
Scheduling Reductions

Xavier Redon and Paul Feautrier

e-mail : Xavier .Redon@prism .uvsq. fr,

Paul.Feautrier@prism.uvsq.fr.

Laboratoire PRiSM,

University de Versailles-Saint-Quentin,

45, Avenuedes Etats-Unis,

78035 Versailles Cedex (France).

Abstract

In order to detect more parallelism in scientific programs,

one may extract parallelism relative to reductions. This pa-

per presents such a method which schedules programs with

explicit computations of reductions. We describe the way

the reductions are expressed in our input language (which

is in fact the output language of the reductions detector

presented in [RF93]). We also give a brief summary of

scheduling techniques. In order to simplify the scheduling

we suppose that the target parallel computer has an infinite

number of processors with infinite fan-in. We show that

a schedule computed with this model can be adapted to

work on real parallel machines. Then we present a schedul-

ing method based on the algorithms from [Fea92a, Fea92b]

which works in presence of reductions. This method is ap-

plied on an example. Lastly, we show that side-effects of re-

ductions scheduling are the simplification of the scheduling

process and the improvement of the computed schedules.

1 Introduction

The basic algorithms of linear algebra andmatrixcomputa-
tion fall into two broad classes. In the first one, the result
is of the same size or bigger than the data. This is the case,
for instance, for vector operations. In the second class, the
result is much smaller – typically only one value – than the
data, hence the name reduction which has been coined by
Iverson [Ive62].

There is hope of finding parallel implementations of al-
gorithms in the first class: we may expect that each element
of the result is at least partially independent of other parts,
There is no such Dossibilitv for the second class. and more
sophisticated methods are necessary here,

One possibility is to use the fact that, in many cases, the

operations involved in computing reductions have specific al-

gebraic properties. One oft en has to combine an ordered set

of values by an associative binary operator. The algorithm

may be implemented as a computation on a binary tree,

with significant parallelism if t be tree is balanced. This pro-

cedure may be used to advantage on multiprocessors. Other

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ICS 94- 7/94 Manchester, U. K.
G 1994 ACM 0-89791 -665-4/94/0007 ..$3.50

techniques are necessary on pipeline computers.
In usual programming languages, reductions are imple-

mented as sequential loops. Ordinary vectorizing or par-
allelizing compilers do not take into account operator se-
mantics, and hence cannot find the hidden parallelism in
these s~ecial looDs. Some commercial comDilers recomize

L .

common reductions as idioms, and then translate them into
calls to a run-time library. This approach is severely lim-
ited because there are many fancy ways of implementing a
reduction, especially when it is interspersed with other cal-
culations. Recent research (see [RF93] and the references
therein) has focused on a two-steps approach. The source
program is put in normal form, which is then subjected to
pattern recognition. The size of the pattern base is inversely
proportional to the power of the normalization algorithm.
Section 2 gives a short presentation of the reduction detec-
tor of [RF93].

Alternatively, a language in which reductions can be ex-
pressed, like ALPHA or CRYSTAL ([Mau89] and [MCL881),
may be used. Whatever the situation, one s~ill has the prob-
lem of generating the parallel code for a source program in
which reductions may be interspersed in a complicated way
wit h more ordinarv calculations. Callahan [Ca1911 Dresents. .!.

a method to paral~elize recurrences by a direct code trans-
formation. The principal advantage of this method is its
rapidity. But since there is no attempt to simplify (i.e. nor-
malize) the initial program, the final parallel code contains
an important overhead. It is interesting to note that execut-
ing our normalization phase before Callahan’s code trans-
formation wilf lead to better parallel programs. In fact, we
chose a different way for producing parallel code. Indeed,
many researchers in the field of parallel program construc-
tion have found that a very powerful way of assessing the
parallelism of a program uses a schedule, i.e. a closed form
function which gives the date at which each operation in
the program may be executed. Among other information, a
comparison of the length of the schedule to the length of the
sequential calculation gives the main degree of parallelism or
grain of the algorithm. Section 3 is a brief review of recent
results on scheduling for computers with an infinite number
of processors.

To extend this work to programs with reductions, we
must first decide on which machine model the schedule is to
be nsed. We expect a schedule to give target architecture
independent information on the source program. However,
the machine model should be realistic enough to allow ef-
ficient emulation on real world computers. In the case of
programs without reduction, we use PRAM – multiproces-
sors with as many CPU as necessary. This model is imple-

117

mented by mapping each processor to a process, and then
by multiplexing several processes on one physical processor.
On some architectures, this transformation is directly taken
care of by the run-time system under the name virtual pro-

cessor looping. In Section 4, we argue that the appropriate
model in the presence of reductions is a computer with an
unlimited number of processors with unlimited fan-in.

Section 5 describes how the algorithms of [Fea92a, Fea92b]
can be adapted to programs with reductions and shows an
example of reduction scheduling. A side-effect of reduction
detection is that the scheduling process is simplified and im-
proved. This is discussed with some examples in Section 6.

