
Automatic Parallelization in the Polytope
Model

Paul Feautrier

Laboratoire PRISM, Universit6 de Versailles St-Quentin,
45, Avenue des Etats-Unis, F-78035 Versailles cedex France
Paul. Feaut rier@prism.uvsq, fr

S u m m a r y . The aim of this paper is to explain the importance of polytope and
polyhedra in automatic parallelization. We show that the semantics of parallel
programs is best described geometrically, as properties of sets of integral points
in n-dimensional spaces, where n is related to the maximum nesting depth of DO
loops. The needed properties translate nicely to properties of polyhedra, for which
many algorithms have been designed for the needs of optimization and operation
research. We show how these ideas apply to scheduling, placement and parallel code
generation.

1. The Geometry of Programs

Since the 1990, great progress has been made toward au tomat ic or semi-au-
tomat ic p rogramming of supercomputers through the use of the polytope
model One may wonder what polytopes have to do with programming. The
aim of this paper is to answer this question, at least in relation to the field
of parallel programs. The polytope model may be used in many different
situations, such as for program checking, but these applications still await
further developments.

Generat ing a p rogram for a parallel computer is a problem in translation,
and, as is the case for all such problems, the bet ter the understanding of the
source text and the bet ter the result. Assemblers do word for word translat ion
while early compilers did only "phrase for phrase" translation. Each "part of
speech" in the input text was looked up in a dictionary, and the associated
translation was subst i tuted with minor modifications. A limited amount of
knowledge was then added to improve the final result, for instance in the
form of a type system.

In the case of a fully developed type system, like the one in ML [MTH90],
knowledge about operators in the language is given to the compiler in
the form of typing rules, which are essentially Horn clauses. A program
is correct if, for each of its expressions, one can prove a theorem in the
first-order theory generated by the typing rules. This is done quite easily
with the help of unification and resolution.

This is the basic scheme for all sophisticated program handling systems.
The program, or at least the interesting features of the program, is t ranslated
first in an easily manipulable language, like an algebra or a logical theory.

80 Paul Feautrier

Each time one needs non obvious information, one does a calculation or proves
a theorem in the underlying system.

Optimizing compilers need much information to decide whether a trans-
formation is allowed or not. The relevant information is related to the flow
of control - may a given point in the program be reached from another one
- and also to the flow of data - may" a given value which has been defined at
some point in the program still be used at some other point? Sophisticated
techniques have been designed to abstract that kind of information from the
program text. Let us note the following characteristics:

- They can be applied to arbitrary programs. In fact, most of them were
designed to work on program flowcharts.

- They give static information only, i.e. time has become a universally quan-
tified variable in their results. For instance, methods which generate prop-
erties of variables gives results of the form "Each time the control reaches
a given point, such and such variables stand in the following relation to
each other ".

In the case of a parallel program, the course of events in the calculation
is of crucial importance. One has to decide, e.g. if two calculations have to
be executed in sequence or can be safely overlapped. One may say, in fact,
that constructing a parallel program is equivalent to specifying its execution
order, i.e. the "is executed before" relation between its operations.

The operations of a program form a set, and its execution order is a binary~
transitive and asymmetric relation on the set of operations. For terminating
programs, these sets are finite, but in real-life cases, they are too large to be
handled in extension, by listing all their members. They must be handled in
intension, as the set of solutions of a given system of constraints. For a large
proportion of computat ion intensive programs, the relevant sets are (unions
of) 2~-polytopes, i.e. sets of integral solutions to systems of affine inequalities.
Hence the importance of polytopes for modeling these programs. Fortunately,
the theory of polyhedra, polytopes and Z-modules is well developed, as being
the basis of linear programming. Practitioners of automatic parallelization
have found a ready-made toolchest in Operation Research literature.

In the following, we will first describe how geometrical objects like poly-
topes may" be used to specify the semantics of a certain class of programs. As
all powerful techniques, the polytope model has a limited domain of applica-
tion. We outline in Section 2. the needed constraints on the control statements
and the data structures: basically, DO loops and linearly indexed arrays. We
will then review the needed tools. Most of the optimizations we are inter-
ested in may be presented as transformations of the original program. These
transformations often are linear or affine or piecewise affine, and hence they
transform polytopes into polytopes. Their effect on ~-polytopes is more com-
plicated. Hence, sophisticated techniques have to be used, especially for code
generation of the transformed program.

Automatic Parallelization in the Polytope Model 81

In the conclusion, we assess what has been achieved, and what still need to
be improved in the polytope model. Beside that, we try to indicate in which
directions the model can be extended and which are the ul t imate obstacles
to these extensions.

2. G e o m e t r i c a l S e m a n t i c s

Our aim here is to delineate the kind of information a parallelizing compiler
needs to do its job. We will show that in cases which cover a large subset
of high performance computations, this information can be neatly packaged
into ~-polytopes. Most questions the compiler needs answers to relate simply
to questions about 25-polytopes, the most important one being the emptiness
question.

2.1 P r o g r a m s as O r d e r s

The usual method for defining the semantics of a sequential program is to
associate with each elementary construct a function which specifies the trans-
formation of the store which occurs when the construct is executed. For in-
stance, when an assignment is executed, the right hand side is computed in
the context of the old store. A new store is then constructed, which is identi-
cal to the old one at all locations except the one associated to the left hand
side. Transformations associated with more complex constructs are obtained
by combining simpler transformations. For instance, the sequence is asso-
ciated with function composition, and the whi le loop is associated with a
fixpoint calculation. The whole technique is called functional or denotational
semantics.

Applying this method to parallel programs is not possible, since functional
semantics considers as equivalent programs whose behaviour is quite different
in a multiprocessing context, x := x+l ; x := x+2 is equivalent to x := x+3
in denotational semantics. As processes in a parallel program, the second one
may be atomic while the first one is not.

We see that the program representation has to be in term of atomic events
or operations, an operation being the execution of one instruction. For most
situations, working with high-level statements (e.g., Fortran assigmnents) is
sufficient as a first approach of the problem. We will thus suppose that we
are given a set E of operations. As we are interested only in programs which
terminate, this set will be supposed finite, albeit much too large to be handled
explicitly in practical cases.

As any experienced programmer knows, knowledge of E is not enough to
decide what the final result of the program will be. One needs to know the
order in which the operations are to be executed. In a sequential program, this
order is specified totally by the control statements. In that case, E is a totally

82 Paul Feautrier

ordered set. On a parallel computer , the order of execution of some operations
may not be specified, for instance because they are executed independently on
asynchronous processors. The execution order is then partial. An actual run
of the parallel program is associated to some total extension of this order.
There may be several such extensions, with different final results. Parallel
programs may not be determinate . The problem of automat ic parallelization
thus boils down to the following scheme:

- We are given a set of operations E and a strict total order on it, -~.
- Find a part ial order ~ / / on E such that execution of E under it is deter-

minate and gives the same results as the original program.

