
Storage Management in Parallel Programs

Vincent Lefebvre
Laboratoire PRiSM

Université de Versailles
45, avenue des Etats-Unis, 78 035 Versailles Cédex, France

Vincent.Lefebvre@prism.uvsq.fr

Paul Feautrier
Laboratoire PRiSM

Université de Versailles
45, avenue des Etats-Unis, 78 035 Versailles Cédex, France

Paul.Feautrier@prism.uvsq.fr

Abstract

We have been interested in this article on the data stuc-
tures generation as part of the polyedric technique designed
in PAF (Paralléliseur Automatique pour Fortran). The re-
moval of dependences which are not data flows in a program
is generally realized by a total memory expansion of data
structures. We present a new technique which allows to re-
duce the memory cost by expanding carefully selected parts
of code only. It consists in limiting the memory expansion
process in accordance with contraints imposed by the sched-
ule determined for the parallel program.

1 Introduction

The polyedric method, an automatic parallelization tech-
nique, uses explicit schedules. A schedule has to satisfy
constraints which are given by dataflow analysis. The goal
is to determine the execution date of each operation of the
source program. Operations which have the same execution
date are gathered in wavefronts, which can be executed in
parallel. Dependences which don’t belong to the dataflow
are called false dependences. A partial removal of false
dependences, is the price to pay to preserve the correct-
ness of the parallel program. It is realized by data expan-
sion. One generally builds a single assignment form for the
source program. Total data expansion has a high memory
cost. For instance, in matrix multiplication, the single as-
signment form has a data space ofO(n3) memory words, in-
stead of O(n2) in the classical version. This paper presents
a new technique which limits memory expansion in accor-

dance with contraints imposed by the schedule of the paral-
lel program. We will first restate several classical techniques
of program semantic analysis (array dataflow analysis) and
transformations (scheduling, existing memory management
techniques). Finally, we will present our optimized storage
technique for parallel programs.

2 Semantic Analysis of Static Control Pro-
grams2.1 Static Control Programs

We focuse on automatic parallelization of static control
programs. For Static control programs, one may describe
the set of operations which are going to be executed in a
given program run. Let be E the operations set of a pro-
gram. Static control programs are built from assignment
statements and DO loops. The only data structures are arrays
of arbitrary dimensions. Loop bounds and array subscripts
are affine functions in the loop counters and integral struc-
ture parameters. An operation is one execution of a state-
ment. It may be named hR;~xi where R is a statement and~x the iteration vector built from the surrounding loop coun-
ters (from the outside to the inside). The iteration domainD(R) of a statementR, is the set of instances ofR and can be
described by the conjunction of all inequalities for the sur-
rounding loops. It gives values that the iteration vector ~x can
have. We will take as a running example the sequential pro-
gram of figure (1).

1

PROGRAM scalar
INTEGER s,i,j,n
DO i = 1,n

{S1} s = 0
DO j = 1,n

{S2} s = s + 1
ENDDO

ENDDO
END

Figure 1. The source program2.2 Sequential Execution Order
Let us introduce the following notations.� The k-th entry of vector ~x is denoted by ~x[k].� The subvector built from component k to l is written as:~x[k::l].� The expression R C S indicates that statement R is

before statement S in the program text.� NRS is the number of loops surrounding both R and S.

The fact that operation hR;~xi is executed before opera-
tion hS; ~yi is written: hR;~xi � hS; ~yi. It is shown in [5]
that: hR; ~xi � hS; ~yi �~x[1::NRS] � ~y[1::NRS] _ (~x[1::NRS] = ~y[1::NRS] ^ R C S)

(1)

The sequential order can be split with respect to depths:hR; ~xi � hS; ~yi � NRS_p=0 hR; ~xi �p hS; ~yi (2)

where 0 � p < NRS :hR; ~xi �p hS; ~yi , (~x[1::p] = ~y[1::p]) ^ (~x[p + 1] < ~y[p + 1])
(3)hR; ~xi �NRS hS; ~yi , ~x[1::NRS] = ~y[1::NRS] ^ R C S (4)2.3 Dependences

