Detection of Scans in the Polytope Model

Xavier Redon* Paul Feautrier!
May 31, 1999
Abstract

Most automatic parallelizers are based on the detection of indepen-
dent operations. Dependence analysis is mainly a syntactical process,
in which the actual data transformations are ignored. There is another
source of parallelism, which relies on semantical information, namely
the detection of reductions and scans. Scans and reductions are quite
frequent in scientific codes and are implemented efficiently on most
parallel computers. We present here a new Scan detector which is
based on the normalization of systems of recurrence equations. This
allows the detection of scans in loops nests of arbitrary depth and
on multi-dimensional arrays, and gives a uniform treatment for scalar
reductions, array reductions, and arrays of reductions.

keywords: Automatic parallelization, reductions, scans, programs trans-
formations, programs normalization.

1 Introduction

1.1 Motivation for Scan Detection

Most automatic parallelizers, whether industrial or academic, are based on
the detection of independent operations. Operations are independent if they

*Laboratoire LIFL, Université Lille I, 59655 Villeneuve d’Ascq Cedex, France. e-mail:
Xavier.Redon@lifl.fr

TLaboratoire PRiSM, Université de Versailles-St. Quentin, 45, Avenue des Etats-Unis,
78035 Versailles, France. e-mail: Paul.Feautrier@prism.uvsq.fr

do not share modified data, or, in other words, if they have no memory
conflicts. Detection of memory conflicts is mainly a syntactical process, in
which the actual data transformations are ignored. There is another source of
parallelism, which relies on semantical information, namely the detection of
reductions. A reduction is the application of an associative binary operator to
a vector of values, the result being one scalar. Reductions are quite frequent
in scientific codes and are implemented efficiently on most parallel comput-
ers. Scans are similar to reductions, but the intermediate results are kept,
thus giving a vector. Since there is no single rule for detecting associative
operators, scan detection must use pattern-matching, and pattern-matching
must be preceded by a normalization phase. Our method is based on a rep-
resentation of the program as a system of recurrence equations. This allows
the detection of reductions in loops nests of arbitrary depth and on multi-
dimensional arrays. Scans and reductions are represented in symbolic form
with the help of the Scan operator. When scans and reductions have been de-
tected, one may use the results to construct more efficient parallel programs.
While partial solutions are known [20], the design of a universal method is
beyond the scope of this paper.

1.2 The Datalow Graph

In the area of automatic parallelization a very useful structure is the DataFlow
Graph (DFG). This structure is more accurate than the classical Dependence
Graph (DG) which describes the pairs of statements having memory conflicts.
Some memory conflicts are due to memory reuse. They can be satisfied ei-
ther by enforcing sequential execution, or by expanding the data space of
the program. In the DFG, all dependences which can be satisfied by data
expansion have been removed. Hence, the DFG has the potential to expose
more parallelism than the ordinary Dependence Graph.

The DFG gives, for each reference to a scalar or array element in an
operation, the source operation, i.e. the operation that defined the value of
the scalar or array element we are interested in.

Consider, for example, the following code:

DO i=1,n
s(1)=a(i)*b(i) (i1)

END DO

s(0)=0 (i2)

DO i=1,n
s(i)=s(i-1)+s(i) (i3)
END DO

Its Dataflow Graph as given by our automatic analysis tool, PAF, is:

Source of s(i-1) in i3 ;
* if [i-2>=0] then (i3,i-1)
* if [i-1=0] then (i2)
Source of s(i) in i3 ;
* if [true] then (i1,i)

Note that the source of s(i-1) in i3 is a conditional expression.
Such expressions occur frequently in Dataflow Analysis and are called
quasts (Quasi-Affine Selection Trees) in what follows.

The results of Array Dataflow Analysis can be presented in many ways,
all equivalent up to syntactical embellishments: source functions, a single
assignment code, or a system of affine recurrence equations or SARE. The
later presentation is the one that fits best with our aims in this paper; we will
use the ALPHA notation to represent SAREs [13]. The important point here
is not notation, but the fact that an imperative program can be mechanically
converted to a SARE provided it meets the following constraints:

e The only data structures are arrays.
e The only control structures are DO loops.

o The array subscripts are explicitly given affine functions of the loop
counters.

The DFG of our example program can be expressed as the following

SARE:
i1[i] = { 1<=i<=n } : a[i] * b[i] ;
i3[i] = case
{i=0 } : 0 ;
{ 1<=i<=n } : i3[i-1] + i1[i] ;
esac

In this notation, conditions such as { 1<=i<=n } define iterations
domains, while the subscripts expressions like i-1 are shorthand no-
tations for dependence functions, in this case Ai.(i — 1).

The reason for using SAREs as the basis of our work is that SAREs are
referentially transparent, which means that a variable can be freely replaced
by its value as given by the right hand side of the equation that defines it.
This is the main tool in our reduction detection method.

Let us emphasize the fact that the DFG and SARE are equivalent rep-
resentations. SAREs are more self-contained and are easier to handle in an
automatic system, while DFGs are susceptible of an intuitive graphical rep-
resentation. In this paper, we will freely shift from one representation to the
other according to the needs of the exposition.

2 Overview of the Method

2.1 What 1s a Reduction?

A reduction — the name comes from the APL language [7] — is any operation
which takes a set of values as argument and gives a single value in return®.
Most often, a reduction is defined as the repeated application of a binary
function to the elements of the input set in some order:

s=f(... flar,az2), ..., an). (1)

Specially interesting is the case where f is an associative function. Commu-
tativity and the existence of a unit are also useful. With the help of these
properties, definition (1) can be rearranged in various ways in order to ex-
hibit parallelism. As a rough estimate, reduction of n values on P processors
takes about % +log, P units of time, excluding communication delays if any.

APL was the first language to introduce a specific notation for reduction.
In contrast, many ordinary imperative languages, new and old, have no such
feature. In Fortran, for instance, one has to write:

Program reduc
s = a(l)

'We acknowledge that this definition lacks in precision. It should be completed by
complexity considerations: the “size” of the result should not increase, or, at least, increase
more slowly than the total size of the arguments.

4

doi=2,n

s = f(s,a(i))
end do
end

and the situation is similar for C or Pascal. With the advent of massively
parallel computers, there is a strong incentive to extract the last ounce of
parallelism from sequential programs, hence the importance of detecting as-
sociative reductions.

The reader must be warned that some computer operators are only ap-
proximately associative. For instance, addition of floating point numbers is
associative up to rounding errors. While there is no reason to suppose that
a parallel reduction is less precise than a sequential one [17], the user must
be aware that a program to which reduction parallelization has been applied
may not give exactly the same results as its sequential original. The extent
of the difference depends on the numerical stability of the algorithm, and
this question is beyond the scope of this paper.

2.2 Detecting a reduction

The question is thus to identify reductions when they are concealed in a
sequential program.
It is not too difficult to identify code such as:

do 1= ...
s = f(s)
end do

The question is then whether the assignment may be rewritten as
s = g(s, e(1))

with g an associative operation. This is a difficult mathematical question.
Usually, the associativity of a binary operation has to be proved, and such
a proof may be of arbitrary difficulty. Since it is not possible, at least with
present technology, to include a theorem prover in a compiler, the obvious
solution is to use a catalog of predefined reductions and to match this knowl-
edge base against the object program. This is done in many commercial
parallelizers, which are able to recognize elementary reductions like sums
and dot products.

