Array Dataflow Analysis for Polyhedral X10 Programs *

Tomofumi Yuki

Colorado State University
yuki@cs.colostate.edu

Paul Feautrier

LIP (ENS Lyon, INRIA, CNRS, UCBL)
paul.feautrier@ens-lyon.fr

Sanjay Rajopadhye
Colorado State University
Sanjay.Rajopadhye@colostate.edu

Vijay Saraswat

IBM Research
vijay@saraswat.org

Abstract

This paper addresses the static analysis of an important class of X10
programs, namely those with finish/async parallelism, and affine
loops and array reference structure as in the polyhedral model.
For such programs our analysis can certify whenever a program
is deterministic or flags races.

Our key contributions are (i) adaptation of array dataflow anal-
ysis from the polyhedral model to programs with finish/async par-
allelism, and (ii) use of the array dataflow analysis result to certify
determinacy. We distinguish our work from previous approaches by
combining the precise statement instance-wise and array element-
wise analysis capability of the polyhedral model with finish/async
programs that are more expressive than doall parallelism com-
monly considered in the polyhedral literature. We show that our
approach is exact (no false negative/positives) and more precise
than previous approaches, but is limited to programs that fit the
polyhedral model.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Compilers, Debuggers; D.3.3 [Program-
ming Languages]: Language Constructs and Features — Concur-
rent programming structures; D.2.4 [Software Engineering]: Soft-
ware/Program Verification — Validation

Keywords X10; Parallelism; Non-determinism; Array Data-flow
Analysis; Polyhedral Model; Happens-Before; Race Detection; Ex-
ecution Partial Order

1. Introduction

Because parallelism has gone mainstream, the problem of improv-
ing parallel programmer productivity is now increasingly impor-
tant. It was the goal of the DARPA HPCS program, initially for the
supercomputing niche, but is no longer a niche problem. A number
of new parallel programming languages are being actively devel-
oped and explored [2, 6, 8, 18, 22, 30]. These languages all employ
new programming models to ease the parallel programming effort.

*This work was funded in part by the National Science Foundation, Award
Numbers: 1240991 and 0917319

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’13, February 23-27, 2013, Shenzhen, China.

Copyright © 2013 ACM 978-1-4503-1922-5/13/02. .. $10.00

23

While designing and writing parallel programs is significantly
harder than its sequential counterpart, debugging is even harder.
This is due to the non-deterministic nature of parallel execution,
and the accompanying difficulty of reproducing errors. Therefore
the problem of static analysis of parallel programs is becoming
critical. Some recent parallel languages also attempt to ease the de-
bugging effort. For example, Titanium [30] can check for possible
deadlocks at compile time. Most parallel constructs in X10 [22] are
designed such that no (logical) deadlocks occur.

In this paper, we present static race detection for a subset of X10
programs. By providing race-free guarantee, we can prove determi-
nacy of a program. The ability to detect races statically will allow
programmers to correct them as they write the program, greatly im-
proving their productivity. The subset of X10 we consider includes
its core parallel constructs, async and finish. We also require that
the loop bounds and array accesses to be affine to fit the polyhe-
dral model, a mathematical framework for reasoning about pro-
gram transformations [13]. Although it considers a restricted class
of programs, this model has proven very effective and has found
widespread use in automatic parallelization in high performance
computing.

We improve upon previous techniques for static data race detec-
tion in two key directions:

e Our analysis is statement instance-wise and array element-wise.
Most existing approaches (e.g., [9, 15]) analyze race of static
statements and conservatively flags as race if two statements
that may happen in parallel access the same variable. Our analy-
sis will find sets of statement instances (i.e., statement executed
when loop counters take specific values) that may happen in
parallel, and only flags as race if they access the same element
of an array.

In comparison with other methods that support both instance-
wise and element-wise analysis [5, 7], our work supports paral-
lelism based on finish/async constructs, which are more expres-
sive than doall type parallelism considered in prior work.

Consider the following code fragment that uses the async con-
struct of X10. An async spawns a new activity to execute the en-
closed statement. The spawning activity cannot proceed beyond the
end of an enclosing finish block—another of X10’s constructs—
until all activities that it has spawned have terminated.

for (i in 0..N) {
S0

async S1

The above code sequentially executes S0 at each iteration of the
loop, and after executing SO, spawns a new activity to execute an
instance of S1. Such parallelism cannot be expressed as doall type
parallelism, and no clean way to express it as a schedule in the
polyhedral model is currently available.

Our race detection is based on an adaptation of array dataflow
analysis [11] from the polyhedral model. This allows us to have
the same level of precisions as other work based on the polyhedral
model, but is applicable to finish/async based parallelism. Specifi-
cally, the key contributions of this paper are:

e A very simple formulation of the operational semantics for this
fragment of X10, significantly simplifying [16, 23]. This di-
rectly leads to a simple definition of the “happens-before” (HB)
and “may-happen-in-parallel” (MHP) relation on statements.

e Characterization of the HB relation as an incomplete lexico-
graphical order. This is the key to reuse techniques from the
polyhedral model for X10 programs.

Adaptation of Array Dataflow Analysis [11] for X10 programs.
Array dataflow analysis answers the question, which instance
of which statement produced the value being used for each
statement instance. We have extended this analysis to handle
X10 programs.

e Race Detection using array dataflow results. The key idea is that
once we have solved the dataflow problem, we can identify the
set of instances that cause a race by pinpointing the set of array
cells which have multiple producers.

Prototype implementation of a verifier for our subset of X10. If
a program has races, our tool can tell precisely which statement
instances are involved.

2. A Subset of X10

Our main interest is in intra-procedural analysis, and we wish to
address the integration of finish/async concurrency with loops over
array based data-structures in a pure form. Hence we will only
consider assignment statements, sequencing, finish, async and for
loops, and variables that range over integers and arrays of integers.
This allows us to state certain properties of the key relations—
Happens Before and its closely related May Happens in Parallel—
in a pure form. Our formal treatment of the semantics can be ex-
tended mutatis mutandis with conditionals, local variables, poten-
tially infinite loops, method calls, objects and functions etc., but
we restrain ourselves to the subset we can analyze with polyhedral
machinery.

The subset of X10 [22] we consider consists of the following
control constructs:

e Sequence ({ST}): Composes two statements in sequence.

e Sequential for loop: We assume all loops have an associated
loop iterator. X10 loops may scan a multidimensional iteration
space. However, we assume that such loops have been expanded
into a nest of unidimensional loops.

e Parallel activation, async: The body of the async is executed
by an independent lightweight thread, called activity in X10.

e Termination detection, finish: An activity waits for all activ-
ities spawned within the body of finish to terminate before
proceeding further. In addition, each program has an implicit
finish as its top level construct.

We also require the program to fit the polyhedral model. The
polyhedral model requires loop bounds, and array access to be
affine expressions of the surrounding loop indices. Multidimen-
sional arrays in X10 and Java are in fact trees of one-dimensional

arrays. As such, they support many operations beyond simple sub-
scripting. An example is row interchange in constant time. Detec-
tion of such uses is beyond the scope of this paper; see for instance
[29] for an abstract interpretation approach.