Two operations hR;~xi and hS; ~yi are independent if their
order of execution can be reversed without changing the
global effect on the program store. If not, the operations
are said to be dependent. The goal of automatic paralleliza-
tion is to build a parallel program which exactly gives the
same results as the sequential program. R(R;~x) is the set
of memory cells which are read by hR;~xi and M(R;~x), is
the set of memory cells which are modified by hR;~xi. Sup-
posing for instance that hR;~xi � hS; ~yi, one can distinguish
three kinds of dependences:

� flow dependence (M(R;~x) \ R(S; ~y) 6= ;, writtenhR;~xi � hS; ~yi);� anti-dependence (R(R;~x) \ M(S; ~y) 6= ;, writtenhR;~xi � hS; ~yi);� output dependence (M(R;~x)\M(S; ~y) 6= ;, writtenhR;~xi �� hS; ~yi).
One may be more precise and associate a dependence to a
depth p. For instance, if one writes hR;~xi �p hS; ~yi, it indi-
cates thatM(R;~x) \R(S; ~y) 6= ; ^ hR;~xi �p hS; ~yi.2.4 Array Data
ow Analysis

The sole real dependences inherent to the algorithm are
direct flow dependences from a definition to a use of the
same memory cell (data flows). All others dependences
which are called false dependences, are due to memory reuse
and can be deleted by data expansion. Direct flow depen-
dences are detected by dataflow analysis technique. If a
memory cell c is read in an operation hS; ~yi, dataflow anal-
ysis determines the latest writing into c, which is given by
the source function [5]:source(c; hS; ~yi) = max� fhR;~xi 2 E j hR;~xi�hS; ~yig (5)

The result of the analysis is a quasi-affine tree or quast, i.e. a
many-level conditionnal in which predicates are tests for the
positiveness of affine forms in the loop counters and struc-
ture parameters and leaves are either operation names, or ?.? indicates that the array cell under study is not modified.
For our example, we have:source(s; hS2; i; ji) = � If j � 2

Then hS2; i; j � 1i
Else hS1; ii (6)

3 Program Transformations3.1 Parallelization by Scheduling
From constraints given by dataflow analysis, one deduces

a schedule which gives a logical execution time to each op-
eration of the source program. It must also respect the con-
straints implied by the source functions. If �(S; ~y) is the
schedule of hS; ~yi, one must have:8hS; ~yi 2 E ; 8c 2 R(S; ~y) : �(source(c; hS; ~yi)) � �(S; ~y) (7)

For complexity reasons, finding the exact solution of
(7) is not practicable. One limits oneself to affine one-
dimensionnal ([6]) or multidimensionnal schedules ([7]). In
the case of our example, one must have:(if (j � 2) then �(S2; i; j � 1) else �(S1; i))� �(S2; i; j) (8)

One may show that �(R; i) = 0 and �(S; i; j) = j is the
best schedule for our example, i.e gives the largest opera-
tions fronts. From a schedule given by �, one deduces oper-
ations fronts: F(~t) = fhR; ~xi 2 E j �(R;~x) = ~tg (9)

2

There is no dataflow between operations of a given front.
Hence, all such operations can be executed in parallel. The
parallel program must enumerate all lexicographical execu-
tions dates : f~t j ~t 2 �

execute in parallel operations in F(~t)
synchronizeg (10)

The set � is the lexicographical enumeration of each possi-
ble execution date.3.2 Changing Data Structures

However, using any execution order which satisfies (7)
for constructing a parallel program will give an incorrect
result, because output dependences, anti-dependences and
spurious flow dependences (flow dependences which are not
dataflows) have not been taken into account. One can get rid
of these false dependences by data expansion. Several tech-
niques have been proposed in the litterature.

3.2.1 Total Memory Expansion

The easiest solution consists in translating the source pro-
gram in single assignment form. This transformation is
independent from scheduling but needs results given by
dataflow analysis. Generally, total memory expansion is re-
alized before the parallelization.

