Automatic Generation of Data Parallel Code

Jean-Francois Collard* Paul Feautrier

Abstract

The literature on automatic parallelization generally focuses on data dependency anal-
ysis but seldom on code generation. The generated code may be MIMD-like code with
explicit message passing, or a higher-level data-parallel one. This report describes a
scheme to automatically generate the latter kind of codes, with a focus on data-parallel
extensions of FORTRAN such as the High Performance Fortran (HPF) language.
Keywords: automatic parallelization, code generation, data-parallel languages, HPF

Résumé

La littérature sur la parallélisation automatique est généralement centrée sur l’ana-
lyse des dépendances et I'ordonnancement, mais s’intéresse rarement a la génération
de code. Le code généré peut é&tre du style MIMD avec transmission explicite des
messages, ou de plus haut niveau, par exemple data-parallele. Ce rapport présente un
schéma de production de ce dernier type de code, avec une attention particluliere pour
les extensions data-paralleles de FORTRAN telles que le langage High Performance
Fortran (HPF).

*LIP, ENS Lyon, 46 Allée d’Ttalie, F-69364 LYON CEDEX 07. jfcollar@lip.ens-lyon.fr
TPRISM, Université de Versailles, 45 Avenue des Etats-Unis, F-78035 VERSAILLES CEDEX

Paul.Feautrier@prism.uvsq.fr

@INPROCEEDINGS{CF:93,
AUTHOR = {J.-F. Collard and P. Feautrier},
TITLE = {Automatic Generation of Data Parallel Code},
BOOKTITLE = {Proceedings of the Fourth International Workshop
on Compilers for Parallel Computers},
ADDRESS = {Delft, The Netherlands},
EDITOR = {H.J. Sips},
MONTH = Dec,
YEAR = 1993,
PAGES = {321--332}

1 Introduction

When Lamport invented the hyperplane method [Lam74], he introduced so fruitful an
idea that current automatic parallelization research still heavily relies on it: operations
spanned by a loop body are clustered in waves (or “hyperplanes”, or “fronts”), one
wave being executed at a time. Time is here a logical schedule and sums up, in theory,
the inherent sequentiality of the source program — or, rather, what the compiler thinks
is the inherent sequentiality of the source program. This logical time may be implicit,
as in the loop transformation framework, or explicit, as in methods inherited from
systolic design.

The PAYF (Paralléliseur Automatique pour FORTRAN) automatic parallelizer de-
signed by Feautrier [RWFt91] uses explicit schedules. The first step is dataflow analysis
[Fea91] from which one may deduce a single-assignment form of the source program.
One then obtains an affine schedule which gives the execution date of every operation.
This schedule may be one-dimensional [Fea92b], or possibly multi-dimensional [Fea92a].
A space mapping is also computed, yielding a virtual geometry or “template” on which
operations are to be executed [Fea93]. This space mapping is again an affine function
in the original loop counters. These elements compose a space-time mapping’.

Once a space-time mapping is chosen, the corresponding parallel code has to be
generated; this is the central theme of this paper. A space-time mapping is in fact a
basis change, where the new basis is chosen such that fronts are parallel to the space
axes. The generated code has to enumerate, in the new basis, every integer point of the
iteration space [AI91]. One should note that space-time mappings have to be invertible.
However, it is not always possible to get unimodular space-time mappings. Thus, the
logical space-time may have “holes”, i.e. instants and places at which no useful work
is done.

In the target program, iteration domains are scanned along the spatial dimensions
using a data-parallel statement or a new nest of parallel forall loops. This paralleliza-
tion method is thus particularly well suited to SIMD or SPMD distributed-memory
machines. These forall loops are surrounded by one or more sequential do loops
scanning time coordinates. To conserve the semantics of the source program, all the
references to arrays must be correctly reindexed.

This paper does not deal with finding a suitable basis change, but with the code
generation phase of the parallelizer. An overview of the problem of scanning polyhedra
after non-unimodular transformations is presented in Section 2. Statement reindexation
is presented in Section 3. Section 4 explains how loops are derived in a way that solves
the problems above, along with examples of object code. Then we conclude in Section
5, and sum up what remains to be done.