Note that the full language permits some additional constructs:
for instance the (conditional) atomic block (when(c) S) . This
construct permits data-dependent synchronization in general and
barrier-style clocks [23] in particular. The at construct permits
computation across multiple places. We leave the integration of
these statements into the analysis of this paper for future work.

2.1 Operational Semantics

We provide a simple, concise structural operational semantics
(SOS) for the fragment of X10 considered in this paper. This se-
mantics is considerably simpler than [23] because it eschews the
“Middleweight Java” approach in favor of directly specifying se-
mantics on statements. Unlike [16] there is no need to translate
the statement to be executed into different kinds of tree-like struc-
ture; the information is already contained in the lexical structure
of the statement and can be elegantly exploited using SOS based
structural rules.

In this section, we present the semantics, characterize certain
syntactic properties of statements (the happens-before and the may-
happen-in-parallel relation), and relate them to behavioral proper-
ties. For simplicity of exposition, we chose to use a sequentially
consistent memory model. In future work we expect to apply the
methods of [24] to adapt the analysis techniques developed in this
paper to relaxed memory models.

We assume that a set of (typed) locations Loc, and a set of
values, Val, is given. Loc typically includes the set of variables in
the program under consideration. With every d-dimensional N; x
... X Ny array-valued variable a of type array are associated a set of
distinct locations, designated a (0, ...,0), ..., a(Ni-1, ...,
N4-1). The set of values includes integers and arrays.

A heap is a partial (finite) mapping from Loc to Val. For i a
heap, [a location and v a value by h[l = v] we shall mean the heap
that is the same as & except that it takes on the value v at [. By h(l)
we mean the value e to which 4 maps /.

DEFINITION 2.1 (Expressions). We assume that a set of RHS ex-
pressions (ranged over by e, e’ eq,e1,...) that denote values is de-
fined. RHS expression include variables (e.g., x), literals (e.g., 0),
array accesses (e.g., a(p)), and appropriate operations over inte-
gers (e.g., addition). We also assume that a set of LHS expressions
(ranged over by a,d ,ag,ai,...) that denote locations is defined.
These include variables and array accesses.! We extend h to a map
from RHS expressions to values and from LHS expressions to loca-
tions in the obvious way.

DEFINITION 2.2 (Statements). The statements are defined by the

productions:

(Statements) S =
T Execute T.
{T S} Execute 7 then S.

T n=

a=e; Assignment.
for(x inel..e2) S Execute Sforxinel...e2.
async § Spawn S.
finish S Execute S and wait for termination.

!Thus, as is conventional in modern imperative languages, the notation a(i)
is ambiguous. When used on the LHS it represents a location and when used
on the RHS it represents the contents of that location.

DEFINITION 2.3 (Paths). The set of paths P[S] corresponding to
a statement S is given as follows. For a set of paths U, we let xU
stand for the set of paths xs, for s € U.

Pla=e]] = {e}
PI{STY] = {epuoP[SJU1P[T]
Pl for(x inel..e2) S| = {e}UxP[S]
Pllasync] = {e}ua?[s]
P(finish S]] = {efUrP[S]

The statements for which the operational semantics is defined
are assumed to satisfy some static semantic conditions (e.g., well-
typedness). We omit the details. Note that in a for loop the index
variable is considered bound. To avoid dealing with alpha renam-
ing, we assume that in the statement under consideration no two
loop index variables are the same.

Note that the set of paths for a statement is non-empty and
prefix-closed, hence defines a tree. A path p € P[S] is terminal if
it is not a proper prefix of any other in 2[[S]]. For example, in Fig. 1
[0, f,0,i,qa] is the (terminal) path for statement SO, and [0, f, 1] is a
(non-terminal) path.

From the definition of statements and paths, the only place
that two paths may diverge is at a sequential composition. For a
statement S, let sx and sy be two distinct paths in P[[S]. Note that
paths in P[[S]] are symbolic, since loop iterators are variables. We
define an instance of a path as t = s0, where 0 is a substitution
applied to s € P[[S] mapping index variables to integers.> Now,
two path instances sx and sy can diverge either when they follow
different branches via sequantial composition, or when they have
different values of loop iterators.

PROPOSITION 2.1. For a statement S, let sx and sy be two distinct
instances of paths in P[[S]]. Then either x <y ory < x.

We also introduce a notation to denote sub-statements. Let S be
a statement and s € P[S]. We use the notation S’s to refer to the
sub-statement of S obtained by traversing the path s from the root.
Given a path instance r = 56, we define St to be (S"s)0, that is, 8
applied to the statement obtained by traversing the path s from the
root of S. This definition is justified by the fact that 0 is unique for
each path instance.

DEFINITION 2.4 (Read and write set). Let S be a statement, and
s € P[[S]] a terminal path (or path instance). We let rd(S,s) denote
the set of locations read by S*s and wr(S,s) the set of locations
written in §”s.

Let s,t be two paths or path instances for S. We say s write-
affects ¢ if wr(S,s) N (rd(S,t) Uwr(S,t)) is non-empty. We say that
s and t conflict if s write-affects t or vice versa. We say that t self-
conflicts if rd(S,t) Uwr(S,t) is non-empty.

For instance, let S be the statement for(i in 0..10) a(i) = a(i) + 1.
Then the path [€] self-conflicts, as does [i]. But the path (instance)
[0] does not. In fact the paths [i],[/] do not conflict if , j are distinct
integers (in the given range.)

Note that S"s may be a statement with free variables (e.g., pa-
rameters), hence the set of locations read/written may be symbolic
(i.e., heap-dependent at run-time.)

Execution relation. As is conventional in SOS, we shall take a
configuration to be a pair (S,h) (representing a state in which §
has to be executed in the heap &) or / (representing a terminated
computation.)

2 Usually, we will be concerned only with path instances that satisfy the
bounds conditions for the index variable. Note that given S, s € P[S], and
an instance ¢ = 56 note that 6 can be recovered uniquely.

25

The operational execution relation — is defined as a binary
relation on configurations. We use the “matrix” convention for
presenting rules compactly. A rule such as:

€05---5Cp—1
Y—Y /|- [¥
y°—>58| |f5271

n— -1 -1
v 1—)56" [... |80

(with p > 0,m > 0,n > 0) is taken as shorthand for m X n rules:
infer ¢ — B’j from cg,...,cp—1,Y —> ¥j, fori <m, j <n.
The axioms and rules of inference are:

I =h(a),v=h(e)
(a=eh) — hll =]

ey

(S,hy — (S', 1Y | W

{81y — {S'THH) | (T,K)
(async S,h) —> (async S',K') | W
(finish S,h) — (finish S, W) |H
({async TS},h) —

{async TS'},K) | (async T,H')
(

One can think of these rules as propagating an “active” tag from
a statement to its constituent statements. The first rule says that if
{ST} is active then so is S (that is, any transition taken by S can be
transformed into a transition of {S7'}). The second rule says that if
async Sis active, then so is S. The third rule says the same thing for
finish S. The fourth rule captures the essence of async (we call it
the “out of order” rule). It says that in a sequential composition
{async TS}, the second component S is also active. Thus one
can think of async § as licensing the activation of the following
statement (in addition to activating S).

The first for rule terminates execution of the for statement if
its lower bound is greater than its upper bound.

