
CSI Journal of Computing | Vol. 1 • No. 4, 2012

8 : 86
	 Enhancing the Compilation of

Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

Enhancing the Compilation of
Synchronous Dataflow Programs with a
Combined Numerical-Boolean Abstraction

Paul Feautrier*, Abdoulaye Gamatié**, Laure Gonnord***

*	 Paul Feautrier is with École Normale Supérieure de Lyon (LIP, INRIA, CNRS, UCBL), France.
	 E-mail: Paul.Feautrier@ens-lyon.fr
**	 Abdoulaye Gamatié was previously with Laboratoire d’Informatique Fondamentale de Lille (LIFL, CNRS/Lille 1),
	 France. He is now with Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier (LIRMM, CNRS/
	 UM2), France. E-mail: Abdoulaye.Gamatie@lirmm.fr
***	 Laure Gonnord is with Laboratoire d’Informatique Fondamentale de Lille (LIFL, CNRS/Lille 1), France.
	 E-mail: Laure.Gonnord@lifl.fr

In this paper, we propose an enhancement of the compilation of synchronous programs with a
combined numerical-Boolean abstraction. While our approach applies to synchronous dataflow
languages in general, here, we consider the SIGNAL language for illustration. In the new
abstraction, every signal in a program is associated with a pair of the form (clock, value), where
clock is a Boolean function and value is a Boolean or numeric function. Given the performance level
reached by recent progress in Satisfiability Modulo Theory (SMT), we use an SMT solver to reason
on this abstraction. Through sample examples, we show how our solution is used to determine
absence of reaction captured by empty clocks; mutual exclusion captured by two or more clocks
whose associated signals never occur at the same time; or hierarchical control of component
activations via clock inclusion. We also show that the analysis improves the quality of the code
generated automatically by a compiler, e.g., a code with smaller footprint, or a code executed
more efficiently thanks to optimizations enabled by the new abstraction. The implementation of
the whole approach includes a translator of synchronous programs towards the standard input
format of SMT solvers, and an ad hoc SMT solver that integrates advanced functionalities to cope
with the issues of interest in this work.

Index Terms -	Static analysis, compilation, code generation, SIGNAL, satisfiability modulo theory, synchronous
	 languages.

I.	 Introduction

Embedded systems are omnipresent in our daily life.
They are typically found in consumer electronics, automotive
and avionic systems, and medical systems. In most of these
application domains, systems are safety-critical. They
therefore call for well-suited design approaches that can
fulfill their stringent requirements.

Synchronous languages [1] have been introduced in the
early 80’s in order to address the reliable development of
safety-critical embedded systems. Some of these languages
are LUSTRE [2], ESTEREL [3] and SIGNAL [4]. Nowadays,
they are successfully adopted by the European industry as
illustrated by the use of the Scade tool to develop the Airbus
A380 control and display system. Among the features that
make synchronous programming suitable for the design

of safety-critical systems, we mention their mathematical
foundation that offers a precise semantics of programs, a
trustworthy reasoning on program properties, and automatic
generation of correct-byconstruction implementations.

Synchronous languages consider a high abstraction level
for system design. A central assumption is that computation
and communications are instantaneous from the viewpoint
of a logical time, referred to as ”synchrony hypothesis”.
This favors deterministic models of system behaviors
for safe analysis. The existing synchronous languages
distinguish themselves from each other by adopting different
programming styles, e.g., ESTEREL has an imperative style
suitable for control-dominant applications while LUSTRE
and SIGNAL1 respectively borrow functional and relational

1. Note however that the multi-clock design model associated with SIGNAL is also relevant for describing control aspects.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

Paul Feautrier, et. al.	 8 : 87

styles suitable for dataflow-oriented applications. In this
paper, we mainly concentrate on the last family of languages,
i.e., dataflow synchronous languages.

The design approach of an embedded system with
the LUSTRE language usually assumes a reference clock
providing the time scale for all system sub-parts. In terms of
set of instants, the activation clocks of sub-parts are subsets
of this reference clock. While this “synchronized” model of a
system is suitable for guaranteeing determinism, it suggests
a monolithic vision of design so that one cannot focus on the
activity of a given sub-part of a system regardless of the
reference clock.

The design model adopted in the SIGNAL language is
different from that of LUSTRE: the description of system sub-
parts is enabled, without assuming any reference clock. It is
referred to as polychronous model [4]. In this model, abstract
clocks, consisting of discrete sets of logical instants at which
events occur in system sub-parts, play a fundamental role
in designs. They are used to describe all the control part:
triggering of system components and interaction between
different components. The control flow expressed by abstract
clocks serves to derive an optimized control structure in
automatic code generation. Thus, the quality of clock analysis
has a strong impact on the correctness and efficiency of
implementations.

1.1	 Compilation of programs: limitations

Beyond the usual syntax and type checking, the compilers
of synchronous languages implement powerful static analysis
and code optimization, allowing for a correct and efficient
code generation.

In SIGNAL, the static analysis relies on a Boolean
abstraction of programs, internally represented as binary
decision diagrams (BDDs) [5] for an efficient reasoning [6].
However, one main limitation of this static analysis arises
when the SIGNAL compiler addresses clock properties of
a program defined by numerical expressions. Indeed, the
adopted Boolean abstraction loses relevant information,
which makes it quite inadequate for such a program. This
has a strong impact on the analysis precision and the quality
of generated code. Such an issue occurs when defining the
activation clocks of a system as sets of events that occur when
the values of some signals satisfy a numerical property. An
example scenario is the activation of a (rescue) computation
node in a fault-tolerant embedded system when a signal
from executing nodes reaches a particular numerical value.
In order to suitably address this issue, a new abstraction is
required, which fully takes into account the numerical part
beside the Boolean part of SIGNAL programs.

In the LUSTRE compilation [7], the same kind of Boolean
abstraction is used before code generation. Thus, it suffers
from the same lack of precision. Nevertheless, the static
analysis of LUSTRE programs has been studied with various
precise methods, for instance in [8] and more recently in [9],
but the purpose was verification, and not the improvement of
the compilation.

1.2	 Contribution of this paper

We propose an enhancement of the compilation of
synchronous dataflow programs with a combined numerical-
Boolean sound abstraction. Here, this is mainly illustrated
on SIGNAL programs. However, we believe the same
workflow can be easily adapted to other synchronous
dataflow languages, such as LUSTRE or MRICDF (Multi-
Rate Instantaneous Channel connected Data Flow) [10]. Note
that the current paper is an extended version of a previous
one [11]. Our solution permits an analysis that significantly
enhances the quality of the subsequent code generated by
compilers, e.g., a code with smaller footprint, a code executed
more efficiently thanks to further optimizations.

The present tool is also an invaluable aid to debugging.
For instance, as will be shown in Section 7 or in the discussion
of the Bathtub example, we are able to statically detect empty
clocks. Depending on the context, this can be interpreted as
a proof of safety (an alarm will never sound), or as a bug (an
operation on signals with incompatible clocks).

In the new abstraction, every signal in a program is
associated with a pair of the form (clock, value), where clock is
a Boolean function and value is a Boolean or numeric function.
Given the performance level reached by recent progress in
Satisfiability Modulo Theory (SMT) [12], we use an SMT
solver to reason on the new abstraction. We show through a
few examples, how relations between abstract clocks defined
with numerical and logical expressions are adequately
analyzed, to determine for instance absence of reactivity
captured by empty clocks; mutual exclusion captured by two
or more clocks whose associated signals never occur at the
same time; or a better control of node activations via clock
inclusion.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 3

never sound), or as a bug (an operation on
signals with incompatible clocks).

In the new abstraction, every signal in a
program is associated with a pair of the form
(clock, value), where clock is a Boolean function
and value is a Boolean or numeric function.
Given the performance level reached by recent
progress in Satisfiability Modulo Theory (SMT)
[12], we use an SMT solver to reason on the
new abstraction. We show through a few ex-
amples, how relations between abstract clocks
defined with numerical and logical expressions
are adequately analyzed, to determine for in-
stance absence of reactivity captured by empty
clocks; mutual exclusion captured by two or
more clocks whose associated signals never
occur at the same time; or a better control of
node activations via clock inclusion.

Synchronous
language
compiler

Abstraction
of P

Program P

SMT
solver

Concretization
of properties of P

Analysis Code
generation

Fig. 1. Overview of the proposed approach.

The advocated approach is depicted by Fig.
1. Given a synchronous dataflow program P ,
we define a corresponding abstraction, used to
check the satisfiability of properties of interest,
i.e., those involving numerical expressions. For
this purpose, we use an ad hoc SMT solver
offering tailored functionality for an adequate
usage in our approach. Once identified, all
properties of interest are concretized into syn-
chronous dataflow programs, which are later
composed with the initial program P . The re-
sulting composed program is equivalent to P in
which properties involving numerical expres-
sions have been made explicit in a form that
is suitably addressable by a synchronous lan-
guage compiler. Then, it becomes easier for the
compiler to do an efficient analysis and code

generation. The main part of our contribution
is on the right-hand side of Fig. 1. Notice that
an important advantage of this contribution is
its modular, i.e., non-intrusive, implementation
regarding compilers. This clearly facilitates its
integration to a given compiler and makes it
easy to isolate a bug in the global framework
(in comparison to a compiler-intrusive solu-
tion).