2 Non-Unimodular Transformations

To get an idea of the problems to be faced, consider the following depth-2 perfect loop
nest, parametrized by n:

for i= 0 , n
for j=0 , n

'Some functional language compilers towards distributed memory architectures follow exactly the
same approach, determining temporal and spatial parts of index domains [CCL91].

S
endfor
endfor

and suppose that statement S is scheduled at 6(7,j) = 2i + 45 + 1, due to depen-
dences. 57’s execution dates will be 1,2,4, and so on... We say that 5’s schedule has
period 2. The scheduling vector is (2,4)", and is non primitive. So, the space-time
transformation cannot be unimodular. The temporal dimension to be scanned in the
generated program will thus have holes. However, to get a “dense” spatial dimension,
we may divide the scheduling vector by the ged of its components. In our example,
(2,4)7/ ged(2,4) — (1,2)". We then complete the scheduling vector to a unimodular

matrix, e.g.
1 2
[1 1 ‘| ‘

We of course go back to the real scheduling vector, getting a non-unimodular matrix

]

whose associated transformation maps convex polyhedra to domains having no holes
along the second dimension. The purpose of such a transformation is of course to
have step-1 foralls enumerating processor coordinates. However, this cannot be im-
mediately extended to multi-dimensional schedules, since steps or periods along these
dimensions are not simply the gcd of their corresponding scheduling vector entries.
Given the matrix of the transformation, the steps are in fact the diagonal coefficients
of the Hermite form of this matrix [Dar93].

We will here restrict ourselves to one-dimensional schedules but give multi-dimensional
generalizations when appropriate. Even though the bulk of our algorithms would not
change, taking multi-dimensional schedules into account needs more comprehensive
linear algebra techniques.

3 Reindexation
3.1 Problem Definition

The transformation which allows one to express statements in a new basis is well known
[RWFt91, GMrQtS89, DR93] and is usually called reindexation . Note, however, that
when loop nests are imperfect, the reindexation we have to deal with is more complex
than the one in [LP92] or [Ban90].

To see what reindexation consists in, let .5, and .5, be two statements in the original
program, nested in possibly different loop nests.

Su: alf] = . B[L(T)]...

The former statement initializes an array which is read by the latter. More precisely,

—

for a given value of S,’s iteration vector 7, operation (9,,7%,) reads the array element
b[L(%,)]. ¥, of course belongs to 9,’s iteration space, denoted by Z(5,). £ is an index

function which maps Z(5,) onto Z(S;). Let T, and T, be S,’s and S,’s space-time
mappings, respectively:
Ea = Ta(fa)vgb = Tb(fb)

Reindexation could be done in two different ways.

e Since space-time mappings are chosen invertible, the k" counter 7,[k] in statement

S, is replaced by T, "(,)[k]. This yields:

Sy [Ty ()] =
Satall, 71 ()] = . O[L(Ta ™ (E))]-

Array subscripts may be quite complex, making physical mapping intricate and
regular communication patterns difficult to detect.

o We aim at having left-hand side arrays subscripted by the new space-time com-
ponents. Arrays a and b are replaced by two new arrays a’ and b’:

Sblb,[gb]z... .
Saa’[G] = .0 [d)..

where

=T,0LoT, (C,). (1)

The first entries in vector ¢/, are exactly 5;’s time components, and the others
are exactly virtual processor coordinates.

The second solution has the following advantages. Suppose vector &, is equal to
the two-dimensional vector (¢, 5,)", where ¢ is the one-dimensional global time and
P, is the coordinate vector of the executing processor. Moreover, suppose that vector
Tyo L oT, (&) is equal to (t — d, p’) where d is a positive numerical constant. Then
each row in array b’ can safely be deallocated, as far as statement .5, is concerned,
d time steps after its definition. If all references to b’ are of the above form, and if
D is the maximum of all d’s, then only D 4+ 1 rows of b’ need be allocated along the
temporal dimension, provided the references are “wrapped” modulo D + 1. In some
cases, a more elaborate analysis may reduce the factor of D + 1 to D, see [Cha93] for
details. In this way, the main drawback of single-assignment form, memory expansion,
is greatly reduced.