2 The Recurrence Detector

The subject of this paper is the computation of a sched-
ule for programs with explicit reductions. We focus on the
programs we obtain by using our recurrences detector pre-
sented in [RF93]. Since some readers may be unfamiliar
with this work, this section describe which recurrences and
reductions are detected by our prototype. For more details
on reductions detection, please refer to [RF93] (a state of art
is included). Our recurrences detector deals with Systems of
Linear Recurrence Equations (SLRE). Indeed, under usual
assumptions, a program written in an imperative language
(i.e. Fortran) can be translated into a SLRE. A SLRE is a
set of equations S. Each equation e < S is of the form

z c D,, ve(z) = EXP. (ZJ.I(ll (Z)),. . . ,%(ln(z))) , (1)

(the set (u,),~s is the family of variables of S). Moreover,
we assume that D. is a bounded convex. The (~~)kF(I .~]-., , ,
are linear subscripts functions and
conditional functions such that

{

Exp~(z)

Expe(z) = \

Exp~(z)

the functions Expe are

ifz ED~

ifzeD~

(The Exp~ are classical mathematical expressions augmented
with operators to denote recurrences and the D: are bounded
disjoint convexes). We say that Expe is an m clauses expres-
sion.

Now, let us present the closed forms we use to denote
recurrences. Note that our aim was to detect only the re-
currences or the reductions that can be computed efficiently
on parallel machines. Hence, only the recurrences whose
Detailed Dependence Graph (DDG) is a chain are handled.

The sum of the elements of a matrix can be imple-

mented by:

~=o

DD i=l ,n

DO j=l ,m

s=s+a(i, j)

END DO

EMD DO

The DDG of this program is a chain from the oper-

ation corresponding to (i, j)=(1, i) to the operation

corresponding to (i, j)=(n ,m). This reduction can

be efficiently computed on parallel machines, for ex-

ample by using a binary tree like computation. Now,

let us consider a SOR computation:

DD t=l ,max
DD i=2 ,n-1

DO j=2, n-1

field (t, i,j)=O.25*

(field (t-i, i-l, j)+field(t-l, i+l, j)+

field (t-l, i,j-l)+field(t-l, i,j+l))

END DO

EHD DO

END DO

The DDG of this program is a tree whose vertices
have 4 predecessors. It is uselessto detect this recur-
rence since there is no easy way to implement them ef-

ficiently on a parallel machine. Moreover these recur-

rences are gracefully parallelized using the scheduling

technique.

There are two different operators for building closed forms.

The first one is a reduction operator (Reciuc), it denotes
recurrences that can be computed efficiently on a parallel
machine (see [RF93]). The second operator (Recur) denotes
recurrences that must be computed sequentially. Each value
can be computed only when the previous ones are known. In
fact, due to the limitations of the recurrence detector some
reductions (which can be expressed with the Reduc oper-
ator) can be missed and be classified as m~ere recurrences
(so expressed with the Recur operator). Note that the fron-
tier between sequential recurrences and reductions is not
a rock solid delimitation since new techniques for comput-
ing efficiently some class of recurrences on a parallel ma-
chine may be discovered. The Recur operator has two syn-
taxes, one to express one-dimensional recurrences and one
to express multi-dimensional recurrences. Tc) denote an one-
dimensional recurrence of order o we use the form

Recur(o, ‘D, P, f, (g,)~={l, ,0}) .

This expression defines a multi-dimensional array of values
v computed by the following equation 1:

Vz c D,

1:

if P“(Z) e D
f(z, V(P’(Z)), V(F’(Z)))

else if PO–l (z) 6 D

f(z, V(P’(Z)), v(P’=-’(z)), go(z))

?+) = .

else if PI(z) C D
f(z, V(P1(%)),92(Z), . . . ,90(Z))

else $(z, g,(z),... ,go(z)) .

Except for multidimensional recurrences we will consider
only the case where P is a translation:

V26D, P(Z) =Z+A’

with K a constant vector. The Recur operator is more com-
plex than reduction operators that can be found in languages
such as ALPHA or CRYSTAL because our operator can express
general recurrences and not only reductions. Our Recur op-
erator can express recurrences with order o > 1.

For example, a classical computation of the Fibonacci
sequence

{

1 if O<j~~l

V3 ~ fN, ~(~) = V(j – 1)+ V(j – 2)

if 2gjf~n,

1The notation # ,s used to denote the funct,on P o
-

k

118

can be rewritten as has a Recur expression equivalent:

Moreover our operator can deal with recurrences relative to
specific dimensions of an array.

