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Abstract

This paper considers the problem of distributing data
and code among the processors of a distributed memory
supercomputer. Provided that the source program is
amenable to detailed dataflow analysis, one may deter-
mine a placement function by an algorithm analogous
to Gaussian elimination. Such a function completely
characterizes the distribution by giving the identity of
the virtual processor on which each elementary calcu-
lation is executed. One has then to “realize” the vir-
tual processors on the PE. The resulting structure sat-
isfies the “owner computes” rule and is reminiscent of
two-level distribution schemes, like HPF’s ALIGN and
DISTRIBUTE directives, or the CM-2 virtual processor
system.

1 Introduction

The emphasis in supercomputer architecture has re-
cently shifted from vector processors to massively par-
allel computers. The main cause of this change is
the availability of new RISC chips, which offer in a
small package a processing power which is a signifi-
cant fraction of the power of most vector processors.
Building a supercomputer by assembling a moderate to
large number of such chips – from 32 to more than a
thousand – seems to make good sense, both in term
of price and of computing power. For technical rea-
sons, it is very difficult to equip such a computer with
a global memory with uniform access time. The sim-
plest possibility, from the hardware designer point of
view, is to distribute the memory among processors.
A network takes care of inevitable communications.
There is generally more than an order of magnitude

between the local memory access time and the net-
work latency, hence the importance of good data place-
ment for minimizing the communication overhead. This
problem is usually left to the programmer. Computers
built according to this scheme are message passing ar-
chitectures.

The alternative is to hide the problem by providing a
uniform address space with a non uniform access time.
All such proposals – among which the most notable are
distributed caches and Distributed Virtual Memory –
rely heavily on data locality to obtain acceptable perfor-
mances. We see that, on the whole, correct placement
of the data, whether in a real or virtual global mem-
ory or among the distributed memories of a message
passing architecture, is the critical factor in the overall
performance of this type of supercomputer. When the
placement is known, in a message passing architecture,
the compiler still has to build the communication code.
This chore is taken care of dynamically by a combi-
nation of hardware and software in the case of global
memory or DVM.

Several authors have proposed that the distribution
be specified by the programmer [HKK+91, ZBG88,
Lov92, ZBC+92]. The rationale is that most scientific
computing programs are models of physical reality, and
that locality is often obvious in the reality if not in the
source code. The problem with this proposal is that,
firstly, it does not apply to standard algorithms from
numerical analysis, which are defined in abstracto, and
second that in large codes, intuitive considerations may
offer several conflicting distributions. In such a case,
one needs a technique for either choosing between pro-
posals, or, alternatively, for using them all for different
phases of the computation, with redistribution opera-
tions in between.

In this paper, I will explore another direction, au-
tomatic distribution. The basic idea is, first, to an-
alyze the source code to identify the communication
patterns, and then to construct a placement for the pro-
gram data, with the aim of minimizing – or, at least, of
diminishing – the volume of communication.



In the next section, I will present the restrictions
on the source programs and on the target architec-
tures which are prerequisites for the application of the
method. If these restrictions are met, it is possible
to characterize at compile time all communication pat-
terns of the source program. One may then seek a dis-
tribution of data among the processors with the aim
of replacing most communications by local operations.
Such a distribution is specified in term of a placement
function. Section 3 is devoted to the design of an al-
gorithm for the selection of a good placement function.
This algorithm makes use of an ordering of the commu-
nication patterns, which is discussed in section 4. The
resulting technique, which is of a highly experimental
nature, may be extended in several directions which are
discussed in the conclusion.

2 Context

There are many types of distributed computers, with
widely differing communication systems. An important
characteristics is the so-called topology, i.e. the shape
of the connection network. Here, I will consider only
the “ether” communication model. All processors are
supposed to be interconnected: the time to transmit a
message is independent of the source and destination
processors. The model is exact for bus networks (for
instance, a collection of workstations on an Ethernet).
In many recent designs, the architects have taken pains
to build fair approximations of the ether model – e.g.
by randomizing the routing.