I =h(ey),u=h(er),l>u 3

(for(x ineg..e1) S,h) — h &

The recursive rule performs a “one step” unfolding of the for

loop. Note that the binding of x to a value / is represented by

applying the substitution 8 = x +— [to S, rather than by adding

the binding to the heap. This is permissible because x does not
represent a mutable location in S.

I=h(ey),u=hle)),l <um=1+1,T =S[l/x]
(T.h)y — (T"H)|W
(for(x ineg..e;) S,h) —
({T' for(x inm..u) S}, i) | (for(x inm..u) S,H’)
(C))

We now define appropriate semantical notions.

DEFINITION 2.5 (Semantics). Let — represent the reflexive,
transitive closure of —. The operational semantics, O[S]| of a
statement S is the relation
d
OlS] “ {(h 1) | (5.) = W'}
Sometimes a set of observable variables is defined by the pro-
grammer, and the notion of semantics appropriately refined:

def

O[S, VI'= {(h K|)| (S,h) = K}

where for a function f :D — RandV C D by f v we mean the

function f restricted to the domain'V.

Note in the above definition we have chosen not to restrict the
set of variables over which the input heap is defined. In a more

complete treatment of the semantics, we would introduce the new
operation which permits dynamic allocation of memory, and define
the program as being executed in a heap that is initially defined
over only the input array of strings containing the command line
arguments.

DEFINITION 2.6 (Determinacy). A statement S with set of observ-
ables V is said to be scheduler determinate over V (or just determi-
nate for short) if O[S, V] represents the graph of a function, rather
than a relation.

S is said to be scheduler determinate if it is scheduler determi-
nate over the set of its free variables.

2.2 Happens Before and May Happen in Parallel relations

‘We now establish two structural relations on statements, and con-
nect them to the dynamic behavior of the statements.

DEFINITION 2.7 (Happens Before). Given a statement S, two ter-
minal path instances i, j in P[S]), we say that i happens before j,
and write i < j, if for some arbitrary label sequences s,t,u, some
sequence c over integers, and integers mq,my with mg < my:

i=smyc/N\j=smiu

o, i=smgcft Nj=smiu

The definition does not explicitly mention async nodes. The label
a may occur in i, but only in s or in ¢. In the first case the occurrence
can be ignored because we are considering two paths that lie within
the same async. In the latter case the occurrence may be ignored
because it is covered by a finish. The intuition is that the “async-
ness” of a node can never cause it to happen before some other
node. But the “finishness” of a node can—it suppresses all down-
stream asyncs. This intuition is formalized in the next section.

The following proposition is easy to establish by reasoning
about sequences.

PROPOSITION 2.2. (Transitivity) If i < j and j < k then i < k.
(Asymmetry) If i < j then it is not the case that j < i. (Irreflexivity)
For no i is it the case that i < i.

Thus < is a strict order. But it is not total. Consider i = Oa and
J = 1.Itis not the case that i < j or j <.

DEFINITION 2.8 (May Happen In Parallel). Given a statement S,
two terminal path instances i,j in P[S], we say that i can start
with j running, if for some arbitrary label sequences s,t,u, some
sequence c over integers, and integers mo,my with mg < my:

i=smgycat, and,
j=smiu
We say that i may happen in parallel with j, and write i#j, if j
starts with i running, or i starts with j running.

PROPOSITION 2.3. Let S be a statement with two paths q,r. Then
griff ~(g<r)AN=(r<q)ANq#r.

The proof of the forward direction is easy. In the backward
direction we need Proposition 2.1.

DEFINITION 2.9 (Race). Given a statement S and two sub-statements

T and U, we say that there is a race involving T and U, if for some
legal instances t = T©; and u = U®,,, t#u and memory accesses by
t and u conflict.

2.3 Correspondence

We now establish the relationship between the HB and MHP rela-
tions and the transition relation. The formal language we are work-
ing with does not have conditionals, or local variables, or infinite
loops. This means that every sub-statement will execute in every

26

initial heap. Hence it is possible to characterize the MHP and HB
relations in very simple terms.

The key idea in establishing the correspondence is to surface the
path/time stamp of a statement in the transition relation. We label
each step by the “reason” for the step—the path (from the root) to
the substatement that triggers (is the base case for) the transition.

We proceed as follows. First we define labeled statements—
each substatement is labeled with the path from the root. Next
we label transitions. The rules are a straightforward adaptation of
Rules 1—4. The only point worth noting is that in the recursive
rule for for, the substitution S[//x] replaces x by / in the labels of
all substatements of § as well.3

(&)

(S,hy —S (S', W'Y | K

{sthny —* ({S'THH)|(T.1)
{{async TS},hy —* ({async TS'},K) | (async T,H')
(async S,h)y —* (async S',K) | I
(finish S,h) —* (finish ", 0') |
(0)
I =h(eg),u=nh(er),u>1 @

(for(x ineg..e1) S*,h) —* h

I=h(ey),u=hle)),l <um=1+1,T =S[l/x]
<T7h> —* <T/7h/> ‘ h/
(for(x ineg..ey) S,h) —*°
({T' for(x in m..u) S}, i) | (for(x inm..u) S,H)
(®)
Clearly this transition system is conservative over the previous
one—it merely decorates each step with extra information.

THEOREM 1 (Characterization of HB). Let S be a statement and
q,r terminal paths in P[[S].

If g < r then for any heap h, in any labeled transition sequence
starting from (S, h) containing q and r, (the transition labeled with)
q occurs before (the transition labeled with) r.

(Converse) If for all heaps h and all transition sequences started
from (S, h) containing q and r it is the case that q occurs before r
then g <r.

The forward direction is proved by structural induction on S. The
key case is sequential composition U = {ST} in which ¢ is a path
leading into S and r into 7. Here, the only “out of order” transition
possible is because of the “out of order” rule, which requires S be
an async. But since ¢ < r we know that g = s0c or ¢ = sOcft and
r = slu (with s being the label for U). Hence S cannot be an async
since its type is specified by the first label of cfz. In the converse
direction, without loss of generality, let ¢ = s0¢ and r = slu. If
the first symbol in # that is not an integer is an a, then we show
in the proof that the “out of order” rule can be used to construct
an execution sequence in which r precedes ¢, contradicting our
assumption. Hence ¢ < r.
The proof of the following theorem is similar.

THEOREM 2 (Characterization of MHP). Let S be a statement and
q,r terminal paths in P[[S].

If gi#tr then for any heap h there is a transition sequence starting
from (S,h) containing q and r s.t. q occurs before r and another
such that r occurs before q.

(Converse) If for all heaps h there is a transition sequence
starting from (S,h) containing q and r s.t. q occurs before r and
another such that r occurs before q, then g#r or riq.

31n Rule 7, s is the label for the whole for statement.

PROPOSITION 2.4. Let S be a statement. If no two sub-statements
are in a race, then S is determinate.

The converse is not true. There may be a race but it may be be-
nign, i.e., it does not affect the outcome of the program. Consider:

finish {
async x=1; // S0=[f0a]
x=1; // Sl=[f1]

}

Statements SO and S1 are in a race (they may happen in parallel and
their write sets overlap), however, the statement is determinate, it
will always yield a heap which is the same as the initial except that
maps x to 1.

