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ABSTRACTCa
he memories were invented to de
ouple fast pro
essorsfrom slow memories. However, this de
oupling is only par-tial, and many resear
hers have attempted to improve 
a
heuse by program optimization. Modeling the traÆ
 betweenlevels is diÆ
ult; this observation has led to the use of heuris-ti
s methods for steering program transformations. In thispaper, we propose another approa
h: we simplify the 
a
hemodel and we organize the target program in su
h a waythat an asymptoti
 evaluation of the memory traÆ
 is possi-ble. This information is used by our optimization algorithmin order to �nd the best reordering of the program opera-tions, at least in an asymptoti
 sense. Our method opti-mizes temporal lo
ality in the 
ase of self and group-reuse.It 
an be applied to any stati
 
ontrol program with ar-bitrary dependen
es. The optimizer has been implementedand applied to non-trivial programs. We present experimen-tal eviden
e that the amount of 
a
he misses is drasti
allyredu
ed with 
orresponding energy saving and performan
eimprovements.
KeywordsTemporal lo
ality, 
a
he memory, program transformations
1. INTRODUCTIONTe
hnologi
al advan
es in the realization of integrated 
hipsresult in faster 
lo
ks for pro
essors, and in larger 
apa
ityfor memory. In 
onsequen
e, if nothing is done, pro
essorswill soon starve be
ause their memory systems 
annot sup-ply data at the required speed. Memory hierar
hies are agood solution to this problem: they are 
heap and eÆ
ient,at least for ordinary programs and situations. Nevertheless,their eÆ
ien
y de
reases dramati
ally for s
ienti�
 
omput-ing and signal pro
essing 
odes, where large data sets area

essed a

ording to highly regular patterns. Next, theirtemporal behavior is diÆ
ult to predi
t; this forbids theiruse in systems with hard real time 
onstraints. Lastly, mov-ing data from level to level uses a lot of power [6℄, whi
h

renders them unsuitable for embedded systems.A lot of work has been devoted to improving the behaviorof memory hierar
hies. There are two kinds of approa
hesfor this problem. The �rst approa
h 
onsists in designinghighly optimized libraries (LAPACK is a good example [2℄)for the most 
ommon linear algebra and signal pro
essingalgorithms. This method often gives the best results, pro-vided the sour
e problem and the target ar
hite
ture arewithin the s
ope of the available library. The se
ond ap-proa
h tries to optimize the sour
e program at 
ompile time.This method is not restri
ted to a given set of algorithmsand 
an be adapted, with minor modi�
ations, to any mem-ory hierar
hy ar
hite
ture. The present work belongs to thelater approa
h.Most optimizing 
ompilers try to transform the sour
e pro-gram in order to improve the behavior of the memory hi-erar
hy. The basi
 prin
iple is to regroup all a

esses to agiven memory 
ell, in order to take a maximum advantageof possible reuses. This is obtained �rst by applying looptransformations [20, 15℄ a

ording to some 
ost model [17℄,then by tiling the resulting loop nest [21℄ with tiles havinga 
arefully 
hosen size [8℄. Basi
ally, this method appliesonly to perfe
t loop nests in whi
h dependen
es are nonex-istent or have a spe
ial form (fully permutable loop nests).Another, data-
entri
 [13℄, approa
h starts from a memory
ell and tries to build the sli
e of the program that a

essesthis 
ell. Here again, dependen
es greatly 
ompli
ate thetransformation pro
ess.As said above, previous methods require most of the timesevere limitations on the input program. Our work 
an beapplied to a wide appli
ation domain sin
e we do not laydown any requirement on dependen
es provided that theprogram has stati
 
ontrol [10℄. This program 
lass in
ludea large range of problems whi
h are dis
ussed in depth byXue [22℄. The properties of su
h programs 
an be summa-rized in this way: (1) 
ontrol statements are the Fortran doloop with aÆne bounds and if 
onditional with aÆne 
on-ditions (in fa
t 
ontrol 
an be more 
omplex, see [22℄); (2)arrays are the only data stru
tures, and their subs
ripts areaÆne; (3) aÆne bounds, 
onditions and subs
ripts dependonly on outer loop 
ounters and stru
ture (or size) parame-ters; (4) subroutine and fun
tion 
alls have been inlined.All methods 
ited earlier are based on a heuristi
 
ost model.Let us 
onsider for instan
e two a

esses to the same mem-



ory 
ell. It seems probable that the longer the time intervalbetween these a

esses, the higher is the probability of the�rst referen
e to be evi
ted from the 
a
he. Hen
e, looptransformations aim at moving these referen
es to neigh-boring iterations of some innermost loop. Our te
hnique isbased on an estimate of the memory traÆ
, and tries to �ndthe loop transformation that minimizes this estimate, un-der the 
onstraint that all dependen
es are satis�ed. Thiste
hnique, whi
h we 
all 
hunking is presented in se
tion2. Se
tion 3 explains how to 
onstru
t good 
hunking fun
-tions for a given program. Se
tion 4 deals with the problemof 
ode generation when the 
hunking fun
tions are given.Se
tion 5 des
ripbes our implementation and experimentalresults. Se
tion 6 
ompare 
hunking to other approa
hes.We then 
on
lude and dis
uss future work.
2. CHUNKINGThe prin
iple of our method is to partition the set of op-erations of a program in subsets small enough that theira

