Array Layouts for Parallel Processing

February 19, 2010

Byline

Paul Feautrier, Emeritus Professor of Computer Science
Ecole Normale Supérieure de Lyon

46, Allée d’Ttalie

69364 LYON CEDEX, France
Paul.Feautrier@ens-lyon.fr

Synonyms

Related Entries

SIMD architecture
permutation networks

Definitions

A high-performance architecture needs a fast processor, but the fastest pro-
cessor is useless if a memory subsystem does not provide data at the rate of
several words per clock cycle. Run-of-the-mill memory chips in today technol-
ogy have a latency of the order of ten to a hundred processor cycles, far more
than the necessary performance. The usual method for increasing the mem-
ory bandwith as seen by the processor is to implement a cache, i.e. a small
but fast memory which is geared to hold frequently used data. Caches work
best when used by programs with almost random but non-uniform addressing
patterns. However, high-performance applications, like linear algebra or sig-
nal processing have a tendency to use very regular adressing patterns, which

degrade cache performance. In linear algebra codes, and also in stream pro-
cessing, one find long sequences of accesses to regularly increasing adresses.
In image processing, a template moves regularly across a pixel array.

To take advantage of these regularities, in fine-grain parallel architectures,
like SIMD or vector processors, the memory is divided into several indepen-
dent banks. Adresses are evenly scattered among the banks. If B is the
number of banks, then word x is located in bank = mod B at displacement
x + B. The low order bits of x (the byte displacement) do not participate in
the computation. In this way, words in consecutive addresses are located in
distinct banks, and can, with the proper interface hardware, be accessed in
parallel. A problem arise when the requested words are not at consecutive
addresses. Array layouts were invented to allow efficient access to various
templates.

Discussion

Parallel Memory Access There are many ways of taking advantage of
such a memory architecture. One possibility is for the processors to access in
one memory cycle the B words which are necessary for a piece of computation,
and then to cooperate in computing the result. Consider for instance the
problem of summing the elements of a vector. One reads B words, adds
them to an accumulator, and proceeds to the next B words.

Another organization is possible if the program operations can be exe-
cuted in parallel, and if the data for each operation are regularly located
in memory. Consider for instance the problem of computing the weighted
sum of three rows in a TV image (downsampling). One possibility is to read
three words in the same column and do the computation. But since it is
likely that B is much larger than 3, the memory subsystem will be under-
utilized. The other possibility is to read B words in the first row, B words
in the second row, and so on, do the summation, and store B words of the
result. This method is more efficient, but places more constraints on the
target application.

Templates and Template Size In both situations, the memory is ad-
dressed throught templates, i.e. finite sets of cells which can move accross an
array. Consider for instance a vector:

float A[100];

The template (0, 1,2, 3) represents four consecutive words. If located (or an-
chored) at position i, it covers elements A[i], A[i+1], A[i+2] and A[i+3]

2

Figure 2: A matrix layout

of vector A. But the most interesting case is that of a two dimensional array,
which may be a matrix or an image. The template ((0,0), (0,1), (1,0), (1,1))
represents a two by two square block. If anchored at position (¢, j) in a matrix
M, it covers elements M[i] [j], M[i] [j+1], M[i+1][j] and M[i+1] [j+1].
The first template is one-dimensional, and the second one is two-dimensional.
One may consider templates of arbitrary dimensions, but these two are the
most important cases.

The basic problem is to distribute arrays among the available memory
banks in such a way that access to all elements of the selected template(s)
takes only one memory cycle. It follows that the size of a template is at most
equal to the number of banks, B. As has been seen before, memory usage is
optimized when templates have exactly B cells; this is the only choice that
is discussed here.

Observe also that, as the previous example has shown, there may be many
template selections for a given program. The problem of selecting the best
one will not be discussed here.

Layouts A layout is an assignment of bank numbers to array cells. A
template can be viewed as a stencil that moves accross an array and shows

bank numbers throught its openings. A layout is valid for a template position
if all shown bank numbers are distinct. In Fig. 1, the layout is valid for all
positions of the red template. In Fig. 2, the layout is valid for all positions
of the red template, and valid for no position of the green template.