3. The “Happens-Before” Relation as an
Incomplete Lexicographic Order

In this section, we formulate the “happens-before” relation, in a
manner familiar from polyhedral analysis. In the polyhedral anal-
ysis of sequential languages, statement instances in a program are
given unique time stamps represented as integer vectors. These vec-
tors are ordered lexicographically—this order is sufficient to cap-
ture the idea of “happens-before” for a sequential language.

The strict lexicographic order is defined for two distinct such
integer vectors u and v as follows:

uLv = \/u<<,,v7)
p=0
p

uLpv = (/\uk:\/k>/\(up+1<vp+1) (10)
k=1

As we saw in Section 2.1, the happens-before order in X10
must be sensitive to the presence of finish and async nodes.
To take these constructions into account, we will use the paths of
Section 2.1—vectors of integers, loop counters and the letters a
and f—as time stamps. Polyhedral analyses can take loop counters
symbolically, but reason about path instances, where loop counters
take some integer value.

We will consider only terminal paths. The lexicographic order
may be extended to paths simply by specifying how to order the
additional symbols a and f, for instance by assuming that a < £
and that they occur later than integers and loop counters. This
convention is irrelevant, since, by Proposition 2.1, we will never
have to compare a or f to any other item in a path provided, we
only compare distinct vectors.

Given a time stamp ¢, |g| is its dimension, g;,1 <i < |g| (some-
times written g[i]) is its i-th component, and g[i..j],i < j is the vec-
tor whose components are ¢;, g1, - -.q;. A common shorthand for
qli--|q|] is qi..].

A time stamp in which the loop counters have been replaced by
integers denotes at most one instance of an elementary statement or
operation. The admissible values are constrained to be within the
enclosing loop bounds, which are assumed to be affine. The set of
admissible values for the time stamps of statement S, the iteration
domain of S, is written Ds. Under the above hypothesis, Dy is a
polyhedron.

We now reconstruct the “happens-before” relation as a “re-
laxed” lexicographic order. We start from the observation that:

(g=r)V(r<qg).

This suggests that g < r be constructed as a case distinction:

true=(g<r)V

e gkLr—?
e g =r — false
o r L q—?

27

The case ¢ = r is obvious, since an operation cannot execute before
itself. Let us now show that if » < ¢, then ¢ < r is impossible. In
the notations of Definition 2.7, let s be the common prefix of g and
r: q = s.x.u and r = s.y.v. By Proposition 2.1, either x <y ory < x
is true, and r < ¢ implies that x > y. Then, Definition 2.7 implies
that ¢ < r cannot be true.

The conclusion is that in the above disjunction, only the first
case has to be considered. This in turn can be expanded according
to the definition (9) of <:

e gLor—?

e gL r—?

. ..
e gLy r—?

The case distinction extends until g < r is obviously false, i.e.,
when g, and r; are different integers, since all predicates ¢ <y
r,k' > k contains the constraint g; = ry.

Let us now consider one of the cases ¢ < r. The two time
stamps have a common prefix g[1..k] = r[1..k], and by the same
reasoning as above, qx+; = 0 and g = 1. We are then in a
position to apply Definition 2.7. If the first letter in the vector
glk+1.] is an £ or if there is no letter, then g < r is true, and
otherwise is false.

The discussion above can be summarized by the following al-
gorithm:

Algorithm H
e Input: Two paths g, .

e QOutput: The constraint % in the loop counters of ¢,r (if any)
which captures the precise conditions under which g < r.

o h:=false

e b :=true

e for k = |g| downto 1:
1. if g = a then b := false
2. if g = £ then b := true
3.ifbAk<|r|then h:=hV (g <_)

Here, h denotes a disjunction of affine constraints, which is
initialized to false, is augmented each time line (3) is executed, and
is the “happens-before” predicate when the algorithm terminates.

In what follows, in the interest of compactness, we will allow
sequences with more that two items, and timestamps containing
integers larger than 1.

Example

Let us apply algorithm H to the example shown in Figure 1. The
time stamps associated with each statement are as follows: S0:
[0,£,0,i,a], s1: [0,£,1,], and S2: [1].

We first ask if SO < S1. Then ¢ = [0,£,0,i,a] and r = [0, £, 1, j].

e We start from k = |g| =5, b = true, and h = false.
e Atk =15, b becomes false, since g5 = a.

¢ Since g; does not point to an £ until p = 1, no changes occur. At
k=1,qg <o r=gq; <rp is false, and hence SO does not happen
before S1.

Let us now ask the question if SO < S2. Then ¢ = [0,£,0,1,a]
and r = [1]. Since |r| = 1, line (3) is never executed until k = 1. We
reach k = 1 in the same state as in the previous example, but in this
case g <o r =gq; < rp is true, and hence SO < S2.

Although we have illustrated the algorithm with an example,
the algorithm is not used in this fashion in the following sections.

finish S2
f
0 seq ~ 1
for for
finish { i
for (i=0 to N)
async SO async s1
for (j=0 to N) a
S1
} S0
S2

Figure 1: Example X10 code and its corresponding AST.

The important observation is that the algorithm only executes line
(3) at a subset of the dimensions. Moreover, the subset is deter-
mined purely structurally, i.e., given the AST and two statements,
one can find a subset / where lexicographic comparison should be
performed. This leads to the following re-formulation of the algo-
rithm as an incomplete lexicographic order:

(I<VEU61<</M
kel

Y

Itis well known that the <, are disjoint. A pair ¢, being given,
there is at most one k such that ¢ <, r. k is the rightmost index such
that g[1...k] = r[1...k]. From this follows that < is transitive.

The observation that the “happens-before” relation is an incom-
plete lexicographic order becomes important in the next section.
Because of this property, we can formulate the dataflow analysis
questions for X10 programs in a way that can be efficiently solved.

Lastly, the way we have constructed algorithm H clearly implies
that:

PROPOSITION 3.1. Algorithm H exactly implements the “happens-
before” relation of Definition 2.7

4. Dataflow Analysis

In this section, we present an adaptation of array dataflow analy-
sis [11] for X10 programs, based on the “happens-before” relation
as defined in the preceding section. The analysis is outlined in Fig-
ure 2.

Dataflow analysis aims at identifying, for each read access to a
memory cell x, the source of the value found in x, i.e., the operation
which wrote last into x. If the program is sequential, and fits into
the polyhedral model [13] each read has a unique source which can
be identified exactly [11].

However, the situation is different for parallel programs, since
the actual execution order of operations may differ from run to
run, due to scheduler decisions or hardware clock drifts. As a
consequence, the content of some memory cell at a given step in
the execution of a program may differ across runs. In other words,
the answer to the dataflow question, which operation wrote last into
X may be different.

This is called a race in software, or a hazard in hardware. The
presence of a race condition in a program is usually a bug #, which
may be very difficult to diagnose and to correct, as it may manifest
itself with very low probability.

41t ultimately depends on the intension of the programmer.

28

Input:

R,A, fr: A read in a statement R. R reads from a shared array (or
scalar) A with access function fz.

W: Set of statements W that write to A with access function fyy.
Output:

Q: Quast (Quasi-Affine Solution Tree [10]) that gives the producer
of read by instances of R.

Algorithm:

1. foreach W ¢ W

(a) Compute Potential Sources Ly (v) of W; the set of statement
instances that (i) write to the same memory location, and (ii)
the read do not happen before the write, parameterized by
instances of R, v.

