Dependences

January 16, 2010

Byline

Paul Feautrier, Emeritus Professor of Computer Science
Ecole Normale Supérieure de Lyon

46, Allée d’Italie

69364 LYON CEDEX, France

Paul .Feautrier@ens-lyon.fr

Synonyms

Hazard (in hardware)
Race (a dependence which has been ignored, and hence may cause errors)

Related Entries

Definition

One needs a paradigm shift when reasoning about parallel programs. The
usual approach, as for instance in denotational semantics, is to consider each
statement as a function from memory state to memory state, and to consider
two program as equivalent if they implement the same function. For instance,
x = 0; x = x+1; and x = 1; are deemed equivalent. However, if these two
programs are run in parallel with x = 7; they may give different results.
Similarly, asking whether a statement can be run in parallel with itself does
not make sense. However, the statement may be enclosed in a context — for
instance, a loop — which cause it to be executed repeatedly. Each repetition
is an instance or operation, and it makes sense to ask whether all or some of
these operations can be executed in parallel.



These considerations motivate the following definitions. A program is a
specification for a set of operations. Each operation is executed only once,
and must have a unique name. The program must also specify the order in
which operations are executed. It is easy to see that a sequential program
has a total execution order, and a parallel program has a partial execution
order. In fact, an embarassingly parallel program, in which everything can
be done in parallel, has the empty execution order.

Methods for specifying operations and their execution order differ from
one program style to another: loop programs, recursive programs, functional
programs all have different conventions.

Optimizing compilers, and in particular parallelizing compilers, try to
transform the source program into an equivalent program which is better
adapted to the target architecture, or runs faster, or has more parallelism.
The problem is that in general, program equivalence is undecidable. A possi-
ble solution is to restrict the class of admissible transformations to a decidable
subset. One of the classes of choice consists of reordering transformations.
The operations of the transformed program are the same as in the source, but
they may be executed in a different order (including parallel execution). The
necessary information for validating such a transformation is the dependence
relation:

Two operations u and v are independent if the programs w;v and v;u give
the same results.

One can prove that a sufficient condition for the equivalence of two ter-
minating programs which execute the same operations is that dependent
operations are executed in the same order in both programs.

According to this definition, the dependence relation is symmetric. If
one of the programs above is the reference program (e.g. if it is the sequen-
tial program to be parallelized), one usually orients the dependence relation
according to the execution order of the reference program. With this con-
vention, a transformed program is equivalent to the reference program if its
execution order is an extension of the dependence relation.

Bernstein’s Conditions

Deciding if the execution order of two operations can be reversed can be
arbitrary difficult. Bernstein [3] has devised a simple test which gives a
sufficient condition for independence. This test depends only on the memory
cells which are accessed by the operations to be tested.

Let R(u) be the set of memory cells which are read by w. Similarly, let
W (u) be the set of memory cells which are written by u. Then u and v are

2



independent if the three sets: R(u) N W (v), R(v) N W(u) and W (u) N W (v)
are all empty.

Note that in most languages, each operation writes at most one mem-
ory cell: W(u) is a singleton. However, there are exceptions: multiple and
parallel assignments, vector assignments among others.

Bernstein’s conditions reflect a kind of worst-case reasoning. Consider:

y:e; y:f,

The final value of y is given by the operation which executed last; in this
case, this value is the value of £. If the operations are reversed, y will get the
value of e, and in the absence of any information on the respective values of
e and f, one must conclude that the two operations are dependent.

If the dependence relation is computed according to Bernstein’s condi-
tions, the above property can be extendend in two direction. Firstly, it
applies now also to non terminating programs: one can show that the his-
tory of each variable (the succession of values it holds during execution) is
the same for both programs. Secondly, it also holds if one of the program
has real parallelism. The reason is that two operations which write to the
same location are always in dependence (this is the third Bernstein condi-
tion) and hence can never be executed in parallel. Hence, two writes to the
same memory cell never occur at the same time.

