
Optimizing Communications by Using Compile
Time Analysis

Mourad Raji Werth and Paul Feautrier

Laboratoire PRiSM-CNRS, Universit~ de Versailles,
45, avenue des]~tats-Unis, 78035 Versailles Cedex, France

{Mourad.Raji-Werth , Paul.Feautrier}@prism.uvsq.fr

Abs t r ac t . It is well known that communication time is one of the most
limiting factors for obtaining high performance programs for parallel ar-
chitectures.
In our parallelization approach, we first express communications using
the get primitive since it is natural and easy to generate automatically.
This solution is unfortunately inefficient. This paper addresses the trans-
formation of the get communication schema into a less-costly one. Two
tracks are explored : 1. transforming gets into sends, where diffusion is
detected and generated. 2. detection of s h i f t communications which are
efficiently implemented due to their regular character. We also discuss the
combination of these two optimizations and present some experimental
results.

1 Introduct ion

In a parallel program generated by our parallelization method (summarized
later), when a da tum is not local, it has to be got from the processor which
owns it. This is accomplished naturally by using the ge t primitive.
This solution has the advantage of being simple 1, but unfortunately it is inef-
ficient. Indeed, the source processor pointed out by the g e t instruction can be
entirely arbitrary; knowing that all active processors execute the ge t at the same
t ime and in parallel, conflicts on the communication links may occur during the
forwarding of the messages. Moreover, on certain machines (such as the CM-2),
the target processor has first to send its address to the source processor in order
to allow the former to send it the desired datum. As a consequence, g e t s are
twice as expensive as sends.

The aim of this paper is to address the issue of communications optimizat ion
by proposing ways to replace the costly ge t communication schema by a cheaper
equivalent one.
In fact, this amounts to a decomposition of the ge t operation into one or more
elementary operations. Our goal is to detect the most economical decomposition.

After presenting an overview of our parallelization method in section 2, we
first of all s tudy the transformation of g e t s into sends in section 3, dealing with
communicat ions where all or some of the active processors ask for the same data.

1 one can find the same choice in other works, see for example [1]

690

These communications, called spreads, are efficiently implemented on most ar-
chitectures.
A second opportunity, in order to reduce the cost of communications, is the de-
tection of the regular communications between neighbor processors called s h i f t 2
communications. Owing to the regular communication pattern involved, these
communications are also very efficiently implemented. This topic is presented in
section 4, as well as a discussion concerning the possibility of combining the two
optimizations together.
Many examples are given throughout the paper in order to illustrate our propo-
sitions. Section 5 deals with some experimental results. Finally we group our
conclusions in section 6.

Before going farther, let us mention a similar work done by Li &Chen [2]
where pattern matching techniques are used to detect the economical decompo-
sition. Our approach, for out part, is based on linear algebra.

2 A F r a m e w o r k f o r a S y s t e m a t i c P a r a l l e l i z a t i o n M e t h o d

Our parallelization method starts with a program written in a conventional lan-
guage -e.g. FORTRAN-, then produces the parallel form of the program using
a systematic transformation scheme.
This form is then adapted to generate code for a given parallel architecture.
The underlying idea of our systematic transformation scheme is to retrieve a
space.time mapping of the program. -a similar approach is used by the sys-
tolization community [3]-
Starting with a powerful tool, the Data Flow Graph [4][5] which provides, for ev-
ery value manipulated in the program, its exact source, i.e. the exact instruction
and the corresponding iteration (in the presence of a loop nest) that produces
the value. Then the schedule [6] and the placemen~ function [7] of the program
instructions are derived. They are linear functions in terms of the surrounding
loop indexes. The first one expresses the logical time at which a given iteration
must be scheduled, the last one provides the coordinates of the virtual processor
-within a multi-dimensional grid- that will execute the corresponding computa-
tion.
Afterwards the program is expanded in order to obtain its single assignmenl
form [8] and the new loop nests are constructed. The logical time and the grids
axes represent the new indexes. Each original loop nest is incarnated by a multi-
dimensional virtual processors grid.
The generated program contains a single global sequential loop over the time
having an entirely parallel body [9][10].

Unfortunately, the resulting body incorporates several overheads that limit
the performances of the generated code. These overheads are due to the presence
of instruction guards and conditional operands and to the high cost of commu-
nications . The first problem is dealt with in [11]. In this paper we deal with the
second one.

