Application Domain-Driven System Design
for Pervasive Video Processing

Zbigniew Chamski, Marc Duranton
Philips Research, Eindhoven, The Netherlands

{ zbigniew.chamski,marc.duranton} Ophilips.com

Albert Cohen, Christine Eisenbeis, Paul Feautrier
INRIA, Rocquencourt, France

{ albert.cohen,christine.eisen beis,paul.feautrier} Qinria.fr

Daniela Genius
Université Paris 6, Paris, France

daniela.genius@lip6.fr

Abstract Pervasive video processing in future Ambient Intelligeaneironments sets new
challenges in embedded system design. In particular, vigty jrerformance re-
quirements have to be combined with the constraints of geeplbedded sys-
tems, frequently changing operating modes, and low-cagh-¥olume produc-
tion. By leveraging upon the key properties of the applaratiomain, we devised
a computation model, a hardware template, and a programagipmpach which
provide a natural mapping from application requirements¢omplete system so-
lution. Our approach enables the direct exploitation ofocorency and regularity
in achieving the combined challenge of adaptability, penfance, and efficiency.

Keywords: SANDRA, video processing, timed process networks, hierarchicdlitecture,
piecewise static control.

1. Introduction

Vision plays a dominant role in human perception, placinyasve visual-
ization and video processing at the heart of the Ambientligémce concept.
The underlying properties of adaptability, anticipatiand ubiquity make the
video processing sub-systems operate in a changing envénatnp and require
run-time flexibility. While video processing is essenyaiégular, user interac-
tions and communications with other devices introduceataity in operation
modes, system loads, and quality-of-service requirements

In media streaming applications of un-encoded data (befoceding/after
decoding), most events can be predicted and anticipateden@ier the ex-
ecution latency of individual tasks can also be predictedriposed), asyn-
chronous (interrupt-triggered) control can be entirelynglated, leading to a
fully predictable, real-time system. This in turn enableigater dimensioning
of the system, reducing the difference between averageeaidpgerformance,
and thus, directly increasing its efficiency.

At the same time, upcoming display technologies and everawipg com-
pression standards enable a dramatic increase in contérdigplay resolu-
tions. The corresponding performance requirements arenoethe reach of
general-purpose processor architectures, implying teeotidomain-specific,
multi-processing solutions and an increased system coihpl&et to become
commercially viable, these solutions must additionallfiséa the criteria of
silicon efficiency (area and device utilization, power gliaton), affordable
system design effort, and low manufacturing costs.

In the SANDRA (Stream Architecture eNgine Dedicated to Real-time Ap-
plications) project, we tackled this challenge using a glapproach driven
by the key characteristics of the application domains (igee and post-
processing): massive amounts of parallelism, piecewigelae processing of
structured data, predictability of events, multiple pssirg rates, and explicit
temporal requirements in applications. These charatitsriwere used to iden-
tify a suitable computation model, which in turn determimedny aspects of
system hardware and software. Ultimately, this led to tHmilien of a system
template and a programming flow in which the requirementheépplications
are driving the entire design process. The requirementsbedded systems
are also taken into account: theORA system is designed to be silicon effi-
cient, satifying hard real-time constraints and havingdlest possible power
consumption and memory bandwidth.

The scalability of the architecture is also important toeayth various ap-
plications and instances of embedded systems: a basers\ sub-system
can be easily extended with new blocks using an intra- or-ttig network,
while still using the same model and representation of agpdins: it is seen
as a single entity, with higher performances. The “conrBatature of Ambi-

3

ent Intelligence systems enables to think of even more stipaied systems:

for example a 8NDRA system inside a camera could use the resources of an-
other SA\NDRA system in the TV set for increasing its computational power
during, e.g., video segmentation or depth reconstrucifom right communi-
cation channel is available).

To address the complexity of programming such inherenthcoaent sys-
tems, we propose to move away from sequential applicatisorigions to-
wardstimed process networiS], which are much more suitable to our target
application domain. Process networks directly capturectimeurrency avail-
able in the applications, and temporal annotations atthéberocesses (or
groups thereof) provide a natural way of representing thetj requirements
of the applications. It also helps in distributing tasksoosgparate instances of
the system, allowing networking at the SoC level and at thi+olip/multi-
device level. The introduction of the quantitative timeresgntation, impor-
tant for real-time guarantees, also helps in characterittie communication
links (bandwidth, latency, buffer requirements). The hasg system can pro-
cess data "on-time” and not necessarily as fast as possilidajing to deter-
mine the slowest possible clock required for performinghetamction, and
thus reducing the global power consumption.

The hierarchical organization of th@SDRA architecture reflects the struc-
ture of both applications and data they manipulate. Fronpthgrammer’s
point of view, applications are seen as computations oerift levels of data
structures. From the system design point of view, the hibsaof control and
communications exploits temporal and spatial locality ifoece storage and
bandwidth requirements. It also helps addressing the isEoa-chip signal
propagation delays.

Another challenge of the project was to support the hardtieed require-
ments of “live” stream processing in combination with thendsnic reconfig-
uration inherent to most Ambient Intelligence applicationWe propose to
address this issue through piecewise static control: thedsding and map-
ping of computations and communications iRNBRA is made statically for a
range of “scenarios” defined by the different levels of maximload guaran-
tees and throughput/latency requirements. Within eadhmesie the schedules
and resource allocations guarantee the respect of penficanand resource
requirementsvhile ensuring the best possiléficiency

This paper is further organized as follows: section 2 intic&s the applica-
tion domain and the representation of applications usedND®A. Section 3
presents the overall structure of theN®RA compilation chain. Key issues in
code generation are presented in Section 4. Section 5 desc¢he key system
architecture concepts ofASIDRA.