Suppose a processor needs a value. This value may
reside in the memory of the processor, in which case
the cost of access will be considered as null, or it may
reside somewhere else, in which case the cost of com-
munication will be considered as a very high constant.
As a consequence, the quality of the distribution may
be assessed simply by estimating the volume of remote
data accesses.

Automatic distribution necessitates a global analysis
of the source program. With present day techniques,
this is only possible if constraints are imposed to the
source code. These constraints – which define static
control programs – will be substantially the same as in
[Fea91]:

• statements are restricted to assigments and DO
loops,

• the only data structures are scalar and arrays of
unrestricted dimension,

• subscripts and loop bounds are affine functions of
surrounding loop counters and size parameters.

Programs which do not meet these requirements are
very difficult to analyze at compile time. It might be

do i=1,n
1 s = a(i,i)

do k = 1, i-1
2 s = s - a(i,k)**2

end do
3 p(i) = 1.0/sqrt(s)

do j = i+1, n
4 s = a(i,j)

do k=1,i-1
5 s = s - a(j,k) * a(i,k)

end do
6 a(j,i) = s * p(i)

end do
end do

Figure 1: Cholesky Decomposition

possible to handle them by a combination of approxi-
mation techniques and run-time analysis, but this must
be left for future research.

An important distinction when discussing parallel
programs is the one between statements and operations.
A statement is a static entity, which may be identified
with a syntactic unit of the program text. An oper-
ation is one particular execution of a statement in a
particular context. Most often, a statement will be ex-
ecuted many times. Each execution will be considered
as a distinct operation. In a static control program,
an operation may be identified by specifying the exe-
cuted statement and the values of the surrounding loop
counters: the iteration vector. Analysis of loop bounds
allows one to associate to each statement its iteration
domain, which is a subset of Nd, where d is the nest-
ing level for the statement. The iteration domain of R
will be noted DR. If array subscripts depend only on
loop counters, knowledge of an operation name allows
one to compute the addresses of accessed memory cells,
and hence to establish whether dependences exists.

For a static control program, it is possible to analyze
the flow of data through the operations and the memory
cells. For each read access in the program, the set of
all preceding write accesses to the same memory cell is
characterized and its latest element is computed. The
result is the source of the value obtained by the read
access. A source is composed of an statement name and
an iteration vector. Both these elements may depend
on the iteration vector of the read access. The method
of [Fea91] yields source functions in the form of more
or less complicated conditional expressions.

As an illustration, let us consider the reference to s
in statement 6 of the program in Fig. 1 (a Choleski
solver). There are four a priori sources for the value
of s: statements 1, 2, 4 and 5. Statements 1 and 2
may be eliminated outright by observing that for each



instance of 6 there is a preceding instance of 4 which
will destroy any previous value. In the case of statement
5, the reasoning is as follows. To be a source for s
in 〈6, i, j〉, an operation 〈5, i′, j′, k′〉 must satisfy the
following constaints:

• there is no index constraint, since s is a scalar;

• the definition must precede the use:

i′ < i ∨ (i′ = i ∧ j′ < j) ∨ (i′ = i ∧ j′ = j),

• the loop counters must be within the loop bounds:

1 ≤ i′ ≤ n, i′ + 1 ≤ j′ ≤ n, 1 ≤ k′ ≤ i′ − 1.

and the correct source is the latest 〈5, i′, j′, k′〉 opera-
tion which satisfies these constraints. The obvious so-
lution is:

i′ = i, j′ = j, k′ = i− 1.

However, this is a legitimate iteration vector only if it
belongs to the iteration domain:

1 ≤ i ≤ n, i+ 1 ≤ j ≤ n, 1 ≤ i− 1 ≤ n.

If 〈6, i, j〉 is a proper operation, all conditions are sat-
isfied with the possible exception of 1 ≤ i − 1. We
conclude that the source of s in 〈6, i, j〉 is 〈5, i, j, i− 1〉,
provided that i ≥ 2. It is easy to see that in the case
i = 1, the source is 〈4, i, j〉.

This reasoning may be reproduced (with suitable
modifications), for all right-hand side (rhs) references
in any static control program. I have shown elsewhere
[Fea91] that the process is completely mechanical, the
basic tool being an algorithm for solving parametric
linear programing problems in integers [Fea88].

