
Embedded Systems Energy Characterization Using
Non-intrusive Measurements

ABSTRACT
We propose in this paper a complete system energy model
based on non-intrusive measurements. This model aims at
being integrated in fast simulation tools to give energy con-
sumptions during software design of embedded systems. Es-
timations takes into account the whole system consumption,
peripherals included. Experiments on a complex ARM9
platform show that our model estimates are in error by less
than 10 percent, which is precise enough for application de-
sign.

1. INTRODUCTION
With present day technology, it is possible to build very

small platforms with enormous processing power. However,
physical laws dictate that high processing power is linked to
high energy consumption. Since these platforms are mostly
used in hand held appliances, and since battery capacity
does not increases at the same pace as clock frequency, their
designers are faced with the problem of minimizing power
requirements under performance constraints.

The first approach is the devising of low-energy technolo-
gies, but this is outside the scope of this paper. The second
approach is to make the best possible use of the available
energy e.g. by adjusting the processing power to the in-
stantaneous needs of the application, or by shutting down
unused parts of the device. These tasks can be delegated to
the hardware; however it is well known that the hardware
only source of knowledge is the past of the application; it
is only software that can anticipate future needs. Energy
can also be minimized as a side effect of performance op-
timization. For instance, replacing a conventional Fourier
transform by an FFT greatly improves the energy budget;
the same can be said of locality optimization, which aims at
replacing costly main memory accesses by low-power cache
accesses.

The ultimate judge in the matter of energy consumption is
measurement of the finished product. However, software de-
signers, compilers and operating systems need handier meth-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ods for assessing the qualities of their designs and directing
possible improvements. Hence the need for simple analyt-
ical models, which must be expressed in term of software
visible events like instructions, cache hits and misses, pe-
ripheral activity and the like. There are several ways of
constructing such models. One possibility is electrical sim-
ulation of the design; this method is too time-consuming
for use on systems of realistic size. Another method is to
interpolate/extrapolate from measurements on a prototype.
This is the method we have applied in this work.

The paper is organized as follows. After reviewing state
of the art techniques in section 2 we present in section 3 a
methodology to build complete platform energy consump-
tion model oriented for software development. Section 4
presents the resulting model for an ARM9 development plat-
form. This section also validates our model on more signif-
icant pieces of code, multimedia applications, thanks to its
implementation in a fast and cycle accurate simulation tool.
We then conclude and discuss future work.

2. RELATED WORKS
Many works focus on energy characterization of VLSI cir-

cuits. We can organize them using two main criteria: their
level of hardware abstraction and the calibration method.
For the first criterion, we can group the models in three
main categories which are, by increasing level of abstraction,
transistor/gate level models, architectural level models and
finally instruction level models. Among these models there
are usually three methods for building consumption mod-
els. The first method is analytical construction, the second
one is simulation based, and the third is based on physical
measurements.

These two criteria of classification are not fully orthogonal
and all combinations are not possible or pertinent. Indeed,
analytically built models target low level units due to the
complexity of the building process. As far as simulation
based models are concerned, they are seldom used at the
highest level of granularity since they have a huge building
time. Finally we do not find low level model based on mea-
surements since a VLSI implementation does not allow easy
access to individual gates or transistors.

In transistor (gate) level models, all transistor (gate) state
changes are computed to give an energy consumption ap-
proximation for a VLSI component. This method is highly
accurate, but a complete description of the component is
needed. The simulation of all transistors (gates) is neces-
sary to estimate the consumption, which represents a huge
running time. The models built at this level of abstraction

are generally reserved to hardware designers.
At the upper level of abstraction, architectural or RTL

level, the system is divided in functional units. Each unit
can be represented by a specific model (e.g. bit-dependent
or bit-independent models for Chen et al. [2]). The model is
then adapted to the functional block internal structure. To
be more accurate some works, like Kim et al. [4], subdivide
the block into sub-blocks to apply different models on each
sub-block. This family of models allows to extend model to
a complete platform, but the models proposed so far will
not be able to execute a full software system.