Scalars, Arrays, and beyond

Computing dependences for scalar variables is easy. The sets R and W above
are finite, and computing intersections is trivial. The only real difficulty is
caused by aliasing, when two distinct identifiers refer to the same memory
cell. The detection of aliasing is a difficult problem. However, it is easy to
detect cases in which there is no aliasing, e.g. among the local variables of
a procedure, and to handle all other cases conservatively. Orienting each
dependence is easy, at least within linear code (basic blocks).

The case of arrays is more problematic. Arrays usually occur in loops,
and their subscripts usually differ from one iteration to the next in complex
ways. This has lead to the invention of the polyhedral model[9, 6], in which
one consider only regular DO loops, and subscripts which are affine functions
of the surrounding loop counters and of constant parameters. A function is
affine if it is the sum of a linear part and of a constant. One may construct
a dependence relation among operations (i.e. loop iterations), in the fol-
lowing way. To name an iteration, one may use its iteration vector, whose
coordinates are the surrounding loop counters, ordered from outside inward.



[teration are ordered according to the lexicographic order of iteration vectors:
7<jEi1<j1\/(7:1:j1/\?:2<j2)\/... (1)

where < (read “before”) is the execution order.

Consider two iterations 7 and 7 of some loop nest, and two accesses to the
same array, A[f(?)] and Alg(7)], one of them at least being a write. f and g
are subscript functions, which relate subscripts to the surrounding iteration
vectors. To be in dependence, the two iterations must satisfy the following
conditions:

e They must access the same array cell: f(7) = g(7).

e They must be legal iterations, i.e. each loop counter must be within
the corresponding loop bounds, which define the iteration domains of
the operations.

e The direction of the dependence is given by the execution order 7’ < J.

For programs which fit in the polyhedral model, the subscript equations
and the iteration domain constraints are are conjunctions of affine equalities
or inequalities. According to (1), the ordering constraint can be split in
several conjunctions. Hence, the set of iterations in dependence is the union
of several disjoint dependence polyhedra. Each polyhedron is characterized by
the number of equations at the begining of the execution order, the so-called
dependence depth, which goes from 0 to the number of loops which enclose
both array references. For some authors, the dependence depth (or level)
starts at 1 and goes up to infinity. The notation 76, 7' is commonly used to
state that there is a dependence from iteration 7’ to j'at depth p, i.e. that the
first p coordinates of 7 and 7 are equal.

For more general programs, one has to resort to approximations: a con-
straint is ommitted or approximated if not affine. This has the effect of
enlarging the dependence polyhedra, and hence reducing the amount of par-
allelism. However, the correctness of the generated program is still guaran-
teed.

When a program uses pointers, the computation of dependences becomes
much more difficult. The reason is that, depending on the source language, a
pointer can point anywhere in memory, and that it is very difficult to decide
whether two pointers points to the same memory cell. The best that can be
done is to associate to each pointer (conservatively) a region in memory, and
to decide a dependence when two regions intersect.



Classification

While in Berstein’s conditions the two operations play the same role, the
symmetry is broken as soon as the direction of the dependence is taken into
account. One usually distinguish:

e Flow dependences (or true dependences, or Producer/Consumer de-
pendences (PC), or Read after Write hazards (RAW)), in which the
write to a memory cell occurs before the read.

e Output dependences (or PP dependences, or WAW hazards) in which
both accesses are writes.

e Anti-dependences (or CP dependences, or RAW hazards) in which the
read occurs before the write

e In some contexts (e.g. when discussing program locality), one may con-
sider Consumer/Consumer dependences, which do not constrain paral-
lelization.

If the objective is just to decide which operations can be executed in
parallel, all three kinds are equivalent. Differences appear as soon as one
consider modifying the source code for increased parallelism. It is easy to see
that in a flow dependence, a value which is computed by the first operation is
reused later by the second operation. Hence, a flow dependence corresponds
to the naming of an intermediate result, is intrinsic to the code algorithm,
and cannot be removed except by modifying it. In constrast, an output
dependence simply indicates that the a memory cell is reused when the value
it holds becomes useless. Such a dependence can be removed simply by using
two distinct cells for the two values. Lastly, in a correct program, where all
memory cells are defined before being used, removing output dependences
has the side effect of removing anti-dependences.

