Fuzzy Array Dataflow Analysis

Jean-Francois Collard
LIP
ENS Lyon
46 Allée d’ltalie
F-69364 Lyon Cedex 07

Jean-Francois.Collard@lip.ens-1lyon. fr

Abstract

Exact array dataflow analysis can be achieved in the
general case 1f the only control structures are do-loops
and structural ifs. and if loop counter bounds and array
subscripts are affine expressions of englobing loop coun-
In this pa-
per. we begm the study of dataflow analysis of dynamic

ters and possibly some mteger constants

control programs, where arbitrary ifs and whiles are
allowed In the general case. this dataflow analysis can
only be fuzzy

1 Introduction

(Gathering information on data values is a classical task
m advanced compilers, known as Dataflow Analysis [1].
However. this technique only deals with scalar data. and
sees au array as an indivisible object. On the other
hand, vectorization and parallehization methods are
mainly based on the parallelism hidden by independent
references to distinct parts of arrays. Various depen-
dence tests have been proposed [2]. However, these tests
are not exact. and, even when they are. cannot distin-
guish between true dependences, which describe a real
information flow, and spurious dependences, in which
the value purported to be transmitted is destroyed be-
fore being used. To obviate this difficulty, methods
have been designed to compute, for every array cell
vead 1 a right-hand-side expression (the “sink™), the
very operation which produced it (the “source™). These
methods ave called Array Dataflow Analyses {ADA)
(6, 10j, or Value-Based Dependence Analyses [11].

Permission to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication and its date appear, and notice is given

Denis Barthou

that copyright is by permission of the Association for Computing Machinery,

Inc. {ACM). To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

PPOPP '95 Santa Clara, CA USA
© 1995 ACM 0-89791-701-6/95/0007...$3.50

92

Paul Feautrier
PRiSM Laboratory
Université de Versailles
45 Avenue des Etats-Unis
F-78035 Versailles Cedex

{Denis.Barthou, Paul.Feautrier}@prism.uvsq.fr

These ADAs, however, make quite stringent hypotheses
on the input programs. The only accepted control struc-
tures are the do loop and the sequence; loop bounds and
array subscripts must be affine functions of surrounding
loop counters and possibly of symbolic constants a.k.a.
structure parameters. Programs following this model
have been called “static control programs” in [6]. The
same paper showed that an exact ADA can be mechan-
wcally performed on static control programs.

This paper deals with handling general ifs and while
loops. With such unpredictable control structures, no
exact information can be hoped for in the general case.
The aim of this paper is to show that even partial infor-
mation can be automatically gathered thanks to Fuzzy
Array Dataflow Analysis (FADA). Moreover, should
this FADA be applied to a static control program, it
is easy to show that the precise, classical ADA is a spe-
clal (non-fuzzy) case of FADA.

1.1 Paper Overview

Section 2 gives a motivating example. Section 3 then
briefly reviews the exact array dataflow analysis for
static control programs proposed in [6]. Section 4 de-
fines our program model. Section 5 details the algo-
rithm.

1.2 Notations

The k-th entry of vector F is denoted by ZF[k]. The
subvector built from components & to [is written as:
zlk.). If £ > [, then this vector is by convention the
unique vector of dimension 0. Furthermore, < denotes
the strict lexicographical order on such vectors. In this
paper, “max’ always denotes the maximum operator
according to the < order. An instance of statement S
is denoted by (S, Z). where I, the iteration vector of S. is
the vector built from the counters of loops surrounding

S

2 A Motivating Example

The following two sibling codes exemplify dynamic con-
trol programs.

program M
doi1=1,n
,\W'(\, a(l) = ...
1f .. then
do j = 1, nt2
Sy a(j) = a(j-2)
enddo
endif
enddo

program N
doi=1,n
S()i a(i) = e
while ... do
do 3 =1, nt2
Sy a(j) = a(j-2)
enddo
enddo
enddo

Let us consider Program M first, and suppose that
n = 4. Let us study the case of the insiance of state-
ment Sy when 7 = 3 and j = 4, ie {57.3.4). Note that
we don't even know at compile-time 1f this instance ac-
tually executes. If 1t does. however, then the problem
is to know where and when the right-hand-side value
a(2) was produced. This source may be an instance of
Si. but not if 1 > 3, since this instance would execute
after {(S41.3.4). Since the source must write into a(2).
the value of j is fixed to 2. This source cannot be an
instance of Sy for 7 = 3 either, since j is greater than or
equal to ¢. Thus, possible sources are instances (S7,1.2)
and (S1.2,2). Another potential source is (Sp.2). Note
moreover that (Sp, 2) overwrites the value that (51,1, 2)
may have written. Thus, the set of potential sources is
{(Sp.2),(51.2,2)}.