Such recognition of reductions by pattern matching is more complicated
than it looks: consider for example the problem of summing the components
of a vector. It may be written in many different ways, among which:

program A program B program C
s = 0. s = a(1) 1 s = 0.
do i1 =1,n do 1= 2,n do i1 =1,n
s = s + a(i) s = a(i) + s 2 t =85 + a(i)
end do end do 3 s =1t
end end end do

end

Furthermore, most of the time, the summation loop above will be encumbered
by extraneous code, which may interfere — or not — with the summation.
It would need a very large knowledge base to recognize all these forms as
equivalent.

The first idea is to go beyond “first order” pattern matching as is found,
e.g., in parsers or in such languages as ML. For instance, the best way of
deciding whether a statement s = £(s) is a summation is to compute (with
the help of a computer algebra system) the quantity f(s) — s and to test
whether the result is independent of s or not. Similarly, the best way to
handle extraneous code in the loop body is to analyze its dependence graph.
We are thus lead to the use of “matching functions” of arbitrary complexity.
The set of matching functions is the knowledge base of our reduction detec-
tor. It needs not be fixed for all times and circumstances. Special application
fields may have their own type of reductions and associated matching func-
tions. For all these reasons, it is impossible to combine the pattern matching
functions into one grand pattern, as in done, for instance, in LR(k) parsers.
Application of the several matching functions must be sequential, hence our
insistence in having as few of them as possible.

As is well known, normalization of the object program is a powerful tool
for reducing the size of the knowledge base. Ideally, all equivalent programs
should transform into the same normal form and the reduction detection
should be done on the normal form. This is clearly impossible, since it
would give an algorithm for testing the equivalence of two programs, which
is undecidable as soon as the programming language is powerful enough. The
way out is both to restrict the input language — to static control programs
in our case — and to accept imperfect normal forms, in which some but not
all equivalent programs have the same normalization.

For instance, with the system which is described in this paper, pro-
gram A and C normalize to the same form, but program B does not.
This is as it should be, since program A and B are equivalent only if
n > 1. But even adding this information will not enable us to have
program A and B converge to the same normal form, unless we find a
way for doing formal computations on reductions, a subject for future
research.

Many researchers have defined normal forms for use in reduction detec-
tion and other program transformations. The best known one is obtained
by symbolic execution [8]. When the presence of a reduction in a loop is
suspected, its body is submitted to an algebraic interpreter. Consider for
instance program C, and let s%.¢? be the values of s and t at the beginning
of iteration i of the loop. Similarly, let s¥ ¢¥ be the values of these vari-
ables after execution of statement £ in iteration :. Symbolic interpretation

of statement 2 and 3 gives successively:

2 = s+ a(i)

3? = 3?—|—a(i)

At this point, one starts the next iteration, meaning that s?,; = s?. We have
thus found the recurrence:

S?H = 3? + a(e).

Programs A and B would lead to the same recurrence. Note that adding
extraneous statements to the loop (e.g. resetting a(i) to zero after statement
3) would not change the result of symbolic execution, thus showing that this
modification does not affect the reduction.

This method is quite powerful and can be extended to handle conditional
statements in the loop body [9]. It needs a formal algebra system and its
power is directly proportional to the normalization power of this system.
However, it cannot handle either reductions on arrays or arrays of reduction
(i.e. systems of recurrence equations). The reason is that reference to arrays
elements cannot considered as mathematical variables. It is not always true
that two occurrences of a[i] refer to the same value, or that an occurrence
of a[i] and an occurrence of a[j] refer to different values.

Callahan [2] has proposed a method which can handle systems of reduc-
tions provided they are linear (i.e. their solution reduces to matrix prod-
ucts). The basic idea is similar to symbolic execution, but the interpreter
handles only linear right hand sides. Variables which are the result of non
linear calculations are treated as undefined, and the undefined value has to
be propagated across the symbolic calculation. At the end of the process,
the linearly computed variables at the end of one iteration are expressed as
functions of their values at the beginning of this iteration. Computing their
final value is equivalent to the computation of a succession of matrix prod-
ucts, which are associative. Most of the time, the iteration matrix is sparse:
Callahan gives methods to exploit this fact in order to minimize the total
computation time.

The method of [14] is quite different. The aim here is to normalize the
dependence graph of the loop. Since the size of the dependence graph of a
loop which is iterated n times is at least O(n), this is impossible in general.
The authors propose a limited unfolding of the loop body until periodic
patterns become apparent. The recognition of reductions is done on this
unfolded graph.

Our aim here is to improve on the symbolic execution method in order to
be able to handle reductions on arrays as well. Ideally, the following program

program D
real a(0:100)
s(0,k) = 0.0

do1=1,n
s(i,k) = s(i-1,k) + a(i)
end do

should have the same normal form as programs A and C.

2.3 Normalization Strategy

Our basic requirement is that the representation of a program must be a well
defined mathematical object, to be transformed by applying the usual alge-
braic rules, the most important one being substitution of equals for equals.
This requirement is satisfied in a limited way by symbolic execution: in a
basic bloc, the value of a scalar variable after the execution of a statement
is a mathematical expression, which can be subjected to ordinary algebraic

calculation. This is no longer true if one is interested in arrays and if one
wants to handle several loops as a whole.

In that case, one has to switch to a representation by a SARE in the
manner of [15]. An object in such a system is the value of a variable at a
well defined point in the execution of a program (a statement and a set of
counters for the surrounding loops), or equivalently, a point in the domain of
one the variables. The system gives relations between these values. Solving
the system is equivalent to running the program.

The Dataflow Graph, however is not a sufficiently powerful normal form
for reduction recognition. For instance, while programs A and D have the
same DFG, this is not true for program C. In fact the DFG’s of all simple
reductions we want to recognize have a very simple form which is depicted
in the following graph:

Q i —i-d (withdinteger constant)

>

The only cycle in the graph is a loop and the dependence function is a
translation. If a DFG has cycles which are not loops, we may try to shrink
them by eliminating variables by substitution. We will show later that this
is not always possible, and give a necessary and sufficient condition for this
strategy to succeed. When a loop is found, one tries to identify a reduction by
matching the associated equation with a knowledge base. Pattern matching
will be discussed in details in Sect. 4.

A program may have a large number of reductions. Once one of them is
found, we must set it aside, as it where, and try to find other ones. This may
be done simply by introducing a new operator, Scan, which has the same
relation to reduction as the integral sign [has to integration: it allows one
to give a name to an object which is not always expressible in closed form
within the underlying theory.

In graphical terms, introducing a Scan operator allows one to delete the
loop on the corresponding node. When this is done, one may continue elimi-
nating variables until other loops are found. This is best done working from
inside outward, as in this way the simplest reductions are detected first.

The result of this analysis is a new version of the Dataflow Graph in
which as many reductions as possible have been identified. The result may
still be simplified by combining reductions to build higher order reductions.
Consider for instance, the program

program E
s =0.0
do1=1,n
do j =1,1
s =s + a(i,j)
end do
end do

As a first step, we find that the j loop is a sum. The next step is to analyze

the ¢ loop, thus finding another summation which uses as data the results

of the j loop summations. These results may be combined to give — we use

here the ordinary mathematical notation:

S = 5.
i=1j=1

3 Program normalization

The first step is always the construction of the DFG and transformation into
a SARE. The reader is referred to [6] for a detailed account of this process.

