
Data
ow Analysis of Array and S
alarReferen
esPaul Feautrier�September 1991Abstra
tGiven a program written in a simple imperative language (assign-ment statements, for loops, aÆne indi
es and loop limits), this paperpresents an algorithm for analyzing the patterns along whi
h values
ow as the exe
ution pro
eeds. For ea
h array or s
alar referen
e,the result is the name and iteration ve
tor of the sour
e statement asa fun
tion of the iteration ve
tor of the referen
ing statement. Thepaper dis
usses several appli
ations of the method: 
onversion of aprogram to a set of re
urren
e equations, array and s
alar expansion,program veri�
ation and parallel program 
onstru
tion.Keywords data
ow analysis, semanti
s analysis, array expansion.1 Introdu
tionIt is a well known fa
t that s
ienti�
 programs spend most of their runningtime in exe
uting loops operating on arrays. Hen
e if a restru
turing oroptimizing 
ompiler is to do a good job, it must be able to do a thoroughanalysis of the addressing patterns in su
h loops. If taken in full generality,the analysis problem is intra
table. In this paper, we 
onsider a 
lass ofprograms for whi
h this analysis is possible : programs with so-
alled stati
�Laboratoire MASI, Universit�e P. et M. Curie, 75252 PARIS CEDEX 05 FRANCE,e-mail: feautrier�masi.ibp.fr 1




ontrol and aÆne indi
es. There are reasons to believe that a large proportionof all numeri
al programs belongs to this 
lass, and that many more may be
onverted to it by appropriate prepro
essing. The analysis of addressingpatterns in this 
lass may be redu
ed to the solution of parametri
 systemsof linear inequalities in integers, for whi
h the author has devised an eÆ
ientalgorithm [14℄.The 
entral problem to be solved here is the following: given an array
ell, whi
h of several statements is the sour
e of the value 
ontained thereinat a given instant in the exe
ution of a program. Most of the time, thestatement will be embedded in a loop nest. Hen
e, we will require not onlythe name of the sour
e statement, but also the values of the loop 
ountersat the time the value of interest was generated. This information may bepa
kaged as a sour
e fun
tion, as the sour
e will depend on the iterationve
tor of the destination. We will give here a solution for programs with forloops as the only 
ontrol statement. As a parti
ular 
ase, our method givesa general solution to the problem of the sour
e of s
alars, whi
h may be seenas degenerate arrays with no indi
es. A knowledge of the sour
e fun
tionallows one to solve many problems whi
h in
lude automati
 translation tosingle assignment form, array and s
alar expansion, dead 
ode elimination,and various questions 
onne
ted to the 
onstru
tion of programs for ve
torand parallel pro
essors.1.1 OutlineSe
tion 2 des
ribes the simple programming language we will use for givingexamples and the ne
essary restri
tions on its indexing fun
tions and looplimits. We will also introdu
e the sequen
ing predi
ate as a 
ompa
t notationfor de
iding whi
h of two statement instan
es is exe
uted �rst. Se
tion 3 isthe 
entral part of the paper; here we give a detailed a

ount of the data
ow
omputation. Se
tion 4 outlines in varying detail several appli
ations ofthe te
hnique. Se
tion 5 lists some previous results whi
h may be seen asparti
ular 
ases of the methods we have introdu
ed in se
tion 3.In the 
on
lusion, we give some empiri
al eviden
e on the 
omplexityof the algorithm and point to several possible extensions. The parametri
integer algorithm, whi
h is a basi
 
omponent of the present method, issummarized in the appendix. For a more detailed presentation and proofsthe reader is referred to the above quoted paper [14℄.2



1.2 NotationsBold letters will denote ve
tors or ve
tor valued fun
tions; jaj is the dimen-sion of ve
tor a. a[i::j℄ is the subve
tor of a built from 
omponents i toj. a[i℄ is a shorthand for a[i::i℄. Familiar operators and predi
ates like +and � will be ta
itly extended to ve
tors. The sign � will denote lexi
alordering of ve
tors. Large letters will usually denote sets; N will be the setof non-negative integers. If A is a matrix, Aij will be its generi
 element, Ai�its generi
 row and A�j its generi
 
olumn.2 The Program ModelIn this se
tion, we will �rst des
ribe the syntax of the sour
e language. Wewill then dis
uss the restri
tions we superimpose on this syntax. In thefollowing development, we will distinguish between statements, whi
h aresynta
ti
 parts of the program text, and operations, whi
h are a
tions in-du
ing modi�
ations of the 
omputer store. Most often, a statement willbe exe
uted several times, giving rise to many distin
t operations. We willintrodu
e the sequen
ing predi
ate as a means of spe
ifying the exe
utionorder of operations.2.1 The Sour
e LanguageThe sour
e language may be seen either as a stati
 PASCAL or as a ratio-nalized FORTRAN. In fa
t, our work is not about any parti
ular language,but about the stati
 subset of most programming languages, i.e. about whathappens when all memory allo
ation has been taken 
are of. Data typeswill be restri
ted to integers, reals, and n-dimensional arrays of integers andreals. The only simple statements we will 
onsider will be s
alar and arrayassignments. The only 
ontrol 
onstru
ts will be the sequen
e and the forloop. We will extend the language in order to allow 
onditional expressions(�a la Algol 60), whi
h are ne
essary for the expression of index 
al
ulations(see e.g. se
tion 3.3). The syntax will be:<
onditional expression> := if <boolean expression>then <expression>else <expression>3



Note the absen
e of goto's, of 
onditional statements, of while loops andof pro
edures.2.2 Restri
tionsTo be able to analyze array a

esses inside loops, one must have some knowl-edge of the iteration 
ount of these loops. The simplest 
ase is when limits areknown numeri
al values. This, however, is mu
h too restri
tive, sin
e manyprograms use variable limits (matrix and ve
tor dimensions, dis
retizationsize, et
.) and even non re
tangular loop nests: 
onsider for instan
e theprevalen
e in numeri
al analysis of triangularization algorithms (like thoseof Gauss or Cholesky). To extend the 
lass of tra
table programs, we willintrodu
e the notion of stati
 
ontrol.To re
ognize a stati
 
ontrol program, one must �rst identify its stru
-ture parameters: a set of integer variables whi
h are de�ned only on
e inthe program, and whose value depends only on the outside world (throughan input statement) or on other already de�ned stru
ture parameters. Aprogram has stati
 
ontrol if all its loops are for loops whose limits dependonly on stru
ture parameters, numeri
al 
onstants and outer loops iteration
ounters. The analysis te
hnique whi
h is presented here is appli
able onlyif all loops have in
rement 1, and if all limits are aÆne fun
tions. For similarreasons, all indi
es will be restri
ted to aÆne fun
tions of the loop 
ountersand the stru
ture parameters.We will use the fa
t that in a 
orre
t program, array indi
es are alwayswithin the array bounds. Hen
e, two array referen
es address the same mem-ory lo
ation if and only if they are referen
es to the same array and theirindi
es are equal. This restri
tion is not too severe if we note, �rst, that itis good programming pra
ti
e to debug a program before submitting it toan optimizing or restru
turing 
ompiler, and also that the methods of thispaper may be used as a highly eÆ
ient array a

ess 
he
ker [24℄.This hypothesis will allow us to ignore array de
larations. As a 
onse-quen
e, our te
hnique will be equally appli
able to languages whi
h enfor
e
onstant array bounds { Fortran, Pas
al, C, ... { and to those whi
h do not.
4