2 they are cMled NEWS communications too.

691

3 T r a n s f o r m i n g gets i n t o sends

Recall that a typical instruction -say r - , within a transformed program, has the
following form :

a r (t , p l , . . . , p n) = a s (t - r, f l (p l , . . . , p n) , . . . , f m (p l , . . . , p n))

which gives, after distributing the iterations of r on a grid of dimension n and
those of s on a grid of dimension m :

tempo = ge t a s (t - r) :from p roces so r I l l (P 1 , . . . , P n) , . . . , f r n (P l , . . . , P n))]
at(t) "- tempo

This code is obviously executed by every active processor (those which verify
a certain number of conditions, including the belonging of their coordinates to
the intervals determined by the bounds of the spacial loop nest).

In this section we will seek to transform the get mentioned above into a
send. By send we mean a 1-to-1 communication or a diffusion.

In the above schematic portion of code, a receiving processor (P l , . . . ,Pn)
within the n-grid designates the sending processor by its coordinates
(q l , . . . , q m) = [f l (P l , . . . ,Pn) , . . . , f rn(p l , . . . ,Pn)] within the m-grid.
A processor within the n-grid is a receiving processor only if its coordinates
verify the following inequations :

11 _< pl _< ul
. (1)

"l~ < pn _< u~

where li and u~ are the bounds of the spatial loops.
Transforming ge t s into sends amounts to designating a set of processors

(q l , . . . , qm) within the m-grid that will be in charge to send data to a set of pro-
cessors within the n-grid. In order to achieve this, two things must be specified :

1. The context : to designate which of the processors belonging to the m-grid
might be active.

2. The destination : each active processor (q l , . . . ,qm) must know to which
processor(s) it has to send its data.

From the inequalities 1 we define a set of processors within the m-grid, called
a priori active processors, which verify the following conditions :

L1 _< ql _< U1
. (2)
Lm < am <Um

where the Li and the U~ may be computed for instance by using the Fourier-
Motzkin elimination algorithm. These conditions form a part of the context. The
a priori active processors are those which potentially will be in charge to send

692

their data. We will see later that in certain cases, the context will be augmented
with other conditions, so as to reduce the sending processors to a subset of the
a priori active processors.

Recall that the functions f l , . . . , fm are linear. The sending processors coor-
dinates may be expressed in matr ix form as follows :

= Mm,n + Kin,l, or in a condensed way : q = M p + k .

q

Searching for the destination is then summarized by the search of the solution
of a parametric linear system of m equations and n unknowns, the parameters
are q l , . . . , qm,t and the so-called structure parameters (the symbolic constants
of the program).

In fact, our goal is to determine, for a processor q belonging to the m-grid,
the addressee processor(s) within the n-grid. This amounts to expressing p in
terms of q which is a classical linear algebra problem.
The general solution Pa~,~ is given by : Pgen = Photo + Ppar, where Ppar is a
particular solution of the system and Phorn is the solution of the homogeneous
system : M p = 0.

It is well known that Photo is nothing else than the kernel of the linear
application characterized by M. Let r be the rank of M, Photo is a sub-vector
space of dimension n - r for which it is easy to build a basis [12][13]. pe,n is
simply the linear sub-space parallel to Photo passing by Ppar. It is thus sufficient
to find a particular solution to build the solution of the general system because
we know how to characterize Photo.

One can note that the only solutions we are interested in are those belonging
to the n-grid and verifying the conditions 1. For that reason and in order to
insure the belonging of the solution to A/"~, a supplementary condition will be
added later to the context.

Moreover, it is known that the image of the linear application characterized
by M is a vector space of dimension r which is generated by r linearly inde-
pendent columns of M. This allows us to identify with precision the sending
processors.

We have presented in the above the general theoretical solution to the prob-
lem of transforming g e t s into sead-~. Roughly, this solution is summarized as
follows : "The processors of the m-grid belonging to the image of the linear ap-
plication characterized by M send their data to the processors of the linear space

Paen ".

In practice, a symbolic version of the Gauss algorithm is used to resolve the
system of equations.

In order to go thoroughly into the above-mentioned theoretical solution, we
shall s tudy now three major cases: n is the dimension of the receiving grid, m is
the dimension of the sending grid and r is the rank of the matr ix M.