The result of the analysis may be presented as the so-
called Dataflow Graph or DFG for short. Table 1 gives
the DFG of the Cholesky example1. The DFG has one
node per statement in the original program. There is
an edge from statement R (the source) to statement S
(the sink) for each rhs reference in S which may use a
value produced by R. The source and sink of edge e
will be written σ(e) and δ(e).

Each edge is labelled by the following information:

• The governing predicate, which must be true for
the value to be actually used in the sink. In the
Cholesky example, as we have seen, the governing
predicate of the 〈5, i, j, i− 1〉 → 〈6, i, j〉 edge is i ≥
2. The governing predicate of edge e is associated
to a subset Pe of the iteration domain of the sink
Dδ(e).

1Edges are numbered arbitrarily by the analysis software

• The sink-to-source transformation which allows
one to compute the iteration vector of the source
in terms of the iteration vector of the sink. In
most practical cases, this transformation is affine,
but there is a possibility of encountering integer
divisions as the result of the source computation.
The source-to-sink transform of edge e will be de-
noted by he. Its domain is Pe, and its codomain is
included in Dσ(e).

The DFG is a synthetic representation of communica-
tion patterns in the source program. If the actual values
of the size parameters are known, one may construct an
expanded version, whose vertices are the operations of
the program:

E =
⋃
S

{〈S, x〉 | x ∈ DS}.

For any edge e from R to S, with governing predicate
Pe and sink-to-source transform he, the expanded DFG
has an edge from 〈R, he(x)〉 to 〈S, x〉 for all x ∈ Pe.
In realistic cases, the extended DFG is much too big
to be used effectively. Observe for instance that on
a 1 Megaflop machine, a program which runs for one
second has an expanded DFG with one million nodes!
Nevertheless, the expanded DFG is a useful conceptual
tool for the design of scheduling and placement algo-
rithms.

Knowledge of the Dataflow Graph enables one to con-
struct a single assignment equivalent of the source pro-
gram. The recipe has been given in [Fea91]. Basically,
one associates a new array vS to each statement S. In
the left hand side of the statement, this array is sub-
scripted by all components of the iteration vector of S.
In the right hand side, each reference to a variable is
replaced by its source, as given by the dataflow graph.

In single assignment programs, there exists neither
anti-dependences nor output dependences. Since each
value is produced only once, one may decide that a
value resides on the originating processor which is then
responsible for transmitting it “to whom it may con-
cern” – this is the “owner computes rule”. If this is
done, the iteration domain of the program is isomor-
phic to its data space. Hence, data distribution and
code distribution are one and the same process.

The drawback, obviously, of using single assignment
programs is that they need much more memory than
their conventional counterparts. In the Cholesky case,
memory size which is O(n2) in the original version, ex-
pands to O(n3) in the single assignment version. In my
mind, single assignment programs are not meant to be
executed as written. When distribution is done, one
must optimize memory usage; see [RWF91, Cha93] for
a description of the technique.

The best way of exhibiting the parallelism in a static
control program is to construct a schedule from its



Edge Source Destination Dimension Predicate
101 〈2, i, k − 1〉 〈2, i, k〉 2 k − 2 ≥ 0
102 〈1, i〉 〈2, i, k〉 1 1− k ≥ 0
103 〈2, i, i− 1〉 〈3, i〉 1 i− 2 ≥ 0
104 〈1, i〉 〈3, i〉 0 1− i ≥ 0
105 〈3, i〉 〈6, i, j〉 1
106 〈5, i, j, k − 1〉 〈5, i, j, k〉 3 k − 2 ≥ 0
107 〈4, i, j〉 〈5, i, j, k〉 2 1− k ≥ 0
108 〈5, i, j, i− 1〉 〈6, i, j〉 2 i− 2 ≥ 0
109 〈4, i, j〉 〈6, i, j〉 1 1− i ≥ 0
110 〈6, k, i〉 〈2, i, k〉 2
111 〈6, k, j〉 〈5, i, j, k〉 2
112 〈6, k, i〉 〈5, i, j, k〉 2

Table 1: The Dataflow graph of program choles

Dataflow Graph. A schedule for statement S is a func-
tion θ from the set of operations E to N. θ(S, x), x ∈ DS
may be interpreted as the earliest date at which oper-
ation 〈S, x〉 may be executed on a computer with an
unlimited number of processors.