2.3 The Sequen
ing Predi
ateValues in array elements are produ
ed by exe
ution of statements. Hen
e weneed a notation to pin-point a spe
i�
 exe
ution of a statement, or operation.Our �rst need is an unambiguous designation of a statement in a program.Neither the text of the statement nor its position in the program syntax treewill serve, sin
e there may be several statements with the same text, and sin
ethe program may be modi�ed by a restru
turing 
ompiler. Hen
e we will usea set of arbitrary statement names, whi
h will be denoted by letters su
h asr, s, et
. In a pra
ti
al appli
ation, a natural 
hoi
e for these names maybe pointers to re
ords 
ontaining the statement des
riptions. In the balan
eof this paper, we will mostly be interested in simple statements. However,some dis
ussions will be 
learer if all statements, 
ompound or simple, arenamed.In our sour
e language, the only repetitive 
onstru
t is the for loop.Hen
e, an operation is uniquely de�ned by the name of the statement andthe values of the surrounding loop 
ounters (the iteration ve
tor [17℄). A pairsu
h as (r; a) whose 
omponents are a statement name and an integer ve
torwill be 
alled an (operation) 
oordinate. To denote a statement instan
e, a
oordinate must satisfy two 
onditions:� the dimension of a must be equal to the number of loops surroundingr;� all 
omponents of a must be within the 
orresponding loop limits.With ea
h loop t we may asso
iate a pair of inequalities:lbt � a � ubt;where a is the loop 
ounter of t. If a statement r is embedded in a loop nestt1; t2; : : : ; tN , in that order, then the iteration ve
tor a of r must satisfy:8p : (1 � p � N) lbtp � a[p℄ � ubtp : (1)(1) may be summarized in matrix form as:er(a) � 0: (2)5



where er is an aÆne ve
tor-valued fun
tion. Formula (2) will be 
alled theexisten
e predi
ate of r. Noti
e that we do not suppose that lbt � ubt. Ina

ordan
e with the Pas
al 
onvention (and with the \modern" interpreta-tion of Fortran DO loops), a loop whose limits violate this inequality will notbe exe
uted at all.Consider for example the program sket
h in �gure 1. Figure 2 de-s
ribes its iteration domain. The existen
e predi
ate of statement s2may be written as:0BBB� 1 0�1 0�1 10 �1 1CCCA ij !+0BBB� �1n�1n 1CCCA � 0:One should not infer from �gure 2 that all statements have iterationdomains whi
h lies in the same eu
lidean spa
e. As a 
ounter-example,
onsider the program of �gure 3. As shown in �gure 4, s1 has a one-dimensional iteration domain, while s2 has a two-dimensional one.Finally, one should not 
onfuse the iteration domain, whi
h is spannedby loop 
ounters, and the data spa
e, whi
h is spanned by array in-di
es. In many 
ases, those two spa
es are identi
al (or rather, iso-morphi
) as in:for i := 1 to n dofor j := 1 to n dox[i,j℄ := 0.;but this is not always true. In the 
ase of the program in �gure 5,the iteration domain is two-dimensional while the data spa
e is one-dimensional. Conversely, in:for i := 1 to n do t[i,i℄ := 1.;the data spa
e is a one-dimensional subspa
e embedded in a two-dimensional spa
e. 6



for i:=1 to nbegin for j := 1 to i-1 do S1;for j := i+1 to n do S2;end; Figure 1: A sample program
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for i := 1 to n dobeginx[i℄:=0.; {S1}for j := 1 to i dox[i℄ := x[i℄ + u[i,j℄ * y[j℄ {S2}end; Figure 3: An imperfe
tly nested program
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for k := 0 to 2*n do
[k℄ := 0.; {S1}for i := 0 to n dofor j := 0 to n do
[i+j℄ := 
[i+j℄ + a[i℄*b[j℄; {S2}Figure 5: The produ
t of two polynomialsThe pre
eding dis
ussion leads to a spatial des
ription of loops. Su
h apoint of view goes ba
k to the work of Ku
k; see also Padua and Wolfe'sreview arti
le [20℄. Usually, loops are explained from a temporal point ofview: iteration i is exe
uted just before iteration i+ 1. We must seek a wayto re
on
ile those two aspe
ts. This may be done by de�ning a sequen
ingpredi
ate on the iteration domains. The sequen
ing predi
ate is a stri
t totalorder on the set of operation 
oordinates; it is written:(r; a) � (s;b):and expresses the fa
t that (r; a) is exe
uted before (s;b). The sequen
ingpredi
ate depends only on the sour
e program text. Our present aim is togive a simple expression for it.Suppose �rst that r and s are statements in the outermost statementlist of the program. a and b ne
essarily are the zero dimensional ve
tor [℄.(r; [℄) � (s; [℄) i� r pre
edes s in the program text. Let Trs be a booleanwhi
h is true i� r textually pre
edes s; in this 
ase:(r; [℄) � (s; [℄) � Trs:Note that Trr is false and that if r 6= s then Trs � :Tsr.Next, suppose that r and s are the same statement. In this 
ase, a

ordingto the familiar semanti
s of for loops, (r; a) � (r;b) i� a is lexi
ographi
allysmaller than b.In the general 
ase, there is an innermost loop t whose body 
ontainsboth r and s. Let Nrs be the depth of this loop. In the body of t, there aretwo statements r0 and s0 su
h that r is r0 or is textually inside r0, and s is s0or is inside s0. Obviously:(r; a) � (s;b) � (r0; a[1::Nrs℄) � (s0;b[1::Nrs℄)9