There is a strong relation between output dependences
and anti-dependences. Consider two operations hS; ~yi,hT; ~zi, and c a cell memory, such as c 2 R(S; ~y) and c 2M(T; ~z). In a correct program, each variable must be set be-
fore being read. So, there is necessarily an operation hR;~xi
which sets c and which is executed before hS; ~yi: hR;~xi �hS; ~yi � hT; ~zi. There is also a output dependence betweenhR;~xi and hT; ~zi. From this, one may deduce that if all
output dependences are deleted, then anti-dependences and
spurious flow dependences also disappear. Total memory
expansion consists in assigning one distinct memory cell to
each operation. The followingalgorithm presented in [3] es-
tablishes the single assignment form of a static control pro-
gram:

1. Renaming : for each statement R, with ~x as iteration
vector, associate a specific data structure InsR:R : a[~f (~x)] = ::: ! InsR[~f (~x)] = :::

2. Expanding: for each instruction R, replace the sub-
script function ~f (~x) in InsR by ~x in left hand-sides:R : InsR[~f (~x)] = ::: ! InsR[~x] = :::

3. Reconstructing the dataflow: replace all read refer-
ence by its new representation as given by the source

function. The value produced by hR;~xi is stored
in InsR[~x]. So if one finds the following source
function for a memory cell c in an operation hS; ~yi:source(c; hS; ~yi) � hS; ~xi, then c must be replaced by
InsR[~x] in the single assignment program.

Renaming deletes all output dependences which appear be-
tween two operations instances of two different instructions.
Expanding deletes output dependences which appear be-
tween two operations instances of the same instruction. The
single assignment form version of our running example is
given in fig. (2). It is clear that the memory cost is high.
Starting from a scalar s, one gets an array of n elements and
another one with n2 elements.

A first intuitiveapproach can easily show that deleting all
false dependences is not necessary. During an execution of a
parallel program in single assignment form, a memory cell
InsR[~x] is empty until the execution of hR;~xi at �(R;~x).
Moreover in many cases, a value stored in a memory cell can
become useless in memory after a limited delay. Consider
InsS2[i,j] in our running example:� In the parallel program scheduled by �, this mem-

ory cell is empty until the execution of hS2; i; ji at�(S2; i; j) = j.� The value produced by hS2; i; ji is read by hS2; i; j +1i at �(S2; i; j +1) = j +1. After this time, the value
is useless but still resides in memory.

PROGRAM scalar
INTEGER i, j, n, InsS1[n], InsS2[n,n]
DO i = 1,n

{S1} InsS1[i] = 0
DO j = 1,n

{S2} InsS2 [i,j] = if (j >= 2) then InsS2 [i,j-1]
else InsS1 [i] + 1

ENDDO
ENDDO
END

Figure 2. The scalar program in single as-
signment form

3.2.2 Previous Techniques to Reduce Memory Cost

Some methods try to eliminate false dependences with a re-
duced memory cost. Wolfe in [11] defines the method of
array contraction for vector architectures. After scalar ex-
pansion and loop interchange, he performs array contraction
because the vector instructions only concern the innermost
loop of each loop nest. Maydan and Lam in [8], Li and Lee
in [9] define a method which optimize array privatization af-
ter a renaming phase. Privatization is equivalent to expan-
sion. They don’t delete an output dependence between op-
erations instances of a same instruction R, if it is masked by

3

a dataflow. Darte, Vivien, Calland and Robert in [1] into-
duce two graph transformations to eliminate anti and output
dependences by renaming. They give an unified framework
for such transformation and prove that the problem of de-
termining a minimal process of renaming is NP-complete.
Values Lifetime Analysis is a technique which comes from
the "systolic" community. It takes into account single as-
signment form programs and try to generate output and anti-
dependences without changing the dataflow([2],[10]).