essed data �t in the 
a
he: the 
hunks. The programis then exe
uted 
hunk by 
hunk, as if there was a 
a
he
ush between ea
h of them. These subsets must be su
hthat their sequential exe
ution is equivalent to the exe
u-tion of the original program. In pra
ti
e, 
hunks will benumbered and exe
uted in order of in
reasing numbers. Inother words, for ea
h statement S we seek a 
hunking fun
-tion �S asso
iating a 
hunk number �S(x) to ea
h iterationve
tor x . We present in �gure 1 an example of 
hunking ofa simple program. We assume as input hypothesis that narray elements 
an �t in the 
a
he, but m 
annot. Su
h asimple 
ode yet exhibits several diÆ
ulties: non-perfe
t loopnest, dependen
es between di�erent statements and multi-ple referen
es. In this example, the order of the operationsdo i=1, na(i) = i ! S1do j=1, mb(j) = b(j) + a(i) ! S2enddoenddo (a) sour
e program�S1 �� i �� = � i � ; �S2�� ij �� = � j + n �(b) 
hunking fun
tionsdo 
=1, na(
) = 
 ! S1enddodo 
=n+1, n+mdo i=1, nb(
-n) = b(
-n) + a(i) ! S2enddoenddo (
) target programFigure 1: Running examplehas been modi�ed for a maximal use of temporal lo
ality,a

ording to the 
hunking fun
tions in �gure 1(b). In the

target program, 
 gives the number of the 
urrent 
hunk.This example will be used for illustration throughout thispaper. One 
an noti
e that the 
ode 
an be restru
tured inthe same way by 
onventional loop distribution, loop per-mutation and skewing. Chunking is set in the frameworkof the polytope model and every 
hunking 
an be brokendown in a su

ession of well known transformations.In fa
t,
hunking do not aim to �nd new transformations but to �ndthe right transformation automati
ally.
3. COMPUTING CHUNKING FUNCTIONSThe quality of a 
hunking system 
an be assessed by usingtwo valuations. First, the footprint size whi
h is the numberof memory 
ells a

essed by the operations of a 
hunk. Next,the traÆ
 whi
h is the number of data movements betweenmain and 
a
he memories. We want to build an optimal
hunk system. In su
h a system, ea
h 
hunk footprint �ts inthe 
a
he and ea
h memory 
ell appears in as few footprintsas possible. To be able to generate the target 
ode, we arelooking for aÆne 
hunking fun
tions. For an operation S[x℄,instan
e of the statement S with the iteration ve
tor x inthe iteration domain DS , the 
hunk number 
an be written:�S(x) = Tx+ k:T is the 
hunking matrix of dimension g � �(S) with �(S)the number of loops surrounding S and k a 
onstant ve
-tor; the 
hoi
e of the value of g is postponed till se
tion 3.2.Chunking fun
tions are 
al
ulated in several steps whi
h aredis
ussed in the next se
tions. In se
tion 3.1 we show how to
ompute an asymptoti
 evaluation of the traÆ
 with respe
tto the 
hunking fun
tions. Then we exhibit the 
onstraintswhi
h the 
hunking fun
tions must satisfy to minimize thetraÆ
. Se
tion 3.2 explains how to build the fun
tions un-der su
h 
onstraints. Se
tion 3.3 shows how to modify thefun
tions in su
h a way that the transformation is legal fordependen
es. Lastly, se
tion 3.4 gives the 
onstraints whi
hhave to be satis�ed by the 
hunking fun
tions in order toa
hieve group-lo
ality.
3.1 Asymptotic evaluationIt is hard to �nd an a

urate solution to the traÆ
 eval-uation problem for a parti
ular 
a
he type. Modeling therepla
ement me
hanism is quite diÆ
ult, but it is bypassedby 
hunking. However, several diÆ
ulties remains, hen
e wepropose the following simpli�
ations:� 
on
i
t misses don't 
hange the order of magnitudeof the traÆ
; this assumption is satis�ed by fully as-so
iative 
a
hes and is 
lose to be by modern 
a
heswith high asso
iativity; any dis
repan
y 
an be 
om-pensated by using an e�e
tive 
a
he size smaller thanthe real one;� we will be satis�ed with asymptoti
 evaluation of thetraÆ
; In many 
ases, program transformations 
an
hange the order of magnitude of the traÆ
. In these
ases, it would be useless to �ddle with 
onstant fa
torsor worse, units in the last de
imal pla
e. In some 
ases,e.g. when self-reuse has already been exploited, one
an only improve the 
onstant fa
tors; the question ofde
iding if a more pre
ise evaluation 
an in
uen
e thetarget 
ode is left for future work.



