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The Polyhedral Model

Qutline of the Polyhedral Model

In the polyhedral model, a program is not a collection of functions
but a set of instances of statements or operations.

for(i=0; i<n; i++){
S: a[i] = 0.;
}

The set of operations is {< S,i > |0 </ < n}.
Generalizes to the iteration vector and the iteration domain.
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The Polyhedral Model

Important Concepts

The Happens Before relation:
<S,i>=<<Si'>=i</

generalizes to lexicographic order on the iteration vectors.

Dependences:
An instance u depends on v if v < u and if both access the same
memory cell, one of the accesses being a write.
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The Polyhedral Model

Representing Large Sets

Iteration domains are large, indefinite or even infinite sets:
» A 1 GFlops processor generates 10° operations per second

» The number of dependences may be up to the square of the
number of operations

» Enumerating the set elements is impossible

All these sets must be represented as the solutions of a system of
constraints:

S ={x € U|Q(x) = true}

where U is some universe.
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The Polyhedral Model

Loop Programs

For regular loop programs, the constraints are derived from the
loop bounds which are usually constants or affine functions of
parameters and surrounding loop counters ....

. and the variables are integers.
Hence the sets are Z-polyhedra or unions of Z-polyhedra.
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Definitions

An Important Concept: Convexity

A set in R" is convex iff with two point A, B it contains the
segment AB.

In analytical terms:
ABeS=VA:0<A<1:M+(1-A)BinS
The convex hull of a set S: the smallest convex set that includes S:

{Mx+(1-=Ny|x,y e 5,0< A< 1}
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Definitions

A Word on Complexity

One usually distinguish:
» Polynomial problems, for which an algorithm running in
O(n9) steps is known
» Non Deterministic Polynomial problems, for which, if given a
solution, it can be checked in time polynomial

» Among those, NP-complete problems, a set of problems which
can be reduced to each other in time polynomial. Example:
the Boolean satisfaction problem.

» Undecidable problems, for which no algorithm is know, or for
which the impossibility of an algorithm is proved.
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Definitions

Beware of Complexity Results

» Some NP-complete problems are usualy easy: examples: the
boolean statisfaction problem, the Integer Linear
Programming problem

» Some exponential algorithms are usualy faster than
polynomial ones: the Simplex and the Ellipsoid algorithm

» Some undecidable problems have good heuristics or partial
solutions

» Complexity results are usually asymptotic: always check that
you are really on the asymptote.
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Definitions

Definition: Polyhedron

» A polyhedron is the set of solutions of a system of affine constraints:
P = {x|Ax+ b > 0}

A an integral matrix, b an integral vector.

» or: a polyhedron is the convex hull of a finite set of rays and
vertices (Minkowsky):

n m n
P={d Nvit Y mnlh>0,> N =1}
i=1 Jj=1 i=1

» Theorem: the two representations define the same objects.

One can move from one representation to the other by Chernikova's
algorithm. See Miné presentation.
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Definitions

Lattices

A lattice (not to be confused with lattices in order theory) is a
subgroup of Z9. Given a matrix A of size d x n, the lattice
generated by A is:

/\(/4) 224{253 A;a;|A; EEZ?}
i=1

where a; is the i—th column vector of A.
Another representation:

L(A) ={x|[Ax=0 mod D}
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Definitions

Hermite Normal Form

A matrix of full row rank is in Hermite Normal Form (HNF) if
A = [B 0] where:
» B is non negative and lower triangular,
» B is non singular,
» In each column, the dominant element is on the main
diagonal.
There exists a polynomial algorithm for computing the HNF of any
matrix A.

If [B 0] is the HNF of A, there exists U (det U = £1) such that
A= [BO0]U.

Two matrices generate the same lattice if they have the same HNF.
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Definitions

Algorithms |: Solving a Linear System in Integers

Find the integer solution of Ax = b (if it exists).

» Compute the HNF [B 0] of A and the associated unimodular
U.
[BOJUx = b
» Set y = Ux. The last n — d components of y are arbitrary.

» Solve By = b by backward substitution, checkind divisibility
at each step

» x=U"1y.

This algorithm generalizes the well known gcd test.
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Definitions

Algorithm Il: The Critical Lattice

[ Critical Lattice: Basis (4,3), (8,0)

Determinant: 24

3i-4j mod 24

)

.

.

.