Compared to our preliminary publication
[11], the present article brings new improve-
ments regarding the following aspects:

• definition of an “ad hoc” SMT solver,
while the off-the-shelf Yices solver was
considered previously. This enables us to
implement property search inside the new
solver, thus avoiding costly pretty printing
and parsing;

• a proposal within the same solver to com-
pute strongly connected components of the
clock implication graph for determining an
enhanced clock hierachy useful to efficient
code generation;

• additional examples illustrating the rele-
vance of our solution.

1.3 Outline
The remainder of this paper is organized as
follows. Section 2 compares the proposed ap-
proach to some relevant existing works. Sec-
tion 3 gives an overview of SIGNAL. Section
4 discusses the current limitations of the static
analysis achieved by the SIGNAL compiler, re-
garding clock analysis and code generation.
Section 5 exposes a new combined numerical-
Boolean abstraction for improving this static
analysis by using first-order logic formulas.
Section 6 presents an implementation of our ap-
proach. Section 7 addresses typical application
examples for which our proposal is very useful.
Finally, Section 8 gives concluding remarks.

2 RELATED WORK

We discuss in this section some relevant stud-
ies about static analysis techniques for syn-
chronous programming. Since these techniques
apply both to verification and compilation, we
distinguish them w.r.t. both topics.

Fig. 1 : Overview of the proposed approach.

The advocated approach is depicted by Fig. 1. Given a
synchronous dataflow program P, we define a corresponding
abstraction, used to check the satisfiability of properties of
interest, i.e., those involving numerical expressions. For
this purpose, we use an ad hoc SMT solver offering tailored
functionality for an adequate usage in our approach. Once

CSI Journal of Computing | Vol. 1 • No. 4, 2012

8 : 88
	 Enhancing the Compilation of

Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

identified, all properties of interest are concretized into
synchronous dataflow programs, which are later composed
with the initial program P. The resulting composed program
is equivalent to P in which properties involving numerical
expressions have been made explicit in a form that is suitably
addressable by a synchronous language compiler. Then, it
becomes easier for the compiler to do an efficient analysis and
code generation. The main part of our contribution is on the
right-hand side of Fig. 1. Notice that an important advantage
of this contribution is its modular, i.e., non-intrusive,
implementation regarding compilers. This clearly facilitates
its integration to a given compiler and makes it easy to isolate
a bug in the global framework (in comparison to a compiler-
intrusive solution).

Compared to our preliminary publication [11], the
present article brings new improvements regarding the
following aspects:
�� definition of an “ad hoc” SMT solver, while the off-

the-shelf Yices solver was considered previously. This
enables us to implement property search inside the new
solver, thus avoiding costly pretty printing and parsing;

�� a proposal within the same solver to compute strongly
connected components of the clock implication graph
for determining an enhanced clock hierachy useful to
efficient code generation;

�� additional examples illustrating the relevance of our
solution.

1.3	 Outline

The remainder of this paper is organized as follows.
Section 2 compares the proposed approach to some relevant
existing works. Section 3 gives an overview of SIGNAL.
Section 4 discusses the current limitations of the static
analysis achieved by the SIGNAL compiler, regarding clock
analysis and code generation. Section 5 exposes a new
combined numerical- Boolean abstraction for improving this
static analysis by using first-order logic formulas. Section
6 presents an implementation of our approach. Section 7
addresses typical application examples for which our proposal
is very useful. Finally, Section 8 gives concluding remarks.

2.	 Related Work
We discuss in this section some relevant studies about

static analysis techniques for synchronous programming.
Since these techniques apply both to verification and
compilation, we distinguish them w.r.t. both topics.

2.1	 Static analysis for verification

A few combinations of numerical and Boolean verification
techniques have been studied for LUSTRE verification. In [8],
the technique used is a dynamic partitioning of the control flow
obtained by LUSTRE compilation with respect to constraints
coming from a given proof goal. Our approach does not depend
on any proof goal. A recent work [13] proposed a method based
on a combination of abstract acceleration techniques [14] and
control-flow refinement [8] in order to prove reachability. The

results are very accurate, but the analysis is very expensive
to be integrated to a compiler for the moment. Our analysis
is cheaper and does not suffer from the same state explosion
problem.

An important work is the polyhedral-based static
analysis for synchronous languages, and in particular, for the
SIGNAL language [15]. The authors give a technique based
on fixpoint iteration on a lattice combining Boolean and affine
constraints. More recently, a polyhedral analysis library has
been integrated to the SIGNAL open-source compiler in
order to compute safe operating ranges for input variables
of programs [16]. This was intended for an improvement of
the causality analysis of SIGNAL programs. Our technique
is less precise than [15] and [16] because it cannot deal with
polyhedral invariants. But, the complexity of the analysis in
our case is lesser and the implementation is much simpler.

In another study, a clock language CL has been
introduced to capture the static control part of SIGNAL
programs [17]. The author also considers SAT decision
procedures to prove clock properties. However, statements
involving the delay construct are not taken into account in
this study. This reduces the scope of the proposed analysis.
Our proposition aims to cover programs containing any
construct of the SIGNAL language. In particular, regarding
the delay construct, we propose here two abstractions with
different precision levels: one solution that only captures the
synchronization property related to manipulated variables
(note that this property can be also addressed with CL even
though not considered by its author); and a more precise
solution that refines the first one with additional constraints
on data values carried by manipulated variables. Thus,
our approach slightly offers more expressivity than CL.
In addition, while the main motivation of the abstraction
considered for CL is to prove clock properties of a subset
of SIGNAL, the goal of our approach goes beyond that by
focusing more generally on SIGNAL program compilation,
including both clock property analysis and code generation
optimization. Furthermore, compared to [17] that considers
SAT solvers, here the use of SMT solvers provides a more
powerful analysis, especially on numerical properties.

Finally, SMT techniques were used to verify safety
properties in LUSTRE [18]. The authors consider a specific
form of LUSTRE language and propose a modeling in a typed
first order logic with uninterpreted function symbols and
built-in integers and rationals. While this work also aims at
benefiting from SMT solving in synchronous programming,
it misses all useful clock analysis achieved by the SIGNAL
compiler in our case. Such an analysis includes suitable
heuristics to address polychronous specifications. Neither an
SMT solver nor the LUSTRE compiler makes this analysis
possible.

2.2	 Static analysis for compilation

In [19], [20], an interval-based data structure referred
to as interval-decision diagram (IDD) is considered for the
analysis of numerical properties in SIGNAL programs. While
the main idea is similar to that of this paper, the choice of

CSI Journal of Computing | Vol. 1 • No. 4, 2012

Paul Feautrier, et. al.	 8 : 89

SMT solvers appears however more judicious. First, in IDDs,
intervals are only defined on integers. As a result, to deal
with other numerical types such as reals, IDDs require a
prior encoding into integers. With SMT solvers, a wide range
of arithmetic theories are made possible, which allows a more
expressive analysis without much effort compared to IDDs.
Second, from a practical point of view, the integration of IDDs
in the SIGNAL compiler is more difficult since it requires a
very careful coupling with the other data structures used
during the static analysis. One important question is how
to make efficient and costless the management of binary
decision diagrams (BDDs), which are part of IDDs and are
already present in the compiler. In this paper, we rather
consider the modular solution shown in Fig. 1.

The optimization of synchronous programs described as
synchronous guarded actions is studied in [21]. From such
descriptions, extended finite state machines (EFSMs) are
generated, in which each state is associated with dataflow
guarded actions to be executed in this state. EFSMs make
explicit the controlflow of the sequential code to be generated
from input synchronous programs (while the dataflow part
is captured symbolically). Based on EFSMs, authors use an
SMT solver to check the validity of guards. Valid guards lead
to actions that are executed every time, while invalid guards
refer to actions that are never executed, i.e., dead code. Our
solution is similar to this approach. However, the abstraction
we consider for SMT reasoning covers both the control part,
i.e., clocks, and the data part, i.e., values.

Finally, in [22], [23], authors address the static analysis
and code generation for applications defined in MRICDF,
which is a visual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analysis in
MRICDF also relies on a Boolean encoding of specifications,
thus ignoring non-Boolean properties. In [22], [23], an SMT-
based implementation of this static analysis is proposed as
an efficient alternative to the initial implementation using
a prime implicant generator. This implementation showed
a noticeable speed-up. The combined numerical-Boolean
abstraction proposed in the current paper can be seen
as one major improvement applicable to this SMT-based

implementation, as for SIGNAL.

3.	 Overview of Signal Language
SIGNAL [4] [24] is a data-flow relational language

that handles unbounded series of typed values (xt)tÎN, called
signals, implicitly indexed by discrete time, and denoted as
x. For instance, a signal can be either of Boolean or integer
or real types. At any logical instant tÎN, a signal may
be present, at which point it holds a value; or absent and
denoted by ^ in the semantic notation. There is a particular
type of signal called event. A signal of this type always
holds the value true when it is present. The set of instants
at which a signal x is present is referred to as its clock, noted
x̂. A process is a system of equations over signals, specifying
relations between values and clocks of the signals. A program
is a process. Before presenting the primitive statements (or
constructs) of SIGNAL, we introduce a denotational semantic
model used to formally define these statements.