693

3.1 F i r s t c a s e : n = r

This coincides with the case where a total correspondence between the sending
and the receiving processors is assured : each sending processor t ransmi ts its
da ta to one and only one receiving processor .

In fact, since n = r there are n lines of M which are linearly independent .
Let M ~ be a sub-mat r ix of M const i tuted from such lines. For the sake of n , n
simplicity, let 's suppose tha t it concerns the n first lines. The other m - n lines
m a y then be expressed in terms of the n first ones as follows :

{ qn+l = g,,+l(ql,... ,q,~)

qm = gm(ql,. . . ,qn)

(3)

it is now easy to t ransform gets into sends : an a priori active processor
(q l , . . . , qm) which verify the conditions 3 must send its da ta to the processor:

- - M l - l n , n -

q

Ml-1 K I

K ' is composed by the n first components of K.
Obviously, only those processors belonging to the m-grid and verifying the above
condit ions have to t ransmi t their data. These conditions are thus added to the

t-- 1 ~Av- 1 f (! context to which we add also the condit ion : M n,~ - -,- n,,~-~ 6

q
Afnin order to consider only solutions with integer components .

I t should he noticed tha t the set of sending processors may be reduced to a
grid of dimension r just as is the image of the linear application. We say tha t
" the space of effectively active processors is ' smaller ' than the space of the a
priori active processors."

3 .2 S e c o n d c a s e : m = r

m -- r which implies tha t there are no redundant equations. We know tha t
n >_ m. If n = m, this case coincides with the previous one t reated above. If
n > m, the sys tem has n - m free variables, which means tha t the kernel of the
linear appl icat ion is of dimension n - m just as the linear space of solutions Pgen.
Indeed, in this case there is no total correspondence between the sending and
the receiving processors. We thus are in a s p r e a d si tuat ion where a processor
(ql , qm) has to diffuse its da ta among all the processors of pgen 3 (taking into
account the bounds of the p~).

we recall that Pg~n is the general solution to the parametric system of equations, it
is thus expressed in terms of q l , . . . , qm.

694

This diffusion as it is sketched above in its algebraic expression, is not
tractable on most present architectures. However, some new promising approaches,
like the one of A. Mdrigot [14] and his team on associative nets, seem to offer
some new possibilities for the exploiting of this kind of spreading.

Fortunately, there are a number of important particular cases that can be
treated by most of the existing machines. Before tackling this issue, let us first
briefly present how spreading functions.

In order to achieve a spread 4 operation, the processors within a given grid
are grouped into classes which are defined by considering the processors grid and
a given axis. Precisely, two processors belong to the same class along axis i, if
and only if their coordinates, except for the i th component, are strictly identical.
Restated, a diffusion along axis i of an information owned by a processor (Pl, �9 �9 pl, �9 �9 �9 P,,)
can be done only along the line of processors parallel to axis i and passing by
the point (P l , . . . ,P~,. . . ,P,~). We note this diffusion as :

, (p l , . . . , . , . . . ,pn) .
There is another diffusion primitive called m u l t i - s p r e a d where it is possible to
arrange several classes into one.
Let il , . . . , ik be k axes of the grid. Two processors belong to the same class along
with axes i l , . . . , ik, if and only if their coordinates, except for the itlh,..., irk h
components, are strictly identical. We note this diffusion schema by :

p, , , . . . , p,k,.. . , . , . . . ,p,)
(supposing for the sake of simplicity that the k axes are contiguous).
In other terms, the diffusion can be achieved only along with those hyperplans
that are parallel to a vector sub-space generated by a subset of canonical vec-
tors.
Finally, it should also be stated that during a spread operation, only active
processors might receive the data.

According to the above, the particular diffusion cases that are tractable
are those where the schemas of the spread or m u l t i - s p r e a d primitive above-
mentioned are brought out; i.e something like : (p l , . . . , pn) ' (p l , . � 9 * , . . . , pn)
Consequently, within the linear system of equations, a certain number of vari-
ables -say Pi l , . . . ,P ik- may take arbitrary values and in addition they do not
participate in the expressions of the remaining variables. This means that the k
variables are simply absent from the original system. It is easy to notice that
under these conditions, k is none other than n - r.
Algebraically spoken, this coincides with a kernel Pho,~ generated by a subset of
canonical vectors.