For example, the Recur operator can express a set
of recurrences relative to the second dimension of a
three-dimensional space. A Fortran piece of code to
compute sucha set of recurrences may be:

v(O:n, O:m, O:l)=a(O:n, O:m, O:l)
DO i=O, n

DO j=l, m

DO k=O,l

v(i, j,k)=v(i, j-l, k)+v(i, j,k)

EED DO

END DO

END DO

An equivalent SLRE is 2:

v;, j,kcmn x JNm XJN1,

{

a(i, o,k) if j=O
v(i, j, k) = v(i, j – l,k) + a(i, j,k)

if j~l

The structure of the iteration space of these recur-

rences is depicted on the picture below (data are

transmit ted along arrows).

!, :. .:
,! :,,. ,

i ~ ~ (:-”: ,.~-”-,, ,,,, .-,
A ,! ~-> --~,, :,,., ,.

:. ,,. , ,,. ,
:,, ,! ,;. : ,:- . .,. :,.O:. .$,”~.,
,,

. . . . ,..

~,.::,.~,:.
,., ,,. ,.~..,.,... ,.-. . .

4
.

.,..

Using the Recur operator this equation can be rewrit-

ten as follows:

Even recurrences relative to a combination of dimen-

sion. can be expressed by .ur Recur .p.rater. Indeed

the following equation:

Vt, j,,k 6 INn x INm xm~,

{

a(i, j,k) if j= OVk=O

V(i, .7, k) = ~(~jj – 1,~ – 1)+ a(i, j,k)

if J>l Ak>l

2The notation D-Jw is used to represent the set {O, ., n]. In the

sequel of this article the notation JPJJ 1s also used, this represents the

same set as IN. but excluding O

As shown in the following figure the recurrences are

computed along diagonal lines (i.e. following the di-
.

rection ~+ k). The initials values of these recurrences

are in the planes (0,;, ~) and (0,;, ~).

Some recurrences are relative to two or more dimensions
(e,g. a computation of the sum of the elements of a matrix).
These recurrences can be expressed with embedded Recur
operators but to make code generation easier we want to
denote these recurrences with only one Recur operator. Re-
mark that multi-dimension al recurrences can be expressed
with the one-dimensional Recur operator if we allow condi-
tional expressions for the P function. Consider the Recur
operator for l-order recurrences:

Recur(l, D, P,f, (g)) .

It computes the following array v:

{
Vz c D, u(z) = ~se ‘(z) c D

f(z, V(f’(z)))
f(z, g(z)) .

If we provide a function P which enumerates the iteration
space following a lexicographic order the previous equation
computes a multi-dimensional recurrence. In order to build
this function we use the families of functions max~ and
min L. Both are functions from a convex D to the same con-
vex D. If we denote by lexmax the lexicographic maximum,
a function maxL is such that :

m

‘ax/l,..,~m(~)= z —~ ~i.~, where
,=1

7?2

A=lexmax(p I p elNm, z– x P,.L c D) ,
i=]

The minL functions are defined in a similar way :

m

minll,..,,~~ (z) = z + ~ A,./, where

1=1
m

A = lexmax(p I # c INm, z +~pt.lt CD) ,
,=1

119

It is then easy to build a ‘P function to lexicographically
iterate a convex domain D following first the direction lm
then the direction i~_I and so on.

1:
if

else if

V2 G D, P(z) = .

else if

else

z = minl~(z)

maxl~(z + lm–l)

Z+lm .

This leads to a new Recur operator which integrates this
conditional P function.

Recur+ (D, (l,),~m%, ~,g) . (2)

The operator Recur+ computes the following multi-dimen-
sional array v,

Vz E D,

1:

if

else if

~(z) = .

else if

else

z = minll, ,lm (z)

g(z)

z = mint,, ,Im(Z)

f(z, v(max~,, ,im(z + /2)))

z = min~n (z)

f(z, v(maxl~(z + /m-I)))

f(z, v(z +lm)) .

Note that the operator Recur+ can express mono-dimensional
recurrences of 1-order, it suffices to specify only one direc-
tion 11. That is not a surprise since the operator Recur+ is a
generalization of the operator Recur for order 1 recurrences.
We are now able to express recurrences iterated following
more than one dimension in a kind of lexicographic order.

For example consider the set of recurrences computed

by the following equation:

Vi, j,k E~n X mm X~/,

{

a(o, j,o) if i= OAk=O

v(i – l,j,l) + a(i, j,o)

v(i, j, k) = if ‘i>l Ak=O
v(i, j,k – 1)+ a~, j,k)

if i~l Ak>l.—

These recurrences follow the third and then the first

dimension of a three-dimensional space. The follow-
ing figures give an example of the computation with
n=rn=l =.3.

Initial values Computed values

-lo

4

8

An equivalent expression is given by the following
Recur+ expression:

‘eCur+ [$:o::;(:!:~:$): s ~)1 (0 s ‘3 5 O}!

~ili22’3m.Z + ~(i~, i~, i3), ~;~t2i3.~(0,;2,0)

Note that it is possible to express with the Reduc+

operator multi-dimensional recurrences iterated fol-

lowing any given directions, one is not bounded to

canonical vectors.