3.1	 A trace denotational semantic model

We present the basic elements of a trace semantics [25]
for Signal. Let us consider a finite set X = {x1, . . . , xn} of typed
variables called ports. For each xi Î X, Dxi

 is its domain of
values. In addition, we have:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

where ^ Ï D denotes the absence of value associated
with a port at a given instant. The domains

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

 and

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

are defined in a similar way with X1 Í X.

Definition 1 (events): Given a non-empty set X1 Í X, the
set of events on X1, denoted by

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1, is the set of all applications
(functions) m defined from X1 to

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

.
The expression m(x) = ^ means x holds no value while

m(x) = v means that x holds the value v, and m(X1) = {m(x)/x
Î X1}. The set of events on X1 is denoted by

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1 = X1®

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

,
and the set of all possible events is therefore e = U X1 ÍX

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1
.

By convention, the event on an empty set of ports is noted by

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

Æ
 = {Æ}.

Definition 2 (traces): Given a non-empty set X1 Í X, the

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 6

TABLE 1
Trace semantics for SIGNAL primitives.

process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥

{x1,...,xn,y}/ ∀t ∈ N,
(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and ∀i, T (t)(xi) �=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥
{x,y}/ ∀t ∈ N,

(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and T (t)(x) �=⊥ and T (t0)(y) = c and
(
(t ≥ t0) ⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))

with t0 = inf{t/T (t)(x) �=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) �=⊥} }

y:= x when b
{ T ∈ T ⊥

{x,b,y}/ ∀t ∈ N,
(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) �= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥

{x,y,z}/ ∀t ∈ N,
(
T (t)(x) �=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥
X1, [[P2]] ⊆ T ⊥

X2, { T ∈ T ⊥
X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}

P1 where x Assuming that [[P1]] ⊆ T ⊥
X1, {T ∈ T ⊥

X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

of T (t) to X2, noted X2.T : N → EX2 , satisfies:
∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x). �

We have ∅.T ∈ T∅ (which is a singleton).
We extend the notion of trace restriction to a

set T of traces on a set of variables X ⊆ XT as
follows: X.T = {X.T |T ∈ T }.

A process on a set of variables X1 ⊆ X
is a set of constrained traces on X1. In other
words, it is a subset of T ⊥

X1. The semantics of
statements defining a process P is denoted by
a set of traces [[P]].

3.2 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the
core language. The syntax of the constructs is
given below, with some informal explanations.
Their formal semantics according to the trace
model is summarized in Table 1.

• Instantaneous relations:
y:= R(x1,...,xn) where y, x1, ...,
xn are signals and R is a point-wise n-ary
relation/function extended canonically to
signals. This construct imposes y, x1,
..., xn i) to be simultaneously present,
i.e. ˆy = ˆx1 = ...= ˆxn (i.e. synchronous
signals), and ii) to hold values satisfying
y = R(x1,...,xn) whenever they
occur.

• Delay: y:= x $ 1 init c where y, x
are signals and c is an initialization con-
stant. It imposes i) x and y to be syn-
chronous, i.e. ˆy = ˆx, while ii) y must
hold the value carried by x on its previous
occurrence.

• Under-sampling: y:= x when b where
y, x are signals and b is of Boolean
type. This construct imposes i) y to be
present only when x is present and b
holds the value true, i.e. ˆy = ˆx ∩ [b]
(where [b] ∪ [¬b] = ˆb and [b] ∩ [¬b] = ∅),
while ii) y holds the value of x at those
logical instants. The sub-clock [b] (resp.
[¬b]) denotes the set of instants where b is
true (resp. false).

• Deterministic merging: z:= x default y
where x, y and z are signals. This con-
struct imposes i) z to be present when
either x or y are present, i.e. ˆz = ˆx ∪ ˆy,
while ii) z holds the value of x if present,
otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2

are processes. It denotes the union of equa-
tions defined in processes, leading to the
conjunction of the constraints associated
with these processes. A signal variable
cannot be assigned a value in P1 and P2

at the same time. SIGNAL adopts single
assignment. A variable defined in P1 can
be an input of P2, and vice versa. The
composition operator is commutative and
associative.

• Restriction (or Hiding): P ≡ P1 where x,
where P1 and x are respectively a process
and a signal. It states that x is a local signal
of process P1. The process P holds the same
constraints as P1.

The core language of SIGNAL is expressive
enough to derive new constructs of the

Table 1 :
Trace semantics for SIGNAL primitives.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

8 : 90
	 Enhancing the Compilation of

Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

set of traces on X1, denoted by

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

 : N ®

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1, is defined by
the set of applications T defined from the set N of natural
numbers to

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1 .
The set of all possible traces is T^ = U X1ÍX

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

. Moreover,
T

Æ
 = 1 = N ®

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

Æ
.

Definition 3 (trace restriction): Given a nonempty set
X1 Í X, and a set X2 Ì X1 with a trace T being defined on X1,
the restriction of T(t) to X2, noted X2.T : N ®

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X2
, satisfies:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 6

TABLE 1
Trace semantics for SIGNAL primitives.

process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥

{x1,...,xn,y}/ ∀t ∈ N,
(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and ∀i, T (t)(xi) �=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥
{x,y}/ ∀t ∈ N,

(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and T (t)(x) �=⊥ and T (t0)(y) = c and
(
(t ≥ t0) ⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))

with t0 = inf{t/T (t)(x) �=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) �=⊥} }

y:= x when b
{ T ∈ T ⊥

{x,b,y}/ ∀t ∈ N,
(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) �= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥

{x,y,z}/ ∀t ∈ N,
(
T (t)(x) �=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥
X1, [[P2]] ⊆ T ⊥

X2, { T ∈ T ⊥
X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}

P1 where x Assuming that [[P1]] ⊆ T ⊥
X1, {T ∈ T ⊥

X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

of T (t) to X2, noted X2.T : N → EX2 , satisfies:
∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x). �

We have ∅.T ∈ T∅ (which is a singleton).
We extend the notion of trace restriction to a

set T of traces on a set of variables X ⊆ XT as
follows: X.T = {X.T |T ∈ T }.

A process on a set of variables X1 ⊆ X
is a set of constrained traces on X1. In other
words, it is a subset of T ⊥

X1. The semantics of
statements defining a process P is denoted by
a set of traces [[P]].

3.2 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the
core language. The syntax of the constructs is
given below, with some informal explanations.
Their formal semantics according to the trace
model is summarized in Table 1.

• Instantaneous relations:
y:= R(x1,...,xn) where y, x1, ...,
xn are signals and R is a point-wise n-ary
relation/function extended canonically to
signals. This construct imposes y, x1,
..., xn i) to be simultaneously present,
i.e. ˆy = ˆx1 = ...= ˆxn (i.e. synchronous
signals), and ii) to hold values satisfying
y = R(x1,...,xn) whenever they
occur.

• Delay: y:= x $ 1 init c where y, x
are signals and c is an initialization con-
stant. It imposes i) x and y to be syn-
chronous, i.e. ˆy = ˆx, while ii) y must
hold the value carried by x on its previous
occurrence.

• Under-sampling: y:= x when b where
y, x are signals and b is of Boolean
type. This construct imposes i) y to be
present only when x is present and b
holds the value true, i.e. ˆy = ˆx ∩ [b]
(where [b] ∪ [¬b] = ˆb and [b] ∩ [¬b] = ∅),
while ii) y holds the value of x at those
logical instants. The sub-clock [b] (resp.
[¬b]) denotes the set of instants where b is
true (resp. false).

• Deterministic merging: z:= x default y
where x, y and z are signals. This con-
struct imposes i) z to be present when
either x or y are present, i.e. ˆz = ˆx ∪ ˆy,
while ii) z holds the value of x if present,
otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2

are processes. It denotes the union of equa-
tions defined in processes, leading to the
conjunction of the constraints associated
with these processes. A signal variable
cannot be assigned a value in P1 and P2

at the same time. SIGNAL adopts single
assignment. A variable defined in P1 can
be an input of P2, and vice versa. The
composition operator is commutative and
associative.

• Restriction (or Hiding): P ≡ P1 where x,
where P1 and x are respectively a process
and a signal. It states that x is a local signal
of process P1. The process P holds the same
constraints as P1.