The original system can then be reduced to m equations with m unknowns
(since m = r). The matrix is invertible, and the system has a unique solution

= " . This situation may be illustrated by the commu-

p hm(ql, . . . ,qm)
nication schema : (supposing that the k variables correspond with the last k vari-

4 the two terms spread and diffuse are used interchangeably.

695

k

ables) (ql,..., qm) ,(hi(q1,..., qm),..., hm(ql,..., qm), �9 ", �9 In order to im-
plement this communication schema, we use a send followed by a m u l t i - s p r e a d :

I Pl =hl(ql,...,qm)

Pm = hm(ql,...,qm)
Pm+l = 0]

o
pn = 0

mul~i-spread
-.-..+

@

�9 k

We will see farther that this last communication schema can still further be
optimized when hi are s h i f t functions.

3.3 T h i r d case : r < m a n d r < n

This case is in a way a combination of the two previous ones. r < m means tha t
m - r equations are redundant (which is the same as saying that m-r lines of M
are linearly dependent of the others). We then have m - r additional conditions
tha t will join the context calculation just as in the first case.
r is strictly lower than n. This is a diffusion situation that has been treated in
the second case.

Let us mention the particular case where r = 0, the matr ix M is then null.
In this situation, all processors ask for the same data owned by the proces-
sor of coordinates k. This cases coincides with a global static diffusion , i.e a
multi-spread along with all axes. This is usually called broadcasting.

E x a m p l e 1:

Consider a 3-grid. Figure 1 illustrates the situation where a processor (Px, P2, Ps)

n

Fig. 1. Diffusion by diagonal

696

refers (using the g e t primitive) to a da tum owned by the processor (q~, q2, q3) =
(pl, pl, pl).
The rank of the system is r = 1. The last two lines of the mat r ix are redundant
(indeed identical) with the first. The kernel is of dimension 2 and generated by
the canonical vectors : (0, 1, 0) and (0, 0, 1) which provide the spreading axes.
The diffusion is actually accomplished as follows : each processor (a, a, a) be-
longing to the cube's diagonal, sends its data to all processors belonging (at one
and the same time) to the cube and the hyperplan of equation Pl = a. Two
supplementary conditions must thus be added to the context :

q2 = ql

q3 = ql

The spreading schema may be illustrated as follows :

(ql)
q2)

q3 /q2=qtAq3=ql

E x a m p l e 2:

Consider thefollowingget operation : (Pl,P~,P3)' (Pl + p2,pl,2p1 + 2p~,2pl + P2).
n = 3, m = 4, the parametr ic linear system of equations is given by :

qt = Pl + P2
q2 - Pl
q3 -~ 2pl + 2p2
q4 ---- 2pl + P2

The rank of the mat r ix is r = 2; it is then a diffusion issue. P3 is absent from
the system so the present case is thus tractable. Resolving the system gives :

Pl = q2
P~ qt - q2
P3 �9

One may notice that the last two equations (related to q3 and q4) are redundant
with the first two. This leads us to add the following two conditions to the
context :

q3 - 2ql
q4 ---- ql 4- q2

Due to the fact that the receiving and the sending grids are not identical, this
communicat ion schema is implemented as illustrated below :

q2 send [P2 = ql -- q2 "'

q3 \ P3 = 0
q4 / qa:.2qx Aq4.~.ql.4.q2

697

E x a m p l e 3:

Let 's take up the g e t schema : (pl,p2,p3)~--(pl +p2,pl +p2,p~ +P2). This
is clearly a diffusion situation, but unfortunately it can not be treated.
Indeed, n = m - 3, r = 1, the kernel is of dimension 2 and is generated by the
vectors (- 1 , 1, 0) and (0, 0, 1) which means that the spreading plane does not
fit the algebraic conditions of tractabil i ty explained above. By the way, one can
notice tha t only one variable (instead of two) is absent from the system.