Actually, the iteration points of S fall into three
groups (see Fig. 1 (b)):

o A member (4,)) of the first group is such that
J > i+ 2. It has one and only one possible source
from S| (namely, {S1,4,7 — 2)) since if point (7, j)
executes then (7, j — 2) did execute too.

e On the contrary, a member of the second group has
an unpredictable source. However, all the members
of this group have at least one source, since all the
array cells they read (a(1) through a(n-1)) are
written mto hy Sy. Dotted edges symbolize this.

o Finally, members of the third group do not have
sources in the given program.

The analysis for Program N is obviously similar, ex-
cept that the iteration domain of Sy 1s 3-dimensional.
Program N will serve as a running example in the sequel.

3 Review of an Exact Array
Dataflow Analysis

The aim of this section is to summarize an array
dataflow analysis of static control programs [6]. The
reader is referred to [6] for details.

The depth of a construct is the number of surrounding
loops. The counter of a loop at depth p is the (p+ 1)-th
component of the iteration vector.

The sequential execution order is written < and 1s
defined by:

(S, .1_:) ~< (R, 57) -E[l..A’vS’R] < ﬂl..NSR]V
(£[1..Nsgr] = §[1..Nsr] A Tsr),
(1)
where Ngg is the number of loops surrounding both S
and R, and Tsg is a boolean which is true iff S precedes
R in the program text. Notice that this sequential order

can be split with respect to depths:

Nsr

(5.8) < (Rg) = \/ (S.8) < (R (2)

p=0

where for p=0..Ngs — 1:

(8.8 < (R2) & (&l1-0] = 70 sDAE+1) < 1)

and:
(S, f) ~<Nsr (R,fj) & f[l..NSR] = g’[l..NSR]/\TSR (4)

For a given loop at depth p. Z[p+ 1] has a minimum and
a maximum which are given by the loop bounds. [n the
case of exact ADA, these bounds are affine functions of
outer loop counters and structure parameters:

L(E[L..p]) < Z[p + 1] < up(£[L..p)). (5)

The iteration domain of a statement S is denoted by
D(S) and is given by the conjunction of all inequalities
(5) for the surrounding loops.

Let us consider two statements S and R. Suppose
that S writes into an array a and that R reads that
same array:

S alf(@)) = ...

R: ... =alygly)

c_m Firstgroup

Second group

Third group

6l g — N -~
L] . s
|
R S / 4|
By L 1
| i /
/ / //’
U S e =
j: v
‘ {’ "/
2Vt . 2
\
1y \. o . 1y
i
- n e

(b)

Figure 1: Dataflow graph of Program M.

The aim of array dataflow analysis is to find the source
of the value a(g()) read in R for a given §. This source
15 denoted by o({R,y)). To be a candidate source, an
operation {5, I) has to satisfy the following constraints:

Existence predicate: (S, I) is a valid operation:

€ D(S). (6)
Conflicting accesses: (S. %) and (R,y) access the
same array cell:

f(&) = g9(9). (7)

[and ¢ are possibly multi-dimensional affine func-
tions w.r.t. X and i, respectively.

Sequencing condition: (5. %) is executed before
(R 9):

{5, %) < (R, 7). (8)

Environment: The set of candidates is to be com-
puted under the hypothesis that (R.7) is a valid
operation, 1.e. ¥ € D(R).

The set of candidate sources is thus:
Qspld) = {7 | F€D(S), {(F) = g(d). (S.7) < (R.D)}.

Thanks to (2), this set can be split for each possible
depth p:

Qir()) ={F | F€D(S), f(¥) = g(§). (S,T) <, (R, §)}.

(9)
Since each predicate <, is affine, Q%z(¥) is a polyhe-
dron. The direct dependence from S to R at depth p is
the maximal element according to the < order:

K% p(%) = max QL (9.

(10)

94

The maximal value is computed for each depth by in-
teger linear programming {5]. The corresponding oper-
ation is denoted by SEo(9) = (S, KE (7).

In general, however, there are several statements
Si..... Sy writing into the same array, and as many
sets of candidates. One has to compute the maximum
of the direct dependences:

o((R,§)) = max {S§, z(§) | 1<k <m,0<p< Ns,n}

(11)
This maximum is computed with the help of a set of
simplification rules, which are given in Section 5.2. The
result of the analysis is a quasi-affine selection tree or
quast. 1.e. a many-level conditional in which:

o Predicates are tests for the positiveness of affine
forms in the loop counters and structure parame-
ters.