In our model, it is possible to make estimates of footprintsizes and traÆ
. Considering a statement S, an array A anda subs
ript fun
tion f , the footprint generated by this ref-eren
e is the set of memory 
ells a

essed during the 
hunkexe
ution:FS;A;f (t) = �f(x) j x 2 DS ; �S(x) = t	: (1)Suppose that the 
a
he is empty at the start of a 
hunkand that its footprint �ts in the 
a
he. Then any 
ells in thefootprint is 
opied on
e to the 
a
he at some time during theexe
ution of the 
hunk and stays there until the terminationof the 
hunk. Hen
e the traÆ
 
an be estimated as thenumber of pairs hdata, 
hunk numberi.TS;A;f = Card �
f(x); �S(x)� j x 2 DS	: (2)Note that there is no need to insert a 
ush instru
tion be-tween 
hunks provided that the repla
ement me
hanism al-ways sele
ts data from previous 
hunks for evi
tion. This istrue for the LRU and FIFO poli
ies, but not for RANDOM.Sin
e input programs have stati
 
ontrol, subs
ript fun
tionsare aÆne and 
an be written:f(x) = Fx+ a;where F is the subs
ript matrix of dimension �(A) � �(S),with �(A) the dimension of array A, and a a 
onstant ve
tor.The orders of magnitude of the 
ardinals of sets des
ribingfootprints (1) and traÆ
 (2) are known: if the value of ea
h
omponent of x is an integer in a segment of length m, then:Card FS;A;f (t) = O �ml� ; l = rank � TF �� rank T;TS;A;f = O �mk� ; k = rank � TF � ;where � TF � is a matrix 
omposed of the matrix T for its�rst rows and of the matrix F for the next rows.These evaluations depend on F whi
h 
an be extra
ted byanalysis of the sour
e 
ode and T whi
h is the unknown ofthe problem. Thus we 
an �nd the 
onstraints that T hasto satisfy in order that the footprints �t in the 
a
he andthe traÆ
 is minimal. l and k are not arbitrary; it is easyto 
he
k that:8>>>><>>>>: 0 � rank (T ) � �(S)max �rank F; rank T � � rank � TF �rank � TF � � min ��(S); rank T + rank F � (3)Let us 
onsider one statement with n array a

esses, thesubs
ript matrix of the ith a

ess being Fi. We 
an enumer-ate all tuples �rank T; rank � TFi � for 1 � i � n� whi
hsatisfy the 
onstraints (3). We need to know the 
a
he sizeC and an estimate of the size parameter m. We then deter-mine an integer � su
h that m� � C. A footprint of sizeO �ml� �ts in the 
a
he if l � �. We 
an thus eliminate alltuples for whi
h this 
ondition is not satis�ed, and we 
anrank the remaining ones in order of in
reasing traÆ
. It then

remains to try building a T whi
h satis�es the rank 
ondi-tion of the best tuple. If this is proved to be impossible, westart again with the next tuple.
3.2 Building chunking matricesThanks to the evaluations, we know whi
h rank 
onstraintsmust be satis�ed by the 
hunking matri
es to minimize thetraÆ
. In this se
tion, we show how to build su
h matri
es,at �rst when the 
orresponding statement in
ludes only onereferen
e. Then, we show that there always exists a 
hunk-ing matrix su
h that ea
h asso
iated footprint �ts in the
a
he.For a statement with one referen
e, building a matrix Twith rank v su
h that rank � TF � = w is always possible,provided that v and w have 
ompatible values. To do it,we 
ompose a generating matrix having the basis ve
tors ofkerF as 
olumn ve
tors, whi
h we extend to a non singularmatrix. We then 
ompute the inverse of the generating ma-trix. T is made of v rows of the inverse, 
ompleted with nullrows if ne
essary. The pro
ess is more formally des
ribed inthe algorithm in �gure 2.Algorithm Constru
tion: Build a matrix under rank
onstraints.Input: the subs
ript matrix F and the rank 
onstraintsrank T = v and rank � TF � = w.Output: a matrix T respe
ting the rank 
onstraints.1. Compute B, a basis of kerF and 
omplete it to abasis of N�(S).2. Build the generating matrix G:(a) For i from 1 to �(S):ith 
olumn of G = ith ve
tor of B.3. Compute G�1, inverse of G.4. Build matrix T :(a) For i from 1 to v:ith row of T = (�(S)� w + i)th row of G�1.(b) For i from v + 1 to g:ith row of T = ~0.Figure 2: Algorithm Constru
tionLet us demonstrate that this algorithm builds a matrix Tthat answers requirements. Sin
e the matrix T is 
omposedof v linearly independent rows, the 
onstraint rank T = v issatis�ed. These rows are those of G�1 from �(S) � w + 1to �(S)�w + v. Hen
e, the kernel of T is generated by the
olumn ve
tors of G from 1 to �(S) � w and from �(S) �w + v + 1 to �(S). The kernel of � TF � is the interse
tionof the kernel of T with the kernel of F , hen
e it is generatedby the �(S)�w �rst 
olumn ve
tors of G and the 
onstraint



