
Applications of Fuzzy Array Dataflow Analysis

Denis Barthou, Jean-Francois Collard and Paul Feautrier

Laboratoire PRISM, Universit~ de Versailles-StQuentin
45, avenue des I~tats-Unis, 78035 Versailles, FRANCE

Abstract . Array dataflow analysis can be exact in the general case
when it involves only affine constraints on loop counters. This paper first
presents an iterative method in the framework of Fuzzy Array Dataflow
Analysis and then describes applications of fuzzy analysis on some usual
techniques in compilation and parallelization.

1 I n t r o d u c t i o n

The performances of a compiler rely on its capacity to find in the source pro-
gram the information it needs to optimize code generation or exhibit parallelism.
Detailed information is provided by methods such as Array Dataflow Analysis
[4, 7] designed to compute, for every array celt value read in a right-hand side ex-
pression the very operation which produced it. However few methods can handle
non-static programs. For programs using i f , whi le loops or non-aNne array sub-
scripts, no exact information can be hoped for in the general case. The purpose
of this paper is twofold: describe an iterative method gathering partial informa-
tion that can be used in the framework of the Fuzzy Array Dataflow Analysis
(FADA)[3] and present some applications of this technique such as program
checking, parallelization and minimal memory expansion.

2 F r o m E x a c t t o F u z z y A r r a y D a t a f l o w A n a l y s i s

The basic problem of array dataflow analysis is, given an operation (R, y} called
the "sink", which is an iteration of a statement R whose iteration domain is
I(R), and an element a(g(y)) of an array a which is read by (R,y} to find the
"source" of a(g(y)) in (R, y}. The source is an operation cr((R, y}) which writes
into a(g(y)), which is executed before (R, y) and such that no operation which
executes between c~((R, y}) and (R, Y} also writes into a(g(y)). The computation
of the source is in two steps: first compute the source for each statement, known
as the direct dependence since [2], then combine these sources in the expression of
cr((R, y)), as detailed in [4]. Suppose that we are investigating source candidates
from a statement S: (S, ~}, writing into array a at subscripts ;f(~). The candidate
source has to verify the following constraints:

- Existence predicate: (S, ~} is a valid operation: �9 E I(S).
- Subscript equation: (S, x} and (R, y), access the same array cell: $(~) = g(y),
- Sequencing condition: (s, x) is executed before (R, y): (S, ~} -~ (R, y),

425

- Environment: sources have to be computed under the hypothesis that (1~, y)
is a valid operation, i.e. y E I(R).

The direct dependence is then given by (S, KS(Y)) where K s (y) = max<<{x I ~ E
I(S), f (~) --- g(y), (S, ~} -~ (a, y)} and where << represents the lexicographic order.

As soon as the program model includes conditionals, whi le loops or non-
affine do loop bounds or subscripts, the existence predicate and subscript equa-
tion may contain non-linear terms and the exact computation of K s cannot be
achieved in the general case. However, linear relations may be found between
constraints in order to compute the smallest set of all the exact sources for
any shape of the non-linear constraints verifying these relations. To reach this
goal, a solution is to make the source depend on parameters representing the
non-linear terms. Pugh and Wonnacott [7] proposed to keep the parametric ex-
pression of the non-linear functions in the source when they depend only on y.
Given a statement S, they may be represented by the set of vectors D s (y) for
which they are verified, called parameter domain[i]. Note that the dimension
M s of the vectors of D s (y) is lower or equal to the dimension of the iteration
vector of S. The expression of K S (y) is m a x L s (y) N {ss I x[1..Ms] C Ds(y)}
where L s is the set of vectors verifying all linear constraints. If K s (y) is de-
fined, there exists a vector /3S(y) called parameter of the maximum such that
K S (y) = ma xL s N {ml x[1..Ms] =/3S(Y)}. Hence the source can be computed
as a function of the parameters of the maximum of all direct dependences. We
have shown that for any property P that is a relation of inclusion between union
or intersection of parameter domains and linearly defined sets, the set of the
parameters of the maximum corresponding to all the parameter domains verify-
ing P is defined by linear constraints and is therefore computable [1]. The aim
then is to find some properties on the parameter domains. This can be done by
an algorithm based on the abstract symbolic tree of the program [3] and more
precise relations may be found by analyzing the expressions of the non-linear
constraints.

3 I t e r a t i v e A n a l y s i s

The purpose of the iterative analysis is to find relations between the non-linear
constraints coming from different statements so as to compare parameter do-
mains. Given two constraints that are the same function but appear at different
places in the program, we can say that they have the same value if the vari-
ables they use are the same and have the same values. As a variable has the
same value in two operations if it has the same source, the equality of the values
of constraints may be proved in some cases by a dataflow analysis. Since this
dataflow analysis can be fuzzy, the method can then be applied once more and
eventually the fuzziness will be reduced by successive analyses. More formally,
given two statements S and S~ writing into array a, we will suppose that only one
non-linear constraint appears in the computation of K s (y) and Ks , (y). Let c
and c' be the non-linear constraints respectively involved in K s (y) and K s, (y),
appearing in statements T and T ~ .