The Reduc operator can be defined with the help of the
Recur operator. An expression built with an one-dimensional
Reduc operator has the following syntax:

Reduc(D, P, b, d, g) , (3)

where b is an associative binary function. Such an expression
is strictly equivalent to:

Recur (l, D, P, Ail . . . tnz.b(z, d(i,, ,.. ,in)), (g)) (4)

A multi-dimensional Reduc operator may be defined simi-
larly:

Reduc+(D, (n,... ~), b,d, g)g) , (5)

is equivalent to

Recur+ (D, (11, . . . ,lm), Ail . . .inz. b(z, d(il, . . . ,zn)), g) . (6)

3 Basic Scheduling Techniques

Consider a recurrence equation like (1). Provided that ev-
ery function in Expe is strict, we need the values of the
ve~(l~(z)) with k ~ IN; in order to compute V(z), and these
values must have either been computed beforehand, or be
given as initial values of the recurrence. ILet O(e, z) be the
time at which v.(z) is computed. If we suppose that:

1. the computation of v.(z) according to (1) can be done
in one time unit,

2. our parallel computer has as many processors as nec-
essary,

then 6(e, .) is a solution of the following causality condition:

Vk C IN:, @(ejz) > O(ek, Ik(z)) + 1 (7)

6’ is usually called a schedule. This notion was originally
introduced in relation with the automatic design of systolic
arrays [Qui88]. It has been recently noticed that schedules
may also be used to construct parallel programs [Pug91,
RWF90]; that point will be further discussed in Section 4.

All techniques for computing schedules may be summa-
rized

●

●

●

The

in the following way; “

Select a priori the form of 9. Hardly never, 8 is a
linear combination of basis functions with arbitrary
coefficients.

Substitute the chosen form into (7) and translate these
inequalities into constraints on the unknown coeffi-
cients.

Select a set of coefficients which meet the constraints
and optimize some objective function, like total la-
tency or delay.

Power of the method deDends on the set of basis func-
tions: As far as we know, the most general choice is the one
made in [Fea92a, Fea92b]. The basis functions are derived
from the inequalities which bound the domains De. Con-
straints on the coefficients are constructed with the help of

120

Farkas lemma and are linear. Lastly, since most interest-
ing objective functions are linear, the selection of the actual
schedule is done by solving a linear program.

A schedule .9being given, the set of calculation to be done
at time t is called a front. If we identify a set of calculation
to the set of values it generates, we may write:

F(t) = {v.(z) / 6’(e, z) = t} .

4 Parallel Machine Model

The classical model of parallel machine on which schedulers
are based is a shared memory machine with an infinite num-
ber of processors. With this model there is no need of con-
straints on the number of operations in the fronts and the
computation of a schedule becomes easier. A similar simpli-
fication must be found in order to compute schedules in the
presence of reductions. This simplification can be achieved
by supposing that the target parallel machine has processors
with an infinite fan-in ALU. In this perspective the most
common reductions can be performed in constant time.

On such a machine the classical scan expression,

which compt

an array can

Processor 1

r

++$

on some type of machines because of the cost of the access
to the shared memory. So it seems wise to apply a variant
of the binary tree method. This method consists in dividing
the data vector into sub-vectors (one vector per available
processor), then each processor performs the scan on its pri-
vate data. A binary tree is used to propagate the partial
results. And lastly each processor updates its results.

Suppose that we want to compute the following scan
on a 2 processors machine

scan (+, [al, a2, a3, a~, aE,,CSe,,a7, a8])=
Reduc({(l ~ i ~ 8)}, Ai.t – l,+, ~i.a,,~t.0)

The two methods are i~ustrated on the following pic-
ture.

Full b,tuary tree methcd

scan(+, [al, an])

!s the partial sums of the elements of

e performed in constant time.

Processorn

[5

Add
al
~ ALU sn

a

Obviously, a schedule for a machine with an infinite number.
of processors and with an infinite fan-in ALU per processor
must be adapted to work on a realistic machine. Let us con-
sider first the problem of a finite number of processors. The
skeleton of the parallel program associated to the schedule:

DO t=O, L
Execute all operations of the front number t

END DO

is not suitable since a front can include more operations than
available processors. The solution is to use a virt ualization
loop. The parallel program becomes (p is the number of
available processors):

DO t=O, L

Let Ops be the set of the operations of the

front number t
DO WHILE Ops is not erupty

Execute p operations of Ops
Delete these operations from Ops

END DO
END DO

Now, let us take into account the fact that a physical ma-
chine does not have infinite fan-in AL Us. Reductions and
scans are usually computed using a binary tree structure.
Hence, if the operation is done on a vector of size n then the
computation requires n processors. To perform this com-
putation on a physical machine, a solution is to use again
a virtualization loop. But this loop is more complex than
the one needed to deal with the finite number of processors.
Moreover this second virtualization loop may be inefficient

~%m sum@theelemen~an@%
Depmdmcc during downwdrd propagtatmn1

-> Dependence during upward propagwmn
J

With this method for performing scans, the skeleton of the
parallel program is:

DO t=O ,L
Let Ops be the set of the atomic operations of

the front number t
Let Scn be the set of the scan operations of
the front number t

DO WHILE Ops is not empty
Execute p operations of Ops
Remove these operations from Ops

END DO
DO WHILE Scn is not empty

Perform a scan of Scn using p sub-vectors
Remove this scan from Scn

END DO

END DO

If Scn includes scans on vectors with size less than p then
some processors will be idle in the scan loop. But scans
operate usually on large data vectors. Moreover it is pos-
sible to optimize this parallel program by gathering scans
on small data in the same iteration of the scans loop, This
way of handling scans is somewhat basic, but sufficient to

demonstrate that a reasonably efficient parallel program can

be generated from our schedule. More sophisticated imple-

mentation of scans can be used, for example the Harmonic
Schedule presented in [NW91]. Practically, we plan to use
the existing scan primitives of the target machines (every
parallel machine but a network of workstations has such
primitives). In fact, every scan computation algorithm can
be used with no important change of the parallel program
skeleton.

121

Note that the two hypothesis on the theoretical machine
(infinite number of processors and infinite fan-in ALU) lead
to the same order of delay. Indeed a front with n atomic
operations on a parallel machine with only p processors can
be handled in ~ time units and a front with one scan on a

size n data vector can be handled in ~ + logz p time units.

Even with a machine with 64K processors (i.e. a Connection
Machine 2) we only have a difference of 16 time units,

5 Scheduling Algorithms Modifications

In the output system of the recurrence detector one can find

new expressions which come from the resolution of trivial

recurrences or reductions (expressed with the Reduc or the

Reduc+ operators). Mere recurrences are very important for

purposes such as reducing access to memory or optimizing

the use of registers, but for this preliminary work we sup-

pose that expressions built with the Recur or the Recur+

operators cannot appear in the system to schedule. To get

rid of the recurrences one can come back to the original

expressions of the recurrences. Such a transformation is im-

plemented in our prototype, but will not be described here.

5.1 Trivial Recurrences

We define the trivial recurrences as recurrences which have
a numerically exact solution. By numerically exact solu-
tion we mean an expression which gives values at least as
accurate as the values computed by the initial sequential
algorithm.

For example, the following recurrence ‘R,

a(1)=alpha

a(2)=beta

DD i=3, n

a(i)= a(i-2)

EfJD DO

has a numerical exact solution which is

DO i=l ,n

IF (MOD(i,2). EQ. i) THEE

a(i)= alpha

ELSE

a(i)=beta

EED IF

END DO

But the Fibonacci sequence, which can be imple-

ment ed as follows,

a(l)=l

a(2)=l

DO i=3 ,n

a(i)= a(i-l)+a(i-2)
ENDDO

has an algebraic solution which includes exponenti-

ations. Hence this recurrence has no numerical ex-

act representation. For example with the IEEE re-

presentation of floating point values on 32 bits the

computation of the solution

differs by one unit from the correct value for z = 32.

In fact no modification is needed to compute schedules in
the presence of trivial recurrences. Indeed the recurrence
detector replaces these recurrences by their solutions.

If the input of the recurrence detector is fed with the
recurrence ‘R, the output is the following system:

[

VI = alpha

V2 = beta

Vic INn -{0,1,2},

7J3(i) = if (i mod 2) = 1 then alpha else beta

The algorithms from [Fea92a, Fea92b] can be directly

applied to this example.

5.2 Reductions

To schedule reductions expressed with the Reduc operator
some modifications must be applied to the algorithms from
[Fea92a, Fea92b]. These modifications concern the genera-
tion of causahty conditions. Consider a general Reduc ex-
pression, with a general predecessor function P (to address
both cases of one and multi-dimensional reductions):

Vz G D, o(z) = Reduc(D, P,b, d,g)(z) . (8)

For each point z of D, we denote by T(z) the set

{z’ E v I 3(2 E IN, z’= Pm(z)] .

Intuitively, this set includes the points of D associated with
data (the d(z’)) needed to compute the value v(z). We dis-
tinguish a special point ~(z) (the initialization point, which
is not in D). This point is characterized by

In this context, the causality conditions for equations like
(8) are:

Vz c 2), Vz’ E P(z), (9(0,2) > O(d, z’) + 1 ,
‘V’Zc D, !9(tJ,Z) ~ e(g, ~(z)) + 1

(9)

Note that O(d, .) and e(g, .) represent the times at which
the data and the initialization values are ready. Actually,
the causality conditions will have one inequality for each
reference to another equation in the expressions d and g.
The previous causality conditions express the fact that, on
a computer with an unlimited number of processors and with
an unlimited fan-in, one gets the result from a reduction one
clock step after the time all necessary data iire available.

