincent.Lefebvre,Paul.Feautrierg@prism.uvsq.frAbstractThis article deals with automatic parallelization of static control programs. Dur-ing the parallelization process the removal of memory related dependences is usuallyrealized by translating the original program into a single assignment form. This totaldata expansion has a very high memory cost. We present a technique of partial dataexpansion which leaves untouched the performances of the parallelization process, withthe help of algebra techniques given by the polytope model.Keywords : Automatic Parallelization, Memory Management, Array Data
ow Analy-sis, Scheduling.1 IntroductionThis article deals with the automatic parallelization technique based on the polytope model.This method can be applied provided that source programs are static control programs, i.e.are limited to do loops and assignment to array with a�ne subscripts. The �rst step isthe extraction of exact dependences by array data 
ow analysis. All memory related de-pendences, which are due to reuse of data, are deleted by a total data expansion. Thetransformed program has the single assignment property and residual dependences con-stitute the data 
ow. The program is then parallelized by scheduling, a method whichautomatically satis�es the sequential constraints inherent in the data 
ow.The single assignment form translation has a very high memory cost: memory size is ofthe same order as the iteration space (for example, matrix multiplication will take O(n3)memory). This is clearly unacceptable, and can be ameliorated by producing multiple as-signment parallel code. The aim of this paper is to present a new technique for partial dataexpansion. We show that to any schedule we can associate a parallel program with minimalmemory expansion.In section 2, we describe the polytope method with total data expansion. In Section 3,we present our technique of partial data expansion. We show that this technique can nowreplace the total expansion in the parallelization process of the polytope method.2 The polytope methodAll techniques and algorithmes described in this section are directly taken from the PAFcompiler developped at the university of Versailles by P. Feautrier and his team.1



2.1 Framework2.1.1 ZZ-polyhedraA polyhedron is the set of all vectors ~x which satis�es a set of linear inequalities. Abounded polyhedron is called a polytope. A ZZ-module is a set of integral points generatedby integer combination of basis vectors. A ZZ-polyhedron is the intersection of a ZZ-moduleand a polyhedron.The basic problem about ZZ-polyhedra is the question of their emptiness. It is a linear integerprogramming question which can be solved by the Gomory cut method which is integratedin the Parametric Integer Programming (PIP) tool. A straightforward application of PIPcomputes the lexicographic maximum of a ZZ-polyhedron [5].2.1.2 Static Control ProgramsStatic control programs are built from assignment statements and do loops. The only datastructures are arrays of arbitrary dimensions. Loop bounds and array subscripts must bea�ne functions in the loop counters and integral structure parameters.An operation may be named hR;~xi where R is a statement and ~x the iteration vectorwhose components are the values of the surrounding loop counters. The component p of~x is the counter of loop p. The iteration vector is constrained by the loop bounds. Theiteration domain D(R) of a statement R, is the set of instances of R and can be described bythe conjunction of all inequalities from the surrounding loops. Loop counters are integers,hence iterations domains are set of integer vectors inside polytopes. We will take as runningexample the program matrix-vector:program matrix-vectorreal s, a(n,n), b(n), c(n)integer i,j,ndo i=1,nS1 s = 0.do j=1,nS2 s = s + a(i,j)*b(j)end doS3 c(i) = send doendThis program has three statements from S1 to S3. The operation hS2; 2; 1i is an exe-cution of statement S2 for i = 2 and j = 1 where i and j are counters of loops surroundingS2. The symbolic constant n is a structure parameter. The iteration domain of S2 isD(S2) = fi; j j 1 � i � n; 1 � j � ng.2.1.3 Sequential Execution OrderThe lexicographic order is noted �. The expression R < S indicates that statement R isbefore statement S in the program text. NRS is the number of loops surrounding both Rand S. One has ~x�p ~y � ~x[1::p] = ~y[1::p] ^ ~x[p+ 1] < ~y[p+ 1] and � is given by~x� ~y � j~xj�1_p=0 ~x�p ~y (1)2



The fact that operation hR;~xi is executed before the operation hS; ~yi is written: hR;~xi �hS; ~yi. It is shown in [6] that:hR;~xi � hS; ~yi � ~x� ~y _ (~x[1::NRS] = ~y[1::NRS] ^R< S) � NRS_p=0 hR;~xi �p hS; ~yi (2)where hR;~xi �p hS; ~yi , � 0 � p < NRS : ~x�p ~yp = NRS : ~x[1::NRS] = ~y[1::NRS] ^R < S (3)In our running example, we have: hS1; 2i �0 hS2; 3; 1i and hS2; 2; 3i �0 hS2; 3; 1i2.2 Semantic Analysis2.2.1 DependencesOne must ensure that the parallel program is determinate and gives the same results asthe sequential one. Hence one must take into account the dependences which exist betweenthe operations of the source program. To each operation v we associate two sets: R(v)is the set of memory cells which are read by v; M(v) is the set of memory cells whichare modi�ed by v. Berstein's conditions distinguish three kinds of dependences betweenv and u, where v � u. If M(v) \ R(u) 6= ;, there is a 
ow dependence, written v � u.If R(v) \M(u) 6= ;, there is an anti-dependence, written v � u. If M(v) \M(u) 6= ;,there is an output dependence, written v �� u. One may be more precise and associate adependence to a depth p. For instance, if two operations v and u are in 
ow dependence atdepth p, written v �p u, it means that: v �p u ^ M(v)\R(u) 6= ;.2.2.2 Array Data Flow Analysis of Static Control ProgramsIt is well known that output dependences and anti-dependences are arti�cial, i.e. due toreuse of memory. These kinds of dependences are called false dependences.The real dependences which de�ne the inherent semantic of a program, are a subset of 
owdependences: the direct 
ow dependences. A direct 
ow dependence is a data 
owfrom a de�nition by an operation v to a use by an operation w of a same memory cell cand provided there is no write on c between the executions of v and w. It means thatthe value read by w in c is the one produced by v. The remaining 
ow dependences arearti�cial dependences too and are called spurious 
ow dependences. The removal ofarti�cial dependences by data restructuring, is called data expansion. This technique willbe detailed in the next section.Direct 
ow dependences are computed by data 
ow analysis [6]. It must determine foreach memory cell c read by an operation w, the last operation in � which gives a value toc before the execution of w. This operation is called the source of the read:source(c; w) = max� fv j v � wg (4)The computation of the source can be done by PIP (Parametric Integer Programming)algorithm (cf [6] for more details). The result of the analysis is a quasi-a�ne tree or quast,i.e. a many-level conditionnal in which predicates are tests for the positiveness of a�ne formsin the loop counters and structure parameters. The leaves are either operation names, or?. The symbol ? indicates that the array cell under study is not modi�ed. Sources aregathered in the Data Flow Graph (DFG).Fig. 1 gives the DFG of the matrix-vector program.3