The simplest case of the parallelization problem is the two-operation program
u; v. There is only one way of converting it to a parallel program, u II v. This
program has the empty order, which can be extended to a total order in
two ways: u -< v and v -4 u. The first order gives the sequential execution
u; v (i.e., the original program), and the second one gives v; u. If the parallel
program is to be determinate, one must have u; v = v; u, in words operations
u and v must commute . If they do not., they are said to be dependent, which
is written: u 5 v.

This result can be generalized to the c o m m u t a t i o n / e m m a . A program
with a partial order -</ / is deterministic if all operations pairs which are non-
comparable by -< / / commute . Suppose we are given a sequential program with
order -<. We want to know if the partial order -<// is valid for this program.
As a corollary of the commuta t ion l emma we find tha t a sufficient condition
is that all pairs of dependent operations are ordered in the same way by -<
and ~ / / :

u -,: v A u ~ v =~ u -</t v. (2.1)

As a consequence, the coarsest valid order is:

-~11 = (-~ n 6) +,

where + is the strict transitive closure. The relation -~ N 6 is known as the
detailed dependence graph of the source program.

Notice tha t this is only a sufficient condition for determinism: we have
already sacrificed some parallelism for simplicity. Comput ing (~ may be of
arbi trary complexity. However, a sufficient condition for commuta t ion is eas-
ily constructed [Bet66]: let R(u) (resp. M (u)) be the set of memory cells
which are read (resp modified) by u. u and v commute if:

M (u) n R(v) = O, n = O, n M (v) = O.

The three terms in that formula appear to be symetrical, but the symetry
is broken as soon as we suppose that u -,: v. Violation of the first condition
is called a f tow dependence. The other terms correspond to anti- and output
dependences.

Automatic Parallelization in the Polytope Model 83

In the general case, when arbitrary address calculations are allowed, test-
ing Bernstein's conditions may still be quite complicated. Suppose for in-
stance that a, b, c, n are positive integers with n > 2. Then the two opera-
tions:

X(a '~ + b '~) --- O,

x(c = 1,

are independent if Fermat 's Last Theorem holds. We cannot hope a compiler
to be able to decide such cases. This has lead to the definition of static
control programs, in which the complexity of address calculations is severely
restricted.

2.2 S t a t i c C o n t r o l P r o g r a m s

The first condition is that the set of operations must be known at compile
time. Programs with finite operations sets are quite uninteresting, while po-
tentially nonterminating programs are very difficult to analyse. The middle
ground seems to be DO loop programs, where the loop bounds depend on
symbolic constants (called here structure parameters). In that case, the iter-
ation domains are finite, but may have arbitrary size according to the value
of the structure parameters. In such a program, an operation is an iteration
of a statement, which can be specified by giving the values of the surround-
ing loop counters. These will be ordered from outside inward and called the
iteration vector. Iteration x of statement S is (S, :g). To be consistent, loops
are also numbered from outside inward, which means that component p of x
is the counter of loop p.

The iteration vector is constrained by the loop bounds, if we suppose
that these bounds are affine functions of the surrounding loop counters and
structure parameters, then the iteration domain of each statement is given by
a set of linear inequalities, which have a special form. For a nest of N loops,
there are 2N inequalities. Inequalities 2k - 1 and 2k depend only on the first
k components of the iteration vector. As we will see later, it is interesting
to generalize to iteration domains which are defined by any number of linear
inequalities of whatever form. However, iteration domains should stay finite 1.
Since loop counters are integers, iteration domains are sets of integer vectors
inside polytopes, or Z-polytopes. The iteration domain of s tatement S will
be written as:

Oom(S) = {x [D s x + d S > 0},

where D s and d s are the matr ix and constant vector which define the itera-
tion polytope, d s may depend linearly on the structure parameters.

The execution order of the operations in a static control program can be
deduced from two facts:

1 Infinite iteration domains are interesting for online applications and can be
handled in special cases.

84 Patti Feautrier

- The iterations of a loop nest are executed according to the lexicographic
order (noted << here) of their iteration vectors.

- All other things being equal, two operations are executed according to their
order in the program text, noted as <1 here.

Let us introduce the following notations:

- a~[n..m] is the subvector of �9 built from components n to m. x[n] is an
abbreviation for a~[n..n].

<% ~ --_ ~[1..p] = ~[1..v] A ~[p + 11 < ~[p + 11

and << is given by:
N - 1

~<<Y--- V ~ < % y , (2.2)
p=O

where N is the common dimension of ~ and y.
- NRS is the number of loops surrounding both R and S. Accordingly, the

number of loop surrounding S should be written NSS. It will be abbreviated
to N 8 here~

We have shown in [Fea91] that:

(R, a~> -~ <s, y> - ~[1..Nas] << b[1..NRS] V (a~[1..Nas] = y[1. .gRs] A R <~ S).
(2.a)

The predicate -~ is not convex, hence it cannot be represented as a poly-
hedron. However, ~ can be split into NRS + 1 linear predicates -~p as in (2.2).
Each term in the disjunction is then a polyhedron.

We will now restrict da ta structures to arrays with subscripts which are
linear in the structure parameters and the outer loop counters. Furthermore,
we will suppose that there is no aliasing - two arrays with differing names refer
to non-overlapping regions in memory - and that subscripts stay within the
array dimensions. This implies that array accesses stay within the allocated
zone, and that the accessed address is in one-to-one correspondence with the
subscripts.

Under these hypotheses, to be dependent, two operations must access the
same array, and one of them at least must modify it. Let X[f(x)] and X[g(a~)]
be the conflicting array" accesses, af and g are the subscripting functions;
they have the same number of components, namely the rank of array X.
The operations in dependence at depth p are the members of the following
dependence relation [PW93]:

{(R, ~>, <s, ~> I q~s(~ , y)}

where Q~ts is the following polytope:

q~ts(X,y)=_ f(a~)=g(y)A(R,a~)-% (S,y) A m e : l) R A Y 6 : D S (2.4)

Automatic Parallelization in the Polytope Model 85

The union of all dependence relations is a symbolic description of the detailed
dependence graph. With these notations, (2.1) translates to:

Qf~S(*' Y) :::> <R, ~> -.<// <S, y>. (2.5)

As we will see in the next section, these dependence relations can be
handled directly in the polytope model. Various researchers have sought to
find approximation to them, i.e. simpler polytopes which still enclose QRS'
One possibility is to ignore the dependence on both �9 and y and to consider
only dependence distances, i.e to project on the difference y - ~ [DV94].
This has meaning only when statements R and S have the same iteration
space, i.e. belong to the same loop nest. The set. of dependence distances
can be enclosed in a cone which can be represented by its extremal rays
[IT87]. Another possibility is to note only the signs of the components of the
extremal rays of the dependence cone, giving the dependence directions. The
usual solution is to test each Qf~s for emptiness. If this set is not empty, one
supposes that all operations such that (R, ~> -~v (S, y} are in dependence, and
one says that there is a depth p dependence from R to S. An important result
is that in a perfect loop nest, if there is no dependence at depth p, then the
loop numbered p + 1 is parallel.