Leaves are either operation names whose iteration
vector components are again affine, or L. The spe-
cial name L indicates that the array cell under
study is not modified in some piece of code. A
coherent way of thinking about L is to consider it
as the name of an operation which is executed once
hefore all other operations of the program, i.e.:

VS T L < (S, 7). (12)

4 Definition of Fuzzy Array
Dataflow Analysis

4.1 Program model

In this paper, our aim is to extend the scope of array
dataflow analysis to programs respecting the following

constraints: 1) The only data structures are integers,
reals. and arrays thereof. 2) The only control structures
are the sequence, the do loop. the while loop. and the
if..then..else construct. gotos and procedure calls
are forbidden. 3) Basic statements are assignments to
scalars or array elements. 4) No pointer. EQUIVALENCE
or aliasing is allowed. 5) Array subscripts must be affine
functions of do loops counters and structure parameters.
6) Array subscripts must stay within array bounds. This
condition 1% usually imposed by parallelizing compilers.
The rationale 1s that a program which does not conform
to this restriction is mcorrect and can be incorrectly
handled by the compiler. Besides, the property can be
statically checked when array subscripts do not depend
on while counters.

Similarly to do loops. an iteration of a while loop
is denoted by giving its ordinal number w in the iter-
ation sequence Most of the definitions given in [6] for
static contro] programs translate directly to the present
model. In particular, the meaning of the execution or-
der (1) is that. when the set of operations of a given
execution is known, then their execution order is given

by (1).

4.2 Hidden variables

To be definite. we will postulate that there exists a set
of “hidden variables”, collectively denoted by { which
completely determine the set of operations of the asso-
ciated execution. If the value of these variables were
known. and if we could completely analyze the behavior
of the program, then we could in principle predict the
number of iteration of each while loop and the outcome
of each test. We will suppose here that a knowledge of
the hidden variables allows us to compute:

o the iteration count of each while loop. Let W he
such a loop and let & be the iteration vector of the
loops (of any kind) surrounding W. We will assume
the existence of a function ow (Z, &) giving the it-
eration count of mstance ¥ of W when the value of
the hidden variables is { In the case of a while

loop at depth d, the corresponding inequalities are:

—

1< Hd+1] < pw (318, (13)

When the while loop under discussion is clear from
the context, the 1" subscript may be omitted.

In the following, we suppose that our source pro-
gram is totally correct. i.e. that all while loops
terminate in a finite number of iterations. This is
equivalent to saymng that ¢ always has finite values.

o the outcome of each test. The value of the predi-
cate of conditional C at iteration I will be written

1o(Z,&). Here again the subscript (' may be omit-
ted if no ambiguity results.

95

The iteration domain of statement S will be written
D(S. fﬁ). D(S,€) is given by the conjunction of all ap-
plicable inequalities (5) or (13) and of the 7 predicate
associated to governing conditionals. For instance, the
iteration domain of S; in Program M is {7,j|1 < ¢ <
n,i<j<n+2, T(i,g)}. The iteration domain of §1 in
Program Nis {{,w,j|1 <i<n,1<w< e(i,6),1<j<
n+ 2}

In the case of static control programs, the only hidden
variables are the structure parameters, and the iteration
count of all do loops may only depend linearly on the
structure parameters and outer loop counters. In that
case, the function p can be written explicitly and han-
dled exactly by the dependence analyzer. Similarly, the
function 7 can be handled exactly if it is an affine func-
tion of loop counters and structure parameters.

5 A FADA algorithm

The purpose of this paper is to analyze programs whete
some existence predicate (6) effectively depends on hid-
den variables. Qur objective is to show that it is still
possible to compute approximate sources in this case.
The method will be to compute, for each read reference
n operation {R,), its source <({R, #).£) as a function
of the hidden variables. Since the values of the hidden
variables are unknown by definition, the best we can do
is to take as an approximation to the real source:

c((R.7) = Js((R. 9.). (14)

-

3

In so doing, we have to take care not to use approx-
mmatnions too early. This is possible by introducing ad-
ditional parameters, and by proving that varying these
parameters is equivalent to modifying the hidden vari-
ables. These parameters are introduced, when neces-
sary, in direct dependences (Section 5.1). The combi-
nation of direct dependences is described in Section 5.2.
The result is expressed as a function of additional pa-
rameters whose elimination is dealt with in Section 5.3.