3.1 Elimination of Variables Using Substitutions

As we have said, we want to keep the complexity of the pattern matching
phase as low as possible. Qur choice is to consider only one variable re-
ductions. The price we pay for that is our inability to detect “systems of
reductions”, as Callahan does in the special case of linear recurrences. Now,
computations often use temporary variables which lead to recurrences on sev-
eral variables, therefore a system normalization must be provided to collapse
multi-variables recurrences onto single-variable ones if possible. A similar
situation occurs in the case of systems of first order differential equations:

which can be transformed into one second order differential equation z” =

f(z).

The recurrence defined by the system below is a two-variables one:

10

x[i] = case
{ili=1%}: 0 ;
{il 2<=1i<=n}: yli-1] + ali] ;
esac ;

y[i] = case
{ili=1%}: 0 ;
{il 2<=1i<=n1} : x[i-1] + b[i] ;
esac ;

If our pattern matching is directly applied no scan can be detected
since there is no self-referencing variable. Our solution is to eliminate
either x or y from the system. For example if we replace the reference
to y in x by its definition, the result is:

x[i] = case

{ili=1%}: 0 ;

{ili=2%}: 0 ;

{11 3<=1i<=nl}: x[i-2] +v[i-1] + al[i] ;
esac ;

The variable x is now self-referencing (with stride 2) and a mere pat-
tern matching can point out that x is to be computed by summing
the data b[i-1]+a[i]. Going from the first to the second system is
not a simple textual substitution, We had to compute the expression
y[i-1] from the definition of y in the initial system, then substitute
it into the definition of x, then simplify the result by eliminating cases
with empty domains. See [19] for details.

We also want our scan detector to handle scans on multi-dimensional ar-
rays. In this context another problem arises: scans can be computed along
very different paths in these arrays. The problem of detecting scans along ar-
bitrary paths seems intractable, hence we deal only with rectilinear ones. An
uni-directional scan gathers its data following one vector. An uni-directional
scan associated with a multi-dimensional array represents in fact a set of

The following program computes a set of scans along the diagonals of
the array a:

DO i=1,n

11

DO j=1,n
a(i,j)=a(i-1,j-1)+a(i,j)
END DO

END DO

The uni-directional scan underlying this code has direction (})

Several detection schemes can be used according to the required precision.
The simplest algorithm consists in considering the system of equations as a
whole and eliminating as many variables as possible. At this point most of
the recurrences are defined by only one variable and a pattern matching can
take place. The drawback of this method is that since, as we will see later,
removing all cycles in a DFG is not always possible, unguided substitutions
may lead into a blind alley, while a more sophisticated algorithm may have
found a solution.

No scan can be extracted from the following system using this simple

scheme:
x[i,j] = case
{1i, j I i=1, j=1 } : 0
{1i, j | 2<=i<=n, j=1 } : yli-1,m] ;
{1i, j | 1k=i<=n, 2<=j<=m }: x[i,j-1] + ali,j] ;
esac ;
y[i,j] = case
{1i, j | 1<=i<=n, j=1 } : x[i,m] ;
{1i, j | 1k=i<=n, 2<=j<=m }: yl[i,j-1] + b[i,j] ;
esac ;

But the third clause of x and the second of y compute sets of scans.
In fact the elimination fails because the recurrences defined by this
system are cross-referencing (cannot be computed in parallel).

A more complex detection scheme can be designed using multistage elimi-
nations. The principle is to consider only some references (i.e. equations
between our multi-dimensional variables). In a first stage only the references
related to the innermost loops of the original program are taken into ac-
count. This is equivalent to considering the innermost loops as stand-alone
programs in which the external loop counters are considered as fixed param-
eters. Pattern matching is then applied and closed forms are introduced for

12

the detected scans. In the second stage we add to the graph the references
relative to the loops just surrounding the innermost ones. A normalization
and a pattern matching are performed again and so on. In this way the
elimination is obviously more efficient and we can detect more complex scans
(see section 4.1). Since closed forms appear during the detection process,
pattern matching may be applied on variables already defined by a scan. In
most cases this denote a scan whose path is piecewise rectilinear, a multi-
directional scan.

Our previous example can be handled if the counter i relative to
the outermost loop is considered as a parameter. In this context no
elimination is to be performed since the only remaining references are
the self-referencing ones in the last clauses of x and y. Let sum be the
textual equivalent of the) operator, closed forms can be introduced
for the scans:

x[i,j] = case

{i, j I i=1, j=1 %} : 0 ;
{1i, j | 2<=i<=n, j=1 } : yli-1,m] ;
{1i, j | 1k=i<=n, 2<=j<=m }: x[i,1]+sum(j>=2,a(i,j)) ;
esac ;
y[i,j] = case
{1i, j | 1<=i<=n, j=1 } : x[i, m] ;
{1i, j | 1k=i<=n, 2<=j<=m }: y[i,1]+sum(j>=2,b(i,j)) ;
esac ;

It is very important to note that the closed forms are parametric with
respect to i.

A technical issue for the multistage elimination scheme is the characteri-
zation of the references to be taken into account. At the SARE level, there
is no longer information about the loop nests. We replace the missing infor-
mation with the help of the concept of reference “pseudo-depth”. Let the
reference to an equation x in an equation for y be of the form:

Vi€ D,x(i) =...y(d(i)). ...

where d is the dependence function. The pseudo-depth is the greatest integer
p such that :
Vi € D,d(i)[1..p] = ¢[1..p].

13

Since dependence functions are supposed to be affine, the pseudo-depth can
be obtained by formally computing the vector d(:)—17 and counting its leading
zero coordinates.

When normalizing loops strictly deeper than p, one has only to consider
the references of pseudo-depth greater or equal than p.

Only circuits of references can cause the elimination process to
fail. The references of pseudo-depth greater or equal to p which
are not references relative to the loops at level strictly greater
than p cannot be included in a circuit. i

The following algorithm summarizes the steps of the multistage elimination
method:

Algorithm 1 Scans Detection

o Let S be a SARFE.
o For all pseudo-depths p from the mazimum nesting level to 0:
1. Construct the system graph of S restricted to references of pseudo-
depth equal or greater than p.
2. Compute the strongly connected components of this sub-graph.
3. Try eliminating all vartables but one in each component.

4. Apply pattern matching if the total elimination succeeded and rewrite
the detected scans in closed form.

5. Remove inter-components references of pseudo-depth equal or greater
than p using substitutions.

3.2 Criterion for Total Elimination

The goal of our elimination phase is to collapse recurrences on several vari-
ables into recurrences on only one variable. The tool we use to perform the
transformation is substitution. In this section we give a criterion for deciding
if a SARE can be transformed into a single variable recurrence.

To introduce our proof let us consider a system of ordinary equations.

14

T = fl(xk%7"'7xkrln1)

xizfi(xki,...,xk%) : (2)

We do not make any assumption on the functions (f;);e v nor on the variables
x;. In this context substitution is really the only operation we can use on
the system. Such a system can be represented using a graph. The vertices
are the n variables and there is an edge from z; to z; if z; appears in the
definition of z;. Let us consider the effect of the substitution of z¢ into 24,
T, ..., 4. The edges from zq to the other vertices are removed and the
predecessors of zy are added to the predecessors of the targets. Note that
the new number of predecessors of, for instance, a1 is not exactly known, it is
only possible to say that this number k] is between max(kq, ko) and kq + ko:
some of the predecessors of g may also be predecessors of x{, and are only
counted once. Substitution for xg eliminates it if the equation for xq is not
self recursive.

koedges koedges

- lpedges g psitution Xo ® /<z lpedges

k,edges kqedges k1 edges kiqedges

X Xq K ?}%

The substitution process terminates when no more variable can be elim-
inated. The process succeeds if, in the terminal system, all cycles are loops.