When executing a parallel program, one has to in-
sure that when an operation starts executing, all its
arguments have been already computed. This may be
written as the following causality condition:

∀e ∈ DFG, x ∈ Pe : θ(δ(e), x) > θ(σ(e), he(x)). (1)

Finding causal schedules has received much atten-
tion, both in the context of systolic array design and
in for loop nest scheduling [Qui87, QR81, MQRS90,
Fea92, SQ92, DR92]. The free schedule is such that
each operation is executed at the earliest possible time.
It can be computed by a topological sort of the ex-
panded DFG. For a more practical algorithm, one pos-
tulates the form of the solution – most of the time, an
affine form in x – and translates (1) into a set of con-
straints for the unknown coefficients. One then solves
these constraints according to some quality criterion,
minimum latency for instance. The minimum latency
schedule for the Cholesky solver is given by table 2.

Supposing a causal schedule θ has been found, one
may construct the set of operations which are scheduled
at time t:

F(t) = {u | u ∈ E, θ(u) = t},

the front at time t. From the causality condition, one
knows that there is neither dependences nor data trans-
fer between operations in the same front. Operations
in a front may be arbitrarily distributed between pro-
cessors. The corresponding parallel program may be
described by the following sketch:

do t = 0, L
parallel do
F(t)

end parallel do
barrier

end do

L is the latency of the schedule. The barrier
statement insures that proper synchronization between
fronts is observed. It compiles to a NOP on synchronous
machines, like the CM-2 or the Maspar.

3 Data and code distribution

3.1 Introduction

In the present context, the most interesting property of
fronts is that their operations may be distributed arbi-
trarily among the available processors. In the case of
a shared memory machine, the only constraint is load
balancing. If one distributes the operations in a front as
fairly as possible among the available processors, and
if the source program has any significant parallelism,
one gets an asymptotically efficient parallel program
[Fea89]. On the other hand, for a distributed mem-
ory architecture, the main concern must be minimizing
data communications. Now, if the owner computes rule
is followed, the only cause for communication is the fact
that an operation may use a value which has been pro-
duced elsewhere. The Dataflow Graph is a precise de-
scription of all such situations. If operations 〈S, he(x)〉
and 〈R, x〉 are connected in the expanded DFG, a com-
munication will be necessary unless both operations are
executed by the same processor. Since fronts may be
distributed arbitrarily, we should arrange the program
in such a way that operations 〈R, x〉 and 〈S, he(x)〉,



Statement Loop counters Schedule Domain

1 i 0
(
n− i
i− 1

)
≥ 0

2 i, k 3k


n− i
i− 1

i− k − 1
k − 1

 ≥ 0

3 i 3i− 2
(
n− i
i− 1

)
≥ 0

4 i, j 0


n− i
i− 1
n− j

j − i− 1

 ≥ 0

5 i, j, k 3k


n− i
i− 1
n− j

j − i− 1
i− k − 1
k − 1

 ≥ 0

6 i, j 3i− 1


n− i
i− 1
n− j

j − i− 1

 ≥ 0

Table 2: A schedule for the Cholesky solver

which do not belong to the same front, are executed by
the same processor. This suggests that the distribution
pattern be defined statically, i.e. that the same opera-
tion is always executed on the same processor on every
execution of the program. This may be implemented
by postulating the existence of a placement function
Π(S, x) which gives the name of the processor on which
〈S, x〉 is to be executed. If the computer has P pro-
cessors, which are numbered from 0 to P − 1, Π is a
function from DS to [0, P − 1]. A placement function
being given, one may define the subset of each front
which is allotted to processor q ∈ [0, P − 1]:

F(t, q) = {u | u ∈ E, θ(u) = t,Π(u) = q}.