Now, if a[1::Nrs℄ 6= b[1::Nrs℄, (r0; a) and (s0;b) belong to distin
t iterations ofloop t. In this 
ase, their order is given by a lexi
al 
omparison of a[1::Nrs℄and b[1::Nrs℄. Otherwise, if a[1::Nrs℄ = b[1::Nrs℄, then (r0; a) and (s0;b)belong to the same iteration of t, and their order is the textual order Tr0s0 =Trs. Putting all this together:(r; a) � (s;b) � a[1::Nrs℄� b[1::Nrs℄ _ (a[1::Nrs℄ = b[1::Nrs℄ ^ Trs): (3)Knowledge of Nrs (a matrix of integers) and Trs (a matrix of booleans)is all that is needed to sequen
e all operations in a program.When lexi
ographi
 order is repla
ed by its de�nition, the sequen
ingpredi
ate be
omes a disjun
tion of Nrs + 1 aÆne predi
ates whi
h will bewritten as �p:(r; a) �p (s;b) � (a[1::p℄ = b[1::p℄^a[p+1℄ < b[p+1℄); 0 � p < Nrs: (4)The version for p = Nrs is :(r; a) �p (s;b) � a[1::Nrs℄ = b[1::Nrs℄ ^ Trs: (5)One may noti
e that operations whi
h stand in the relation �p to ea
hother have exa
tly p identi
al 
oordinates in their iteration ve
tors. In Allenand Kennedy's paper[3℄, if two su
h operations give rise to a dependen
e,one says that this dependen
e is at depth p+1, while if p = Nrs, the depth issaid to be in�nite. With a slight displa
ement of the origin, we will say that�p is the sequen
ing predi
ate at depth p, depths ranging from 0 to Nrs.Consider again the program of �gure 3. The sequen
ing between s1and s2 is given by Ns1s2 = 1 and Ts1s2 = true. Hen
e:(s1; i) � (s2; i0; j0) � i < i0 _ i = i0: (6)Similarly, the sequen
ing between two instan
es of s2 is given by:(s2; i; j) � (s2; i0; j0) � i < i0 _ (i = i0 ^ j < j0); (7)sin
e Ts2s2 is false.These results may be summarized by �gure 6. In this diagram, wehave only represented essential edges of the � relation. All otheredges may be re
overed by using the transitivity of �.10
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3 Data Flow Analysis3.1 Some NotationSuppose that we are given a program 
onforming to the restri
tions of se
tion2.2. Let t be a statement in whi
h an arrayM is used. Let b be the iterationve
tor of t; the indi
es of M are aÆne fun
tions of b. In ve
tor form, thereferen
e to M may be written M[g(b)℄.Consider for instan
e the referen
e to v[i,k℄ in:for i := 1 to n dofor j := 1 to i-1 dofor k := i+1 to n dov[j,k℄ := v[j,k℄-v[i,k℄*v[j,i℄/v[i,i℄;The surrounding loop 
ounters are i; j and k. The indexing fun
tion,g, is given by: g(i; j; k) =  1 0 00 0 1 !0B� ijk 1CA :The indexing fun
tion is exa
tly what is needed to 
onne
t the itera-tion domain to the data spa
e.We are interested in �nding the sour
e of the value of M[g(b)℄. Lets1; s2; : : : ; sn be the statements whi
h produ
e a value for M, and leta1; a2; : : : ; an be their iteration ve
tors. si is of the form:M[fi(ai)℄ := � � � :The sour
e is a 
oordinate, or rather a fun
tion of b whi
h gives a 
oor-dinate when evaluated, whi
h will be 
alled the sour
e fun
tion of M[g(b)℄.
12



3.2 Formal SolutionIf the sour
e of M[g(b)℄ is an instan
e of si, there is a unique ai su
h thatthis instan
e is (si; ai). This ai is a fun
tion of b, whi
h will be 
alled Ksit.The real sour
e is the latest operation (si;Ksit(b)):8j 6= i; (sj;Ksjt(b)) � (si;Ksit(b))The 
orre
t value of i may depend on b. In parti
ular, Ksit(b) may beunde�ned for some values of b. We will postulate that an unde�ned operation(written as ?) 
omes earlier than any other operation:8t;b : ? � (t;b):The 
onditions on Ksit(b) are:� Firstly, (si;Ksit(b)) must produ
e a value for M[g(b)℄:fi(Ksit(b)) = g(b)� Se
ondly, (si;Ksit(b)) must pre
ede (t;b):(si;Ksit(b)) � (t;b);� Thirdly, Ksit(b) must be a legal 
oordinate:esi(Ksit(b)) � 0:� Lastly, (si;Ksit(b)) must be the latest 
oordinate whi
h satis�es all
onditions above:fi(u) = g(b) ^ (si;u) � (t;b) ^ esi(u) � 0) u�Ksit(b);In summary, letting max� denote the lexi
ographi
 maximum of a set ofinteger ve
tors: Ksit(b) = max�Qsit(b) (8)where Qsit(b) is the set: 13



Qsit(b) = fujfi(u) = g(b); (si;u) � (t;b); esi(u) � 0g (9)with the 
onvention that the lexi
al maximum of the empty set is ?.Now, sin
e � is a disjun
tion of Nsit + 1 linear predi
ates, Qsit is theunion of Nsit + 1 disjoint polyhedra, indexed by p; 0 � p � Nsit:Qpsit(b) = fujfi(u) = g(b); (si;u) �p (t;b); esi(u) � 0g; (10)Kpsit(b) = max�Qpsit(b): (11)Finally, if max� is the maximum a