An important special case is that of uniform dependences, in which the
set of dependence distances is a singleton:

Q~,S(~, y) = y = x + d. (2.6)

Obviously, since two statements may have many array references and since
there are several depths to be considered, there may be many dependence
vectors such as d. It is easy to see that all such vectors are lexicopositive.

2.3 T h e D a t a f l o w C a l c u l a t i o n

Another possibility for simpli~;ing the dependence relation is to remove re-
dundant pairs. The basic technique is best explained on a scalar example:

W1 : x = ...

, . .

W2 : x = ...

R : u = ... x ,..

In this program skeleton, there are two flow dependences from W1 to R and
from W2 to R, and an output dependence from W1 to W2. It is clear that
the first flow dependence is redundant, both in the sense that it can be
reconstructed from the other two by transitivity, and also in the sense that
the value written into x by Wl never reach g since it is killed by W2. The
set of flow dependences which give rise to a real flow of data constitutes the
direct dependences [Bra88] or the value based dependences [PW93]. There

86 Paul Feautrier

are several methods for computing this set: I will describe here the original
solution of [Fea88a, Fea91].

Suppose that in the dependence polytope (2.4), s tatement R writes into X
and statement S reads it. Consider 0Rs as a •-polytope in x with parameters
y. It is clear that the value written by R which reaches (S, y} is the one which
is written last according to -~, i.e. has as its iteration vector the lexicographic
maximum:

= i (2.7)

Each statement which writes into X and each possible depth p give such a
potential source. The real source is the latest., i.e. their maximum according
to 4. We will describe in the next section the tools which are needed for such
calculations.

3. Basic Tools for Handling Polyhedra and Z-Polyhedra

The basic reference on linear inequalities in rationals or integers is the treatise
[Sch86].

3.1 P o l y h e d r a a n d P o l y t o p e s

There are two ways of defining a polyhedron. The simplest one is to give a
set of linear inequalities:

A ~ s + a > 0.

The polyhedron is the set of all x which satisfies these inequalities. A poly-
hedron can be empty - the set of defining inequalities is said to be in['easible
- or unbounded. A bounded polyhedron is called a polytope.

The basic property of a polyhedron is convexity: if two points a and b
belong to a polyhedron, then so do all convex combinations Aa + (1 -A)b , 0 _<
A < 1, Conversely, it can be shown that any polyhedron can be generated
by convex combinations of a finite set of points, some of which - rays - may
be at infinity. Any polyhedron is generated by a minimal set of vertices and
rays.

There exist non-polynomial algorithms for going from a representation by
inequalities to a representation by vertices and rays and vice-versa. Each rep-
resentation has its merits: for instance, inequalities are better for constructing
intersections, while vertices are better for convex unions 2.

The basic algorithms for handling polyhedra are feasibility tests: the Fou-
rier-Motzkin cross-elimination method [Fou90] and the Simplex [Dan63]. The
interested reader is referred to the above quoted treatise of Schrijver for de-
tails. Both algorithms prove that the object polynomial is empty, or exhibit

2 Notice that while the intersection of two polyhedra is a polyhedron, their union
is not.

Automatic Parallelization in the Polytope Model 87

a point which belongs to it. For definiteness, this point is generally the lex-
icographic minimum of the polyhedron. In the case of the Fourier-Motzkin
algorithm, the construction of the exhibit point is a well separated phase
which is omitted in most cases.

In the Fourier-Motzkin algorithm, one selects a variable and scans all
inequalities. If the variable has a positive coefficient, the inequality gives a
lower bound for it. Conversely if the coefficient is negative, one gets an upper
bound, while if the coefficient is zero, the inequality gives no information
on the variable. The variable is eliminated by writing that each of its lower
bounds is not greater than each of its upper bounds. At the end of the
elimination process, one gets numerical inequalities. If one of them is false,
the original system was infeasible. Conversely, if all final inequalities are true,
then by going backward into the elimination sequence one can construct a
feasible solution.

The asymptotic complexity of the Fourier-Motzkin method is super-ex-
ponential. However, it is very easy to program, and experiments have shown
that it is very fast for small problems, say of the order of 10 inequalities at
most.

Our implementation of the Simplex, PIP [Fea88b] is a geometrical method
which can be explained in the following way. Let n be the number of unknowns
and m be the number of inequalities in the problem to be solved. One obtains
a vertex of a polyhedron by selecting n inequalities, transforming them into
equations and solving. The solution point is a real vertex if it satisfies all other
inequalities. Otherwise, it is a virtual or external vertex. In the Simplex, one
goes from virtual vertices to virtual vertices in the direction of lexicographic
increase, until a real one is obtained, or until evidence of unfeasibility has
been found. The first real vertex to be found in this way is the lexicographic
minimum of the polyhedron. Going fl'om one vertex to the next one is akin
to one step of Gaussian elimination, with special rules for the selection of the
pivot. The complexity of each step is O(nm), but there can be an exponential
number of steps. However, it has been shown that this number has a high
probability of being O(n). All in all, the Simplex is faster than Fourier-
Motzkin for large problems.

3.2 Z - M o d u l e s

Let v l , . . . , v. be a set of linearly independent vectors of Z ~* with integral
components. The set:

Z (v l , . . . , v ,) = {~1vl + . . . + ~ v ~ f ~i ~ Z}

is the Z-module generated by v t , . . . , v,~. The set of all integral points in
Z '~ is the Z-module generated by the canonical basis vectors (the canonical
Z-module).

Any Z-module can be characterized by the square matrix V of which
(v~, . . . ,vn) are the column vectors. We will use the notation g(V) for

88 Paul Feautrier

s . . . , vn). However, many different matrices may represent the same Z-
module. A square matr ix is said to be unimodular if it has integral coefficients
and if its determinant is =kl. Let U be a unimodular matrix. It is easy to prove
that V and V U generate the same lattice.

Conversely, it can be shown that any non-singular matr ix V can be writ-
ten in the form V = H U where U is unimodular and H has the following
properties:

- H is lower triangular,
- All coefficients of H are positive,
- The coefficients in the diagonal of H dominate coefficients in the same row.

H is the Hermite normal form of V. Two matrices generate the same Z-
module if they have the same Hermite normal form. The Hermite normal
form of a unimodular matr ix is the identity matrix, which generates the
canonical Z-module.

Computing the Hermite normal form of an n • n matr ix is of complexity
O(n3), provided that the integers generated in the process are of such size
that arithmetic operations can still be done in time 0(1) .

3.3 Z - P o l y h e d r a

A Z-polyhedron is the intersection of a Z-module and a polyhedron:

F = { z I z e s

If the context is clear, and if s is the canonical Z-module (V = I), it may
be omitted in the definition.

