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Abstract

We introduce a general static analysis framework to reason
about program properties at an infinite number of runtime
control points, called instances. Infinite sets of instances
are represented by rational languages. Based on this in-
stancewise framework, we extend the concept of induction
variables to recursive programs. For a class of monoid-based
data structures, including arrays and trees, induction vari-
ables capture the exact memory location accessed at every
step of the execution. This compile-time characterization is
computed in polynomial time as a rational function.

1 Introduction

Static program analysis aims at the compile-time computa-
tion of program properties. Despite tremendous theoretical
progresses and application success stories, this old problem
is still a difficult one for two main reasons.

First of all, general properties of the concrete program
semantics are undecitdable, and most practical analyses eval-
uate conservative approzimations. There are three main
paradigms for static analysis [26]: type systems, data-flow
(or constraint-based) analysis and abstract interpretation.
Together, they contribute to the formalization, proof, com-
putation and implementation of approximate static analy-
ses and their applications. These approximate analyses do
not capture cases in which exact properties can be evalu-
ated on Turing-incomplete domain-specific languages — like
bounded memory usage in synchronous languages [3] or ar-
ray dependences on Fortran loop nests [15].

For a wide area of static analysis problems, there is an-
other, more technical, but probably more important diffi-
culty: static analyses lack the ability to attach properties at
an infinite set of control points. Indeed, program semantics
assigns “meaning” to a finite set of syntactic elements —
statements or variables — using inductive definitions (rules,
sequents, etc.). It is very natural to attach static proper-
ties to these syntactic elements: e.g., constant propagation
[1] is interested in computing a property of a variable v at
a statement s, asking whether v has some value v before s
executes. For more complex analyses, attaching properties
to a finite set of syntactic elements is not practical. E.g., in-
duction variable recognition [18] captures the value of some
variable v at a statement s as a function f; of the number
of times s has been executed. In other words, it captures
v as a function of the ezecution path itself. Of course, the
value of a variable at any stage of the execution is a func-

tion of the initial contents of memory and of the execution
path leading to this stage. For complexity reasons, the ex-
ecution path may not be recoverable from memory. In the
case of induction variables, we may assume the number of
executions of s is recorded as a genuine loop counter. From
such a function f,, we can discover other induction variables
using analyses of linear constraints [12].

1.1 Statementwise Analysis.

We use the term statementwise to refer to the classical
type systems, data-flow analysis and abstract interpretation
frameworks, that define and compute program properties at
each program statement. A typical example is static analysis
by abstract interpretation [11, 9, 10]: it relies on the collect-
ing semantics to operate on a lattice of abstract properties.
This restricts the attachment of properties to a finite set of
control points. Few works addressed the attachment of static
properties at a finer grain than syntactic program elements.
Refinement of this coarse grain abstraction involves a pre-
vious partitioning [9] of the control points: e.g., polyvariant
analysis distinguishes the context of function calls, and loop
unfolding virtually unrolls a loop several times. Dynamic
partitioning [5] integrates partitioning into the analysis it-
self; but we are not aware of any type-system, abstract in-
terpretation or data-flow analysis allowing the attachment
of program properties to a finitely-presented, unbounded set
of control points.t

1.2 Instancewise Analysis.

On the other hand, domain-specific approaches to static
analysis are able to compute program properties at an infi-
nite number of control points. The so-called polytope model
encompasses most works on analysis and transformation
of the (Turing-incomplete) class of static-control programs
[15, 28], roughly defined as nested loops with affine loop
bounds and array accesses. An iteration vector abstracts
the runtime control point corresponding to a given itera-
tion of a statement. Program properties are expressed and
computed for each vector of values of the surrounding loops
counters. Instead of iteratively merging data-flow prop-
erties, most analyses in the polytope model use algebraic
solvers for the direct computation of symbolic relations: e.g.,
array dependence analysis uses integer linear programming
[15]. Iteration vectors are quite different from time-stamps

1However7 unbounded lattices have long been used to capture ab-
stract properties in statementwise analyses [12, 13].



in control point partitioning techniques [5]: they are multi-
dimensional, lexicographically ordered, unbounded, and con-
strained by Presburger formula [29].

First Contribution. We introduce a general static analysis
framework for sequential procedural languages. Within this
framework, one may define, abstract and compute program
properties at an nfinite number of runtime control points.
Our framework is called instancewise and runtime points are
further referenced as instances. We will formally define in-
stances as trace abstractions, understood as iteration vectors
extended to arbitrary recursive programs. The mathemat-
ical foundation for instancewise analysis is formal language
theory: rational languages finitely represent infinite set of
instances, and instancewise properties may be captured by
rational relations [4]. This paper goes far beyond our pre-
vious attempts to extend iteration vectors to recursive pro-
grams, for the analysis of arrays [8, 7, 6, 2] or recursive data
structures [16, 6].

Second Contribution. Building on the instancewise frame-
work, we extend the concept of induction variables to arbi-
trary recursive programs. The valuation of induction vari-
ables is analog to parameter passing in a purely functional
language: each statement is considered as a function, bind-
ing and initializing one or more induction variables. We
propose two algorithms for the eract (i.e., non approximate)
evaluation of induction variables. The result of these algo-
rithms is a binding function mapping instances to the ab-
stract memory locations they access. It is a rational func-
tion on the Cartesian product of two monoids and can be
efficiently represented as a rational transducer [4].

To focus on the core concepts and contributions, we in-
troduce MOGUL, a language with high-level constructs for
traversing data structures addressed by induction variables
in a finitely presented monoid. In a general-purpose (imper-
ative or functional) language, our technique would require
additional information about the shape of data structures,
using dedicated annotations [22, 23, 17| or shape analyses
[19, 31]. Despite the generality of the control structures in
MoGuL, binding functions are ezact and may be used to de-
rive alias and dependence information of recursive programs
with an unprecedented precision [6, 2].

Organization of the Paper. Section 2 describes the control
structures and trace semantics of the MoGuL language.
Section 3 defines the abstraction of runtime control points
into instances. Section 4 extends induction variables to re-
cursive control and data structures. Section 5 states the
existence of rational binding functions. Section 6 addresses
the computation and representation of binding functions as
rational transducers. We consider practical examples in Sec-
tion 7, before we conclude and outline ongoing and future
work.

2 Control Structures and Execution Traces

We consider a simplified notion of ezecution trace with em-
phasis on the identification of runtime control points. For
our purpose, a trace is a sequence of symbols called labels
that denotes a complete execution of a program. Each label
registers either the beginning of a statement execution or its
completion. A trace prefiz is the trace of a partial execution,
given by a prefix of a complete trace. In the remainder, we

will consider trace prefixes instead of the intuitive notion of
runtime control point.

Figure 1 presents our running example. It features a
recursive call to the Toy function, nested in the body of a for
loop, operating on an array A. Thus, there is no simple way
to remove the recursion. In this paper, we will construct a
finite-state representation for the infinite set of trace prefizes
of Toy, then compute an ezact finite-state characterization
of the elements of A accessed by a given trace prefiz.