memory cell referenced in operation source operations hS2; i; ji 8<: if j � 2 � 0then hS2; i; j � 1ielse hS1; iia(i; j) hS2; i; ji ?b(j) hS2; i; ji ?s hS3; ii hS2; i; niFigure 1: The DFG of the matrix-vector program2.3 Program TransformationsThe �rst step is to delete all false dependences and spurious 
ow dependences by a totaldata expansion. It is realized by translating the source program into a single assignmentform. The residual dependences in a such program are the direct 
ow dependences of theDFG.The second step is to parallelize the single assignment form program by scheduling. Theaim is to change the operation execution order of the program, the set of operations andthe data 
ow being left untouched.2.3.1 Total Data ExpansionTotal data expansion gives to the program the single assignment property: each memorycell allocated to data will only receive one value produced by one operation during all theexecution of the program. In this way, one associates a memory cell to an operation. Onecan �nd the algorithm for translating a static control program into a single assignmentform in [6]. The �rst step is a complete renaming: for each statement R one associates aspeci�c data structure InsR, used to store all values produced by the operations instances ofR. Then one totally expands all data structures: InsR is indexed by the iteration vectorof R. R : A[~f(~x)] = ::: becomes R : InsR[~x] = :::Finally one reconstitutes the data 
ow by replacing each rhs reference by its corre-sponding source. If one translates the program matrix-vector into single assignment form,one obtains the following code:program matrix-vectorreal a(n,n), b(n), InsS1(n), InsS2(n,n), InsS3(n)do i=1,nS1 InsS1(i) = 0.do j=1,nS2 InsS2(i,j) = (if (j-2 >= 0) then InsS2(i,j-1) else InsS1(i)) + a(i,j) * b(j)end doS3 InsS3(i) = InsS2(i,n)end doendNotice that the total data expansion has created an one-dimensionnal array InsS1 withn elements and a two-dimensionnal array InsS2 with n2 elements which replace the scalars in S1 and S2.2.3.2 Parallelization by SchedulingOne computes a time function � which gives the partial execution order of the parallel pro-gram by taking into account the sequential constraints of the data 
ow. For any operation4



u, if �(u) is its execution time, one must have:8c 2 R(u); �(source(c; u)) � �(u) (5)It de�nes a set of linear constraints. For complexity reasons �nding the exact solution of (5)is not practicable. One limits oneself to a�ne one-dimensionnal and multi-dimensionnal [7]schedules. In the case of our running example, one can have the following schedule function�: 8<: if (j � 2 � 0) then �(S2; i; j � 1)� �(S2; i; j)else �(S1; i) � �(S2; i; j)�(S2; i; n)� �(S3; i) )8<: �(S1; i) = 0�(S2; i; j) = j�(S3; i) = n+ 1 (6)An operation front F(~t) gathers all operations which have the same execution time. Theoperations in a front can be executed in parallel. Note that an execution time �(v) = ~t isin fact a logical time on INd. One can imagine that it corresponds to the execution of theparallel program with an unbounded number of processors which execute one operation inunit time. Let � be the set of all possible execution times (~t 2 � ) F(~t) 6= ;) enumeratedin lexicographic order. The parallel program must enumerate each possible date ~t 2 � .To build the parallel code one must apply a�ne transformations to the iteration spaceof the program. When this is done, the operations in the original program are to beexecuted according to the lexicographical order in the transformed iteration space. The�nal lexicographical order is the one given by the schedule function. If one translates thematrix-vector program scheduled with (6) in Fortran 90, one gets the following code:program matrix-vectorreal InsS1(n), InsS2(n,n), InsS3(n), a(n,n), b(n)do t=0,n+1if (t .EQ. 0) thenS1 InsS1(1:n:1)=0.end ifif (t .EQ. 1) thenS2 InsS2(1:n:1,t) = InsS1(1:n:1) + a(1:n:1,t)*b(t)end ifif (t .GE. 2 .AND. t .LE. n) thenS2 InsS2(1:n:1,t) = InsS2(1:n:1,t-1) + a(1:n:1,t)*b(t)end ifif (t .EQ. n+1) thenS3 InsS3(1:n:1) = InsS2(1:n:1,n)end ifend doendNotice that total data expansion has induced the split of S2 in two di�erent statementsin the parallel code.3 Reduced Data Expansion in Parallelized ProgramsTranslating the source program into single assignment form has a very high memory cost.It is clear in the case of our running example: from a scalar s and an array c(n), one getsthree arrays with a data size of O(n2).Our aim is now to de�ne a method of partial data expansion which reduces the mem-ory expansion induced by parallelization and replaces the single assignment formtranslation during the parallelization process. The constraint is that the schedule whichhas been deduced from the DFG should remain valid in the presence of output and antidependences. An intuitive presentation of the method is given below.5