5.1 Direct dependence computation

This section is devoted to the evaluation of (10). It
so happens that in some cases, an exact solution may
be found even in the presence of while loops or tests.
These cases are investigated in the next section. We
then proceed to the general case.

5.1.1 Exact solutions

The case of while loops. Let us consider the case of
a candidate source which is governed by a while loop
W at depth d. An exact computation of N%,(¥) can

be made if and only if the p's in the existence condi-
tion of the source candidate can be eliminated. Suppose
that R is also inside W Among other inequalities, the
environment includes:

L < gld+ 1) < (gll-d).é) (15)
Then:
Property 1 The constramt F[d+ 1] < o(&[1..d),€) can
be eliminated from the expression on rN fd<p

Proof Q% () 1s defined m (9). The sequenc-
mng pledlcate can be written as (3) or (4).
Then, two cases may oceur:

o If d < p. then either (3) or (4) implies
F{l.d+ 1] = g[l..d + 1]. Thus:

(15) = &[d + 1] < p(£[1..d), §).

e If d = p, let us observe first that d < Ngpg.
Thus, p < Ngg. which means that the
sequencing predicate <, at depth p is in
the form (3) again. So (3) = {§{l.p}] =
Fll.plazlp+1] < 17[1)-4—1]. Thus. (15) =
Iy + 1) < p(F[1..p). 8.

O

If all the cp’s can be removed from 5’s existence pred-
icate, then Q% g (%) is a convex polyhedron and the cor-
responding dnect dependence can be exactly computed.

In Program N, an operation {Si,s',w’,)’) is a pos-
sible source of a(j-2) in operation (S;.%. w,) if:

1</ <n 1< <ol)i <) <n+2
and.

V<t (16)
Vi =1Aw < w) (17)
Vil =iaw =wAay <) (18)
V(z':i/\w':w/\f:g/\Tsxsl) (19)

The environment is
E={1<i<nl<ws< (.6t <y < n+2}.
(20)

Since Vs, 5, = 3, direct dependences may occur at
depths 0, 1. 2 and 3:

p = 3: The sequencing condition is (19
false, hence Q*f;lsl(z, w,y) = Q.

2: The sequencing condition is (18). Since
' =i and w' = w, the inequalities 1 < w' <
99(1'.{) are implied by the environment and
can be discarded in the definition of this set.
Then. Q% s,(1,w,j) = {(+, v’)i < 4/ <

). Tsys, is

v
I

96

n+24 =0 =w ' <)) =3-2} Its
maximum can thus be computed:

ify>i+2
A—élsl("wy]) = then (2, w,j — 2)
else L
Equivalently,
ify2e+2
St (w,y) = then (S;, 1, w. 7 ~2) (21)
else L

p=1: (17) implies that:

Qs, 5, (1w,) =
{2)M <Y <nl < w' <ol
V< <n+2,

'),

Y= w <w g =) -2}

Again, 1 < v’ < o(i/,) is implied by (20)
and can be discarded in this set expression.
The corresponding possible source is:

ifw>2A7> 042
then (51,2, w — 1, — 2)22)
else L

Sé,sl(is w‘])

» = 0t This case cannot be handled exactly (see
5.1.2).

Let us now consider the direct dependences from
So to S1. The reader may check that the two direct
dependences at depth 0 and 1 are:

if3>3A>5-1
then (Sp, 7 — 2)
else L

88,5, (1,w,3) = (23)

and

Séosl(i, w,y) = ifj =1+ 2then (5, 2)else L.
(24)

Note that if the only while in the source program
is the outermost loop, then d < p always holds, and
Property 1 proves that the dataflow analysis is exact.
This result justifies a conjecture in [3].

The case of conditionals. A similar result holds for
conditionals. Let (" be a conditional at depth ¢ enclosing
two statements S and R. S and R are thus governed
by the same predicate 7, meaning that the environment
includes 7(g[1..c]. £) while the definition of the candidate
set QL p(¥) includes r(i’[l..c],g). Hence, if p > ¢, then
gll..c] = &[1..c] and the former predicate implies the
latter, which can be eliminated.

Similarly, if § and R are in opposite branches of
C, then th_gi definition of the candidate set includes
-7(E[1..c],€). If p > c, this predicate is always false
and the candidate set is empty.

Lis favorable cases, all £ and = functions can be ehim-
mated and the computation of an exact source is possi-
ble. For static control programs. the hypotheses of this
section are trivially verified: this is the stage at which
fuzzy ADA and exact ADA meet. The following sec-
tion deals with cases where such simplifications are not
possible

5.1.2 Expressing an imprecise solution

Section 2 gave an intuitive flavor of what the final result
of FADA should be- sets of possible sources. Our aim.
however 1= to postpone this nse of sets so as to keep
exact mformation as far as possible.