The highest level is instruction/system level of abstrac-
tion. At this level, models are based on events such as in-
structions execution ([12, 6, 8]). Tiwari et al. in [12] propose
to characterize the inter-instructions energy consumption,
which represents the logic switching between two different
instructions. Others works also take into account the logic
switching due to data parameters [10]. The system consid-
ered in this kind of models is generally composed of CPU,
bus and memory.

Only few works focus on modeling a complete platform.
Among them, EMSIM [11] is a simulator based on Simunic
et al. [9] model for the StrongARM SA110 energy character-
ization. This simulator poorly characterizes the peripherals.

The closest work to ours, AEON’s model [5], is a complete
platform energy consumption model based on measurement.
The targeted platform is a micro-controller based sensor net-
work node.

As far as calibration methods are concerned, analytical
models are generaly based on manufacturers data, e.g. in
Simunic et al. [9] the model is built thanks to electrical
datasheet informations. Simulation based calibration needs
a full knowledge of the underlying level architecture, which
means that it needs a description of low level hardware
(VHDL, or Verilog descriptions). Measurement based method
only needs few informations on the hardware. On top of
that, works like [12, 3] prove that it is possible to extract
internal unit consumption from system measurements.

In this paper we propose a methodology for complete plat-
form energy consumption model construction based on sim-
ple and non-intrusive measurements. The model thus built
is placed at a level of abstraction close to the system level
presented before, but is extended to the complete platform
by coupling it with architectural level principles presented
by Kim et al. in [4]. We also take into account peripherals
energy models and dynamic frequency and voltage scaling
into account.

3. MODEL CONSTRUCTION BASICS
We present in this section our methodology to build com-

plete platform models. We first give more details on the
structure and the parameters of the resulting model. We
then give guidelines to calibrate this model through micro-
benchmarks and simple and non-intrusive measurements on
the hardware target. Section 4 will present the target depen-
dent model parameters through a case study on an ARM9
based platform.

3.1 Model structure and parameters
Our choice among all the modeling method which have

been presented in Sect. 2 is to build an architecture level
model, in which the platform is divided in functional blocks,
as in figure 1.

Interrupt
Controller

Memory
Controller UART Timer

Flash CPU

SDRAM Serial Interface

bus or hierarchy of bus

Peripherals

Figure 1: model block examples

The energy consumption of an application Eapp is ob-
tained be adding the all blocks consumptions Ebl:

Eapp =
X

blocks

Ebl (1)

Each block can have its own energy consumption model.
To have a platform model better suited for software devel-
opment, we apply the instruction level model solution for
CPU modeling. The CPU energy consumption ECPU is thus
model as described in the next equation.

ECPU = Einsn + Ecache + EMMU (2)

The energy consumption is the sum of the energy con-
sumed by instruction execution, plus cache and MMU over-
heads consumptions, and consumption of the other blocks
of the platform.

Eapp = ECPU +
X

blocks

Ebl (3)

This model aims at being integrated in a cycle accurate
simulation tool of the complete platform. The most inter-
esting way of writing the model for this kind of purpose is
to define a per time slot energy consumption. The chosen
time slot is the CPU instruction execution. There are two
reason for choosing this time reference. The first is that it
is the finest time reference since CPU have generally the
highest clock frequency in embedded systems. Secondly, in-
terrupt requests, the only mean for the hardware peripherals
to interact with the software, are managed at the end (or
beginning) of the instruction execution. From a software
point of view, there is no need to use a finer time reference
to report hardware events more precisely.

The model can be rewritten in a form where the consump-
tion of CPU and other blocks are reported for the currently
executed instruction. All E∗ will be kept for overall ap-
plication consumptions, for the sake of notation simplicity
instruction reported consumptions will be noted as E∗. This
new model formula is expressed in the following equation:

Eslot = ECPU +
X

blocks

Ebl (4)

The last peculiarity in this model is the measurement
based data collection. As we only get global measures for
the platform consumption, we can foresee that the base con-
sumptions of every blocks will not be easily distinguishable.
We mean here that once the embedded system is put in its

laziest state, idle state for example with all possible units
powered off, the resulting consumption is considered as a
base consumption regrouping the base consumption of ev-
ery powered peripherals. Obviously, a part of this consump-
tion is static power dissipation. We will call this term Ebase,
it is important to note that this consumption is reported
to the current executed instrustion on the CPU. It can be
expressed as in equation (6), as it is dependent on the in-
struction length linsn. Equation (4) becomes equation (5).