The core language of SIGNAL is expressive
enough to derive new constructs of the

t Î N;

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 6

TABLE 1
Trace semantics for SIGNAL primitives.

process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥

{x1,...,xn,y}/ ∀t ∈ N,
(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and ∀i, T (t)(xi) �=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥
{x,y}/ ∀t ∈ N,

(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and T (t)(x) �=⊥ and T (t0)(y) = c and
(
(t ≥ t0) ⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))

with t0 = inf{t/T (t)(x) �=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) �=⊥} }

y:= x when b
{ T ∈ T ⊥

{x,b,y}/ ∀t ∈ N,
(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) �= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥

{x,y,z}/ ∀t ∈ N,
(
T (t)(x) �=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥
X1, [[P2]] ⊆ T ⊥

X2, { T ∈ T ⊥
X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}

P1 where x Assuming that [[P1]] ⊆ T ⊥
X1, {T ∈ T ⊥

X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

of T (t) to X2, noted X2.T : N → EX2 , satisfies:
∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x). �

We have ∅.T ∈ T∅ (which is a singleton).
We extend the notion of trace restriction to a

set T of traces on a set of variables X ⊆ XT as
follows: X.T = {X.T |T ∈ T }.

A process on a set of variables X1 ⊆ X
is a set of constrained traces on X1. In other
words, it is a subset of T ⊥

X1. The semantics of
statements defining a process P is denoted by
a set of traces [[P]].

3.2 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the
core language. The syntax of the constructs is
given below, with some informal explanations.
Their formal semantics according to the trace
model is summarized in Table 1.

• Instantaneous relations:
y:= R(x1,...,xn) where y, x1, ...,
xn are signals and R is a point-wise n-ary
relation/function extended canonically to
signals. This construct imposes y, x1,
..., xn i) to be simultaneously present,
i.e. ˆy = ˆx1 = ...= ˆxn (i.e. synchronous
signals), and ii) to hold values satisfying
y = R(x1,...,xn) whenever they
occur.

• Delay: y:= x $ 1 init c where y, x
are signals and c is an initialization con-
stant. It imposes i) x and y to be syn-
chronous, i.e. ˆy = ˆx, while ii) y must
hold the value carried by x on its previous
occurrence.

• Under-sampling: y:= x when b where
y, x are signals and b is of Boolean
type. This construct imposes i) y to be
present only when x is present and b
holds the value true, i.e. ˆy = ˆx ∩ [b]
(where [b] ∪ [¬b] = ˆb and [b] ∩ [¬b] = ∅),
while ii) y holds the value of x at those
logical instants. The sub-clock [b] (resp.
[¬b]) denotes the set of instants where b is
true (resp. false).

• Deterministic merging: z:= x default y
where x, y and z are signals. This con-
struct imposes i) z to be present when
either x or y are present, i.e. ˆz = ˆx ∪ ˆy,
while ii) z holds the value of x if present,
otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2

are processes. It denotes the union of equa-
tions defined in processes, leading to the
conjunction of the constraints associated
with these processes. A signal variable
cannot be assigned a value in P1 and P2

at the same time. SIGNAL adopts single
assignment. A variable defined in P1 can
be an input of P2, and vice versa. The
composition operator is commutative and
associative.

• Restriction (or Hiding): P ≡ P1 where x,
where P1 and x are respectively a process
and a signal. It states that x is a local signal
of process P1. The process P holds the same
constraints as P1.

The core language of SIGNAL is expressive
enough to derive new constructs of the

x2 X2.T (t)(x) = T(t)(x).			  
We have Æ.T Î T

Æ
 (which is a singleton).

We extend the notion of trace restriction to a set T of traces
on a set of variables X Í XT as follows: X.T = {X.T|T Î T }.

A process on a set of variables X1 Í X is a set of
constrained traces on X1. In other words, it is a subset of

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

. The semantics of statements defining a process P is
denoted by a set of traces [P].

3.2	 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the core

language. The syntax of the constructs is given below,
with some informal explanations. Their formal semantics
according to the trace model is summarized in Table 1.
�� Instantaneous relations: y:= R(x1,...,xn) where

y, x1, ..., xn are signals and R is a point-wise
n-ary relation/function extended canonically to signals.
This construct imposes y, x1, ..., xn i) to be
simultaneously present, i.e. ˆy = ˆx1 = ...= ˆxn (i.e.
synchronous signals), and ii) to hold values satisfying y
= R(x1,...,xn) whenever they occur.

�� Delay: y:= x $ 1 init c where y, x are signals and
c is an initialization constant. It imposes i) x and y to
be synchronous, i.e. ˆy = ˆx, while ii) y must hold the
value carried by x on its previous occurrence.

�� Under-sampling: y:= x when b where y, x are signals
and b is of Boolean type. This construct imposes i) y to
be present only when x is present and b holds the value
true, i.e. ˆy = ˆx Ç [b] (where [b] È [Øb] = ˆb and [b] Ç
[Øb] = Ø), while ii) y holds the value of x at those logical
instants. The sub-clock [b] (resp. [Øb]) denotes the set of
instants where b is true (resp. false).

�� Deterministic merging: z:= x default y where x, y and
z are signals. This construct imposes i) z to be present
when either x or y are present, i.e. ˆz = ˆx È ˆy, while
ii) z holds the value of x if present, otherwise that of y.

�� Composition: P º P1|P2 where P1 and P2 are processes.
It denotes the union of equations defined in processes,
leading to the conjunction of the constraints associated
with these processes. A signal variable cannot be
assigned a value in P1 and P2 at the same time. SIGNAL
adopts single assignment. A variable defined in P1 can be
an input of P2, and vice versa. The composition operator
is commutative and associative.

�� Restriction (or Hiding): P º P1 where x, where P1 and x
are respectively a process and a signal. It states that x is
a local signal of process P1. The process P holds the same
constraints as P1.

�� The core language of SIGNAL is expressive enough to
derive new constructs of the language for programming
comfort and structuring. In particular, SIGNAL allows
one to explicitly manipulate clocks through some derived
constructs that can be rewritten in terms of primitive
ones. For instance, the clock extraction statement y:=
ˆx, meaning y is defined as the clock of x, is equivalent
to y:= (x = x) in the core language. A similar statement
y:= when b, defining y as the set of instants where the
Boolean signal b is present and true, is equivalent to
y:= b when b. The clock union y:= x1 ˆ+ x2, rewritten
as y:= ˆx1 default ˆx2, denotes the set of instants at
which at least a signal xi occurs. In the same way, clock
intersection y:= x1 ˆ�* x2 and difference y:= x1 ˆ– x2
are respectively defined as: y:= ˆx1 when ˆx2 and y:=
when(not(ˆx2) default ˆx1). The synchronizer x1 ˆ=
x2 that constrains x1 and x2 to have the same clock, is
rewritten as (| x:= ˆx1 = ˆx2 |) where x. The empty
clock is denoted by ˆ0.

�� For syntactical convenience, SIGNAL enables a modular
definition of processes by providing a notion of subprocess
(or local process). The statement P1 where P2, where P1
and P2 are processes, denotes the fact that the latter
process is a subprocess of the former process. Then, the
body of P

1
, i.e., its associated set of equations, contains

(at least) a call to process P2. The compilation process
of SIGNAL basically inlines the body of P2 in P1 (with
variable substitution). Note that a process P1 may have
more than one subprocess, and those subprocesses may
have themselves sub-subprocesses, ad infinitum.

3.3	 Example: a bathtub model in Signal
The simple SIGNAL process shown in Fig. 2 specifies the

status of a bathtub [15]. It has no input signal (line 02), but
has three output signals (line 03).

The signal level, defined at line 04, reflects the
water level in the bathtub at any instant. It is determined
by considering two signals, faucet and pump, which are
respectively used to increase and decrease the water level.
These signals are increased by one under some specific
conditions (lines 06 and 08), in order to maintain the water
level in a suitable range of values.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 7

language for programming comfort and
structuring. In particular, SIGNAL allows one
to explicitly manipulate clocks through some
derived constructs that can be rewritten in
terms of primitive ones. For instance, the clock
extraction statement y:= ˆx, meaning y is
defined as the clock of x, is equivalent to
y:= (x = x) in the core language. A similar
statement y:= when b, defining y as the set of
instants where the Boolean signal b is present
and true, is equivalent to y:= b when b.
The clock union y:= x1 ˆ+ x2, rewritten as
y:= ˆx1 default ˆx2, denotes the set of
instants at which at least a signal xi occurs.
In the same way, clock intersection y:= x1
ˆ∗ x2 and difference y:= x1 ˆ− x2 are
respectively defined as: y:= ˆx1 when ˆx2
and y:= when(not(ˆx2) default ˆx1).
The synchronizer x1 ˆ= x2 that constrains x1
and x2 to have the same clock, is rewritten
as (| x:= ˆx1 = ˆx2 |) where x. The
empty clock is denoted by ˆ0.

For syntactical convenience, SIGNAL enables
a modular definition of processes by provid-
ing a notion of subprocess (or local process).
The statement P1 where P2, where P1 and P2

are processes, denotes the fact that the latter
process is a subprocess of the former process.
Then, the body of P1, i.e., its associated set of
equations, contains (at least) a call to process
P2. The compilation process of SIGNAL basi-
cally inlines the body of P2 in P1 (with variable
substitution). Note that a process P1 may have
more than one subprocess, and those subpro-
cesses may have themselves sub-subprocesses,
ad infinitum.

3.3 Example: a bathtub model in SIGNAL

The simple SIGNAL process shown in Fig. 2
specifies the status of a bathtub [15]. It has no
input signal (line 02), but has three output
signals (line 03).