2.1 Control Structures in the MoGUL Language

Figure 2 gives the MOGUL version of Toy. It abstracts the
shape of array A through a monoid type Monoid_int. Induc-
tion variables i and k are bound to values in this monoid.
Traversals of A are expressed through i, k and the monoid
operation “.”. Further explanations about MoGuL data
structures and induction variables are deferred to Section 4.
We present in Figure 3 a simplified version of the MoGuL
syntax, focusing on the control structures.

This is a C-like syntax with some specific concepts.
Italic non-terminals are defined elsewhere in the syntax:
elementary_statement covers the usual atomic statements,
including assignments, input/output statements, void state-
ments, etc.; predicate is a boolean expression; init_list
contains a list of initializations for one or more loop vari-
ables, and translation_list is the associated list of con-
stant translations for those induction variables.

Every executable part of a program is labeled, either by
hand or by the parser.

2.2 Interprocedural Control Flow Graph

Toy (20, 0)
push I
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Figure 4: Interprocedural Control Flow Graph

We start with an intuitive presentation of the trace se-
mantics of a MOGUL program, using the Interprocedural
Control Flow Graph (ICFG): an extended control flow graph
[1] with function call and return nodes. The ICFG associ-
ated to Toy is shown in Figure 4.

Each elementary statement, conditional and function call
is a node of the ICFG, and more specifically:

e one node corresponds to each block entry;

e for loops generate three nodes: initialization (entry),
condition (termination), and iteration;



int A[20];

void Toy(int n, int k) {
if (k < n)
{
for (int i=k; i<=n;
i+=2)
{
A[i] = A[i] + A[n-il;
Toy(n, k+1);
}
}
return

}

int main() {
Toy(20, 0);
¥

Figure 1: Program Toy in C

structure Monoid_int A;

A function Toy(Monoid_int n, Monoid_int k) {
B if (k < n)
c {
D for (Monoid_int i=k; i<=n;
d i=1.2)
E {
F A[i] = A[i] + A[n-i] ;
G Toy(n, k.1);
}
¥
}
H function main() {
I Toy (20, 0);
}

Figure 2: Program Toy in MoGuL

program = function (S
| function program (52)
function = function’ <dent ’(’ formal_parameter_list )’ block (S3)
block ::= LABEL ’:’ ’{’ 4nit_list statement_list ’}’ (S4)
| LABEL ’:’ ’{’ statement_list ’}’ (S5)
statement_list = ¢ (S6)
| LABEL ’:’ statement statement_list (S7)
statement = elementary_statement ’;° (S8)
| ident ’(’ actual_parameter_list ’)’ ’;’ (S9)
| ?if’ predicate block ’else’ block (510)
| for’ ’(’ init_list ’;’ predicate ’; LABEL ’:’ translation_list ’)’ block (S11D)
| block (S12)

Figure 3: Simplified MOGUL syntax (control structures)

e return nodes are implicitly added.

The iteration node follows the last node of the loop block
and leads to the condition node. Given a function call ¢ in
the program source, there is an edge in the ICFG from the
node associated to c to the corresponding function body.
Moreover, there is an edge from the return node to the
statement following the function call in the source program.

To forbid impossible matchings of function calls and re-
turns, i.e., to preserve context-sensitivity [26], we provide
the ICFG with a control stack [1], see Figure 4. The result
is the graph of a pushdown automaton.

Due to loops and conditionals, some accepted paths cor-
respond to valid execution traces, but others may still take
wrong branches. Since we focus on a static scheme to name
runtime control points, our trace semantics will make the
same simplifying assumption and we will consider a super-
set of the valid traces.

2.3 The Pushdown Trace Automaton

Although MoGUL uses a C syntax, the instancewise frame-
work in Section 3 considers each statement as a call to a
function implementing elementary operations, conditional
branches and iteration (as in a purely functional language).
We extend the control stack of the ICFG to take these im-
plicit calls into account. The stack alphabet now holds every

statement label. Each statement is also provided an addi-
tional label to separate the implicit function call from the
implicit return. If ¢ a label, ¢ corresponds to the beginning
of the execution of a statement, and ¢ indicates its comple-
tion. The first one labels arcs targetting the statement node,
the second labels arcs departing from the node. Regarding
the control stack, £ pushes £ while £ pops £.

The result is called the pushdown trace automaton and
the recognized words are the ezecution traces.

When all states are considered final, the automaton rec-
ognizes all trace prefizes. It also recognizes prefixes of non-
terminating traces when the program loops indefinitely. We
thus exclude non-terminating programs in the following.

Figure 5 presents the trace pushdown automaton of the
Toy program: IBDFF GBDFFGGdFFGGdddDBGdF is a
prefix of a valid trace.

2.4 The Trace Grammar

After the intuitive presentation above, this section gives a
formal definition of traces. There is one context-free trace
grammar G p per program P.

1. For each call to a function id, i.e., each derivation of
production (S9), there is a production schema

Ciqs == Label B;q Label (1)
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Figure 5: Pushdown Trace Automaton

where Cyy and B;y4 are the respective non-terminals of
the function call and body. Label is the terminal label
of the call to function id, and Label marks the end of
the statement, here a return statement.

2. For each loop statement s, i.e., each derivation of pro-
duction (S11), there are four production schemas

L; == e | Label, B; O, Label, (2)
Os; == & | Label; B; O; Label; (3)

where the three non-terminals Ly, Os and B; corre-
spond to the loop entry, iteration and body, respec-
tively. Label, and Label; are terminals, they are the
labels of the loop entry and iteration, respectively.

3. For each conditional s, i.e., each derivation of produc-
tion (S10), there are two productions schemas

I, := Label T, Label | Label F; Label (4)

where the three non-terminals I, T and Fs correspond
to the conditional, then branch and else branch, re-
spectively. Label is the terminal label of the condi-
tional.

4. For each block s, i.e., each derivation of produc-
tions (S4) or (S5), there is a production schema
B, := Label S; ... S, Label (5)

where the non-terminal By corresponds to the block
and non-terminals Si,... , S, correspond to each state-
ment in the block. Label is the terminal label of B;.

5. For each elementary statement s, there is a production
schema

Ss 1= Label Label (6)

where Label is the terminal label of statement s.

The axiom of the trace grammar is the non-terminal as-
sociated with the block of the main function.

Definition 1 (Trace Language) The set of traces of a
program P — called the trace language of P — is the set of
terminal sentences of Gp.

For a given execution trace ¢, runtime control points are
sequentially ordered according to the appearance of state-
ment labels in .

Definition 2 (Sequential Order) The sequential order
<seq 1S the strict prefix order of the trace prefizes. It is
a total order for a given execution trace.

Calling L, the alphabet of labels, the trace language rec-
ognized by Gp is a context-free (a.k.a. algebraic) subset of
the free monoid L}y, and € denotes its empty word. Clearly,
the trace language fits the intuition about program execu-
tion and the previous presentation in terms of the interpro-
cedural control flow graph: the pushdown trace automaton
recognizes the trace language.