Eslot = Ebase + ECPU +
X

Ebl (5)

Ebase = linsn × Ec base (6)

The CPU and other blocks consumption are then expressed
as overhead against the idle state.

As described in equation (2), CPU energy consumption is
given by the executed instruction energy cost. This model
can be simplified by regrouping instructions in classes as
proposed in [6].

As far as other blocks are concerned, we can expand them
as bus, memories and other peripherals. This is interesting
since bus and memories will be subject to events generated
by the processor, such as memory writes. The peripherals
will be then modeled by state machines giving the energy
consumption of the peripheral during the time slot.

The last step in model construction consists in defining
all possible parameters for these components. Due to the
limited information available, the developers would not nec-
essarily know the behavior of intra-blocks logic. The param-
eters for the CPU are already selected, since it is modeled
thanks to instructions consumptions. The same can be done
for cache, MMU and even co-processors consumptions. The
parameters for other blocks are limited to behavioral pa-
rameters (UART sending a byte) and their states such as
operating mode (running, stopped).

Each energy cost in this model is function of the running
frequency and power supply voltage to allow dynamic and
frequency scaling capabilities of the platform to be modeled.
An example of this is presented in the next section.

3.2 Measurement setup
The choice of measurement point is very important. In

fact, this choice will have an influence on many other choices
in the following steps. The most important thing is that
it is tightly coupled with the informations we can/want to
extract from the measures.

The point here is that we want our model to be built
and used by people who do not have necessarily the skills
to build a complex electronic measurement setup. To meet
this constraint we made the decision to use measures col-
lected at the power supply input of the system. This is the
best way to make simple non-intrusive measures account-
ing the consumption of the main chips and their integration
components (e.g. capacitors).

3.3 Benchmark Structure
The next step is the parameter cost measurement. As

our parameters range from instructions to operating system
services, it is expected that the attainable time accuracy
of the setup will fall below the necessary time resolution.
To solve this problem, we built micro-benchmark for each
of the events selected as a possible model parameters. The
benchmark is built as a repetition of the event in a loop. In

the case where the system has caches, the loop body size
is chosen by minimizing the influence of compulsory cache
misses of the loop and loop overhead.

The benchmark changes the state of the trigger signal
before entering in the loop and after exiting it. These actions
allows us to measure the consumption of an exact number
of repetition of the targeted event.

The last characteristic of these benchmarks is that they
are built over a lightweight operation system (OS), Mutek
[7]. Only the hardware initialization part of the OS is used,
OS initialization is replaced by the benchmark body. The
use of this lightweight OS allows us to have full control on
what is running on the system during the measurement.

4. MODEL CONTRUCTION CASE STUDY
In this section we propose an example of our methodology

application. This methodology was applied on a ARM based
development board. This platform uses an ARM922T, more
precisely on an Altera Excalibur EPXA10, which is a FPGA
integrating an ARM922T and usual embedded systems pe-
ripherals (e.g. UART, Timers) on the same chip. Our hard-
ware architecture exploration reveals that the platform has
three distinct levels of memory, a cache, a scratchpad and
main memory. All peripherals are accessible through two
levels of AMBA bus. We will give details about the energy
consumption model construction for this platform, then we
will check the accuracy of the built model.

4.1 Methodology application
The complete platform modeling method presented in sec-

tion 3.1 was applied on our ARM Integrator CM922T-XA10
platform. We will give more details about the model con-
struction steps, and the resulting model.

Measurement setup
The measurement setup used for these experiments is close
to the one depicted in [8]. We used a digitalizing oscillo-
scope, the shunt resistor is replaced by a current probe, and
we also used a voltage probe.