4 D e t e c t i n g s h i f t c o m m u n i c a t i o n s

It is well known that regular communications, called shift or NEWS communi-
cations, are efficiently implemented on a large number of present parallel archi-
tectures. This is due to the fact that in such communicat ions , all the receiving
processors ask for data in such a regular pattern, that conflicts are completely
avoided
We are typically in a s h i f t communication situation when every active proces-
sor
(p l , - - . , p i , . - . , p ,) within a given grid, asks for a da tum from its neighboring
processor (p l , . . . , Pi - a , . . . , pn).
The detection of this kind of communications is usually studied under the hy-
pothesis tha t the sending and the receiving processors belong to the same grid.
We will see that under certain conditions, this restriction may be removed.

Let us first s tudy the case where m = n.
To detect a s h i f t communication, one just has to scan the set of equations.
Each t ime a relation of shape qi = Pi + a is encountered, we deduce the presence
of a s h i f t communicat ion along axis i in one direction or in another, depending
of the sign of a.

Whenever M coincides with the identity matrix, the original g e t communi-
cation schema may be expressed by s h i f t communications only. We shall see
later tha t in certain cases it is possible to combine s h i f t and s p r e a d commu-
nications.
The shift vector is given by k. When every component of k has a non zero value,
a s h i f t operation is accomplished along each axis of the grid.

Now, when m r n, the two grids are different and it is not directly possible
to carry out s h i f t communications.
We suppose that we have at our disposal a mechanism for axes mapping, which
allows one to map out a set of axes of a given grid along with a set of axes of
another grid. The mapping between axes is arbitrary, provided that each axis
in the first grid has the same number of virtual processors as the corresponding
mapped axis in the second grid 5.

s In other words, we need a facility that allows us to place a copy of a source field,
taken from a given grid, into a destination field, in another grid. Specified axes and
coordinates of the source grid are mapped to the specified axes and coordinates of
the destination grid and so data is copied according to this mapping. Roughly, this
can be accomplished by a relatively regular address computing, followed by a send.

698

Let us begin by processing the case of m > n. We have previously shown
that under this circumstance m - r equations are redundant, which is expressed
by adding supplementary conditions to the context :

qr+l = g•+l(ql, . . . ,qr)

qrn = g,n(ql , . . . , qr)

If among these m - r conditions there are m - n "projective conditions", i.e
of shape qi = C ~t, then it is possible to accomplish a mapping between the
m - (m - n) = n remaining axes of the m-grid and the n-grid.
We are again in a similar situation to the one we have just treated above (m = n)
where it is possible again to detect and to generate s h i f t communications.

The remaining case is the one where n > m. There are thus n - r free vari-
ables, this is actually a diffusion case. We have seen that the absence of n - r
variables from the system of equations allows the diffusion to be tractable. This
condition is sufficient to carry out a mapping between the two grids 6.
In addition, if among the m equations there are r equations of shape: qi = pl + a i
(ai is a possibly null integer), then the resulting communication schema of the
diffusion can be optimized by replacing the send with a s h i f t and then execut-
ing the mul~i-spread.

E x a m p l e 4:

Consider the get operation : (Pl, P~) ' (5, P2 - 2) . Without using shift com-
munications, this schema would have been transformed as follows :

(5) send (p~Pl ---- q2 q_ 2) spre,d(e)p2

By noticing that the shape according with the second axis offers a s h i f t situa-
tion, the schema may rather be transformed into :

q2 P2 - q2 q- 2 P2

which is undeniably more efficient.
It may be also stated that during the s h i f t operation, only processors belonging
to line 5 have to execute the s h i f t instruction along with the second axis. This
is a part of the context specification.

Finally, let us mention another case that is not a priori a s h i f t situation, but
can be treated thanks to the mapping facility : if an equation of shape qi = pj + a
is encountered, one can carry out a mapping between axis i and axis j and thus
allowing for the accomplishing of a s h i f t operation.
Obviously, the profitableness of this solution closely depends on the relative cost
of the mapping operation in comparison with a simple send.

6 One can notice that the absence of only n - m variables is sufficient to achieve a
mapping.

699

5 Experimental results

Our experiments were carried out on a 4K CM-200 system having 512 MB of
memory and 128 Weiteks (64-bits floating point accelerators).
Our parallelizer generates code in C/Paris, since it is a sufficiently expressive
language for our code generation and optimization needs.

We will present below the experimental results obtained for the Cholesky
factorization algorithm.

It is very interesting to study in detail the resulting parallel Cholesky pro-
gram, but due to lack of space, we will just present the performances of the
parallel program as well as those of the optimized code.