rank � TF � = w is satis�ed. As for the 
hoi
e of g, it is
lear that bordering a matrix by null rows does not 
hangeits rank. Sin
e when reordering the program it is useful tohave all 
hunking fun
tion of the same dimension, we maytake g = max�(S).The generalization to n referen
es implies the 
ombinationof n 
onstraints: rank � TFi � = wi for 1 � i � n. The gen-erating matrix must have for ea
h referen
e exa
tly �(S)�wive
tors of a basis of kerFi for a total of at most v ve
tors.Su
h a matrix doesn't always exist. The 
hoi
e of ve
torsto be in
luded in the generating matrix is essential. We
an guide this 
hoi
e by adding for ea
h referen
e as manyve
tors from a pre
eding referen
e as possible. If a solutiondoesn't exist for a tuple, then we try to �nd another one forthe next more interesting tuple.A 
hunking matrix su
h as ea
h footprint �ts in the 
a
healways exists. The hardest 
onstraint for the footprints is tohave a size in O �m0�, and the last tried possibility will bethe tuple 
�(S); wi = �(S) for 1 � i � n�. The 
orrespond-ing 
hunking generates for the ith referen
e footprint sizes ofO �m0i � and the maximal traÆ
 of O �m�(S)i �. Its solutionT = Id always exists and is the trivial 
hunking where thereis one 
hunk per operation.Example Let us 
onsider the sour
e 
ode in �gure 1. Weassume that a is an array of n 
ells whi
h �ts in the 
a
he andb is an array of m 
ells whi
h does not �t in the 
a
he. Then,the a

eptable orders of magnitude for the footprints size areO �n1� and O �m0�. The program has two statements:� the statement S1 has just one referen
e to the arraya with the index matrix FS1;1 = � 1 �; the matrix T1having the best properties 
orresponds to the tupleh1; 1i, it will generate footprint sizes of O �n1� and atraÆ
 of O �n1�; one builds TS1 = � 1 �;� the statement S2 has two referen
es, the �rst one tothe array a with the index matrix FS2;1 = � 1 0 �and the se
ond one to the array b with the index ma-trix FS2;2 = � 0 1 �; the matrix TS2 having the bestproperties would 
orrespond to the tuple h1; 2; 1i, itwould generate footprint sizes of O �m0 + n1� and atraÆ
 of O �m1 + n2�; the 
onstru
tion is possible andgives TS2 = � 0 10 0 �.
3.3 LegalitySin
e 
hunking reorders operations, it must satis�es depen-den
es. In this se
tion, we explain how 
hunking fun
tions
an be modi�ed in su
h a way that the transformation sat-is�es dependen
es. We will show that there always existsa valid solution whi
h satis�es the 
onstraints des
ribed inprevious se
tions.Chunks are numbered in the order they will be exe
uted, andinside ea
h of them, operations are exe
uted in the original

sequential order. Let us 
onsider IP , the statement set ofthe program P, and ÆP , the dependen
e relation on P; a
hunking system is legal if and only if:8S;R 2 IP ; S[x℄ ÆPR[y℄) �(S[x℄) � �(R[y℄): (4)In this formula, if the 
hunking fun
tion is many-dimensional,� has to be interpreted as lexi
ographi
 ordering. This 
anbe done in the following way: the problem u � 0 where u isn-dimensional 
an be repla
ed by n problemsu1 � 1;� u1 � 0u2 � 1 : : :8><>: u1 � 0...un � 0 : (5)Let us 
all � any one of the 0-1 ve
tors on the right handsides of (5). (4) 
an be split into n problemsS[x℄ ÆPR[y℄) �(S[x℄) + � � �(R[y℄); (6)where � is now 
omponentwise ordering. Let us write�Si(S[x℄) = tSix+ kSifor the ith 
omponent of �S ; equivalently, tSi is the ith rowof the matrix TS and kSi is the ith 
omponent of the ve
torkS . The Farkas algorithm [11℄ allows one to eliminate x andy from (6) and other similar 
onstraints. The result is asystem of linear inequalities whi
h we write�(T ;K; �) � 0; (7)where T and K are the 
on
atenation of the tSi and kSi.There is no a priori reason for (7) to be satis�ed by the
hunking matri
es as 
onstru
ted by the previous algorithm.However, we are free to modify them as long as we do not
hange their rank properties. We are also free to adjust thekS , as they have no impa
t on the footprints and traÆ
 (atleast asymptoti
ally). We 
hoose �rst to repla
e the �rstrow of TS by a linear 
ombination of all rows:t0S1 = gXi=1 
SitSi:When substituted into (7), this gives a new system of linear
onstraints in the 
Si, whi
h we try to solve with any linearprogramming 
ode. If the problem has a solution, we applythe same algorithm to the next row. If not, we de
lare afailure and try the next best traÆ
/footprint 
ombination.A legal solution su
h as the footprints �t in the 
a
he alwaysexists. It 
orresponds to the worst solution, in whi
h allthe 
hunking matri
es are identity matri
es. In this 
ase,the original program is not modi�ed. This possibility mustalways be left open, sin
e it might happen that the sour
eprogram is already optimal.Example Let us 
ontinue the example of se
tion 3.2. The
hunking fun
tions asso
iated to the proposed matri
es are:� �S1 �� i �� = � 1 � � i �+ � 0 � = � i � :� �S2�� ij �� = � 0 10 0 � � ij �+ � 00 � = � j0 � :These fun
tions do not des
ribe a valid 
hunking: the de-penden
e from S1 to S2 is not satis�ed. For instan
e, the