™~

) Alain Darte
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Definitions

Z-polyhedra

The intersection of a lattice and a polyhedron ...
The set of points with integer coordinates in a polyhedron.
Linearly bounded lattices (LBL):

{y =Ax+b|3x: Cx+d > 0}

Problems for Z-polyhedra are usually more difficult that for
polyhedra, because convexity no longer applies.

The integer hull of S : the convex hull of the set of integer points
in S.
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Operations on Polyhedra

Operations on Polyhedra

> Intersection: trivial in the constraint representation: just
collect all the constraints.

» Union: the union of two polyhedra may not be a polyhedron.
One usually over approximate by taking the convex hull of the
union. Trivial in the Minkowsky representation.

» Image and pre-image by an affine function: trivial in both
representation.

» The image of a Z-polyhedron is an LBL.
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Operations on Polyhedra

Emptyness Test, |

The most important operation on polyhedra. Application: the
dependence calculation.
The Fourier-Motzkin Algorithm Outline:

ax > b,a>0 = b/a<x
ax>b,d <0 = x<b/d
= bl/a<b/d

and x has been eliminated. If this is done systematically, one find
constraints of the form n > 0, which can be checked numerically.
Two problems:

» The complexity is super-exponential
» The integer extension is complex (the Omega test, Bill Pugh).
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Operations on Polyhedra

Emptyness Test, |l

The Simplex Algorithm

» Find a solution to Ax > b or prove that none exists. A is an
m X n matrix, m > n, x is an n vector and b is an m vector

» The vectors x are ranked, either by lexicographic order, or by
a linear objective function

> If there is a row in A whose elements are all negative or null
while b is positive, the problem has no solution

» Otherwise, select an n x n submatrix of A, A, solve A'’x = b’
and check whether the solution satisfies the constraints

» If not, change the selection.

Details of the algorithms:
> enumerate the tentative solution in increasing or decreasing
order (thus avoiding cycles)

» incremental solution of A’x + b’
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Operations on Polyhedra

Comparison

» Fourier-Motzkin is simpler, but has super exponential
complexity, and is difficult to extend to integers

» Programming the Simplex is complex (but there are many
libraries), the worst case complexity is exponential, but the
algorithm is “probably” polynomial (in fact, the same
complexity as Gaussian elimination).

Use Fourier-Motzkin for small and/or sparse problems, the Simplex
for large ones.
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Operations on Polyhedra

Extensions

The Simplex has two extensions:
» An integer extension: find only integer solutions : Gomory cuts
» A parametric extension: find a point x in:

{x|Ax + By > c,Dy > e}

as a function of y.

The result is a piecewise affine
function or quast: —

The simplex has many implementations, both academic (PIPlib,
isl, Parma Polylib) and industrial (CPLEX).
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Operations on Polyhedra

Tricks or PIP

PIP has many limitations — positive variables, positive integer
parameters, non-strict inequalities, but these can be side-stepped
by several tricks:

> the bigparm trick: if a parameter is “large”, the sign of a
linear form is the sign of its coefficient

> replace signed x by y — B,y > 0 and declare B a big
parameter

» to handle rational parameters, go homogeneous: instead of
Ax + By > ¢, solve Ax + By > ¢z, z a new parameter, and
set z =1 in the solution

> strict inequalities: replace Ax + By > c by Ax+ By > c+¢
and have € — 0 in the solution. Notice that the result may
not be in the original open polyhedron.
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Operations on Polyhedra

The Bigparm Trick

When B is large enough, and if the polyhedron is bounded from
below, the minimum no longer move with B.
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Operations on Polyhedra

Scanning Polyhedra

Visit each integer point in a polyhedron once and only once in
some order (usually, lexicographic order)
The basic method is a variant of the Fourier-Motzkin algorithm:

> select the innermost variable x and collect its lower and upper
bounds

» write a loop for(x = max(LB); x <= min(UB); x++)

» eliminate x and recurse on the next variable
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Operations on Polyhedra

Example

Scan:
0<x<n-10<y<x—-1
with x innermost.

» Collect x constraints:
0<x,x<n—-1y+1<x

for(x=max(0,y+1); x <= n-1; x++)
» Eliminate x:
0<y,y<n-2
for(y=0; y <= n-2; y++)
» One can still eliminate y, giving n > 2, the condition for the
loop to make at least one iteration
» One can simplify the lower bound of the x loop.

