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Definition

Consider a logical formula

� � � �� � � � � � ,� � � � 	 
 �� � � � ��
 � ���� � � � � � � � � 
 � � �
(1)

where :�

is a boolean combinator,

The

��� are polynomials in � and other variables (the parameters).

The � � are one of the comparators

��� ��� ��  �� !�� "

.

Find a quantifier-free formula

� #
such that:� � � �� � � � � � $ � #�(2)

Generalization:
The logical formula may be arbitrary, with arbitrarily nested existential and
universal quantifiers.

The only restriction is that the literals are of the form

� % � & � '

where

�

is a
polynomial.
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Normalization

Universal quantifiers can be eliminated by the rule( � � ) $ * � � � * )

.

Others boolean connectives can be replaced by their definitions
in terms of

+ � , � * .
The negation can be “innermosted” with de Morgan’s laws:* ��- +/. � $ � * - � , � *. �

, etc.

Innermost * can be eliminated by rules such as* �� 0 � � $ � 1 �

.

We can eliminate quantifiers one by one starting from an
innermost one.

We can suppose that the combinator




uses only the

,

and

+

connectives.
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Why is Quantifier Elimination Possible?

The sign of a litteral changes only when � cross a root of the
associated polynomial.

Since a polynomial has only a finite number of roots, one can find
a finite set of intervals in which the value of

�
is constant.

If one is able to find a test point in each interval, then one can
take

� # 	 , 24365 � � �7 3 � where the

7 3 are the test points.

Since in general one has to reinsert

� #
in the original formula and

eliminate another quantifier, minimizing the number of test points
is crucial for the complexity of the method.
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The linear case

Here I will consider only the linear case, in which all the
polynomials are first degree. The reason is that finding the roots
of a first degree polynomial is easy, while the task becomes more
and more difficult as the degree increases.

However, the coefficients of the linear forms in

�
may involve

arbitrary parameters. In such a case, the formula one obtain after
eliminating all quantifiers is a predicate on the value of
parameters.

Solving the resulting constraints for appropriate values of the
parameters may be difficult, but is not the subject of this talk.
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Why is Quantifier Elimination Useful?

Quantifier Elimination is very similar to the Fourier-Motzkin
algorithm, but the class of tractable problems is much wider.

While Fourier-Motzkin works only if the litterals are linear forms,
QE accepts forms which are linear only in the bound variables.

While F-M accepts only a conjunction of litterals, QE accepts an
arbitrary boolean formula.

While F-M accepts only existential quantifiers, QE accepts any
mixture of existential and universal quantifiers.
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Precursors

Linear programming consists in testing a formula:8 �9 : � ; < ! '>=(3)

where � is the vector of existentially quantified variable,
:

is the matrix of
constraints, and

<

is the constant term. The Simplex algorithm is much faster than
quantifier elimination, but less general.

The Fourier-Motzkin algorithm is clearly a special case of the test point method,
see later.

Suppose that the

<

’s are considered as parameters. One obtains Parametric
Linear Programming, which can be solved by a symbolic variant of the simplex.

In scheduling, one find formulas of the form:8@? � A9 B � % : � ; < ! ' C ? � ; A ! ' & =(4)

While these are not linear in the above sense, they can be transformed into linear
programming problems by the use of Farkas lemma or by the vertex method. The
vertex method is clearly a test point method.
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An important simplification

If two consecutive quantifiers are of the same kind, as in:

� � � D � � � � � D ��
one first eliminate D: � � � , 24365 � � � � � 7 3 � � � ��(5)

One can distribute the quantifier:

, 24365 � � � � ) � � � 7 3 � � � ��

One can then handle the remaining quantifiers independently.
The algorithm becomes singly exponential instead of doubly
exponential.
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Selection of the tests points, I

Let EGF � H IF 
 F �

be one of the literals.

Its truth value change only when EGF � H IF 	 �
, i.e. for� 	 J IF K EGF 	 7 F .

This critical point delimits two segments in which the truth value
of

�

does not change. However, depending on the sign of EGF and
on the nature of the comparator 
 F ,

7 F belongs either to the left
segment or to the right segment.

It may happen that in some cases there is a segment without test
point.

To decide, one needs to know the sign of EF , which may not be
possible if EGF depends on parameters.
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Selection of the test points, II

To be sure that there is a test point in each segment, one

possibility is to use

LNM O LPM QRS . But this is correct only if one can
sort the

7 F in ascending order.

Another possibility is to use

LNM O L@T S for all pairs

UV� W
. The

complexity becomes enormous.