4 Minimal Memory Expansion With Respect
to a Schedule

Our method tries to maintain as many false dependences
as possible from the original program to the parallel one.
One takes into account the original data structures, the re-
sults given by data dependences and data flow analysis, the
schedule function. One generates a program with new data
structures which is still sequential but can be parallelized ac-
cording to the scheme (10).4.1 Neutral Dependences

Consider an operation hR;~xi instance of an assignment
statement R. Let U(R;~x) be the set of operations such that
there is a dataflow from hR;~xi to each operation hS; ~yi ofU(R;~x):U(R;~x) = fhS; ~yi 2 E j source(c; hS; ~yi) � hR; ~xig (11)

Let be V(R;~x) the value produced by hR;~xi,V(R;~x) must absolutly reside in memory for~t 2 [�(R;~x); maxU(R;~x) �(S; ~y)]. Before and after these

dates this value is useless in memory. Suppose that one has
an output dependence at depth p between hR;~xi and an
operation hT; ~zi (written R��p T) in the sequential program.
If �(T; ~z) � maxU(R;~x) �(S; ~y), it is clear that this output de-

pendence can be maintened in the parallel program, becauseV(R;~x) is useless in memory at �(T; ~z). To improve this
idea, we will develop the concept of neutral dependences.

Definition 1. An output dependence is neutral for a sched-
ule �, which satifies (7), iff keeping this dependence doesn’t
change the sequential dataflow in the parallel program ob-
tained from � by scheme (10).

An output dependence can be maintained in a parallel
program iff it is neutral. In this case, the results of the paral-
lel program are still valid. The following proposition gives
specific conditions that an output dependence must verify to
be neutral.
Proposition 1. A output dependence R��p T (R and T are
two statements) is neutral for � iff:M(R;~x) = M(T;~z) ^ hR; ~xi �p hT; ~zi) �(R;~x)� �(T;~z)

(12)

and �(T;~z)� maxU(R;~x)(�(S; ~y)) (13)

(12) ensures that the execution order between hR;~xi
and hT; ~zi is the same in the sequential and parallel pro-
grams. (13) verifies that dataflow between hR;~xi and op-
erations in U(R;~x) won’t be affected by hT; ~zi. This con-
dition ensures that V(R;~x) is present in memory when ~t 2[�(R;~x); maxU(R;~x)(�(S; ~y))], even if the output dependence is

not removed in the parallel program.
We can extend this definition to anti-dependences and

flow dependences which are not dataflows. For these kinds
of dependences it is just necessary to verify that execution
order of operations in dependance is the same in the sequen-
tial and parallel programs.

Definition 2. An anti-dependence between two instructionsS and T is neutral for a schedule function � which satisfies
(7) iff the execution order of these operations is the same in
the sequential and parallel programs.

The definition is the same for a spurious flow depen-
dence.

Proposition 2. A anti-dependence S �p T is neutral ac-
cording to � iff:R(S; ~y) \M(T; ~z) 6= ; ^ hS; ~yi �p hT; ~zi) �(S; ~y)� �(T;~z)

(14)

(14) ensures that if this dependence is not deleted, it will
still be verified in the parallel program.

Proposition 3. A spurious flow dependence R�p T is neu-
tral for � iff:M(R;~x) \ R(S; ~y) 6= ; ^ hR;~xi �p hS; ~yi) �(R;~x) � �(S; ~y)

(15)4.2 Tests of Neutrality
4.2.1 Neutral Output Dependences

Let’s consider: R : a[~f(~x)] = :::T : a[~g(~z)] = :::
Consider the output dependences between operations in-

stances ofR andT at depthp. A dependenceR��p T , is char-
acterized by the following conditions:� hR; ~xi and hT; ~zi must exist: ~x 2 D(R); ~z 2 D(T);� Access conflict: ~f(~x) = ~g(~z);� Sequencing Predicate at depth p: hR; ~xi �p hT; ~zi

4

Therefore, there is a dependence iff, system QpRT (~x; ~z),QpRT (~x; ~z) = f ~x 2 D(R)^~z 2 D(T)^~f(~x) = ~g(~z)^hR;~xi �p hT; ~zig (16)

has a solution. To verify (12), one must have a dependence
in the sequential program, which must still be verified in
the parallel program. Therefore, in the parallel program, we
must have: �(R;~x)� �(T; ~z). If this execution order is not
respected for only one of the operations instances of R andT
linked by this dependence, the condition (12) is not verified.
So we simply consider that (12) is verified if for no operation
of R and T in dependence, one has �(T; ~z)��(R;~x) that is
to say if the system NpRT (~x; ~z),NpRT (~x; ~z) = f ~x 2 D(R)^~z 2 D(T)^~f (~x) = ~g(~z)^hR; ~xi �p hT; ~zi ^�(T;~z)��(R;~x)g (17)