The signal level, defined at line 04, reflects
the water level in the bathtub at any instant.
It is determined by considering two signals,
faucet and pump, which are respectively used
to increase and decrease the water level. These
signals are increased by one under some spe-
cific conditions (lines 06 and 08), in order to

--
01:process Bathtub =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump
05: | zlevel := level$1 init 1
06: | faucet := zfaucet + (1 when zlevel <= 4)
07: | zfaucet := faucet$1 init 0
08: | pump := zpump + (1 when zlevel >= 7)
09: | zpump := pump$1 init 0 |)
10: |(| overflow := level >= 9
11: | scarce := 0 >= level
12: | alarm := scarce or overflow
13: | ghost_alarm:= (true when scarce when overflow)
14 default false |)|)
15: where
16: integer zlevel,zfaucet,zpump,faucet,pump;
17: boolean overflow,scarce;
18:end;
--

Fig. 2. A bathtub model in SIGNAL.

maintain the water level in a suitable range of
values.

An alarm signal is defined at line 12 when-
ever the water overflows (line 10) or becomes
scarce (line 11) in the bathtub. An additional
“ghost” alarm is defined at line 13/14, which
is not expected to occur. Here, it is just intro-
duced to illustrate one limitation of the static
analysis of SIGNAL. The clock of this signal
is not completely specified in Bathtub. As
stated in the previous section, this clock is
the union of those associated with the two
arguments of the default operator. The clock
of the left argument is exactly known. The
clock of the right-hand one is contextual because
the argument is a constant (that is, a constant
signal is always available whenever required
by its context of usage): it is equal to the
difference of ghost_alarm’s clock and first
argument’s clock. Since, this difference cannot
be defined exactly from the program, further
clock constraints on ghost_alarm will be re-
quired from the environment of Bathtub for
an execution.

4 A LIMITATION IN SIGNAL COMPILER

The static analysis of SIGNAL programs, re-
ferred to as clock calculus, primarily aims at
proving the consistency of clock relations as
well as the absence of cyclic data dependencies
induced by program definition. This is neces-
sary in order to prove the reactivity and the
determinism of a modeled system. For instance,

Fig. 2 : A bathtub model in SIGNAL.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

Paul Feautrier, et. al.	 8 : 91

An alarm signal is defined at line 12 whenever the
water overflows (line 10) or becomes scarce (line 11) in the
bathtub. An additional “ghost” alarm is defined at line 13/14,
which is not expected to occur. Here, it is just introduced to
illustrate one limitation of the static analysis of SIGNAL. The
clock of this signal is not completely specified in Bathtub. As
stated in the previous section, this clock is the union of those
associated with the two arguments of the default operator.
The clock of the left argument is exactly known. The clock
of the right-hand one is contextual because the argument
is a constant (that is, a constant signal is always available
whenever required by its context of usage): it is equal to the
difference of ghost_alarm’s clock and first argument’s
clock. Since, this difference cannot be defined exactly from the
program, further clock constraints on ghost_alarm will be
required from the environment of Bathtub for an execution.

4.	 A Limitation In Signal Compiler
The static analysis of SIGNAL programs, referred to

as clock calculus, primarily aims at proving the consistency
of clock relations as well as the absence of cyclic data
dependencies induced by program definition. This is
necessary in order to prove the reactivity and the determinism
of a modeled system. For instance, the presence of empty
clocks in a program reduces its reactivity since the concerned
signals are always absent. Unless such behaviors are
absolutely required, they have to be avoided, in particular for
the reactivity of embedded realtime systems. Determinism is
characterized by the inference of a single master clock from
a program. All system events are observed according to this
clock. Another property is clock mutual exclusion, which
ensures some events never occur at the same time.

In SIGNAL, clocks are fundamentally the main means to
express control (synchronizations between signals). Together
with their associated relations, they are formalized through
a clock algebra [6]. In particular, the set of clocks associated
with set inclusion forms a lattice. Based on clock inclusion,
the SIGNAL compiler computes a clock hierarchy on which
the automatic code generation strongly relies . However,
for the under-sampling construct, remember that the clock
of the Boolean expression b is partitioned into [b] and [Øb],
which are referred to as condition-clocks. If b is defined by a
numerical expression such as an integer comparison, [b] and
[Øb] are seen as black boxes when compared separately to
other clock expressions. This reduces the power of the clock
calculus analysis whenever a program contains numerical
expressions.

4.1	 Clock analysis for the bathtub model

Fig. 3 partially shows the result of the clock calculus
generated automatically by the compiler in POLYCHRONY.
Here, we focus on two issues that the clock analysis was
not able to fix adequately. First, a clock constraint is
generated, stating that signals CLK_level, CLK_zfaucet
and CLK_zpump must have the same clock (lines 05–07),
while signals CLK_zfaucet and CLK_zpump have exclusive
clocks (lines 03–04). Second, at line 11, the right-hand side

of the synchronization equation about CLK_ghost_alarm
should be (not CLK_29) since the clock CLK_36 is empty by
definition (line 10).

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 8

the presence of empty clocks in a program re-
duces its reactivity since the concerned signals
are always absent. Unless such behaviors are
absolutely required, they have to be avoided, in
particular for the reactivity of embedded real-
time systems. Determinism is characterized by
the inference of a single master clock from a
program. All system events are observed ac-
cording to this clock. Another property is clock
mutual exclusion, which ensures some events
never occur at the same time.

In SIGNAL, clocks are fundamentally the
main means to express control (synchroniza-
tions between signals). Together with their as-
sociated relations, they are formalized through
a clock algebra [6]. In particular, the set of
clocks associated with set inclusion forms a
lattice. Based on clock inclusion, the SIGNAL
compiler computes a clock hierarchy on which
the automatic code generation strongly relies
. However, for the under-sampling construct,
remember that the clock of the Boolean expres-
sion b is partitioned into [b] and [¬b], which
are referred to as condition-clocks. If b is defined
by a numerical expression such as an integer
comparison, [b] and [¬b] are seen as black boxes
when compared separately to other clock ex-
pressions. This reduces the power of the clock
calculus analysis whenever a program contains
numerical expressions.

4.1 Clock analysis for the bathtub model

01:(| CLK_level := ˆlevel
02: | CLK_level ˆ= alarm ˆ= zlevelˆ= faucetˆ= pump
02b: ˆ= overflow ˆ= scarce
03: | CLK_zfaucet ˆ= when (zlevel<=4)
04: | CLK_zpump ˆ= when (zlevel>=7)
05: | (| CLK_level ˆ= CLK_zpump
06: | CLK_level ˆ= CLK_zfaucet
07: |)%**WARNING: Clocks constraints%
08: | CLK_22 := when level>=9
09: | CLK_25 := when 0>=level
10: | CLK_36 := CLK_22 ˆ* CLK_25
11: | (| CLK_ghost_alarm ˆ= CLK_36 default (not CLK_29)
12: | CLK_29 := CLK_ghost_alarm ˆ- CLK_36
13: | (| ghost_alarm := CLK_36 default (not CLK_29)
14: |) |) ... |)

Fig. 3. A sketch of clock calculus.

Fig. 3 partially shows the result of the clock
calculus generated automatically by the com-
piler in POLYCHRONY. Here, we focus on two
issues that the clock analysis was not able

to fix adequately. First, a clock constraint is
generated, stating that signals CLK_level,
CLK_zfaucet and CLK_zpump must have
the same clock (lines 05–07), while signals
CLK_zfaucet and CLK_zpump have exclu-
sive clocks (lines 03–04). Second, at line 11,
the right-hand side of the synchronization
equation about CLK_ghost_alarm should be
(not CLK_29) since the clock CLK_36 is
empty by definition (line 10).

The previous two issues illustrate typical
limitations of the Boolean abstraction in the
clock calculus. This does not enable to verify
simple static properties of a program, such
as clock exclusion or emptiness, since numeri-
cal expressions are not suitably abstracted. A
more expressive clock analysis would detect
the fact that CLK_level, CLK_zfaucet and
CLK_zpump must be empty clocks in order to
satisfy the clock constraints of the Bathtub
process. Section 7 discusses another issue about
the hierarchical control of component activa-
tions.

4.2 Code generation of the bathtub model
The above limitations also have an important
impact on the quality of the code generated
automatically by the compiler since it relies on
the clock hierarchy resulting from the analysis.
Fig. 4 sketches a C code generated automati-
cally based on the clock analysis.

01: if (C_level)
02: { C_zfaucet = level <= 4;
03: C_zpump = level >= 7;
04: if ((C_zpump) != (C_level))
04b: polychrony_exception("...");
05: if ((C_zfaucet) != (C_level))
05b polychrony_exception(" ... ");
06: if (C_zfaucet) { faucet = zfaucet + 1; }
07: if (C_zpump) { pump = zpump + 1; }
08: level = (level + faucet) - pump;
09: overflow = level >= 9; scarce = 0 >= level;
10: alarm = scarce || overflow; ...