Let ¢ be the depth of the innermost condition govern-
mg 5. and let d be the depth of the innermost while
loop enclosing S Let us suppose that at least one of ¢
and d 1s larger than the current depth p (if not, as we
have seen, an exact computation is possible}. A central
property is that in computing approximations, we have
only to consider the innermost test or while loop To
see this. suppose for instance that the source in question
is governed by a test with predicate 7(F[1..c]) contain-
ing a while loop whose upper hound is »(Z[1..d}). with
d > ¢ Let us define a new function:

v(F[1..d]) =if 7(Z[1..c]) then p(Z[1..d]) else 0.

The iteration domain agsociated to ' is exactly the same
as the one associated to ¢ and 7. Since ¥ is no more
and no less arbitrary than ¢ and 7. we may proceed as if
the unique governing construction was the while loop.
We can then proceed i a case by case manner.

The case of while loops. Suppose first that ¢ <
d, which means that the innermost while is inside the
muermost test. The problem here 1s to express the set

Q. ;7. &) which now depends on the hidden variables.

Zld + 1] < p(&[1..d).).
) <p (R}

where AF > b subsumes the linear part of the existence
predicate of 5. Let 7(&) be the subset of the iteration
domain of the while where the loop is executed at least

once:;

= {F|AT>b 1
(

<
F(E) = gt). (S,

T(€) = {ale(d.§) > 0}.

The set of candidate sources at depth p 1s:

(7.6 = U {(F|AF > b F1.dl=a
i 5 1< Fd+1] <0
geT), LSFA+1<b.
b= p(d.€) F&) = g(). (S, &) <, (R,
(25)

The lexicographical maximum of the above union be-
longs to one of the sets of the union. Hence, there exist

97

TE 7(5). 3 such that the direct dependence A% 4(7, 54)
from S to R at depth p 1s the lexicographical maximum
of the polyhedron:

{Z|AZ > b, 8[1.d]= 6. 1< F[d+ 1] < 3.
f(Z) = g(§). (5. 2) < (R}

We may consider that the values of & and £ are a “sum-
mary” of the values of the hidden variables as far as
the current while loop is concerned. The set of can-
didate sources may be written Q%p(¥. @, 3) instead of

R, 5). Its maximum AEg(F, &, J) can easily be
computed by a software like PIP [5] as a function of
g. of the original structure parameters, and of the ad-
ditional parameters & and J. Furthermore, 1t 1s easy to
see that there exists a ¢ function. namely:

<
S.

-

o(d, €) 3ifd = a.

0 otherwise

such that K% ,(7.€) = KLp(§.&, B8). This shows that
our parametric representation gives all possible sources
and nothing but sources. The “fuzziness™ of the solution
is reflected in the fact that the values of the additional
parameters @ and J are unknown.

In Program N, the direct dependence from Sy to
itself at depth 0 has the following parametric can-
didate set:

lesl(z-wdsa.ﬂ)z
(w1 1<i <ni' =a,
1w <8 <) <n+2,
J=g =20 <l
Here is the solution:
| f1<a<iAB>1A3>a+2
Sf)c,su, (1w, j,a.3)= I then (S;.a.8,j —2)

| else L
(26)

The case of conditionnals: the if..then con-
struct. Suppose next that ¢ > d. Let S be a state-
ment which writes into a and which is in the branch of
a conditionnal governed by some predicate 7. We as-
sume that p < ¢ (otherwise, the results of Section 5.1.1
apply). With the same notations as above. the set of
candidates is given by:

-

QUp(7.6) = {#FAF >0, r(&1..¢).6),

)
F&) = g(§).(S. &) <p (R.9)}. (27)

Let T(g) be the subset of the iteration domain of the
conditional where its predicate evaluates to true. Then
7 is defined by:

-

(F[1l..c].&) = \/ (@ = Z[1..c}]).

aeT ()

The set of candidate sources at depth p can be written
as.

AZ>b.8[1..c) = a.