3.1 Optimized Storage Management in Parallelized Programs: an intu-itive ApproachOne must precise some conventions and notations. Let V(v) be the value produced by anoperation v. Let C(v) be the memory cell in which V(v) is stored. Let U(v) be the set whichgathers all operations u such that there is a direct data 
ow from v to u. U(v) is the set ofall operations which will be executed after v and will read V(v):U(v) = fu j 9 c 2 R(u); source(c; u) = vg (7)U(v) is the utilization set of v [10].Let L(v) be the execution time of the last read of V(v) in the parallel program. Let L(v)be the subset of operations in U(v) which execute this last read:L(v) = �(L(v)) = max�(u); u 2 U(v) (8)Consider a memory cell C(v) during execution of a parallel program in single assignmentform. One can distinguish three periods (see Fig. 2):1. Period (I): the memory cell stays empty until the execution of v to which it isassociated.In our running example, InsS2[i,j] (InsS2[i,j]= C(S2; i; j)) stays "empty" untilthe execution of hS2; i; ji at �(S2; i; j) = j, if 1 � j � n� 1.2. Period (II): the execution of v stores V(v) in C(v). The operations of U(v) read V(v)until L(v). During this time, V(v) is useful.One has U(S2; i; j) = fhS2; i; j+1ig. V(S2; i; j) is read by hS2; i; j+1i at �(S2; i; j+1) = j + 1. This time is the last read of V(S2; i; j): L(S2; i; j) = j + 13. Period (III): the memory cell is not read anymore after L(v), nevertheless V(v) isstill in C(v) until the end of the execution of the parallel program. V(v) becomesuseless.V(S2; i; j) becomes useless after �(S2; i; j+ 1) = j + 1 and stays in InsS2[i,j] untilthe end of the program at �(S3; i) = n+ 1
(I) (II) (III)

execution of v last read of v
Execution order in the parallel program

direct data flow

v

read of the value produced by v

timeFigure 2: Use of V(v) in C(v) in the single assignment parallel programIt is clear that during periods (I) and (III), C(v) can store others values. If one storesothers values in C(v), output dependences appear in the parallel program. The problem isto de�ne an automatic method for partial data expansion which ensures that the parallelprogram obtained is valid.3.2 Related WorkMany papers are devoted to the problem of eliminating false dependences. Some of them tryto eliminate these dependences with a reduced memory cost. One can �nd many techniques6



which come from the automatic parallelization community ([1], [2], [9], [12]) or the systoliccommunity ([13], [3]). It is interesting to notice that these techniques are close to data-localization methods ([4], [14]).Most papers from the automatic parallelization community deal with array privatization.Privatization is a technique that allows each thread to allocate a variable in its privatestorage. Hence if a loop is transformed into a parallel loop, privatization replaces all originalreference to an array a by an access to a local array. One can prove that privatization issimilar to scalar or array expansion. But privatization may require less space than expansionbecause it creates one copy per processor and the number of processors cooperating in theexecution of the parallel loop is less than the number of iterations [12]. Lam [1], Padua andTu [12] propose to optimize array privatization with the help of the DFG. If one adaptstheir method to partial expansion, it consists in maintaining output dependences whichduplicate 
ow dependences.Another solution has been proposed by the systolic community ([3], [13]). Programs thatare taken into account are given in single assignment form. They try to create outputdependences which don't invalidate the data 
ow by estimating the lifetime of each variable.Darte and al. [2] build upon results of Padua who introduced two graph transformations toeliminate false dependences [11]. They give an uni�ed framework for such transformationand prove that the problem of determining a minimal renaming is NP-complete.3.3 Utility Span of a ValueOur method of partial data expansion is based on the notion of utility span of a value. Itis clear that the utility span corresponds to the period (II) (see Fig. 2): V(v) must reside inmemory during ~t 2 [�(v);L(v)]. The utility span of a value is a subsegment of [~0; ~L] where~L is the latency i.e. the execution time of the last front executed in the parallel program.De�nition 1 The utility span of V(v) is the time span between production of V(v) and itslast read in the parallel program.~t 2 [�(v);L(v)] ) V(v) 2 C(v) (9)One can estimate the utility span of V(S2; i; j) in our running example. If 1 � i � n ^ 1 �j � n� 1, then V(S2; i; j) must reside in C(v) for ~t 2 [�(S2; i; j); �(S2; i; j+ 1)] = [j; j+ 1].Before and after this utility span, C(v) can store others values without changing the data
ow from v to operations in U(v): one can reintroduce output dependences between v andsome others operations.The atomic entity in our study is not the memory cell C(v) like in most previous meth-ods, but the value V(v). The main advantage over the notion of variable lifetime is that itcan be applied to programs which are not necessarily in single assignment form.The next subsection show which are the conditions that an output dependence must ver-ify to be harmless in the parallel program. Such output dependences are called neutraldependences.3.4 Neutral DependencesConsider two operations v and w. Rule (9) imposes that:1. V(v) 2 C(v) for ~t 2 [�(v);L(v)]2. V(w) 2 C(w) for ~t 2 [�(w);L(w)] 7