Grammar Gp generates many terminal sentences that
are possible execution sequences for P. These sentences de-
pend on choices between productions (1) to (6). In a real
execution of P, these choices are dictated by the outcome of
loop and test predicates, which our grammar does not take
into account. It is customary to say that predicates are not
interpreted (in the model theory sense), or that P is a pro-
gram schema [25]. We are free to select which predicates
and operations should be interpreted: e.g., the polytope
model interprets every loop bound and array subscript in
number theory [28]. In this paper, we will interpret address
computations in the theory of finitely-presented monoids;
everything else will remain uninterpreted.

Eventually, a runtime execution may be represented in
the shape of an activation tree [1]: the sequential execution
flow corresponds to the depth-first traversal of the activation
tree. This representation is used in the formal definition of
instances. Figure 6 shows an activation tree for Toy. We
label each arc according to the target node statement. The
trace is obtained while reading the word along the depth-first
traversal: each downward step produces the arc label, and
each upward step produces the associated overlined label.

(0]
Trace prefix: IBDFF GBDFFGGdFF GGdddDBGAF ...

Figure 6: Activation tree

3 The Instancewise Model

This section is dedicated to the first part of our frame-
work: the abstraction of trace prefizes into control words,
the formal representation of instances. The control word
abstraction characterizes an infinite set of trace prefixes in a
tractable, finite-state representation. We present the prop-
erties of control words from several points of view: push-
down trace automata, trace prefixes, activation trees, and



MoGuL grammar. This last insight introduces a control
words grammar that generates a superset of control words.
We then investigate the conditions realizing the equivalence
of the language generated by the control words grammar
and the set of control words. This section ends with the
description of the control word language in the form of a
finite-state automaton, a counterpart of the pushdown trace
automaton. Finally, we expose one of the main results of
this work, justifying the introduction of control words as
the basis for instancewise analysis.

3.1 From the Pushdown Trace Automaton to Control Words

The pushdown trace automaton will help us prove an im-
portant property of control words.

Definition 3 (Stack Word Language) The stack word
language of a pushdown automaton A is the set of stack
words w such that there exist a state q in A for which the
configuration (q,u) is both accessible and co-accessible —
there is an accepting path traversing q with stack word w.

Definition 4 (Control Word) The stack word language
of the pushdown trace automaton s called the control word
language. A control word is the sequence of labels of all
statements that have begun their execution but not yet com-
pleted it. Any trace prefiz has a corresponding control word.

Since the stack word language of a pushdown automaton
is rational [30], we have:

Theorem 1 The language of control words is rational.

The activation tree is a convenient representation of con-
trol words. When the label of node n is at the top of
the control stack, the control word is the sequence of la-
bels along the branch of n in the activation tree, i.e., the
path from the root to node n [1]. Conversely, a word la-
beling a branch of the activation tree is a control word.
For example, IBDdF is the control word of trace prefix

IBDFF GBDFF GGdFF GGdddDBG dF in Figure 6.

3.2 From Traces to Control Words

The trace language is a Dyck language [4], i.e., a hierarchical
parenthesis language. The restricted Dyck congruence over
L7, is the congruence generated by £ = ¢, for all £ € L,y,.2
This definition induces a rewriting rule over Ly}, obviously
confluent. This rule is the direct transposition of the control
stack behavior. Applying it to any trace prefix p we can
associate a minimal word w.

Lemma 1 The control word w associated to the trace pre-
fiz p is the shortest element in the class of p modulo the
restricted Dyck congruence.

Definition 5 (Slimming Function) The slimming func-
tion maps each trace prefiz to its associated control word.

Theorem 2 The set of control words is the quotient set of
trace prefizes modulo the restricted Dyck congruence, and
the slimming function is the canonical projection of trace
prefizes over control words.

2The restricted qualifier means that only o couples are considered,
£¢ being a nonsensical sub-word for the trace grammar.

From now on, the restricted Dyck congruence will be
called the slimming congruence. The following table illus-
trates the effect of the slimming function on a few trace
prefixes.

Trace prefix IBDFFGBDF
Control word IBD _GBDF_ o
Trace prefix IBDFFGBDFFGGdIFFG

Control word IBD _GBD . _d _G_
Trace prefix IBDFFGBDFFGGAFFGGdddDBGdF
Control word IBD dF

The slimming function extends Harrison’s NET function,
and control words are very similar to his procedure strings
[21]. Harrison introduced these concepts for a statementwise
analysis with dynamic partitioning.

3.3 From the Trace Grammar to Control Words

We may also derive a control words grammar from the trace
grammar. This grammar significantly differs from the trace
grammar in three ways.

1. Control words contain no overlined labels.
The control stack itgnores overlined labels.

2. Each non-terminal is provided an empty production.
A control word is associated to each trace prefiz.

3. If the right-hand side of a production consists of mul-
tiple non-terminals, it is replaced by an individual pro-
duction for each non-terminal.

Only the last statement of an uncompleted sequence re-
mains in the control stack, i.e., in the control word.

Under these considerations, the productions for the con-
trol words grammar are the following, with the same nota-
tions and comments as the trace grammar.

1. For each function call id, i.e., each derivation of pro-
duction (S9), there are two productions

Ciq == Label Bia | ¢
2. For each loop statement s, i.e., each derivation of pro-
duction (S11), there are six productions

L, := Label, B, | Label, O, | ¢
O; == Label; B, | Label; O, | ¢

3. For each conditional s, i.e., each derivation of produc-
tion (S10), there are three productions
I, == LabelT, | Label F;, | ¢
4. For each block s enclosing n statements, i.e., each
derivation of (S4) or (S5), there are n + 1 productions
B, == Label S1 | --- | Label S, | ¢

5. For each elementary statement s,
Sy = Label | ¢

The axiom of this grammar is the block of the main function.
The control words grammar grammar above is right lin-
ear,? hence its generated language is rational.

3At most one non-terminal in the right-hand side, and non-
terminals are right factors.



Lemma 2 The language of control words is a subset of the
language generated by the control words grammar.

The proof comes from the three above observations that
translate the effect of the slimming function. For each trace
grammar derivation, we associate a corresponding derivation
of the control words grammar. The control words grammar
generates any stack word corresponding to a path — accept-
ing or not — in the pushdown trace automaton.

The next section will show that the control words gram-
mar only generates control words, assuming the trace gram-
mar satisfies a termination criterion.

3.4 Control Words and Program Termination

Assuming any incomplete execution can be completed until
the termination of the program, stack words corresponding
to a path of the pushdown automaton are all stack words of
trace prefixes, i.e., control words.

Conversely, if a partial execution has entered a step
where the last opened statement can never be completed,
a recursive cycle in the trace derivation cannot be avoided.

Example. Consider the following trace grammar:

S — aAbba B — fCf
A — cBc C — g¢gByg
A — deed

a labels the body of function main and b labels an elemen-
tary statement. A is a non-terminal for a conditional test;
function B is called in the then branch, while elementary
statement s is executed in the else one. Function B calls
function C and conversely. Thus, the then branch may never
terminate. The corresponding control words grammar is:

S — adA A — ¢
S — ab B — fC
S — ¢ B — ¢
A — ¢B C — ¢B
A — de C — ¢

This grammar generates ac, thanks to the derivation
S —ad; A—cB; B—e.

