
Fuzzy .Arrayc,

Jean-Fran~ois Collard

LIP

ENS 1,~011

46 Al]& d’~talie

F-(59364 Lyon Cedex OT

Jean-Francois .Collard@lip .ens-lyon.fr

Abstract

Exact array dataflow analysis can be achieved in the

genera] case If the only control structurr=s are do-loops

andstrurtural ifs, andifloopcounter bound sandarray

subscrll)ts are afline expressions of en,glol>mg loop coun-

ters au{{ possii>ly some integer ronstants In t!ms pa-

per. we begin the study ofdataflow analysls ofclynarnlc

control programs, where arbitrary ifs and whiles are

allow7ed In the general case,

only be fuzzy

1 Introduction

this dataflow analys~s can

Gathering information on data values is a classical task

in advanced compilers+ known as Datrzj?ow Analys~s [Ij,

However, this technique only desk wlt,h scalar data. and

wes all array as an indivlslhle object,. on the other

hand, vectorizatlon ancl parallehzatlloli methods are

mainly based on (he parallelism hidden by independent

references to distinct parts of arrays. Varnous clepen-

deuce tests have been proposed [2]. However, these tests

are not exact, and, even when they are, cannot distin-

guish between true dependence, which describe a real

information flow, and spurious dependence, in which

the value purported to be transmitted is destroyed be-

fore being used. ‘To obviate this difficulty, methods

have been designed to compute, for every array cell

reacl IU a rigllt-lla,llcl-side expression (the “sink”), the

\ery opera t,iol~ wI1lc1l produced it (the ‘<source”). These

methods are called .4r-ray Dataflor{ .-lndy,ses (,4DA)
[6, loj, or L“aluf-Based Dependerzcc .4naly,ses [11].

Permission to make digital~ard mpies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyrightlserver
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To mpy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

PPOPP ’95 Santa Clara, CA USA
0 1995 ACM 0-89791-701 -6195/0007, ..$3.50

Dataflow Analysis

Dfmk Bart120u Paul Feautrier

F’RiSM Laboratory

~ni~,ersit~ de Versailles

45 Avenue des Etats-Unis

F-78035 Versailles Cedex

{Denis .Barthou, Paul. Feautrier}@prism .uvsq. fr

These ADAs, however, make quite stringent hypotheses

on the input programs. The only accepted control struc-

tures are the do loop and the sequence; loop bounds and

array subscripts must be affine functions of surrounding

loop counters and possibly of symbolic constants a.k.a.

s~ructure parameters. Programs following this model

have been called “static control programs” in [6]. The

same paper showed that, an exact, ADA can be mechan-

~cally performed on static control programs.

This paper deals with handling general ifs and while

loops. With such unpredictable control structures, no

exact information can be hoped for in the general case.

The aim of this paper is to show that even partial infor-

mation can be automatically gathered thanks to Fu:zy

Array Dataflotc Analysts (FADA). Moreover, should

this FADA be applied to a static control program, it

is easy to show that the precise, classical ADA is a spe-

cial [nomfuzzy) case of ??ADA.

1.1 Paper Overview

Section 2 gives a motivating example. Section 3 then

briefly reviews the exact array dataflow analysis for

static control programs proposed in [6]. Section 4 de-

fines our program model. Section 5 details the algo-

rithm.

1.2 Notations

The ,k-th entry of vector .i is denoted by .F[k]. The

subvector built from components k to 1 is written as:

Z[k..l]. If k > 1, then this vector is by convention the

unique vector of dimension O. Furthermore, << denotes

the strict lexicographical order on such vectors. In this

paper, “max” always denotes the maximum operator

according to the << order. An instance of statement S

is denoted by (S, ~), where .F, the iteration vector of S’, is

the vector built from the counters of Ioops surrounding

,s

92

2 A Motivating Example

‘The following two sibling codes exemplify dynamic con-

trol programs

program M

dol=l, n

,S() a(i) =,..

If then

doj=l, n+2

,Sj a(j) = a(j-2)

enddo

endlf

enddo

program N

doi=l, n

s,. (1 : a(i) =...

While . . . do

doj=i, n+~

,5] a(j) = a(j–2)

enddo

enddo

enddo

Let us consider Program M first, ancl suppose that

n = 4. Let us study the case of the mstccnce of state-

ment, S’l when i = 3 and j = 4, ie (S1. 3, 4). Note that

we don’t even know at compile-time if this instance ac-

tuall} executes. If it c~oes, however, then the probiem

is to know where and when the right-baud-side va~ue

a(2) was produced. This source may be an instance of

,S1, but, not if i > 3, since this instance would execute

aflcr (S1, 3, 4). Since the source must write into a(2).

the value of j is fixed to 2. This source cannot be an

instance of SI for i = 3 either, since j is greater than or

ec~ua,l to i. Thus, poss~ble sources are instances (Sl, 1,2)

arlcl (,S1, 2, 2). Another potential source is (SO, 2). Note

moreover that (SCJ,2) overwrites the value that (S1, 1,2)

may have written. Thus, the set of potential sources is

{(,$,),2), (s’1,2,2)}.