In the case of a program in single assignment form, one has systematically C(v) 6= C(w)because there is no output dependence. Optimizing storage means that one introducesmemory reuse in the parallel program, i.e. we want to have some operations v and w forwhich C(v) = C(w). It is clear that this is possible i� the basic rule (9) is still veri�ed forv and w in spite of this output dependence. Hence an output dependence is valid in theparallel program if the subsegments which are the utily spans of v and w are separate. Suchan output dependence is called neutral output dependence.De�nition 2 An output dependence is neutral for a schedule function � i� it doesn't changethe data 
ow in the parallel program built with the help of �.One can precisely gives the characteristics of a neutral output dependence v ��w inthe parallel program (see Fig. 3):� v must be executed before w: �(v)� �(w).� there is an access con
ict: C(v) = C(w)� the utility spans are separate: L(v)� �(w)
v last read of v w last read of w

direct data flow

neutral output dependence

utility span of v utility span of w

timeFigure 3: a neutral output dependence v ��w in the parallel programBy extension an output dependence between v and w can be considered as neutral if w isthe single operation which constitutes L(v). Here the utility spans of V(v) and V(w) arenot separate because L(v) = �(w). Nevertheless these two operations can share the samememory cell because w must read V(v) before computing V(w). It means that the write ofV(w) occurs after the read of V(v) by w.� An output dependence between hS2; i; ji and hS2; i+ 1; j + 1i would be not neutral,because hS2; i+ 1; j + 1i is executed after hS2; i; ji and before the end of its utilityspan. Hence one must have C(S2; i; j) 6= C(S2; i+ 1; j + 1) in the parallel program.� hS2; i; j+2i is executed after the utility span of hS2; i; ji, hence an output dependencebetween hS2; i; ji and hS2; i; j + 2i would be neutral in the parallel program. Henceone can have C(S2; i; j) = C(S2; i; j+ 2).� An output dependence between hS2; i; ji and hS2; i; j+ 1i would be neutral becauseone has hS2; i; j+ 1i = L(S2; i; j). The utility spans of V(S2; i; j) and V(S2; i; j+ 1)are not separate, but the two operations can be stored in the same memory cell: weare sure that hS2; i; j+ 1i must read V(S2; i; j) before writing V(S2; i; j+ 1). Henceone can have C(S2; i; j) = C(S2; i; j+ 1).Notice that if two operations v and w belong to the same operations front, anoutput dependence v ��w would be non neutral in the parallel program. Hence one mustuse data expansion to ensure that they are stored in two di�erent memory cells. In fact,8



the memory requirement of a parallel program is strongly linked to the parallelism degree(size of operations fronts) given by the schedule function. As we have seen in our runningexample, the utility span of V(S2; i; j) for j < n is between ~t = j and ~t = j + 1 . Anoutput dependence between hS2; i; ji and hS2; i+ 1; ji would not be neutral because thetwo operations belong to the same front F(~t) = j.To decide if an output dependence is neutral in a parallel program, one must have aprecise estimation of the utility span of each value V(v). This estimation can help us toreconstruct the data space of the program by adjusting data size to utility spans. The �nalpurpose is to build a program with direct 
ow dependences and neutral output dependences.Our �rst approach has consisted to maintain neutral output dependences from the originalprogram in its parallel version [8]. But this method is directly dependent on the originaldata space and can't be used to reduce data size of programs in single assignment form. Wehave decided to improve our technique to become independent from the original data: withthe new method presented in this article, the output dependences existing in the programafter partial expansion are not necessarily present in the original version.3.5 Determinating The Utility SpanConsider an operation hR;~xi. One wants to determine the subsegment of [~0; ~L] whichcorresponds to the utility span of this operation: [�(R;~x);L(R;~x)]. The lower bound of thissubsegment is directly given by �. The problem is to compute the upper bound L(R;~x).We recall that it is the last execution time in the parallel program of an operation of theutilization set U(R;~x).Determining this time uses techniques from data 
ow analysis. The main di�erence is thatthe lexicographic maximum computation is not on the sequential execution order �, buton the execution order given by the schedule function �.Consider two statements R and S: R : a[~f(~x)] = :::S : ::: = ::: a[~h(~y)] :::The operation LS(R;~x) is the last read of V(R;~x) in the parallel program among theoperations instances of S which belong to U(R;~x). The set of candidates is hS;BRS(~x)iwhich is built by scanning the DFG. Consider the quast which gives all the operationssources of the read reference on a in instances of S. One takes into account each leafhR;~l(~y)i concerning an instance of R and P (~y) the conjunction of all the predicates whichlead to this leaf in the quast. A candidate in hS;BRS(~x)i, which has this leaf as source ofthe read a[~h(~y)] has the following characteristics:� it corresponds to an existing instance of S : ~y 2 D(S)� hS; ~yi is in U(R;~x): source(a[~h(~y)]; hS; ~yi) = hR;~l(~y)i , ~l(~y) = ~x if P (~y) is veri�ed.Let BhR;~l(~y)iRS (~x) be this candidate,BhR;~l(~y)iRS (~x) = f~y j~y 2 D(S) ^ P (~y) ^ ~l(~y) = ~x gAll its terms are linear equalities or inequalities, hence BhR;~l(~y)iRS (~x) is a ZZ-polyhedra.hS;BRS(~x)i is the union of all candidates which can be built with the quast source ofa[~h(~y)] in instances of S. Hence the set hS;BRS(~x)i is a disjunction of ZZ-polyhedra. It9