It can even be shown that some of the flow dependences are spurious.
Let us consider a memory cell and an operation v that reads it. There
may be many writes to this cell. Intuitively, the only one on which v really
depends is the last one u which is executed before v. The dependence from
u to v is a direct dependence. If the source program is sufficiently regular,
direct dependences can be computed using linear programming tools [5]. It
is, however, difficult to find conservative approximations for more general
programs.



Discussion

Dependence Tests

Early automatic parallelizers were concerned only with the existence or non
existence of dependences. For instance, to decide that a loop is parallel, one
has only to show that there are no dependences between its iterations, i.e.
that all related dependence polyhedra are empty.

Since dependences occur between a pair of statements, it follows that the
number of dependences increases more or less as the square of the size of the
program. Hence, the scientists of the 1970’s initiated a quest for fast but
approximate dependence tests. One may for instance observe that some of
the dependence constraints are linear equations whose unknowns, the loop
counters, are integers. Such an equation can have solutions only if the ged
of the unknown’s coefficients divides the constant term. This observation is
the basis of the very fast ged test.

The Banerjee test [2] is based on the observation that in many cases,
when solving an equation f(x) = 0, one knows a lower bound a and an
upper bound b for z, which come, most of the time, from loop bounds. Now,
the equation has solutions only if f(a) and f(b) are of opposite signs. The
approximation comes from the observation that the eventual solution is not
necessarily integral, hence the idea of coupling the ged and Banerjee test,
for increased precision. This idea can be extended in the following way: the
inequalities of the problem dictate that x belong to some polyhedron, and
the condition for the existence of a solution is that the maximum of f over
this polyhedron be positive, and the minimum be negative. Now the extrema
of an affine function over a polyhedron are located at some of its vertices.
Hence, one has only to test the sign of f at a finite set of points. This is
especially efficient if the vertices are in evidence.

Many other tests were invented with the aim of handling systems of equa-
tions instead of a single equation. For instance, in the Lambda test [10] the
Banerjee test is applied to well chosen linear combinations of equations. If
the answer is negative, then the original system has no solution.

However, it was realized around 1990 that the question of the emptyness of
the dependence polyhedron can be solved using classical linear programming
algorithms. This approach was originally deemed too costly, but with im-
proved algorithms and a thousandfold increase in processing power (Moore’s
law), the argument has lost its strength.

One possibility is to use the Fourier-Motzkin algorithm [12], in which the
unknowns of the problem are eliminated by combining the inequalities which
define the dependence polyhedron, until one obtains numerical inequalities,



which can be decided by inspection. Programming the Fourier-Motzkin al-
gorithm is quite simple, but its complexity is doubly exponential, which is
not critical since dependence testing problems are usually small. The stan-
dard Fourier-Motzkin algorithm finds rational solutions or proves than none
exists. An extension, the Omega test [11], considers only integral solutions.
Other extensions are the I test [8] and the Power test [13].

Another possibility is to use the Simplex algorithm, which is more com-
plex, but which runs most often in time proportional to the third power of
the number of inequalities, and hence scales better for large problems. The
algorithm can also be extended to the integer case using Gomory cuts, and
even solve parametric problems [4].

Dependence Approximations

Early parallelization algorithms (e.g. deciding if a loop has parallelism) did
not need a precise knowledge of dependence polyhedra. Just testing them for
emptyness was enough. As the sophistication of parallelization algorithms
increased, more precise descriptions of dependences were needed. All such
approximations can be described as supersets of dependence polyhedra. On
the relations between dependence approximations and program transforma-
tions, see [14].

The simplest approximation consists in ignoring the fact that iteration
vectors have integer components. When testing a transformed program for
legality, this may generate false negatives. However, this occurs sufficiently
seldom that it is usually ignored.

Dependence Depth

The dependence depth abstraction is a natural byproduct of the decomposi-
tion of the lexical order into disjoint polyhedra as in (1). One simply has to
record at which depth a dependence occurs, instead of oring the test results
for several depths. Knowledge of the dependence depth allows one to decide,
in a loop nest, which loop must be kept sequential and which one can be ex-
ecuted in parallel. This information is necessary for the Allen and Kennedy
algorithm, which uses loop splitting to find more parallel loops.