The basic problem about Z-polyhedra is the question of their emptiness or
not. For canonical Z-polyhedra, this is the linear integer programming ques-
tion [Seh86, Min83]. I will briefly sketch two integer programming algorithm:
the Omega test [Pug91a] which is an extension of Eourier-Motzkin, and the
Gomory cut method, which is an extension of the Simplex [Gom63].

Recall that in the Eourier-Motzkin method, we start by extracting lower
and upper bounds for the selected variable, and then write that each lower
bound is not greater than each upper bound. This condition is enough to
ensure the existence of a rational value, but not of an integer value for the
selected variable. In fact, if one of the bounds is an integer, the existence of
an integer solution is guaranteed. This happens in two cases: the bound is an
affine form with integer coefficients, or the bound is a number, which can be
replaced by its floor or ceiling. In the remaining case, one can prove that the
possible values of the selected variable are of the form x = d y ~- r, 0 <_ r < d
for some number d. The original problem splits into d problems, one for each
value of r, in which x is eliminabted in favor of y. It. is possible to prove that
in this way one can proceed to eliminate all variables using only exact integer
elimination. In the original Omega test software~ various devices are used to

Automatic Parallelization in the Polytope Model 89

eliminate redundant inequalities, to make the most out of equations, and to
order the eliminations in the most favorable way. The resulting test is very
fast.

In the case of the Simplex, one proceeds as in the rational case, until the
opt imum is found. If the solution is integral, there is nothing more to do.
If not, one constructs a Gomory cut, i.e. a new constraint which excludes
the opt imum but no integer point in the Z-polyhedron. The Simplex is then
restarted with one more constraint. It can be proved - see [Sch86] or [Fea88b]
- that either the algorithm fails because one of the extended set of constraints
proves infeasible, or an integral opt imum is found after a finite number of cuts.

Both the Omega test and the Gomory cut method are inherently non
polynomial algorithms, since the integer programming problem is known to
be NP-complete.

3.4 P a r a m e t r i c P r o b l e m s

A linear programming problem is parametric if some of its elements - e.g. the
coefficients of the constraint matr ix or those of the economic function - de-
pend on parameters. In problems associated to parallelization, it so happens
that constraints are often linear with respect to parameters.. In fact, most of
the time we are given a polyhedron 7):

A (a ~) d - a > 0 y

in which the variables have been partit ioned in two sets, the unknowns: a~,
and the parameters: y. Setting the values of the parameters to p is equivalent
to considering the intersection of)o with the hyperplane y = p, which is also
a polyhedron. In a parametric problem, we have to find the lexicographic
minimum of this intersection as a function of p.

The Fourier-Motzkin method is "naturally" parametric in this sense. One
only has to eliminate the unknowns from the last component of x to the
first. When this is done, the remaining inequalities give the conditions that
the parameters must satisfy for the intersection to be non empty. If this
condition is verified, each unknown is set to its minimum possible value, i.e.
to the maximum of all its lower bounds. Let Cy + c > 0 be the resulting
inequalities after elimination of all unknowns. The parametric solution may
be written:

(lnax(f(p),...,g(p)))
n-~n(P N {y = p}) = i f Cp + c > 0 t h e n -.- e lse .L

max(h(p),..., k(p))

where _1_ is the undefined value and the functions f , . . . , k are affine.
In the case of the Simplex, the situation is more complicated. One may

notice that since the coefficients of the constraint matr ix A are constant, once

90 Paul Feantrier

the pivot is known, a step of Gaussian elimination can be done without diffi-
culty. Similarly, when the pivot line is known, the choice of the pivot column
depends only on the constraint matrix, hence does not depend on parameters.
The only difficulty lies in the choice of the pivot line, which is such that its
constant coefficient must be negative. Since this coefficient depends in gen-
eral on the parameters, its sign cannot be ascertained; the problem must be
split in two, with opposite hypotheses on this sign. These hypotheses are not
independent; each one restricts the possible values of the parameters, until
inconsistent hypotheses are encountered. At this point, the splitting process
stops. By climbing back the problem tree, one may reconstruct the solution
in the form of a multistage conditional. The advantage of the parametric
Simplex over the Fourier-Motzkin algorithm is that it can be extended to the
Ml-integer case. Parametric Gomory cuts can be constructed by introducing
new parameters which represent in fact integer quotients. The reader is re-
ferred to [Fea88b] for details of the Parametric Integer Programming (PIP)
algorithm which implements these ideas.

In this way, calculation of K~S in (2.7) is a straightforward application of
PIP (with a little fiddling for computing a maximum}. The combination of
the various sources for constructing the final solution is an exercise in formal
simplification.

4 . P r o g r a m T r a n s f o r m a t i o n s

Since the 1980's, many reaserchers have designed dozens of program transfor-
mations with the aim of finding more and more parallelism in static control
programs. These transformations can be classified along the following lines:

- Transformations which bring the source code nearer to the static control
model, like GOT0s elimination, inductive variable detection and DO loop
reconstruction. For more information, the reader is referred to any book
on sequential compilation, as for instance [ASU86].

- Transformations which change the execution order of a program, the set of
operations being left untouched. The polytope model offers an integrated
way of choosing and applying these transformations, to which we will return
later.

- Transformations which change the data structures of the source program,
for instance by expanding scalars to arrays. The key to this transformation
is dataflow analysis.

- Transformations which rely on the mathematical properties of the source
algorithm. One may for instance use the associativity of some arithmetic
operators like + and * to find parallelism in reductions. Another case is
the replacement of iteration by chaotic iteration for some convergent algo-
rithms. The problem with these transformations is that they modify - for
better or for worse - the sensitivity of the algorithm to rounding errors,

Aur Parallelization in the Polytope Model 91

and have to be used with caution. The study of tha t kind of t ransformation
is just beginning; the interested reader is referred to [RF93].

4.1 R e o r d e r i n g T r a n s f o r m a t i o n s

4.1.1 I n t r o d u c t i o n . One of the earliest discovery in the field was that most
"old style" reordering t ransformations were in fact linear or affine t ransforma-
tions of i teration spaces. As a very simple exemple, consider the well known
lool) inversion t ransformation:

d o i = . . . do j = . . .
d o j = . . . d o i = . . .

S ===> S

end do end do

end do end do

If we rename the target loop counters j ' and i ' to avoid confusion, this is
associated to the linear t ransformation:

(J' : ,

Many other t ransformations, like loop splitting or loop skewing, can be rep-
resented in this way [Pug91b, Lu91], but we can also represent more trans-
formations which have never been named in the litterature.

There are many possible styles of t ransformations, according to the com-
plexity one tolerates in the source program and the number of degrees of
freedom one handles in the t ransformation. On the one hand, one may con-
sider only perfect loop nests, where all s ta tements in the loop body have the
same iteration domain. In that case, it is cus tomary to use essentially the
same transformation for all s ta tements . On the other hand, one m a y have an
arbi t rary static control program, and use a different affine t ransformation for
each s ta tement S:

x' = T s �9 + t s.