Similarly, if the new access vector is of the form (¢, p, +Z) where ¥ is a constant vec-
tor, then communication between S,’s and S}’s processors is regular. Communication
patterns can be deduced from the value of ¥ in a straightforward way.

3.2 An example

Let us take the following example:

5 b[i, j] =
saftf J] -b[257,2¢ + " + 1]..

Sy’s iteration vector is 7, = (i,7)”. Suppose its schedule is:
0,(1,j) =21+ 45+ 1.

If i’s and j’s lower bounds are both 0, then the execution date set is {1,3,5,...}. Let
the space mapping be:
ﬂ-b(ivj) =1+

The space-time mapping is thus:

ANEEIHEN!

Let us now consider S,, whose iteration vector is 7, = (¢/,j'). Suppose 9,’s
schedule is:
6u(.') = 35"
The execution date set for statement S, is then {0,3,6,...}. S,’s and 5;’s executions
thus follow the time diagram in Fig. 1.

Sb

period

timey

Sa
|
x
|
|
|
|
|
3 x
|
|
|
|
|
x
|
|
|
|
|
x
|
|
I

|
|
\
x
\
|
\
%
\
|
\
x
\
|
\
%
\
|
\
%
|
\
|

Figure 1: Time diagram for schedules 37 and 27 +45 4+ 1

Suppose 5,’s space mapping is:

ﬂ-a(i/,j/) — (7// ‘I’]l)

n=[n =[] (0]

Then, b’s reindexation in .5, will be:

BN

That is:

4 Nest Generation

4.1 Time loop generation

Two problems appear when constructing the transformed loop nest:

¢ Bounds of the resulting iteration space may depend on structure parameters
(whose value may not be known at compile time). Thus, one needs precise sym-
bolic bounds computation. Care must be taken so as not to “forget” points (i.e.,
operations!) of the original iteration space, and not to create spurious ones. To
find the loop bounds of a reindexed loop nest, we use a parametrized version of
the Dual Simplex method, implemented by Feautrier in the PIP software (Param-
eter Integer Programming [Fea88]). Much more details are given in [CFR93]. As
a by-product, this procedure yields bounds on the logical time, i.e. the latency of
the algorithm, and on processors numbers, which give the size of the underlying
geometry or template.

e Since transformations may not be unimodular, some statements may not be ex-
ecuted at each time step, possibly yielding a complicated activation pattern.

As far as the last problem is concerned, let:
0(’;) = Za;ﬁk + Qg
i=k

be the schedule of a given statement. Let w be the the greatest common divisor
of a;...a,. Obviously, the possible values of 6(7) — a; are multiples of @, and the
activation pattern of the distinguished statement is periodic with a period of w. In the
case where the nest contains several statements with periods w,, w;, etc., it is easy to
see that the period of the activation pattern will be the least common multiple of w,,
wy, etc.

In our running example, schedules are 2¢ 4+ 45 4+ 1 and 37, thus periods are 2 and 3,
and the period of the nest is 6.

A first code generation scheme is to unroll the loop is such a way that the period
is in evidence. In the new loop body of our example, statement 5, would appear three
times but 5, only twice. The program skeleton is now:

for t=0to...stepb
1f mm() < t <max(f,) then S,(t)
(6y) <t+4+1<max(f,)then Sy(t+ 1)
1f mm(@a) <t+4+3 <max(6,) then S,(t + 3)
(6;) <t+3 < max(6;)then S;(t + 3)
in(6,) (0))

<t+5 < max(6;) then S;(t +5)

Since this method would have created heavy overheads, we chose a different imple-
mentation. For every statement, the sets of possible schedule values (e.g. {1,3,5,..} and
{0,3,6,..} for S, and S, respectively), are scanned by local time variables (say, ¢, and ¢,
respectively). These local times are initialized to their lower bounds, are independently

incremented by their periods each time the corresponding statement is executed, and
then set to an illegal value (e.g. —1) when execution must end. The code for our
running example has thus the following skeleton. (Note that b’’s reindexing in S, has
been found in Section 3.2.)