The reader may have noticed that the information given by array layouts
such as Fig. 1 or 2 is not complete. One must also know at which address
each cell is located in its bank. This information can always be retrieved
from the layout. Simply order the array cells, and allocate each cell to the
first free word in its bank. For Fig. 2, the bank address is found equal to the
row number. This scheme imposes two constraints on a layout:

e array cells must be evenly distributed among banks,

e the correspondance between cells and bank addresses cannot be too
complex, since each processor must know and use it.

Depending on the application, one may want that a layout be valid at
some positions in the array, or at every possible position. For instance, in
linear algebra, it is enough to move the template in such a way that each
entry is covered once and only once. One says that the template tesselates
or tiles the array domain. Once a tiling has been found one simply number
each square of the template from 0 to B — 1, and reproduce this assignment
(perhaps after a permutation) at all positions of the tile. This insures that
the array cells are evenly distributed among the banks. In other applications,
like image processing, the template must be moved at every position in the
array. Imagine for instance that a smoothing operator must be applied at all
pixels of an image. In fact, the two situations are equivalent: if a template
tiles an array and if block numbers are assigned as explained above, then the
layout is valid for every position. For a prof, see [4].

Skewing Schemes: Vector Processing Consider the following example:

for(i=0; i< n; i=i+1)
X[i] = Y[i] + Z[i];

to be run on a SIMD architecture with B processing elements. If the layout
of Y is such that Y[i] is stored in bank ¢ mod B at address 1+ B, B elements
of Y can be fetched in one memory cycle. After another fetch of B words of
7, the SIMD processor can execute B addition in parallel. Another memory
cycle is needed to store the B results. Note that this scheme has the added
advantage that all groups of B words are at the same address in each bank,
thus fitting nicely in the SIMD paradigm.
Suppose now that the above loop is altered to read:

4

0,0]0,10,2]0,3 0,0 01102103

1,0/ 1,1]1,2]13 131,0| 1,1 1,2
2,0 212223 22123 (2,021
3,0[31/32]33 311323330

(a) B = 4,8 = 0: four cycles are (b) B=4,5 = 1: column 0 can be
needed to access column 0 accessed in one cycle

Figure 3: The effect of skewing

for(i=0; i< n; i=i+1)
X[d*i] = Y[d*i] + Z[d*i];

where d is a constant (the step). The block number d.; mod B is equal to
d.i — k.B for some k, and hence is a multiple of the greatest common divisor
(ged) g of d and B. It follows that only B/d words can be fetched in one
cycle, and the performance is divided by g. Since B is usually a power of
2 in order to simplify the computation of x mod B and = + B, a loss of
performance will be incurred whenever d is even. One can always invent
layouts that support non-unit step accesses. For instance, if d = 2, assign
cell 7 to bank (7 +2) mod B. However, in many algorithms that use non-unit
steps, like the Fast Fourier Transform, d is a variable. It is not possible to
accomodate all its possible values without costly remapping.

Skewing Schemes: Matrix Processing In C, the canonical method for
storing a matrix is to concatenate its rows in the order of their subscripts. If
the matrix is of size M x N, the displacement of element (i, 7) is N.i+j. In
Fortran, the convention is reversed, but the conclusions are the same, mutatis
mutandis. One may assume that the row length N is a multiple of B, by
padding if necessary; hence, all matrices may be assumed to have size M x B.
As a consequence, element (7, j) is allocated to bank j mod B.
If the algorithm accesses a matrix by rows, as in:

for(j=0; j<N, j++)
. X[l 03] ..

performance will be maximal. However, when accessing columns, consecutive
items will be separated by B rows, and be located all in the same bank. All
parallelism will be lost.

A better solution is skewing. The cell (i,7) is now allocated to bank
(S.i+ j) mod B. S is the skewing factor. Here, two consecutive cells in a
row are still at a distance of 1; hence, a row can still be accessed in one cycle.

But two consecutive cells in a column, (7, 7) and (i + 1,7) are at a distance
of S. If S is selected to be relatively prime to B (for instance, S = 1 if B is
even) access to a column will also take one cycle.

This raise the question if other patterns can be accessed in parallel. Con-
sider the problem of accessing the main diagonal of a matrix. In the above
skewing scheme, the distance from cell (i,7) to (i + 1,7+ 1) is S+ 1, and S
and S+ 1 cannot be both odd. Hence, accessing both columns and diagonals
(or both rows and diagonals) in parallel with the same skewing scheme is
impossible when B is even.