(b) Compute Self Overwrites Xy, (v) of W; the set of writes
overwritten by another instance of the same statement, pa-
rameterized by instances of R, v.

2. foreach W € W

(a) Compute Validity Domain Validy of v € R; the set where v
is valid for Xy (v). An instance v becomes invalid if its write
is overwritten by other statements.

3. Compute Q:
0:=0
foreach W € W
(@ Q:= QU (Ew»)/Zy (v)) Av € Validy)
A write W is a producer of v if (i) it is a potential source,
(ii) not overwritten by other instances of W, and (iii) not
overwritten by writes of other statements.

Figure 2: Overview of array dataflow analysis for our X10 subset.

4.1 Potential Sources

Let us focus on an instance of statement R at time stamp v, which
has a read of array A at subscript(s) fr(v). The potential sources
are instances of a statements W at time stamp w, which write into A
at subscript(s) fw(w). fr and fi are vector functions of the same
dimension as A. The set of potential sources is defined by:

v € Dg, 12)

w € Dy, 13)

fww) = fr(v), (14)
S(v=<w) A v#EwW (15)

Constraint (12) and (13) respectively constraints v and w to set of
legal time stamps (iteration domain) of R and W. Constraint (14)
restricts to those with conflicting memory accesses; those access
the same element of the array A. Lastly, constraint (15) removes
writes that happen after reads (v < w), and write by the same
statement instance (v = w). In a sequential program, < is total,
hence —(v < w) Av # w = w < v, which is the usual formulation
[11].

Let Xy (v) be the set of potential sources as defined by (12-
14) and (15). If the source program fits in the polyhedral model,
all constraints are affine with the exception of (15), which can be
expanded in Disjunctive Normal Form (DNF). Hence, Xy (v) is a
union of polyhedra.

4.2 Overwriting

Let x be a write to the same memory cell as w. x overwrite w if in all
executions, x happens between w and v, or w < x < v. Itis clear that
if an overwrite exists, v will never see the value written by w. Both

conditions are necessary: if one of them were not true, there would
exists executions in which x happens before w, or v happens before
x, and the value written at w would still be visible at v. This step
is analogous to restricting the set of candidate sources to the most
recent write in the original array dataflow analysis [11]. However,
since the order is not total, the most recent write is not unique.

4.2.1 Self Overwrites

Write by a statement may be overwritten by other instances of the
same statement. An instance w in Xy (v) is a real source only if no
other instance of W, x, overwrite w, i.e.,

weZw(v)A-IxeXw(v) 1w <x. (16)

This is exactly the definition of the set of upper bounds of Xy
according to <. When < is total, in the sequential case, (16) defines
the unique maximum of Py . In extreme cases, < may be empty, and
all tentative sources must be kept.

One possibility is to eliminate the existential quantifier in for-
mula (16) using any projection algorithm, compute the negation
and simplify the resulting formula. The drawback of this approach
is its complexity: quantifier elimination in integers may generate
expressions of exponential size, and so does negation.

Another possibility is to exploit the special form (11) of <.
Since existential quantification distributes over disjunction, one has
to compute dx : w <, x for each term which is present in <. Due
to the very simple form of <, this set can be computed very ef-
ficiently using Parametric Integer Programming [10]. Simply solve
the problem min{x € Xy (v)|w <, x} parametrically with respect
to v and w. The result is a conditional expression (a quast) whose
nodes bear affine constraints in the parameters, and whose leaves
are either affine forms or the special term L, indicating that for
some values of the parameters, the set above is empty. The disjunc-
tion of the paths leading to leaves not bearing a L is the required
projection. Then take the union of all such sets, denoted Xy, in Fig-
ure 2, and subtract it from Xy .

4.2.2 Group Overwrites

Another case of overwrite happens when, for a given read, there are
two possible writing statements, W; and W,. A candidate source
wy € Zw, (v) is not visible to v if there exists wy € Xy, (v) where
w1 < wa.

This condition can be checked by inspecting the AST and Xy .
In the AST, the paths from the root to W; and W, diverge at some
seq or async or finish node. Assume that W; is to the left of
W, then for each wy € Zw, (v), one may associate wo such that
wy < wy. Let p be the common prefix of time stamps labeled to W
and W,. Then Vk,1 <k < p,w;[k] = wy[k] and wi[p+1] < wa[p+
1]. Regardless of the remaining values beyond p+ 1, wi <, w
holds. According to algorithm H, w; < w, if the uppermost parallel
construct in W below the common node is not an async, and hence
wy is overwritten by wy. Otherwise, wi and wy can happen in any
order and w; is not overwritten. Similarly, there is no w, where
w1 < wy if W is to the left of Wy, since we obtain wy <, wy.

However, this construction fails if for the considered value of v,
Zw, (v) is empty. As a set, Ty (v) is a function of v, and it may be
empty for some values of v, i.e., for some values of v, R may have
no sources from W. Let us define the range of W as:

Qw = {v|Zw(v) #0}.

The source is in X (v) if v € Qp, and in X (v) if v € Q1 \Q;.

In the general case we must consider more than two writing
statements. Let us define an order on the writing statements by the
definition: W < W’ if W is to the left of W’ in the AST, and if the
uppermost parallel construct in the path to W from the common
node is not an async. It is easy to prove transitivity of <. For each

29

W, one may define a validity by the rule:
Validy = Qw\ | Qw.

w<W’
The source is in Xy only if v € Validy. Maximal elements in the
< order have no successors, hence for them Validy = Qy, while
some other statements may have empty validity sets, indicating
complete overwriting.

5. Race Detection

Once we have Yy, Xy, and Validy for all writers W, the output
quast of the dataflow analysis may be computed. However, the
resulting quast may not be well-defined: a read may have multiple
sources when the program contains races. The detection of races
using the array dataflow analysis result is discussed in this section.

5.1 Race between Read and Write

The set of potential sources Ly (v) can be split in two sets according
to whether w < v is true or not. If =(w < v), =(v <w) and v # w
(recall constraint (15)), then the read and the write may happen in
parallel. In other words, v and w are not ordered, and thus v may
execute before w in some execution but w may precede v in the
other. Hence there is clearly a race in this case.

Let I, (v) be like Zw(v) with (15) replaced by —(w < v) A
=(v < w)Av # w. A non empty X, (v) indicates a race. The
emptiness of Xj, may be tested in many way, for instance by
expanding its constraints to DNF and applying linear programming,
or by submitting its definition to an SMT solver, like Yices, Z3, or
CVC among others. If £, is found to be non empty, the compiler
may issue a warning about statement R, and no further analyses are
needed.

5.2 Race between Writes

Let Xy, (v) the set of sources after self overwrites have been re-
moved. Then the source of aread at v is Xy, (v) if v € Validw . How-
ever, the source may not be unique if the program has races. There
are two types of races:

e Race between multiple writes by the same statement. If there
exists a solution to the problem v € Validw, x,y € Ljy (v), x #,
then x and y are involved in a race.

e Race between multiple writes by two statements. Two state-
ments Wy and W, have a race if: Validw, A Validy, # 0.

Both conditions can be checked by any SMT solver.