Theorem 2 (Sufficient Condition for a Total Elimination) Ifthe cir-
cuits of a strongly connected system % have a common vertex then the elimi-
nation process succeeds on the system.

ZA strongly connected system is a system whose graph is strongly connected. In the
same way a strongly connected component of a system is the set of variables from a
strongly connected component of its graph

15

Without the edges going out of the common vertex the system
graph is acyclic. Hence a topological sort can be performed on
this sub-graph. The result of this sort is a partition of the vertices
into sets Sy,...,5,. At this point one can substitute the defini-
tions of the variables in S; into the definitions of the variables in
Sy. These variables are now defined only in terms of the common
vertex variable. Repeating the substitutions until S, lead to a
folding of all circuits into loops on the common vertex. il

Theorem 3 (Necessary Condition for a Total Elimination) The elim-
ination process succeeds on a strongly connected system only if its circuits
have a common vertex.

The sketch of the proof is as follows. Let G be a strongly con-
nected graph such that for each vertex v of G there is a circuit
which does not include v. We show that a graph G’ obtained
from G by applying some substitutions include a strong com-
ponent with the same properties as (G. Moreover such a strong
component has at least two vertices, hence it has a circuit of
length greater or equal to 2.

Let us now detail the proof. The basic property of transfor-
mation by substitutions is that if v~ is a predecessor of v in G,
either v~ or its predecessors in (& are predecessor(s) of v in G'.
This implies a conservation property on paths. More precisely if
there is a path p in (&, then there is a sub-path of p in G which
starts with the first or the second vertex of p and stop at the last
vertex of p. A special case arises when the path p is in fact a cir-
cuit. In this case there is at least one circuit in G’ which includes
only vertices from p. From the conservation property on paths
and circuits, another conservation property can be deduced on
inter-circuits paths. Let ¢; and ¢y be two circuits of G, for each
circuit ¢, built from ¢y in G’ there is a path from a circuit built
from ¢; in G’ to c.

Since each circuit of G’ built from a circuit of GG has as prede-
cessor (via a path) at least one of the circuits of G’ built from a
given circuit of G (remember that (7 is strongly connected), there
is in G a strong component including at least one of the circuits
of G build from each circuit of GG. For each vertex v of this strong

16

component there exists a circuit of the component which does not
include v. Indeed since v is not included in at least one circuit ¢
of G, it is not included in the circuits of G/ build from ¢ (one of
these is necessary in the strong component). |

These results apply only to strongly connected systems but they can be
adapted for other systems. It suffices to compute the strong components
of the system and verify that each component fulfills the requirement. Our
elimination criterion formalizes an intuitive thought: it is not always possible
to solve a system of equations using only substitutions. The criterion is
mostly interesting when nothing is known about the functions (f;);emv of the
system (2). In other cases methods using more powerful operations than
substitution are generally used to solve the system.

In the context of linear equations, systems such as (2) can always be
solved. This is due to the fact that the Gaussian elimination algorithm
use substitutions and also linear simplification. Linear simplification
is a powerful tool since it can remove loops from the system graph.
For example in the graph of the system below there is a loop on the

vertex xq:
Ty = 4.$1 + a9
Ty = 2.$1
After simplification of the first equation (z; = —%5) there is no longer

a loop on zy.

The criterion is also valid for a SARE. Its graph is more complex since
some edges are defined only in a sub-domain of the variable definition domain.
This has an influence on the elimination process. After a substitution, new
edges domains are computed by intersection of the old domains. If this
intersection is void, the edge does not really exist. Hence the criterion is
always sufficient but no longer necessary. One may also say that the criterion
is sufficient and necessary if no simplification of the clause domains occurs.

3.3 Algorithms for Variables Elimination

All algorithms for variable elimination on strongly connected components
have the same pattern: find the common vertex of the system graph cir-
cuits and use a topological sort to schedule the substitutions (as described
in theorem (2)). Hence the difficult point is to find the common vertex.

17

There is a full range of algorithms to perform this operation. Let us begin
with a heuristic method, which is not very efficient but very fast. We use
the fact that a graph without cycles is also without circuits. Hence to find
a vertex included in each circuit of a graph G it suffices to consider each
vertex v of (G, to remove its outgoing edges and verify that the remaining
graph G, is acyclic. This verification can be done using the cyclomatic
number v(G,) = m’ —n’ + p/, with m’ the number of edges of G\, n' the
number of vertices of (7, (the same as the number n of vertices of) and p’
the number of connected components (i.e. 1 since (&, is a connected graph).
The number of edges m’ of ¢, is the number of edges m of G minus the
number m, of v successors. Hence one has to check for each vertex v if the
expression m —m, —n + 1 is zero. The test complexity is about O(n) but it
is only a heuristic since it does not discriminate between cycles and circuits.

This heuristic can be transformed into an exact method. It suffices to
replace the computation of the cyclomatic number by a depth-first-search to
insure that there is no circuit in the graph. This method complexity is of the
order of O(n.m).

A more efficient way for elimination is to use basic substitutions. Basic
substitutions are substitutions for variables which have only one successor.

kpedges koedges

Basic substitution
—_—

k’; edges

If a basic substitution is applied to a strongly connected graph, there is
no circuit including z¢ and the resulting graph restricted to all vertices but
xg 1s also strongly connected.

The vertex xg has no longer successors, so no circuit can in-
clude this vertex. Moreover if a path exists between two vertices
(different from) before the substitution, it also exists also after
(even if the former includes xq, since it goes through x; after the
substitution).

18

When no basic substitution can be applied to a graph, either its strong

component is reduced to a vertex and, in the initial graph, every circuit
include this vertex, or the strong component includes several vertices and a

total elimination cannot be performed on the initial graph.

If the strong component is a single vertex, the elimination cri-
terion implies that in the initial graph the circuits have a common
vertex. Moreover the conservative property on circuits enforces
that this vertex is the one in the strong component.

Let G be a graph obtained from a strongly connected graph
(G using a basic substitution. Due to the properties of basic sub-
stitutions, if the strong component of G’ is such that for each of
its vertices v there exists a circuit not including v, then G has
the same property. Now consider the final component including
several vertices. No more basic substitution can be applied, hence
each vertex has at least two successors. If a vertex v is removed,
the others have still at least one successor, so there exists a circuit
which does not include v. H

This prove that the sequential application of basic substitutions is as
powerful as the application of multiple substitutions in the context of our

variable elimination process. An efficient algorithm can be extracted from
the method provided that, for each vertex v, a sorted list of its predecessors
pred(v) is available.

Algorithm 4 Finding a« Common Vertex

1.

For each vertex v, compute its number of successors ns(v) and store
one of these in succ(v).

Initialize the stack s with the vertices having a unique successor.
Stop if s is empty or if there is only one vertex in the component.
Unstack v from s. Let v be the successor in succ(v).

Perform a sorting merge on pred(v) and pred(v't), for each v™ be-
longing to both lists subtract one to its number of successors ns(v™).
When this number is equal to one stack v~ on s.