4

2. Representation of Applications

When designing a domain-oriented system suitable for acrah@pplica-
tions, the characterization of the application domain ig@aduccess factor: it
makes possible to exploit application properties in aniefficway.

The target domain of &\DRA is real-time media stream processing. We
provide a tentative solution to the system design issuescisgnce of:

massive amounts of parallelism;

piecewise regular processing of structured data;
predictability of events;

multiple processing rates;

explicit temporal requirements in applications.

The application model must capture the concurrency anetiraalattributes
of the applications and of theaBiDRA hardware. In addition, the applications
operate on structured data whose size has to be taken imdoradn the model.
When combining a machine description of the target systeth thie infor-
mation of an application’s degree of concurrency, data, siliek rates and
hierarchy, it is possible to determine the peak and averageviidth values,
end-to-end and patrtial latencies, intermediate buffezssimtilization rates of
target system elements, etc.

2.1 Multi-Periodic Process Networks

To enable fast retrieval of time and resource propertiesvatyestage of
the design process, we developed a process-based ajgplicatidel called
Multi-Periodic Process Networks (MPPN; a detailed prestion and discus-
sion of the model can be found in [5]). The MPPN model is irsgiby Kahn
process networks [10], Petri nets variants such as evephgrg2], and by
Control/Data-Flow Graphs (CDFG, [15]). It also shares somagvations with
the COMPAAN project [11] within the ROLEMY environment [4].

The MPPN provides four distinctive concepts: (1) expliginchronizations
between processes, (2) bounded-size communication dsa(Bea quantita-
tive notation for delays, latencies and periods of processed (4) a hierarchi-
cal composition mechanism for building aggregate proceeen elementary
ones. In particular, the two latter features of MPPN are &mental when
distributing applications onto networks oRSDRA instances. The hierarchi-
cal composition helps in partitioning, and the quanti@timodeling of delays
and latencies allows the MPPN network analysis tools to klifethe com-
munication channels are suited to the proposed partitjprisigure 1 shows a
simple MPPN for a two-dimensional polyphase filter, appt@the downscal-
ing of video frames from a high definition 20 x 1080) to a low definition

5

(720 x 480) screen; the filtering process is decomposed into a hoatstdage
(sub-procesgs) and a vertical stage (sub-proces3.

frame clock
30Hz SD output

2 2 1
()

HD input

H-filter V-filter
1

BN gun.
CANLCA

T T

6
P2

Figure 1. MPPN representation for a downscaler

The HARRY verifier tool that we have built checks the coheyeoicthe in-
put data and timing constraints and computes the requiriertaizes, process
latencies, bandwidth and resource usage. It uses an XMEeseptation of a
MPPN (cf. Figure 2). This representation is designed suahah MPPN can
easily be abstracted from aa8.y program (see 3.1). At present, it handles
cyclic networks and clocked processes but not the sphtirétor extensions.

We tested MPPN models for five typical applications: dowtecaith a
polyphase filter, horizontal split-screen display (sefithtnd selector), picture-
in-picture (full example with deep hierarchy), advancet-aliasing filter (pi-
pelined execution and complex acyclic graph), and noiseection (cyclic
graph). Using ARRY, we solved the network’s equations to check for sound-
ness and compute the missing parameters. Finally, we dedeseurce re-
guirements (memory sizes, bandwidths, functional unintsu

The MPPN model was designed to leverage upon the key prepeatithe
domain of pixel-stream processing (predictable behavegular processing,
extended stream semantics with a steady state, timing amdwidth con-
straints, few data dependent control loops). Its main éitiahs are the fixed to-
ken size and the restricted splitter/selector semantimiseT sizes are bounded
to allow the design of predictable systems, possibly leadina worst case
design (this is also the case with ASIC design.) The splétgdector model
can hardly be extended without losing static schedulgbititit applications
that have non-deterministic (or data dependent) splitssatetts also have an
upper bound in their activation frequency, allowing for gpximate MPPN
model. Extensions of the model are possible, at the expehaebiy com-
plexity increase. We therefore preferred to use simplificatand perhaps less
optimal solutions to model the few applications that esdag® the common
characteristics of the domain.

3. Compilation Chain

The compilation process consists in mapping the timed gsooetwork rep-
resentation of the application to the hierarchy of contr@mory, and process-

6

<! DOCTYPE MPPN SYSTEM " MPPN. dt d" > = HP N ¥ML Document
<MPPN>
<l-- The first process --> ¢ [CJElement: Process
<Process id="1" [Text
Type="Nor mal "> @ [Element: Name
<Name>HDI nput </ Nane> O e

@ 3 Element: InPort

[Text:

© [[JElement. QutPort

<Qut Port Channel | D="1"
Start="true"

End="f al se" [Text
& 2073600 > [} Element; Bandwicith
<Bandwi dt h/ > [Text:
<Message/ > Y [Element: Message
<Access a="1"/> [Text
<Lat enpy I="0"/> @ [Element: AccessLatencyRan
<Bur sti ness/> O Text
</ Qut Port > @ [Element: LatencyRange
DText
<l--) Process paraneters --> @ [Element: BurstinessRange
<Peri od/ > [Text:
<Burstiness N="1"/> [Text:
<Lat ency/ > [} comment: Process parameters
<Pi pel i nedExecuti on/ > [Text:
<Activation/> [y Element; Pericd
</ Process>

<l-- ... -->

Figure 2. Sample XML representation and parse tree

SALLY

Application

21 | HARRY
Verifier

4

Input

Cogtrol
Connect

(Video, 3D...)

