
Scheduling Kahn Process Networks
Paul Feautrier

Paul.Feautrier@ens-lyon.fr.

ENS Lyon

KPNS-2002 – 1/19

Plan

What is a KPN?

Why use KPNs? An Example.

Scheduling KPNs, why and how?

Scheduling constraints.

Solving the Constraints.

Provisional Conclusions.

Technical Problems.

Future Work.

KPNS-2002 – 2/19

What is a KPN?

A set of independent, deterministic processes.

A set of channels. Unbounded, FIFO, error-less.

Non-blocking send, blocking receive.

Each channel can have at most one producer and one consumer.

process three(int outport out) {
int i;

for(i=0;;i++){
W1: send(out, 1);
W2: send(out, 2);
W3: send(out, 3);

}
}

�

process four(int inport in) {
int j;
int k, t;

for(j=0;; j++)
for(k=0; k<3; k++)

R: t[k]=receive(in);
}

int channel c;

four(c);
three(c);

KPNS-2002 – 3/19

Why use KPNs?

KPNs have deterministic channel behaviour.
The next best model after deterministic sequential programs.

KPN have an intuitive graphical representation.

Parallelism in KPNs: inter-process parallelism (control
parallelism), intra-process parallelism (data parallelism).

KPN can be executed, provided one has the required run-time
system.

Applications for KPN : signal processing, streaming, VLSI
specifications.

KPNS-2002 – 4/19

Scheduling KPNs, Why and How?

The programming model of KPNs is asynchronous.

Most embedded systems have a synchronous execution model :
SIMD, VLIW, systolic arrays.

Synchronous systems are easier to specify, implement and verify.

Synchronous systems can easily meet realtime constraints.

Scheduling gives an opportunity to adjust the degree of
parallelism.

Absence of a schedule is an indication of deadlock.

KPNS-2002 – 5/19

What is a schedule?

Notations :

�

the set of operations (execution of one statement)
of a KPN. This set may be infinite, but if the programs in the
processes have static control, a finite symbolic description can be
constructed at compile time.

A schedule is a function

�

from

�

to
�

.
� ��� �

is the time at which
operation � is initiated. The time is expressed in arbitrary units
(e.g. clock cycles). The duration of operation � is noted

� �� �

.

Since the set of operations is large (or even infinite), the schedule
must be given in closed form.

KPNS-2002 – 6/19

What is the use of a schedule?

By inverting a schedule, one obtains the set of operations to be
initiated at any given time.

This set must be finite, as there are only a finite number of
resources (processors, functional units, ...) in the system.

This set is a VLIW instruction, or a parcel for an EPIC machine,
or should fit in a scheduling window on a superscalar processor.

The object program can be constructed mechanically by
polyhedra scanning techniques.

What are the constraints a schedule must satisfy?

KPNS-2002 – 7/19

Dependence Constraints

Processes in a KPN must have the same semantic before and
after scheduling, hence, dependences must be satisfied.

If the processes have static control, dependences can be
represented as polyhedra.

The dependence constraint (or causality condition) can be
written:

	��
 � � ��
 � � � � � �� ��� � ��� �� � � � ���

KPNS-2002 – 8/19

Message Constraints

Since the ultimate constraint is that the channel histories are not
modified, the order of sends and receives must not be modified.

A message cannot be received before it has been sent.
Let � ��� �

(resp � �� �

) be the number of messages which have been sent (resp.
received) before operation � . Let

��� (resp.

� �) be the set of sends (resp.
receives) to channel .

!� " ���# $ " � � % � �� �'& � � $ � () �� �* + � �,) � $ �#

where

+ � � is the transmission delay of channel .

KPNS-2002 – 9/19

Capacity Constraints

Infinite capacity channels are an abstraction which cannot be implemented,
especially in embedded system.

One may want to bound the number of unreceived message. This does not
change the semantics, but it may generate deadlocks.

u v

D

Let

-

be the “depth” of channel :

!� " ���# $ " � � % � � $ �, � �� ��. - () � $ �,) �� �0/

One may ignore the capacity constraints and find the necessary depth after
scheduling, or try several values of

-

until a schedule is found.

KPNS-2002 – 10/19

Resource Constraints

A resource is anything that can be lacking. In our case, resources
are processors or functional units.

In the abstract, a resource is a set of operations. � � 1

means
that operation � uses resource

1

.