However, no trace prefix can be generated by the trace gram-
mar for which the control word is ac, hence ac is not a con-
trol word. To avoid this, we need a criterion that forbids
recursive trap cycles. This criterion is defined through the
structure of the trace grammar; we refer to the definition of
a reduced grammar [32].

Definition 6 (Reduced Grammar) A reduced grammar
is a context-free grammar such that:

1. there is no A — A rule;

2. any grammar symbol occurs in some sentential form (a
sentential form is any derivative from the aziom);

3. any non-terminal produces some part of a terminal sen-
tence.

The third rule is the criterion we are looking for: a non-
terminal which produces some part of a terminal sentence
is said active. The control words grammar of the program
must have only active non-terminals; it is called an unlooping
grammar. In the previous example, B and C' are not active.

Termination criterion for the trace grammar. Starting from
a set of non-terminals IV, we recall an inductive algorithm
that determines the set of active non-terminals N' C N; if
N = N', the grammar is unlooping [32]. The initial set N}
contains active non-terminals that immediately produce a
part of a terminal sentence; ® denotes the set of grammar
rules, T is the set of terminals, and m is the cardinal of V.

Algorithm 1
Ni—{A|A—>a€ed® A aeT"}
Fork=23,... , m
NN, U{A|A—a€e@® Aae(TUN,_)}
IfN,=N._, V k=m
Then N' — Nj,
Applied to our example where N = {S, A, B,C}:
Ni={A}; N; ={A,S}; N3=N;; N'={A,S}; N#N".

Thanks to Lemma 2, we may state a necessary and suffi-
cient condition for the control words grammar to only gen-
erate control words.

Theorem 3 Let P be a program given by its trace grammar
Gp, and let G'» be the associated control words grammar.
The control words language of P is generated by G'p if and
only if Algorithm 1 concludes that Gp is unlooping.

3.5 The Control Automaton

O
I

All states are final.

A few control words:

IBDAF,
IBDGBDF,
IBDGBDG.

Figure 7: Example Control Automaton

We now assume the program satisfies Theorem 3.

It is easy to build a finite-state automaton accepting the
language generated by the right-linear control words gram-
mar, i.e., a finite-state automaton recognizing the language
of control words. We call the latter the control automaton.

Figure 7 shows the control automaton for Toy; the control
word language is [+ IB+IBD(d+ GBD)*(e+ F+ G+ GB).

The transformation from traces to control words is a sys-
tematic procedure. A similar transformation exists from the
pushdown trace automaton to the control automaton; this
is important for the design of efficient instancewise analysis
algorithms (see Section 5).

e In the pushdown trace automaton, a sequence of suc-
cessive statements takes is a chain of arcs, while, in the
control automaton, each of these statement is linked by
an edge from the common enclosing block, see Figure
8. Thus, the control automaton makes no distinction
between the sequence and the conditional.

e As in the pushdown automaton for trace prefixes, all
states are final.

e Since a return statement closes the corresponding
function call and deletes every label relative to it in the
control word, return nodes are not needed anymore.
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Each statement in a sequence is linked to the enclosing block.

Figure 8: Construction of the Control Automaton

3.6 Instances and Control Words

Consider any trace t of a MOGUL program and any trace
prefix p of t. The slimming function returns a unique control
word. Conversely, it is easy to see that a given control word
may be the abstraction of many trace prefixes, possibly an
infinity. E.g., consider two trace prefixes differing only by
the sub-trace of a completed conditional statement:* their
control words are the same.

This section will prove that, during any execution of a
MoGuL program, the stack that registers the control word
at runtime cannot register twice the same control word (i.e.,
for two distinct trance prefixes). In others words, control
words characterize runtime control points in a more com-
pact way than trace prefixes. For the demonstration, we
introduce a strict order over control words.

Definition 7 (Lexicographic Order) We first define the
partial textual order <;.» over labels. Given s1 and s2 two
labels 1n Lap, s1 <iap S2 if and only if
e there is a production generated by (5) in the trace gram-
mar, such as s1 is the label of S; and s2 is the label of
Sj, with1 <i<j<n;
e or there is a production generated by (2) or (3) such as
s1 1s the label of Bs and sz is the label of Os.

We denote by <iex the strict lexicographic order over con-
trol words induced by <iqp-

In other words, <jab is the textual order of appearance
of statements within blocks, considering the loop iteration
statement as textually ordered after the loop body.

Lemma 3 The sequential order <seq over prefiz traces is
compatible with the slimming congruence. The lexicographic
order <jez 15 the quotient order induced by <seq through the
slimmaing congruence.

The proof takes two steps. First of all, let ¢ be a trace and
T its activation tree. The set of all paths in 7" is ordered by
a strict lexicographic order, <7, isomorphic to <iex.

Then, let o be the function mapping any path in T to
the last label of the path word (accurately speaking of the
control word labeling this path). Given a trace prefix p and
the <7 ordered sequence {bo = ¢€,b1,...,bn} of all paths in
T, the (partial) depth-first traversal of 7' until p yields the
following word:

dft(p) £ a(bo)ax(by)...c(by),

where b, is the branch of p, ¢ < n. Now, the definition of
dft(p) is precisely p.

Let p, and p, be two prefixes of ¢, p, being a prefix of p,
itself, and write

pq = a(bo)a(br)...a(by), pr = a(bo)a(br)...a(br).

4I.e., after both branches have been completed, the first sub-trace
denoting the then branch and the other the else one

We have the following: py <seq pr <= by <7 b,. Together
with the first step, pq <seq Pr <= bg <iex br-
We now come to the formal definition of instances.

Definition 8 (Instance) For a MOGUL program, an in-
stance is a class of trace prefizes modulo the slimming con-
gruence.

It is fundamental to notice that, in this definition, instances
do not depend on any particular execution.

From Lemma 3 and Theorem 2 (the slimming function is
the canonical projection of trace prefixes to control words),
we may state the two main properties of control words.

Theorem 4 Given one ezecution trace of a MOGUL pro-
gram, trace prefizes are in bijection with control words.

Theorem 5 For a given MOGUL program, instances are
in bijection with control words.

Theorem 4 ensures the correspondence between runtime con-
trol points and control words. Theorem 5 is just a rewording
of Theorem 2, it states the meaning of control words across
multiple executions of a program.

In the following, we will refer to instances or control
words interchangeably, without naming a particular trace
prefix representative.

4 Data Structure Model and Induction Variables

This section and the following ones apply instancewise anal-
ysis to the ezact characterization of memory locations ac-
cessed by a MOGUL program. For decidability reasons, we
will only consider a restricted class of data structures and
addressing schemes:

e data structures do not support destructive updates
(deletion of nodes and non-leaf insertions);®

e addressing data-structures is done through so called in-
duction variables whose only authorized operations are
the initialization to a constant and the associative op-
eration of a monoid.

In this context, we will show that the value of an induction
variable at some runtime control point — or the memory
location accessed at this point — only depends on the in-
stance. Exact characterization of induction variables will
be possible at compile-time by means of so-called binding
functions from control words to abstract memory locations
(monoid elements), independently of the execution.

4.1 Data Model

To simplify the formalism and exposition, MoGUL data
structures with side-effects must be global. This is not really
an issue since any local structure may be “expanded” along
the activation tree (e.g., several local lists may be seen as a
global stack of lists).