Output

Top Level PILo-LORA
Scheduler

and Resource

Allocator
Level 2 I comoo Ol R $ 49409090\ \ -
I=Cee] = CE

Code Rewriting
Code Generatol

SANDRA
Assembly

Figure 4. SANDRA compilation chain

Figure 3. Hierarchical control and

sto rage
SYSTEMC
Simulator
Code

ing units which form a 8NDRA instance. Both the mapping of an application
to the SANDRA architecture and the validation of the resource conssdont
this application rely on a model of system. The model pravigeantitative
target system models at multiple levels of refinement andigiom. By com-
bining this information with the timed process network egamtation of the

7

requirement®of the application, it is possible to carry out performanstnea-
tions in a systematic way, even at early design stages @radghplications or
the target system.

The purpose of the compilation chain oki$DRA is threefold:

= providing timed simulation models to be used in design-spaxplo-
ration and debugging of functional and temporal behavioBafiDRA
applications;

= generating code and parameters for general-purpose aiwthetunits,
for each controller, at each layer of the architecture; thist be fully
automatic because the execution model is too complex to feidth at
the application level;

= optimizing the code such that the time constraints are featisvhile
minimizing memory, computation and communication resesydedi-
ous optimizations and transformations are automatic, Heeitengineer
can still drive the design space exploration using an atispiacess-
network model of the application.

In the high-level synthesis community, Control/Data-Fi@naphs (CDFG)
have been a successful representation for data-intengpleations with tim-
ing and resource constraints [15]. Indeed, CDFGs can bdaieulfor design-
space exploration, they serve as a basis for optimizingstoamations, and
of course, they enable code or circuit generation. WellAkmoesearch tools
such as HPER[15] or PToLEMY [4] (with alternative data-flow graph mod-
els) have been developed in this area.

Several compiler techniques developed for resource-@nest scheduling
of loop nests can reconstruct the control and data structunapletely through
algebraic loop-nest transformations [9, 16]. These teplas can distinguish
between each iteration of a loop or each value of a streaay/a@nabling much
more aggressive transformations.

However, the better efficiency of such techniques comes aica: psome
of the versatility of CDFGs and other flow-graph approacise®st, like the
ability to handle arbitrary control flow or the natural intation of timing and
resource constraints. But since our applications do ngiorhBrbitrary control
flow, and despite the lower versatility and the higher corapomal complexity,
we believe that only aggressive techniques can efficiemtiyédss the resources
of the highly parallel architecture.

The structure of the &NDRA compilation chain is sketched in Figure 4,
where numbers link transformation phases and code repatiees to the rel-
evant sections. Compilation starts with an applicationcdpgon specified
in the high-level languageAs Ly (section 3.1) and checks real-time properties
with the HARRY verifier (section 2.1). During the design space exploratioa
YAKA multidimensional affine scheduler (section 4.1) and thed®LORA

8

software-pipelining tool (section 4.2) produce one or sav&chedules and re-
source allocations of the concurrent program; the programmay drive the
exploration in suggesting a coarse-grain mapping of (sgragesses to A\ -
DRA controllers. The code rewriting phase (section 4.1) reggas 3\LLY
code from the abstract schedule, allowing for iterativenegfient of the sched-
ule. Finally, cycle-accurate simulation code amiN&RA assembler code are
generated from the fully scheduledhS.y program. All communications be-
tween software modules are done via XML files, while the tasis their own
internal formats.

To accommodate the flexibility of the hardware templatefveafe tools
supports parameterization by a machine description filedbatains the in-
formation necessary for the code generation stage. It ammlessly interacts
with HARRY'’s evaluation of communication latencies, parallelisnffdruand
bandwidth requirements, and the results may be fed backrathine descrip-
tions of higher-level operations. Eventually, the mactdescription file feeds
YAKA and RLo-LORA for resource allocation information, enables the auto-
matic generation of simulation models, and provides a eefex for regression
testing of the actual hardware. This pervasive use of thehmaaescription
is a major governing principle in theASIDRA architecture and compilation
chain.

3.1 The SaLLY Language

In order to capture both functional and non-functional rezaents of ap-
plications at the program level, we designed a small, doroaented language
called S\LLY . Rather than extending a sequential language such as C, C++,
or Java, we propose to use a clean set of concepts tailorée characteris-
tics of the application domain, and we provide constructilvhre familiar to
domain specialists. This in turn makes it possible to formeahpplication re-
quirements, while still allowing the compiler to performrdain-specific anal-
yses, verifications, and optimizations.

SALLY is a declarative language. At the core ofL8Y is the synergy be-
tween structured data types (arrays and records), iteraod processes.

Variables in LLY arestreamf array or scalar values, indexed by iterator
values. Each variable has an associate®x domain(possibly unbounded),
which identifies all index values for which this variable efided [13]. 3\LLY
variables correspond directly to channels in MPPN.

Iterators are a uniform concept for expressing loops (eitlaeallel or se-
guential) and event-based processing. Three types ofdtsrare available:
indices correspond to unordered, potentially concurrent iterati@ounters
correspond to ordered, i.e., serial iteratiookicksare counters with quanti-
tative time distribution, they are used to capture the tiea¢- requirements of

9

the application. Processes are sets of equations or netwbdther processes
that are evaluated in response to a change of value of a kjpgeig called the
trigger, mapped to an iterator defined outside the process.