/*production of level and alarm*/
11: C_106 = overflow && scarce;} ...
12: C_109 = (C_level ? C_106 : FALSE);
13: if (C_ghost_alarm)
14: { if (C_109) ghost_alarm = TRUE;
14b: else ghost_alarm = FALSE;
15: ... /* production of ghost_alarm */ } ...

Fig. 4. A sketch of the generated C code.

The previous clock constraint is imple-
mented by exception statements (lines 04–05).

Fig. 3 : A sketch of clock calculus

The previous two issues illustrate typical limitations of
the Boolean abstraction in the clock calculus. This does not
enable to verify simple static properties of a program, such
as clock exclusion or emptiness, since numerical expressions
are not suitably abstracted. A more expressive clock analysis
would detect the fact that CLK_level, CLK_zfaucet and
CLK_zpump must be empty clocks in order to satisfy the
clock constraints of the Bathtub process. Section 7 discusses
another issue about the hierarchical control of component
activations.

4.2	 Code generation of the bathtub model

The above limitations also have an important impact
on the quality of the code generated automatically by the
compiler since it relies on the clock hierarchy resulting from
the analysis. Fig. 4 sketches a C code generated automatically
based on the clock analysis.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 8

the presence of empty clocks in a program re-
duces its reactivity since the concerned signals
are always absent. Unless such behaviors are
absolutely required, they have to be avoided, in
particular for the reactivity of embedded real-
time systems. Determinism is characterized by
the inference of a single master clock from a
program. All system events are observed ac-
cording to this clock. Another property is clock
mutual exclusion, which ensures some events
never occur at the same time.

In SIGNAL, clocks are fundamentally the
main means to express control (synchroniza-
tions between signals). Together with their as-
sociated relations, they are formalized through
a clock algebra [6]. In particular, the set of
clocks associated with set inclusion forms a
lattice. Based on clock inclusion, the SIGNAL
compiler computes a clock hierarchy on which
the automatic code generation strongly relies
. However, for the under-sampling construct,
remember that the clock of the Boolean expres-
sion b is partitioned into [b] and [¬b], which
are referred to as condition-clocks. If b is defined
by a numerical expression such as an integer
comparison, [b] and [¬b] are seen as black boxes
when compared separately to other clock ex-
pressions. This reduces the power of the clock
calculus analysis whenever a program contains
numerical expressions.

4.1 Clock analysis for the bathtub model

01:(| CLK_level := ˆlevel
02: | CLK_level ˆ= alarm ˆ= zlevelˆ= faucetˆ= pump
02b: ˆ= overflow ˆ= scarce
03: | CLK_zfaucet ˆ= when (zlevel<=4)
04: | CLK_zpump ˆ= when (zlevel>=7)
05: | (| CLK_level ˆ= CLK_zpump
06: | CLK_level ˆ= CLK_zfaucet
07: |)%**WARNING: Clocks constraints%
08: | CLK_22 := when level>=9
09: | CLK_25 := when 0>=level
10: | CLK_36 := CLK_22 ˆ* CLK_25
11: | (| CLK_ghost_alarm ˆ= CLK_36 default (not CLK_29)
12: | CLK_29 := CLK_ghost_alarm ˆ- CLK_36
13: | (| ghost_alarm := CLK_36 default (not CLK_29)
14: |) |) ... |)

Fig. 3. A sketch of clock calculus.

Fig. 3 partially shows the result of the clock
calculus generated automatically by the com-
piler in POLYCHRONY. Here, we focus on two
issues that the clock analysis was not able

to fix adequately. First, a clock constraint is
generated, stating that signals CLK_level,
CLK_zfaucet and CLK_zpump must have
the same clock (lines 05–07), while signals
CLK_zfaucet and CLK_zpump have exclu-
sive clocks (lines 03–04). Second, at line 11,
the right-hand side of the synchronization
equation about CLK_ghost_alarm should be
(not CLK_29) since the clock CLK_36 is
empty by definition (line 10).

The previous two issues illustrate typical
limitations of the Boolean abstraction in the
clock calculus. This does not enable to verify
simple static properties of a program, such
as clock exclusion or emptiness, since numeri-
cal expressions are not suitably abstracted. A
more expressive clock analysis would detect
the fact that CLK_level, CLK_zfaucet and
CLK_zpump must be empty clocks in order to
satisfy the clock constraints of the Bathtub
process. Section 7 discusses another issue about
the hierarchical control of component activa-
tions.

4.2 Code generation of the bathtub model
The above limitations also have an important
impact on the quality of the code generated
automatically by the compiler since it relies on
the clock hierarchy resulting from the analysis.
Fig. 4 sketches a C code generated automati-
cally based on the clock analysis.

01: if (C_level)
02: { C_zfaucet = level <= 4;
03: C_zpump = level >= 7;
04: if ((C_zpump) != (C_level))
04b: polychrony_exception("...");
05: if ((C_zfaucet) != (C_level))
05b polychrony_exception(" ... ");
06: if (C_zfaucet) { faucet = zfaucet + 1; }
07: if (C_zpump) { pump = zpump + 1; }
08: level = (level + faucet) - pump;
09: overflow = level >= 9; scarce = 0 >= level;
10: alarm = scarce || overflow; ...

/*production of level and alarm*/
11: C_106 = overflow && scarce;} ...
12: C_109 = (C_level ? C_106 : FALSE);
13: if (C_ghost_alarm)
14: { if (C_109) ghost_alarm = TRUE;
14b: else ghost_alarm = FALSE;
15: ... /* production of ghost_alarm */ } ...

Fig. 4. A sketch of the generated C code.

The previous clock constraint is imple-
mented by exception statements (lines 04–05).

Fig. 4 : A sketch of the generated C code

The previous clock constraint is implemented by
exception statements (lines 04–05). This can be seen currently
as the way the compiler alerts a user that it was not able to

CSI Journal of Computing | Vol. 1 • No. 4, 2012

8 : 92
	 Enhancing the Compilation of

Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

solve the clock constraints related to the exception statements
generated from a SIGNAL program. Of course, such a C code
is only useful for simulation.

Now, if the above C code is to be embedded in some
real-life system, its quality could be significantly improved
by noticing that since CLK_level, CLK_zfaucet and CLK_
zpump should be empty clocks, statements between lines 02
and 11 are never executed (and consequently, the exception
statements are useless). As a result, the generated C code
shown in Fig. 4 contains dead code. In a similar way, the if
statement at line 14/14b also contains a dead code since the
variable ghost_alarm is always set to false.

5.	 Our Proposal for a Combined Numerical-
	 Boolean Abstraction

We define an abstraction for SIGNAL program analysis.
All considered programs are supposed to be in the syntax of
the core language.

Our abstraction for program P is a logical formula F
on the variables and clocks of P in a decidable theory (here,
linear arithmetic of integers or reals) such that at any logical
instant in an execution of P, the current values of signals and
clocks satisfy F. In other words, at any instant in an execution
of P, its variables and clocks are a model of F.

5.1	 Notations and restrictions

Let P be a SIGNAL program. We denote by XP = {x1, x2
. . . xn} the set of all variables of P. Here, we consider scalar
variables only. With each variable xi (numerical, Boolean or
event), we associate two abstract values: x̂ i and x~i encoding
respectively its clock and values.

The abstract semantics of the program, is a set of couples
of the form (^, ~) where:
�� function ^: XP ® B = {true, false} assigns to a variable a

Boolean value;
�� function ~ : XP ® R È B assigns to a variable a numerical

or Boolean value.
This abstract set is represented as a first order logic

formula FP in which atoms are x~i and x̂ i , and the operators
are usual logic operators and integer comparison functions.

5.2	 Abstraction for expressions

Our abstraction strongly relies on an abstraction for
expressions, detailed in the sequel.

We restrict ourselves to the following subset of numerical
and Boolean expressions in SIGNAL statements. For sake of
simplicity and readability, here we simplify the abstraction
previously provided in [11].

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 9

This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . .), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

where the symbols cst and var respectively denote a
constant and a signal variable (x, y, . . .),

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 9

This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . .), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

Î {<, >, = },

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 9

This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . .), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

Î

{ +, –} and

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 9

This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . .), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

Î { /, *}
The abstraction of a given numerical SIGNAL expression

nexp (resp a Boolean expression bexp) will be a numerical
expression (resp. a Boolean expression) that expresses its
behavior.

We define an abstraction f for these expressions by
induction on their structure as follows:
�� atoms: given a signal x, if x is of Boolean or numeric type,

f (x) = ~x; if x is of event type, f (x) = true,
�� f (true) = true and f (false) = false, and if c is a

numerical constant, f (c) = c,
�� if b1 and b2 denote Boolean expressions, then f(b1 and b2)

= f (b1) Ù f (b2); f (b1 or b2) = f (b1) Ú f (b2); f (not b1)
= Øf (b1),

�� if n1 and n2 denote numerical expressions, then
f(n1 < n2) = f(n1) < f(n2), f(n1 > n2) = f(n1) > f(n2) and f(n1
= n2) = f(n1) = f(n2).