We have detected the following transformations :

- two send communication schemas,
- one s h i f t communication schema,
- and five spread communication schemas.

All get operations have been successfully transformed according to our tech-
niques.

The table below gives the execution time of the resulting parallel program and
that of the optimized one for different matrix sizes, as well as the efficiency gains
produced by the above-mentionned optimizations.

n 63 127 255 511
the non-optimized program (sec) 0.88 4.98 33.33 256.14

the optimized program (sec) 0.56 1.48 6.28 35.67
efficiency gain 1.57 3.36 5.30 7.i8

These results confirm the importance of communications, seeing that the communica
optimized program runs up to 7 times faster than the initial non-optimized one.

6 C o n c l u s i o n s

We have examined the use of compile-time analysis of communication schemas
as an optimization technique for code produced by a parallelizing compiler.

We have applied this technique to improve the efficiency of parallel code in
two ways. The first optimization is to transform gets into sends and thus to
identify the diffusions.

The second optimization detects stt• communications.
We have also discussed the combination of these tyo optimizations.

We have shown performance improvements resulting from applying these
optimizations to an implementation of Cholesky factorization running on a CM-
200. The efficiency gains observed are substancial.

We believe that the basic ideas behind the techniques we have employed,
while particularly important for SIMD-style machines, and most easily imple-
mented in parallelizing compilers, are also applicable to MIMD machines and

700

other compiler approaches. In particular in a data-parallel language compiler
environment. Indeed, template and alignment directives provide the necessary
information in order to analyse communications in a similar way. Templates pro-
vide the shapes and the dimensions of the grids in question, while the alignment
information provides the placement functions. This topic and the trial of our
techniques in a MIMD environment, will be considered in future work.

Aknowledgment

We are grateful to our friend Abe Wiebe for proofreading the manuscript.

References

1. Luc Bough: The Data-Parallel Programming Model: a Semantic Perspective. Tech.
Report No LIP-IMAG 92-45 (1992)

2. Jingle Li and Marina Chen: Compiling Communication-Efficient Programs for Mas-
sively Parallel Machines. IEEE Trans. on Parallel and Distributed Systems 2 (1991)
361-376

3. P. Quinton: Automatic Synthesis of Systolic Arrays from Uniform Recurrence Equa-
tions. IEEE, Int. Symp. on Computer Architecture, Ann Arbor (1984) 208-214

4. Paul Feautrier: Dataflow Analysis of Scalar and Array References. Int. J. of ParMlel
Programming, 20(1) (1991) 23-53

5. Dror E. Maydan and Saman P. Amarasinghe and Monica S. Lam: Array Dataflow
Analysis and its Use in Array Privatization. Proc. of ACM Conf. on Principles of
Programming Languages (1993) 2-15

6. Paul Feautrier: Some Efficient Solutions to the Affine Scheduling Problem, I, One
Dimensional Time. Int. J. of Parallel Programming 21(5) (1992) 313-348

7. Paul Feautrier: Toward Automatic Partitioning of Arrays on Distributed Memory
Computers, ACM Int. Conf. on Supercomputing, Tokyo (1993) 175-184

8. Paul Feautrier: Array Expansion. ACM Int. Conf. on Supercomputing, St Malo
(1988) 429-441

9. M. R. Werth and P. Feautrier: A Systematic Approach of Program Transformation.
Procs of the Int. Workshop on Compiler for Parallel Computers, Paris (1990).

10. M. R. Werth and P. Feautrier: On Parallel Program Generation for Massively
Parallel Architectures. High Performance Computing II (1991) M. Durand and F.
E1 Dabaghi editors, Elsevier Science Publisher

11. M. R. Werth and J. Zahorjan and P. Feautrier: Using Compile-Time Conditional
Analysis to Improve the Performance of Compiler Parallelized Programs. Proc. Int.
Conference on Massively Parallel Processing, Applications and Development. (1994)
Elsevier Science Publisher

12. Gilbert Strang: Linear Algebra and its Applications. Harcourt Brace Jovanovitch,
New York (1988)

13. Antal E. Fekete: Real Linear Algebra. Marcel Decker Inc., New York (1988)
14. Alain M6rigot: Associative Nets: A New Parallel Computing Model. Tech. Repport

92-02 IUF-Universit6 Paris Sud (1992)