The basic statements oABLY are equations and process activations. State-
ments may be explicitly associated with an iterator. @guationdefines the
value of a variable as the result of evaluating an expressitime current con-
text of iterator values. A process definition consists ofraarface definition
and abody: the body lists the local variables of the process followgdt®
equations and subprocesses, whereas the interface defimitvides type sig-
natures and names for the input/output ports, along withinvecation param-
eters of the process. A process activation instantiatepitheess, binds the
ports and parameters of the process with actual variabidsyaps thérigger
of the process to an actual iterator.

SALLY programs can express parallelism in three ways:

= by triggering multiple statements/processes on the saradr (there is
no explicit sequential ordering; instead, the dependsnaie extracted
and checked at compile time);
through unordered iterators¢r all i do...);
through array-wide operators.

The first method provides a natural expression of contr@lfgdism, while
the last one is specifically directed at data parallelisne dimordered iterators

provide a means of trading control parallelism for data jpelism.
Example: Figure 5 shows a short excerpt fronSaLLY implementation of a two-dimensio-
nal polyphase filter.

extern clock franeStart 30Hz
cl ock output _line_clk 660 @FrameStart (* visible + Vsync *)
cl ock visible_line_clk output_line_clk[100 .. 579]

node Vstage(param float VFL_coefs[64][6], paramint VFL_of f[64][6],
input pixel frane_after_HFL[1080][720])

decl s
(* after Vfilter: 480x720 pixels *)
pi xel frane_after_VFL[480][720]

code
(* franme-level V filter invocation *)
frame_after_HFL -> VFL_stage(VFL_coefs, VFL_off) -> frame_after_VFL
every frameStart

(* output ctrl at line level *)

frame_after_VFL[visible_line_clk - 100] -> QUTPUT -> VO D
every visible_line_clk

Figure 5. SALLY application example: filtering and output

The first three lines define iterators (clocks) used byrthén process: franeSt art
runs at 30Hz and is provided by the environmeatit put _| i ne_cl k is a clock running

10

at 660 times faster thakr anmeSt art and is reset to zero at every tick Bf aneSt art ;
vi si bl e_l i ne_cl k is a sub-sampling obut put _I i ne_cl k and is only active when
out put _l i ne_cl k value is between 100 and 579 inclusive.

The procesd/st age takes one input valuef ¢ ane_af t er _HFL array) per activation,
usingVFL _coef s andVFL_of f set as per-activation parameters.

When triggered, procesgst age will activate procesd/FL_st age at every tick of clock
FraneSt ar t, and will activateOUTPUT for every tick ofvi si bl e_l i ne_cl k. Each ac-
tivation of VFL_st age consumes the current value fof ame_af t er _HFL, produces a new
value off r ame_af t er "VFL and uses the current value @FL_coef s andVFL_of f as per-
invocation parameters. Each activation @JTPUT selects an appropriate line from the latest
value off r ame_af t er _VFL, and acts as a sink node (output\f@ D). =

SALLY programs form a concrete representation of MPPN, with thi-ad
tion of complete information on process internals. Thiginfation is critical
to the precise evaluation of MPPN parameters such as pracesshannel
latencies, based on a machine description of the under§AnNpRA architec-
ture. In this way, 8LLY program analysis and transformation can leverage on
all techniques developed for MPPN.

The actual computation of bandwidth, buffer, latency argbuece usage
properties is done by the ARy verifier. The MPPN abstraction of aaBLy
source code enables fast estimation of these propertiéghvig critical to
the design-space exploration of application and the tasgstem. HRRY
output is also used to find the necessary sequential andgticoinstraints to be
included in the 8LLY program, and to identify over-constrained applications
not amenable to parallelization. It gives also a quick gajo@nswer in case of
distributed application onto an network of resources: tralable bandwidth
and latency of the communication channels are checked stgéi@ current
application partitioning.

4. Scheduling and Code Generation

The scheduling phase benefits of the domain-specific secsanftiSaLLy :
array and iterator structures are constrained such thatonyedependences
(i.e., causality constraints) can easily be captured atethe of each itera-
tion using classicahrray dependence analysischniques [8]. Dependences
are described by systems affine constraintenforcing sufficient conditions
to make a schedule valid. In additionalSyY processes explicitly communi-
cate through FIFO channels following the semantics of MRPEstending
array dependence analysis to communicating processesa®tn match ev-
ery send with its corresponding receive, i.e., to count thelver of sends
and receives; this may lead to polynomial expressions wbamwnications
are nested within multiple loops. To get back to a classio@yadependence
analysis problem, we convert each send/receive statemterda store/load ref-
erence into a cyclic buffer. This corresponds to a candidafementation

11

for the channel, assuming that the buffer is bounded andthlealbounds are
known at compile-time, which is easily checked on the MPPNl@ho

The resulting affine constraints can be handled by Feastiseheduling
algorithm for “static-control” loop nests [9] (a class tlratludes most stream-
ing algorithms), proven optimal in terms of asymptotic flaism extraction
[17]. This method uses an efficient constraint solver baseldavametric Inte-
ger Programming, PIP [7]. In theory, the result should be #idimensional
affine schedule for the whole program, telling when eachiien, operation or
communication should occur. In practice, PIP may not sealarge systems
generated from real-world streaming applications (its jglexity is exponen-
tial in the worst case). Instead, we can benefit of the hibreat decompo-
sition of the S\LLY program to cut down the scheduling problem to tractable
pieces. This approach has already been studied and imptiednarthe context
of the Alpha language [6].