Actually the iteration points of S1 fall into three

groups (stie Fig. 1 (h)):

● A member (i, j) of the first group is such that

j ~ i + 2. It has one and only one possible source

from ,S~ (namely, (S1, i, j – 2)) since if point (i, j)

executes then (i, j - 2) did execute too.

● on the contrary, a member of the second group has

an unpredictable source. However, all the members

of this group have at least one source, since all the

amay cells they read (a(I) through a(n–1)) m-e

written mto by ,SO. Dotted edges symbolize this.

● Finally, members of the third group do not, have

sources in the given program.

The analysis for Program N is obviously similar, ex-

cept that the iteration domain of S1 is 3-dimensiona~.

Program N will serve as a running example in the sequel.

3 Review of an Exact Array

Dataflow Analysis

The aim of this section is to summarize an array

dataflow analysis of static control programs [6]. The

reader is referred to [6] for details.

The depth of a construct is the number of surrounding

loops. The counter of a loop at depth p is the (p+ 1)-th

component of the iteration vect,or.

The sequential execution order is written < and IS

defined by:

(S, ~) < (~, j) S ;[l..N,,R] < fll..~sR]v

(i[l..NsR] = j@..~sR] A T,SR),

(1)

where NsR is the number of loops surrounding both S

and R, and TSR is a boolean which is true iff S precedes

R in the program text. Notice that this sequential order

can be split with respect to depths:

Ns H

(S, @ + (R, fl = ~ (S, i?) -+ (R, J’) (2)

p=o

where for p = (), ,NR,5 – 1:

(S, Z) +, (R,@)@ (Z[l..p] = fll..p])A(zi+l] < J(y+l])

(3)

and:

(S, F) +jv.~ (R, Z ~ Z[l..NSR] = il[l..NsR] ATSR (4)

For a given loop at depth p, i@+ 1] has a minimum ancl

a maximum which are given by the loop bounds. In the

case of exact ADA, these bounds are affine functions of

outer loop counters and structure parameters:

/p(i[l..P]) < ~~+ 1] < ‘UP(E[l.. P]). (5)

The iteration domain of a statement S is denoted by

D(S) and is given by the conjunction of all inequalities

(5) for the surrounding loops.

Let us consider two statements S and R. Suppose

that ,S writes into an array a and that R reads that

same array:

S : a(~(~)) = . . .

. . .

R, . . . = a(g(ii))

93

4

(a)

I

61

5

4

3

21.

I

. . I
Third group

1

i i

1 2 3 4

(b)

Figure 1: Dataflow graph of Program M.

The ailn of array dataflow analysis is to find the source

of the value a (g(jj)) read in R for a given J. This source

]~ deuoteci by C((R, J). To be a. candidate source, ar~

operation (S, $) has to satisfy the following constraints.

Existence predicate: (S, .F) is a valid operation:

i’ ED(S). (6)

Conflicting accesses: (S, Z) and (R, j) access the

same array cell:

,f and !/ are possib]y multi-dimensional afline func-

1ions w.r. t. .; and ~~. respectively.

Sequencing condition: (,5’, Z) is executed before

(R, j):

(S, :) < (R, j) (8)

Environment: The set of candidates is to be com-

puted under the hypothesis that (R, j’) is a valid

operation I.e. j e D(R).

The set of candidate sources is thus:

Q,,R(i) = {: I iE D(S), j’(i) =v(i), {S,2) < (R, j7)}.

Thanks to (2), this set can be split for each possible

depth p:

Q:R(J) = {~ I 76 D(S), f(i)= g(fl, (S,7) -q {R, ~}
(9)

Since each predicate <P is affine, Q~R(j’) is a polyhe-

dron, The dtrert dependence from S to R at depth p 1s

the maximal element according to the << order:

The maximal value is computed for each depth by in-

teger linear programming [5], The corresponding oper-

atzon is denoted by S~.R(~) = (S, K~R(~)).

In general, however, there are several statements

S1, Sm writing into the same array, and as many

sets of candidates. One has to compute the maximum

of the direct, dependence:

a((l?,fl) =max{S~~R(yiJ / 1 ~ k ~ rn, O <p< fvsk~}.

(11)

‘This maximum is computed with the help of a set of

simplification rules, which are given in Section 5.2. The

result of the analysis is a quasz-ajlne selection tree or

q’Uast. i.e. a many-level conditional in which:

e

●

4

Predicates are tests for the positiveness of affine

forms in the loop counters and structure paramet-

ers.