Causality conditions like (9) are not of the form (7).
However, the solution methods from [Fea92a, Fea92b] may
be adapted provided that the set

{(z, z’) I z 6 D and z’ c P(z)} , (lo)

is convex, Let

Vk E IN:v, %,k(z) >0 ,

be the set of inequalities which defines the domain ‘DOof v.
By Farkas Lemma, since 8(v, .) is non negative in Vu, we
may write

Similarly, let

122

be the inequalities which define the set described by (10).

Again by Farkas Lemma:

nP

19(t),z) – O(d,z’) – 1 E Ao + ~Akw,k(z, z’) .
k=l

This is an identity in which coefficients of like variables may
be equated. The resulting set of equations in the J’s and
the ,u’s characterizes the set of valid schedules. A particu-
lar schedule may then be selected in this set by optimizing
some criteria, like latency or delay. The reader is referred
to [Fea92a] for details.

The difficulty lies in the computation of the sets P(z)
and {g(z) }. Note that all sets that include these two sets
give valid schedules, albeit possibly with a greater latency or
delay. The simplest approximation is to take D for P(z) and
P(D) – D 3 for {~(z)}. This gives the following causality
conditions:

These conditions are easy to obtain but they can be im-
proved. Two cases occur, one-dimensional and multi-dimen-
sionrd reductions. The problem is easier with the one-dimen-
sional case since the predecessor function P is a translation,
P(z) = z + K:

P(Z)= {Z’ ED13CIC IN, Z’=Z+(XR-}

This set is equivalent to

Pl({(z’, a)e Dxm [2’=z+@K}) ,

where PI represents the projection along the first dimen-

sion. To obtain a convex the variable a must be eliminated

from equations z’ = z + a K. That is always possible since

the vector K is non null. If there are no coefficients in h’

equal to 1, which occurs very seldom, the resulting convex

will be rational. But the approximation is acceptable since

the rational convex will include ‘P(z). There is no such an

easy way to determine the vertex ~(z). The more practi-

cable method is to use a Parametric Integer Programming

method (see [Fea88]). We use the software PIP to resolve

the following problem:

crO=Min{crlcr~ IN, z+aKc D}

In this context ~(z) = z + (cro – l)K.

Let us consider, now, a general multi-dimensional reduc-
tion

Reduc+(D, (ll,...,l~), b,d, g) .

For this reduction, the set ‘P(z) can be expressed as follows:

where the operator =Zl ,...,t~ represents the fact that all coor-

dinates of the two vectors must be equal but for dimensions

11 to in. The operator <Zl, ,~~ represents a lexicographic
order with respect only to the dimensions 11to 1~. This set
can be considered as the union of the following sets:

3P(D) _ D ,8 not a CO~VeX domam m general. It must be decom-

posed mto convexes to be usable by Farkas Lemma.

Each of these sets is convex. Hence the causality condition
concerning ‘P(z) can be described as the conjunction of m
inequalities on convex domains. To obtain the vertex ~(z),
PIP is used to find the lexicographic minimum (in the sense
of <~l,.,.,l~) of the set ‘P(z). The vertex ~(z) is this lexi-
cographic minimum except that one must subtract 1 to the
coordinate 11.

Most of the time, a linear subscript is applied to the
array of values computed by the reduction:

Vz G D’, v(z)= Reduc(D, P, b, d,g)(q$(z)) (11)

In this case the causality conditions become:

‘d2 C D’, ‘dz’ ● 7(()(Z)), ~(w, Z) > @(d,Z’) + 1 ,

Vz c D’, !9(?J,z) > e(g, g(fj(z))) + 1

Moreover an expression of an equation can include embed-
ded reductions. In this case an auxiliary schedule must be
associated to each internal reduction. Causality conditions
are then computed for each reduction and the whole system
is solved. The auxiliary schedules do not appear in the final
result. This method is equivalent to isolate internal reduc-
tions into new equations and then generating the causality
conditions.

As an example of scheduling computation for embed-

ded reductions consider the following program:

DO i=l ,n

DO j=i, m

a(i, j)=a(i, j-l)+ a(i, j)

EED DO

EMD DO

DO i=l ,n

DO j=l, m

a(i, j)=a(i-l, j)+a(i, j)

EED DO

EliD DO

Our recurrence detector gives the following result:

V(i.r) c INn x rNm,
Vl(i,j) =

Reduc(

{(0< ’21 <n), (o<i, < m)},

A(il, i2).(21, i2)+(–l, o),

+,

AiIi2 .Reduc(

{(o <j, < n), (o < j, < m)},

,i(jl, jz). (jl, jz) + (0,–1),

+,

Ajlj2 .w4(jl , jz) ,

AjIj2.1.’3(iI, i2 + 1))(1], i2),

Xli2.v2(jl + 1,.72))(Z, J ,

where V1 represents the values in a (z, j) at the end of

the computation and V2, V3 and V4 are initial values

in a before the calculation starts. Let us consider first

the outer reduction, denoting by @(e, .) the schedule

of the inner reduction. The set P (z) is obtained from

the intersection of

D={(o<il <rz), (o<t2<rn)},

and the projection of the following convex along the

a axis.