4.1 The YAKA scheduler

The YAKA scheduler is the first step in the construction of the target p
gram. It is invoked as soon as a first sketch of the architedtioumber and
type of the operators, size of the memory) is available. Tiimation may
be given, e.g., by a preliminary analysis using MPPN or beegeird by the
designer. It has two input interfaces. First, a C-like pamgming language
(sYAPI) with process, channel, port and send/receive sites; its ease of
use makes it suitable as a development tool. The secondaiceeis an in-
termediate representation in XML format (a convenient whyepresenting
syntax trees) and do not impose any semantics on the desidinere is a
DTD for this representation, which is primarily intendedda&sumentation. In
a future version, it is intended that theiSYy parser will generate an instance
of such XML representation.

Eventually, the present version generates C code throagidatd polyhe-
dra scanning techniques [1, 14, 3]. But the hierarchicatrobistructure of
SANDRA will require more work to generate low-level code (code caoin,
code partitioning for different controlers, explicit geagon of communication
patterns, memory management).

In its standard version, AKA does not address operation latency, real-time
constraints, allocation of computations to theN®RrRA controllers and low-
level operators, and memory/register allocation. Thémaky, these additional
constraints and tasks do fit into the¥A model thanks to linear encodings,
see e.g. [16]. Latencies and real-time deadlines are @pthirough additional
affine constraints, andAKA automatically converts resource constraints into
artificial dependences (based on a cyclic allocation ofuess to competing
operations).

12

Trade-off between timing and register u

30 |

a0 |
node HFL_el en(param float coef[64][6],
250 1 in pi xel iline[1920],
out pi xel oline[720])

{ ...
20084 1 (* polyphase FIR filter *)
i oline[t] =
150 x 4 SUM(i [0..5],
A tnpline[src_idx(t,720,1920)+i-3]
10 X J * coef [HFL_Phase[t]][i])}

Registers

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6. Software pipelining of one HFL step

Most of the practical work aroundAkKA has to do with a better integration
in the SANDRA compilation chain, both at the input and output sides. On
the theoretical side, the problem of taking into accounbuese constraints
(e.g., a limited number of adder-multipliers) has only j@hidolutions. In the
present version, this is mainly obtained by adjusting tke sf circular buffer
(since the degree of parallelism cannot be higher that threuatrof writable
memory). This is unsatisfactory, as it needs manual atlatrdoetween phases
of the application. Another point is that the present sclexds not modular,
and the subroutines in the source have to be inlined.

4.2 Software Pipelining and Hierarchy

We are working on two possible solutions to improve the sahlied quality.
Both of them are based onlFo-LORA, an existing software pipelining tool
developed at INRIA that performs loop instruction scheuyl{PL0) as well
as loop cyclic register allocation @GRA). Unlike usual modulo scheduling al-
gorithms, PLO implements the non iterative-DESP [18] software pipetinin
algorithm: it handles fine-grain resource constraintsiuitiog register types,
non-uniform instruction formats and arbitrary reservattables. Lo pro-
vides heuristics for the control of register pressure. Rstance H.0-LORA
can software-pipeline an elementary step of HFL (HorizoRifker) and give
the Pareto curve drawn in figure 6 for trading-off registeygsure against tim-
ing in a dimensioning phase of the lowest level of thesSRA architecture. In
this example, the analysis assumed a design with 4 mutspleadders, and
3 memory ports (2 for loads and 1 for store instructions)hwatencies of 20
cycles for loads and stores, and 10 cycles for multipliedsadders.

We are also considering other approaches for exploitingpA.oRA. The
first approach consists in regardingL®-LORA as an alternative to AKA’s
affine scheduling. Based on array dependences and resertadies for every

13

subtask involved in a process, the DESP algorithm can béeabial the inner-
most loops of the process. Then, application to the wholgrara requires a
recursive application of IRo-LORA along the process hierarchy, much like
hierarchical software pipelining techniques [12]. In pi@e, it requires an
additional effort by the programmer sincelL® is not able to automatically
assign processes ta\BDRA levels; hence a prior coarse-grain mapping has to
be provided along with the& Ly source code.

Another approach — currently in progress — consists in coimbi the
YAKA scheduler with a software pipeline “microscheduling” ghastegrating
resource allocation and fine-grain rescheduling. E.gKAYis appropriate for
detecting (possibly unlimited) parallelism in loop nestel@Lo-LORA is
much better at allocating resources and scheduling thernmos loops in the
code generated byAKA . Artificial scheduling constraints may be added to
YAKA in order to make the innermost loop code scheduling moreeitic

4.3 Simulation of Sally programs using SystemC

In parallel with the development of the compilation chaim fative tar-
get programs, we developed a tool generatingg&MC simulation models
directly from SaLLY programs. The generation ofrSTEMC models lever-
ages on the direct correspondence between core elemengsteh® and the
SALLY process model, including time-related features (clocledays) and
concurrency. Latency requirements information from thpliaption source
code is used to define run-time consistency checks relatddadline respect
etc.

The SystemC models are generated by combining two sourcasonf
mation: a LLY program (used as a specification of application require-
ments, both functional and temporal), and a target systesorigg¢ion con-
taining the functional and temporal capabilities of eletagnprocesses used
in that SALLY program.