operation S2 � 21 � is exe
uted in 
hunk number 1 whereasthe operation S1 � 2 � on whi
h it depends is exe
uted later,in 
hunk number 2. Our method makes it possible to 
orre
tthis 
hunking so that all the dependen
es are respe
ted andthe quality is preserved. The 
orre
tion suggested by ourprototype is the following one:� �S1 �� i �� = � 1 � � i �+ � 0 � = � i � :� �S2�� ij �� = � 0 10 0 � � ij �+ � n0 � = � j + n0 � :To homogenize the 
hunking fun
tions, one 
an add nulldimensions, or remove them if they are null for all the fun
-tions, sin
e this does not 
hange the ranks. One has �nally�S1 �� i �� = � i � and �S2�� ij �� = � j + n �.
3.4 Group-reuseThere is group-reuse when two statements, S1 and S2, a
-
ess the same array A throught indexing matri
es F1 and F2(for the sake of readability, we will use homogeneous 
oordi-nates in this se
tion). There is reuse if there exists iterationve
tors x1 and x2 su
h that F2x2 = F1x1, and this reuse isexploited if these two operations are in the same 
hunk:8x18x2; F2x2 � F1x1 = ~0) T2x2 � T1x1 = ~0: (8)Observe that this 
onstraint has the same shape as a depen-den
e 
onstraint. If F2x2 = F1x1, then S1[x1℄ and S2[x2℄are in dependen
e. This dependen
e may be a read-read de-penden
e, whi
h may not be taken into a

ount in other 
ir-
umstan
es, but whi
h exists nevertheless. As to the right-hand side of (8), it is similar but more restri
tive than theright-hand side of (4).As a 
onsequen
e, we 
an give a morepre
ise result:Theorem 1. (8) is true i� �T2 � T1� = N�F2 � F1�where N is a matrix of full row rank.Proof. Let x be the 
on
atenation of ve
tors x1 and x2:x = � x1x2 �. Formula (8) 
an be written8x; �F2 � F1�x = 0) �T2 � T1�x = 0:�F2 � F1�x = 0 and �T2 � T1�x = 0 des
ribe two hyper-plans where one point belonging to the �rst one ne
essarilybelongs to the se
ond one too. Therefore the �rst one isa subspa
e of the se
ond one. So it 
an be written as these
ond one with b additional 
onstraints:�F2 � F1�x = 0, � �T2 � T1�x = 0Qx = 0then �F2 � F1� = M � T2 � T1Q � with M a matrix su
hthat det M 6= 0 (the system don't 
hange by linear transfor-mations), and � T2 � T1Q � =M�1�F2 �F1�. Let us write

M�1 as � NN 0 � where N 0 is the submatrix made with theb last lines of M�1. Now we have� T2 � T1Q � = � NN 0 ��F2 � F1�and �nally �T2 � T1� = N�F2 � F1�.The unknowns are the entries of N , whi
h de�ne the lineartransformations to apply to �F2 � F1� in su
h a way thatthe 
hunking fun
tions respe
t the dependen
es. This is
learly the same problem as the 
orre
tion for dependen
esin se
tion 3.3. We solve them at the same time, by addingthe ne
essary 
onstraints (a set of 
onstraints by pairs ofreferen
es in whi
h group-reuse is dete
ted) to the initialproblem.This theory, whi
h does not assume that group-reuse is asso-
iated to 
onstant dependen
es, 
an even be used for \self-group-reuse", when the two a

esses to A are in the samestatement. Here, we dedu
e from (8) that the linear sub-sspa
e G = fx2 � x1jF1x1 � F2x2 = 0g is in
luded in thekernel of T = T1 = T2:. It is easy to �nd a basis for G bygaussian elimination te
hniques. The resulting ve
tors 
anbe taken into a

ount when building the 
hunking matri
es.Example Let us 
onsider the following sour
e 
ode:do i=1, ndo j=5, n-10C(i,j) = A(i,j-5) ! S1D(i,j) = A(j+10,i) ! S2enddoenddoA simple 
ontrol 
entri
 method will estimate that there isno self reuse and no exploitable group-reuse. In fa
t thereis good reuse between the two statements for a part of thearray A as shown by the �gure 3. In this example, there
Zone accessed by S1 