5Leaf insertions are harmless if data-structures are implicitly ex-
panded when accessed.



4.1.1 Data Structure Monoids

A finitely-generated monoid M = (G,=) is specified by a
finite list of generators G and a congruence = given by a
finite list of equations over words in G*. Elements of M
are equivalence classes of words in G* modulo =. When the
congruence is empty, M is a free monoid. The operation of
M is the quotient of the concatenation on the free monoid
G* modulo =; it is an associative operation denoted by -
with neutral element &, .

Definition 9 (Abstract Location) An abstract memory
location s a pair of a data structure name and an element
of a finitely-generated monoid M = (G, =). It is represented
by an address word in G*. By definition, two congruent
address words represent the same memory location.

Typical examples are the n-ary tree — the free monoid
with n generators (with an empty congruence) — and the n-
dimensional array — the free commutative monoid Z"™ (with
vector commutation and inversion). See Section A.1 for a
wider coverage.

4.2 Induction Variables

Traditionally, induction variables are scalar variables within
loop nests with a tight relationship with the surrounding
loop counters [1, 18]. This relationship, deduced from the
regularity of the induction variable updates, is a critical in-
formation for many analyses (dependence, array region, ar-
ray bound checking) and optimizations (strength-reduction,
loop transformations, hoisting).

A basic linear induction variable x is assigned (once or
more) in a loop, each assignment being of the form x = corx
= x + ¢, where cis a constant known at compile-time. More
generally, a variable x is called a linear induction variable
if on every iteration of the surrounding loop, x is added a
constant value. This is the case when assignments to x in
the cycle are in the basic form or in the form x = y + ¢, y
being another induction variable. The value of x may then
be computed as an affine function of the surrounding loop
counters.

MoGuL extensions are twofold:

e induction variables are not restricted to arrays but han-
dle all monoid-based data structures;

e both loops and recursive function calls are considered.

As a consequence, induction variables represent abstract ad-
dresses in data structures, and the basic operation over in-
duction variables becomes the monoid operation.

Definition 10 (Induction Variable) A wvariable x is an
induction variable if and only if the three following condi-
tions are satisfied:

a. x s defined at a block entry, a for loop initialization,
or x s a formal parameter;

b. x is constant in the block, the for loop or the function
where it has been defined;

c. the definition of x (according to a) is in one of the forms:
1. x = ¢, and c s a constant known at compile-time,

2. x =y - ¢ and y is an induction variable, possi-
bly equal to x.

A MoGuL induction variable can be used in different
address expressions which reference distinct data structures,
provided these structures are defined over the same monoid.
This separation between data structure and shape follows
the approach of the declarative language 81/2 [20]. It is
a convenient way to expose more semantics to the static
analyzer, compared with C pointers or variables of product
types in ML.

Eventually, the MoGUL syntax is designed such that
every variable of a monoid type is an induction variable,
other variables being ignored. The only valid definitions
and operations on MOGUL variables are those satisfying
Definition 10. Data structure accesses follow the C array
syntax: D[x] denotes element x of structure D. The same
syntax holds for all monoid shapes.®

5 The Binding Function

In MoGuL, the computations on two induction variables in
two distinct monoids are completely separate. Thus, with-
out loss of generality, we suppose that all induction variables
belong to a single monoid M), with operation - and neutral
element ¢,,, called the data structure monoid.

5.1 From Instances to Memory Locations

In a purely functional language, function application is the
only way to define a variable. In MOGUL, every statement
is handled that way; the scope of a variable is restricted to
the statement at the beginning of which it has been declared,
and an induction variable is constant in its scope.

Since overloading of variable names occurs at the begin-
ning of each statement, the value of an induction variable
depends on the runtime control point of interest. Let x be
an induction variable, we define the binding for x as the pair
(p, vp), where p is a trace prefix and v, the value of x after
executing p.

Consider two trace prefixes pi1 and p» representative of
the same instance. The previous rules guarantee that all
induction variables living right after p1 (resp. p2) have been
defined in statements not closed yet. Now, the respective
sequences of non-closed statements for p; and p» are iden-
tical and equal to the control word of p; and p>. Thus the
bindings of x for p; and p» are equal. In others words, the
function that binds the trace prefix to the value of x is com-
patible with the slimming congruence.

Theorem 6 Given an induction variable x in a MoGuUL
program, the function mapping a trace prefix p to the value
of x only depends on the instance associated to p, i.e., on
the control word.

In other words, given an execution trace the bindings at
any trace prefix are identified by the control word (i.e., the
instance).

Definition 11 (Binding Function) A binding for x is a
couple (w,v), where w is a control word and v the value of
x at the instance w.

Ay denotes the binding function for x, mapping control
words to the corresponding value of x.

SIf A is an array (i-e., A is addressed in a free commutative group),
the affine subscript A[i+2j-1] is not a valid MoGuL syntax. This is
not a real limitation, however, since affine subscripts may be replaced
by new induction variables defined every-time i or j are defined.



5.2 Bilabels

We now describe the mathematical framework to compute
binding functions.

Definition 12 (Bilabel) A bilabel is a pair in the set
L, X Mio.. The first part of the pair is called the input
label, the second one is called the output label.

B = L}, x M. denotes the set of bilabels. From the direct
product of the control word free monoid L}, and the data
monoid Mj,., B is provided with a monoid structure: its
operation e is defined componentwise on L}, and Misc,

def

(ala) o (B]b) = (afla-b). (7

A binding for an induction variable is a bilabel. Every
statement updates the binding of induction variables accord-
ing to their definitions and scope rules, the corresponding
equations will be studied in Section 5.3.

Definition 13 The set of rational subsets of a monoid M
is the least set that contains the finite subsets of M, closed
by union, product and the star operation [4].

A rational relation over two monoids M and M' is a
rational subset of the monoid M x M'.

We focus on the family By, of rational subsets of B.

Definition 14 A semiring is a monoid for two binary op-
erations, the “addition” +, which is commutative, and the
“product” x, distributive over +; the neutral element for +
is the zero for X.

The powerset of a monoid M is a semiring for union and
the operation of M [4]. The set of rational subsets of M is
a sub-semiring of the latter [4]; it can be expressed through
the set of rational expressions in M. Thus Byas is a semiring.

We overload e to denote the product operation in Biat;
(0 is the zero element (the empty set of bilabels); and the
neutral element for e is & = {(¢,e,)}. From now on, we
identify Biat with the set of rational expressions in M, and
we also identify a singleton with the bilabel inside it: {(s|c)}
may be written (s|c).

5.3 Building Recurrence Equations

To compute a finite representation of the binding function
for each induction variable, we show that the bindings can
be expressed as a finite number of rational sets. First of
all, bindings can be grouped according to the last executed
statement, i.e., the last label of the control word. We build a
system of equations in which unknowns are sets of bindings
for induction variable x at state n of the control automaton.
Given A, the control automaton modified so that n is the
unique final state, let £, be the language recognized by A,.
The binding function for x at state m, AY, is the binding
function for x restricted to £,. We also introduce a new
induction variable z, constant and equal to e, .