The voltage at the power supply input of the board is
oscillating with a frequency of about 500 kHz, the operating
frequency of the onboard voltage stabilizers. This confirms
the fact that the attainable time resolution should not be
accurate enough to directly measure instructions events.

Calibration benchmarks
We built benchmarks to calibrate our model, more precisely
our block models. The hardware exploration gives us the
main blocks to be modeled, namely the CPU, the different
bus levels, the memory levels, and the other peripherals such
as UART, interrupt controller or timers.

For example, the selected parameters for our CPU model
are the CPU instructions, or possibly class of instructions,
plus the caches and MMU activities. We thus built bench-
marks to evaluate the cost of possible parameters, in order
to select only relevant ones. Here are examples of bench-
marks that were used, and their target event:
• loop-calibration: This benchmark is the one which gives
loop skeleton overhead. By running an empty loop bench-
mark, we can estimate the loop overhead.
• insn-XXX: Comparition of the instructions execution costs
in the CPU (add, mul, mov, . . .). The target instruction is
executed many times inside a loop.

• XXX-access: Calibration of costs of each bus level (AHB1/2)
and memory level (cache, scratchpad or main memory), de-
pending on the address accessed.
• timer-test: Example of peripherals energy characteriza-
tion, this benchmark allows us to measure the timer power
consumption. It is subdivided into two benchmarks, one
in which the timer is stopped and the second in which the
timer is running. The structure of the loop is the same as
the insn-cmp benchmark with a nop instruction, since it is
the instruction generating the less activity.

Calibration results
The benchmarks are run on the target platform and their
energy consumptions are measured thanks to the measure-
ment setup described earlier in this section. The results of
these measures are listed in table 1. This table only reports
a few examples, the full results are available in [1].

bench name length energy (nJ) error (pJ)
loop-calibration 4 69.084 5.1777
insn-nop 1 16.747 1.2884
AHB1-access 6 101.33 7.7132
AHB2-access 18 300 22.998
Dcache-access 1 17.146 1.3007
mem-access 40 775.44 54.551
spm-access 8 131.72 10.168
timer-test on(nop) 1 16.754 1.2857

Table 1: Benchmarks results for simple operation

energy calibration.

These results represents for each example benchmark the
length of the calibrated event in CPU clock cycles (second
column), the per-event raw energy cost measured on the
complete platform (third column) and finally the measure-
ment error (fourth column). The energy costs reported here
give the consumption of the complete platform during the
execution of one event. These raw costs need to be refined
to give the final parameters costs.

For example, the scratchpad memory access benchmark
result (spm-access) gives the energy consumption of the
CPU executing a load instruction, the bus conveying the
load request and the load result and finally the scratchpad
memory. The refinement of this results gives the following
cost. The bus access cost includes the register accesses in the
targeted peripherals, since it is impossible to dissociate their
cost. By removing the consumption of the CPU (one laod
and seven nop) and the consumption of the bus, we finally
obtain the scratchpad memory access cost. The conclusion
is that the scratchpad memory do not consume more energy
than a register access via the bus. The timer-test gives us
the timer running state overhead. From the table results, we
can draw the conclusion that this overhead can be neglected.

Other model simplifications are possible in the case of this
platform. For example, the CPU cache models are simplified
by taking into account only memory access bursts in case of
misses since the overhead can be neglected. The MMU has
the same kind of simplification, since the TLB (Translation
Look aside Buffer) misses generate memory accesses, and the
table walk represents only a negligible amount of energy.

Model
The basic model presented in section 3.1 can be rewritten,
by using models simplifications obtained by calibration.

We found that most instructions have the same energy
consumptions as long as they stay inside the CPU. Currently
only ARM32 instruction set is modeled. Thumbs (16bit) in-
struction set could be modeled using them same benchmark
methodology in no time. In our setup, it is not possible to
isolate the instruction cache consumption, which is lumped
with the instruction consumption. Cache misses will then
be modeled as simple memory accesses.