is clear that the last operation which reads V(R;~x) between instances of S is the last oneexecuted according to �: LS (R;~x) = hS;max�� BRS(~x)i (10)All statements which may read the data a must be taken into account. The real last readis their maximum according to �: L(R;~x) = max�� LS(R;~x) (11)Like the source function, L(R;~x) is a quast. To determine L(R;~x) one just applies thefunction � to each leaf of L(R;~x) except for leaves which are the symbol ? which are leftuntouched. The di�erent utility spans are gathered in the Utility Span Graph (USG) whichgives to each operations v the utility span of V(v) and the operation executing the last readof V(v). The symbol ? indicates that V(v) is either useless or an output value. Fig. 4 givesthe USG of the matrix-vector program.Operation v L(v) L(v) Utility span of V(v) = [�(v);L(v)]hS1; ii hS2; i; 1i 1 [0; 1]hS2; i; ji 8<: if j � n� 1then hS2; i; j + 1ielse hS3; ii 8<: if j � n� 1then j + 1else n + 1 8<: if j � n� 1then [j; j + 1]else [j; n+ 1]hS3; ii ? ? [n+ 1;?]Figure 4: The USG of the matrix-vector program3.6 Partial Data ExpansionThe �rst step is a partial array and scalar expansion process that decides the shapeand the index function of each statement left hand side. The second step consists in apartial renaming process and decides which are the statements that can share the samedata structure in their left hand side.3.6.1 Partial Array ExpansionThe aims of partial array expansion for each statement R are the following:� We want to build a structure lhsR which is speci�cally associated to the statementR. It will give the shape (number of dimensions and size of each dimension) andthe index function which are the data in the left hand side of R in the restructuredprogram.� The speci�cations used to build lhsR is that if lhsR provides memory reuse, i.e. outputdependences between some operations instances of R, these output dependences haveto be neutral in the parallel program. For instance in our running example, if ~FS2 isthe index function of lhsS2:{ One may have lhsS2[ ~FS2(i; j)]= lhsS2[ ~FS2(i; j+2)], C(S2; i; j) = C(S2; i; j+2). The output dependence beteween hS2; i; ji and hS2; i; j+2iwould be neutral.{ One must have lhsS2[ ~FS2(i; j)] 6= lhsS2[ ~FS2(i+1; j)], C(S2; i; j) 6= C(S2; i+1; j). An output dependence between the two operations would be not neutralin the parallel program. 10



� The elaboration of lhsR must be independent from the original data structure in thelhs of R.The problem is now to build lhsR. One recalls that a neutral output dependence can'tkill a value V(R;~x) during its utility span. To respect this rule for any instance of R, onemust take into account the maximum duration that the utility span of V(R;~x) can have inthe parallel program. For an operation hR;~xi this duration is obtained by subtracting thelower bound of its utility span from the upper bound. One writes d(R;~x) this parameter:d(R;~x) = L(R;~x)� �(R;~x) (12)One considers that ? � �(R;~x) = ?. Each leaf of d(R;~x) is a multi-dimensionnal linearexpression in term of loop counters and structure parameters.The maximum duration D(R) that the utility span of instances of R can have, is themaximum value of d(R;~x) on the iteration domain of R:8~x 2 D(R); d(R;~x)�D(R) (13)D(R) is a multidimensionnal linear expression in term of structure parameters or thesymbol ?. Notice that one considers that if d(R;~x) 6= ?, then ? � d(R;~x). The maximumutility span durations in the matrix-vector program are given in Fig. 5. (9) implies thatStatement R Utility span duration of an instance of R Maximum utility span duration on RS1 d(S1; i) = 1 D(S1) = 1S2 d(S2; i; j) = 8<: if j � n� 1then 1else 1 D(S2) = 1S3 d(S3; i) = ? D(S3) = ?Figure 5: The maximum duration of utility spans in the matrix-vector programV(R;~x) must be in C(R;~x) between �(R;~x) and L(R;~x) = �(R;~x)+d(R;~x). If one wants toprotect each instance of R during its utility span, one must build lhsR in such a way that(9) is veri�ed for the greatest utility span that an instance of R can have. Hence we havechosen to impose that no value V(R;~x) can be killed between �(R;~x) and �(R;~x) +D(R):V(R;~x) 2 lshR for ~t in [�(R;~x); �(R;~x) +D(R)] where �(R;~x) + d(R;~x)��(R;~x) +D(R)The algorithm that builds the data structure lhsR can be summarized like this:� One starts with a scalar lhsR.� The elaboration of lhsR is iterative, the number of iterations is equal to NRR (numberof loops surrounding R). Each iteration is called partial expansion of R at depthp where p is the depth of the loop considered (p 2 [0; NRR� 1]).� A partial expansion of R at depth p consists in1. Computing the expansion degree of R at depth p: EpR. It gives the numberof elements of a new dimension that one adds to lhsR.2. Indexing this new dimension of lhsR:lhsR[ ~F 0(~x)] becomes lshR[ ~F 0(~x); ip+1 mod EpR + 1]where ~F 0(~x) is the index function built by previous iterations on p; ip+1 is thecounter of loop (p+1) (from the outer one surrounding R); "mod" is the modulooperator and EpR is the expansion degree computed in the previous step.11