ording to the sequen
ing predi
ate,then the sour
e is given by:S = max�f(si;Kpsit(b))ji = 1; : : : ; n; p = 0; : : : ; Nsitg: (12)To avoid multiple indi
es, we will renumber all possible 
andidates at alldepths with a new index j. L will stand for the 
ardinality of the set ofpossible sour
es. (12) will be rewritten as :S = max�f(sj;Kj(b))jj = 1; Lg: (13)Let us go ba
k to the example in Figure 5. Consider the problem of�nding the sour
e of 
[i+j℄ in statement s2. There are two 
andi-dates, s1 and s2 itself, and as a 
onsequen
e, two fun
tions Ks1s2 andKs2s2 .Consider for instan
e the set Qs2s2(i; j). Its elements are two dimen-sional integer ve
tors (i0; j0) whi
h satisfy the following 
onstraints:� the index equations, i0 + j0 = i+ j;� the sequen
ing 
onstraint i0 < i _ (i0 = i ^ j0 < j). One seesthat the se
ond term in the disjun
tion is in
ompatible with theindex equation.� the limit 
onstraints 0 � i0 � n; 0 � j0 � n.Examination of �gure 7 shows that Qs2s2(i; j) is empty if i = 0 orj = n. If not empty, its lexi
al maximum is the ve
tor (i � 1; j + 1).This implies that to represent Ks2s2 , we will need a 
onditional:14
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Ks2s2(i; j) = if (i � 1 ^ j < n) then (i+ 1; j � 1) else ?: (14)The 
ase of the other 
andidate is simpler; we always have:Ks1s2(i; j) = (i+ j):Now, it should be 
lear from an examination of program in �gure 5 (orfrom the fa
t that Ns1s2 = 0 and that Ts1s2 is true), that all operations(s1; k0) pre
ede all operations (s2; i0; j0). It follows that the sour
e isgiven by Ks2s2(i; j) provided this quantity is de�ned. Hen
e, the �nalresult is:S(i; j) = if (i � 1^ j < n) then (s2; i+1; j � 1) else (s1; i+ j): (15)To obtain this result, we have relied a lot on �gure 7 and geometri
alintuition. Now this works �ne on one- and two-dimensional problems,but is quite diÆ
ult and error prone in three dimensions, and is impos-sible beyond. Furthermore, a 
omputer has no geometri
al intuitionat all. Our aim now will be to solve the above problem in a general,systemati
 fashion and to implement the 
orresponding algorithm.3.3 Evaluation Te
hniques3.3.1 Dire
t Dependen
esIn this se
tion, we will fo
us �rst on one parti
ular 
andidate (sj;Kj(b)) ata given depth p. When the original program 
onforms to the restri
tions ofse
tion 2.2, all terms in formula (10) are linear equalities or inequalities. Infa
t sin
e indexing fun
tions are aÆne, the �rst term is a linear system whosedimension is the rank of array M. The last term is simply a set of linearinequalities. The se
ond term is given by (4) or (5). If the depth p is lessthan Nsit, then it is the 
onjun
tion of p equalities and one inequality. Forp = Nsit, it is made of equalities only and does not exist if Tsit is false.As a 
onsequen
e, Qj(b) is the set of integer ve
tors whi
h lie inside apolyhedron. Finding its lexi
al maximum is a Parametri
 Integer Program16



(a PIP)[14℄. A short des
ription of an algorithm for solving PIP problemsis given in the appendix. The parameters are the 
omponents of b and thestru
ture parameters. Note that the 
omponents of b are not arbitrary; theymust satisfy various 
onstraints, among whi
h is:et(b) � 0;to whi
h may be added any available information on the stru
ture parame-ters. These inequalities form the 
ontext of the parametri
 integer problem.To express the solution, we need the 
on
ept of a quasi-aÆne form. Su
ha form is 
onstru
ted from the parameters and integer 
onstants by the op-erations of addition, multipli
ation by an integer, and division by an integer.The solution is then expressed as a multistage 
onditional expression. Thepredi
ates are of the form f(b) � 0, where f is quasi-aÆne. The leaves areve
tor of quasi-aÆne forms or the \unde�ned" sign, ?. Su
h an expressionwill be 
alled a quasi-aÆne sele
tion tree (quast for brevity).The above de�nition may be summarized by the following grammar:form ::= integerj parameterj integer � formj form� integerj form + formve
tor ::= (form[; form℄ : : :)quast ::= ?j ve
torj if form � 0 then quast else quastThe result of this analysis is the dire
t dependen
e between the de�nitionby sj and the use in t. Dire
t dependen
es were �rst de�ned by Brandes [10℄.The presen
e of a ? sign in a dire
t dependen
e indi
ates that, for somevalues of the loop 
ounters, the referen
e in t is not de�ned by statement sj.Formula (14) is a quast in the above sense (noti
e that integer divisionis not used here). Integer division appears when analyzing programswhi
h a

ess arrays with strides greater than one, as in:s := 0.; 17



for i := 1 to n dox[2*i-1℄ := 1.; {S1}for k := 1 to 2*n-1 dos := s + x[k℄; {S2}The dire
t dependen
e from x[2*i-1℄ in s1 to x[k℄ in s2 is given bythe following quast:q = if 2((k + 1)� 2)� (k + 1) � 0 then (k + 1)� 2 else ?:This formula expresses the fa
t that x[k℄ is not de�ned when k iseven.3.3.2 Combining the dire
t dependen
esConsider now the problem of evaluating (13). This will be done in a sequen-tial manner, by introdu
ing:Sn = max�f(sj;Kj(b))jj = 1; : : : ; ng;S0 = ?:Obviously, S = SL and we have the re
urren
e:Sn = max�fSn�1; (sn;Kn(b))g (16)We are thus led to the evaluation of:S = max�fT; (sn;Kn(b))g; (17)where T is an arbitrary quast. There are three 
ases, a

ording to the formof T:� T = ? ; in this 
ase: S = (sn;Kn(b)): (18)� T = if �(b) then T1 else T2; in this 
ase:S = if �(b) (19)then max�fT1; (sn;Kn(b))gelse max�fT2; (sn;Kn(b))g:18



� T = (r; l(b)) where r is a statement name and l is a quasi-aÆne form;then:S = if (r; l(b)) � (sn;Kn(b)) then (sn;Kn(b)) else (r; l(b)): (20)In this formula, the sequen
ing predi
ate is to be expanded with thehelp of (3).These rules (and their symmetri
 
ounterparts, as the max operator is
ommutative), are the basi
 tools for 
omputing sour
e fun
tions. The resultmay be simpli�ed by removing dead leaves (i.e. leaves whi
h are governedby in
ompatible predi
ates) and by applying the rule:if p then x else x � x: (21)The 
omputation of (15) above was an example of the use of theserules, with:T = if (i � 1 ^ j < n) then (s2; i+ 1; j � 1) else ?;and (sn;Kn(b)) = (s1; i+ j):One �rst applies (19) to get:S = if (i � 1 ^ j < n)then max�f(s2; i+ 1; j � 1); (s1; i+ j)gelse max�f?; (s1; i+ j)g:The �rst bran
h of the 
onditional is 
omputed with the help of (20)and the fa
t that (s1; i+ j) � (s2; i+ 1; j � 1). The se
ond bran
h isan instan
e of (18). The result (15) follows.A more 
omprehensive example will be presented later.
19