has no solution. QpRT (~x; ~z) is a Z-polyhedron. �(R;~x)
and �(T; ~z) are vectors of affine functions in the loop coun-
ters. Hence NpRT (~x; ~z) is a disjunction of Z-polyhedra
which must all be empty. So verifying the emptiness ofNpR;T (~x; ~z) can be easily done by the PIP (Parametric Inte-
ger Programing) tool (see [4] for more explanations). Re-
member that in our example, we have chosen the schedule
function �(R; i) = 0 and �(S; i; j) = j. Let’s verify (12)
for program scalar. For the R��0 R dependence, one has
if 1 � i � n then N0RR(i) 6= ;) this dependence is not
neutral. For others dependences, one can find that (12) is
verified for R��0 S, R��1 S and S ��1 S dependences and not
verified by S ��0 R and S ��0 S dependences (hence these de-
pendences are not neutral).

Theorem 1. The condition (13) is verified for a given out-
put dependence iff all anti-dependences generated by this
dependence, are neutral.

Proof: consider the operations of U(R;~x). If there is an
output dependence between hR;~xi and an operation hT; ~zi
at depth p, there is also an anti-dependence between any op-
eration hS; ~yi 2 U(R;~x) and hT; ~zi at depth p0:�: hR; ~xi : c = :::hS; ~yi : ::: = ::: c :::hT; ~zi : c = :::
If every dependence S �p0 T is neutral, it ensures that�(S; ~y) � �(T; ~z) (according to (14)) . Therefore�(T; ~z) � �(S; ~y); 8hS; ~yi 2 U(R;~x); hence �(T; ~z) �maxU(R;~x) �(S; ~y). So (13) is verified.

4.2.2 Neutral Anti-dependences

Consider: S : ::: = ::: a[~h(~y)] :::T : a[~g(~z)] = :::

One must determine if the S �p T dependence is neutral,
that is to say verify (14). To determine if (14) is respected,
one has to verify that the execution order between hS; ~yi andhT; ~zi stays the same in the parallel program for the opera-
tions instances of S and T which are linked by this depen-
dence. Also the dependence S �p T is neutral iff the systemNpST (~y; ~z) NpST (~y; ~z) = f ~y 2 D(S)^~z 2 D(T)^~h(~y) = ~g(~z)^hS; ~yi �p hT; ~zi ^�(T;~z)��(S; ~y)g (18)

has no solution.
When one knows that an anti-dependence is not neu-

tral, one knows that for the associated output dependence
the condition (13) is invalidated and the dependence is not
neutral. Suppose, one has the following situation: c =M(R;~x) = M(T; ~z) and hR;~xi � source(c; hS; ~yi).
If the S �p T dependence is not neutral, then the operationhT; ~zi kills the value produced by hR;~xi and stored in c be-
fore it is read by hS; ~yi in the parallel program. This sit-
uation would have occurred if the output dependence be-
tween hR;~xi and hT; ~zi was not deleted. So the output de-
pendence between hR;~xi and hT; ~zi is not neutral. We know
the depths p and p0 of S �p T and R�p0 S dependences. We
must determine the depth p00 of R��p00 T dependence. With
the S �p T dependence, we have: hS; ~yi �p hT; ~zi ,(~y[1::p] = ~z[1::p])^ (~y[p+1] < ~z[p+1]). With the R�p0 S
dependence, we have: hR;~xi �p0 hS; ~yi , (~x[1::p0] =~y[1::p0])^ (~x[p0+ 1] < ~y[p0+ 1]). We must consider, three
cases:

1. p = p0 : (~x[1::p] = ~z[1::p]) ^ (~x[p + 1] < ~z[p + 1]))hR; ~xi �p hT; ~zi) p00 = p
2. p < p0 : (~x[1::p] = ~z[1::p])^(~x[p+1] < ~z[p+1])^(~x[p+1] < ~z[p+ 1])) hR; ~xi �p hT; ~zi) p00 = p
3. p > p0 : (~x[1::p0] = ~z[1::p0]) ^ (~x[p0 + 1] < ~z[p0 + 1]) ^(~x[p0 + 1] < ~z[p0 + 1])) hR; ~xi �p0 hT; ~zi) p00 = p0
So, if the S �p T dependence is not neutral, then theR��min(p;p0) T dependence is not neutral either. In our run-

ning example, consider the S �0 S dependence, we have:source(s; hS2; i; ji) = � If j � 2
Then hS2; i; j � 1i
Else hS1; ii

The first leaf of the source function concerns a instance ofS2, so one must determinate if the S2 �0 S2 dependence is
neutral. One finds that N0S2S2(i; j) 6= ;) so this depen-
dence is not neutral, and S2 ��0 S2 dependence is not neu-
tral either. The second leaf of the source function concerns
an instance of S1, hence the dependence S1 ��0 S2 is not
neutral. For others anti-dependences, one finds that depen-
dence S2 �1 S2 is neutral and that S2 �0 S1 is not neutral.
As a consequence the dependences S2 ��0 S2 and S1 ��0 S1
are not neutral.

5

Finally, we have for the output dependences in our run-
ning example: S1 ��0 S1, S2 ��0 S2 S2 ��0 S1 and S1 ��0 S2
which are not neutral; S1 ��1 S2 andS2 ��1 S2 which are neu-
tral.

4.2.3 Neutral Spurious Flow Dependences

Theorem 2. It is useless to verify if a flow dependence,
which is not a dataflow, is neutral.

Proof : consider the following operations:� : hR; ~xi : c = :::hT; ~zi : c = :::hS; ~yi : ::: = ::: c :::
Suppose that hS; ~yi 2 U(T; ~z). Dependence R�p S is not

a dataflow, because the value stored in c by hR;~xi is killed
by hT; ~zi before the reading of c by hS; ~yi. In the parallel
program, one has �(T; ~z) � �(S; ~y) according to (7). We
must consider two cases:

1. If the output dependence between R and T is not neu-
tral, then it must be removed in the parallel program
and the flow dependence has disappeared.

2. If this output dependence is neutral, one has also�(R;~x) � �(T; ~z)) �(R;~x) � �(S; ~y) hence (15)
is verified and it means that the dependence R�p S is
neutral.4.3 Exploitation of Results

The examination of neutrality of output dependences
will help us to decide if we must add a dimension or new
elements in a specific dimension (minimal expanding) or
if we must proceed or not in renaming a data structure
used by two different instructions (minimal renaming).
We have developped the following algorithm which gives
an optimized storage for data of a parallel static control
program:

1. Minimal expansion for each statement R: if a is the
data structure in the left hand side of R, one must find
the minimal shape that a can have in R. The goal is to
eliminate all output dependences R��R which are not
neutral. If an output dependence at depth p between op-
erations instances of R is not neutral, one must expanda according to ~x[p+ 1]:� one adds one dimension to a. The size of this di-

mension is the number of iterations of the loopp+ 1 which surrounds R;� This new dimension must be indexed by the
counter of this loop in left hand side of R.R : a[~f(~x)] = ::: ! a[~f(~x); ~x[p+ 1]] = :::

In our running example, for S1, the dependenceS1 ��0 S1 is not neutral henceS1 : (s = ::: ! s[i] = :::)
The scalar s is now an array of n elements because
there are n iterations in the loop i. In S2, the depen-
dence S2 ��0 S2 is not neutral so it must be deleted,
the dependence S2 ��1 S2 is neutral, so it can be main-
tained: S2 : (s = ::: ! s[i] = :::)
With these new subscript functions, we are sure that
every output dependences which only concern opera-
tions instances of a single statement R and which are
not neutral, are deleted.