Leaves are either operation names whose iteration

vector components are again affine, or 1. The spe-

cia] name 1 indicates that the array cell under

study is not modified in some piece of code, A

coherent way of thinking about J_ is to consider it

as the name of an operation which is executed onc~

before all other operations of the program, i.e.:

Vs,i: 1.< (s,2). (12)

Definition of Fuzzy Array

Dataflow Analysis

4.1 Program model

In this paper, our aim is to extend the scope of array

dataflow analysis t,o programs respecting the following

94

ccmstrraints: 1) ‘“rhe only data structures are integers,

reals. aud arrays thereof. 2) The only control structures

are the sequeuce. the do ioop. the while loop, and the

if. .then. .elseonstruct,t, gotos and procedure calls

are forbidden. 3) Basic statements are assignments to

scalars or array elements. 4) No pointer. EQUIVALENCE

oraliasingis allowed. 5) Array subscripts must he affine

functions of do loops counters ancl struct are parameters.

(j) Arrays ~lbscriptsl llustst aywitllinar ray bounds. This

condition 1s usually imposed by I.)arallelizing compilers.

The rattonale m that, a program which does not conform

to this restrlct,tou is incorrect and can be incorrectly

handled by the conlpiler. Besides, the property can be

statically checked when array subscripts do not, depend

OH while counr,er>.

Similarly to do loops. an iteration of a while loop

is denoted by giving its ordinal number w in the iter-

ation sequence Most of the definitions given in [6] for

static control programs translate directly to the present

model. In particular, the meaning of the execution or-

der (1) is that. when the set of operations of a given

execlltion is known. thfn their execution order is given

by (1).

4.2 Hidden variables

To he definite. we will postulate that there exi~s a set

of “hidcleu variables”, collectively denoted by (, which

completely clet,ermine the set of operations of the asso-

ciated execution. If the value of these variables were

known, and if we could completely analyze the behavior

of the program, then we could in principle predict the

number of iteration of each while loop and the outcome

of each test. We will suppose here that a knowledge of

the hidden variables allows us to compute:

●

●

the iteration count of each while loop. Let W“ be

such a loop and let Ji be the iteration vector of the

loops (of any kind) surrounding W. We will assume

the existence of a function FW (Z, ~) giving the it-

eration count, of instance F of W when the value of

the hidden variables is <. In the case of a while

loop at depth d, the corresponding inequalities are:

1 <.i[d+l] < pw(.i?[l.. d],:). (13)

When the while loop under discussion is clear from

the context, the IV subscript may be omitted.

In the following, we suppose that our source pro-

gram is totally correct. i.e. that all while loops

termu~ate iu a finite number of iterations. This “is

equlvaleut, to saying that ~ always has finite values.

the outcome of each test. The value of the predi-

cate of conditional ~ at, iteration .F will be written

~(~(.i?, ~). Here again the subscript C’ may be omit-

ted if no ambiguity results.

The iteration domain of statement S will he written

D(S. ~). D(S, <) is given by the conjunction of all ap-

plicable inequalities (.5) or (13) and of the T predicate

associated to governing conditionals. For instance, the

Iteration domain of S1 in Program M is {i, jl 1 s i <

n, i s j ~ n + 2, r(i, ~)}. The iteration domain of S1 in

Program Nis {i, ul, j]l ~ i < n,l < w ~p(z,~),~ ~ j ~

rl +2}.

In the case of static control programs, the only hidden

variables are the structure parameters, and the iteration

count of all do loops may only depend linearly on the

structure parameters and outer loop counters. In that

case, the function p can be written explicitly ant] han-

dled exactly by the dependence analyzer. Similarly, the

function r can be handled exactly if it is an affine func-

tion of loop counters and structure parameters.

5 A FADA algorithm

The purpose of this paper is to analyze programs where

some existence predicate (6) effectively depends on hid-

den variables. our objective is to show that it is still

possible to compute apprommate sources in this case.

The method will be to compute, for each read reference

m operation (R, y~, its source C((R, y~, ~) as a function

of the hidden variables. Since the values of the hidden

variables are unknown by definition, the best we can do

is to take as an approximation to the real source:

d(R17)) = U$((R!W?. (14)

<

In so doing, we have to take care not to use approx-

m~atlons too eariy. This is possible by introducing ad-

ditloual parameters, ancl by proving that, varying these

parameters is equivalent to modifying the hidden vari-

ables. These parameters are introduced, when neces-

sary, in direct dependence (Section 5.1). The conlbi-

nation of direct dependence is described in Section 5.2.

The result is expressed as a function of additional pa-

rameters whose elimination is dealt with in Section 5.3.

5.1 Direct dependence computation

This section is devoted to the evaluation of (10). It

so happens that in some cases, an exact solution may

be found even in the presence of while loops or tests.

These cases are investigated in the next, section. lf’e

then proceed to the general case.