The system of equations is a direct translation of the se-
mantics of induction variable definitions; it follows the syn-
tax of a MOGUL program P; we illustrate each rule on the
running example.

1. At the initial state 0 and for any induction variable x,

A=¢ (8)

E.g., the Toy program involves three induction variable, the
loop counter i and the formal parameters k and n. We will
not consider n since it does not subscript any data structure.
The output monoid is Z, its neutral element &, is 0.

A9 = A9 = (¢]0).
2. A7} denotes the set defined by
A= U (wlem). (9)

wELn

A7 is the binding function for the new induction vari-
able z restricted to L,; it is constant and equal to ep,.
For each statement s defining an induction variable x
to csx (case .l of Definition 10), and calling d and a
the respective departure and arrival states of s in the
control automaton,

A% D AL o (s|cax). (10)

Since A o (s|csx) = Uwer, (ws|csx), (10) means: if w €
L4 is a control word, ws is also a control word and its
binding for x is (ws|csx).

The control automaton automaton of Toy has 5 states. For
the case c.1 of Definition 10,

statement I : k =0, (11)
and (10) yields
AL D Ale(1]0).

3. For each statement s defining an induction variable x
to y - ¢ (case c.2 of Definition 10), and d and a the
respective departure and arrival states of s,

AL DAY e (s|cs). (12)

To complete the system, we add for every induction
variable x unchanged by s a set of equations in the
form (12), where csx = €.

E.g., for case c.2 of Definition 10,

statement G : k=k -1 (13)
statement d : i=1.2 (14)
statement D : i=k (15)

and (12) yields
AL D A2 e (GI0)
AL DAY e (G1)

A% DAY o (F]0)
AE D AZ o (F]0)

Af D A} e (B0) Az 2 A2 e (I]0)
A7 D AL e (BJ0) Az 2 A% e (C0)
A3 D A} e (D]0) A7 DA}« (BJ0)

A2 DAY e (d2)

A2 D AZ e (DD) A2 D A2 o (d]0)

A9 D AZ ¢ (d0) AL D A3 e (Fl0)
Gathering all equations generated from (8), (10) and (12)
yields a system (S) of n, X ns equations with n, X ns un-
knowns, where n, is the number of induction variables, in-

cluding z, and n, the number of statements in the program.”
Toy yields the system

A7 2 A7 e (D|0)

"Some unknown sets correspond to variables that are not bound
at the node of interest, they are useless.



0 A3 = A3 e (d|2) + AZ o (D|0)
A; =€ 3_ A3 2
AD—¢ Ay = Ag # (d]0) + Ay @ (D]0)
5 A = A7 o (F]0)

z 4 _ A3
Al =Aze@y+ (o) A=A 10)

1 3 Al = A3 o (G|0) + (I]0)

Ay = Ai » (GI1) + (I]0) AZ = Al o (BJ0)

2 _ Al z — ‘lz
RPN A3 = A2 o (DI0) + A2 o (d)0)

N AL = A3 o (F|0)

Let A be the set of unknowns for (S), i.e., the set of

A} for all induction variables x and nodes n in the control
automaton. Let C be the set of constant coefficients in the
system. (S) is a left linear system of equations over (A, C)
[30]. Let X; be the unknown in A appearing in the left-hand
side of the i*" equation of (S). If + denotes the union in
Biat, we may rewrite the system in the form

Vie{l,... ,m},XiZZXj.CiJﬁ-Ri,

j=1

(16)

where R; results from the terms AE = £ in right-hand side.
Note that C; ; is either ) or a bilabel singleton of Byat. Thus
(S) is a strict system, and as such, it has a unique solution
[30]; moreover, this solution can be characterized by a ratio-
nal erpression for each unknown set in A.

Definition 15 (Rational Function) If M and M' are
two monoids, a rational function is a function from M to
M' whose graph is a rational relation.

Combined with Theorem 6, we may conclude that the
solution of (§) is a characterization of each unknown set Xj
in A as a rational function.

Theorem 7 The binding function for a MoGUL program
s a finite set of rational functions AL, for all induction vari-
ables x and nodes n in the control automaton.

Properties of rational relations and functions are similar
to those of rational languages [4]: membership, inclusion,
equality, emptiness and finiteness are decidable, projection
on the input or output monoid yields a rational sub-monoid,
and rational relations are closed for union, star, product
and inverse morphism, to cite only the most common prop-
erties. The main difference is that they are not closed for
complementation and intersection, although a useful sub-
class of rational relations has this closure property — in-
dependently discovered in [27] and [6]. Since most of these
properties are associated with polynomial algorithms, bind-
ing functions can be used in many analyses, see [7, 16, 6, 2|
for our previous and ongoing applications to the automatic
parallelization of recursive programs.

6 Computing the Binding Function

This section investigates the resolution of (S). Starting from
(16), one may compute the last unknown in terms of others:

X = c;,m(EXj o Ci; +Rm). (17)

i=1

The solution of (§) can be computed by iterating this pro-
cess analogous to Gaussian elimination. This was the first
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proposed algorithm [6]; but Gaussian elimination on non-
commutative semirings leads to exponential space require-
ments. We propose two alternative methods to compute
and represent the binding function effectively. The first one
improves on Gaussian elimination but keeps an exponen-
tial complexity; it has a strong theoretical interest because
it captures the relations between all induction variables in
a single representation, see Section A.2. If we only need
to represent induction variables separately from each other,
this Section presents a polynomial algorithm.

We recall a few definitions and results about transducers

[4].

Definition 16 A rational transducer is a finite-state au-
tomaton where each transition s labeled by a pair of input
and output symbols (borrowing from Definition 12), a sym-
bol being a letter of the alphabet or the empty word.®

A pair of words (u,v) is recognized by a rational trans-
ducer if there is a path from an initial to a final state whose
input word is equal to u and output word is equal to v.°

Theorem 8 A rational transducer recognizes a rational re-
lation, and reciprocally.

A transducer offers either a static point of view — as a
machine that recognizes pairs of words — or a dynamic point
of view — the machine reads an input word and outputs the
set of image words.

The use of transducers lightens the burden of solving
a system of regular expressions, but we lose the ability to
capture all induction variables and their relations in a single
object. The representation for the binding function of an
induction variable is called the binding transducer.

Algorithm 2

Given the control automaton and a monoid with n, in-
duction wvariables (including z), the binding transducer is
built as follows.

e For each control automaton state, create a set of my
states, called a product-state; each state of a product-
state is dedicated to a specific induction variable.

e Initial (resp. final) states correspond to the product-
states of all initial (resp. final) states of the control
automaton.

e For each statement s, i.e., for each transition (d,a) la-
beled s in the control automaton; call P and P% the
corresponding product-states; and create an associated
product-transition ts. It is a set of m, transitions,
each one is dedicated to a specific induction variable.
We consider again the two cases mentioned in Defini-
tion (10.c).

— case c.1: the transition runs from state PE in P?
to the state Py in P*. The input label is s, the
output label is the initialization constant c;

— case ¢.2: the transition runs from state Pyd in P¢
to state P in P*. The input label is s, the output
label is the constant c;

8Pair of words lead to an equivalent definition.