by = 6} s lower bound
uby = 0} s upper bound
iy = lby
lby = 0! slower bound
ub, = 0, s upper bound
tq, = b,
fort=..stepl
if { == 1} then
forall p € b’s topology
bt p] = ...
endforall
ty =t + @y
if ¢y > uby thent, = —1
endif
ift == 1, then
forall p € a’s topology

a’[t,p] =
B 8xp+51/3xt+2xp+1].
endforall
ty =tg + @,
if ¢, > ub, thent, = —1
endif
endfor

The first advantage of this scheme is that control overhead, compared to the se-
quential case, is reduced to the equality tests between global and local times. Moreover,
this scheme obviously avoids code duplication. However, spurious array allocation is
still a problem (e.g. even entries of array b’ are uselessly allocated). To circumvent
this difficulty, we note that, for every statement 5,:

Vi, 3r :t=6,) =7 X w, + I,

where [, = miny(8,(7)) 2.

Thus, 7 is a non-negative integer whose initial value is 0, and is incremented every
time 5}’s body is entered. Indexing b’ by 7 implies that there is a one-to-one corre-
spondence between b’ cells and 5} body executions. For this reason, we call 7 a “minor
time”. Using minor times as subscripts has the added advantage of avoiding division

in the transformed subscript expression.
The generated code for our example is then:

Ty = 0
Ta =0
/* Other initializations do not change */
fort=..stepl
if { == 1} then
forall p € b’s topology

?Note that this can be immediately extended to multi-dimensional schedules, when the @, are given
by the transformation’s Hermite matrix.

b [r,p] = ...
endforall
ty =t + @y
m=T1+1
if ¢, > ub, thent, = —1 endif
endif
ift == 1, then
forall p € a’s topology
a’[ra,p) =
P AXp+2, 1+ 2xp+1].
endforall
to =1, + @q
Ta =T, +1
if ¢, > ub, thent, = —1 endif
endif
endfor

4.2 Memory allocation

In Section 3.1, we noted that arrays, when accessed in a right hand side by time
translations such as

(t - dvﬁa + f)Tv

could be slimmed to d 4+ 1 rows along the time dimension. What happens if we use
minor times?

Firstly, note that a necessary condition for the time component to be a translation
is that 5,’s and 5’s schedules have the same period w. Then, we can write

Vi, A, :t—d=1,w+l,—d=nw+1,
Lh—1l,+d

w

sd=1,—7=

Thus I, — I, + d is a multiple of . Moreover, since d’ may be negative, the number of
allocated rows becomes | d' | +1.

4.3 Generating Fortran

Due to the single-assignment form, some expressions in right-hand sides may be con-
ditionals. Typically, such expressions appear in statement such as:

if { == 1¢; then

forall p € b’s topology bounds

b[r1,p] =if C(¢,p) theny else z

endforall

=t +wm

n=7+1

if {1 > uby thent; = —1 endif
endif
Since conditional expressions are not included in Fortran, they must be discarded. The
only way to do this is to split such statements in two pieces. One piece will be executed
when C(t,p) holds, and the other when C(¢,p) does not hold. These two statement

pieces will have differing date sets, whose extrema are computed by adding C(?,p)

(resp. =C(t,p)) to the inequalities which define the iteration domain.

Moreover, note that these pieces are writes to the same array (the array initially
written by the split statement). To preserve single-assignment, minor times must be
shared among the statement pieces, even if their local times are different. Thus, the
initial statement is rewritten as:

/* t11 and {15 are initialized to their lower */
/* bounds, ie lby; and lby5 respectively. */
flag = false
if { == 141 then
forall p € b’s topology, s.t. C(¢,p) holds
b[Tlap] =Yy
endforall
ti1 =111 + ™
flag = true
if {17 > uby1 thenty; = —1 endif
endif
if{ == 115 then
forall p € b’s topology, s.t. =C'(¢, p) holds
blri,p] ==
endforall
t1p =11+ w1
flag = true
if {19 > ubys thentis = —1 endif
endif
/* if one of the two pieces has been
executed, increment minor time 7 */
if flag == true then