426

- Part ia l equality: the constraints c and c ~ are the same, use the same variables
and a dataflow analysis shows tha t these variables have the same sources in
both operations in a context C that is defined by linear inequalities. The
relation is D s A C = DS, N C.

- Image of a paramete r domain: the constraints c and d are the same, use the
same variables and the sources of the variables of c at operation (T, ~) are
the same as the sources of the variables of c' at operation (W', f (x) / , with f
an affine function w.r.t, the iteration vector. The relation is f (D s) = DS,.

These relations can be generalized to any number of s tatements and non-linear
constraints. The reader is referred to [1] for technical details.

4 A p p l i c a t i o n s

We present thereafter the application of FADA to variable initialization checking

and code parallelization.

4.1 V a r i a b l e I n i t i a l i z a t i o n C h e c k i n g

In a correct program, all variables are initialized before they are used. Verifying
this by a dataflow analysis can help to check the correctness of the program or
validate some properties on non-linear constraints. When the analysis is fuzzy,
the condition for which the source o f the value of a does not come from S is
a conjunction of affine constraints on y and flS' Let q(y) and r(y,~s) be the
predicates forming this condition. When the source comes from S, Vy E I(R) s.t.
q(y) then r(y, flS) = false. According to the definition of the parameter of the
max imum, this is equivalent to: Vy C I(R) s.t. q(y) = true, 3~ s.t. (r(y, ~) =
false) A (c(y, x) = true) where c is the non-linear constraint involved. This
condition can be generalized to any number of direct dependences and non-linear
constraints. Checking the condition can be left to the programmer or submit ted

to an assertion generator.

4 .2 C o d e P a r a l l e l i z a t i o n

There are two basic techniques for extracting parallelism from a dependence
graph: one consists in computing a schedule, the other one in computing a place-

ment.

Fuzzy Scheduling We must guarantee that: 0(s, ~) + 1 <_ t~(R, y). In the result of
the corresponding FADA, ~ is an affine function r of $ and of parameters #S
which must satisfy a set of affine predicates P(~) . We may refine the above
inequality into y e : / (a) ,~ e P(Y) ~ t~(S,r + 1 <_ 8(R,y). Suppose we
have expressed the schedule 0 as an affine form with unknown coefficients. Since
everything is affine, we are in a position to apply Farkas lemma; the result is a set
of linear equations in the coefficients of the schedule and new positive unknowns,
the Farkas multipliers. These equations may be solved as in [5].

427

Memory Expansion In order to take into account memory based dependences in
the above schedule, a solution is to find the minimal memory expansion which
is consistent with this schedule. The method presented by Lefebvre [6] can be
used in the present case with little or no modification. Indeed, it is obvious
that , even in the case of dynamic control structures and non-linear arrays, we
may still compute an ordinary dependence graph. In the case of FADA, the
shape of the source is exactly the same as in the exact analysis case, hence the
same algorithms apply. In some cases, parameters will disappear, for instance,
when expansion of a scalar has been deemed unnecessary. When a parameter
is actually needed, its value must be recorded when the corresponding control
operations are executed. If speculation has been used, this means that a read
operation may not be executed before the results of the controlling operations
are known. This is a new constraint which has to be taken into account when
computing the schedule.

5 Conclusion

Many applications in the compilation and parallelization field take advantage of
our technique, with little change in their algorithms. The Fuzzy Array Dataflow
Analysis extends the scope of variable initialization checking, code paralleliza-
tion to some programs with dynamic control structures. Moreover, even a fuzzy
result can give enough information for a significant improvement of the output of
these techniques. Further developments on the combination of compilation and
parallelization methods with fuzzy analysis will be the subject of future work.

References

1. Denis Barthou, Jean-Franqois Collard, and Paul Feautrier. Fuzzy array dataflow
analysis. Technical Report 95/33, PRISM Laboratory, 1995.

2. Thomas Brandes. The importance of direct dependences for automatic paralleliza-
tion. In ACM Int. Conf. on Supercomput~ng, St Malo, France, July 1988. i

3. J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataJlow analysis. I~ Proc.
of 5th A CM SIGPLA N Syrup. on Principles and Practice of Parallel Progra~nming,
Santa Barbara, CA, July 1995.

4. Paul Feantrier. Dataflow analysis of scalar and array references. Int. J. of Parallel
Programming, 20(1):23-53, February 1991.

5. Paul Feautrier. Some efficient solutions to the affine scheduling problem, I, one
dimensional time. Int. J. of Parallel Programming, 21(5):313-348, October 1992.

6. Vincent Lefebvre. Gestion de la m@moire clans les programmes parall@les. In 8eme
rencontres]rancophones du parallglisme, pages 149-152, May 1996.

7. William Pugh and David Wonnacott. An exact method for analysis of value-based
array data dependences. In Lecture Notes in Computer Science 768: Sixth Annual
Workshop on Programming Languages and Compilers, Portland, OR, August 1993.
Springer-Verlag.