5.1.1 Exact solutions

The case of while loops. Let us consider the case of

a candidate source which is governed by a while loop

W at depth cl. An exact computation of ~{~R(@) can

95

be made if’ ant] only if the F’S in the existence condi-

tion of the source candidate can be eliminated. Suppose

that R is also insicle W Among other inequalities, the

environment, includes.

Then:

Proof Q~.R (,ij) IS defined m (9). The sequenc-

ing prrdlcate can bt= written as (3) or (4).

Then, two cases may occur:

o If d < p, then either (3) or (4) implies

i[l..d+ 1] = fll..d+ 1]. ‘Thus:

(15) * &[(i+ 1] < p(ql..d],~.

● If d = p, let us observe first, that, d < NsR.

Thus, p < J~sR. which means that the

sequencing predicate <r at depth p is in

the form (3) again. So (3) * fll..p] n

.F[l..p]A~~+l] < jjj+ l]. Thus, (15) ~

,FljJ + 1] < p(5[l..p], {).

❑

If all the p’s can be removed from S’s existence pred-

icate, then Q\R (J) is a convex polyhedron and the cor-

responding direct dependence can be exactly computed.

In Program N, an operation (S’1, z’, w’, .)’) is a pos-

sible SOUKe of a (j -2) in operation (SI i. w, j) if

and

11<2 (16)

V(Z’ = ZAW’ < w) (17)

V(i’=t AW’=WAj’ <j) (18)

V(Z’=i AW’=ZOAj’=j AT S,Sl) (19)

The environment is

p = j: The sequencing cmdition is (l$J). Ts, S, is

false, hence Q~, ~, (z, w, J) = 0.

p = 2: The seclnencing condition is (18). Since

t’ = i and w‘ = w, the inequalities 1 ~ w’ ~

P(?’. ~) are implied by the environment and

can be discarded in the definition of this set.

Then. Q~, sl(i, w,j) = {(z’, w’,1’)Iz s j’ ~

n + 2.z’ = Z,W’ = w,.?’ < jlj’ =J– 2}, Its

maximum can thus be computed:

if]~a+2

K&5,(a,w,.7) = then (t, w,j -2)

else J-

Equivalently,

ifj>t+2

&’, s1(h W,J) = then (S1, t, w, j – 2) (.21)

else J.

p = I: (17) implies that:

Again, 1 < w’ ~ v(z’, ~) is implied by (20)

and can be discarded in this set expression.

The corresponding possible source is:

ifw>2Aj>z+2

Si,s,(iw!j) = then (Sl, z,w–l. j–2~22)

else -L

p = O: This case cannot be handled exactly (see

5.1.2).

Let us now consider the direct dependence from

SO to S1. The reader may check that the two direct

dependence at depth o and 1 are:

ifj>3Az>j–1

&’05,(2, w,.?) = then (SO, j – 2) (23)

else _L

and

S&S1(Z W,J) = if] = i + 2then (S O,z)else L.
(24)

Note that if the only while in the source program

is the outermost loop, then d ~ p always holds, and

Property 1 proves that the dataflow analysis is exact.

This result justifies a conjecture in [3].

The case of conditionals. A similar result holds for

conditionals. Let C be a conditional at depth c enclosing

two statements S’ and R. S and R are thus governed

by the same predi~ate ~, meaning that the environment

includes ~(y~l ..c], f) while the definition of the candidate

set Q~R(iJ includes T(Z[l.. C], ~). Hence, if p > c, then

7~.4 = ~[1..clandthe former predicate implies the
latter, which can be eliminated.

Similarly, if S and R are in opposite branches of

C, then th~ definition of the candidate set includes

~~(.F[l.. c], ~). If p ~ c, this predicate is always false

and the candidate set is empty.

96

111ia\oral)J(case>. al) ; all d T fuuct,lous can be ehm -

Iuawd and the compuratlon of an exacl source is possi-

ble. For stattc control programs, the hypotheses of this

section are trivially verified: this is t,bt~ stage at which

filzzy ADA and exact ADA meet,. The following sec-

ttoll deals with cases where such simplifications are not

pod+

5.1.2 Expressing an imprecise solution

%ction 2 gave an intllitive flavor of what the final result,

(.f FA !J,A shotlld Iw. sets of possible sources. Our aim,

howe~er IS to jlustp(oue thl> IIW’ of s-ts so as to keep

,~xact]uff~rma,t<iou a,s far as possibl?.

Let c be the depth of the innermost condition govern-

ing ~’, aud let d be the depth of the innermost while

loop euclosing .5 Let us suppos~ tha.T at least one of c

aud d is larger than the current depth p (if not, as we

have seen. an exart computation is possible). A central

propert,y is that, ~u computing approximations, we have

only to cow-u clf’r the innermost test or while loop To

see this. suppose for instauce that the source m questton

is goveruwi by a test wvt$h predicate 7(,F[l. .c]) contai-

ning a while loop whose upper hound k #(.F[l.. d]). with

d z r Let II> defiue a nmv function:

&’(J[l.. d]) =if T(Z[l.. C]) then #(Z[l.. cl]) else O.