19

6. Store the result of the merging in pred(v*t) and for each v~ reset its
peculiar successor succ(v™) to vt.

7. Goto step 3.

The complexity of this algorithm is about O(n.d™) with n the number of
vertices in the graph and d~ the maximum size of the pred lists. So it may
even be linear if, for instance, the graph is a mere circuit.

One may remark that finding the common vertex of the system graph
circuits is the instance £ = 1 of the problem of finding the minimum cutset
of size less or equal to k. Hence any one of the algorithms for finding minimal
cutsets which find every cutset of size 1 are suitable for variable elimination.
That excludes algorithm D of Shamir, but the one described in [11] is perfect.
In fact, it works for cutsets of size 1 and it finds minimal cutsets for a
number of graph classes. This last property is important since even a partial
elimination is useful: one obtains a system with less variables, which can be
analyzed faster by the later phases of the automatic parallelization process
(e.g. scheduling).

Note that a better variable elimination can be achieved using a more
precise system graph: the clause graph (whose vertices are clauses and not
variables).

The system associated to the program below
DO i=1,2*n
a(i)=a(2*n-i+1)
END DO
is

x[i] = case

{i | 1<=i<=n } : al[2*n-i+1] ;
{ i | n+tic=i<=2%n } : x[2*n-i+1] ;
esac ;

We name the clauses using the name of the variable and their rank
in the variable definition. For instance the first clause of x is x.0.
If x is included in a strong component, an elimination process may
fail because of the loop in the variable graph. In contrast the clause
graph does not have this loop, and so the elimination process may go
further:

20

Equations graph Clauses graph
X Q x.0

4 Identification of Scans

x.1

Identification of scans takes place after each phase of normalization: we thus
need a way of memorizing the results before starting the next phase. We will
first explain our notation for representing scans. Observe that this notation
is not to be considered as a kind of function call or language statement. Its
conversion to executable code is quite another problem. We will then explain
how to extract scans from one-variable recurrences.

4.1 An Operator to Denote Scans

There exists some languages (mostly languages in the area of systolic arrays
design) which include primitives for scan denotation. We can cite ALPHA
and CRYSTAL (cf. [12]). Other formalisms like LACS [16] or PET [21] can also
describe scans in an elegant way. Some imperative languages have primitives
for scans. A recent language with scan ability is HPF. It includes reduction
primitives a la Fortran 90 such as sum.

The sum of the elements of a vector x can be computed by merely writing
sum(x(1:n)). Our Scan operator is more general, and hence more complex:

Scan({ 1 | 0<=1i<=n13}, ([1]), +, x, 0)

Let us explain the meaning of this notation. The binary operation to be
applied (here, addition) is given as a parameter. The first two parameters
(the accumulation domain and the direction) state that the reduction applies
to the elements of x from subscript 1 to n with a step of 1. Subscript 0 is
used for storing the initial value (the last parameter). Moreover the Scan
operator computes the whole set of partial results. To extract the last value
of the resulting vector, we use subscripting:

Scan({ i | 0<=1i<=n3}, ([1]), +, x, 0) [n]

The HPF reduction primitives can use very complex patterns which are
described by indirection arrays. This power of expression is interesting but

21

the use of indirection arrays is not very convenient, since they have to be
initialized beforehand. We favor a more synthetic information even if we lose
some expressive power (for example, HPF allows the computation of reduc-
tions along circles, but that is not used very often in scientific programs).
Our solution is to use a single vector to describe the reduction path. Two
points in the scan domain are in the same path (and contribute to the same
result) if one of them can be reached from the other by iterated translation
along the direction vector. Points which cannot be reached in this way from
other points in the domain are given initial values.

Returning to the sum example, we easily see that there is only one
path which include all points in the domain. Furthermore, point 0
cannot be reached by translation from other points, hence it is given
the initial value, 0. The value of any other point, says ¢ > 1, is
obtained by applying + to the value of its predecessor, i — 1 and to
the local value, z;.

In opposition to the reduction primitive, HPF is more restrictive con-
cerning the scan primitives because it doesn’t allow the use of indirection
arrays; a scan is only possible along one dimension of the original array.
Since our first transformation for program normalization uses the expansion
of variables, we must deal with full scans, so we need more than a reduction
operator. Hence we consider that the Scan operator compute an array of full
scans; its result is of the same shape as the accumulation domain minus the
initial values domain. To obtain a reduction one must reference the adequate
element in the result array.

Our Scan operator has been enhanced in two aspects. Firstly, while we
consider only single variable recurrences, these may have to be converted to
vector or matrix scans in order to show associativity and hence parallelism.
An example will be given later in Sect. 4.2.2. As a consequence, the data of
a scan may be a complex object, and its operator a complex operator.

Secondly, in order to deal with scans computed along a piecewise recti-
linear path, we have to introduce multi-directional scans in Sect. 5.

4.2 Scan Recognition

Suppose now that the result of the program normalization step is one (or
more) self referencing equations:

22

i € D:ay = Exp(zaay,.--) (3)

where the ellipsis denotes occurrences of other variables and Exp is an arbi-
trary expression, which may contains several several occurrences of = with
distinct dependence functions. Equation (3) is tractable if all references to
are of the form x;,_s where § is a unique integral vector. If this condition is
fulfilled, ¢ is the direction of the scan. The domain of the scan is the domain
of 7, and the initial data is found from other, non recursive clauses in the
system. It remains to find the operator of the scan and its data. This process
will be presented here for the case § = 1. The generalization is just a matter
of notations.

All expressions which are handled by a compiler are terms on a system of
operators {1, and a system of basic terms A. Here the basic terms are x;_1, the
other variables, and the constants of our language — integers, reals, truth
values, and so on. To each operator w is associated an arity: an integer
denoted as d(w). The rules for constructing legal terms are three:

1. A basic term is a term.

2. If t1,...,t, are terms, and if w is an operator with d(w) = n, then
w(t1,...,1,) is a term. w is the head of this new term, and #4,...,1,
are its arguments.

3. There are no other terms.

It is not even necessary that € and A be finite. All we need are well de-
fined procedures for recognizing a basic term, recognizing an operator, and
computing its arity.

The set of operators depends on the underlying programming language.
It may include arithmetic operators (+,—,*,/,...), Boolean operators, el-
ementary functions (sin, cos, log, exp, ...), comparison operators, and so on.
Legal terms must also conform to type rules. We will suppose that these
rules have been checked by a first pass of the compiler. It is an easy matter
to verify that the system of recurrence equations associated to a well typed
program is well typed, and stays well typed if subjected to substitution.

4.2.1 Simple pattern matching

Let ¢t be the term which is associated to Exp in (3). The simplest possibility
is to analyze the head of ¢, and its arguments. Two trivial cases must be

23

detected first. ¢ may simply be a;,_;. In that case, the recurrence is a value
propagation, and its solution is x; = x¢. Similarly, if 2; does not occur in ¢,
the solution is x; = ¢. In both these situations, the recurrence has a trivial
parallelization.

In other cases, we must check that the head of ¢ is binary, and that, of
its arguments, one is x;_; and there is no occurrence of x;_; in the other
one. The head of ¢ must belong to a list of tractable operators. This is the
simplest form of pattern matching.

The disadvantage of simple pattern matching is that it fails as soon as
t becomes too complicated. For instance, it cannot do anything with ¢ =
(1 + 2;-1) + a;. On the other hand, adding new operators is easy. If we
devise the proper data structures, it can even be done without recompiling
the detector program, simply by reading a “rule file”.