3.3.3 Avoiding unne
essary workWhile the above algorithm always gives a 
omplete and 
orre
t solution, inmany 
ases, it is possible to redu
e the amount of work by predi
ting thevalue of the sequen
ing predi
ate.Suppose we have found two well de�ned dire
t dependen
es (sm;Km(b))and (sn;Kn(b)), respe
tively at depth pm and pn, for the same referen
e inoperation (t;b). Suppose that the depths are di�erent, and for instan
e thatpm < pn. From the de�nitions (4) and (10) it follows that:Km(b)[1::pm℄ = b[1::pm℄; (22)Km(b)[pm + 1℄ < b[pm + 1℄; (23)Kn(b)[1::pn℄ = b[1::pm℄;and hen
e: Km(b)[1::pm℄ = Kn(b)[1::pm℄ = b[1::pn℄: (24)Now, all stru
tured languages have the following property: given twoloops, either they have disjoint bodies, or one of them in
ludes the other. Inour 
ase, there are loops at depth pm whi
h in
lude sm and t, and sn and t.The bodies of these loops 
annot be disjoint, and, sin
e they have the samedepth, they are identi
al. This is tantamount to saying that:Nsmsn � pm (25)Consider now the sequen
ing predi
ate:(sm;Km(b)) � (sn;Kn(b)) � Km(b)[1::Nsmsn℄� Kn(b)[1::Nsmsn℄_ (Km(b)[1::Nsmsn℄ = Kn(b)[1::Nsmsn℄ ^ Tsmsn):When evaluating this formula, there are two 
ases. Firstly, (25) may bestri
t. From (23) we dedu
e that the �rst disjun
t is true. If (25) in fa
t is anequality, then the �rst disjun
t is false1 and the value of the sequen
ing predi-
ate simply is Tsmsn . In both 
ases, we may 
ompute the sequen
ing predi
atewithout any referen
e to the a
tual values of the dire
t dependen
es. Thisresult may be used in at least three ways:1Remember that � is the stri
t lexi
al order.20



� When 
omputing the dire
t dependen
e, use of (24) allows one to re-du
e the number of unknowns in the parametri
 integer problem2.� When evaluating (20), there is no need to expand the sequen
ing pred-i
ate unless both dependen
es are at the same depth.� Most importantly, before embarking on the evaluation of (16), one may
he
k whether (sn;Kn(b)) o

urs earlier than all leaves of Sn�1 or not.In the �rst 
ase, the evaluation ofKn(b) is useless. One easily sees thatthis situation is most likely to o

ur if the 
andidate list is ordered byde
reasing depth.3.4 SummaryLet us summarize the algorithm. For a given referen
e to an array or s
alarM in a statement s, 
onstru
t the 
andidate list from all pairs hr; pi wherer is a statement whi
h modi�es M and p, 0 � p � Nrs; is the dependen
edepth. Set S = ?. Order the 
andidate list by de
reasing depth.For ea
h 
andidate, test if there is a possibility that it will 
ontribute tothe �nal sour
e fun
tion. If not, dis
ard the 
andidate. Otherwise, 
omputethe dire
t dependen
e by applying the PIP algorithm to (10). Use (18), (19)and (20) to update the value of the sour
e fun
tion and simplify.The algorithm may appear to be highly 
omplex; there are, however,te
hniques to redu
e the amount of work involved. Most of the time, thealgorithm will be embedded in a restru
turing 
ompiler[20℄, whi
h will startby 
omputing the dependen
e graph of the program. In fa
t, there is a 
owdependen
e between statements r and s at depth p if the set Qprs(b) is notempty for some legal value of b. Conversely, if there is no dependen
e, Qprs(b)is empty, Kprs(b) = ?;and the value of S, as 
omputed by (16), does not 
hange. Hen
e the only
andidates to be 
onsidered are those whi
h 
orrespond to 
ow dependen
e2Note that in the favourable 
ase when there are no unknowns left, one still has to usethe PIP algorithm to 
he
k that the obvious solution meets the inequalities 
onstraints of(10).
21



edges. There are fast approximate methods for the 
al
ulation of depen-den
es [28℄, and more pre
ise methods[26℄ whi
h are still faster than a PIP
omputation.S
alar referen
es are analysed in the same fashion as array referen
es, theonly di�eren
e being that the index equations fi(u) = g(b) in (9) now disap-pear. At �rst glan
e, this may be thought of as an important simpli�
ation.We have found, in fa
t, that dire
tly expressing the solution without the helpof the PIP algorithm is highly 
ompli
ated: for instan
e, one 
annot simplysay that the latest exe
ution of a loop is the one that 
orrespond to the loopupper limit, sin
e the loop may not be exe
uted at all. As a 
onsequen
e, weuse the general algorithm whatever the rank of the referen
e.4 Appli
ations4.1 Conversion to Single Assignment FormSingle assignment programs have been proposed by several authors[27, 25℄as a mean of spe
ifying algorithms for highly parallel systems. Anotherpoint[6, 7℄ is that sin
e a memory 
ell in su
h a program is de�ned only on
e,its 
ontents may be 
onsidered as a \variable" in the mathemati
al sense andsubje
ted to the familiar algebrai
 and analyti
 manipulations.The following algorithm may be used to 
onvert a stati
 
ontrol programto single assignment form:1 Compute the sour
e fun
tion for all rhs referen
es;2 For ea
h statement s , de
lare a new array Ms and repla
e the lefthand side of s by Ms[a℄, where a is the iteration ve
tor of s;3 Repla
e all rhs referen
es by the 
orresponding sour
e fun
tion withthe following modi�
ations :{ repla
e a leaf of the form (s; l(b)) by Ms[l(b)℄,{ repla
e a void leaf ? by the original rhs referen
e.To justify the last pres
ription, note that a void sour
e indi
ates that the
orresponding memory 
ell has not been de�ned anywhere in the program.As a 
onsequen
e, its value still is the one it had at the program start.22



for i := 1 to n dobeginfor j := 1 to i-1 dofor k := i+1 to n dou[j,k℄ = u[j,k℄-a[i,k℄*u[j,i℄/u[i,i℄; {S1}for j := i+1 to n dofor k := i+1 to n dou[j,k℄ = u[j,k℄-u[i,k℄*u[j,i℄/u[i,i℄; {S2}end Figure 8: A version of the Gauss-Jordan algorithmThe result of this transformation may be presented as a set of re
urren
eequations, with all a priori sequen
ing left out.Consider for instan
e the version in �gure 8 of the Gauss-Jordan elim-ination algorithm (de
larations and input/output statements omit-ted). Let us �rst detail the 
omputation of the sour
e of a[j,k℄ ins1. s1 and s2 both are possible sour
es. Hen
e, there will be twodire
t dependen
es. A standard dependen
e analysis will show thatall dependen
es are at depth 0. As a 
onsequen
e, there are only two
andidates, whi
h are given by the PIP algorithm:K1 = if i� j � 2 then (i� 1; j; k) else ?; (26)K2 = if j � 1 then (j � 1; j; k) else ?: (27)The problem is now to evaluate re
urren
e (16). Obviously:S1 = if i� j � 2 then (s1; i� 1; j; k) else ?:The �rst step in 
omputing S2 is to apply rules (19), (18) and (20) toobtain the interim result:
23