T =" —|—1
endif
flag = false

4.4 Implementation & Example

This scheme has been implemented so as to generate C or Fortran code augmented
with forall, a data-parallel extension of for. New variables are of six kinds: local
times (t), lower and upper schedule bounds (1b and ub respectively), schedule periods
(per), minor times (m) and execution flags (exe). Variable names are prefixed by their

corresponding statement names, and suffixed by time dimensions.
As a real-life example, take the Gaussian elimination written as:

program gauss
real a(n,n), x(n)
real s, f

integer i, j, k, n

do i=1, n-1
do j=i+l, n
1 f=a(j,i)/ali,1)
do k=i+1,n
2 a(j,k)=a(j,k)-f*a(i,k)
enddo
enddo

10

enddo
doi=1,n

3 s = 0.
do j = 1, i-t
4 g = s + a(n-i+l, n-j+1)*x(n-j+1)
enddo
5 x(n-i+1) = (a(n-i+1, n+l1) - s)
& /a(n-i+1, n-i+1)
enddo
end

A Schedule for this example has been computed in [Fea92a] and appears in the
third column of Table 1.

Statement | Counters Schedule
91 1,7 21 — 2
9y 1,7,k 2i — 1
93) 0
94 1,7 25 +2n — 2
9) 204+ 2n —3

Table 1: A schedule for gauss

Statement Mapping
S n+1l—jn—1
S5 n+l1—-—73k+n—-1
53 1, 2n
Sy 1, 2n
S 0,2n

Table 2: A space mapping

On the other hand, a two dimensional space mapping is given in Table 2. When
reindexation has been done, we notice that all arrays 5, .., .55 are accessed with constant
delays 1,2,1,2 and 1, respectively. For instance, Statement S5 is wrapped modulo 1,
i.e. only one row is needed along its first dimension instead of n — 2 without wrapping
and 2n — 4 without using minor times.

The following MasPar Fortran code is generated®. Note that predicates such as
C(t,p) do not appear explicitly in the final code, but are taken into account when
computing the bounds on local times and processor coordinates.

PROGRAM gauss
real S_1(0:0 , 1:n-1 , n-1:n-1)

real S_2(0:1 , 1:n-1 , n+1:2%n-1)
real S_3(0:0 , 1:n , 2%n:2%n)

#Variables are named according to the following convention: variables belonging to part number a
of Statement Sp are labeled with S_bna. For space reason, the generated code has been truncated after

Ss.

11

C ..

mapping directives for the MP-1:

CMPF MAP S_1 (MEMORY,XBITS,YBITS)
CMPF MAP S_2 (MEMORY,XBITS,YBITS)
CMPF MAP S_3 (MEMORY,XBITS,YBITS)
C ...

C ..

declarations .

S_1nOper0=2
S_1n01b0=2
S_1n0ub0=2%*n-4
S_1n0t0=S_1n01b0
S_1nlper0=2
S_1n11b0=0
S_1n1ub0=0
S_1n1t0=S_1n11b0
S_1m0=0

S_1lexe=0

S_2n0per0=2
S_2n01b0=3
S_2n0ub0=2%*n-3
S_2n0t0=S_2n01b0
S_2nlper0=2
S_2n11b0=1
S_2n1ub0=1
S_2n1t0=S_2n11b0
S_2m0=0

S_2exe=0

S_3n0per0=0
S_3n01b0=0
S_3n0ub0=0
S_3n0t0=S_3n01b0
S_3m0=0

S_3exe=0

DO time0 = 0,max((4*n-3),(2%n)),1
The first statement is split in two pieces...