The iteration clomain associated to d! is exactly the same

as the one associated to p and i-. Since ti is no more

and no less arbitrary than p and r. we may proceed as if

the unique governing construction was the while loop.

E%’i=can theu procepd ill a case by case manner.

The case of while lc>ops. Suppose first that c <

d, which meaus that the innermost while is inside the

lnnelmlost test, ‘The problem here is rlo express the set

QLRiF <j W~UCIIuow depeuds on the hidden variah~e~

where .47 ~ /J subsumes the linear part of the existence

predicate of .s’. Let ‘T(<) be the subset of the iteration

dom ai u of the while

Once:

‘T (:)

The set of caudidate

where the loop is executecl at Ieast

= {Z}p(ti,{) > 0}.

sottrces at [Ieptb p is:

{ 26447> i.:[l..d]=d$

(25)

The lexicographical maximum of the above union be-

lougs to one of the sets of the union, Hence. there exist

(l]n T (~-), J such that the direct dependellw l{~.R(J f-)

from .$ to R at depth p is the lexicographical maximum

of the polyhedron:

{i[A@~ ;,,Z[l..dl = 6,1< F[d+ 1] ~ /3.

~(~) == g(~), (S,;) +,, (R, j)}.

We may consider that the values of G and U are a “sum-

mary” of the values of the hidden variables as far as

the current while loop is concerned. The set of can-

didate sources may be written Q~R (j’, d, ~) instead of

Q?R(Jd Its maximum~{ldf! ~ $) can easilY be
computed by a software like PIP [5] as a function of

,~, of the original structure parameters, and of the add-

itional parameters & and #. Furthermore, It 1s easy to

see that there exists a p function, namely:

p(d, <) = L3ifd=d,

= O otherwise

such that K~R(J, ~) = K~R(jj, d, 0). This shows that

our parametric representation gives all possible sources

a]).d nothing but sources. The ‘-fuzziness” of the SOIUtion

is reflected in the fact that the values of the additional

parameters Z and ,3 are unknown.

in Program N, the direct dependence from SI to

itself at depth O has the following parametric can-

didate set:

Q~,~l(z,w,jff.J’)=

{(i’, w’, jf) I 1<2’< n,i’ = a’,

l~ul’<~,i’<j’<n+2,

J’=1-3$’ <Z).

Here is the solution:

I ifl<a<zA8~lA~~a-i-2

.S~,~$ (1, w,j, a,/~) = I then (S1,O. /3, j – 2)

I else 1

(26)

The case of conditionals: the if. . then con-

struct. suppose next that c > d. Let S be a state-

ment which writes into a and which is in the branch of

a conditionna.1 governed by some predicate T. We as-

sume that p < c (otherwise, the results of Section 5.1.1

apply). With the same notations as above. the set of

candidates is given by:

Q&Ji7,tj = {11.4:2 ~, ~(~[1..c],~),

f(i) = g(~, (S,5) <, (R, fi}. (27)

Let T(j) be the subset of the iteration domain of the

conditional where its predicate evaluates to true. Then

r is defined by:

T(z[l..c], r) = v (d= .F[l..C]).

C%r(i)

97

The set ‘of caudidate sources at depth p can be written

ah.

Q~;R(;{) = IJ {W:? li[l..c] = d.

icET(il

f(i) =(J(J), (S,.F) <r (R,~).

Thp lexicographlca] maximum of the al>ove union be-

longs to one of the sets of the union. Hence there exists

d in ‘7 (~) such that the direct dependence K~R(~, ~)

from S 10 R al depth p 1s the lexlcographica] maximum

of

{71.47 z ;, 7[1..c] = d, f(~) = g(~) (S, 1) <P (R, j’)}.

(28)

Here again, it is easy to see that this procedure gives

all sources and nothing but sources. When I- evaluates

to fake for all values of its iteration domain, we may

choose for d a value which does not satisfy Ad ~ b.

This can always be clone since O is not m the domain

of any outer while loop and the other outer loops have

hounded domains

The case of conditionals: the lf. . then. . else

construct. Thesituation ismorecomplicatec iin this

case. If no variable is modified in both arms of the con-

dition al, we can handle each arm independently along

the lines of the preceding paragraph. Suppose now that

there exists an array a which is modified in both arms

of the conditional and which is read later:

Cio z=.

if (P) then

s’~ : a(fl(i)) = .,.

else

,>’~ a(j’~(~)) = . . .

endif

R“ .s” = X(g(i))

enckio

With not,atiom similar to (27), we have two sets of can-

didate sources:

Q?lR(;.;) = {~lAI~2 ~1 ~(~[lc]~)

.fI(:) = g(;). (s1,2) <, (R, j’)}.