S2 = if i� j � 2then if j � 2then if (s1; i� 1; j; k) � (s2; j � 1; j; k)then (s2; j � 1; j; k)else (s1; i� 1; j; k)else (s1; i� 1; j; k)else if j � 1then (s2; j � 1; j; k)else ?Examination of the original program gives:(s1; i� 1; j; k) � (s2; j � 1; i; k) � i� 1 � j � 1whi
h is false when i � j � 2 : this is a 
ase of elimination of a deadleaf. Next 
omes an appli
ation of (21), and the �nal result is:S2 = if i� j � 2then (s1; i� 1; j; k)else if j � 1then (s2; j � 1; j; k)else ?Similar 
al
ulations for all other rhs referen
es gives the LAU formof �gure 9. This result is quite involved, and may be simpli�ed inseveral ways. However, we do not advo
ate that su
h a 
ode be usedfor a
tual 
omputing, but rather as a starting point for further analysisand optimization. Hen
e, simpli�
ation per se may not be worth thee�ort.4.2 Array and S
alar ExpansionParallel or ve
tor exe
ution of a program may be frustrated by allo
ationof the same memory 
ell to unrelated values. This is 
alled an outputdependen
e[20℄. Transforming the program to single assignment style re-moves all su
h dependen
es, at the 
ost of a large in
rease in memory usage.24



1 � i � n; 1 � j � i� 1; i+ 1 � k � n :u1[i,j,k℄ = if (i-j-2 >= 0) then u1[i-1,j,k℄else if (j-2 >= 0)then u2[j-1,j,k℄else u[j,k℄- u2[i-1,i,k℄ / u2[i-1,i,i℄ *if (i-j-2 >= 0) then u1[i-1,j,i℄else if (j-2 >= 0)then u2[j-1,j,i℄else u[j,i℄1 � i � n; i+ 1 � j � n; i+ 1 � k � n :u2[i,j,k℄ = (if i-2 >= 0 then u2[i-1,j,k℄ else a[j,k℄)- (if i-2 >= 0 then u2[i-1,i,k℄ else a[i,k℄)* (if i-2 >= 0 then u2[i-1,j,i℄ else a[j,i℄)/ (if i-2 >= 0 then u2[i-1,i,i℄ else a[i,i℄)Figure 9: The single assignment form of program 8
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In many 
ases, su
h expansion is useless and should not be done. For in-stan
e, on most ve
tor 
omputers, innermost loops are the only ones whi
hare sus
eptible of ve
tor mode exe
ution. In other 
ases, the output depen-den
e is a

ompanied by a true dependen
e, whi
h 
annot be eliminated byexpansion. The problem of de
iding whi
h lhs should be expanded and/orrenamed is highly dependent on the target 
omputer and will not be ad-dressed here. We will suppose that we are given a list of modi�ed lhs, thenew lhs for operation (s; a) being Ms[f(a)℄. Most often, f will be a sele
tionoperator on the 
omponents of a. One then applies the algorithm of Se
tion4.1, with step 3 modi�ed in the following fashion :3' Repla
e all rhs referen
es by the 
orresponding sour
e fun
tion withthe following modi�
ations :{ repla
e a leaf of the form (s; l(b)) by Ms[f(l(b))℄ if the lhs of shas been modi�ed, and by the original rhs if s is untou
hed.{ repla
e a void leaf ? by the original rhs referen
e.Obviously, a rhs all of whose sour
es are untou
hed is not modi�ed bythe above pres
ription.Note that not all renaming and expansion are legitimate. When one needsa value, one must take 
are that it has not been overwritten some time before.There is a pre
ise solution to this problem. To 
he
k that a value produ
edby (s;K(b)) with lhsMs(f(a)) is still available at (t;b), one should test thatfor all statements r with lhs Ms[h(
)℄ the following problem :h(
) = f(b);(s;K(b)) � (r; 
) � (t;b);er(
) � 0;has no solution in 
 in the 
ontext et(b) � 0. There are many 
ases in whi
hthis 
al
ulation is not ne
essary. Let us note the 
ase in whi
h Ms is usedonly in s, and the one in whi
h all uses of Ms have as indi
es a superset ofthe indi
es of the original lhs.4.3 Program Che
king and OptimizationHere we will suppose that we are given a program 
omplete with initializa-tions and input/output statements. These statements are easily in
luded in26



the present framework. For instan
e, an output statement may be modelledas a statement with rhs referen
es but no lhs. The �rst step in the veri�
a-tion of su
h a program is to 
he
k the sour
es for the presen
e of the ? sign,whi
h indi
ates a

ess to an unde�ned memory 
ell.When 
omputing a sour
e, one may re�ne the polyhedron Q(b) by addinglinear 
onstraints expressing the fa
t that all indi
es are within the arraybounds. The ? sign will in that 
ase pin-point an out-of-bound a

ess. Mostoften, the ? sign will appear inside a 
onditional whose predi
ate gives a
ondition on the stru
ture parameters whi
h must be 
he
ked for the programto run 
orre
tly. Adding a run-time test for this 
ondition is a simple matter.Knowledge of the sour
e fun
tions allows very pre
ise dete
tion of dead
ode. Certainly all output statements are useful 
ode and should be markeda

ordingly. If statement t is marked, all statements whi
h o

ur in sour
esfor rhs referen
es in t are useful. When this pro
ess (whi
h is nothing morethan a graph traversal algorithm) terminates, unmarked statements are dead
ode.Finally, the single assignment form of a program is an invaluable help in
he
king that the program has the desired behaviour. Consider for instan
etwo very similar pie
es of 
ode:for i:= 1 to n do a[i℄ := a[i+1℄ {1}for i:= 1 to n do a[i℄ := a[i-1℄ {2}Their single assignment trans
riptions are widely di�erent:for i:= 1 to n do A[i℄ := a[i+1℄ {1}for i:= 1 to n doA[i℄ := if i-1 >= 0 {2}then A[i-1℄else a[i-1℄where A is a new array.In the 
ase of f2g, the assignment :A[i℄ := A[i-1℄may be 
onsidered as a re
urren
e in the usual mathemati
al sense and solvedto yield :A[i℄ = a[0℄ 27