Zone accessed by S2 .

n15

n

n-15

1

1 Figure 3: A

essed zones of Ais no dependen
e, then we 
an use the trivial solution of�T2 � T1� = N�F2 � F1�, that is T1 = F1 and T2 = F2.Therefore, the 
hunking fun
tions will be :� �S1�� ij �� = � ij � 5 � :



� �S2�� ij �� = � j + 10i � :This transformation leads to the target 
ode below. Thegroup-lo
ality is now maximal: in the shared zone of A, thetwo statements a

ess the same memory 
ell during the sameiteration.do 
1=1, 14do 
2=0, n-15C(
1,
2+5) = A(
1,
2) ! S1enddoenddodo 
1=15, nC(
1,5) = A(
1,0) ! S1do 
2=1, n-15C(
1,
2+5) = A(
1,
2) ! S1D(
2,
1-10) = A(
1,
2) ! S2enddodo 
2=n-14, nD(
2,
1-10) = A(
1,
2) ! S2enddoenddoThe sele
tion of pairs of referen
es o�ering a good group-reuse is an interesting problem. On one hand, it is 
ertainlynot possible to satisfy all 
onstraints for all possible pairs.Hen
e, there is a need to �nd a priority order on the sets of
onstraints a

ording to the potential bene�ts. On the otherhand, improving group-lo
ality is less interesting than im-proving self lo
ality: it 
an't 
hange the order of magnitudeof the traÆ
. But adding 
onstraints 
an 
ompli
ate the
hunking fun
tions and as a 
onsequen
e the target 
ode.There is a need to evaluate whi
h 
onstraints 
an give aperforman
e bene�t in spite of the 
ontrol overhead (thisquestion has no sense when energy is the 
riti
al resour
e).It is quite easy to know if there exists group-reuse betweena pair of referen
es: it is suÆ
ient to �nd an integral solu-tion to the system of 
onstrains 
onsisting of 
onjun
tion ofthe equality of the subs
rpts, the iteration domains domainsand the 
ontexts. It is mu
h harder to 
ompare the numbersof integral solutions that the di�erent systems have. Thisquestion amounts to the well known problem of 
ounting in-tegral points in polyhedra. There are exa
t solutions whenthe parameters have �xed values [4, 7℄. When there is justone un�xed parameter, it is still possible to 
ompare theparametri
 numbers [7℄. But in the general 
ase, the use ofheuristi
s is needed.
4. CODE GENERATIONCode generation is the last step to the �nal program. It isoften ignored in spite of its impa
t on the target 
ode qual-ity. We must ensure that a bad 
ontrol management doesnot spoil performan
e, for instan
e by produ
ing redundantguards or 
omplex loop bounds. Be
ause the input problemis a stati
 
ontrol program, the exe
ution domain of ea
hstatement 
an be represented as a polyhedron [14℄. In the
hunking 
ase, we 
hange the s
anning order of this polyhe-dron by substitution of the original dimensions by 
hunking