It is also important to note that it is not necessary to do all
the above checks. For instance, if W) < W5, their validity sets
are disjoint by construction. Race detection of the first kind may
be performed as we construct the sets, and the analysis may stop
as soon as a race found. This approach may greatly reduce the
complexity of the method.

5.3 Detection of Benign Races

The above approach is already sufficient to certify determinism of
a program. However, additional analysis may be performed to flag
questionable behavior of the program as warnings. For instance,
our analysis detect array elements which are read but never written.
Another questionable behavior is benign races—races that do
not influence the program determinacy. If two potential writes x and
y may happen in parallel, x and y are in a race. However, if these
writes are overwritten later or are not seen by any read, they are
harmless. It might nevertheless be useful to warn the programmer
of such behavior: a benign race can be taken as the indication of
dead code. A way to handle them is therefore to do a backward
recursive analysis starting from the output of the program.

5.4 Kernel Analysis

It is often the case that the full program is not polyhedral, while
the core kernels are. In addition, due to the high cost of polyhedral
analysis, it may not be practical to analyze the entire program.

The usual approach is to find “polyhedral parts”—subtrees in
the AST that fit in the polyhedral model, and analyze them in-
dependently. Polyhedral methods are obvious candidates for such
code fragments. For a finish/async language like X10, one must be
more careful, since a subtree or a method may terminate but leave
un-finished activities behind. Hence, to be handled with our meth-
ods, the sub-tree must satisfy the following properties in addition
to the constraints of the polyhedral model:

e The uppermost parallel construct (in the path from the root of
the sub-tree to each statement must be a £inish if there is one.

e Similarly, let S be a statement that dominates statements in the
sub-tree. Then the uppermost parallel construct in the path from
the common prefix of S and the sub-tree to S must be a finish
if there is one.

The above follows from algorithm H, and ensures that all state-
ments before and after the sub-tree are ordered by the happens-
before relation, with respect to the statements in the sub-tree.

6. Examples

In this section, we illustrate by examples the importance of two
key strength of our approach; statement instance-wise, and array
element-wise analysis. We specifically compare with the work by
Vecheyv et al. [27] and with other polyhedral approaches [5, 7]. We
are not aware of any other state-of-the-art static analysis techniques
for race detection that perform instance-wise or element-wise anal-
ysis.

6.1 Importance of Element-wise

Let us first use an example similar to the one used by Vechev et
al. [27]. The following code is a simplified example of a common
case in parallel programming, where a shared array is accesses by
multiple threads.

finish {
async for (i in 1..N)
B[i] = C[i]; // SO
async for (j in N..2*N)
B[j] = C[2*i]; // Sl
}
for (k=1:2N)
= foo(B[k], ...); // S2

The time. s.tarnps and iteration domains are:
¢ S0: [0,£,0,a,i], Dso = {i|[l <i< N}
« §1:0,£,1,,j]. Dsi = {jIN < j < 2N}
e 82: [1,k], Ds, = {k|1 <k <2N}
The only read in the program is the read of B by S2. Our anal-

ysis returns the following answer to the question: which statement
produced the value of B[k] at §2:

e If 1 <k < NAk<2N then SO[4] is a producer.
e If 1 <k <2NAN <k then S1[k] is a producer.

where Sn[v] denote the instance of Sn when its loop counters take
the value v. It concludes that there is a race by two writers since the
two sources overlap at k = N.

For this example, both of the other approaches will find the race
with similar precision. However, if an analysis is not element-wise,
then the analysis only finds that there is a race with the entire array
B. Assuming that the programmer is warned of this race and change

30

the lower bound of the j loop to N + 1, making the program race
free, statement based approaches will still conservatively flag the
array B to be in conflict.

6.2 Element-wise with Polyhedral

However, element-wise analysis in the work by Vechev et al. [27] is
limited compared to polyhedral approaches, since they use an over-
approximation. They require that any multi-dimensional arrays is
reshaped into a 1D array, and the range of the 1D array to be repre-
sented with affine constraints. Furthermore, the renaming must be
relative to what is called the taskID that identify an iteration of the
loop ran by a thread.

For example, write to array 2 in the following code is expressed
as writes to A; [j], where i is the taskID.

for (i in 0..(N-1))
async
for (j in 0..(N-1))
A[1][3] = // S0
Approaches based on the polyhedral model, including ours,
represents the write to A as an affine function (i, j — i, j) from the
iteration domain Dgy = {i, |0 <i,j < N}.
Let us illustrate the difference with a slight modification to the
first example.

{ finish {
async for (i
B[2*1]

i in 0..(N-1))
async for (j
]

Clil; // S0
in 0..(N-1))
= C[2*1]; // S1
= foo(BI[N]); // S2

}
The difference is in the writes to B, which now do not conflict.

Our analysis returns the following answer to the question, which
statement produced the value read by read B[N] at S2:

e If 3¢ : 2¢ = NAN > 2 then SO[N/2] is a producer.
e If3e:2¢e=N—1AN >1then S1[{(N —1)/2] is a producer.

Note that the parametric integer linear programming [10] step (Sec-
tion 4.2.1) introduces a “new parameter” (existentially quantified
variable). The intersection of the two validity sets is empty, and we
conclude that the program is race free.

However, the over-approximation by Vechev et al. [27] will
approximate the write by SO to be 0 <i <2N —2, and the write by
S1tobe 1 <i<2N — 1. Clearly, the two approximations overlap,
and hence their approach would conservatively flag the program to
have race.

6.3 Importance of Instance-wise

The examples above can also be implemented using doall loops.
When implemented as parallel loops, previous approaches [5, 7]
based on the polyhedral model can verity its determinacy, and does
not require extensions proposed in this paper.

Our work can also detect races in finish/async programs that
cannot be expressed with doall parallelism. The following is a
simplified example of a case when such parallelism may be used.
The example is based on Gauss-Seidel stencil computation that
performs updates in-place, and uses some of the values (A[1-1][]]
andA[1i] [j-1]) computed at the current time step and others from
the previous time step.

The following code fragment illustrates a possible use of async
in a way that cannot be expressed as loop parallelism. Detail of
the statement S1 is not given to simplify the presentation, but
some code corresponding to an asynchronous send is the motivation
behind this example.

(t in 1..T)
finish for (i in 1..N-2) {
//boundary conditions omitted

for

for (j in start..end)
Ali][]] =
update (A[1-1]1[3], A[i]1[]-11,
A[11031, A[L+1103], A[L103+11); // sO
async S1(A[i][end]); // S1

//boundary conditions omitted

}

The point we illustrate with this example is the importance
of statement instance-wise analysis. At the granularity of (static)
statements, the pair of statements SO,S1 may happen in parallel.
This is a conservative approximation because SO[t,i] may happen
in parallel with S1[¢',i'] when ¢ > ' and i > i’. With this precision,
our approach find that the read of A[1] [end] by S1 is always the
value written by SO.

6.4 Benefits of Array Dataflow Analysis

Array dataflow analysis is, strictly speaking, an overkill for detect-
ing races. The formulation used by Vechev et al. [27] focuses on
finding conflicting memory accesses. Dataflow analysis goes one
step further by eliminating some of the accesses that are guaran-
teed to be overwritten from the consumer’s perspective. Consider
the following example:

finish{
async{
x = £(); //S1
x = g(); //S2
}
async {
x = h(); //S3
x = k(); //S4
}
}
t = x; //8S5

The approach by Vechev et al. [27] will find that statements S1,
82, 83, and $4 are all in race since they all may happen in parallel
and writes to x. In contrast, array dataflow analysis will show that
the read of x at S5 has two potential sources, S2 and S4.