Q!LJ.7. <) = {ilA,7~ i, 7(?Z[1 c], ~)

j,(i) = g(:r). (s,,2) <,, (R,ij)}.

where

T = 7T. (29)

To handle each candidate set independently, we intro-

duce two extra parameters 6’1 and dz such that:

T(.i[l.. c]) ~ (Z[l.. c] = d~),

?(i[l.. c]) = (i[l..C]= G2).

The solution then proceeds as in the if. . then. . case.

in so doing, we have lost property (29), with the con-

sequence that spurious sources will be introduced. The

results can be slightly improved in some cases by observ-

ing that since ~(dl) and ?(ZZ) are both true, if T = 77

then &l # Eiz. This information may be added to the

context and used later when combining direct depen-

dence.

A better result can be obtained in the frequent case

where the candidate set Q~l ~ (~, {) is such that the first,

c components of ~ are uniquely determined: let 41 be

the function such that:

Ali ~ ;I, fl(z) = (J(?j), (SI , Z) +, (R, J)

* Z[l..C] = f$q(ij),

with a similar definition for 42. SUCII functions can be

efficiently obtained, if they exist, by extracting the im-

plied equalities from the above system of constraint,.

It is easy to see that the lexicographical maximum of

Q~, ~(17,<) is:

if ~(~1(~),~) then max Q1(~) else -L,

w’here

Q1(I) = {~/.41:2 ‘l,.fl(i) = g(i),($l,~) -% (RIO},

with a similar formula for the second arm of the con-

ditional. In these formulas, we may select arbitrar-

ily the values of ~(~1 (ij), /) and 1r(42(~), <), unless

dI (J) = @2(17). Any formula which depends on one pa-

rameter and which selects in turn the right solutions can

be used as a parametric representation of the solution.

One such formula is:

ifa # ~I(J)

then max QI (ij)

ifa = 42(j’)

else then max Qz (~)

else 1

Observe that if 41(J) # 42(J) then the 1 leaf can be

selected by taking a = @l(j) # d2(~ while if @l(ij) =

42(0, there is no value of ~ which selects this leaf.

5,2 Combining direct dependence

In the previous section, we studied direct dependence,

i .e, the case where only one statement may be the source

of the array cell read by R. In the general case, of course,

many statements are potential sources. Let S1, Sm

be the m statements writing into a given array cell. We

suppose that, for each sk, k = 1, . . . rn, the possible solu-

tions S~~ ~ have already been computed. We now con-

sider the problem of finding the unique source, which is

98

the nlaxlnla] ?Ienlt’ul aIl”lc)ug these Solu(lous according

[0 rile wqnent7al or(ler.

a((l?,{~) = max {S\, R({7) I 1 S k s 171.0 <p < IW,S,R}.

Let n br the number of candidate sources S~,R(~). For

expositor] reasons. we assign an index number g, I ~

g ~ ~1 to each S’: ~ (~). and rename the latter into

Ycq. ‘rbeli tbebas?~ algorithm computes the following

recurrence.

l<q </1 R.{, =max(Rv-.~, S,,j.

Wl{h

z,, = J_

Each wcurrenm step has {lo compute the mammumof

two quasts. ‘This IS done w~th the help of the following

rules’

Rule 1 IllaX (1, t) = t:. (Thzs ts stmpl;y a restatement

of (12) j

Rule 2 If u = if (’ then {II else Uz, thin:

IIlax (u {~) = if {“’then ulax (UI , l)) else max (?t~. 4’}

R.IIle 3 lf II = (,>’,.7)aud~ = {R,,// (IIFelc~t}~ntary
soaHws,thfn max(t{,J}= if u < (then {else u

Rule 4 Let if p then u eke I bc a subtree of a quast,

irwd let d bf lts conte.rf (I. ~. fhc set of predicates whtch

arf tncounff rrd m tht unique pizih from the root r!o the

subirtf). Th~w LfCAp ts not feas[ble, replace the subtree

/),y t’ .$~mdarly Lf (’ ,A 7p M not feast blf,, replacf tht

,sal)ir~f by //,.

Rule .5 if f‘ then u else v = v.

I,VF r<I II IIOIV [omhine the int ermecliate l’esults for

tl(e Lllnllillg exampk

‘RI = (?4) = if,) = i + 2 then (SO,,) – 2) else 1

K2 = Inax (7?1, (23))

JJ Rule 2

ifJ~~AJ~?+l

thenmax ((SO, J –2), (SO, J – 2))

Ri = \ else max((So, J– 2).1)

if,)>~A~<z+l

then max (1, (,50, I – 2))

! else max IL.1)

u Rulf, 4 (,!?(/ 1

if J=l+2

then (’%,J – +

‘R? = ifj>.3A]~z+l

else then (SO, J – ~)

else 1

1Rules 1 and 2 have symmetrical C(~unt erparts which are not

stated here,

For expository reasons, we simplify ‘R? into:

‘Rz = if] <t+2A) >?tllell(,~O,~—2)else 1.