The distributed program will consist in an initialization
phase, after which processor q will start executing the
following code:

do t = 0, L
read remote data
do
F(t, q)

end do
barrier

end do

The counterpart of the causality condition is ob-
tained by writing that two operations which exchange

data are executed by the same processor. For each edge
e of the DFG:

x ∈ Pe ⇒ Π(δ(e), x) = Π(σ(e), he(x)). (2)

The first observation is that if we insist that the
placement equation be verified everywhere, then the
program may well end up being executed on only one
processor. As an example of this phenomenon, consider
the following kernel:

do i = 1,n
do j = 1,n

do k = 1,n
a(i,j,k) = a(i-1,j,k)

+ a(i,j-1,k) + a(i,j,k-1)
end do

end do
end do

The placement equations are:

Π(i, j, k) = Π(i− 1, j, k) = Π(i, j − 1, k) = Π(i, j, k− 1)

and their only solution is the trivial one Π(i, j, k) = 0.
A possible way out is to compute the size of the set

of operations for which the placement equations are
verified, and to select the placement functions which
maximize this size, subject to the constraint that the



solution is not trivial. In the “ether” model, this
makes good sense, since communication overhead de-
pends only on the volume of data to be transferred, not
on the position of communicating processors. This is,
however, a very difficult problem; an idea of its diffi-
culty can be had by observing that simply computing
the size of the iteration space is difficult [Taw91]. One
may solve approximately this optimization problem by
classifying edges in two categories:

• cut edges, for which equation 2 is verified,

• uncut edges, for which it is not,

and then maximizing the set of cut edges under the con-
dition that all placement functions are non trivial. This
is the solution we are going to explore, with the added
refinement that each edge will be assigned a weight, and
that we will try to cut edges with large weights first.
The problem of selecting the weights will be postponed
to section 4.

Placement functions are used to construct the sub-
fronts F(t, q), and that is easy only if they are affine
forms in the loop counters. There is however a difficulty.
Consider a program with size parameter n. A typical
domain will be of the form

DS = {x |Mx ≥ nb}.

Suppose that {x | Mx ≥ b} is full dimensional. It
contains a ball of diameter ∆, and the range of any
linear function Π(S, x) = a.x+ b in DS will be at least
n∆|a|. If we insist that a is integral, |a| ≥ 1, and, for
a sufficiently large value of n, Π will have more values
than there are processors. The solution is to express Π
as the composition of two functions:

Π = χ ◦ π.

where π is affine. It maps the computation onto a set
of “virtual” processors whose size will depend on the
size parameters. χ is a “folding” function with range
[0, P − 1]. The primary objective will be to minimize
communication between virtual processors. Since com-
munication between virtual processors which are im-
plemented on the same real processor is simply a copy
operation, proper choice of the folding function will of-
fer some opportunities for further reduction of the traf-
fic. This two-tier mapping system is reminiscent of the
Connection Machine software [CMF89], or of the tem-
plates in HPF [Lov92], the main difference being that
templates or so-called geometries are multidimensional
objects. I will return to that point later.

In this paper, I will be mainly concerned with the
determination of the virtual mapping. Some indications
on the choice of the folding function will be given in
section 4.

3.2 A Practical Algorithm

The problem is to find a system of functions π(S, x)
which cuts as many edges as possible. To each edge is
associated a distance function:

de(x) = π(δ(e), x)− π(σ(e), he(x)). (3)

The edge is cut if the distance is identically zero in Pe.
π(S, x) is supposed to be an affine form in x:

π(S, x) = aS .x+ bS . (4)

For given aS and bS , one may compute the de(x)
and test whether they are null everywhere in Pe. If
Pe contains enough affinely independent points, (i.e., if
it is full dimensional), this can happen only if all co-
efficients in de(x) are zero. If not, one may construct
a parametric representation of Pe in term of new inde-
pendent variables y. One then rewrites de(x) in term of
the new variables, whose coefficient must also be null.
In both cases, the edge cutting condition translates to
a system of equations:

Cea = 0,

where a is the vector whose components are all the un-
known coefficients aS and bS . As a rough estimate of
the size of the problem, if there are N statements whose
mean nesting level is d, there will be N(d+1) unknowns
in a. The matrix Ce is obtained by straighforward al-
gebraic manipulations from he. The union of all such
systems will be written:

Ca = 0. (5)

Let us return to the code of Fig. 1. Let us write:

π(5, i, j, k) = b5 + a5,1i+ a5,2j + a5,3k,

for the placement function of statement 5, with similar
notations for other placement functions. Let us con-
sider first edge 106 in table 1. The source is 〈5, i, j, k−1〉
and the sink is 〈5, i, j, k〉. As a consequence, the place-
ment equations is simply:

a5,3 = 0.

Consider now edge 107, whose source and sink are re-
spectively 〈4, i, j〉 and 〈5, i, j, k〉. The placement equa-
tion is:

b4 + a4,1i+ a4,2j − b5 − a5,1i− a5,2j − a5,3k = 0.

In that case, however, the set P107 is not fully dimen-
sional. In fact the governing predicate k ≤ 1 and the
constraint k ≥ 1 in the domain imply k = 1. As a
consequence, the placement equation reduces to:

b4 − b5 − a5,3 = 0,
a4,1 − a5,1 = 0,
a4,2 − a5,2 = 0.



The union of all such equations is a linear, homo-
geneous system which, in general, has only the trivial
solution a = 0. The problem is to select a subset of this
system which cuts as many important edges as possible,
and which gives a non trivial distribution. It would be
possible to use an exhaustive search algorithm, but the
following greedy algorithm has been found to be quite
satisfactory in most cases.

The idea is to order the rows of matrix C by decreas-
ing importance, and to solve the system Ca = 0 by
successive Gauss-Jordan elimination. The algorithm is
as follows:

Algorithm E

1. Suppose that a partial solution has been
found, in the form of a substitution σ. Ini-
tially, σ is the empty substitution.

2. Extract the next line of C and apply σ to
it. There is nothing to do if the result is
0 = 0. If not, write the resulting equation in
the form:

x = f,

where x is some component of a which has
not yet been eliminated. Let τ be the el-
ementary substitution [x ← f ]; compute
σ′ = τ ◦ σ.

3. Apply σ′ to all prototype placement func-
tions and test whether any of them becomes
trivial.

4. If there is no trivial prototype, replace σ by
σ′.

5. Start again at step 2 until all rows of C have
been used.

We have still to explain how to detect a trivial place-
ment function. Since the original problem is homoge-
neous, the right hand sides in σ are homogeneous too.
The uneliminated variables – those which do not occur
in the left hand side of σ – may take arbitrary values.
One easily proves that by giving proper values to the
uneliminated variables, one may give non zero values
to all variables with the exception of those which are
explicitly set to zero by σ.

As a consequence, we see that a placement function
is not trivial provided one of its coefficients at least is
not set to zero by the current solution σ.

Let us consider again the Cholesky solver, starting
with edge 106. As we have seen earlier, the correspond-
ing equation is a5,3 = 0. The first solution is then:

σ = [a5,3 ← 0].

The next edge to be cut is 112. The associated equa-
tions are:

a5,3 = a6,1, a5,2 = 0, a5,1 = a6,2, b5 = b6.

The solution is now:

σ′ = [a5,1 ← a6,2, a5,2 ← 0, a6,1 ← 0, b5 ← b6, a5,3 ← 0].

If we try to cut edge 111 next, some of the placement
functions become trivial. One of the equations for this
edge is:

a6,2 = a5,2,

which implies a6,2 = 0. At that time, all coefficients
in the placement function for statement 6 are set to 0.
As a consequence, we ignore the equation and try again
with the next one.

The algorithm continues until all equations have been
tested. At the end, we are left with only two arbitrary
coefficients, a6,2 and b6. We may set the first to 1 and
the second to 0. The end result is:

π(1, i) = i , π(2, i, k) = i,

π(3, i) = i , π(4, i) = i, (6)
π(5, i, j, k) = i , π(6, i, j) = j.