In order to simplify the notations, we will use 7-(S, x) for T s x + t S.
Since the number of operations in the t ransformed space is to be the

same as in the original space, all T ' s have to be one to one. If we suppose
for simplicity that each i teration domain is full dimensional - avoiding such
oddities as:

do i = l,n

do j = i,i

then the dimension of the t ransformed space must be at least equal to the
dimension of the original space. There is no objection, however, for it to be
greater. If needed, we may, for instance, pad m' with constant values. We
may thus suppose tha t all images of i teration domains belong to the same

92 Paul Feautrier

target space, and that operations are to be executed - provisionally at least
- in lexicographic order of their transformed coordinates. In the following,
we will use N as the dimension of the target iteration space, with N _> N s
for all statements S.

4.1.2 L e g a l i t y o f a T r a n s f o r m a t i o n . We thus see that a transformation
defines an execution order:

(R, ~> --<r (s, y) = T(~, x) << T(S, y).

Such a transformation is legal if all operations in dependence are correctly
ordered - see section 2.. Suppose that there is a dependence at depth p from
R to S. The legality condition is:

y) T(R, x) << T(s, y). (4.1)
This can easily be transformed into a legality test by reductio at absurdum:
a transformation is illegal if the following system is feasible:

q~S(X, y) A 7-(S, y)<<7-(R, x). (4.2)

Here ~ is the "lexicographically less than or equal to" predicate. It can be
split into the disjuction of N + 1 linear predicates - one more term than
in (2.2). Hence, testing the legality of a transformation entails testing the
emptiness of N + 1 polyhedra from each dependence, and this can be done
by the methods of the preceeding section.

This test can be simplified somewhat in the case of a perfect loop nest
with constant dependence vectors dl, �9 din. In that case, there is only one
transformation matr ix T. The legality condition is obtained by, combining
(2.6) and (4.1), giving:

Tdk >> O,k = l ,m .

To be legal, T must transform all dependence vectors into lexicopositive vec-
tors.

After being transformed, the program may be seen as a single loop nest
where the counters are the components of the transformed iteration vectors.
When some of these components are constant, the corresponding loop may be
unrolled, giving the equivalent of the familiar loop splitting transformation.
Beside being legal, a program transformation must be useful, i.e. some of
the loops in the target program must be parallel. In general, one knows
beforehand which loops are parallel and which loops are sequential: this is a
byproduct of the selection of 7-. If necessary, the following test can be used.
Let It. and S be two statements in dependence at depth p. In the transformed
program, the dependence is at depth q iff:

Qf~s(~, y) =~ T(R, x)[1..q] = T(S, y)[1..q],

As above, this can be tested by reductio at absurdum.
Here again, the test simplifies if the dependences are uniform. The trans-

formed dependence vector Tdk is at depth q if its first q components are
zero.

Automatic Parallelization in the Polytope Model 93

4.1.3 S e l e c t i o n o f a T r a n s f o r m a t i o n . The only case in which it has been
possible to devise an algorithm for finding T in one step is the one of uniform
perfect loop nests, see [WL91]. Another possibility is to search for a good
transformation among a finite - albeit very large - set of possible candidates,
see [KP94]. Other researchers use methods which find only parts of T. The
problem is then to extend T to a one-to-one transformation, or to fit the
parts together.

Scheduling. Since the pioneering papers of [KMW67] and [Lam74], there have
been a large number of papers on scheduling, mainly from the "systolic"
community. The basic observation is that for any function ~ from the set of
operations to any totally ordered set, the following relation:

-<e v - ~(u) < e(v)

is a partial order whose non-comparable pairs are such that O(u) = ~(v). It
should be clear that not all partial orders can be represented in this way,
since -<e has a transitive non-comparabili ty relation, which is not the case in
general.

If -<e is to be a correct parallel order for a given program, then it must
satisfy the following adaptation of (2.5):

o(<R, < o(<s, (4.3)

This set of functional inequalities can be interpreted in several ways. We
have seen one, in which a special representation for -<// has been selected.
Notice that since this is not the most general one, we have sacrificed some
parallelism in the interest of simplicity.

Since the set of operations in a DO loop program is finite, it is always
possible to suppose that the range of 8 is IN or 1N d, the corresponding total
order being either the familiar integer ordering or lexicographic ordering. Let
us consider the first case for simplicity. Since O has integer values, (4.3) can
be rewritten as:

e(<R, 1 < e(<s, (4.4)

In this form, one may consider that ~((R,x)) gives the execution t ime of
operation (R,x) on a computer with an unbounded number of processors
which execute all operations in unit time. ~ is a schedule for the source
program.

One may replace the 1 in (4.4) by the actual execution time of the corre-
sponding operation. This refinement is of no great importance in the case
of massively parallel programming. It has, however, great impact in the
case of Instruction Level Parallelism.

The last interpretation of (4.3) is that we are constructing a transformation,
giving its first d components. To apply the above theory, # must be affine. We
may then complete it by adding N - d lines in such a way that the resulting T

94 Paul Feautrier

transformation is one-to-one. It is easy to see that (4.4) will then entail (4.1).
What is the shape of the resulting parallel program? We may suppose that if
a d dimensional fl has been used, it is because a smaller dimensional schedule
would not have met condition (4.4), or, equivalently, that in the transformed
program there are dependences from depth 0 to d. This means that the d
outer loops of the transformed program are sequential, as befit loop counters
which represent time. We may always suppose that the constant term in 0
has been adjusted in such a way that its minimum value is 0. Supposing for
simplicity that d = 1, and that the transformed iteration vector is (t,z) "r,
then the parallel program shape is:

program S

d o t = O , L
doall z 6 ~(t)

T -1(t, z) T

T being invertible, T - l (t , z) is the unique operation u such that T(u) =
(t, z). Jc(t) is the set:

s(~) = {u I~(u) = t},

and is known in the li t terature as the front at time t. Finally, L is the max-
imum value of 0, i.e. the latency of the parallel program. One should notice
that this program sketch, which consists of one or more sequential loops
enclosing parallel loops, is in the best possible shape for vector computers.

The main question, however, is how to solve (4.4). The starting point is
the assumption that schedules are affine functions of the loop counters. There
is no justification for this assumption beside expediency. Even in very simple
cases, it can be shown that schedules can be very complicated functions.
The assumption acts rather as a filtering device. Experience shows that most
static control programs have a large number of schedules, from which we
select those which are affine. Furthermore, it can be shown that for programs
with uniform dependences, affine schedules are asymptotically optimal, i.e.
they give latency of the same order as the best possible or free schedule
[KMW67, DKR91, d'A95].

Let us set:
O(S, x) = rs .~ + cs,

where r s is an unknown timing vector and c s is an unknown offset. If such
a prototype is inserted into (4.4), we get:

Q~s(x , y) =~ TR.~ + c R + 1 _< TS.~ + c s. (4.5)

One way of using this formula is to select arbitrarily numerical values for
x E OR and y E 7)S. Either these values are such that Q ~ s (~ , y) is true, in
which case we get a linear inequality involving the unknowns VR, CR, r S and
cs, or else Q~s(X, y) is false, in which case we get nothing. In this way, we
can get a very large (if the iteration domains are finite) or even an infinite set
of linear constraints, to be solved for the unknowns. This is evidently not a

Automatic Parallelization in the Polytope Model 95

practical procedure. A solution is possible, however, because the fact tha t all
domains and constraints are linear allows one to construct a finite s u m m a r y
for this potential ly infinite problem.