4.2.2 Partial Normalization

The solution for finding the Scan operator in the recurrence
;= (1+xi1)+a

is simply to rearrange ¢ as x;_1 + (1 + «;) by using associativity and commu-
tativity of +. Properties like associativity, commutativity, and many others
can be expressed as equational axioms as in:

v+ (y+z)=(r+y)+=

Such axioms, when completed by the usual properties of equality give the set
of terms the structure of an equational theory. Such a theory has a normal
form if there exists a function N from terms to terms such that:

v =N(z)

and

=y = Na) = N(y),

where = denotes structural identity (two terms are structurally identical if
they are constructed in the same way from the same basic terms). Since
identity can always be checked mechanically, an equational theory which has
a normal form is decidable provided that A is computable. Since we know
that there are undecidable equational theories, we deduce that some axiom
systems admit no computable normal forms.

24

In the case of addition, for example, we can obtain a normal form by
sorting addends according to an arbitrary order in which constant terms come
last. The normal form is obtained from the sorted expression by reducing
the constants according to the rules of arithmetics.

When submitted to pattern matching, equal terms should give “equiva-
lent” results. One way of guaranteeing this property is to normalize the given
term before applying pattern matching. If we are clever enough, we can even
define the normal form in such a way that pattern matching is simplified.
For instance, in the additive example, we can select the ordering in such a
way that variable x;_; comes first.

Unfortunately, most interesting theories do not have a normalization algo-
rithm. A heuristic solution is to use partial normalization, i.e. normalization
which takes into account only a subset of the operators and axioms of the
theory.

Let O C Q) and let ¢ be a term. The O-skeleton of ¢ is a construction of ¢
in which only operators from O are used, and in which basic terms are terms
from A or terms whose head does not come from O. Partial normalization
can handle only terms in whose skeleton the elementary terms either are a;_;
or do not include x;_;. Let us suppose that O has a normalization procedure.
We can then normalize the skeleton of ¢, handling its elementary terms as
baggage, and perform pattern matching on the resulting normal form.

Let us suppose that € is the set of operators in Fortran, and that
x; is a logical variable. Let us take the set of Boolean operators
{A,V,=} as O. Viewing a Boolean expression as a tree, its O-skeleton
is the “upper part” of the tree, from the root to the first occurences
of a variable or of a comparison operator. Furthermore, since Fortran
has no conditional expression and since the 0/1 convention of C does
not hold, it is unlikely that a Boolean variable may occur beyond a
comparaison operator (one would have to use a user defined function).
Hence, Boolean expression have a high probability of being tractable.

Boolean algebra has, in fact, several normal forms. Conjunctive nor-
mal forms (CNF) can be used for detecting and-reductions, and dis-
junctive normal forms (DNF) for or-reductions.

Let us consider the following somewhat contrived recurrence:

;= (-1 V(05 > Bi)) A (xim1 V(0 < B)).

25

The Boolean skeleton of the right hand side is:
t = (aci_l vV ai) A (aci_l vV bi),

where a; = a; > 0; and b; = «; < §;. The heads of these terms are
not Boolean operators. ¢ is in DNF, and z;_1 occurs twice, hence our
recurrence is not an and-reduction. The CNF of ¢ is

t=wx;,1V (ai A bi),

which is an or-reduction. With a more powerfull normalization sys-
tem, we would have noticed that a; A b; = false, and hence that the
recurrence has the closed form solution z; = false away from ¢ = 0.
Such a normalization system must have the same power as linear pro-
gramming; its construction is probably very difficult.

4.2.3 Marshalling Associative Operators

We still have to construct a list of associative operators. Some of them are
well known: +, %, max, min, A, V, etc. Is there a more systematic procedure?
Let us put the basic equation (3) into the form:

vi = fi(wi1). (4)

This can be rewritten [4] as:

go = Ay.y, (5)
g = fiogi-1, (6)
T, = gz’(l’o)- (7)

Since o is associative, we may hope to compute the ¢;’s by a scan, and then
to compute all x;’s in parallel. But this is a mere formal manipulation,
without any practical interest, unless the complexity of ¢; stays bounded as
the computation proceeds. In practical terms, this means that the functions
fi must belong to a family which can be described by a few parameters, and
that this family must be closed under function composition.

As an exemple, consider the case where f; is a polynomial in z;. Since
the composition of a polynomial of degree m with a polynomial of degree n
is of degree mn, the family is closed only for the case n < 1,m < 1.

26

Let us take as O the set {4, —, *} with the usual properties: associa-
tivity and commutativity of + and #, the rule of signs, distributivity
of * with respect to +, and the familiar rules of arithmetic (2 + 2
= 4 and so on). If ¢ is tractable for this set of operators, its normal
form is a polynomial in z;_; whose coefficients are combinations of its
elementary terms. We conclude that a recurrence z; = P(z;_1), is a
scan only if polynomial P is of first degree:

x; = a;x_1 + b;. (8)

There are two simple cases : a; = 1, which gives a sum, and b; = 0,
which gives a product. In the general case, there are many ways of
extracting a; and b;. Since practical normalization procedures are not
always up to their mathematical specification, we may have to resort
to “mathematical pattern matching”. For instance, in the linear case,
we can set b; = t[x;_1 < 0], where e[z < f] is the substitution of f
for z in e, and a; = t[x;_1 < 1]—b;. The normalization system is then
used to prove that ¢t — a;x;_1 — b; = 0, a much simpler proposition.

Once we know a; and b;, recurrence (8) can be written in matrix form:

() 4)()

and hence is equivalent to the computation of matrix products, which
are associative.

Another example is the family of homographic functions:

ar + b
cr +d

Homabcd(x) =

which is closed under function composition, It so happens, in fact, that if we

associate to Homy,.4 the matrix then function composition for the

b
d
Hom family is associated to the matrix product. A mathematical pattern
matching routine can be devised for Hom provided our underlying computer
algebra system is able to normalize rational fractions. It would be interesting
to systematically explore closed families of functions, since each one is the
basis of an efficient parallel algorithm. The study of [1] may be a step in that
direction.

27

4.2.4 Recurrences on finite domains

Let us suppose that the variable x; in (4) has a finite domain. It is clear that
functions from a finite set to the same finite set are closed under composition.
As a consequence, a recurrence on a finite domain is always a scan.

A function f on a finite domain {ay,...,a,} can be defined by a table
of values {f(a1),..., f(a,)}. Computing f o g simply consists in the com-
putation of {f(g(a1)),... f(g(a,))}. This can be done from the tables of f
and g, and is necessarily an associative operation, as it is a representation of
function composition. Hence the algorithm for computing a scan (4) when
z; has a finite domain is:

1. Compute the tables associated to each f;.

2. Combine these tables by any reduction scheme, obtaining the tables
for the functions g; of (6).

3. Compute the results of the scan in parallel by:
T; = gz’(l'o)-

It is interesting to compare the parallel and sequential scheme for com-
plexity. Let us suppose that the domain of the variables (x;) has n elements,
that the recurrence has m steps, and that our parallel computer has P pro-
cessors. Let us take the time for a table access as the unit. Let us suppose
that the functions f; are initially given as tables. In that case the sequen-
tial time is simply m. The elementary step of the scan is an algorithm for
computing the composition of two tables £1 and £2 giving £3:

do1=1,n
£3(1) = £2(£f1(1))
end do

which takes 3n table accesses. The total time for the reduction is thus 3n(%—|—
log, P). The last step takes % times unit, for a total of 3n(% + log, P) + .
Supposing that m is large enough that we can neglect additional terms,
we have to compare m to Brtlm The conclusion is that the method is
advantageous provided that the size of the finite domain is small compared
to the number of processors.