Comparison with table 1 shows that all edges are cut
except 108, 109 and 111. Execution of algorithm E
is very fast: a Lisp-based implementation takes a few
seconds on a low-end workstation.

4 Heuristics

In this section, I will address three problems. The first
one is the determination of the order in which edges
should be processed. The second one is the problem of
distribution on a multidimensional grid of processors.
The last one is the question of the selection of the fold-
ing function.

The following proposals will be justified by heuristics
arguments. These will stem from an asymptotic anal-
ysis of the workload and communication volume. To
simplify this analysis, we will suppose that the source
program has only one size parameter, n, and that all
dimensions of iteration domains, etc. are proportional
to n. As a consequence, we will admit that the num-
ber of integer points in a d dimensional polyhedron of
parameter n is O(nd).

4.1 Edge ranking

It is quite clear that an edge has a better chance of
being cut if it is processed early by algorithm E. Hence,
one should start with the edges which induce the largest
traffic. The proposal is that we associate to each edge



the volume of data which is exchanged if this edge is
not cut, and that we rank edges by decreasing volume.
However, we do not need a precise value for the said
volume: any consistent estimate will suffice.

From the definition of the DFG, we see that the set
of values which are sent along edge e is isomorphic to
the image of Pe by the function he. We propose to use
the dimension of this “emitter set” as a characterization
of this volume. This suppose that the target computer
has broadcasting facilities, i.e. that a value has to be
sent only once even if it is used by many PE.

The emitter set is:

Ee = {y | ∃x ∈ Pe, y = he(x)}.

One first eliminates x by a combination of Gauss-
Jordan and Fourier-Motzkin algorithms. This gives a
definition of Ee by a system of inequalities. One then
constructs the set of implicit equalities which is satis-
fied by Ee; the dimension of Ee is the dimension of y
minus the number of implicit inequalities.

Consider as an exemple edge 108 in table 1. The
emitter set is:

E108 = {i′, j′, k′ | ∃i, j, k : i′ = i, j′ = j, k′ = i− 1,
2 ≤ i ≤ n, i+ 1 ≤ j ≤ n}.

Obviously, all points in E108 satisfy i′ − 1 = k′. Hence,
the dimension of this set is 2.

The dimension of all emitter sets are given in the
fourth column of table 1. From these, one may deduce
that the volume of residual communications when using
placement (6) will be O(n2).

4.2 Multidimensional Placement

The scheme we have just proposed has one major draw-
back: in some cases, the size of the virtual processor
set may be less than the available parallelism, and less
than the number of physical processors. Consider for
instance the case of statement 5 in the Cholesky solver.
Its O(n3) iterations are partitioned in about n fronts:
hence, the mean paralellism is O(n2). In contrast the
placement function (6) will generate only n virtual pro-
cessors. Suppose that n is of the order of 100 and that
there are about 1000 processors: there will be a severe
loss of processing power.

Since in large distributed memory machines, the pro-
cessors are most often organized as a multidimensional
grid, one is naturally led to the consideration of multidi-
mensional placement functions, each component of the
function giving one coordinate of the virtual processor
in the grid. There is a difficulty in this scheme: namely,
that some fronts in the program may not have sufficient
dimension to fill the grid. Suppose for instance that we
try to implement Cholesky on a two dimensional grid.

This is simple for statement 5, which has a two dimen-
sional front, but what are we to do for 6, whose front
is one dimensional?

There are two solutions here. The first one, if the
hardware or software permits, is to rearrange the grid
according to the statement – changing the geometry in
Connection Machine parlance. In this way, there will
be no loss of processing power. The drawback is that
since changing the geometry is a non linear transform,
minimizing communications will become very difficult.

The other possibility is to use the same geometry for
the whole program, some processors being kept idle if
necessary. One may note that this scheme is already
used for one dimensional placement. Consider the case
of statement 3: its fronts contain just one operation.
Hence, only one virtual processor among n is in use at
that time. The situation will be the same for statement
6 in a two dimensional grid: at each time tick, active
processors will belong to a one dimensional subset.

Choosing between the two schemes is likely to de-
pend strongly on detailed performances of the target
computer, and should be the subject of further experi-
ments. Here, I will explore the feasibility of the second
proposal.