IF (S_1n0t0.EQ.time0) THEN
FORALL (p0 = 1:n-(S_1m0+1))
- 8_1(0,p0,n-1)=
- 8_2(mod((S_1m0-1),2), p0, n+S_1m0)
- /S_2(mod((S_1m0-1),2), n-S_1m0, n+S_1m0)
S_lexe=1
S_1n0t0=S_1n0t0+5_1nOper0
IF (S_1n0t0.GT.S_1nOub0) THEN
S_1n0t0=-1
END IF
END IF
IF (S_1n1t0.EQ.time0) THEN
FORALL (p0 = 1:n-1)
- 8_1(0,p0,n-1) =

12

- a((n+1)-p0,S_1m0+1)

- / a(S_1m0+1,S_1m0+1)
S_lexe=1
S_1n1t0=S_1n1t0+S_1nlper0
IF (S_1n1t0.GT.S_1iniub0) THEN
S_1n1t0=-1
END IF
END IF

C Has one of them been executed?...

IF (S_lexe.EQ.1) THEN
S_1m0=S_1m0+1

END IF

S_1lexe=0

IF (S_2n0t0.EQ.time0) THEN
FORALL (p0 = 1:n-(S_2m0+1),

- pl = n+S_2m0+1:2%n-1)

- S_2(mod(8_2m0,2),p0,pl)=

- 8_2(mod((8_2m0-1),2),p0,pl)

- - 8_1(0,p0,n-1)

- % S_2(mod((S_2m0-1),2),n-S_2m0,p1)
S_2exe=1
S5_2n0t0=S_2n0t0+5_2n0per0
IF (S_2n0t0.GT.S_2n0ub0) THEN
S_2n0t0=-1
END IF
END IF

IF (S_2n1t0.EQ.time0) THEN
FORALL(pO = 1:n-1, pl = n+1:2%n-1)

- 8_2(mod(S_2m0,2),p0,pl) =

- a((n+1)-p0, (p1+1)-n)

- - 5_1(0,p0,n-1)

- * a(S_2m0+1, (p1+1)-n)
S_2exe=1
S5_2n1t0=S_2n1t0+5_2nlper0
IF (S_2n1t0.GT.S_2niub0) THEN
S_2n1t0=-1
END IF
END IF

IF (S_2exe.EQ.1) THEN
S_2m0=S_2m0+1

END IF

S_2exe=0

C Statement S3 is not split:

IF (S_3n0t0.EQ.time0) THEN

FORALL (p0 = 1:n) S_3(0,p0,2%n)=0.
S_3m0=S5_3m0+1
S5_3n0t0=S_3n0t0+5_3n0per0

IF (S_3n0t0.GT.S_3n0ub0) THEN
S_3n0t0=-1

END IF
END IF

C ... the other statements...

END DO
END

More details are given in [Col94].

4.5 Expressing Parallelism using FORALLs

FORALLSs seem to be perfectly adequate to express the parallelism extracted by PAF.
However, their current implementation suffer from various restrictions which complicate
the code generation process. Many common patterns, appearing in the transformed
code, are not accepted by current commercial compilers. We list below the main
problems.

FORALL indices. They should appear inside the statement in the same order as
in the FORALL header. Moreover, every FORALL header index should appear
exactly once in the array references. For instance, the line

FORALL(j=1:N,i=1:N) A(j,i)=B(j)

is rejected because “array reference does not contain all FORALL indices”. Note
that this syntax is explicitly accepted in the HPF proposal [For93, Lov93], and
this phenomenon occurs in many statements in our gauss example.

Non-conformable arrays. Suppose a one-dimensional array is to be copied in every
column of a two-dimensional one. Consider the following code:

REAL A(N,N), B(N)
FORALL (j=1:N) A(:,j) =B

The MasPar-Fortran compiler warns that the statement will be executed serially
and complains that “functions of FORALL indices [are] not allowed”. Expliciting
all the indices does not help, since we would go back to the previous error. The
only way we are aware of to implement such a specification in MPF is to use
array sections and the SPREAD function.

Scalar reference to an array. The compiler complains that
FORALL(I=1:N) B(I) = PIV(J)

is a “front-end array reference with FORALL subscript(s)”. Adding the directive
CMPF ONDPU PIV to put the array on the DPU does help, though. Since I does
not index PIV, this is then an “array reference without FORALL indices”, just
a special case of the first error. In conclusion, this kind of scalar diffusion is
forbidden in current FORALL implementations. We would have to store PIV(J)
in a temporary scalar. Since scalars are stored on the front-end, this would yield a
so-called scalar “slosh” (i.e. a data movement from the front-end to the processor
array, or conversely), but would avoid the pitfalls above.