We finally have a model where CPU instructions are re-
grouped in two classes, the logical and integer intra-CPU
instructions, and the load and store instructions. A memory
load access is modeled as a load instruction, plus a bus over-
head, plus a memory overhead. Last but not least, the pe-
ripherals energy consumption are taken into account thanks
to state machines that give their consumption during the
instructions execution.

This model is finally resumed by Equation 7.

Eslot = Ebase

+ Einsn + Ebus access + Emem

+
X

periph

Eperiph state (7)

where Eslot is the energy consumption of the instruction
execution time slot, Einsn is the cost of instruction given by
its class cost, Ebus access is the bus overhead cost for load
or store instructions, Emem is the overhead for memory ac-
cesses. The last term represents the sum of the energy over-
head of peripherals state. These cost are all overhead costs,
since the full consumption of a peripheral cost, for example,
is given by its base energy cost comprised in Ebase and the
overhead.

Frequency Scaling
The model presented before is valid for full speed software
execution. However, the Integrator CM922T-XA10 has fre-
quency scaling capabilities but no dynamic voltage scaling
(DVS) capabilities, hence when we reduce the frequency we
cannot decrease energy consumption.

When repeating five benchmarks at different frequencies,
we obtain the curves in Figure 2. This figure represents the
per event energy values for the five benchmarks as a func-

tion of the clock divisor, r = fref

f
where fref is the nominal

frequency (198 MHz in our case).
These curves show that energy per event increases when

frequency is decreased, and this may seem counter-intuitive.
To understand these results observe first that a given event,
e.g. the execution of some specific instruction, entails an al-
most constant number of bit flips, and that each flip uses a
fixed amount of energy. Hence, to a first approximation, and
in the absence of voltage scaling, the energy for a given event
should be a constant. However, in our platform, frequency
scaling acts only on the processor and Excalibur embedded
peripherals; the consumption of other peripherals, external
memories and FPGA is not affected. Hence, the addition
of a parasitic term which is roughly proportional to the du-
ration of the event or inversely proportional to frequency.
This is clearly the case for the curves of Fig. 2.

We must underline that all five benchmarks generate ac-

1 3 5 7 9 11 13 15 17
0.0e+00

2.0e-07

4.0e-07

6.0e-07

8.0e-07

1.0e-06

1.2e-06

1.4e-06

1.6e-06

1.8e-06

2.0e-06

Frequency effects

clock divisor

energy per event (J)

+ +
+

+

+

+ +
+

+

+

+ + + +
+

+
+

+

+

+

+

+

+

+

+

loop-cal

insn-cmp_mul

insn-cmp_nop

AHB1-reg-write

AHB2-reg-write

Figure 2: Multiple frequencies experiments: This

figure shows that the energy per event increases lin-

early with the clock period.

tivity in the modified clock domain, but not on the remain-
ing part of the platform. On top of that we kept all peripher-
als in the modified clock domain in an idle state. Hence, the
event energy cost namely Eevt, which can be an instruction
execution or a bus access for examples. In this consump-
tion we can identified two types of consumption. The first
is the energy due to modified clock domain Emc, which is
constant (CPU + bus + some peripherals). The second is
the one due to the remaining part of the platform Erp base.
Their relation in the total consumption of event is given by
relation:

Eevt = Erp base × linsn × r + Emc (8)

The first term is dependent on the frequency ratio r and
the instruction length linsn, whereas the second is not.

Linear regressions on the results presented in figure 2 gives
the following results:

Benchmark name Erp base (nJ) Emc (nJ) error (pJ)
insn-mul 10.91 26.37 572.36

insn- 10.52 19.22 258.90
insn-nop 10.54 6.35 105.61

access-AHB1 11.06 36.72 1085.37
access-AHB2 11.06 106.32 3431.46

Table 2: Linear regression results

As shown in this table, equation (8) gives a good explana-
tion for the experiments on clock frequency variation. These
results gives us an estimation of what we can consider as
base energy, which is not changing against software execu-
tion. The last two figures are the real consumption of the
events in the modified clock domain, in these cases instruc-
tion executions, and the regression error. The value for the
base energy can be approximated by the mean of obtained
values 10.82 nJ (with a standard deviation of ±2.610−2) per
CPU clock cycle. The conclusion of this experiment is that
frequency scaling and even DVS capabilities could help to
define energy consumption repartition with a finer grain.