Computing higher dimensional placement may be
done by an extension of algorithm E. The only change
is in the triviality test. One requires that each candi-
date placement function depends on enough parameters
that one may construct the required number of linearly
independent solutions by giving suitable numerical val-
ues to the parameters. Obviously, one cannot impose
this condition for statements whose fronts do not have
the requested dimension. For instance, one cannot ask
for a two dimensional placement function for statement
6 in Cholesky. In that case, one will obtain a place-
ment function whose two components are not linearly
independent. For Cholesky, the maximum possible di-
mension is two. Algorithm E with the new triviality
test gives a prototype with two independent parame-
ters:

π(1, i) = αi , π(2, i, k) = αi,

π(3, i) = αi , π(4, i) = αi+ βj,

π(5, i, j, k) = αi+ βj , π(6, i, j) = αj.

A two dimensional placement function may be obtained
by successively setting α = 1, β = 0, which gives again
(6), and α = 0, β = 1:

π′(1, i) = 0 , π′(2, i, k) = 0,
π′(3, i) = 0 , π′(4, i) = j,

π′(5, i, j, k) = j , π′(6, i, j) = 0.



4.3 Selection of the Folding Function

A smart choice of the folding function may help in re-
ducing residual communication along uncut edges. This
will happen if the source and sink operations belong
to different virtual processors which are folded to the
same PE. Let us consider the distance de(x) of equation
(3). If de is a constant (a constant vector in the case of
multidimensional placement), one should choose a block
folding function:

χ(z) = z ÷B,

whith a suitable block size B. If de depends on x, it
does not seem possible to reduce traffic in this way.
One should select a cyclic folding, which has better load
equalization properties:

χ(z) = z mod P.

5 Related work

The problem of automatically distributing arrays in
a distributed memory computer has been widely dis-
cussed in the recent literature. Many authors works
within the constraint satisfaction paradigm [JC90,
KLJ90, KV90, GB92]. From an analysis of the source
program, one deduce a constraint graph which indicates
how the layout of the different arrays must be related
in order to remove all communications. The set of con-
straints is usually inconsistent. An algorithm is then
specified which aims at satisfying as many constraints
as possible. Usually, the authors limit themselves to
simple layouts; this is specially appropriate when the
input language favors high level array operations, like
Fortran 90 [KLJ90] or Alexi [Who92].

Nearest to our approach is the proposal of Ramanu-
jan et. al. [RS91], which use affine placement functions
and construct systems of equations like (5), but do not
give a systematic method for solving them.

Lastly, the approach of Mace [Mac87] is from a some-
what different point of view. The problem is how best
to implement an array statement, given that there are
several ways of distributing the data (storage pattern)
each of which results in different costs for the opera-
tions. If one likens storage patterns to placement func-
tions and loop nests to array statements, we see that
our technique has the ability of providing the needed
data to Mace’s procedure, which works “in the large”
while our own works “in the small”.

6 Conclusions and Future Work

Our proposal has two characteristics:

• Each statement uses the same “geometry”, what-
ever the dimension of its iteration space. This
means that for lower dimensional statements, some
processors will stay idle. As a compensation, com-
munications are much easier to set up and optimize
in this case.

• Each array has its own placement function, and
this function is kept fixed for the entire execution
of the program. This is in contrast with language
which provide rearrangement directives.

Further research is needed to evaluate these two as-
sumptions and explore alternatives. The selection of
a placement function should be more influenced by
the particulars of the target architectures. Such prob-
lems as the existence of broadcast and partial broad-
cast mechanisms, or the provision of efficient reduc-
tion and scan primitives should be taken into account
at this stage. One should also experiment with other
edge ranking schemes, giving for instance a much lower
weight to fixed distance communication like edges 101
and 106.

Lastly, the placement functions and the schedule will
constitute a space-time basis for the construction of the
parallel code. As several author have noticed, the code
generation phase is greatly simplified if this basis is uni-
modular [BL92]. Whether the above technique can be
adapted to take the unimodularity constraint into ac-
count remains to be seen.
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