9A transducer is not reducible to an automaton with bilabels as
elementary symbols for its alphabet; as an illustration, both paths
(z]e)(y|z) and (z|z)(y|e) recognize the pair of words (zy|z).



The binding transducer for Toy is shown in Figure 9.
Notice that nodes allocated to the virtual induction variable
z are not co-accessible except the initial state (there is no
path from them to a final state), and initial states dedicated
to i and k are not co-accessible either. These states are
useless, they are trimmed from the binding transducer.

Gl1

Figure 9: Binding Transducer for Toy

The binding transducer does not directly describe the
binding function. A binding transducer is dedicated to an
induction variable x when its final states are restricted to
the states dedicated to x in the final product-states.

Theorem 9 The binding transducer dedicated to an induc-
tion variable x recognizes the binding function for x.

This result is a corollary of Theorem 7.

7 Experiments

The construction of the binding transducer is fully imple-
mented in OCaml. Starting from a MoGUL program, the
analyzer returns the binding transducer according to the
choice of monoid. This analyzer is a part of a more ambi-
tious framework including dependence test algorithms based
on the binding transducer [2]. Our implementation is as
generic as the framework for data structure and binding
function computation: operations on automata and trans-
ducers are parameterized by the types of state names and
transition labels. Graphs of automata and transducers are
drawn by the free dot software [24].

Section A.3 presents two examples processed by our in-
stancewise analyzer of MOGUL programs. The first one
operates on an array, the second one on a tree.

Figure 10 summarizes some results about recursive pro-
grams we implemented in MOGUL. Since the first survey of
instancewise analyses techniques [6], we discovered many re-
cursive algorithms suitable for implementation in MoGuL
and instancewise dependence analysis. Therefore, it seems
that the program model encompasses many implementations
of practical algorithms despite its severe constraints.

Program n-Queens is the classical problem to place n
Queens on a n X n chessboard. To_&_fro is the recursive
merge-sort algorithm alternating over two arrays. It is opti-
mized in To_&_fro+Terminal_insert_sort by using an in-
sertion sort for the leaves of the recursion (on small intervals
of the original array). Sort_3_colors consists in sorting an
array of balls according to one color among three, using only
swaps. Vlsi_test simulates a test-bed to filter-out good
chips from an array of untested ones; the process relies on
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peer-to-peer test of two chips, a good chip giving a certified
correct answer about the other.

8 Conclusion and Perspectives

The instancewise paradigm paves the way for better, more
precise program analyses. It decouples static analyses from
the program syntax, allowing to evaluate semantic program
properties on an infinite set of runtime control points. This
paradigm abstracts runtime execution states (or trace pre-
fixes) in a finitely-presented, infinite set of control words.
Instancewise analysis is also an extension of the domain-
specific iteration-vector approach (the so-called polytope
model) to general recursive programs.

As an application of the instancewise framework, we ex-
tend the concept of induction variables to recursive pro-
grams. For a restricted class of data structures (including
arrays and recursive structures), induction variables capture
the exact memory location accessed at every step of the exe-
cution. This compile-time characterization, called the bind-
ing function, is a rational function mapping control words to
abstract memory locations. We give a polynomial algorithm
for the computation of binding functions.

Our current work focuses on instancewise alias and de-
pendence analysis, for the automatic parallelization and op-
timization of recursive programs. We also look after new
benchmark applications and data-structures to assess the
applicability of binding functions; multi-grid and sparse
codes are interesting candidates. We would also like to re-
lease a few constraints on the data structures and induction
variables, aiming for the computation of approximate bind-
ing functions through abstract interpretation.
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A Appendix

The following sections will not be included in the final ver-
sion of the paper. The interested reader will be referred to
a research report.

A.1 Monoid-Based Data Structures

Figure 11 lists some practical examples of monoid-based
data structures.

A.2 Binding Matrix

M.a: denotes the set B:;tm of square matrices of dimension
m with elements in Brat; Mrat is a semiring for the induced
matrix addition and product and M;as is closed by star op-

eration [30]. The neutral element of M. is

£ 0
0 £
Practical computation of the transitive closure of a square

matrix C' is an inductive process, using the following block
decomposition where a and d are square matrices:

a c¢
0= [ o ¢ ] |

The formula is illustrated by the finite-state automaton in
Figure 12; its alphabet is constituted of labels {a,b,c,d} of
the block matrices; ¢ and j are the two states, they are both
initial and final. If ¢ and j denote the languages computed
iteratively for the two states, and matrix C' represents a
linear transformation of the vector (i,7): (i1,j1) = (ioa +
job, toc + jod). We compute the transitive closure of C as
the union of all words labeling a path terminated in states ¢
or j, respectively, after zero, one, or more applications of C:
(ix, j=) = ((i0 + jod™b)(a + cd*b)*, (jo + ioa*c)(d + ba*c)*).
Writing P = (a +¢d*b)” and Q = (d + ba™c)”,

. * P d*bP
=[5 i) =% 9"

Figure 12: Computation of a matrix star

(18)

(19)

From (16), system (S) can be written X = XC +
R, where matrix C = (Cij)i<i,j<m and vectors R =
(Ri,...,Rn), X = (Xi1,...,Xm). Vector RC” is the so-
lution of (S), but direct application of (19) is still laborious,
given the size of C.

Matrix Automaton. Our solution relies on the sparsity of
C: we represent the system of equations in the form of an
automaton A, called the matrix automaton.

The graph of the matrix automaton is the same as the
graph of the control automaton. Each statement s is rep-
resented by a unique transition, gathering all information
about induction variable updates while executing s. The
binding function for x after statement s, Asx, maps con-
trol words ended by s to the value of x. It is the set of
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all possible bindings for x after s. A" denotes the binding
vector at state n, i.e., the tuple of binding functions for all
induction variables at state n (including z). Conversely, A,
denotes the binding vector after statement s, i.e., the tuple of
binding functions for all induction variables after executing
statement s.

With d the departure state of the transition associated
to statement s, we gather the previous linear equations re-
ferring to s and present them in the form:

—

VS € Myar, e = A% x S. (20)

As an example, we give the result for statement G of Toy:
Agi = A2 o (G|0), Agx = A2 e (G[1), Ag, = A2 ¢ (G|0)
(G0) 0 0

Ao=MAx| 0 (@G 0
0 0 (G|0)

Now, the transition of statement s in A is labeled by
the statement matriz S. Thus, A recognizes words with al-
phabet in M;,t: concatenation is the matrix product and
words are rational expression in M;.t, hence elements of
M;at. Grouping equations according to the transitions’ ar-
rival state, we get, for each state a,

TG DX

d€pred(a)

X Sda, Sda € Mras, (21)

where pred(a) is the set of predecessor states of a and Sg,
is the statement matrix associated to the transition from d
to a.

E.g., state number 1 in the matrix automaton of Toy yields

F:/ﬁ+@:pxﬂ+px6.

Theorem 10 Let A0 = (&,...,E) be the binding vector at
the beginning of the execution. The binding vector for any
state f can be computed as

A =10

x L, (22)
where L is a matriz of reqular expressions of bilabels; L 1is
computed from the regular expression associated to the ma-
triz automaton A, when its unique final state is f.