The state-of-the-art implementation: CLooG. 2442



Operations on Polyhedra

Scanning Polyhedra Without DO Loops

Let P(n) be the polyhedron to be scanned in lexicographic order.
P may depend on parameters n.

> find the lexicographic minimum of P: first(n) = ming P.
> given a point x € P, find the point to be visited next:
next(x) = nlin{y € P(n)|x < y}
» the problem can be solved by PIP and extends to union of
Z-polyhedra by a combination of PIP and rewrite rules

» If the answer is L, the polyhedron has been completely visited, the
program terminates.

x := first(n);
while(w !'= _|_){
S;
X := next(x,n);
}
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Operations on Polyhedra

Scanning Polyhedra WithoutDO Loops, Il

Example: scan 0 < x < n—-1,0 <y < x — 1 with x innermost.

first(n)

next(n, < ﬁ ))

min{( V>|0§u§n—1,0§v§u—1}
< u

if n > 2 then ( (1) ) else L

(e (<o)

if i+2>nAj+3<nthen (ii;)

. y
else if x +2 < nthen <X+1 )

else L
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Operations on Polyhedra

And the resulting program is ...

enum {start,stop,A} state; case A:
State = start; if(C (x+2 > n) && (n >= y+3) )
while(1){ X = y+2; y = y+i;
switch(state){ state = A; break;
case start: }
if((n >= 2)){ if ((n >= x+2)){
x=1; y = 0; x = x+1;
state = A; break; state = A; break;
} }
if((2 > n)){ if ((x+2 > n)){
state = stop; break; state = stop; break;
} }
case stop: }
return; }
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Operations on Polyhedra

Counting Integer Points: How and Why

As Z-polyhedra represent objects in a program, counting integer
points gives measures of complexity:

» Counting points in the iteration space: time complexity

» Counting values to be sent on a network: communication
overhead

v

Counting modified array cells: memory footprint, locality

v

Counting barriers: synchronization

Most of the time, the polyhedra to be counted depend on one or
more parameter: the counting must be symbolic, not numerical.
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Operations on Polyhedra

Eugene Ehrhart, 19062000

Count the integer points in P(n) = {x|Ax > nb} as a function of
n: A and b have integer coefficients and P(n) is bounded.

» H(n) = Card P(n) is a periodic polynomial in n whose degree
is the dimension d of P(n).
» The coefficients of H(n) are periodic numbers:

[307 sy amfl](n) = dnmod m

» The period, m is the lcm of the denominators of the
coordinates of the vertices of P(n)

» Exception: the coefficient of highest degree is constant
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Operations on Polyhedra

Implementation

H(n) depends linearly on its coefficients, and the number of
coefficients is bounded by m x d.

Select md values of n, for each value count the number of integer
points using scanning methods, and solve a system of nd equations
in nd unknowns.

The trick: the shape of P(n) and hence the number and position
of its vertices may depend on n. In each chamber, H(n) may be a
different polynomial.
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Quantifier Elimination and SMT solvers

Quantifier Elimination and SMT Solvers

» Quantifier Elimination: given a logical formula ¢(x,y), find a
formula ¥(y) = Ixé(x, y). The x are the variables and y the
parameters.

» Satisfaction Modulo a Theory: Given a formula ¢(x), decide if
there exists xp such that ¢(xp) or not. If so, answer SAT; xg is
the witness; if not, answer UNSAT.

Both tools have similar uses and similar techniques, except that
SMT solvers usually give much less information.

See also Constraint Satisfaction Programming: similar to SMT
solvers, except that most variables have finite domain:

» more general types of constraints

» allow brute force search
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Quantifier Elimination and SMT solvers

Quantifier Elimination, How and Why

Quantifier Elimination has many other names: projection, variable
elimination, etc...