Then,

‘% = max(7?z, S&l~, (~, w,j))

= max (’Rz, (21))

JJ Rules 2, then 3 and 1

~
ifJ~Z+?AJ>s

if~>f+2

~ then then (,SI. t, W,J – 2)

~. = ~ [else (.5’0. ,1 — 2)

el~ei if]~~+~

1

then (Sl, t, w,j — 2)

else 1

% = max (’R3, Sjl~l(Z, UJ,J))

= max (%L3, (22))

J,l Rules 1, 2, 3, 4 then 5

i~J~t+~AJ>3

ifJ~Z+?

then then (SI. Z, W,J – 2)

R+ = else (So, ,? – 2)

I

if,]~~+2

else then (Sl,~, u,.,) – 2)

else 1

Note that %!3 = ‘RA. This is no surprise

since the source candidates from previous it-

erations w’, w’ < w, of the while loop are

masked by operations of the current iteration

7[9, This fact can be detected before embarki-

ng on the final calculation [6, 9], thus reduc-

ing the complexity of the method. Then, ‘Z5 =

max (~,,~~l~,(t,u,j.a,~)) = max (%LA, (26)).

Applying Rules 1,2, 3, 4 and 5 yields:

7?.5 =

then

else

t her

else

if] >

then

else .

SI,2, W, J—~)

ifl~a<z Ab>l A~>ct +2

if ff= ~-2

then then (SI, ~ –2, @,J –2) (30)

I I else (SO, J - 2)

else (SO, J – 2)

2+’2

(s,, 2,w,, ~ – 2)

L

5.3 Removing additional parameters

The result of this analysis may be considered as the fi-

nal solution of the problem, since lt gives a paranletric

representation of the possible sources in term of addi-

tional parameters. It may, however, be more interesting

to “eliminate” the additional parameters in order to dis-

tinguish clearly the cases in which the source is precisely

known from those in which there are several possib Ie so-

IUtlons.

99

(‘onsIdPr a leaf in which an additional parameter ap-

p~arh This leaf represents the set of sources obtained

by g]~:lng all possible values to these parameters The

set of possible values is obtained by “aucling” all pred-

icates m the unique path from the root of the quast to

the leaf 111question.

Rule 6 LPI .1(6) b{ a l~af gwuerned by 1 predtcate~

PI, P1 In the aniqur poth from the root to the leaf.

The71 .A(d) M transformed z71t0 {.4(~)1 A~=lR}.

We first apply this rule in a systematic fashion. Then,

anj- leaf in which new parametem occur 1s transformed

into a icf Ill WIHC1l the new parameters are bounded bl-

the predicates govemlng the leaf. Leaves which does

not ~le~)el)dh ou parameters becolne siugletlons,

Now consldet a quast if (-’(d) them .4 else B. Thanks

to Rule 6, .4 and B are sets. Moreover, since the exact

value of C7M unknown, we cannot predict, the outcome

of the test The best we can do is to take as an approx-

imation the union ,4 U B

Rule 7’ 4 qv~.st if C(d) then A else B ts transformed

t7/tO .4 u 1?

Proceeding on (W}, we apply Rule 6 transforms

‘R:, into:

if,]<l+LA,]>.3

I if,j>l+~

then {(LSI , i, Wqj – 2)}

ifl~o<lAfl~lA.l~o+ 2

then if O=]–2

else then then {(S,,] –2, ?,J –2)\@ > 1}

else {(SO, j – 2)}

else {090,] – 2)

if~>z+?

else then {(S1, 2, w,j – 2)}

else {1}

(!~e used the fact that {(so, J – ~)1 1 < 0 A /j ~

I A j z n + 2) = {(SO, J – 2)}.) Then, applying

Rule 7 eventually vie]ds ‘Rs equals to:

ifj<[+2AJ>3

if J>?+2

then then {(SI, i, W,J – 2)}

else {(SI, J-2,/ J) J-~)l P Z l} U{(SO,J ‘2)1

ifj>i+2

else then {(SI, i, UI%J – 2)}

else {1}

The reader may check that this result is exactly

the result intuitively found in Section 2.

Observe that if we clo not, simplify our parametric

quasls. then leaves which are governed by inconsistent

predicates give empty sets by Rule 6, and then disap-

pear by Rule 7. This observation shows that our quast

simplification rules and our parameter elimination rules

are consistent

6 Conclusions

This paper gives a method to build a conservative ap

proxirnation of the flow of values in dynamic control pro-

grams. Such programs include control-flow constructs

such as whiles and if . . then. . else constructs, mak-

~ng both control and data flow unpredictable at compile-

time. In this paper, we have shown that, we can extend

the notion of a unique source to that of a source set,

and have designed a set of algorithms which give. in

many cases, surprisingly precise results. The fuzzy array

dataflow analysis has been implemented in Lisp within

the PAF project at PRiSM Laboratory.