28

4.2.5 Tactics

As the reader may have noticed, the methods we have presented are over-
lapping. The same Scan operator may be recognized by elementary pattern
matching, or only after normalization, or as a computation on a finite domain.
For example, a boolean recurrence can be recognized by pattern matching if
its operator is A or V, or as a recurrence over a finite domain if not. Our
proposal is first to distinguish cases according to the type of x;. To each type
is associated one special purpose normalisation system. Pattern matching is
then applied to the result of the normalization. If this fails, and if it can be
proved that z; has a finite domain, then the general method of Sect. 4.2.4,
which is less efficient, can be applied.

Consider the recurrence:
z; = (z,-1 +1)/3.

Suppose first that z; is a so-called real (i.e., belongs to a subset of
the rationals). Then, up to rounding errors, division distributes into
addition, and the recurrence can be normalized, with the permission
of the user, into:

r; =0.333...0;,1+0.333...,

which is linear, hence, a scan. If z; is integral, then the above normal-
ization is no longer valid, and the original recurrence is not a scan.
Lastly, if the recurrence is slightly modified into:

20 = [(2i-1 +1)/3] mod N,

where N is a constant integer, then z; belongs to the finite set [0, N —1]
and the recurrence is again a scan. This observation is usefull only if
N is much smaller than the number of processors.

Note that scan detection can benefit from information obtained by a static
analysis of the program. For instance, an expression which is apparently a
second degree polynomial may be proved linear by a constant propagation
which shows that the second degree coefficient is zero. A variable which is
declared an integer may be found to have a finite domain by interval analysis.
Conversely, the result of a scan detection may enable the computation of the
DFG of an hitherto intractable part of a program, by exhibiting inductive
variables or giving in closed form the values of the entries in an array which
is used as a subscript. The organization of such iterative analyses is a very
difficult problem.

29

5 Multi-directional Scans

A multi-directional scan has more than one direction vectors, other parame-
ters being the same:

Scan(D, (e1,...,er),b,d,g) . (9)

The direction vectors ey, ..., e span a linear subspace H and define a family
of affine subspaces H + § for an arbitrary translation vector §. Formula (9)
defines as many scans as there are affine subspaces whose intersection with D
is not empty. b is the scan operator, and the scan order is lexicographic order
on the coordinates of each point relative to its affine subspace. Points which
cannot be reached from other points of D by a positive integral combination of
direction vectors are given the initial values as defined by ¢g. The reader may
notice that this definition defaults back to the definition of a uni-directional
scan when k = 1.

Our first observation is that multi-directional scans are more efficient than
multiple uni-directional scans.

Take the example of the sum of the elements of a n x » matrix. With
only uni-directional scans, one must compute n sequential scans op-
erating on n data. With P processors, the run-time is of the order
of n(% + log,(P)). With a multi-directional scan, a run-time of the
order of % + log, (P) is expected. In the best case (when n = P) the
speed-up is about 1+ log,(P).

In our system, multi-directional scans cannot be detected directly. They
can be found using multistage elimination. When working at pseudo-depth
p, a direction may be added to a scan if its initial values reference the clause
¢ in which it lays and if the scan operator is the clause ¢ itself. The second
condition is that a new direction ey can be extracted from the definitions
of the scan initial values. A new direction cannot be an arbitrary vector:
some checks must be done on the definition of each initial value vy of the
former Scan which are not initial values of the enhanced Scan. Namely,
such a definition must be the application of the Scan operator to the data
corresponding to vy and the data corresponding to the predecessor of vy
according to the directions eg to eg.

Practically, the problem of extracting a new direction may be solved using
the PIP software [5], since testing the validity constraint is equivalent to the
computation of a lexicographic maximum.

30

Let us consider again the summation of the elements of a matrix. The
corresponding system is

x[i,j] =
case
{i,j | i=1, j=1 %} :ali,jl ;
{1i,j | 2<=i<=n, j=1 } : x[i-1,n] + ali,j] ;
{i,j | 1<=i<=n, 2<=j<=n }: x[i,j-1] + ali,j] ;
esac ;

Pattern matching is applied for the detection of scans at pseudo-depth
1. A closed form is introduced for the clause x.2:

x[i,j] =
case
{i,j | i=1, j=1 %} :ali,jl ;
{1i,j | 2<=i<=n, j=1 } : x[i-1,n] + ali,j] ;

{1i,j | 1<=i<=n, 2<=j<=n }: Scan({i’,j’ | 1<=i’<=n, 1<=j’<=n},
([0 11), +, ali’,j’], x[i’,3’]);

esac ;

Removing inter-components references leads to the inclusion of the
clauses x.0 and x.1 into the initial value of the Scan operator

x[i,j] =
case
{1i,j | 1<=i<=n, 2<=j<=n }:
Scan({i’,j’ | 1<=i’<=n, 1<=j’<=n}, ([0 11), +, ali’,j’],

case
{k,1 | k=1, 1=1 } :all,1] ;
{ k,1 | 2<=k<=n, 1=1 } : x[k-1,n] + alk,1] ;
esac ;)

esac ;

Since this system is already normalized for pseudo-depth 0, a pattern-
matching can be applied. No new uni-directional scan can be detected.
But we can try to add a direction to the previously detected scan.
Two necessary conditions for scan enhancement are fulfilled: the scan
is the clause expression, and the second clause of the initial value is

31

referencing x.0 at pseudo-depth 0 using the scan binary operation
(here an addition).

Now, a new direction ey must be extracted. The direction must verify

that for k in {2,...,n} the point (]I) has for predecessor in scan
order defined by ey and e; the point (k;1) A solution is the
integer vector ((1))

The scan enhancement is successful, we obtain a two-directional scan:

x[i,j] =
case
{1i,j | 1<=i<=n, 2<=j<=n }:
Scan({i’,j’ | 1<=i’<=n, 1<=j’<=n}, ([1 0] [0 11), +,
ali’,j’], al1,11) ;
esac ;

6 Conclusion

6.1 Implementation

Our scans detector prototype is written in C and Lisp. The most heavily
used tools are written in C and can be accessed via an ASCII interface using
a Lisp-like syntax. This interpreter combine the following tools:

o the PIP software for solving integer programming problems,
e the convex calculator from IRISA [22],
e a set of operations on systems of equations (mainly substitution).

There are two main modules in our current prototype, a module of system
normalization at a given pseudo-depth and a module for detecting scans at
a given pseudo-depth. The canonical way of using these modules is to apply
normalization at the greater pseudo-depth and then to apply the detection
module at the same pseudo-depth. If no scan is found the process may
be iterated with a lower pseudo-depth and so on. Most of the operations
are executed by the C interpreter, the only major part coded in Lisp is
the extraction of the binary operation and the associated data from the
propagation function of recurrences. In the present version of the software,

32

rules for detecting multi-directional scans have not been implemented yet;
their implementation will lead to the creation of a third module.