FOE) = g(). (S, 8) Ry}

The lexicographical maximum of the above union be-
longs to one of the sets of the union. Hence there exists
& m 7T(€) such that the direct dependence KEa(y.6)
from & to R at depth p1s the lexicographical maximum
of
{FIAT > b, F[l..c] = &, f(F) = g(§). (S, ¥ R}
(28)
Here agam, it is easy to see that this procedure gives
all sources and nothing but sources. When 1 evaluates
to false for all values of its iteration domain, we may
choose for & a value which does not satisfy A& > b.
This can always be done since { is not in the domain
of any outer while loop and the other outer loops have
bounded domains

The case of conditionnals: the if..then..else
construct. The situation 1s more complicated in this
case. If no variable is modified 1n both arms of the con-
ditional, we can handle each arm independently along
the lines of the preceding paragraph. Suppose now that
there exists an array a which 1s modified in both arms
of the conditional and which is read later:

doZf=. .
if (P) then
St a(fi(z)) =
else
S a(fa(7) =
endif
R o= x(g(Z)
enddo

With notations similar to (27), we have two sets of can-
didate sources:

Lr@E = {FAF> b, (3[1.d.8),
JulE) = g(9). (S1, &) <p (R.§)}.
La(3.8) = {F] 407 > ba T3]é‘)
fal): (7) <S’ “</’ !D}
where
T =T {29)

To handle each candidate set independently, we intro-
duce two extra parameters &; and &s such that:

7(Z[1..c])
F(F[1..¢])

98

The solution then proceeds as in the if..then.. case.
In so doing, we have lost property (29), with the con-
sequence that spurious sources will be introduced. The
results can be slightly improved in some cases by observ-
ing that since 7(&1) and 7(&2) are both true, if 7 = =7
then &; # &2. This information may be added to the
contexs and used later when combining direct depen-
dences.

A better result can be obtained in the frequent case
where the candidate set leR(g‘, 5) is such that the first

¢ components of F are uniquely determined: let ¢; be
the function such that:
b, A(B) =@, (1. 8) < (R.9)
= Z[1..c] = ¢1(¥),

with a similar definition for ¢5. Such functions can be
efficiently obtained, if they exist, by extracting the im-
plied equalities from the above system of constraint.
It is easy to see that the lexicographical maximum of

Q% p(7.6) is:

if {o1(9),)thenmale()else L,

where

Q1Y) > by, f1(&)

{f 1411 1@‘)}7

with a similar formula for the second arm of the con-
ditional. In these formula_.g, we may select arbitrar-
ily the values of 7(¢1(§),£&) and ﬂr(¢2(g’),{), unless
1(Y) = ¢2(¢). Any formula which depends on one pa-
rameter and which selects in turn the right solutions can
be used as a parametric representation of the solution.
One such formula is:

= g(¥), (51, &) <p (R

if o # ¢1(9)

then max Qi (%)

ifa = (bg(g‘)
then max Qs (y)
else L

else

Observe that if ¢1(%) # ¢2(¥) then the L leaf can be

selected by taking o = ¢1(¥) # é2(¥) while if ¢1(7) =
@2(7), there is no value of o which selects this leaf.

5.2 Combining direct dependences

In the previous section, we studied direct dependences,
i.e. the case where only one statement may be the source
of the array cell read by R. In the general case, of course,
many statements are potential sources. Let Sy, ..., S,
be the m statements writing into a given array cell. We
suppose that, for each Si, £ = 1, .., m, the possible solu-
tions SgkR have already been computed. We now con-
sider the problem of finding the unique source, which is

the maximal element among these solutions according
to the sequential order.

c{R.§) = max {8 z(#) |1 <k <m.0<p< Ng,gr}

Let n be the number of candidate sources 8% (4. For
expository reasons, we assign an index number ¢, 1 <
g < n to each SQ.AR(Q')‘ and rename the latter into
8,. Then. the basic algorithm computes the following
recurrence,

l<g<n R,

= max {R,-,.8).

with

RU:L

Each recusrence step has to compute the maximum of

two quasts. This 1s done with the help of the following

rules!

Rule 1 max (L.v) = v. (This 1 sumply a restatement
of (12})
Rule 2 [f v = if ' then uq else uy, then:

max (u, v) = if (" then max (u;. v) else max (uy. v}

Rule 3 J/f u (S, FY and + = (R. g are elewmentary
sources, then max (u,r) = if u < v then velse u

Rule 4 Let if pthen velse v be a subtree of a quast,
and let C be 1ts contert (1.¢e. the sel of predicates which
are encountered on the unique path from the root to the
subtree). Then of CAp s not feasible, replace the subtree
by v Sumdarly of C A —p s not feasible, replace the
subtree by u.

5

Rule 5 if ('then velse v = u.

We can now combine the intermediate results for
the tunning example.