DVS Extrapolation
In this section we present an hypothetical extension of the
previous model for a DVS enabled platform. The energy of
different events presented before as Eevt are approximated
by the basis dynamic power model (equation (8)).

As we saw before the frequency influence on Emc is null.
This is the reason why frequency scaling has no effect on
energy consumption in our experiments. But if we introduce
the fact that Vdd can be adjusted, this is not true any more.
We take the assumption that if we divide the frequency by

r we can divide Vdd by an rv =
V

ref
dd

Vdd
amount depending

on r. For example, Siminuc et al. prove experimentally
that the relation between the voltage and frequency of their
StrongARM SA1100 can be approximated by: 1

rv
= 0.66 1

r
+

0.33. In that situation the Eevt is modified and expressed like
this for instruction execution for example:

Einsn =
1

2
C

V 2
dd

r2
v

αlinsn (9)

The benefit is then of 1

r2
v

. In case we approximate the

relation between voltage and frequency in our platform, by
the one given earlier, we would have a benefit of (0.66 1

r
+

0.33)2. For a clock ratio of 2, half the speed, the energy
benefit would be of 56 % less consumption. This relation
can be applied on the modified clock domain, and thus a
NOP instruction would have cost 2.76 nJ instead of 6.35.
The base energy would not be affected.

It is clear that voltage and frequency scaling would have
been of great interest for the elements of our platform out-
side the CPU clock domain.

4.2 Model validation
To check the accuracy of the model thus built for the

ARM Integrator CM922T-XA10, we describe here our ac-
curacy tests experiments. The model were implemented in
a simulator, and its results were compared to physical mea-
surements.

Simulator integration
Our model is implemented in a simulation tool suite. This
simulation tools are composed of two simulator.

The first is a complete platform functional simulator in
charge of generating a cycle-accurate execution trace of the
software. This trace reports all executed instructions, and
all peripherals activities (state changes). This first step al-
low software developers to functionally debug their appli-
cations and supply them the material to make the second
step simulation. To fulfill this step task, we implemented
the behaviour of the Integrator platform in the open source
simulator skyeye. We also upgraded it to the cycle accurate
trace generation.

The second step is energy simulation tool proper. This
simulator implements the model presented in the previous
section. Its main task is to compute model parameters
from the cycle-accurate execution trace. It accumulates
all computed energies, and reports them in an energy pro-
file file. The format of this file is an emerging file format,
which can be visualized thanks to the open source project
KCacheGrind. This simulation step allows to get the overall
consumption of the software ’run’, figures we will use in the
next step of this validation.

Measured values Simulated values Error
Bench-name code lines cycles energy (J) cycles energy (J) cycles (%) energy (%)
jpeg 25819 6916836 1.142440e-01 6607531 1.037940e-01 - 4.4 - 9.1
jpeg2k 4686 7492173 1.268535e-01 7663016 1.200488e-01 + 2.2 - 5.3
mpeg2 24657 13990961 2.335522e-01 14387358 2.208065e-01 + 2.8 - 5.4

Table 3: Simulators results: the results obtained for execution time and energy consumption by real hardware

measurement are shown in second and third columns, the simulation ones in fourth and fifth columns. The

last two columns give the error percentile of the simulation.

Validation methodology
To check the accuracy of the resulting model, we propose
to compare the consumption estimation of the model, thus
implemented in our tool to physical measurement on the real
platform.

The test application chosen for this model validation are
widely spread multimedia applications : JPEG, JPEG2000
and MPEG2. The implementations of these three applica-
tions are Linux standard libraries. Hence they use operating
system services and standard libc functions. All experiments
could have been made with Linux (or even uClinux), since
the simulation tools are complete enough to run these oper-
ating systems. For limited measurement duration reasons,
we decided to replace these heavy OS by the lightweight
one, Mutek [7]. Linux hardware layer abstraction makes in-
terrupt request managment too long to allow a reasonable
sized image to be decoded in our measure time window.