14

Non-rectangular iteration domains. The following syntax is accepted by HPF:

FORALL(I=1:N,J=1:N,I>J)
& A(I,J) = 0.

The mask is here a scalar expression. But in MPF, the masking expression must
be conformable with the masked array, e.g. with A in the statement above. Thus,
we have to create an auxiliary boolean array to that purpose:

REAL A(N,N)
LOGICAL B(N,N)
FORALL(I=1:N,J=1:N)

& B(I,J) = J.GT.I
FORALL(I=1:N,J=1:N,B(I,J))
& A(I,J) = 0.

4.6 Physical Mapping Directives

To achieve the best speed, programs should use at all time as many physical processors
as possible. Using the mapping directives to tune processor allocation is thus vital.
In our case, we obviously want the arrays’ first dimensions to be stored in the same
processor memories. The remaining dimensions have to be spread across the physical
topology.

For instance, the MasPar MP-1 is a two-dimensional grid. A one-dimensional array
is supposed to be mapped in a so-called “raster-scan” way, i.e. by linearizing the grid
and then storing the array elements on it, with a possible wrap-around if the array
size exceeds the number of processors. This method guarantees that all the processors
are used with good load balancing. To enforce this mapping, we generate the ALLBITS
directive for a 2-D array’s second dimension. The last two dimensions of a three-
dimensional array are laid across the processors using two kinds of directives:

e XBITS and YBITS, successively, if both dimensions extents depend on size param-
eters;

e If a dimension extent is known at compile time, and if this extent is lower than
the order of the physical grid (32 in our MP-1), then this dimension should,
according to our first experiments, get the MEMORY directive. Otherwise, this
dimension would use one grid dimension without filling it. The other dimension
should then be laid across all the processors using ALLBITS.

4.7 Performance

Timing studies have been done on a MasPar MP-1, equipped with 32 x 32 processors,
each having 16 Kbytes of local memory. This machine’s peak performance in register-
to-register floating point computations has been measured to be 80Mflop/s.

The first test compared an automatically parallelized F77 matrix addition program
and its F90 counterpart (whose main statement just takes one line: A = B + C.) This
experiment allows us to have an idea of the cost of generated code control overhead.
Results are shown in Fig.2. The generated code is slightly slower than the hand-coded

15

35 T T T

Gener at ed Cplde*%
A Hand-et6ded -+

30t e g

25

15

Ml op/s

10

0 ! ! ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500 550

Matrix Size

Figure 2: Performance achieved by automatically generated matrix-addition code and
its hand-coded counterpart.

one, mainly because of the added statements. Its Mflop/s performance is only 10%
lower than the hand-coded program’s one on 512 x 512 matrices.

A second test has been done on a matrix-vector multiplication (Y = AX) F77 code.
Its automatically parallelized version competed with the hand-written equivalent below.

real a(n,n), x(n), y(n), t(n,n)
t SPREAD(x, dim=1, ncopies=n)
t = a*x t

y = SUM(t,dim=2)

Using a temporary array t exhausted PE memory for n = 576 and above. The perfor-
mances are compared in Fig.3.

5 Conclusion

This software has been written in Le_Lisp, and amounts to about 1500 lines of code. We
propose a code generation scheme where control overhead is kept small, where commu-
nication patterns can easily be mapped to multi-dimensional grids, and which can be
expressed in actual data-parallel languages. Moreover, we have seen that two phenom-
ena imply memory over-allocation: non-unimodular schedules and single-assignment.
We showed how both can be dealt with thanks to so-called “minor times” and wrapping
modulo constant delays, respectively. These features are essential when target machine
nodes have little memory.

6 Acknowledgments

The first author is partly supported by the french CNRS Coordinated Research Pro-
gram on Concurrency, Communication and Cooperation C*, PRC/MRE contract Para-
Digme and DRET contract 91/1180. The second author has been partially supported
by project LHPC-C3.