Ry = (24)=if) =14 2then (So.) — 2)else L
R, = max (R1,(23))
U Rule 2
ify=142
if)>3na)3<14+1
then | then max ({So,; —2),(So,7 — 2))
R, = | else max ({So,7 — 2). L)
if)y>3na3<1+1
else | then max (L, {(So.)—2))
| else max (L. 1)
U Rules 4 and 1
it) =142
then (So,) — 2)
R, = ifj>3n)<1+1
else | then (S0, — 2)
else L

TRules 1 and 2 have symmetrical counterparts which are not
stated heve.

99

For expository reasons, we simplity R, mto:
R,

Then,

ify <++4+2A)>3then (So,3 — 2)else L

R, max (R2, 8%, 5, (s, w, j))

max (R2,(21))

Rules 2, then 3 and 1
if)y<i42A;2>3
ify>ae+2

then (S5;.:, w0,) —2)
else {So.) — 2)

| if;>i+2

then (51,2, w.7 — 2)
else L

then

=

else

R max (Rs, %, 5, (2, w, }))

max (R3,{22))

Rules 1, 2, 3, 4 then 5
ifj<14+2A;2>3
ifyp>1+2

then {S;.1, w,y — 2)
else (Sp,7 — 2)
ifj>e42

then (Si.2, w.) — 2)
else L

then

Ra

else

Note that Ra R4. This is no surprise
since the source candidates from previous it-
erations w’,w’ < w, of the while loop are
masked by operations of the current iteration
w. This fact can be detected before embark-
ing on the final calculation [6, 9], thus reduc-
g the complexity of the method. Then, Ry =
max (Rq‘SgIS,(z, w,j.a,8)) max (R4, (26)).
Applying Rules 1.2, 3, 4 and 5 yields:

ify<i+2n,>3
ify>e+2
then (51,1, w,) — 2)
ifi<a<iAB>1A)>a+2
then ifao=73-2
Ry = else | then | then (S, ~2,3,;) —2)
else (S0, — 2)
else (So,j —2)
if;>i42
else | then (S1,i,w,7 —2)
else L

5.3 Removing additional parameters

The result of this analysis may be considered as the fi-
nal solution of the problem, since 1t gives a parametric
representation of the possible sources in term of addi-
tional parameters. It may, however, be more interesting
to “eliminate” the additional parameters in order to dis-
tinguish clearly the cases in which the source 1s precisely
known from those in which there are several possible so-
lutions.

(onsider a leaf in which an additional parameter ap-
pears This leaf represents the set of sources obtamed
by giving all possible values to these parameters. The
set. of possible values is obtained by “anding™ all pred-
wcates 1 the unique path from the root of the quast to
the leaf 1 question.

Rule 6 Ler A(&) be a leaf governed by [predicates
Py.o.... P, m the unique path from the root to the leaf.
Then A(®) 5 transformed wmto {A(&)] /\i=1 P}

We first apply this rule in a systematic fashion. Then,
any leaf in which new parameters occur 1s transformed
into a sef 1 which the new parameters are bounded by
the predicates governing the leaf. Leaves which does
not depends on parameters become singletons.

Now consider a quast if ('(¢) then A else B. Thanks
to Rule 6, 4 and B are sets. Moreover, since the exact
value of & 15 unknown, we cannot predict the outcome
of the test. The best we can do is to take as an approx-
imation the union AU B

Rule 7 4 quast if C'(&)then Aelse B 1s transformed
mto AU B.

Proceeding on (30), we apply Rule 6 transforms

R mnto:
ify<i+2n)23
pify >+
! then {(Sy, 1, w.j—2)}
ifl<a<iAB21A)2a+2
then ifa=y-2
else | then | then {{S1,)—2,3,7—2)|8 > 1}
else {{So.; — 2)}
‘ else {(So,; — 2)
ify>1+2
else | then {{S1,1.w,j—2)}
else {1}

{We used the fact that {{So.y —2)|]1 < aA B >
1A > a+2) ={(S,)—2)}.) Then, applying
Rule 7 eventually vields R- equals to:

if)y<i+2n,;23

ify>1+2

then {{S1.1,w,7 — 2)}

else {(S1.9—2,6,) —2)| 8 2 1} U {(S0.1 — 2)}
ifjy>0+42

then {(S1,1,w,) —-2)}

else {1}

then

else

The reader may check that this result is exactly
the result intuitively found in Section 2

.

Observe that if we do not simplify our parametric
quasts, then leaves which are governed by inconsistent
predicates give empty sets by Rule 6, and then disap-
pear by Rule 7. This observation shows that our quast
simplification rules and our parameter elimination rules
are consistent.