This result is a corollary of Theorem 7.

Application to the Running Example. We now give the state-
ment matrices associated with equations (11) to (15). With
the three induction variables i, k and z, the binding vector
after statement I, /T; = (Ars, A1k, Arz) and I the statement
matrix for I, we have:

—

Alzﬁxll, A_B):/TIXB, Ap=A*xD
_J:px, R:pr, A_p):/?x]F



Free monoid.
G = {right,left}, = is empty, - is the concate-
nation: monoid elements address a binary tree.

Free group.

G = {right,left,right ! left ™'}, = is the in-
version of left and right (without commuta-
tion): Cayley graphs [14, 20].

left

- S
- e
- e

(0,-1) (0, -1) (0,-1)
Free commutative group. ) o?\/ — \n‘/ o \\n;/ T = .
G = {(0,1), (1,0), (0, 1), (~1,0)}, = is the vec- (1,0)},(~1,0) I I )
tor inversion and commutation, - is vector addi- (1,0 (~1,0) Y Y y
tion: a two-dimensional array. T & & &

Free commutative monoid. (170)T (0,1) T (0,1) T (0,1) ?
G = {(0,1),(1,0)}, = is vector commutation: a O O
two-dimensional grid. (1,0) T T

O O O
Commutative monoid. o o o o
G ={(0,1),(1,0)}, = is vector commutation and (0.1) (0,1) (0,1)
(0,1) - (0,1) = & a two-dimensional grid folded (L0 )(1,0)
on the torus Z x Z. o o o o

—1 -1 -1

Free partially-commutative monoid. next? _ __1_ _ __1_ _ __1_
G = {next,1,—1}, = is the inversion and commu- = e e —=0
tation of 1: nested trees, lists and arrays. mext| _ _ _ nextT —— o —

O= =0 o ~ =0

left —Ox< right

Monoid with right-inverse.
G = {right, left,parent}, right - parent = &,
left - parent = ¢,,: a tree with backward edges.

o==- ~==0

Figure 11: Monoid-based structures

with the following statement matrices:

I o 0
statement I : [= o 0o 0
0 1o 1o
[Glo o 0
statement G: G = 0 Gjr 0
0 0 aGlo
[d2 0 0
statement d : = 0 do 0
| 0 0 do
[0 0 0
statement D : D = D0 D|0
0 0 Do

The other statements matrices let unchanged the induction
variables.

B0 0 0

statement B: B = ¢ B0 0
L 0 0 Blo

Flo 0 0

statement F': [ = 0 FjoO 0
0 0 Fl0
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The resulting matrix automaton is shown in Figure 13 (all
states are final).

L =1+1IB
+ IED( + GBD) "

(E+F+G + GB)

(E is the neutral element of Mat.)

Figure 13: Example of matrix automaton

About Complexity The exponential complexity of the ma-
trix method has two explanations:
e the size of a regular expression can be exponentially
larger than an equivalent finite-state automaton;

e despite our efforts to reduce the complexity of the tran-
sitive closure, we still achieve the simultaneous charac-



terization of all induction variables and their relations;
this leads to a large number of (non-commutative)
cross-products between regular expressions of different
induction variables.

Indeed, a list of binding transducers for every individual
induction variable may not be converted into a transducer
for the full binding function in polynomial time. Intuitively,
the alphabet of the latter must deal with tuples of induc-
tion varitables with diverging evolutions in the control au-
tomaton. This shows that the exponential complexity of
the matrix method is more fundamental than the fact we
use regular expressions.

A.3 Examples

The Pascaline Program. Figure 14 shows a program to
evaluate the binomial coefficients (a line of Pascal’s trian-
gle). It exhibits both a loop statement and a recursive call,
two induction variables I and L plus the constant induction
variable n; x and y are not induction variables. Statement D,
x = 1, is an elementary statement without induction vari-
ables: MOGUL simply ignores it. The else branch of the
conditional is empty: it ensures the termination of recursive
calls.

structure Monoid_int A;

function Pascaline(Monoid_int L, Monoid_int n) {
int x, y;
if (L < n)
{
x =1;
for (Monoid_int I=1; I<n;
I=I.1)
{
y = A[I];
AlIl = x + y;
x = A[I];

SQEeETQw >

}
Pascaline(L.1, n);
}
}

~

function Main() {
Pascaline (0, 10);
}

Sl

Figure 14: Program Pascaline

Figure 15 shows the binding transducer for Pascaline, as
generated by the software. The transducer is drawn by hand
to enhance readability, and in complement with the indica-
tion of the dedicated induction variable, we filled each node
of the graph with a statement borrowed from the program:
the statement is written in the arrival nodes of the associ-
ated transitions. Nodes dedicated to the induction variable
n are not used; they have been trimmed. Notice the use of
induction variable z to initialize loop counter I.

The Merge_sort_tree Program. Figure 16 shows an imple-
mentation of the merge sort algorithm, implemented over a
binary tree of lists, called Tree. The three functions Split,
Merge and Sort are recursive. Induction variables A, B and C
are locations in the tree; they are overloaded and exchanged
as formal parameters of the three functions. Parameter n
of Split is an independent induction variable not used for
memory accesses, and p, q and r are not induction variables.
@ denotes the empty word, i.e., the root of the tree.
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Figure 15: Binding transducer for Pascaline

At the beginning, the unsorted list is stored in the next
branch of the tree named T'ree. It is split in two halves
stored in the left and right branches. Both these lists are
recursively sorted, then merged back in the root node. Fig-
ure 17 shows the binding transducer for Merge_sort_tree
as drawn by dot [24] from the MoGUL software output.
Octogonal states correspond to the tree references at the
elementary statements. These states are useful for the com-
putation of data dependences. Indeed, from this binding
transducer, we developed algorithms to detect that the two
calls to the Sort function (j and k) can be run in parallel
[16, 6].
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monoid Monoid_tree [next, left, right];

structure Monoid_tree Tree;

h  function Merge(Monoid_tree A, Monoid_tree B,
Monoid_tree C, int p, int q) {

g if ((q !'=0) & ( p = 0 || Tree[B] < TreelCl))
function Main() { 14 {
Sort(@, 37); T Tree[A] = Tree[B];
¥ U Merge (A.next, B.next, C, q-1, p );
function Split(Monoid_tree A, Monoid_tree B, e else
Monoid_tree C, Monoid_int n) { d {
if (0>0) c if (p !'= 0)
{ Y {
Tree[B] = Treel[Al; w Tree[A] = Tree[C];
} X Merge (A.next, B, C.next, q, p-1);
if (n>1) }
{ }
Tree[C] = Tree[A.next]; }
}
if (n>2) r  function Sort(Monoid_tree T, int r) {
{ q if (r > 1)
Split(A.next.next, B.next, C.next, n-2); m {
} i Split (T, T.left, T.right, r);
} j Sort(T.left, (r+1)/2);
k Sort (T.right, r/2);
l Merge(T, T.left, T.right, (r+1)/2, r/2);
}
}
Figure 16: Program Merge_sort_tree
tjl@ !
s|l@
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Figure 17: Binding transducer for Merge_sort_tree
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