2. Correcting the dependence graph: the minimal ex-
pansion can suppress some output dependences which
appear between operations instances of different in-
structions. Consider our previous statements R and T
(R 6= T). Suppose that in the next steps ot this al-
gorithm, one doesn’t proceed in renaming the array a
shared by the statements. After minimal expansion,
one gets two data structures which can be different. If
there is no renaming, the data struture shared by R andT must be in fact the rectangular hull of the union of
the two data structures defined by minimal expansion
of R and T . Imagine that there is an output depen-
dence R��T at depth p in the original program withp 2 NRT . If, for instance, one had expanded a in R
according to ~x[p + 1], it adds the following constraint
in QpRT (~x; ~z) which is ~x[p+1] = ~z[p+1]. One knows
that hR;~xi �p hT; ~zi) ~x[p+ 1] < ~z[p+ 1]. Hence,
now QpRT (~x; ~z) has no solution and the output depen-
dence has disappeared. In our running example, min-
imal expansion deletes the dependences S2 ��0 S1 andS1 ��0 S2.

3. Minimal renaming: we must take into account all
residual output dependences between R and T , 8p 2NRT . If only one of these dependences is not neutral,
we must rename a in T , because all these kind of de-
pendences must be deleted. If all dependences are neu-
tral, the data structure may remain the same in the two
statements. Finding the minimal number of data struc-
tures to rename is a NP-complete problem, as it shown
in [1]. We suggest the following heuristics: one builds
a graph for each data structure a which appears at least
once in a left hand side of a statement in the original
program. Each vertex represents a statement where a
is the left hand side. There is an edge from a vertex R
to another one T iff there is a residual R��p T depen-
dence which is not neutral (8p 2 NRT). Then one can
apply on this graph a greedy coloring algorithm. Fi-
nally it is clear that vertices that have the same colour

6

can share the same data structure. In our example, the
residual output dependence between R and S is R��1 S
which is neutral. So it is unnecessary to rename s in S.
The final shape of each data structure shared by many
statements must be the rectangular hull of the union of
all shapes built form minimal expansion. The program
is reconstructed with the new data structures and their
subscripts functions.

Finally, one gets the program of figure (3). The removal
of the conditional expression is due to the fact, that s has not
been renamed.

PROGRAM scalar
INTEGER i, j, n, s[n]
DO i = 1,n

{S1} s[i] = 0
DO j = 1,n

{S2} s[i] = s[i] + 1
ENDDO

ENDDO
END

Figure 3. The scalar program in single as-
signment form

The array (4) gives an overview on the shape of differ-
ent data structures generated for the scalar program by the
different techniques referenced in this article: in the source
program (1), in the single assignment program (2), in the
program generated by the Chamsky’s method (3), by Dror
and Lam’s method (4) and by our technique (5).

(1) (2) (3) (4) (5)
s InsS1[n] InsS1[n] InsS1[n] s[n]

InsS2[n,n] InsS2[n,2] InsS2[n]

Figure 4. Data structures generated by differ-
ent methods

The program has now the appropriate data structures and
can be parallelized with the model given by (10).

5 Conclusion

Notice that if one builds a schedule function equivalent
to the sequential execution order, one finds that all depen-
dences are neutral, so there is no expanding and no renam-
ing and we keep the scalar s. We have then obtained a
very satisfying result: inherently sequential programs are
fixed points for our parallelization method. Our method
effectively reduces the memory cost in the data expansion
process for static control programs. Our performances are
strongly linked to the parallelism degree (size of operations

fronts) given by the schedule. Hence one can go further and
improves our results by adjusting the scheduling to the ar-
chitecture. Consider for instance, that the target architecture
is a pipeline processor Cray. In this case, the real size of
a front is limited to 64 which is the size of a vector regis-
ter. One can easily adjust the schedule function such as no
front has more than 64 operations. In the case of our running
example, the memory requirement is reduced to an array of
64 elements. The interest of our method is that it can have
result on one hand on the expansion and on the other hand
on renaming. All previous methods focused on only one of
these two topics. The technique has been implemented in
Lisp within the PAF project. This methods takes the place
of single assignment form translation.