Our method is generic in so far as it gives a framework

for fuzzy analysis that may be adapted to most, exact

analysis algorithms. More importantly. the net effect of

our handling of while loops and tests is to add equatzons

to the definition of the candidate set, thus improving the

probability of success of fast analysis schemes like [10,8]

We have observed in fact that the time complexity of

FADA is of the same order of magnitude as ADA. Some

researchers already proposed techniques to handle flow-

sensitl ve array data-flow analysis: in [4], Duesterwald,

Gupta and Soffa describe a fixed point computation to

discover may-reaching definitions. Even though their

method does not handle multi-dimensional arrays and

gives only maximal distances, a fuzzy array dataflow

anaiysis along their lines may be an interesting alterna-

tive to this paper.

Moreover, the difficulty of foreseeing the flow of data

does not only lie in the control flow (i.e. in solving (6)

and (8)), but also in dynamic (resp. intricate) array

access patterns, e.g. indirect subscripting (resp. non-

linear mappings), or aliasing. The difficulty then lies

in solving (7). Maslov [9] and Pugh and Wonnacott

[11] tackle non-affme array subscripts, and propose a

mechanism to derive approximate dependencies or upper

ond lower bounds on dependence, respectively. In our

case. we could have easily handled an intractable coll-

flict equation (7) by the same parametric scheme. How-

ever. since there is no concept of depth for subscripts,

this would always have lead to maximum fuzziness, an

uninteresting result. The solution seems to be to ap-

ply FADA to the variables occurring in intractable sub-

scripts, so as to derive, if possible, an equivalent depth.

Applications of FADA to automatic parallelization in-

clude scheduling (along the lines of [7]), array privatiza-

tion and register allocation [4]. As a concluding remark,

note that a 1 in a source set points to a possible pro-

gramming error. Beyond automatic parallelization, a

fuzzy array dataflow analysis may therefore be a general

tool for translators, compilers and program checkers, as

array dataflow analysis was.

Acknowledgments: The authors acknowledge the sup-

port of CNRS Program PRS, PRC/MRE contract

100

Pa,ra,Dlp,nle. DRET contracts !)1/1 180 and 9.3/254.5A and the

French-(~ernl an research program Rocope.

References

[1] A. J’ Aho., R. Sethii and J. D. Ijlhnan. Compders:

Prtnc[plrs. Tecl~ntquts and Tools. Acldison-Wesley,

Reacling Mass, 1986.

[2] [;. 13anprjee Dependence Analyszs for Supercom-

paftng. IilLIwer ,Acaclemic Fhlblishers, 1988.

[3] J .-F (’ollard Space-time trausforlliatiou of while-

loolM using speculative execution in Pro{. of l/iF

1,W~ >’(o[a l~lc HLgir f’e rjorw am (’omp uttug C(mf,

pages 42!)- 436, Knoxvd]e, Term.. May 1994. IEEE

[4] 1?. Duesterwald. R. G~lpta, and hJ.-L. Soffa A

practllcal data flow framework for array reference

analysis and its use in optimization. In A Clf SIG-

PL.4N “93 Conf. on Prog. Lang. Design and Imple -

n}cntai?on. pages 68–77, June 1993.

[5] P Feautrler Parametric integer programming.

R.41R0 Rtchfrcht 0p4rai~onntllt 22:24:3-268.

September 19SS.

[6] P. Feautrler. I)ataflow analysls of scalar and array

refer~nreh. Int, Jo urn al of Parallel Programming,

2(J(l):2;3--5l3.Fehruary 1991.

[7] P. Feautrier. Some efficient solutions to the affine

scheduling problem, part I, one dimensional time.

Int. J. of Parallel Programnviug, 21(5):313-348.

(lctoher 1992.

[~] (’. Hecl{ler and L Thiele. colllp~ltillglillear data

depe)idencies in nested loop programs. Parallel

Procts.~~na L~ii(rs. 1994. TO appear

[!)) \ Maslov. I,azyarrayc lata-flolvcl el>elldellceal laly-

s1s. In PTOC. 21.st.4]j7]ual. 4C,Vlh’1GPLA, V-, YIGACT

,>’,y~)lp, POPL, pages ~1 1---325, January 1994.

[IO] D. E. Maydan, S. P. Amarasinghet and M. S. Lam.

Array dataflow analys~s and its use in array pri-

vatization. In Proc. of ACM Conf. on Principles

of Proqramrwmg Languages, pages 2–15, .January
] :)$):3

[11] W. Pu@ and D. Wonnacott. An exact method for

ana~ysls of value-based clata dependence. ‘Tec.hnl-

ral Re~)ort C:S-TR-3196. (~. of Maryland, Decembel

1993.

101