The output by Vechev et al. [27] grows in size as the number of
statements in async increases, while the output of dataflow anal-
ysis does not. When our analysis is integrated to a programming
environment, we believe that the preciseness and compactness of
our analysis result will help the programmer more than simply de-
tecting races.

Moreover, once the statement S5 is removed from the above
example, the approach by Vechev et al. [27] would still detect a
race, while our analysis would detect that the race is benign, and
hence the full £inish block is dead code.

7. Implementation and Evaluation

We have implemented® our analysis for the subset of X10 described
in Section 2. We take a representation of the AST, where statements
only specify arrays (or scalars) being read or written, disregarding
the what the operation is. Once we detect polyhedral regions in X10
programs, equivalent information can easily be extracted from the
internal representation of the compiler.

Analysis of loop programs to detect regions amenable for
polyhedral analysis, frequently referred to as Static Control Parts
(SCoPs), or Affine Control Loops (ACLs) is well established
through efforts to integrate polyhedral parallelizers into full com-
pilers [14, 19]. In addition, we require that array accesses a[1] and

SOur implementation is available at www.cs.colostate.edu/

PolyhedralX10/

31

a[j] point to the same memory location iff i = j. In general, such
guarantee require pointer analysis, which is outside the scope of
this paper.

We use the Integer Set Library [28] in our implementation
to perform polyhedral operations and to solve parametric integer
linear programming problems. The analysis itself is written in Java,
and Java Native Interface is used to call ISL.

Java Grande Forum Benchmark Suite

Although our key contribution is verification of finish/async pro-
grams, we are not aware of any set of parallel benchmarks that
use the extra expressive power of finish/async in their polyhedral
parts. We have demonstrated how our technique can handle such
programs earlier with examples. In this section, we use Java Grande
Forum benchmark suite [26] also used by Vechev et al. [27] to com-
pare performance and applicability of our proposed analysis to their
approach. The results are summarized in Table 1.

Out of the 8 benchmarks, 3 that were not handled by Vechev et
al. [27] cannot be handled by ours either. SPARSE includes indirect
array accesses, which falls out of the polyhedral model. Similarly,
MONTECARLO and RAYTRACER cannot be handle by polyhedral
analysis. All of the remaining 5 fit the polyhedral model, at least
partially, and we were able to verify the determinacy of all parallel
blocks. In fact, MolDyn has data dependent conditionals, which
we approximate by assuming that both branches are always taken.
Clearly, this gives a superset of the set of races, which the analyzer
proved to be empty.

Although we present execution times of our method, and that
of Vechev et al., we do not claim that our approach is more effi-
cient. Their implementation is not directly comparable to ours, due
to many reasons. For instance, they work on a lower level repre-
sentation of the program (Jimple,) which create a large number of
scalar variables, and necessitates loop and array re-construction. In
Section 6, we have demonstrated that our method can detect races
in more program instances.

8. Related Work

Our work may be placed in two different contexts, (i) as an exten-
sion to the polyhedral model for analyzing finish/async programs,
and (ii) as an approach for statically verifying determinism of fin-
ish/async programs.

Array dataflow analysis was introduced by Feautrier [11] and
further expanded by Pugh and Wonnacott [20]. Extensions beyond
the polyhedral model were proposed by Pugh and Wonnacott [21]
and by Barthou et al. [3]. As far as we know, time stamps were first
introduced by Feautrier [12] as a trick for proving the existence of
schedules for well-structured sequential programs. They were fur-
ther exploited for specifying complex program transformations by
Bastoul [4]. They are similar to the pedigrees proposed by Leiser-
son et al. [17], with the difference that pedigrees are computed at
run time, while time stamps exist only at compile time.

Since the emphasis in the polyhedral literature is placed on au-
tomatic parallelization, there has been very little work on verify-
ing already parallel programs. The work by Collard and Griebl [7]
that presents array dataflow analysis for programs with doall par-
allelism is most closely related to our work. The key distinction is
that we handle finish/async programs that can express parallelism
not expressible by doall loops.

In the other context, one key question in reasoning about deter-
minism is the question which statements (or statement instances)
have a clearly defined order of execution. Analyses to answer this
question for finish/async programs, closely related to our “happens-
before” relation, have been presented by Agarwal et al. [1] and by
Lee and Palsberg [16].

Benchmark | while | data-dep. | Time (s)*| Reference’
loop! if2 Time (s) [27]
CRYPT Y 7.6 54.8
CRYPT1 Y 0.24 -
CRYPT2 Y 0.24 -
SOR 1.85 -
SORI1 0.29 0.41
LUFacTI1 0.35 1.94
SERIES Y 1.25 -
SERIES1 Y 0.06 55.8
MoLDyYN13 0.35 24.6
MOLDYN2 Y 0.92 2.5
MoLDYN3 0.14 0.32
MoLDYN4 0.08 1.01
MOLDYNS5 Y 0.08 0.34
Table 1: Performance of our implementation on JGF bench-

marks [26]. Entries with the name followed by a number are verifica-
tion of a parallel block that each contain a parallel loop surrounded
by finish. All programs/blocks were verified to be determinate.

! Indicates that while loops were converted to for loops. These
while loops are of the form:
n=100; do { ... n——;} while (n>=0);

2 Indicates that data-dependent if statements
approximated by assuming both branches
taken.

3 MOLDYN require a final variable pad to be constant propagated
due to expressions like: i2 x pad.

4 Our experiments were conducted with 4-core Intel Core2Quad
(2.83GHz) and 8GB of memory. We used Java 1.6, and ISL 0.10.

5 These timing results are taken from their article [27] and were
conducted with 4-core Xeon (3.8GHz) and 5GB of memory.

were over-
were always

While Lee and Palsberg work at the level of a statement, Agar-
wal et. al. try to increase precision by exhibiting conditions on
loop counters that guarantee (or forbid) parallel execution. How-
ever, these conditions use only equality and inequality, instead of
the full power of affine constraints. The algorithms in these two
papers are surprisingly complex when compared to algorithm H.

There is a separate body of work that address race detection with
multi-threaded programs with locks (e.g., [9, 15]). These methods
are not directly applicable to modern parallel languages where
locks are rarely used.

The work by Vechev et al. [27] goes beyond the evaluation of the
“may happens in parallel” relation and attempt to verify determin-
ism of finish/async programs. Their analysis is also instance-wise
and element-wise. The main difference is that their work use over-
approximations of memory accesses, where our analysis is exact.
In addition, we use array dataflow analysis to find races, but the in-
formation given by the analysis, which is more than enough to find
races, can be used for other purposes.

Dynamic race detection (e.g., [25]) is a complementary tech-
nique to static analyses, and is more broadly applicable. However,
dynamic analysis requires significant run-time overhead, and is
subject to the well-known Dijkstra saying, that they can be used
to prove the existence of races, not their absence.