To conclude one gives our results obtained with the
cholesky program:� Original version:

program choles
integer i, j, k
real x
real a(10,10), p(10)
do i=1,n

S1 x = a(i,i)
do k = 1, i-1

S2 x = x - a(i,k)**2
end do

S3 p(i) = 1.0/sqrt(x)
do j = i+1, n

S4 x = a(i,j)
do k=1,i-1

S5 x = x - a(j,k) * a(i,k)
end do

S6 a(j,i) = x * p(i)
end do

end do
end� Single assignment form version:

PROGRAM choles
real a(10,10)
real insS1(n)
real insS2(n,n-1)
real insS3(n)
real insS4(n,n-1)
real insS5(n,n-1,n-1)
real insS6(n,n-1)
integer n,i,j,k
DO i = 1,n,1

S1 insS1(i) = a(i,i)
DO k = 1,i-1,1

S2 insS2(i,k) = if (k-2 >= 0)
then insS2(i,k-1)
else insS1(i)
- ins6(k,i) ** 2

END DO
S3 insS3(i) = 1./sqrt(if (k-2 >= 0)

then insS2(i,j-1)
else insS1(i))

DO j = i+1,n,n
S4 insS4(i,j) = a(i,j)

DO k = 1,i-1,1
S5 insS5(i,j,k) = if (k-2 >=0)

then insS5(i,j,k-1)
else insS4(i,j)
- insS6(k,j) * insS6(k,i)

END DO
S6 insS6(i,j) = if(i-2 >= 0)

7

then insS5(i,j,j-1)
else insS4(i,j)
* insS3(i)

END DO
END DO

END� Version with minimal data expansion:

PROGRAM choles
integer i,j,k,n
real x(n)
real a(10,10)
real p(10)
real sqrt
real insS4(n,n-1)
DO i = 1,n,1

S1 x(i) = a(i,i)
DO k = 1,i-1,1

S2 x(i) = x(i) - a(k,i) ** 2
END DO

S3 p(i) = 1./sqrt(x(i))
DO j = i+1,n,1

S4 insS4(i,j) = a(i,j)
DO k = 1,i-1,1

S5 insS4(i,j) = insS4(i,j) -
a(k,j) * a(k,i)

END DO
S6 a(j,i)= insS4(i,j) * p(i)

END DO
END DO

END

References

[1] P.Y Calland, A. Darte, Y. Robert, F. Vivien. On the re-
moval of anti and output dependences. Technical report
RR96-04, laboratoire LIP - école normale supérieure de
Lyon - Feb 1996.

[2] Zbigniew Chamski. Environnement logiciel de pro-
grammation d’un accélérateur de calcul parallèle.
Thèse de l’université de Rennes I - chapitre IV - 1993,
numéro d’ordre 957.

[3] P. Feautrier. Array expansion. ACM Int. Conf on Super-
computing, pages 429-441, 1988.

[4] P. feautrier. Parametric integer programing. RAIRO
Recherche opérationnelle, 22:243-268, Sept 1988

[5] P. Feautrier. Dataflow Analysis of Array and Scalar Ref-
erences. Int. J. of Parallel Programming, 20(1):23-53,
February 1991.

[6] P. Feautrier. Some efficients solutions to the affine
scheduling problem, I, one dimensionnal time. Int J. of
Parallel Programming, 21(5):313-348, October 1992.

[7] P. Feautrier. Some efficient solutions to the affine
scheduling problem part II : multidimensional time. Int
J. of Parallel Programming, 21(6):389-420, December
92.

[8] D. E. Maydan, S. P. Amarasinghe, M. S. Lam. Array
Data-Flow Analysis and its Use in Array Privatization.
In Proc. of ACM Conf. on Principles of Programming
Languages, pages 2-15, January 1993.

[9] Z. Li, G. and G. Lee. Symbolic array dataflow analysis
for array privatization and program parallelization. In
Supercomputing 95, 1995

[10] S. Rajopadhye and D. Wilde. Memory Reuse Anal-
ysis in the Polyhedral Model. In Bougé, Fraignaud,
Mignotte and Robert, editors, Euro-Par’96 Parallel Pro-
cessing, Vol I, pages 389-397. Springer-Verlag, LNCS
1123, August 1996.

[11] M. Wolfe. Optimizing Supercompilers for Supercom-
puters. Pitman 1989.

8