One way of obtaining a s um m ary is to notice that (4.5) is true everywhere
iff it is true at the vertices of Q~s [Qui87]. We obtain in this way as many

linear constraints as the QRs's have vertices. Another solution is to use the
affine version of Farkas l emma [Sch86, Fea92a]: the general solution of

(Ax + b >_ O) ::r (a.~ +/? >_ O)

is:
a . ~ + 3 = A0 + ,k.(A~ + b),

where)~0 ~ 0 and X ~ 0.
This last equality is to be considered as an identity, in which coefficients

of like components of x can be equated, to give linear relations between the
a ' s and fl and the new positive unknowns ~0, A-

Whatever the method, one gets a system of linear inequalities to be solved
for the coefficients in the schedule. This system may be infeasible; in which
case one must resort to mult idimensional scheduling - the reader is referred
to [Fea92b] for details. If feasible, the system generally has many solutions.
There are several ways of choosing the "best" one. For instance, since the
latency can be expressed as a linear form in the coefficients of the schedule,
one can set up a linear program for finding min imum latency schedules. Other
possibilities are leftmost linear schedules and bounded delays schedules.

One should be aware that one has a wide range of possibilities for the
choice of a schedule. Program S above has to be executed on a limited number
of processors, say P, by a run-t ime scheduler. Let Tp be the execution t ime
on P processors. T1 is the sequential time, and Too is the latency on an
unlimited number of processors, i.e. the L in program S. If the run-t ime
scheduler is greedy - i.e. if no processor stays idle if there is work to do - and
if we neglect problems of interference and communicat ion between processors,
then, by Brent 's lemma:

Tp <_Too + T1/ P,

which implies that the efficiency T_Z.t_ is near one when 7r = T1/Too is large. PTp
~- is the mean parallelism in the program. For most algorithms in numerical
analysis, ~r grows without limit for any reasonable schedule when the size of
the problem grows. For instance, for Gaussian elimination on a system of n
equations with n unknowns, T1 = O(n 3) and Too = O(n) hence 7r = O(n2).
In such cases, the choice of a schedule is not too critical.

Placement. While constructing a t ransformat ion from a schedule gives good
results on a synchronous computer , where, conceptually, each front can be
executed at each tick of the global clock, a finer analysis is needed in the case
of a distr ibuted mem ory computer . The main problem here is to avoid com-
munications between processors through the interconnection network, which

96 Paul Feautrier

is always orders of magni tude slower than local memory accesses. In the case
of systolic arrays, no a t t empt is made at minimizing the amount of communi-
cation, the rationale probably being that since the array is custom designed,
one can always provide the necessary channels. In a distributed memory pro-
cessor, one cannot enlarge the network at will, hence the numerous a t t empts
at t ransforming the program in such a way tha t most communicat ions are
made local.

This result can be obtained only if the concept of a t ransformation is
extended to include the da ta space of a program. In the same way that T
maps an operation to an abstract space, some coordinates of which were later
interpreted as time, we will suppose that the same t ransformation maps an
array cell A[i] - where the components of i are subscripts - to an abstract
space some coordinate of which are interpreted as - virtual - processor names.

In placement, we are only interested in the part of 7" which relates to
processors. T(S, x) is now supposed to be the name of the processor which
executes (S, a~); similarly, A being an array, T(A, i) is the name of the processor
whose memory holds A[i]. If operation (S, x) contains a reference to A[f(a~)],
there will be a remote da ta reference unless these two entities are in the same
processor:

r (s , x) : T(A, f(x)) . (4.6)

These equations are solved in the same fashion as the scheduling equations
(4.4). We assume that T is affine, replace it by a prototype:

T(U, x) = rtu.~ + wU, (4.7)

where U is either a s ta tement or an array. The problem is then to find relations
between the unknwns rr and w which are equivalent to (4.6). This is similar
to the method we used to solve the scheduling inequalities (4.5). There are,
however, some impor tan t differences:

- Since (4.6) is an equation, it suffices that it holds for x = 0 and for NSS
other linearly independent values of a~ to hold everywhere. Hence, as soon
as the iteration domain of S is large enough, (4.6) is true everywhere. By
replacing a~ successively by 0 and by the unit vectors, we get the required
relations between the unkowns rr and w. identity.

- The result is a system of homogeneous linear equations. It always has
at least the trivial solution, whose meaning is that we can suppress all
communicat ions by using only processor 0. Let rr be a vector in which all
coefficients of 7" are concatenated. The resulting system may be written:

C~r = 0;

C is the communication matrix of the source program.
- Equation (4.6) has a different meaning than, for instance, (4.4). This last

equation is a constraint: if not satisfied, the resulting parallel program is
invalid. (4.6) is more in the nature of an economic function: for each value

Automatic Parallelization in the Polytope Model 97

of �9 for which it is false, one has to program a remote da ta access. The
real constraint here is that all operations and all da ta of the program do
not collapse on the same processor.

We see tha t a" is a vector in the kernel of C. If we want the target system to
be a grid of processors, then the range of 7- must have as many dimensions
as the grid. This is obtained by selecting enough linearly independent vectors
in ker(C), if possible.

Most of the time, however, C is of full rank and its kernel is trivial.

In the case of uniform dependences, the dependence vectors directly give
the column vectors of C. It is a well known fact that there is no placement

- or no outermost parallelization - of a unform program if the dependence
vectors span the whole iteration space.

The solution in tha t case is to satisfy only a subset of equations (4.6). Equa-
tions which do not belong to the chosen subset correspond to residual com-
munications. There are various heuristics for choosing the residual commu-
nications, for which the reader is referred to [Fea94, DR95].

Discussion. Comput ing a schedule, as in the preceding paragraph, or com-
puting a placement, as above, are two independent ways of finding parallelism
in a program. Each method aims at t ransforming the dependence graph in
such a way tha t the resulting program has a simple shape. In the case of
scheduling, one adds edges to the dependence graph. Two operations u and v
may be such tha t O(u) < O(v) and yet be independent. The target dependence
graph is in the form of a one level series-parallel graph. Since the resulting
program is more constrained than the original, it is ipso facto correct, but
we may have lost some parallelism.

On the contrary, when comput ing a placement we ignore some edges,
namely those which correspond to residual communications. The a im is to
part i t ion the dependence graph into independent subsets which are then ex-
ecuted sequentially. Since edges have been ignored, the program is invalid
unless one reintroduces them as communications. The result is a system of
cooperating sequential processes. There may be more processes than proces-
sors. In general, the task of multiplexing several processes on one processor
is left to the underlying operat ing system. Virtual processors are processes
whose p rogramming interface has been modeled on the underlying physical
processor.