Skewing Schemes: More Templates It is clear that a more general
theory is needed when the subject algorithm needs to use several templates
at the same time. As seen above, a template has a valid layout if and only if
it tiles the two dimensional plane. This results seems natural if the template
is required to cover once and only once each cell of the underlying array.
If banks numbers are assigned in the same order in each tile ([4]) or are
regularly permuted from tile to tile ([3]) then the layout will obviously be
valid for each tile. The striking fact is that the layout will also be valid
when the template is offset from a tile position. Observe that the previous
results on matrix layouts corresponds to the many ways of tiling the plane
with B-sized linear templates.

A tiling is a defined by a set of vectors vy,...,v, (translations). If a
template instance has been anchored at position (7, j), then there are other
instances at positions (i,) + v1,...,(4,j) + v,. The translations vy, ..., v,

must be selected in such a way that the translates do not overlap.

If an algorithm needs several templates, the first condition is that each
of them tiles the plane. But each tiling defines a layout, and these layouts
must be compatible. One can show that the compatibility condition is that
the translation vectors are the same for all templates. Since a template may
tile the plane in several different ways, finding the right tiling may prove a
difficult combinatorial problem.

Pipelined Processors and GPU Consider the loop:

for(i=0; i<n; i=i+1)
s =s + A[il;

to be run on a pipelined processor which executes one addition per cycle. If
the memory latency is equal to B processor cycles, the memory banks can be
activated in succession, in such a way that, after a prelude of B cycles, the
processor receives an element of A at each cycle. As for parallel processors,

W N =] D

N O OO
Wl | Q| | =
OIN| O DN DO
= QO = O W

Figure 4: The need for reordering

if the loop has a step of d, the performance will be reduced by a factor of
ged(d, B).

While today vector processors are confined to niche applications, the same
problem is re-emerging for Graphical Processing Units (GPU), which can ac-
cess B words in parallel under the name “Global Memory Access Coalescing”.

Reordering With non standard layouts, the results of a parallel access
may not be returned in the natural order. Consider for instance the problem
of having parallel access both for rows and for the main diagonal of a 4 x 4
matrix on a 4 banks memory. The skewing factor S must be such that S+ 1
is relatively prime to 4: S = 2 is a valid choice. The corresponding layout
is shown on Fig. 4. The integer in row ¢ and column j is the number of
the bank which holds element (i,j) of the matrix. One can see that bank
0 holds element (0,0), bank 1 holds element (3,3), and so on. If the banks
are connected to processors in the natural order the elements of the main
diagonal are returned in the order (0,0),(3,3),(2,2),(1,1). This might be
unimportant in some cases. For instance if the elements of the main diagonal
are to be summed (the trace computation), since addition is associative and
commutative.

In other cases, returned values must be reordered. This can be done by
inserting a B words fast memory between the main memory subsystem and
the processors. One can also use a permutation network which may route a
datum from any bank to any processor.

The Number of Banks Remember that in vector processing, when the
step d is equal to one, performance is degraded by a factor ged(d, B). It is
tempting to use a prime number for B, since then the ged will always be
one except when d is a multiple of B. However, having B a power of two
considerably simplifies the addressing hardware, since computing x mod B
and x + B is done just by routing wires. This has lead to the search for prime
numbers with easy division, which are of one of the forms 2 £+ 1. See [2] for

a discussion of this point.

References

[1] P. Budnik and D.J. Kuck. The organisation and use of parallel memories.
IEEFE Trans. on Computers, C-20:1566—-1569, December 1971.

[2] Benoit Dupont de Dinechin. A ultra fast euclidean division algorithm for
prime memory systems. In Supercomputing’91, pages 5665, 1991.

[3] W. Jalby, J.-M. Frailong, and J. Lenfant. Diamond schemes: An or-
ganization of parallel memories for efficient array processing. Technical
Report RR-342, INRIA, 1984.

[4] H. D. Shapiro. Theoretical limitations on the efficient use of parallel
memories. IEEE Trans. on Computers, C-27:421-428, May 1978.