4.4 Parallel Program Constru
tionAn obvious idea is to summarize the sour
e fun
tion by a graph. There isan edge from s to t for ea
h o

uren
e of s in a sour
e of a rhs referen
ein t. This gives the data
ow graph of the original program. It is obtainedfrom the usual dependen
e graph[20℄ by removing output dependen
es, anti-dependen
es and spurious 
ow dependen
es. This graph may be submittedto 
lassi
al parallelization and ve
torization algorithms[2℄. One still has toexpand some variables to re
onstru
t a 
orre
t program.Another approa
h is to 
onsider the sour
e fun
tions as syn
hronization
onstraints (a statement whi
h uses a given value may not start exe
utinguntil the sour
e statement has terminated), and to attempt the 
onstru
tionof a parallel program whi
h meets all of them. This approa
h is remines
entof the methodology for the automati
 or semi-automati
 design of systoli
arrays [22℄, and leads to the 
onsideration of timing fun
tions or s
hedules.The use of timing fun
tions for the 
onstru
tion of parallel program has beenadvo
ated in several papers[13, 21, 19℄. The out
ome of this resear
h will bereported elsewhere.5 Related WorkThis paper is related to work in two di�erent areas: one is standard data
owanalysis[1℄, whi
h is used as a basi
 te
hnique by many optimizing 
ompilers,and the other is the spe
i�
ation and 
ompilation of data
ow languages.Standard data
ow analysis is both more and less 
omprehensive than thepresent one. Its range of appli
ability is wider, sin
e it deals with unstru
-tured programs. However, it is a stati
 theory (all exe
utions of a statementin a loop are lumped as one), and, as su
h, applies only to s
alars (or toarrays 
onsidered as a whole). An example is the determination of use-def
hains. To ea
h use (rhs o

uren
e) of a variable x is asso
iated a list ofde�nitions of x whi
h may be the sour
e of the 
urrent value of x. Use-def
hains are 
omputed by iteratively solving propagation equations. In ourframework, use-def 
hains 
ould be obtained by 
omputing the frontier ofthe sour
e fun
tions and removing all informations about iteration ve
tors.In a similar 
ontext, a te
hnique for 
onversion to stati
 single assignmentform has been advo
ated by Cytron et. al. [11℄. Here again, the sour
e28



program is not required to be stru
tured, and only s
alars or arrays taken asa whole are 
onsidered. The paper is 
on
erned with the most e
onomi
alinsertion of so-
alled �-fun
tions (i.e. multiplexors) at join points in the
ontrol graph. When this is done, it is possible to rename all variables andto obtain a single assignment program.Data
ow ar
hite
tures are one of several ways of exploiting single assign-ment programs. Ea
h ar
hite
ture has a ma
hine language, whi
h in generalis presented as a data
ow graph. One of the problems in this �eld is howto provide a more user-friendly interfa
e, either in the form of a high-levelparallel language, or by translating 
onventional language to data
ow. Ourwork is 
ertainly relevant to this aim. A re
ent paper[9℄ gives an algorithmfor translating FORTRAN to data
ow graphs. Here again the problem iswith arrays. A data
ow ma
hine has no diÆ
ulty in exe
uting the 
owgraphequivalents of doall or doa
ross loops. Dete
ting su
h loops, however, mustuse 
lassi
al te
hniques like dependen
e analysis.Dependen
e analysis is mainly used by parallelizing and ve
torizing 
om-pilers. There is a 
ow or true dependen
e between two statements if the �rstone is a possible sour
e for a value whi
h is used by the other[20, 28℄. Thereare other kinds of dependen
es: anti- and output-dependen
es, whi
h indi-
ate memory sharing, and 
ontrol dependen
es, whi
h summarize the 
ontrol
ow in the sour
e program.One may say that a 
ow dependen
e is a very impre
ise approximationto the sour
e fun
tion. Some more pre
ise des
riptions are the dependen
edire
tion ve
tors[28℄, the dependen
e ve
tors[18℄, the dependen
e 
one[15℄and the dire
t dependen
es[10℄.S
alar expansion[20℄ is the parti
ular 
ase of the present problem in whi
hthe modi�ed variable is a s
alar whi
h is expanded to a ve
tor. If one restri
tsoneself to innermost loops, the problem has a very simple solution.6 Con
lusionThe main result of this paper is the des
ription of an algorithm for the data-
ow analysis of programs with array referen
es and for loops. It has beenimplemented partly in Lisp and partly in C, and runs on several 
omputersranging from a personal 
omputer to a DEC Vax 11/780. No e�ort has beenmade (at the time of writing) to optimize the 
ode (the Lisp to C interfa
e29



lines lhs rhs level leaves CPUa
ross 10 4 5 1 8 0.6burg 27 11 20 2 40 5.6relax 11 1 4 3 10 1.7gosser 19 5 11 3 20 2.8
holes 21 6 8 3 12 2.6lan
zos 55 23 31 3 54 12.6ja
obi 50 31 60 4 92 81.9Table 1: Some kernels and their data
ow analysisis espe
ially 
lumsy).Table 1 gives some quantitative results for a set of small to mediumkernels. For ea
h program we give the line 
ount, the number of assignmentstatements (lhs), the number of rhs referen
es and the maximum nestinglevel. The results are the number of leaves in the sour
e quasts (whi
h
ara
terizes the 
omplexity of the solution), and the CPU time in se
ondson a low-end SPARC station. One may observe that the sour
e fun
tionsare quite simple: about two leaves per rhs referen
e. As to the CPU time,the main 
ontrolling fa
tor seems to be the maximum nesting level in theprogram. The time per leaf goes from 75 ms for a one level program to 890ms for a four level program. While these values may be somewhat redu
edby 
onverting the Lisp part of the program to C, we do not expe
t more thanone order of magnitude improvement. It seems 
lear that the method willbe applied only to small kernels or to larger programs whose running time ishighly 
riti
al (e.g., library modules).We have des
ribed several appli
ations of our te
hnique; the reader willprobably be able to add several new items to the list. Most of these are espe-
ially interesting in the 
ontext of automati
 parallel program 
onstru
tionand will be developed with this kind of appli
ation in mind. Some of thesemethods will require further study to be
ome operational; these unsolvedpoints have been noted where appropriate.Extending the te
hnique to languages with fewer restri
tions than weintrodu
ed in se
tion 2.2 would be highly interesting. Some estimate of theappli
ability of our te
hnique may be dedu
ed from the statisti
s of Zhiyu30