� At the end of the process, lhsR only provides neutral output dependences on R; 8p 2NRR.The problem is now to compute EpR. The partial expansion of R at depth p avoids nonneutral output dependences between two operations hR;~xi and hR; ~x0i if ~x �p ~x0. For anoperation hR;~xi, we build the set of candidates gathering all the operations hR; ~x0i whichcan't share the same memory cell than hR;~xi:� the operations exist: ~x 2 D(R) and ~x0 2 D(R)� the sequential execution order is: hR;~xi �p hR; ~x0i� the utility spans are not separate:[�(R;~x); �(R;~x) +D(R)]\ [�(R; ~x0); �(R; ~x0) +D(R)] 6= ;Let be CpRR(~x) the set of candidates, it can be decomposed in unions of ZZ-polyhedra. LeteC;pR be its lexicographic maximum: eC;pR = max�p CpRR(~x)One can't have output dependences between operations hR;~xi and hR; ~x0i with:hR;~xi �p hR; ~x0i �p hR;~xei = eC;pRFrom this follows the inequalities on the iteration vectors:~x[p+ 1] < ~x0[p+ 1] � ~xe[p+ 1]If one expands lhsR at depth p with EphR;~xi = ~xe[p+ 1]� ~x[p+ 1] + 1, we are sure that nonon neutral output dependence at depth p can appear for hR;~xi. But it must be veri�edfor each instance of R, hence the expension degree EpR is the maximum value that EphR;~xican have for ~x 2 D(R): EpR = max~x2D(R)EphR;~xi (14)Fig. 6 indicates the expansion degree and the structures lhs that must be set in thematrix-vector program. There can't be output dependences on S1 and S2 at depthStatements Expansion degrees Final data structure Final lhsS1 E0S1 = n lhsS1[n] lhsS1[i] = ...S2 E0S2 = nE1S2 = 0 lhsS2[n] lhsS2[i] = ...S3 E0S3 = n lhsS3[n] lhsS3[i] = ...Figure 6: The �nal results of the partial array expansion for the matrix-vector program0, hence lhsS1 is fully expanded and lhsS2 becomes an one-dimensionnal array with nelements. But all output dependences on S2 at depth 1 will be neutral in the parallelprogram, hence there is no expansion at depth 1 for S2. Notice that for the last statementone leaves untouched the shape of the array in the lhs of S3 even if its values are never read.It is due to the fact that it stores the �nal results of the program. In fact if D(R) = ? then12



the shape of lhsR must be at least the same that the original data structure in the lhs ofR, i.e. the elaboration of lhsR starts in this speci�c case with the original datum. FinallylhsR must be partially expanded in such a way that all the instances of R which belongto a same front must be stored in di�erent memory cells, i.e. the partial expansion is heretotally dependent from the parallelism degree.3.6.2 Partial RenamingThe partial renaming process must decide if two di�erent statements can share the samedata structure. Consider two statements R and T . Partial expansion builds two structureslhsR and lhsT which can have di�erent shapes. If at the end of the renaming process R andT are authorized to share the same array, this one would have to be the rectangular hullof lhsR and lhsT: lhsR-T. It is clear that these two statements can share the same datai� this sharing does not generate non neutral dependence between R and T with lhsR-T inthe left hand side of the two statements. Let ~FR�T be the index function of lhsR-T. Onemust verify for each operation hR;~xi and hT; ~zi that would be in output dependence (i.e.~FR�T (~x) = ~FR�T (~z)) that:1. V(R;~x) can't be killed by hT; ~zi before the end of its utility span:�(R;~x)��(T; ~z)��(R;~x) +D(R)2. V(T; ~z) can't be killed before by hR;~xi before the end of its utility span:�(T; ~z)��(R;~x)��(T; ~z) +D(T )As in the case of partial expansion, one can decompose candidates sets in disjunctions ofZZ-polyhedra. All these ZZ-polyhedra must be empty for this transformation to be legal. Ifthere are no integral solutions, R and T can share the same data structure else they can't.Finding the minimal number of renaming is a NP-complete problem (see [2]). Our methodconsists in building a graph similar to an interference graph as used in code genarationprocess of a classical compiler to optimize registers allocation. In this graph, each vertexrepresents a statement of the program. There is an edge between two vertices R and T i�it has been shown that they can't share the same data structure in their left hand side:there is at least one non neutral output dependence R��p T . Then one applies on this grapha greedy coloring algorithm. Finally it is clear that vertices that have the same colour canhave the same data structure in their lhs.In the matrix-vector program there is no edge in the interference graph. It meansthat S1, S2 and S3 can have the same array in their lhs. This one must be the rectangularhull of lhsS1, lhsS2 and lhsS3, i.e. an one-dimensionnal array with n elements. In thetransformed program we try to reuse the original variables as soon as possible, especially forvariables which store output values like the array c. Hence this one is maintained becauseit exactly corresponds to the storage requirement of the parallel program. One just has toreconstrut the data 
ow. One replaces all rhs references by its corresponding source:� replace a leaf of a quast of the form hR;~l(~y)i by A[ ~FR(~l(~y))] where A is the datastructure in the lhs of R built by partial array expansion and partial renaming;� replace a void leaf ? by the original source referenceFor the matrix vector program one gets: 13



program matrix-vectorreal a(n,n), b(n,n), c(n)integer i,j,ndo i=1,nS1 c(i) = 0.do j=1,nS2 c(i) = c(i) + a(i,j)*b(j)end doS3 c(i) = c(i)end doendIt is clear that the statement S3 has become useless after the fusion of c and s and canbe removed in the parallel program. If one builds the parallel program with (6) as schedulefunction without the statement S3, we �nd in Fortran 90:program matrix-vectorreal a(n,n), b(n), c(n)integer i,j,ndo t=0,nif (t .EQ. 0) thenS1 c(1:n:1) = 0.end ifif (t .GE. 1 .AND. t .LE. n) thenS2 c(1:n:1) = c(1:n:1) + a(1:n:1,t)*b(t)end ifend doendOur �rst aim has been reached, our method can e�ectively reduce the memory cost inthe data expansion process of static control programs (see Fig. 7). You can see in thisexample that the data size is less in the parallel program than the original data size. Thesimpli�cation of memory access can in some cases reduce the complexity of the parallelcode. The primitive latency ~L = n + 1 given by (6) is now reduced to ~L = n with theremoval of S3. Moreover partial data expansion may avoid the split of some statements likethe case of S2 in the Fortran 90 code in single assignment form.Statements Original data After total expansion After partial expansionS1 s InsS1[n] c[n]S2 InsS2[n,n]S3 c[n] InsS3[n]Figure 7: The data structures generated by total and partial data expansion3.7 A second Example: Cholesky FactorizationIn this subsection, we present the results we obtain with the Cholesky factorization algo-rithm. The sequential version that we start from is:program cholesinteger i, j, kreal x 14