100

6 Conclusions

This paper gives a method to build a conservative ap-
proximation of the flow of values in dynamic control pro-
grams. Such programs include control-flow constructs
such as whiles and if..then..else constructs, mak-
g both control and data flow unpredictable at compile-
time. In this paper. we have shown that we can extend
the notion of a unique source to that of a source set,
and have designed a set of algorithms which give. in
nany cases, surprisingly precise results. The fuzzy array
dataflow analysis has been implemented in Lisp within
the PAF project at PRiSM Laboratory.

Our method is generic in so far as it gives a framework
for fuzzy analysis that may be adapted to most exact
analysis algorithms. More importantly, the net effect of
our handling of while loops and tests is to add equations
to the definition of the candidate set, thus improving the
probability of success of fast analysis schemes like [10, 8]
We have observed in fact that the time complexity of
FADA is of the same order of magnitude as ADA. Some
researchers already proposed techniques to handle flow-
sensitive array data-flow analysis: in [4], Duesterwald.
Gupta and Soffa describe a fixed pomnt computation to
discover may-reaching definitions. Even though their
method does not handle multi-dimensional arrays and
gives only maximal distances, a fuzzy array dataflow
analysis along their lines may be an interesting alterna-
tive to this paper.

Moreover, the difficulty of foreseeing the flow of data
does not only lie in the control flow {i.e. in solving (6)
and (8)), but also in dynamic (resp. intricate) array
access patterns, e.g. indirect subscripting (resp. non-
linear mappings), or aliasing. The difficulty then lies
in solving (7). Maslov [9] and Pugh and Wonnacott
[11] tackle non-affine array subscripts, and propose a
mechanism to derive approzimate dependencies or upper
and lower bounds on dependences, respectively. In our
case. we could have easily handled an intractable con-
flict equation (7) by the same parametric scheme. How-
ever. since there is no concept of depth for subscripts,
this would always have lead to maximum fuzziness, an
uninteresting result. The solution seems to be to ap-
ply FADA to the variables occurring in intractable sub-
scripts, so as to derive, if possible, an equivalent depth.

Applications of FADA to automatic parallelization in-
clude scheduling (along the lines of [7]), array privatiza-
tion and register allocation [4]. As a concluding remark,
note that a L in a source set points to a possible pro-
gramming error. Beyond automatic parallelization, a
fuzzy array dataflow analysis may therefore be a general
tool for translators, compilers and program checkers, as
array dataflow analysis was.

Acknowledgments: The authors acknowledge the sup-

port of CNRS Program PRS, PRC/MRE contract

ParaDigme. DRET contracts 9171180 and 93/2545A and the

French-Crerman research program Procope.

References

(1

A.V Aho, R. Sethi, and J. D. Ullman. Compzlers:
Principles. Techniques and Tools. Addison-Wesley,
Reading, Mass, 1986.

U. Banerjee. Dependence Analysis for Supercom-
puting. Kluwer Academic Publishers, 1988.

J.-F Collard Space-time transforimation of while-
loops using speculative execution. In Proc. of the
1994 Scalable High Performance Computing Conf
pages 129- 4136, Knoxville, Tenn.. May 1994, IEEE

E. Duesterwald. R. Gupta, and M.-L. Soffa A
practical data flow framework for array reference
analysis and its use in optimization. In ACM SIG-
PLAN93 Conf. on Prog. Lang. Design and Imple-
mentatron. pages 68-77, June 1993.

P Feautrier Parametric integer programming.
RAIRO Recherche Opérationneile 22:243-268.
September 1988,

] P. Feautrier. Dataflow analysis of scalar and array

references. Int. Journal of Parallel Programmang,
20(1):23-53. February 1991.

P. Feautrier. Some efficient solutions to the affine
scheduling problem, part I, one dimensional time.
Int. J. of Parallel Programming, 21(5):313-348,
October 1992.

[3] (. Heckler and L Thiele. Computing linear data

dependencies in nested loop programs. Parallel
Processing Letters. 1994. To appear.

\ Maslov. Lazy array data-flow dependence analy-
sis. In Proc. 21st Annual ACM SIGPLAN-SIGACT
Symp. POPL, pages 311-325, January 1994.

D. E. Maydan, S. P. Amarasinghe, and M. S. Lam.
Array dataflow analysis and its use in array pri-
vatization. In Proc. of ACM Conf. on Principles
of Programming Languages, pages 2-15, January
1993

W. Pugh and D. Wonnacott. An exact method for
analysis of value-based data dependences. Techni-
cal Report (!S-TR-3196. U. of Maryland, December
1993.

101