�� if n1 and n2 denote numerical expressions, then f(n1 +
n2) = f(n1) + f(n2) and f(n1 – n2) = f(n1) – (n2)

�� if n is a numerical expression and c a constant, then
f(c * n) = c.f(n) and f (n / c) =

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 9

This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . .), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

.

The f function is used to compute numerical and
Boolean exact abstractions for our subset of expressions.
Some approximations will be made in case of other signal
expressions such as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y < 10) be a Boolean
expression. Its abstraction is f (b) = x~ + y~ = 4 Ù y~ < 10.

5.3	 Abstraction of SIGNAL primitive constructs

We define FP as the intersection of the abstractions of
statements stmi of P:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:





∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

where n is the number of statements composed in P.
Each F (stmi) will be a formula of quantifierfree linear

integer arithmetic (QF_LIA) or quantifier-free linear real
arithmetic (QF_LRA).

In the next, we distinguish two possible definitions of F
for each primitive construct of SIGNAL, according to the type
of signal y in each equation: (a) when y is of numerical type
and (b) when y is of logical type.

Instantaneous relations: y: = R(x1, . . . ,xn). The
abstraction F of instantaneous relations is defined as follows:

	

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

where R(x1,... xn) is denoted by either nexp or bexp.
These expressions express the equalities between clocks
and values that are induced by SIGNAL semantics.

Delay: y:= x $ 1 init c. The abstraction F of the

CSI Journal of Computing | Vol. 1 • No. 4, 2012

Paul Feautrier, et. al.	 8 : 93

delay construct is defined as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

The abstraction here only expresses the equalities
between clocks. A better abstraction could be performed if
the user (or a preanalysis) provides invariants for numerical
variables. In that case, the global abstraction would be :

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

where invar(x~)[x~/y~] denotes the substitution of y~ in a
formula that expresses a constraint on x’s values. Such an
invariant can be a result of the methods proposed in [15] or
[16].
�� Under-sampling: y:= x when b. The abstraction F of

the under-sampling construct is defined as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

which expresses the fact that the signal y is present if
and only if both signals b and x are present and b is true. The
constraints on values are straightforward.
�� Deterministic merging: z:= x default y. The

abstraction F of the deterministic merging construct is
defined as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

The clock of variable y is the union of the clocks of x and
z, and values are determined according to the presence of x.

Composition: P º P1|P2. The abstraction of the
composition operator is defined as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

Restriction (or Hiding): P º P1 where x. The abstraction
F of the restriction operator is defined as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 10

of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

This formula may be understood as follows. The states of
P are identical to the states of P1, except that we have decided
to ignore the values of x~ and x̂. Hence, we would like to
remove from FP1

 all subformulas containing x~ or x̂. However,
FP1

 may imply other formulas which do not use x~ and x̂, and
are also satisfied by all states of P. This extended formula
is precisely $x~; $x̂ : FP1

 and may be found by a process of
quantifier elimination. Conversely, it is obvious that a model
of F can be extended to a model of FP1

 .
By applying the above rules, the following abstractions

are obtained for derived constructs for clock manipulation:
��

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

Here, we apply the default abstraction rule with

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

= true (as xi are events), and simplify the result.

��

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

��

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

��

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

For the purpose of modularity, we also define the
abstraction of processes containing subprocesses, such as in
the statement P1 where P2, where P2 is a subprocess of P1. Let
us assume the following :

(i1, . . . , in) is the list of input parameters of P2,
o is a single2 output parameter of P2,
which represents the signature of P2. It follows that

the abstraction FP2 is a formula composed of variables

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

 To define the abstraction of P1 where P2,
we first define the abstraction of process call: y := P2(x1, . . . ,
xn) in another process, here P1. The abstraction F (y := P2(x1,
... , xn)) is defined as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

where

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

 are fresh variables. This
abstraction only relies on the previous signature of P2. Now,
by using the previous abstraction, we finally define F (P1
where P2) as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

which establishes the adequate relation between the formal
parameters of P2 and the actual parameters defined in the
function call within P1.

5.4	 Application to the bathtub example

By applying our abstraction to Bathtub (see Fig. 2),
which is divided into P1 (lines 04 to 09) and P2 (lines 10 to 14)
according to the process hierarchy, we obtain FBathtub = FP1

Ù
FP2

 , where FP1
 equals to:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

For FP2, we first rewrite equation at line 13/14 as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

2.	Here, we consider a single output only for the sake of simplicity. The same reasoning strictly applies for several outputs.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

8 : 94
	 Enhancing the Compilation of

Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

Then, we obtain that FP2 equals to:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
(∧
i∈1..n

(x̂i = ẑi)
)
∧
(∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
(̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

5.5	 Concretisation

Let us recall that X = {x1, . . . xn} denotes the set of all P
variables. Intuitively, a valuation satisfying F captures the
numerical and Boolean values of signals at a given logical
instant. Given a valuation v = (^, ~), where all variables
have been assigned some values, we first construct a set of
events whose values are assigned accordingly: Svalid(v) = {S Î

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X|"i, S(i) = if (x̂ i = false) then ̂ else x~i}. The set of all “valid”
events is defined as Svalid(F) = Èv|=F

 Svalid(v). Finally, the
concretisation of F is the set of traces whose instantaneous
values always verify F :

G(F) = {T Î TX|"t, T(t) Î Svalid(F)}		  (3)
Our abstraction is sound, in the sense that it preserves

the behaviors of the abstracted programs: if a property is true
on the abstraction, then it is also the case on the program. A
proof of its soundness is given in [11].

5.6	 Properties

Let P be a SIGNAL process and F its abstraction.
Assume that we can prove formulas of the form
F

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

, where

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

 is a formula on the atoms of F. It is
clear that F and F Ù

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

 have the same models. Some such
formulas have the property that they are abstraction of
SIGNAL processes. These processes can be composed with P
to the benefit of the SIGNAL compiler without modifying the
semantics of P.

The properties we are interested in are clock emptiness:
x̂ = false, which gives the equivalent of dead code elimination,
and clock inclusion: x̂

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

ŷ or clock equivalence: x̂

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

ŷ ,
which allow simplification of the control code. There are two
strategies for finding such properties. The first one consists
in guessing and proving F

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

 with the help of an SMT
solver, by showing that Ø(F

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

) is unsatisfiable. The
second strategy consists in asking the SMT solver to construct
the set of (Boolean) models of

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

, which is finite, and to scan it
to identify interesting properties. For instance, the algorithm
for finding empty clocks is to start from the set of all clocks,
to examine each model in turn, removing a clock as soon as it
appears to be true in the current model. This is the approach
we have adopted in our implementation.

6.	 Implementation
We present an implementation of the previous

abstraction and the way relevant properties are inferred. Our
solution promotes a modular construction of this abstraction
and its analysis.

6.1	 Tools

The implemented tools follow Fig. 1. The box referred
to as “Abstraction of P” in this figure is achieved with the
Sync2smt tool. Its output is given to an ad hoc SMT solver,
which integrates the concretization of inferred properties.

Sync2smt (5kLOC in Ocaml) basically implements the
translation developed in Section 5 : after a parsing phase, the
internal representation of a SIGNAL program is translated
into a bunch of smtlib3 files, including a special “driver” file.
Such a file is used as an input to our ad hoc SMT solver.
Note that our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.fr/espresso/
Polychrony/Signal-bnf.php.

There are two reasons for not using an off-the- shelf SMT
solver like Yices or Z3. The first one is that we need more than
a sat or unsat answer. Our solver must construct the set of all
models of a satisfiable formula and return it for inspection.
Usually, an SMT solver constructs just one model (this is
enough for proving satisfiability), which can be retrieved
or not depending on the solver. It is clear that our solver is
less efficient than highly optimized softwares like Yices or
Z3. However, since we trade just one call to a slow solver
against many calls to a fast solver, the overall comparison
is not obvious. Another point is that since the solver code is
available to us, we have been able to implement the property
search inside it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a semantic
tableau [26], i.e., a tree whose nodes are decorated by
subformulas of the root formula. A branch of the tree is closed
if it contains a formula and its negation, or if the conjunction
of its atomic formulas is unsatisfiable in the underlying
theory, in our case, linear or integer programming. The tree
construction rules are such that from each open branch, one
can extract a model of the root formula. From then on, it is
a simple matter to scan the open branches and extract clock
properties.

6.2	 Modularity

While current SMT solvers are highly optimized tools,
they may still take exponential time on large problems. It is
therefore necessary to take advantage of the modular features
of SIGNAL to improve the analysis efficiency. The key to this
approach is formula (1), which allows the elimination of local
variables when analyzing subprocesses.

Going from FP1
 to F in (1) is a process of quantifier

elimination, which is trivial for booleans:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 13

6.2 Modularity

While current SMT solvers are highly opti-
mized tools, they may still take exponential
time on large problems. It is therefore necessary
to take advantage of the modular features of
SIGNAL to improve the analysis efficiency. The
key to this approach is formula (1), which
allows the elimination of local variables when
analyzing subprocesses.

Going from ΦP1 to Φ in (1) is a process
of quantifier elimination, which is trivial for
booleans:

∃b.Φ(b) ≡ Φ(true) ∨ Φ(false).