A last possibility is to use

7 F XZY , whereY is some infinitesimal.
One is sure to have a test a point in each segment adjacent to

7 F ,
and the complexity is acceptable.
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The case of equations

Suppose one of the literals is an equation EGF � H IF 	 �
.

The corresponding critical point is

7 F 	 J IF K EF and we may
think to use

7 F XY as test points. But for these two values the
equation is false!

It seems that one has to use all three of
7 F � 7 F XY as test points.

Beside, one has to do the same for all critical points, because

�

may have hidden equations!
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Gaussian Elimination

There is a special case:

� � � � E � H I 	 � � + � � � � $ � E [ 	 � + � � J I K E � �

(6) , � E 	 � + I 	 � + � � � � � � ��(7)
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Selection of the tests points, III

The problem gets more complicated if EGF may be 0. In that case
the test point disappears to infinity.

It is nevertheless necessary to test the value of the literal, for
instance by using some arbitrary test point, e.g. 0.

One solution is to write the test point as a conditional:

7 F 	 if EGF [ 	 �
then J IF K EGF XZY else

��(8)

Another possibility : guarded test points:\ � EGF [ 	 ��� J IF K EGF XY � � �G]_^ ` a� � �b �(9)

One has to extend the concept of substitution to terms of this
form.
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Virtual Substitution

What does

� E � H I
 � �c � d 7 HY e

means?

� E � H I � c � d 7 HfY e $
(10) $ E �7 HfY � H I
 �
(11) $

if E7 H I 	 �

then E
 �
else E7 H I
 ��(12)

What does

� �

if - then E else

I �
means?

� �

if - then E else
I � $

if - then

� � E � else

� � I ��(13)

This is “virtual substitution”.
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An example

Eliminate the quantifier in

8 �9 g � ; < ! '

.

h % � &ji g � ; < ! '
.

Critical points: k < l g, provided g  � '

and

'

.

Test points, with guards:

% g  � '� mon � k < l g & � % g  � '� mop � k < l g ;jq & �(14) % g  � '� mor � k < l g k q & � %sut v w� myx � ' & =(15)

h z i % g  � ' &{ % h % myn &| h % myp & | h % myr & & | %sut v w{ h % ' & &

(16) i % g  � ' &{ %sut v w| g " '| g � ' & | % < ! ' &

(17) i g  � '| < ! '=(18)
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Many Quantifiers

Quantifier Elimination proceeds from inside outward.

Observe that the result of virtual substitution is linear in

I
but not

in E.
The original system must be affine in all the bound variables
simultaneously.
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QE and Optimization

As soon as one has a parametric feasibility test, one can solve
optimization problems.

Suppose for instance that the problem is:� � � � � � � � � � � � � � � �� � � � � � � and that, among all solutions in� � � � � � � � �, one wants the one which minimize some function} � � � .
Consider the problem :� � � � � � � � � � � � � � � �� � � � � � � +/~ � } � � � , where~ is a fresh
parameter.

If a minimum

}�� exists, then~ � }�� will appear in the feasibility
conditions.
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Extracting Solutions

Almost always, one wants to know that the original problem is
feasible, but also the coordinates of some feasible point.

This information can be extracted from the lists of test points.

There are problems for interpreting guards and infinitesimals.
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Complexity

Let

� ��� � � � be the “complexity” of the elimination of � existential

quantifiers before a formula with � literals.

One builds about

� � test points which have to be substituted into� literals, for a work of order

� � S

.

Because of redundency, this gives about
� � independent

subproblems with � literals and � J �
quantifiers.

Hence the recurrence:

� ��� � � � 	 � � � ��� J � � � � H � � S�(19)

Hence the complexity is

� � � � � � O S�

.
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Comparisons

In the totaly linear case, the complexity is better than

Fourier-Motzkin:

� � � S S� �

...

... but far worse that the Simplex (

� � �� H � � � S�
in the mean).

The range of application of QE is much wider than
Fourier-Motzkin or the Simplex ...

... but much attention is needed in the implementation.
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Perspectives

There is an implementation from the University of Passau, which
seems to have difficulties (probably due to too much attention
given to quadratic problems). The implementation is based on
the computer algebra system REDUCE.

Reimplement?
Detect totally linear subproblems, which can be solved more efficiently by
Linear Programming.

Use outside information (context) to simplify guards and test points.

Use test point redundency to omit the more complex ones.

Extension to integral problems? No implementation. Some
theoretical results by Weisspfenning, indicating that the
complexity increases enormously.
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