The granularity of the generatedr STEMC model directly corresponds to
the granularity of the processes described in theL8 program. When the
SALLY program is refined to use actual operations of the targeemsysthe
resulting sTeEMC model will be equivalent to a compiled instruction set
simulator of the target for the application specified by thelS program.

This approach to simulation model generation providesragaelvantages:

m direct representation of time (clocks, latencies) and ameacy repre-
sented in LLY programs;

= elimination of verbosity in SystemC programming, part&iy in class
declarations; the &Ly process interface declarations are on average
ten times smaller than the corresponding SystemC dedagati

14

= automatic generation of behavior cross-checking and tieydprofiling
code, e.g., detection of missed deadlines, monitoring@fgss activity;
the latter complements the analysis capabilities aRRY, providing a
dynamic feedback on the utilization rate of processes, oogss net-
work latencies, and on traffic shapes of inter-process camirations.

= automatic generation of activity traces using SystemGCetganeration
facilities; a side-by-side analysis of the evolution of gges states sim-
plifies the analysis of synchronization errors and gredtiyp§fies ap-
plication debugging.

5. SANDRA System Architecture

To achieve the required degree of flexibility, all elementghe system
should be configurable: functional units, their intercastios, control mech-
anisms, and memory subsystem. The frequency of reconfigurat the dif-
ferent system elements depends on the nature of the taskg peiformed,
and can vary from several Hertz (mode changes, transitietwden video
frames) to several tens of MegaHertz (sub-pixel filteriri@gntralizing the re-
configuration decisions would lead to a severe control étitk in the system.
Instead, we propose to distribute the control and orgathigesystem using a
hierarchical approach, driven by and adapted to the clarsiits of the target
application domain.

The presence of explicit timing/frequency requirementsaigeted applica-
tions led to another fundamental decision: instead of dkeguhe tasks as
fast as possible (driven by the intrinsic speed of hardwasdutes), the tasks
are triggered right-on-time, synchronized with specifiergg. This mecha-
nism addresses a major shortcoming of conventional irgétriggered archi-
tectures, which maximize average performance, and teléagdncy on “low-
probability” events, expected to arrive fully asynchroglguvith the operation
of the processor.

In our approach, the coordination of tasks operating atdin@esrate is per-
formed by a single controller, which delegates the contfohdividual tasks
to the next level of the hierarchy. This mechanism is agagdus control
sub-tasks inside each of the top-level tasks, and can besieely repeated
for as many levels as required. Conversely, tasks with iedeent clock do-
mains may be executed by different controllers without eessary synchro-
nizations. Finer-grain (thus, higher-frequency) taskeelstricter latency and
bandwidth requirements: they require fast access to dataadrigh storage
bandwidth. Conversely, coarse-grain tasks can toleraigelolatencies than
the rest of the system. This fact is reflected in the memorycamimunica-
tion structure of BNDRA. The lowest levels of the system hierarchy use small,
fast memories fully interconnected with relatively simpjeerators (FIR filters,

15

etc.). Higher levels of the hierarchy offer a lower numbelaofer memories,
and communicate through a higher-latency network. In tfag, woth the lo-
cality of data references and the natural synchronizatfdasks at each level
can be fully exploited within a unified system organization.

5.1 Functional Structures

The SANDRA hardware (see figure 3) consists of four distinct, supegose
architecture layers corresponding to the different fuomi of the program-
mable system:

1 A hierarchicalcontrol layer managing resource activity and enforcing
data dependences and real-time constraints on the threefotfctional
structures of the &\DRA hardware.

2 A clusteredexecutionlayer gathering the functional units that operate
on the contents of the data streams. A the lower level, eauttifunal
unit has a structure of a dedicated VLIW (Very Long InstrotiVord),
allowing the various operative units such as ALU, multigieetc to
work simultaneously.

3 A heterogeneousommunicatiodayer tuned to the activity of each level:
low latency, high bandwidth and high connectivity for thevér lev-
els (pixel processing), higher latency and throughputea@d through
larger data blocks for the higher levels (line, image prsitey. Because
of the multiplicity of compute cores, the increased needcfummuni-
cation bandwidth, and the ever increasing wire cost insjgtess-on-
a-chip (SoC), the higher level internal communicationd d imple-
mented by networks instead of classical busses.

4 A parameterlayer to customize the dedicated functional units of the
execution layer, providing parameters for the operatiomghe@ main
(pixel) computation flow. It is composed of very small RIS©@gessors.

The execution and parameter layers are tightly coupledihayt perform
radically different operations and process different kirmd data. A typical
example of parameter unit is address generation: in masaratprocessing
algorithms, irregularities can be moved towards genegatitidresses, the re-
mainder of the computation (e.qg., pixel processing) folfaya regular flow. In
the application domain considered, most of (pixel) competaels are similar
in various algorithms; it is the way they are organized and kteeir param-
eters are computed that differ and gives the differenaatactor. Therefore,
the parameter layer is the most flexible.

The architecture also distinguishes what is related tastrprocessing com-
putations from what is needed to run theNBRA system: the execution code
is split in two parts. Thepplication codedescribes the computation on the
data flow, and theontrol codeschedules the application code over the hier-

16

archical architecture. The application code is independéthe architecture
instance and targets the communication, execution andargaea structures.
The control code adapts the execution to a givenISRA instance and to the
dynamic part of applications.