In some cases, one needs both a placement, because the machine has dis-
tr ibuted memory, and a schedule, either because the machine is synchronous,
or just for convenience. In these cases, we have to build two t ransformations
as above and fit them as best we can. At the t ime of writing, there is no
integrated theory of space-time transforms.

98 Paul Feautrier

4.2 Storage M a n a g e m e n t

The question is how to integrate in the above framework transformations
which act on the data structures of the program. One knows from previous
research that some dependences are due to memory reuse while others, the di-
rect flow dependences, are inherent to the algorithm. If memory is not reused,
then the first type of dependence disappears, thus giving a less constrained
parallel program.

The simplest situation is when there is enough space on a distributed
memory computer to duplicate the whole data space. This expansion remove
all dependences except direct flow dependences. Of these, some have been
taken into account when constructing the placement, thus giving local data
accesses. The residual dependences give rise to communications, which can
be constructed with the help of dataflow analysis. The resulting code may
then be optimized by deallocating unused memory.

When the parallel program is to be constructed via a schedule, the first
idea that come to mind is to ignore non flow dependences. Ince non-flow de-
pendences are generated by memory reuse, they can be eliminated by scalar
and array expansion. One may observe that data expansion remove not only
non flow dependences, but also spurious flow dependences, which are elim-
inated by array dataflow analysis. This justifies ignoring all but direct flow
dependences when computing a schedule. I have proposed to restore the cor-
rectness of the parallel program by converting it to Single Assignment form
[Feagl]. Recent developments show that it is possible to achieve the same
result at a much lower cost in memory, by ignoring the dependences which
are already satisfied by the selected schedule.

5. L o o p R e w r i t i n g a n d C o d e G e n e r a t i o n

The essence of the polytope model is to apply affine transformations to the
iteration spaces of a program. When this is done, the operation in the orig-
inal program are to be executed according to the lexicographic order in the
transformed iteration space. The problem of code generation is thus the prob-
lem of writing a loop nest which scans the image of a polytope by an affine
transform. When a whole program has been reordered, one has to scan the
union of the images of several polytopes.

5.1 The Case of a Perfec t Loop Nest

In the case of a perfect loop nest, there is essentially one statement and one
transformation, T. The points to be scanned are defined by:

Automatic Parallelization in the Polytope Model 99

where Dx + d > 0 is the system of constraints which define the iteration
domain in the source program. This shows that y belongs to the lattice gen-
erated by T. In s T is invertible. Hence, the set T(/)) may be rewritten:

T(7)) = {y I Y E s + d > 0}

which define a Z-polyhedron.

Unimodular transformations. If T is unimodular, s is the canonical Z-
module, i.e. the set of vectors with integer coordinates. There are several
ways of computing the bounds of a loop nest which scans/:(T). For instance,
we may use the Fourier-Motzkin algorithm in the following way [Iri87, AI91]:

- Compute the lower and upper bounds IN and UN of the last component
of y. Since these bounds may be rational while YN is an integer, we have
to apply ceiling and floor functions to compute the actual bounds. The
results looks like:

do = [ZN1,

- Eliminate YN and start again for the next component of y.

Since the Fourier-Motzkin algorithm has a tendency to generate redundant
inequalities, this method may result in more complicated bounds than is
necessary, unless one programs a redundancy eliminator. Another solution is
to use PIP for computing maxima and minima, in which case redundancy is
automatically eliminated [CBF95].

Non-unimodular transformations. In case T is not unimodular, the solution
is to build its Hermite normal form T = HU [Dar93, Xue94]. One builds,
according to the above method, a loop nest which scans U(:D). Since, due to
the special form of H, the transformation y = H z is monotonic with respect
to lexicographic ordering, it is enough to apply H to the loop counters of the
new loop nest in order to generate the correct code. Alternatively, one may
apply H directly to the new loop nest. It is easy to see that the diagonal
elements of H give the loop steps, while the off diagonal elements generate
initial offsets.

5.2 The Case of a Comple te P r o g r a m

Here, each source statement generates one image, and the target code has to
scan the union of these images. The nave solution consists in constructing a
convex polytope which includes all these images. One may use the convex hull
or the rectangular hull of the union of all iteration domains. This polytope
is then scanned as above. All statements are then inserted in the innermost
loop body, with guards that ensure they are executed only at the proper time.
The resulting code is inefficient, since overhead operations (the guards) are
inserted at the innermost level. There are various devices for improving the
results. One may move invariant calculations up through the loop hierarchy,
split loops according to the value of a guard, peel loops, and so on [AALL93].

100 Paul Feautfier

5.3 C o m m u n i c a t i o n Code

If the parallel program is to run on a distributed memory machine, one has to
insert code for the residual communications. This depends in a complicated
way on the architecture of the target computer. In the case of an asynchronous
computer, the simplest solution is to duplicate the sequential code and its
data structures in each processor. One then adds guards to avoid duplicating
the calculations and communications.

Let us suppose that distribution is specified by a placement function T,
and let q be the current processor number. Operation u is replaced by the
following code [ZBG88]:

Va ~ R(u) : i f T(u) # q A T(a) = q then Send(a) to T(u)
i f T(u) = q A 7-(a) # q
then Receive(a) from T(a)

if T(u) = q then ~ =/(R(u))

This code is highly inefficient, due to the numerous guards. In the case of
static control programs, most guards can be resolved at compile time and
"pushed up" into the surrounding loop bounds. Similarly, each processor
uses only a fraction of its data space. The remnants can be deallocated, at
the price of more complicated subscripts.

6. C o n c l u s i o n : T h e L i m i t s o f t h e P o l y t o p e M o d e l

There are still some fine points that are not completely solved in the poly-
tope model. Among them are the construction of more general placement
functions, the choice of the best style of transformation for a given architec-
ture, minimum data expansion, code generation for arbitrary programs, and
communication code construction. These problems are the subjects of active
research, and there is hope they will be solved in the near future.

The main question is quite different: what is the range of the polytope
raodel? Are real life programs in the model or not? The answer is more
ambiguous than we would like. It seems that most real programs do not
have static control, with the exception of toy examples and small library
subroutines. However, it is possible to isolate static control kernels in large
programs and have them parallelized by the above methods [Les96]. If it so
happens that these kernels represent a large fraction of the total running
time, our job is done.

Some programs have irregular control and/or irregular data accesses. It is
still possible to extend dataflow analysis and scheduling to these situations,
by the use of approximation methods. The only way of extracting parallelism
from them, however, seems to be by the use of speculative execution. In some
cases, what appear to be irregular are in fact regular accesses to other data

Automatic Parallelization in the Polytope Model 101

structures (e.g. trees) which have been implemented as arrays. The equivalent
of the polytope model for these situations is still to be built.