real a(n,n), p(n)do i=1,nS1 x = a(i,i)do k = 1, i-1S2 x = x - a(i,k)**2end doS3 p(i) = 1.0/sqrt(x)do j = i+1, nS4 x = a(i,j)do k=1,i-1S5 x = x - a(j,k) * a(i,k)end doS6 a(j,i) = x * p(i)end doend doendThe original data storage are a scalar x, one-dimensionnal array p and a two-dimensionnalarray a respectively with n and n2 elements. Fig, 8 gives the DFG of the choles program.If one translates this program into a single assignment form by total data expansionmemory cell referenced in operation source operationa(i; i) hS1; ii ?x hS2; i; ki 8<: if k � 2 � 0then hS2; i; k � 1ielse hS1; iia(i; k) hS2; i; ki hS6; k; iix hS3; ii 8<: if i� 2 � 0then hS2; i; i� 1ielse hS1; iia(i; j) hS4; i; ji ?x hS5; i; j; ki 8<: if k � 2 � 0then hS5; i; j; k � 1ielse hS4; i; jia(j; k) hS5; i; j; ki hS6; k; jia(i; k) hS5; i; j; ki hS6; k; iix hS6; i; ji 8<: if i � 2 � 0then hS5; i; j; i� 1ielse hS4; i; jip(i) hS6; i; ji hS3; iiFigure 8: The DFG of the choles programone gets:PROGRAM cholesreal a(n,n)real InsS1(n)real InsS2(n,n-1)real InsS3(n)real InsS4(n,n-1)real InsS5(n,n-1,n-1)real InsS6(n,n-1)integer n,i,j,kDO i = 1,n,1S1 InsS1(i) = a(i,i)DO k = 1,i-1,1 15



S2 InsS2(i,k) = (if (k-2 >= 0) then InsS2(i,k-1) else InsS1(i)) - InsS6(k,i) ** 2END DOS3 InsS3(i) = 1./sqrt(if (k-2 >= 0) then InsS2(i,j-1) else InsS1(i))DO j = i+1,n,nS4 InsS4(i,j) = a(i,j)DO k = 1,i-1,1S5 InsS5(i,j,k) = (if (k-2 >=0) then InsS5(i,j,k-1) else InsS4(i,j)) - InsS6(k,j) * InsS6(k,i)END DOS6 InsS6(i,j) = (if (i-2 >= 0) then InsS5(i,j,j-1) else InsS4(i,j)) * InsS3(i)END DOEND DOENDYou can see that total data expansion has created six arrays and the data size is ofO(n3) instead of O(n2) in the original version.The schedule function computed by the PAF compiler is given by (15).8>>>>>><>>>>>>: �(S1; i) = 0�(S2; i; k) = 3k�(S3; i) = 3i� 2�(S4; i; j) = 0�(S5; i; j; k) = 3k�(S6; i; j) = 3i � 1 (15)With the help of the DFG and the schedule function (15), we have applied our techniqueof partial data expansion. The �rst step is the estimation of the utility span of each valueand the construction of the USG (see Fig. 9)Operation v L(v) L(v) Utility span of V(v) = [�(v);L(v)]hS1; ii hS2; i; 1i 3 [0; 3]hS2; i; ki 8<: if k � i� 2then hS2; i; k + 1ielse hS3; ii 8<: if k � i� 2then 3k + 3else 3k + 1 8<: if k � i � 2then [3k; 3k+ 3]else [3k; 3k+ 1]hS3; ii hS6; i; ji 3i-1 [3i� 2; 3i� 1]hS4; i; ji hS5; i; j; 1i 3 [0,3]hS5; i; j; ki 8<: if k � i � 2then hS5; i; j; k + 1ielse hS6; i; ji 8<: if k � i� 2then 3k + 3else 3k + 2 8<: if k � i � 2then [3k; 3k+ 3]else [3k; 3k+ 2]hS6; i; ji U(S6; i; j) 3i [3i-1,3i]Figure 9: The USG of the choles programFrom the USG, one computes the maximum duration that an utility span of a value canhave (see Fig. 10). Finally the process of data restructuring by a partial data expansiongives the structures lhs of Fig. 11 and the Interference Graph of Fig. 12. After a partialrenaming, one �nally �nds that on one hand S1 and S2 and on the other hand S4 and S5can share the same data structure in their lhs. One �nally gets the following code:PROGRAM cholesinteger i,j,k,nreal x(n)real a(n,n)real p(n)real Var1(n,n-1)DO i = 1,n,1 16