Shen et. al.[23℄. The main diÆ
ulty is non-linear indi
es. In this paper,whi
h analyses more than 100 000 lines of 
ode, about 53% of all indi
es arefound to be linear, about 13% are partially linear, and the remaining 34%are non-linear. An index is 
lassi�ed as partially linear as soon as it 
ontainsa variable whi
h is not a loop 
ounter. Some of these unknown variables maybe eliminated by forward substitution. Some others are stru
ture parameters.Hen
e we expe
t that the only signi�
ant failure 
ause will be the use of anarray element as an index, whi
h a

ount for about 7% of all 
ases.Before being submitted to a data
ow analysis, a program must be put instru
tured form. There are te
hnique for the elimination of goto's[8℄ and forthe dete
tion of indu
tion variables[1℄, whi
h then allows one, in favourable
ases, to re
onstru
t unit in
rement for loops and to delete extraneous vari-ables by forward substitution[5, 4, 16℄.We expe
t that the handling of 
onditionals (by the familiar devi
e ofredu
ing them to guards on assignment statements) would not be too diÆ-
ult. Conditionals whose predi
ate depends only on loop 
ounters should behandled as restri
tion on the iteration domains of the 
ontrolled statements.while loops may perhaps be handled, in the 
ontext of parallel program 
on-stru
tion, as loops with an unbounded iteration domain. On the other hand,linearity restri
tions are 
ru
ial for the appli
ability of the method, and wedo not envision at the present time any tri
k for dispensing with them.Lastly, the analysis of programs with pro
edure and fun
tion 
alls is a verydiÆ
ult problem. If we restri
t ourselves to the handling of small kernels,a few tri
ks should do the job: identify those fun
tion 
alls whi
h a
t asoperators (no argument is modi�ed, no global variable is a

essed). Othersubroutine 
alls should probably be inlined.7 A
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A The Parametri
 Integer AlgorithmA.1 The Basi
 AlgorithmA parametri
 integer program (PIP) may be formulated in the following way.Let F(z) be the set of integer points inside a 
onvex polyhedron:F(z) = fxjSx+ t(z) 2 Ng=Kz+ h 2 N; (28)where S and K are matri
es and t(z) is an integer ve
tor whose 
omponentsare aÆne fun
tions of the integer ve
tor z. z is 
onstrained by the set ofinequalities Kz+ h 2 N;the 
ontext of the problem. As a matter of 
onvenien
e, we will suppose thatboth S and K are su
h that they restri
t x and z to non-negative integervalues. In parti
ular, the �rst jxj rows of S will generate the 
onstraintx 2 N.The problem is to de
ide for whi
h values of z is F(z) empty, and if not,to 
ompute its lexi
al minimum, as a fun
tion of z. The solution is given bythe following algorithm :Algorithm N1 Determine the signs of the 
omponents of t(z) in the 
ontextKz+ h 2 N;by solving non-parametri
 auxilliary integer programs. The sign maybe positive, negative or unknown.2 If there is a negative ti(z), then either:2.1 All elements of Si� are negative. In this 
ase, F(z) is empty, andthe solution is ?.2.2 There is at least a positive Sij; a pivoting step is exe
uted, givinga new problem hS 0; t0(z)i. The solution of the initial problem isthe same as that of the new problem in the old 
ontext. In that
ase, keep tra
k of D, the produ
t of the pivots.32



3 If all ti(z) are positive, sele
t the earliest row i su
h that one of Sijor the 
oeÆ
ients in ti(z) is not integral. If no su
h row exists (inparti
ular if D = 1), the solution has been found; it is given by the �rstjxj 
omponents of t(z). If su
h a row exists, let q be a new parameter.Add : 0 � ((�Dti(z)) mod D)� qD � D � 1;to the 
ontext. Let m be the number of rows in S. Add to S the newrow m+ 1 with the following 
oeÆ
ients :S(m+1)j = ((DSij) mod D)=D;tm+1(z) = (�((�Dti(z)) mod D)=D) + q;and start again at step 1.4 In the remaining 
ase, sele
t a ti(z) whose sign is unknown; let x+ andx� be respe
tively the solutions of hS; t(z)i in the 
ontextsKz+ h 2 N; ti(z) � 0;and Kz + h 2 N; ti(z) < 0;respe
tively. The solution of the initial problem is :if ti(z) � 0 then x+ else x�:This algorithm is guaranteed to terminate (see [14℄). The result is a mul-tilevel 
onditional expression whose predi
ates and leaves are aÆne fun
tionsof the parameters. The new parameters like q above may be repla
ed by theirexpressions as integer quotients of aÆne forms.The algorithm above is not entirely deterministi
; there are many equiva-lent solutions to the same problem. Experien
e has shown that a few simpleheuristi
s suÆ
e for sele
ting a well behaved solution. First of all, avoidsplitting (
ase 4) at all 
ost (e.g. by grouping the 
ase ti(z) = 0 with thepositive or negative 
ase if the other 
ase does not exist). If for
ed to split,sele
t a row with all 
oeÆ
ients negative, whi
h implies that x� = ?. Thisalgorithm has been implemented both in Lisp and C; these 
odes have beenused to run all examples in this paper.33



A.2 The lexi
al maximumIn many 
ases of interest, one has to 
ompute a lexi
al maximum rather thana minimum. Sometimes, a transformation from one problem to the other isin eviden
e. We favour, however, the following systemati
 pro
edure.Algorithm MRefering ba
k to (28), introdu
e a new \very large" parameter m andsolve: u = min�G(z; m)=Kz+ h 2 N;where G(z; m) = fyj0 � y � m;�Sy + S1m+ t(z) 2 Ng:Compute3 v = m1 � u and prune the solution by repla
ing all testsin whose predi
ate m has a positive 
oeÆ
ient by their true bran
h and
onversely. A leaf in whi
h m o

urs with a positive 
oeÆ
ient is asso
iatedto a range of the parameters where F(z) is unbounded. This 
ase will nevero

ur in the problems we are interested in.It is easy to prove that v is the required maximum; it is also easy to devisemethods to do the pruning \on line", so as to keep the extra 
omputationto a minimum. For instan
e, in step (1) of algorithm N, if m o

urs with apositive sign in ti(z), the i-th line may be taken as positive. We have foundin pra
ti
e that in 
ases where we need to 
ompute both the maximum andthe minimum of the same set, both algorithms have operation 
ounts of thesame order of magnitude, and neither of them is systemati
ally longer thanthe other.Referen
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