The main drawback of our methods, compared to other ap-
proaches, is their restricted applicability; we require loops to be
affine. Affine loop programs can be frequently found in scientific
applications, which is an important target for emerging parallel pro-
gramming languages. We believe that the increased precision more
than compensates this restriction.

32

9. Conclusion and Future Work

This paper is a first step towards applying polyhedral analysis to
finish/async programs. It has been written in the context of the X10
language. However, we expect our approach to be applicable to
other languages with similar parallel constructs. For programs that
fit in the polyhedral model, the analysis is exact, and as precise
as can be. There are neither false positives nor false negatives.
As a side effect, one can exploit the results of dataflow analysis
for many other tasks, like scheduling and locality improvement,
undefined variables detection, constant propagation and semantic
program verification.
The approach in this paper can be extended in two directions:

e The X10 language has several control constructs which may
create (or remove) races. Among them are clocks, a general-
ization of the classical barriers, the atomic modifier, and the
at statement, which delegates a calculation to a remote place
of the target system. Basically, all these constructs necessitate
a new definition of the “happens-before” relation. The question
is whether algorithm H can be extended to take care of them.

Handling atomic and at constructs is a minor extension to
the results presented here, but space constraints preclude an
elaborate explanation. We are currently working on extending
our analysis to handle clocks.

Like all polyhedral analyses, our method applies only to a
limited class of programs. Is there a possibility to remove some
of these restrictions? A classical approach is to deal only with
polyhedral subtrees of the AST, provided they don’t interfere
with the remnants of the program.

One may also resort to approximations. The difficulty here
is that since the source computation uses set differences (see
for instance Section 4.2.2) over- and under-approximations are
both needed. Depending on the quality of the approximations,
the resulting analysis may have both false negatives and false
positives. The problem will be to minimize their number.

References

[1] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K.
Shyamasundar. May-happen-in-parallel analysis of X10 programs. In
Proceedings of the 12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP *07, pages 183-193, New
York, NY, USA, 2007. ACM.

E. Allen, D. Chase, J. Hallett, V. Luchangco, J.W. Maessen, S. Ryu,
G.L. Steele Jr, S. Tobin-Hochstadt, J. Dias, C. Eastlund, et al. The
Fortress Language Specification. Sun Microsystems, 139:140, 2005.

[2

—

3

=

Denis Barthou, Jean-Francois Collard, and Paul Feautrier. Fuzzy array
dataflow analysis. Journal of Parallel and Distributed Computing,
40:210-226, 1997.

C. Bastoul. Code generation in the polyhedral model is easier than
you think. In PACT’13 IEEE International Conference on Parallel
Architecture and Compilation Techniques, pages 7-16, Juan-les-Pins,
september 2004.

V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quin-
ton, and D. Wonnacott. ompverify: polyhedral analysis for the
OpenMP programmer. OpenMP in the Petascale Era, pages 37-53,
2011.

B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programma-
bility and the Chapel language. International Journal of High Perfor-
mance Computing Applications, 21(3):291-312, 2007.

[4]

[5]

[6]

[7

—

Jean-Frangois Collard and Martin Griebl. Array dataflow analysis for
explicitly parallel programs. In Luc Bougé, Pierre Fraigniaud, Anne
Mignotte, and Yves Robert, editors, Euro-Par’96 Parallel Processing,
volume 1123 of Lecture Notes in Computer Science, pages 406—413.
Springer Berlin / Heidelberg, 1996.

[8] UPC Consortium et al. UPC language specifications. Lawrence

Berkeley National Lab Tech Report LBNL-59208, 2005.

[9] D. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. ACM SIGOPS Operating Systems Review,
37(5):237-252, 2003.

[10] Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243-268, September 1988.

[11] Paul Feautrier. Dataflow analysis of scalar and array references. Int.
J. of Parallel Programming, 20(1):23-53, February 1991.

[12] Paul Feautrier. Some efficient solutions to the affine scheduling prob-
lem, II, multidimensional time. Int. J. of Parallel Programming,
21(6):389-420, December 1992.

Paul Feautrier and Christian Lengauer. The polyhedral model. In
David Padua, editor, Encyclopedia of Parallel Programming. Springer,
2011.

T. Grosser, H. Zheng, R. Aloor, A. Simbiirger, A. GroBlinger, and L.N.
Pouchet. Polly—Polyhedral optimization in LLVM. In IMPACT 2011
First International Workshop on Polyhedral Compilation Techniques,
2011.

V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race detection
for concurrent programs with asynchronous calls. In Proceedings
of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 13-22. ACM, 2009.

[13]

[14]

[15]

[16] Jonathan K. Lee and Jens Palsberg. Featherweight X10: a core cal-
culus for async-finish parallelism. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPoPP *10, pages 25-36, New York, NY, USA, 2010. ACM.

Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. Deterministic
parallel random-number generation for dynamic-multithreading plat-
forms. In PPOPP’12, pages 193-204, 2012.

[18] Robert W. Numrich and John Reid. Co-array fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1-31, August 1998.

[19] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.A. Silber, and N. Vasilache.
GRAPHITE: Polyhedral analyses and optimizations for GCC. In
Proceedings of the 2006 GCC Developers Summit, page 2006, 2006.

(171

33

[20] W. Pugh and D. Wonnacott. Eliminating false data dependences using
the Omega test. In ACM SIGPLAN PLDI, pages 140-151, 1992.

[21] W. Pugh and D. Wonnacott. Going beyond Integer Programming with
the Omega Test to Eliminate False Data Dependencies. Technical
Report CS-TR-3191, U. of Maryland, December 1992.

Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and
David Grove. X10 language specification version 2.2, March
2012. x10.sourceforge.net/documentation/languagespec/
x10-latest.pdf.

[22]

[23] Vijay Saraswat and Radha Jagadeesan. Concurrent clustered program-
ming. In CONCUR 2005 - Concurrency Theory, pages 353-367, Lon-

don, UK, 2005. Springer-Verlag.

Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and Christoph
von Praun. A theory of memory models. In Proceedings of the
12th ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP 07, pages 161-172, New York, NY, USA, 2007.
ACM.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. FEraser: A dynamic data race detector for multithreaded pro-
grams. ACM Transactions on Computer Systems (TOCS), 15(4):391—
411, 1997.

L.A. Smith, JJM. Bull, and J. Obdrizalek. A parallel Java Grande
benchmark suite. In Supercomputing, ACM/IEEE 2001 Conference,
pages 6-6. IEEE, 2001.

Martin Vechev, Eran Yahav, Raghavan Raman, and Vivek Sarkar. Au-
tomatic verification of determinism for structured parallel programs.
In Proceedings of the 17th international conference on Static analysis,
SAS’10, pages 455-471, Berlin, Heidelberg, 2010. Springer-Verlag.

[28] S. Verdoolaege. isl: An integer set library for the polyhedral model.
Mathematical Software—ICMS 2010, pages 299-302, 2010.

[29] Peng Wu, Paul Feautrier, David Padua, and Zehra Sura. Instance-wise
points-to analysis for loop-based dependence testing. In International
Conference on Supercomputing (ICS 2002), pages 262 — 273, June
2002.

[30] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, et al. Titanium: A

high-performance Java dialect. Concurrency Practice and Experience,
10(11-13):825-836, 1998.

[24]

[25]

[26]

[27]