Statement R Utility span duration of an instance of R Maximum utility span duration on RS1 d(S1; i) = 3 D(S1) = 3S2 d(S2; i; k) =8<: if k � i � 2then 3else 1 D(S2) = 3S3 d(S3; i) = 1 D(S3) = 1S4 d(S4,i,j) = 3 D(S4) = 3S5 d(S5; i; j; k) = 8<: if k � i� 2then 3else 2 D(S5) = 3S6 d(S6,i,j) = 1 D(S6) = 1Figure 10: The maximum duration of each utility span in the choles programStatements Expansion degrees Final data structure Final lhsS1 E0S1 = n lhsS1[n] lhsS1[i] = ...S2 E0S2 = nE1S2 = 0 lhsS2[n] lhsS2[i] = ...S3 E0S3 = n lhsS3[n] lhsS3[i] = ...S4 E0S4 = nE1S4 = n� 1 lhsS4[n,n-1] lhsS4[i,j] = ...S5 E0S5 = nE1S5 = n� 1E2S5 = 0 lhsS5[n,n] lhsS5[i,j] = ...S6 E0S6 = nE1S6 = n� 1 lhsS6[n,n-1] lhsS6[i,j] = ...Figure 11: The results of the partial array expansion for the choles programS1 x(i) = a(i,i)DO k = 1,i-1,1S2 x(i) = x(i) - a(k,i) ** 2END DOS3 p(i) = 1./sqrt(x(i))DO j = i+1,n,1S4 Var1(i,j) = a(i,j)DO k = 1,i-1,1S5 Var1(i,j) = Var1(i,j) - a(k,j) * a(k,i)END DOS6 a(i,j)= Var1(i,j) * p(i)END DOEND DOENDOne can see that the expansion is limited to the scalar x which gets one more dimensionwith n elements, and to create a two-dimensionnal array Var1 with n � (n � 1) elements.With total expansion the data space is of O(n3), with partial expansion it is only of O(n2).Moreover partial data expansion has generated no conditionnal expression. Fig. 13 gives acomparaison of results obtained by applying di�erent existing methods of reduced memory17
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S4

S5

S3Figure 12: The interference graph of the choles programexpansion. The �rst column is the statements list. The others columns give the shape ofdi�erent data structures that one �nds in the lhs of statements: in the source program(1), in the single assignment form program (2), in the version restructured by Rajopadhyemethod applied on the single assignment form version (3) (cf [13]) and by our technique(4). Statements (1) (2) (3) (4)S1 x InsS1[n] InsS1[n] x[n]S2 InsS2[n,n-1] InsS2[n]S4 InsS4[n,n-1] InsS4[n,n-1] Var1[n,n-1]S5 InsS5[n,n-1,n-1] InsS5[n,n-1]S3 p[n] InsS3[n] InsS3[n] p[n]S6 a[n,n] InsS6[n,n-1] InsS6[n,n-1] a[n,n]Figure 13: Comparaison with others methods4 ConclusionIn the PAF compiler, our method can now replace the translation into a single assignmentform. The parallelization process is now applied in this order:1. Array data 
ow analysis2. Scheduling for the real 
ow dependences.3. Partial memory expansion4. Construction of the parallel programOur aim has been reached, our method can e�ectively reduce the memory cost in the dataexpansion process of static control programs. Morover we have obtained two importantresults:1. Our performances are strongly linked to the parallelism degree given by the schedulefunction. The better the parallelism, the higher the memory cost and conversely. Thiscan be explained simply in the following way. The mean degree of parallelism F issimply the mean size of the fronts. There must be no output dependence in a front,hence all operations must write in a di�erent location. Hence we may control thememory expansion and improve our results by adjusting the schedule to the architec-ture. We recall that we have considered that the parallel program will be executed on18



a target architecture with an unbounded number of processors. This program cannotin general be executed directly: the size of the fronts is in fact limited by the realparallelism provided by the target architecture. suppose that the target architectureis a pipeline Cray processor. In this case, all operations of a front are to be instancesof the same statement. Moreover the size of the front is limited to the size of vectorregisters, 64 for instance. One can adjust the schedule in such a way that:� There is only one parallel loop by loop nest.� No front has more operations than 64 (this a variant of the strip mining tech-nique).In the case of the matrix-vector program, it imposes the following multidimensionnalschedule function: 8>>>>>><>>>>>>: �(S1; i) = � � i64 �0 ��(S2; i; j) = � � i64 �j ��(S3; i) = � � i64 �n + 1 �With this schedule, we �nd with our method of partial expansion that the expansiondegrees at depth 0 for S1 and S2 are E0S1 = E0S2 = 64. The array in the lhs of S1and S2 has then one dimension with only 64 elements instead of n. In this case, theFortran 90 code generated is:program matrix-vectorreal a(n,n), b(n), c(n), s(64)integer i,j,ndo t0 = 0,n-1,64do t1=0,n+1if (t1 .EQ. 0) thenS1 s(1:min(64,n-t0):1) = 0.end ifif (t1 .GE. 1 .AND. t1 .LE. n) thenS2 s(1:min(64,n-t0):1) = s(1:min(64,n-t0):1) + a(t0+1:t0+min(64,n-t0):1,t1)*b(t1)end ifif (t1 .EQ. n+1) thenS3 c(t0+1:t0+min(64,n-t0):1) = s(1:min(64,n-t0):1)end ifend doend doendNotice that the statement S3 has not been removed because an array of n elementsis still needed in the lhs of S3. This approach like array privatization technique takesinto account the fact that the real parallelism provided by the target architecture isless than the number of iterations.2. Our method can be used to reduce data space of parallel programs directly providedin single assignment form. Consider for instance that the original version of thematrix-vector program is given in single assignment form. With the schedule func-tion (6), one reduces the original data to an one-dimensionnal array with n elementslike in Fig. 7. It means that our method can reduce the original data size of theprogram if the memory requirement necessary for the schedule function is less than19
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