Dependence Distances

The dependence distance is the difference between the iteration vectors of
two dependent operations. One can define a distance polyhedron as:

D={d37:75,7,d=7—1}.

7



A projection algorithm is needed to eliminate the existential quantifiers: one
may use the Omega test or parametric integer programming. Observe also
that the dependence distance is always lexicopositive.

Computing the distance polyhedron is especially interesting when it re-
duces to a single constant vector. One says in that case that the dependence
is uniform. Many parallelization algorithms are especially simple when the
source program has only uniform dependences.

Dependence Direction Vectors

In the presence of non uniform dependences, one may futher abstract the
distance polyhedron by considering only the signs of the components of the
distance vectors. The components of a Dependence Direction Vector (DDV)
are either integers (meaning that the component is constant) or one of the
symbols <, >, >, < (meaning that the component has the corresponding sign)
or *, meaning that the component may have an arbitrary sign. DDVs are
usually computed by adding the corresponding constraint to the definition
of the dependence polyhedron and testing for feasibility. While simpler to
compute than the distance polyhedron, DDVs give enough information to
check the legality of some transformations, like loop permutation.

Dependence Cones

The dependence cone is simply the cone generated by the dependance dis-
tance vectors. The simplest way of computing the dependence cone is to
compute first the vertices of the distance polyhedron, dy, ..., d,. The depen-
dence cone is then:

C = {>_ Mdi| M > 0}.
k=1

Knowledge of the dependence cone is especially useful when tiling a loop
nest.

Bibliographic Notes and Further Readings

There is a large litterature on pointer analysis which may be useful for pro-
gram parallelization, albeit its orientation is more toward program verifica-
tion and safety. A good starting point is [7] (110 references!).

For an attempt at parallelization of recursive programs, see [1].



References

1]

[10]

[11]

[12]

P. Amiranoff, A. Cohen, and P. Feautrier. Beyond iteration vectors:
Instancewise relational abstract domains. In Static Analysis Symposium
(SAS’06), Seoul, Corea, August 2006.

Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Aca-
demic Publishers, Boston / Dordrecht / London, 1988.

A. J. Bernstein. Analysis of programs for parallel processing. [FEE
Trans. on El. Computers, EC-15, 1966.

Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243-268, September 1988.

Paul Feautrier. Dataflow analysis of scalar and array references. Int. J.
of Parallel Programming, 20(1):23-53, February 1991.

Paul Feautrier. Automatic parallelization in the polytope model. In
Guy-René Perrin and Alain Darte, editors, The Data-Parallel Program-
ming Model, volume LNCS 1132, pages 79-103. Springer, 1996.

Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In
PASTE’01. ACM, 2001.

X. Kong, D. Klappholz, and K. Psarris. An efficient data dependence
analysis for parallelizing compilers. IEEFE Trans. on Parallel and Dis-
tributed Systems, 1(3):342-359, July 1991.

Christian Lengauer. Loop parallelization in the polytope model. In Eike
Best, editor, CONCUR’93, volume LNCS 715, pages 398-416. Springer,
1993.

Zhiyuan Li, Pen-Chung Yew, and Chuan-Qi Zhu. An efficient data
dependence analysis for parallelizing compilers. IEEE Trans. on Parallel
and Distributed Systems, 1:26-34, January 1990.

William Pugh. The omega test: A fast and practical integer program-
ming algorithm for dependence analysis. In Supercomputing, 1991.

Rémi Triolet, Francois Irigoin, and Paul Feautrier. Automatic paral-
lelization of FORTRAN programs in the presence of procedure calls.
In Bernard Robinet and R. Wilhelm, editors, ESOP 1986, LNCS 213.

Springer-Verlag, 1986.



[13] Michael Wolfe and Chau-Wen Tseng. The power test for data depen-

dence. IEEE Transactions on Parallel and Distributed Systems, Septem-
ber 1992.

[14] Yi-Qing Yang, Corinne Ancourt, and Francois Irigoin. Minimal data de-
pendence abstractions for loop transformations. In LCPC "94: Proceed-
ings of the Tth International Workshop on Languages and Compilers for
Parallel Computing, pages 201-216, London, UK, 1995. Springer-Verlag.

10