Lastly, in many cases, irregular programs are really regular programs
which have been optimized for special situations. This is the case, e.g., for
sparse codes, in which familiar algorithms like the matrix-vector product have
been modified to avoid doing multiplications by zero. A solution in that case
is to use run-t ime paraUelization. Another one is to parallelize the original
code, then do the optimization for sparsity on the parallel version.

Acknowledgement. I would like to thank Monica Lam and Peter Drakenberg for
helping me improve the presentation of this paper. All remaining errors are mine.

References

[AALL93] Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lain, and
Amy W. Lira. An overview of a compiler for scalable parallel machines.
In Sixth Annual Workshop on Languages and Compilers for Parallel Com-
puting, pages 253-272. Springer Verlag, LNCS 768, August 1993.

[AIgl] Corinne Ancourt and Franqois Irigoin. Scanning polyhedra with DO
loops. In Proc. third SIGPLAN Syrup. on Principles and Practice of
Parallel Programming, pages 39-50. ACM Press, April 1991.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, Reading, Mass, 1986.

[Ber66] A.J. Bernstein. Analysis of programs for parallel processing. IEEE Trans.
on El. Computers, EC-15, 1966.

[Bra88] Thomas Brandes. The importance of direct dependences for automatic
parallelization. In A CM Int. Conf. on Supercomputing, St Malo, France,
July 1988.

[CBF95] Jean-Francois Collard, Denis Barthou, and Paul Feautrier. Fuzzy array
dataflow analysis. In A CM SIGPLAN Syrup. on Principles and Practice
of Parallel Programming. ACM, July 1995.

[d'A95] Patrick Le Goueslier d'Argence. Contribution ~ l'gtude des proble~mes
d'ordonnancement cycliques multidimensionnels. PhD thesis, Universit~
Paris VI, December 1995.

[Dan63] G.B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

[Dar93] A. Darte. Techniques de paralldlisation automatique de nids de boucles.
PhD thesis, ENS Lyon, April 1993.

[DKR91] Alain Darte, Leonid Khachiyan, and Yves Robert. Linear scheduling is
nearly optimal. Parallel Processing Letters, 1(2):73-81, 1991.

[DR95] Mich~le Dion and Yves Robert. Mapping affine loop nest: new results. In
HPCN Conf. LNCS 919, 1995.

[DV94] Alain Darte and Frederic Vivien. Automatic parallefization based on
multidimensional scheduling. Technical Report RR 94-24, LIP, 1994.

[Fea88a] Paul Feautrier. Array expansion. In A CM Int. Conf. on Supercomputing,
pages 429-441, 1988.

[Fea88b] Paul Feautrier. Parametric integer programming. RA[RO Recherche
Opdrationnelle, 22:243-268, September 1988.

102 Paul Feautrier

[Fea91] Paul Feautrier. Dataflow analysis of scalar and array references. Int. J.
o/Parallel Programming, 20(1):23-53, February 1991.

[Fea92a] Paul Feautrier. Some efficient solutions to the affine scheduling problem,
I, one dimensional time. Int. J. of Parallel Programming, 21(5):313-348,
October 1992.

[Fea92b] Paul Feautrier. Some efficient solutions to the affine scheduling problem,
II, multidimensional time. Int. J. o] Parallel Programming, 21(6):389-
420, December 1992.

[Fea94] Paul Feautrier. Toward automatic distribution. Parallel Processing Let-
ters, 4(3):233-244, 1994.

[Foug0] J . B . J . Fourier. Oeuvres de fourier, tome II. Gauthier-Villard, Paris,
1890.

[Gom63] R. E. Gomory. An algorithm for integer solutions to linear programs. In
R. L. Graves and P. Wolfe, editors, Recent Advances in Math. Program-
ming, chapter 34, pages 269-302. Mac-Graw Hill, New York, 1963.

[Iri87] Franqois Irigoin. Partitionnement de boucles imbriqudes, une technique
d'optimisation pour les programmes scientifiques. PhD thesis, Universit~
P. et M. Curie, Paris, June 1987.

[IT87] Franqois Irigoin and R~mi Triolet. Computing dependence direction vec-
tors and dependence cones with linear systems. Technical Report CAI-
87-E94, Ecole des Mines de Paris, 1987.

[KMW67] R. M. Karp, R. E. Miller, and S. Winograd. The organization of com-
putations for uniform recurrence equations. Journal of the ACM, 14:563-
590, 1967.

[KP94] Wayne Kelly and William Pugh. Selecting affine mappings based on per-
formance estimations. Parallel Processing Letters, 4(3):205-220, Septem-
ber 1994.

[Lam74] Leslie Lamport. The parallel execution of DO loops. CACM, 17:83-93,
February 1974.

[Les96] Arnauld Leservot. Analyse Interprocddurale du riot des donndes. PhD
thesis, Universit6 Paris VI, March 1996.

[Lugl] Lee-Chung Lu. A unified framework for systematic loop transformations.
SIGPLAN Notices, 26:28-38, July 1991. 3rd ACM SIGPLAN Syrup. on
Principles and Practice of Parallel Programming.

[Min83] Michel Minoux. Programmation Mathdmatique, thgorie et algorithmes.
Dunod, Paris, 1983.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The definition of Stan-
dard ML. The MIT Press, 1990.

[Pug91a] William Pugh. The omega test: A fast and practical integer programming
algorithm for dependence analysis. In Supercomputing, 1991.

[Pug91b] William Pugh. Uniform techniques for loop optimization. A CM Conf. on
Supercomputing, pages 341-352, January 1991.

[PW93] William Pugh and David Wonnacott. An evaluation of exact methods for
analysis of value-based array data dependences. In Sixth Annual Work-
shop on Programming Languages and Compilers for Parallel Computing,
pages 546-566. Springer-Verlag LNCS 768, August 1993.

[Qui87] Patrice Quinton. The systematic design of systolic arrays. In F. Fogelman,
Y. Robert, and M. Tschnente, editors, Automata networks in Computer
Science, pages 229-260. Manchester University Press, December 1987.

[RF93] Xavier Redon and Paul Feautrier. Detection of reductions in sequential
programs with loops. In Arndt Bode, Mike Reeve, and Gottfried Wolf, ed-
itors, Procs. o] the 5th Int. Parallel Architectures and Languages Europe,
pages 132-145. LNCS 694, June 1993.

Automatic Parallelization in the Polytope Model 103

[Sch86]

[WL91]

[Xue94]

[ZBG88] H. P. Zima, H. J. Bast, and M. Gerndt.
automatic MIMD/SIMD parallelization.
1988.

A. Schrijver. Theory of linear and integer programming. Wiley, NewYork,
1986.
M. Woff and Monica S. Lam. A loop transformation theory and an algo-
rithm to maximize parallelism. IEEE Trans. on Parallel and Distributed
Systems, 2(4):452-471, October 1991.
J. Xue. Automating non-unimodular loop transformations for massive
parallelism. Parallel Computing, 20(5):711-728, May 1994.

SUPERB : A tool for semi-
Parallel Computing, 6:1-18,