{z’, /,cxlt’=i–a Aj’=j} .

This intersection is

{i’, /\ O<i’<i Aj’zj} .

123

Therefore, the causality conditions for the external
Reduc expression are:

V(i, j) c INn x INm, vi’ E m,,
O(rJl, (i, j)) ~ @(e, (i’,.7)) + 1 ,

V(i, j) E INn x JNm,
O(V1,(i, j)) ~ O(V2, (O, j)) + 1 .

We compute now causality conditions for the internal

reduction (that will give us the 6’. schedule). The
conditions are:

V(i,’j) c IN. x INm, vj’ e Nj,
6’(e, (i, j)) > 0(v4, (i, j’)) + 1 ,

V(i,.i) c rim x mm,
e(e, (i,;)) > e(v3, (i, o)) + 1 .

To apply the Farkas Lemma orJ these causality con-
ditions, we must know the schedules of equations VI,

rJ2 and V3 (computed in a previous stage). Sup-
pose that initializations are done at time O and that

the values of a are computed following the schedule
(3(w4, (s’, j)) = m – j’ + i. The new system to resolve
becomes:

V(i, j) e fNn x JNm, vj’E N.?,
O(e, (i, ~))~m-j’+i+l ,

V(i, j) G rNn x INm, vi’ c rNt,

6(v1, (i, j’)) ~ O(e, (i’,.i)) + 1 .

Since the schedules are non negative in the domain of

their equation, the application of the Farkas Lemma

gives:

V(i,j) Gmnx mm,
9(e, (i, j))= po+fll~+ p2(~-~) +P3.i+P4(?Jz -j) ,

and

V(t, j) E INn x fivm,

e(vl, (t!.7)) = PA +vjt+pj(n–t)+fli~+ui(~-~) !

(the scalars MO,.. . ,W and p{,... ,p~ are non nega-
tive). With another application of the Farkas Lemma
to the first causality condition we obtain:

PO+&l~ +p2(n– Z)+ P3.i
+ti4(m- j)-(m-j’ +2)-l

—
.
~O+~~i +~2(n–i) +~3j+~4(m–j)

+~5~’ + ~6(j – /) .

Therefore, one has to resolve the following linear sys-
tem, with some optimization criteria to find an opti-

mal schedule:

til-/J2 = >1 – A2 +,1

!J3-P4 = ~s–~q+hj

o = ~5 –/h-1

!J2 = AZ

!4
—— ,14 + 1

P-o = Ao+l.

By hand, it is a good idea to try the lowest values
for the u’s. Thk often leads to good schedules. The
previous system may be simplified:

/J] = Al+l

/43 = ~3+~6+1

o = ~5–&j–1
P2 = A’2

P4 = A~+l

MO = .10+1.

The constraints on the ~’s are:

P0~l,#l>~,P2~0,p3> l,#4?1.

Taking the lowest possible values gives for the inner

reduction the schedule 6’(e, (i, 3)) = z+ m + 1. This is

the expected result. A similar analysis concerning the

first causality condition would lead to the schedule
O(vl, (z, j)) = t + m + 2 for the whole equation.

6 Conclusion

Reduction loops in scientific computation programs are a
source of parallelism which has not been efficiently used in
present day compilers. We have shown that this can be done
by a three steps approach:

●

●

●

Normalize the program and identify recurrences;

Detect those recurrences which are in fact reductions,
i.e. which are built from an associative operator;

Schedule the resulting system, taking into account the
fact that the argum~nts of a reduction may be com-
puted in any order.

The resulting parallelization method, which has been im-
plemented as a new phase in the PAF parallelizing com-
piler, has one main advantage, that of finding parallelism
in apparently sequential kernels, and two subsidiary ones,
accelerating the scheduling computation and giving better
schedules.

Since the recurrence detector is a reduction algorithm it
tends to transform input program into a single equation. In
fact in most cases this cannot be achievedl because of the
constraints presented in [RF93]. But the number of equa-
tions is always reduced with respect to the initial SLRE
built from the source program. Hence, since the number
of vertices in the data-flow graph of the resulting SLRE is
smaller than the number of vertices in the data-flow graph of
the source program, the computation of the schedule for the
SLRE is usually faster. And sometimes, c~etecting the re-
currences and computing an SLRE schedule is considerably
faster than computing the schedule for the initial program.

This can be observed when the data-flow of the source pro-

gram includes large strong components and the recurrence
detector reduces these strong components to smaller ones.
This is due to the fact that the scheduler solves linear sys-
tems whose sizes are proportional to the size of the strong
components. Therefore the scheduling rum-time increases
rapidly with the size of the strong components.

We have made some tests with programs like the fol-
lowing.