Quantifier Elimination has many uses. Example: find the footprint
of a array access in a loop. Let D be the iteration domain of the
loop and f be the subscript function: the footprint is the set:

{il3x e D:i=f(x)}
Methods:

» many algorithms (Gaussian Elimination, Fourier-Motzkin, PIP
and even Chernikova) already are QE algorithms for
conjuctions

» since d distributes over V, convert the given formula to
Disjunctive Normal Form and do the elimination

independently in each clause.
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Quantifier Elimination and SMT solvers

Feasibility Results

Quantifier elimination is not always possible. It depends on:
the domain of x (integer, reals, finite, infinite)
the “logic” of ¢
the “logic” of 1
if ¢ is affine in x or Boolean-affine:
» if x is real or rational, always possible, easy, 1 is boolean-affine
» if x is integral, always possible, difficult, 1 may need integer
division or the modulo operator
if ¢ is a polynomial
» if x is real, possible (Tarski), difficult (Cylindrical Algebraic
Decomposition)
» if x is integer or rational, impossible (Hilbert 10th problem)
but one can use heuristics
if x is Boolean (or belongs to a finite set), trivial:

dp(x, y) = d(true, y) V ¢(false,y)

v

v vV VY

v
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Quantifier Elimination and SMT solvers

A Special Case: Farkas Lemma

Given A and b solve :

de,d: VxR : Ax+b>0=cx+d>0
» doubly quantified

» non linear due to the terme c.x

Farkas says: If Ax + b > 0 is feasible, the the problem is equivalent
to:

IA>0:c=XAAd > XD
If Ax 4+ b > 0 is unfeasible, the problem is trivial.
If x is integral, one must replace the polyhedron Ax + b > 0 by its
integer hull (the convex hull of its integer points) or some
conservative approximation (cutting planes).
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Quantifier Elimination and SMT solvers

SMT Solvers

SAT Solvers:

» given a Boolean formula, find an assignments to its variables
that gives it the value true, or prove that none exists

» no known polynomial algorithm, but the set of difficult
problems is relatively small.

SMT Solvers:

> A theory is a set of formulas, closed by negation, and with a
decision procedure for satisfiability. Example: the set of affine
inequalities in the reals with the simplex.

» given a boolean formula whose atoms are in the underlying
theory, find an assignment to its variable that gives it the
value true, or prove that none exists

» Basic algorithm: convert the formula to DNF, then apply the

theory decision procedure to each clause.
35/42



Last Words

Symbolic Algorithms, How To

Many problems in compilation can be cast as optimization
programs:

min  f(x)
xe D

This is difficult if the objective function, f, is complex, and almost
impossible if f is given by algorithm.

Hence the importance of transforming a numerical algorithm in a
symbolic one, which return a closed form instead of a number.
PIP is such a symbolic algorithm, its arguments are limited to
linear parameters.
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Last Words

Symbolic Execution

» Select a symbolic representation for the values in the program

» This representation must be closed under the operations of
the program and of bounded size
» Example: linear form have a finite reprsentation and are closed
under addition, multiplication by a constant and composition.
» Polynomials are also closed under the same operations plus
multiplication, but their size is not bounded, hence the
complexity of the algorithm must be bounded.
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Last Words

The Problem of Tests

It is usually impossible to decide a test when the predicate is
symbolic.

» Construct a problem tree, which branches whenever a test is
encountered
» Record the outcome of the test on each branch

» Check that the tests of a branch are consistent, or close the
branch

» Update the predicate of the test after each assignment
» Use an SMT solver

Hope for or prove convergence or enforce convergence by
approximation.
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Last Words

And Now, Where To?

» Approximations: mating the polyhedral model and abstract
interpretation.

» Dynamism: can one use the polyhedral model at run time?

> Artifical Intelligence: can one imitate Computer Algebra
Systems, which store a huge amount of mathetical knowledge
and use it on a pattern matching basis?

The truth, as always, will be far stranger
A. C. Clarke
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The End

THE END
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Further Reading

Books
> A. Schrijver: Theory of Linear and Integer Programming,
Wiley, 1982
» A. Barvinok: A Course in Convexity, Amer. Math. Soc. 2002
» M. Newman: Integer Matrices, Academic Press, 1972
» R. Smullyan: First Order Logic, Dover, 1995

Libraries
> piplib www.piplib.org
polylib icps.u-strasbg.fr/polylib
isl repo.or.cz/w/isl.git
gepcad www.usna.edu/CS/~qgepcad/B/QEPCAD.html
Z3 z3.codeplex.com/
Yices yices.csl.sri.com/
CLooG www.cloog.org/

vVVvYyVvVvYyVvyy
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A Non-Polyhedral Example

Given:

» An alphabet A,

» A grammar G (regular, context-free, ...) on A as terminals
The language generated by G is a subset of A*:

L(G) = {w € A*|K accepts w}

This kind of sets is suitable for discussing recursive programs.
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