dimensions. The 
ode generation is then a well known Z-polyhedron s
anning problem. This problem was �rst solvedby An
ourt and Irigoin [1℄ for the simple 
ase of Z-polyhedrawith unit latti
e. They used the Fourier-Motzkin elimina-tion te
hnique to 
ompute loop bounds. For more 
omplexsituation, the best solution is the Quiller�e et al. one [18℄.Their te
hnique generates ea
h loop level by separating thepolyhedra until they are disjoint on the 
urrent dimension,then re
ursively generating loop nests that s
an ea
h of themand lastly sorting polyhedra in order to respe
t the exe
u-tion order. This method is well adapted to the 
hunkingproblem provided we generalize it somewhat. We have todeal with sequential inner loops, and we have to optimizethe 
ode in the 
ase of imperfe
t loop nests. Our resulting
ode is quite eÆ
ient.Example Let us 
ontinue the example of se
tion 3.3. Thepolyhedra des
ribing the exe
ution domains of S1 and S2result from the study of the original 
ode. One 
ompletethem with the 
hunking dimension 
 and the 
hunking 
on-straints. The 
onstraint systems des
ribing the iterationdomains are:S1 
onstraint system S2 
onstraint system8<: 
 � i = 0� i + n � 0i � 1 � 0 8>>><>>>: 
 � j � n = 0� i + n � 0i � 1 � 0� j + m � 0j � 1 � 0On the �rst dimension 
, polyhedra are already disjoint:the �rst one 
overs 1 � 
 � n while the se
ond one 
oversn + 1 � 
 � n + m, hen
e there is no need to separateor aggregate them. As a 
onsequen
e, there will be oneloop nest per statement; the re
ursion on ea
h of them isthen trivial. Lastly, we must order the loop nests in su
h away that they respe
t the exe
ution order. It is easy to seethat the �rst polyhedron must pre
ede the se
ond one. Theresulting 
ode is the one shown in �gure 1(b) as the targetprogram.
5. IMPLEMENTATION AND RESULTSFrom the 
hunking fun
tion 
al
ulation to the 
ode gener-ation, our method is 
ompletely automated. The 
hunkyprototype implements the full pro
ess in C ex
ept for thedependen
e 
al
ulation and appli
ation of the Farkas lemmawhi
h it still uses a Maple solver. The dependen
e 
orre
-tion and 
ode generation make an intensive use of polyhedraloperations, as implemented in the Polylib1 [19℄ and PIP2 [9℄.This prototype allows us to test various non-trivial prob-lems. The experiments were 
ondu
ted on a PC worksta-tion with a Pentium III pro
essor running at 1GHz. Thispro
essor 
omes with two 
a
he levels: a split �rst level (L1)for instru
tions and data of 16KB ea
h and an uni�ed se
-ond level (L2) of 256KB. L1 is a 4-way set asso
iative 
a
he1The Polylib is freely available under GNU li
ense athttp://i
ps.u-strasbg.fr/PolyLib2PIP is freely available under the GNU publi
 li
ense athttp://www.prism.uvsq.fr/�paf



with a miss penalty of 3 
y
les. L2 is an 8-way set asso-
iative 
a
he with a miss penalty of 44 
y
les. Both 
a
helevels are non-blo
king and have a line size of 32 bytes. Tomake the best evaluations, we 
hoose to use the hardware
ounters of the Pentium III to 
ompare the number of 
a
hemisses [5℄. Figure 4 shows the evolutions of the number of
a
he misses for the original and target versions of the run-ning example (see �gure 1), a

ording to the value of theparameter m. The ratio m=n is set to 64 in order to better
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Figure 4: Ca
he misses for the running exampleshow the impa
t of our method. The number of 
a
he missessharply grows when the array b be
omes larger than a 
a
helevel in the original program. The 
hunked program has abetter behavior. The miss growth 
omes later, when the in-put hypothesis are no longer satis�ed, i.e. when the arraya 
annot �t in the 
a
he. We have observed the same phe-nomenon on most of the programs with good data reuse wehave tested. Some experimental results on well known prob-lems are shown in �gure 5. The 
ompiler option was O3 forthe original programs, but O1 for the transformed programsin order to prevent any 
ompiler optimization that 
an dis-turb the 
hunking. Sin
e 
hunking reorders operations, it
an in
uen
e the spatial lo
ality. For better 
omparison,we have sele
ted by hand the layout giving the best results.This improvement has been applied both to the original pro-gram and to the 
hunked 
ode. We plan to automate thistask in the near future. The results are presented with log-arithmi
 s
ale. As for the running example, 
hunking 
anredu
e the number of 
a
he misses by more than one order ofmagnitude. For instan
e, 
hunking 
uts down the L1 
a
hemisses of a Cholesky fa
torization on 70 � 70 arrays by 63%and L2 
a
he misses by 92% on 300 � 300 arrays. Sin
e thenumber of 
a
he misses is one of the main fa
tors of energydissipation [6℄, this 
a
he miss redu
tion implies a signi�-
ant improvement. At the same time, performan
e 
an bein
reased: in the Cholesky fa
torization 
ase, we obtain aspeedup of 35% for 300�300 arrays and of some per
ents for70 � 70 arrays. The performan
e/energy rate is then greatlyimproved.Despite the high theoreti
al 
omplexity of many of our meth-ods (for instan
e, parametrized linear programming solvers,polyhedral manipulations, and 
ode generator have expo-nential 
omplexities), the prototype seems to o�er good per-
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Figure 5: Experimental results (log. s
ale)forman
e. The reason is that the main parameters are loopnest depths and array dimension numbers whi
h are usuallysmall. To give an idea, the 
hunking of a Cholesky fa
tor-ization with 7 statements, a maximal loop nest depth of 3and a maximal array dimension number of 2 requires about20 se
onds on the test ma
hine. Most of the time is spentin Maple 
ode and we have many reasons to think that abetter implementation will signi�
antly improve the proto-type performan
e. Nevertheless, the question of s
alabilityremains, and will be tested on a larger ben
hmark suite.
6. RELATED WORKThe e�ort of resear
h to 
reate e�e
tive lo
ality optimizing
ompilers began with Wolf and Lam [20℄ and their data lo
al-ity optimizing algorithm. This algorithm applies unimodulartransformations to loop nests in order to maximize lo
ality,a