DD i=i ,n

al(i) =fl(cl(i-1)) (vi)
a2(i)=f2(cl(i-1)) (V2)
a3(i)=f3(cl(i-1)) (V3)
a4(i)=f4(cl(i-1)) (V4)
bl(i)=gl (al(i), a2(i)) (v5)
b2(i)=g2(a3(i) ,a4(i)) (v6)
cl(i) =hl(bl(i)+b2(i)) (v7)

END DD

The recurrence detector reduces this type of program
to only one equation. Therefore the scheduler has to
build a system corresponding to a strong component
with only one vertex, not a system corresponding to
a strong component with 7 vertices. We made tests
with 4, 8 and 16 levels of auxiliary variables. Below

are given the run-times to schedule directly the pro-

grams and the run-times to first detect recurrences

and then schedule the resulting system of equations.

Level
L)lrect H.ecurrences

‘+

etectlon an

scheduling Equations schedulin

4 15s 10s+1s

I 8

I
100s

I
20s+1s

16 820s 45s+1s I

124

Moreover, since we associate a linear function to each
clause (and not to each equation, that is to each instruction)
our schedule can be better than the schedule computed for
the original program (even if the program does not include
reductions). Better means that the latency of the schedule
is smaller. In fact computing schedules for clauses leads to
compute better linear piecewise schedules.

Consider the following loop

X(o)=o (vi)
DOi=l,2*n

x(i)=x(2*n-i+l) (v2)
END DO

A direct scheduling gives the following schedules for
VI andv2:

O(vl)=o, vl~m!;n, e(’u2, i)= i-l

The recurrence detector transforms the initial pro-
gram into a two clauses equation.

vi EIN;n, v2(i)=
{

z(2n– 2 + 1) ift<n

v2(2n–t+l) ifi>n+l

The scheduling of the c[auses gives trivial schedules.

vi, 1 <i <n, o(cl, i)=o, vi, n+l < i < 2?%, e(cz, t) = 1

It now remains to generate efficient code from the sched-

ules thus constructed. This will be left for future work.

Another point to be studied is enlarging the knowledge base

on reductions and trivial recurrences. A larger base may

produce more apparent parallelism, but this advantage may

be offset by more complicated elementary operations - for
inst ante replacing scalar operations by a matrix product –
or loss of precision, as in the case of the Fibonacci exam-
ple. More work is needed to see if we have struck the right
balance here.

References

[ca191]

[Fea88]

[Fea92a]

[Fea92b]

[Ive62]

[Mau89]

D. Callahan. Recognizing and parallelizing
bounded recurrences. In U. Banerjee et al. (Eds.),
editor, Proc. of the Fourth International Work-

shop on Languages and Compilers for Parallel

Computing, Santa Clara, CA, pages 266-282.
Springer-Verlag, August 1991. LNCS 589.

Paul Feautrier. Parametric integer program-
ming. RAIRO Recherche 0p6rationnelle, 22:243–
268, September 1988.

Paul Feautrier. Some efficient solutions to the
affine scheduling problem, part i, one dimensional
time, ~nt, J. of Parallel Programming, 21(5):313-
348, October 1992.

Paul Feautrier. Somme efficient solution to the
affine scheduling problem, part ii, multidimen-
sional time, Int. J. of Parallel Programming,

21(6):389–420, December 1992.

Kenneth A. Iverson. A Programming Language.

Jonh Wiley & Sons, New York, 1962.

Christopher Mauras. Alpha : un iangage
e’quationnel pour la conception et la program ma-
tzon d’architectures paralliles synchronies. PhD
thesis, Universit6 de Rennes I, December 1989.

[MCL88]

[NW91]

[Pug91]

[Qui88]

[RF93]

[RWF90]

Y.-I. Choo M. Chen and J. Li. Crystal: From
functional description to efficient parallel code.
In G. Fox, editor, Proc. of the Third Conference
on Hypercube Concurrent Computers and Appli-

cations, pages 417–433. ACM, New York, USA,
1988.

A. Nicolau and H. Wang. Optimal schedules
for parallel prefix computation with bounded re-
sources. In Third ACM SIGPLAN Symposium on

Principles and and Pratice of Parallel Program-
ming PPOPP, April 1991.

William Pugh. Uniform techniques for loop opti-
mization. ACM Conj. on Supercomputing, pages
341-352, January 1991.

Patrice Quinton. Mapping recurrences on parallel
architectures. In %d Int. Conf. on Supercomput-

ing, Boston, May 1988.

X. Redon and P. Feautrier. Detection of reduc-
tions in sequential programs with loops. In Arndt
Bode, Mike Reeve, and Gottfried Wolf, editors,
Procs of the 5th International Parallel Architec-

tures and Languages Europe, pages 132–145, June
1993.

Mourad Raji-Werth and Paul Feautrier. Sys-
tematic construction of programs for distributed
memory systems. In Paul Feautrier and Fran~ois
Irigoin, editors, Procs of the Int. Workshop on

Compiler for Parallel Computers, Paris, Decem-
ber 1990.

125