In the simplest case, where all resources are distinct and all
durations are 1, the resource constraint for

1

is:

	�
 � � 1
 � �� �243 � � � �

	�
 � � 1
 � 5768 9 � � � ��� ��� :� � � � �<; � � � �� :� � ��� ��

Heuristics: ignore the second disjunct. The result has the same
shape as a dependence constraint, but some solutions may be
lost.

KPNS-2002 – 11/19

Solving the Constraints

One cannot solve the scheduling problem unless one first select
the shape of the schedules.

In static control programs, an operation is named by giving the
values of the surrounding loop counters. Schedule are chosen to
be affine forms in these counters.

All constraints have then the form:

	>= � ?
 @ � = �A B�

where

?

is a known polyhedron and

@

is an unknown affine form.
One first eliminate the quantifier by various techniques. The
resulting problem is a linear programming problem and is solved
by standard algorithms.

One may take this opportunity to minimize interesting quantities,
like the total duration of the program or latency.

KPNS-2002 – 12/19

Real Time Constraints

KPNs are used to model systems with hard real time constraints.
For instance, a video streamer must generate one screenful of
pixels 30 times a second.

This is easily done by fixing the value of some coefficients of the
schedules (which are periods).

The scheduler will either construct a schedule or decide none
exists, e.g. if the operations delays are too long to sustain the
required throughput.

One may even express delays as a number of cycles times the
clock period, and then maximize the clock period. The overall
effect is to minimize power consumption.

KPNS-2002 – 13/19

Conclusions, Provisional

Scheduling is a promising technique for compiling KPNs to VLIW
or ASIC systems.

The method was originally developped for high performance
compilers and needs modifications for embedded systems.

The central problem, which consists in finding the architecture
with minimum “cost” for a given task, can be solved by a mixture
of straightforward optimization and exploration.

However, the method is still in its infancy. “Proof of concept”
implementations are under development.

KPNS-2002 – 14/19

Technical Problems, I

Handling modulo and integer division

Modulo and integer division occur quite frequently. For instance,
a circular buffer of size S can be modeled as an array

C

with
subscript i%S. These expressions are not linear, but can be
linearized by a change of variable: D3 EF G
 B� EIH D� G 5 G

.

However, this is legitimate only if D is integral. In:

	>= � ?
 @ � = �A B

?

has be replaced by its integer hull, by adding cuts.

Experience shows that one well chosen cut is enough

KPNS-2002 – 15/19

Technical Problems, II

Resource Constraints

If one associate a virtual variable to each resource, and if each
operation that use this resource write into that virtual variable,
then output dependences are created, with the end result of
forbidding simultaneous use of this resource.

If there are

�

resources of the same type, the virtual variable
becomes an array of size

�

. This array must be subscripted by
an expression

J � E � K L M �
where

E
is the iteration vector and

J

is linear.

Experience shows that the quality of the result is very sensitive to
the choice of

J

.

The method is only a heuristics, and may lose some interesting
solutions.

KPNS-2002 – 16/19

Technical Problems, III

Message Counting

For the construction of message dependences, one needs to
count messages, i.e. send or receive operations on a given
channel.

This can be done using P. Clauss methods. The results are
Ehrhardt polynomials (i.e. polynomials with possibly periodic
coefficients).

Simpler methods may be used in many cases.

Solving the message constraints is easy when counts are affine
functions.

Extension to the polynomial case is an open problem.

KPNS-2002 – 17/19

Technical Problems IV

Modular Scheduling

Since the scheduling problem entails solving large linear
programs, applying the method to real-life examples may be
beyond the capacity of the best existing solvers.

It would be nice if a specification could be split into several
modules, if each module could be scheduled independently of
other modules, with a final phase for fitting the module schedules.

A candidate for a module might be several interconnected
processes.

It is by no mean obvious that in such a situation, the problem will
stay within the limits of the polytope model.

KPNS-2002 – 18/19

Future Work

Find a better way of handling resource constraints.

Write code generators for many target systems (VLIW processor,
systolic arrays, SystemC or VHDL).

Bridge the gap between behavioral specifications and
implementable specifications.

Extend the method to hardware/software codesign and
architecture exploration.

KPNS-2002 – 19/19

	Plan
	What is a KPN?
	Why use KPNs?
	Scheduling KPNs, Why and How?
	What is a schedule?
	What is the use of a schedule?
	Dependence Constraints
	Message Constraints
	Capacity Constraints
	Resource Constraints
	Solving the Constraints
	Real Time Constraints
	Conclusions, Provisional
	Technical Problems, I
	Technical Problems, II
	Technical Problems, III
	Technical Problems IV
	Future Work