ording to evaluations of legal loop transformations rel-evan
e. Then it applies tiling [21℄ to the innermost loops.In 
omparison, our approa
h is appli
able to a wider rangeof programs sin
e in one hand we do not require perfe
tnests or nests su
h as they 
an be made perfe
t. And on theother hand be
ause we do not require that dependen
es musthave any simpli�ed shape (Wolf and Lam algorithm needsthat the dependen
e ve
tors be lexi
ographi
ally positive).Li [15℄ generalizes the framework of unimodular matri
es [3℄by using linear, non-unimodular transformations to 
hangethe iteration spa
e. We expe
t our algorithm will �nd morea

urate transformations in pra
ti
e sin
e Li's transforma-tion and dependen
e types are quite simple: the transforma-tions do not handle parameters and the only 
ase dis
ussedis the one where dependen
es are represented by distan
eve
tors. M
Kinley et al. [17℄ propose a te
hnique based on adetailed 
ost model that drives the use of loop permutation,



fusion and distribution. They apply the basi
 transforma-tions a

ording to a de�nite order, while this strategy 
anbe ine�e
tive for some problems. To �nd whi
h is the bestappli
ation order of the transformations for a given programis known to be very hard. Chunking bypasses this diÆ
ultybe
ause it uni�es all kind of linear transformations in a sin-gle framework. For group-reuse, M
Kinley et al. 
onsiderthe 
lassi
 
ase of uniformly generated referen
es [12℄, withsmall restri
tions. We propose to go beyond this 
ase byoptimizing group-lo
ality between non uniformly generatedreferen
es when they are in di�erent statements. In 
om-pensation, 
hunking pro
essing is heavier than the M
Kin-ley et al. algorithm, and in addition, both [20℄ and [17℄ dealwith spatial reuse while we don't. Alternatively to these
ontrol 
entri
 te
hniques, Kodukula et al. [13℄ propose adata 
entri
 approa
h that plans to a
t on data movementdire
tly, rather than as a side-e�e
t of 
ontrol 
ow manip-ulations. Our work shares many features with [13℄. Bothpapers are set in the framework of the polytope model, andaim at partitioning the 
ode in pie
es whi
h are (almost)free of 
a
he misses. Both te
hniques transform the 
odeby well known transformations (loop ex
hange, loop skew-ing...): the problem is not to invent new transformations,but to �nd the right transformation for a given program.There are however several important di�eren
es. Kodukulaet al. start from the following intuition: on
e a datum hasbeen brought into the 
a
he, it is bene�
ial to exe
ute alloperations whi
h a

ess this datum. Our approa
h is di�er-ent sin
e we start from an estimate of the traÆ
 and try tominimize it. In both 
ases we have to �nd a transformationlegal for dependen
es. But while Kodukula et al. 
an just
he
k if their transformation respe
ts dependen
es, we haveintegrated the legality in the transformation 
onstru
tion.Lastly, while Kodukula et al. use an arbitrary array blo
k-ing, we show that signi�
ant improvements 
an be obtainedwithout blo
king. Testing whether blo
king 
an improve ourresults is left for future studies.
7. CONCLUSIONIn this arti
le, we have presented a method based on traÆ
evaluations for data lo
ality improvement. It exhibits manyadvantages. First of all, it is not based on heuristi
s and theproposed transformation 
an't spoil the temporal lo
ality, inthe worst 
ase it leaves the original 
ode inta
t. Next, it 
anbe applied to any stati
 
ontrol program without other limi-tations. Lastly, there is no requirement on dependen
es andit is often possible to make a transformation legal withoutde
reasing its quality. The method is 
ompletely automated,and requires nothing besides the original 
ode but the rela-tive sizes of the 
a
he and data. The proposed optimizationsremain stable for large size variations.First results are very en
ouraging. Nevertheless, there re-main several kinds of problems for whi
h we need to extendour method before we 
an 
ompete with the 
lassi
 optimiza-tion te
hniques. We are 
urrently working on tiling whi
hseem to be the natural 
ontinuation of our approa
h. In-tuitively, tiling is a question of aggregating small 
hunks orsplitting big ones. We must also deal with spatial lo
alityimprovement. A step in that dire
tion is the work of Loe
h-ner, Meister and Clauss [16℄, whi
h is based on pre
ise 
ount-ing of memory a

esses. Lastly, we must deal with programswhi
h have stati
 
ontrol regions but have not stati
 
ontrol

in toto. Our method 
an be adapted to lo
al memories (orsoftware managed 
a
hes) at the pri
e of more attention tofootprint layout.
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