5.2 Control Structure

The control structure of &DRA is also composed of hierarchical layers.
It illustrates the current trend in system design: systemasbailt by inte-
grating components (often called IPs) (software or hardyvdrat are linked
together by a common interface for communication and cbntFsom the
software point of view, this represents an evolution towardmponent-based
software engineering. The hierarchical control systewadito distribute the
control units near the functional units, hence to have abtabnd modular de-
sign. For example, if the higher-level controller implertsea two-dimensional
polyphase filter, it may decompose this task into separaiedmal and verti-
cal filters, and delegate these subtasks to lower-levetaiters. The top level
does not need to know how the lower-level controllers perftne tasks, as
long as they satisfy the specified time constraints. The ldewel controllers
can also decompose the mono-dimensional filters into bloEk&ctor oper-
ations, then into scalar products and additions, and so aich Evel of the
computation is assigned to a controller, but several logioatrollers can be
folded into one physical controller. This scheme allows &weha "logical’
single control flow, but in fact not centralized and suppwtsome asynchrony
(sub-level controllers can be independent, and they caibéaxk to the con-
troller just above when they have finished their task).

The controller structure is the same for each level of theahdhy, and is
a stack-based virtual machine. Since multiple reentrantrobcodes should
be executed on one physical controller, no explicit regiati®cation is done.
Variables (used only for the control part of the applicatiane not explicitly
allocated but remain on the stack. If a new task starts, ikdcstart on top of
the previous task stack as long as it eventually restoregghestack position.
Using a stack-based virtual machine also eases portahdityss implementa-
tions of the QNDRA architecture and favors code compactness (factorization)
As opposed to traditional stack based languages (Javdn, Rostscript, OPL,
etc.), we propose threadedcode structure where each instruction explicitly
targets the next instruction to be executed; together wébks, this improves
factorization and eases reentrance and late binding. At leael (except for
the lowest level), an instruction is composed of two mairdfel

= the first one is dedicated to the control flow itself and itseé#uing
mechanism: instead of a “program counter”, the next infitvads indi-

17

cated explicitly within the current instruction, in a siarilmanner as the
linked-task structure of a real-time OS;

= the second field manages the lower level controllers; it mmmsed of
several slots, one for each sub-controller; thus, there igal distinction
between a slot that triggers a (lower level) controlleracin this case,
it is equivalent to a subroutine call) and a slot that costeofunctional
unit.

This structure allows to map a code onto various instanc€aebRrRA, with no
recompilation and a minimum load during the instantiatiéthe code (bind-
ing). It gives some code expansion, but it is believed to mepmnsated by the
code factorization present in our domain-specific appticat

5.3 Dynamic Reconfiguration and Application
Switching

Let us now show how our static modeling, compilation and rojaation
framework can cope with the dynamic features of Ambientlligence me-
dia applications. Stream-oriented applications can beifieddon request of
the user (for example, having or moving a Picture In Pictuoe)due to the
environment (new people entering a room, appearing in thiervifield of a
camera, etc.). However, these changes are slow compareodcesping speed
(user interactions are at the split second level, whilewieplications require
changes at the frame rate, i.e., several milliseconds.)

The following paragraphs describe how dynamic reconfigumaind appli-
cation switching can be mapped to theNBRA system, while keeping the
most important features of statically compiled code, sulg@aranteed per-
formances, predictability and high silicon efficiency.

In the considered application domain, there are always danigs and lim-
its that are given, either explicitly or implicitly: for eraple, giving a time
limit for the execution time (e.g. a frame interval) and givee hardware re-
sources, an implicit limit on the complexity of the applicat can be derived.
We have developed the MPPN to help determining these camtstrdf an ap-
plication cannot fit within the hardware or time constrairiteen it has to be
modified (simplified). This led to the idea of “piecewise &tatontrol”: an
application is split into sub-applications, each of theracéfies a sub-case for
a certain range of parameters. Each sub-application cagftine be statically
compiled with good efficiency. Dynamic behavior within a satiplication is
handled by classical methods, such as worst case dimengiant predicated
instructions. Each sub-application has known charatiesjsperformances,
and has a better efficiency because it covers only a sub-#et efriability of
the original application. The activation of the relevan-sypplication is done
by one controller after the analysis of the input parameters

18

Task or sub-task allocation in the system is done preferiabdpace rather
than in time (using parallelism rather than a faster clo@djhough the con-
troller can implement time-sharing of functional unite ttontext saving needs
to be explicitly expressed in the application, and it migbtdostly due to
the large amount of data stored in the various pixel pipslingnis is why in
SANDRA we prefer to use a "space-sharing” mode: tasks are actiatdd-
activated at the level of the sub-controller directly in ifegaof the resources
allocated to these tasks. In thea®RA controller system, a task (or a sub-
task) is represented by the sub-tree with the root node lteagontroller that
directly or indirectly (by the controllers that depend on’dovers” all the re-
sources available for the task. Switching from one task tilter one means
simply deactivating one complete sub-branch of the treeaatidating a new
one. This is done in a very simple manner by changing the lielk iin the
corresponding instruction of the root node.

The application domain enforces quality-of-service ca@ists including
time requirements, and we are aiming at efficient and guaednisage of the
architecture, not at the best effort processing (it is ssete go faster than
required) Thus, the concept of hierarchical hardware amdraloprovides a
simple mechanism for tasks activation: if two sets of cdhars, organized in
a sub-tree, can control the same kind of compute elemeptsgst units and
communication means, sub-tasks can execute indifferemntlsgny controller.
Hence, a simple compile-time scheduling and allocatiorosgsile. The near-
est controller that supervises the two tasks (i.e., theestogarent in control
hierarchy) can adjust its own configuration to link the idputputs of the new
task to the rest of the system (this is made possible beciumntoller have
an unique ID, therefore the code can know exactly where ig)ufror any
controller above the direct supervisor of the two tasksatttevation of one or
the other task has no effect, as long as the communicatiansehof the tasks
are identical.