The three applications are executed in the simulation tools
to get model estimations of their executions. As far as the
measurement setup is concerned, we kept the same setup as
the one used for model calibration, presented in section 4.1.

Accuracy
Results of model estimations and physical measurements are
presented in table 3. The second column gives an idea of the
application code complexity, by giving the total number of
source code lines. These figures do not integrate the oper-
ating system source code.

The third and fourth columns reports the physical mea-
surement results, in terms of execution duration in CPU
clock cycles and in terms of energy consumption in Joules.
Fifth and sixth columns gives the same kind of informa-
tions concerning the simulation results. Finally, the last
two columns gives the percentile error of simulation errors
of the simulation results against the physical measurement
on the target hardware platform.

These results show that a 10% error rate can be achieve
by our simple complete platform energy model. This esti-
mations are obtained in roughly less than a minute (25s for
the first simulation plus 20s for the second). We think that
the error rate of 10% is largely acceptable in regard of the
simulation time.

5. CONCLUSION
In this paper we have explained how an accurate energy

consumption model for a full embedded system can be built
from external measurements and micro-benchmarks. Our
methodology requires a prototype platform of comparable
technology. Quantitative energy data are gathered at the
battery output and are translated into per instruction en-
ergy figures by data analysis. The resulting model is thus

driven by the embedded software activity. It is for instance
possible to augment a software functional simulator with an
energy estimator. Consumption data clearly identify power
hungry operations, thus offering guidelines for software de-
sign tradeoffs. The model built on an ARM based develop-
ment board using this methodology achieved an error rate of
less than 10 %, which is accptable compared to its simplicity
of implementation and its fast running time.

6. REFERENCES
[1] Anonymous. Research report.

[2] R. Y. Chen, M. J. Irwin, and R. S. Bajwa.
Architecture-level power estimation and design
experiments. In ACM TODAES, volume 6, pages
50–66, January 2001.

[3] G. Contreras, M. Martonosi, J. Peng, R. Ju, and
G.-Y. Lueh. XTREM: a power simulator for the Intel
XScale core. In LCTES ’04, pages 115–125, 2004.

[4] N. S. Kim, T. Austin, T.r Mudge, and D. Grunwald.
Power Aware Computing, chapter Challenges for
Architectural Level Power Modeling. Kluwer
Academic, 2001.

[5] O. Landsiedel, K. Wehrle, and S. Götz. AEON:
Accurate Prediction of Power Consumption in Sensor
Nodes. In SECON, Santa Clara, October 2004.

[6] M. T.-C. Lee, M. Fujita, V. Tiwari, and S. Malik.
Power analysis and minimization techniques for
embedded dsp software. IEEE Transactions on VLSI

Systems, 1997.

[7] F. Pétrot and P. Gomez. Lightweight Implementation
of the POSIX Threads API for an On-Chip MIPS
Multiprocessor with VCI Interconnect. In DATE 03

Embedded Software Forum, pages 51–56, 2003.

[8] J. T. Russell and M. F. Jacome. Software power
estimation and optimization for high performance,
32-bit embedded processors. In International

Conference on Computer Design, October 1998.

[9] T. Simunic, L. Benini, and G. De Micheli.
Cycle-accurate simulation of energy consumption in
embedded systems. In 36th Design Automation

Conference, pages 867–872, May 1999.

[10] S. Steinke, M. Knauer, L. Wehmeyer, and
P. Marwedel. An accurate and fine grain
instruction-level energy model supporting software
optimizations. In PATMOS, 2001.

[11] T. K. Tan, A. Raghunathan, and N. K. Jha. EMSIM:
An Energy Simulation Framework for an Embedded
Operating System. In ISCAS 2002, May 2002.

[12] V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction
level power analysis and optimization of software.
Journal of VLSI Signal Processing, 1996.

	Introduction
	Related Works
	Model construction basics
	Model structure and parameters
	Measurement setup
	Benchmark Structure

	Model Contruction case study
	Methodology application
	Model validation

	Conclusion
	References