16

25

T T
CGenerated Code ——
Hand- coded -+--

20

15 |

Ml op/s

10

0 & L 1 1 1 1 I I
0 100 200 300 400 500 600 700 800

Matrix Size

Figure 3: Performance achieved by automatically generated matrix-vector multiplica-
tion code and its hand-coded counterpart.

References

[AI91] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proc.
ACM SIGPLAN °91, pages 39-50, June 1991.

[Ban90] U. Banerjee. Unimodular transformations of double loops. Technical
Report CSRD Rpt. No. 1036, University of Illinois, August 1990.

[CCLI1] M. Chen, Y. Choo, and J. Li. Crystal: Theory and pragmatics of generat-
ing efficient parallel code. In B. K. Szymanski, editor, Parallel Functional
Languages and Compilers. ACM Press Frontier Series, 1991.

[CFR93] J.-F. Collard, P. Feautrier, and T. Risset. Construction of DO loops from
systems of affine constraints. Technical Report 93-15, LIP, ENS Lyon,
France, 1993.

[Cha93] 7. Chamski. Fnvironnement logiciel de programmation d’un accélérateur
de calcul paralléle. PhD thesis, Univ. Rennes I, Rennes, February 1993.

[Col94] J.-F. Collard. Code generation in automatic parallelizers. In Proc. of the
Int. Conf. on Applications in Parallel and Distributed Computing, IFIP
W.G 10.3, Caracas, Venezuela, April 1994. North Holland. To appear.

[Dar93] A. Darte. Techniques de parallélisation automatique de nids de boucles.
PhD thesis, LIP, ENS Lyon, France, 1993.

[DRI3] A. Darte and Y. Robert. Mapping uniform loop nests onto distributed

memory architectures. Technical Report 93-03, LIP, ENS Lyon, France,
January 1993. ftp: 1lip.ens-1lyon.fr.

17

[Fea88]

[Feadl]

[Fea92a)

[Fea92b]

[Fea93]

[For93]

[GMrQtS89]

[Lam74]

[Lov93]

[LP92]

[RWF191]

P. Feautrier. Parametric integer programming. RAIRO Recherche Opéra-
tionnelle, 22:243-268, September 1988.

P. Feautrier. Dataflow analysis of scalar and array references. Int. Journal
of Parallel Programming, 20(1):23-53, February 1991.

P. Feautrier. Some efficient solution to the affine scheduling problem,
part II, multidimensional time. Int. J. of Parallel Programming, 21(6),
December 1992.

P. Feautrier. Some efficient solutions to the affine scheduling problem,
part I, one dimensional time. Int. J. of Parallel Programming, 21(5):313~
348, October 1992.

P. Feautrier. Toward automatic partitioning of arrays on distributed
memory computers. In ACM (5’93, Tokyo, July 1993. also available
as IBP /report 92.95.

High Performance Fortran Forum. High performance fortran language
specification. Technical report, January 1993. Version 1.0 Draft.

P. Gachet, Ch. Mauras, P. Quinton, and Y. Saouter. A language for the
design of regular parallel algorithms. In F. Andre and J.P. Verjus, editors,
First Furopean Workshop on Hypercube and Distributed Computers, pages
189-202, Rennes, France, October 1989. North-Holland.

L. Lamport. The parallel execution of do loops. CACM, 17:83-93, Febru-
ary 1974.

D. B. Loveman. High performance fortran. IEEFE Parallel & Distributed
Technology, pages 25-42, February 1993.

W. Li and K. Pingali. A singular loop transformation framework based
on non-singular matrices. In Fifth Annual Workshop on Language and
Compilers for Parallelism, New Haven, August, 1992.

M. Raji-Werth and P. Feautrier. On parallel program generation for
massively parallel architectures. In M. Durand and F. El Dabaghi, editors,
High Performance Computing II. North-Holland, October 1991.

Reference [CFR93] can be found on anonymous ftp 1ip.ens-lyon.fr.

18