Consider the following extract from a real world program:

DO i=1,n
b(i)=a(i)
a(i-1)=a(i-1)+b(i)
a(i)=a(i)+b(i)
a(i+1)=a(i+1)+b(1)

END DO

print *,(a(i),i=1,n)

The system found after the application of the normalization and de-
tection module at pseudo-depth 0 is:

x[i] =
case
{ili=1 } : a[1]+al2] ;
{i] i>=2 %} :
Scan{ { i’ | 0<=i’<=n }, ([1]),
+, a[i’+1], al1]) [i] ;
esac ;
print
case

{41 i=1 } : a[1] + a[1] + x[1] ;
{ i] 2«<=i<=n-1 3} : x[i-1] + x[i-1] + x[i] ;
{i] i=n } : x[n-1] + x[n-1] ;

esac ;

A scan hidden by some manipulations on the elements of the array
a is detected. The results for some other examples (mostly from the
Argonne benchmarks [3]) can be found in [19]. All of the 18 loops
which are classified as reductions in the Argonne benchmarks can be
solved by our software with one exception (the DFG analysis cannot
be done because of the presence of a goto in the main loop)

33

6.2 Future Work

The present version of our software fulfill one of the aims we set ourselves
when we began this research: to build a much more powerful scan detector
than what is found in current parallelizers and vectorizers. We detect much
more scans than do others, and this is done with a very small knowledge
base. Our detector is almost insensitive to variations in the syntax of the
original loop nest. Last but not least, we are able to recognize scan on arrays
and arrays of scans. We believe our software is the first one to implement
this facility.

This work is obviously just the beginning on the road toward efficient im-
plementations of scans and reductions. The first problem that suggests itself
is how to use the results of our analyzer.These results are not an imperative
program, but a set of recurrence equations embellished with Scan opera-
tors. We still have to convert them back to our object language, e.g. some
sort of parallel or data-parallel Fortran. We gave preliminary solutions and
experimental results in [20] but much more work is needed in that direction.

There are, however, other applications of scan detection besides paral-
lelization. One of them is program checking (or reverse engineering). After
scan detection — and possibly some pretty printing — a program is brought
in a form which is much nearer to mathematical notations than the original.
It should be easier to detect errors — e.g. a summation which is short one
term — on the mathematical representation than on the imperative version.

There is another, possibly much more interesting application, algorithm
recognition. Toward this aim, we need a complete set of operators on scans,
and some way of organizing them in a semblance of a normalization algo-
rithm, it being understood that a full normalization algorithm is probably
impossible. We could then compare the result to a base of normal forms for
standard algorithms, e.g. all those for which we have an efficient implemen-
tation in our library. We could then replace part of the original program by
a call of the corresponding routine. If the user care to supply directives, we
could even select a version which is well adapted to the task at hand, as for
instance a vector or parallel version, or even a sparse version.

This proposal is not as farfetched as it seems. Consider, for example, the
following code for matrix multiplication:

34

do 1 i=1,n
do 1 j=1,n
s=0.
do 2 k=1,n
s = s + a(i,k) * b(k,j)
1 c(i,j) = s

Our present scan detector translates this program into one recurrence equa-
tion:

cli,j] = Scan({ i’,j’,k’ | 1<=i’<=n, 1<=j’<=n, 0<=k’<=n },
(0011), +, ali’,k’] * blk’,j’], 0)[i,j,n] ;

Besides, it seems probable — but it has to be investigated — that most
variants of this code (e.g. all those obtained by permuting the loops) will
normalize to the same or to very similar equations. It thus seems that we are
at the threshold of being able of recognizing simple algorithms from linear
algebra.

To achieve this “semantic parallelization”, a whole algebra must be build
around the Scan operator; and we must find a way to translate its rules into
a normalization algorithm. This will be the subject of future work.

References

[1] J. Aczel. Lectures on Functional Fquations and their Applications. Aca-
demic Press, 1966.

[2] D. Callahan. Recognizing and parallelizing bounded recurrences. In
U. Banerjee et al. (Eds.), editor, Proc. of the Fourth International Work-
shop on Languages and Compilers for Parallel Computing, Santa Clara,
CA, pages 266-282. Springer-Verlag, August 1991. LNCS 589.

[3] J. Dongarra D. Callahan and D. Levine. Vectorizing compilers : A
test suite and results. Proceedings of the first IEEE Supercomputing’88,
pages 98-105, November 1988.

[4] Paul Feautrier. Projet VESTA : Outil de calcul symbolique. In 6th Int
Coll on Programming, 1984. LNCS 167.

[5] Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243-268, September 1988.

35

[6]

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Paul Feautrier. Dataflow Analysis of Scalar and Array References. Int.

J. of Parallel Programming, 20(1):23-53, February 1991.

Kenneth A. Iverson. A Programming Language. John Wiley & Sons,
New York, 1962.

N. D. Jones and S. S. Muchnick. Program Flow Analysis, Theory and
Applications. Prentice Hall, 1981.

Pierre Jouvelot and Babak Dehbonei. A unified semantic approach for
the vectorization and parallelization of generalized reductions. In Procs.

of the 3rd Int. Conf. on Supercomputing, pages 186-194. ACM Press,
1989.

Peter M. Kogge and Harold 5. Stone. A parallel algorithm for the ef-
ficient solution of a general class of recurrence equations. IFEE Trans.
on Computers, 1973.

Hanoch Levy and David W. Low. A contraction algorithm for finding
small cycle cutsets. Journal of Algorithms, 9:470-493, 1988.

Y.-I. Choo M. Chen and J. Li. Crystal: From functional description to
efficient parallel code. In G. Fox, editor, Proc. of the Third Conference
on Hypercube Concurrent Computers and Applications, pages 417-433.

ACM, New York, USA, 1988.

Christophe Mauras. Alpha : un langage €quationnel pour la conception
et la programmation d’architectures paralléles synchrones. PhD thesis,
Université de Rennes I, December 1989.

R. Pinter and 5. Pinter. Program optimization and parallelization using

idioms. In ACM PoPL, 1991.

Patrice Quinton. The systematic design of systolic arrays. In F. Fo-
gelman, Y. Robert, and M. Tschuente, editors, Automata networks in
Computer Science, pages 229-260. Manchester University Press, Decem-
ber 1987.

S. Rajopadhye and M. Muddarangegowda. Parallel assignment, reduc-
tion and communication. In SIAM Conference on Parallel Processing

for Scientific Computing, Norfolk, 1993.

36

[17]

[18]

[20]

[21]

[22]

23]

Michele Raphalen and Bernard Philippe. Précision numérique dans le
cumul d’un nombre de termes. Technical Report Publication interne 253,
Institut de recherche en informatique et systemes aleatoires (IRISA),

April 1985.

X. Redon and P. Feautrier. Detection of scans in se-
quential programs. Technical Report AS-175, Laboratoire
d’Informatique Fondamentale de Lille, May 1997. URL:

ftp://ftp.1ifl.fr/pub/reports/AS-publi/an97/as-175.ps.gz.

Xavier Redon. Détection et exploitation des récurrences dans les pro-
grammes numériques en vue de leur parallélisation. PhD thesis, Univer-
sité P. et M. Curie, January 1995.

Xavier Redon and Paul Feautrier. Scheduling reductions. In ACM Int.
Conf. on Supercomputing, Manchester, July 1994.

Eric Violard and Guy-René Perrin. Reduction in PEIL. In COMPAR 94,
LNCS 854. Springer Verlag, 1994.

D. Wilde. A library for doing polyhedral operations. Technical Re-
port Internal Publication 785, IRISA, Rennes, France, Dec 1993. Also
published as INRIA Research Report 2157.

David G. Wonnacott. Constraint-Based Array Dependence Analysis.
PhD thesis, University of Maryland, 1995.

37