6. Conclusion

This work addresses the development of embedded systentaedto
pervasive video applications in the Ambient Intelligenoésarse. The compu-
tation and bandwidth constraints of these applicationgest¢oday’'general-
purposeprocessors by orders of magnitude, yet the coapglication-specific
hardwired components becomes disproportionate with tolifetimes. To
address these challenges, we stressed the need for a faffieiedit develop-
ment process fodomain-specifisystem solutions.

We surveyed the &IDRA approach to the architecture, compilation and
language issues addressed by real-time streaming ajpptisal he project led
to promising results in four different aspects:

19

= The development of Multi-Periodic Process Networks — patimg time
and hierarchy to a restricted class of Kahn Process Netwerkeglps in
design-space exploration, validation of resource/tin@perties, and in
mapping onto distributed components.

= The design of 8LLY, a domain-oriented language combining streams
and implicit parallel constructs with non-functional pesfles such as
time requirements and resource allocation.

= A compiler chain, using state-of-the-art algorithms fotragting paral-
lelism, affine scheduling, software pipelining and codeggation.

= A hierarchical architecture, easily tuned to the applaatiequirements
and allowing to run highly demanding algorithms at consuprare.

The proposed approach can also be applied when the resaneeset-
worked, mainly inside a SoC, and it allows to support dynab@bavior to
some extend in an environment where hard time constraitsngportant,
therefore demanding real-time streaming applicationé\fobient Intelligence
can be defined and efficiently mapped with our approach on eédauaesys-
tems.

Further work is required before demonstrating a runninggtype, and
larger examples should be studied to explore the systeralafsity. Nev-
ertheless, we believe our model has matured enough tockaik the most
important directions towards a domain-specific approacartbitecture and
compilation development.

Acknowledgements

This project is supported by a Pierre et Marie Curie fellowsind a Euro-
pean Community project MEDEA+ A502 “MESA’.

20

References

(1]

(2]
(3]
[4]
(5]

(6]
[7]
(8]
[9]

(10]

(11]

(12]

[13]
[14]
[15]
[16]
[17)

(18]

C. Ancourt and F. Irigoin. Scanning polyhedra with DO fiso InProc. third SIGPLAN
Symp. on Principles and Practice of Parallel Programmipgges 39-50. ACM Press,
April 1991.

F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quad&jinchronization and Linearity
Wiley, 1992.

C. Bastoul. Generating loops for scanning polyhedrachhéal Report 23, PISM,
University of Versailles, 2002.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. PigleA framework for simu-
lating and prototyping heterogeneous systedn€omp. Simulation4, 1992.

A. Cohen, D. Genius, A. Kortebi, Z. Chamski, M. Durant@md P. Feautrier. Multi-
periodic process networks: prototyping and verifyingatneprocessing systems. Bmo-
ceedings of Euro-Par 2002olume 2400 of LNCS, pages 299-308, Paderborn, Germany,
August 2002.

J. B. Crop and D. K. Wilde. Scheduling structured system&uroPar'99 LNCS, pages
409-412, Toulouse, France, September 1999. Springergverla

P. Feautrier. Parametric integer programmiR#\IRO Recherche Oprationngl@2:243—
268, September 1988.

P. Feautrier. Dataflow analysis of scalar and array egfees. Intl. Journal of Parallel
Programming 20(1):23-53, February 1991.

P. Feautrier. Some efficient solutions to the affine salied problem. part Il. multidi-
mensional timelntl. J. of Parallel Programming21(6):389—-420, 1992.

G. Kahn. The semantics of a simple language for panaitegramming. In Jack L. Rosen-
feld, editor, Information Processing 74: Proceedings of the IFIP Congr@d pages
471-475. IFIP, North-Holland Publishing Co., August 1974.

B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaaariing process networks from
matlab for embedded signal processing architecturePrde. 8th workshop CODES
pages 13-17, NY, May 3-5 2000. ACM.

M. S. Lam. Software pipelining: An effective schedgitechnique for vliw machines. In
Proc. ACM Conf. Programming Language Design and Impleniemtapages 318-328,
1988.

H. Leverge, C. Mauras, and P. Quinton. TherAA language and its use for the design
of systolic arraysJ. of VLSI Signal Processing:173—-182, 1991.

F. Quiller, S. Rajopadhye, and D. Wilde. Generationftitent nested loops from poly-
hedra.Intl. J. of Parallel Programming28(5):469-498, October 2000.

J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast fyittg of datapath intensive
architectureslEEE Design and Test of Compute82):40-51, 1991.

L. Thiele. Resource constrained scheduling of unif@igorithms. J. of VLSI Signal

Processing10:295-310, 1995.

F. Vivien. On the optimality of Feautrier's scheduliatgorithm. InProceedings of Euro-
Par 2002 volume 2400 of LNCS, pages 299-308, Paderborn, Germargygt2002.

J. Wang, C. Eisenbeis, M. Jourdan, and B. Su. DEcomp8ségare Pipelining: a New
Perspective and a New Approacimtl. J. on Parallel Processing22(3):357-379, 1994.
Special Issue on Compilers and Architectures for Instonctievel Parallel Processing.