However, Φ usually contains many subformu-
las of the form x̂ ⇔ bexp (see Section 5.4 for
examples). Elimination of x̂ consists simply in
replacing it everywhere by bexp, a process akin
to Gaussian elimination.

There are many quantifier elimination algo-
rithms for reals, the simplest (but the less effi-
cient) being Fourier-Motzkin elimination [27].
Quantifier elimination for integers is much
more difficult, and may need the introduction
of other operators like integer division or mod-
ulo. To apply this method, our SMT solver has
been extended with a quantifier elimination
command, and several commands to manipu-
late a stack of formulas.

Let us consider the simple case of a program
of the form P1 where P2. From (2), the output
of SYNC2SMT consists first of the abstraction
of P2. A “driver” file first acquires the P2 file
and executes elimination of the local variables.
Another file contains the abstraction of P1,
augmented with a system of equations that
identifies the actual arguments of P2 in P1 to
the formal arguments of P2. The tool constructs
the conjunction of the two formulas, checks
satisfiability, and deduces clock properties from
the resulting models.

In more complex examples, one can apply
the same algorithm bottom-up to a tree of
processes. The properties found in this way
for the top process can be plugged top-down
into the subordinate processes. One may have
to use renaming to avoid symbol collision or
capture.

7 APPLICATION TO ILLUSTRATIVE EX-
AMPLES

We discuss the application of the previous
abstraction on sample SIGNAL programs, con-
sidered as basic patterns, for improving their
static analysis (Section 7.1) and the subsequent
automatic code generation (Section 7.2). Then,
we give a detailed illustration on the Bathtub
example (Section 7.3).

7.1 Some relevant program patterns
We present a few SIGNAL program patterns
for which our abstraction helps in detecting
some clocks anomalies. Such properties cannot
be detected currently by the SIGNAL compiler
because they involve numerical expressions,
which are not addressed by a Boolean abstrac-
tion. Our abstraction allows their easy detec-
tion.

For sake of simplicity, the illustrated pro-
grams are made small. But, the reader should
have in mind that such clock properties can
potentially occur in more complex programs.

7.1.1 Program patterns involving exclusive
clocks
The sample processes mentioned in this section
involve signals with exclusive clocks, i.e., sig-
nals that never occur at the same time.

1) In the following process Addition, the
signals aa and bb, respectively defined at
lines 05 and 06, never occur at the same
time, while the converse is necessary (ac-
cording to the semantics of instantaneous
functions in SIGNAL) for a correct addition
at line 04.
--
01: process Addition =
02: (? integer a, b, treshold;
03: ! integer c;)
04: (| c := aa + bb
05: | aa := a when (treshold > 7)
06: | bb := b when (treshold < 4)
07: |)
08: where
09: integer aa, bb;
10: end;
--

2) For a similar reason, in the following pro-
cess AdditionBis, the addition of sig-
nals b and c, respectively defined at lines
04 and 05, cannot be achieved in a cor-
rect way. Indeed, the conditions specified

However, F usually contains many subformulas of the
form x̂

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

bexp (see Section 5.4 for examples). Elimination of x̂

3 http://www.smtlib.org/

CSI Journal of Computing | Vol. 1 • No. 4, 2012

Paul Feautrier, et. al.	 8 : 95

consists simply in replacing it everywhere by bexp, a process
akin to Gaussian elimination.

There are many quantifier elimination algorithms for
reals, the simplest (but the less efficient) being Fourier-
Motzkin elimination [27]. Quantifier elimination for integers
is much more difficult, and may need the introduction of
other operators like integer division or modulo. To apply this
method, our SMT solver has been extended with a quantifier
elimination command, and several commands to manipulate
a stack of formulas.

Let us consider the simple case of a program of the form
P1 where P2. From (2), the output of Sync2smt consists first
of the abstraction of P2. A “driver” file first acquires the P2
file and executes elimination of the local variables. Another
file contains the abstraction of P1, augmented with a system
of equations that identifies the actual arguments of P2 in
P1 to the formal arguments of P2. The tool constructs the
conjunction of the two formulas, checks satisfiability, and
deduces clock properties from the resulting models.

In more complex examples, one can apply the same
algorithm bottom-up to a tree of processes. The properties
found in this way for the top process can be plugged top-
down into the subordinate processes. One may have to use
renaming to avoid symbol collision or capture.

7.	 Application to Illustrative Examples
We discuss the application of the previous abstraction

on sample SIGNAL programs, considered as basic patterns,
for improving their static analysis (Section 7.1) and the
subsequent automatic code generation (Section 7.2). Then, we
give a detailed illustration on the Bathtub example (Section
7.3).

7.1	 Some relevant program patterns

We present a few SIGNAL program patterns for which
our abstraction helps in detecting some clocks anomalies.
Such properties cannot be detected currently by the SIGNAL
compiler because they involve numerical expressions, which
are not addressed by a Boolean abstraction. Our abstraction
allows their easy detection.

For sake of simplicity, the illustrated programs are made
small. But, the reader should have in mind that such clock
properties can potentially occur in more complex programs.

7.1.1 Program patterns involving exclusive clocks

The sample processes mentioned in this section involve
signals with exclusive clocks, i.e., signals that never occur at
the same time.
1)	 In the following process Addition, the signals aa and

bb, respectively defined at lines 05 and 06, never occur at
the same time, while the converse is necessary (according
to the semantics of instantaneous functions in SIGNAL)
for a correct addition at line 04.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 13

6.2 Modularity

While current SMT solvers are highly opti-
mized tools, they may still take exponential
time on large problems. It is therefore necessary
to take advantage of the modular features of
SIGNAL to improve the analysis efficiency. The
key to this approach is formula (1), which
allows the elimination of local variables when
analyzing subprocesses.

Going from ΦP1 to Φ in (1) is a process
of quantifier elimination, which is trivial for
booleans:

∃b.Φ(b) ≡ Φ(true) ∨ Φ(false).

However, Φ usually contains many subformu-
las of the form x̂ ⇔ bexp (see Section 5.4 for
examples). Elimination of x̂ consists simply in
replacing it everywhere by bexp, a process akin
to Gaussian elimination.

There are many quantifier elimination algo-
rithms for reals, the simplest (but the less effi-
cient) being Fourier-Motzkin elimination [27].
Quantifier elimination for integers is much
more difficult, and may need the introduction
of other operators like integer division or mod-
ulo. To apply this method, our SMT solver has
been extended with a quantifier elimination
command, and several commands to manipu-
late a stack of formulas.

Let us consider the simple case of a program
of the form P1 where P2. From (2), the output
of SYNC2SMT consists first of the abstraction
of P2. A “driver” file first acquires the P2 file
and executes elimination of the local variables.
Another file contains the abstraction of P1,
augmented with a system of equations that
identifies the actual arguments of P2 in P1 to
the formal arguments of P2. The tool constructs
the conjunction of the two formulas, checks
satisfiability, and deduces clock properties from
the resulting models.

In more complex examples, one can apply
the same algorithm bottom-up to a tree of
processes. The properties found in this way
for the top process can be plugged top-down
into the subordinate processes. One may have
to use renaming to avoid symbol collision or
capture.

7 APPLICATION TO ILLUSTRATIVE EX-
AMPLES

We discuss the application of the previous
abstraction on sample SIGNAL programs, con-
sidered as basic patterns, for improving their
static analysis (Section 7.1) and the subsequent
automatic code generation (Section 7.2). Then,
we give a detailed illustration on the Bathtub
example (Section 7.3).

7.1 Some relevant program patterns
We present a few SIGNAL program patterns
for which our abstraction helps in detecting
some clocks anomalies. Such properties cannot
be detected currently by the SIGNAL compiler
because they involve numerical expressions,
which are not addressed by a Boolean abstrac-
tion. Our abstraction allows their easy detec-
tion.

For sake of simplicity, the illustrated pro-
grams are made small. But, the reader should
have in mind that such clock properties can
potentially occur in more complex programs.

7.1.1 Program patterns involving exclusive
clocks
The sample processes mentioned in this section
involve signals with exclusive clocks, i.e., sig-
nals that never occur at the same time.

1) In the following process Addition, the
signals aa and bb, respectively defined at
lines 05 and 06, never occur at the same
time, while the converse is necessary (ac-
cording to the semantics of instantaneous
functions in SIGNAL) for a correct addition
at line 04.
--
01: process Addition =
02: (? integer a, b, treshold;
03: ! integer c;)
04: (| c := aa + bb
05: | aa := a when (treshold > 7)
06: | bb := b when (treshold < 4)
07: |)
08: where
09: integer aa, bb;
10: end;
--

2) For a similar reason, in the following pro-
cess AdditionBis, the addition of sig-
nals b and c, respectively defined at lines
04 and 05, cannot be achieved in a cor-
rect way. Indeed, the conditions specified

2)	 For a similar reason, in the following process
AdditionBis, the addition of signals b and c, respectively
defined at lines 04 and 05, cannot be achieved in a correct
way. Indeed, the conditions specified for the definitions of
b and c are exclusive. Note that the difference between
Addition and AdditionBis is mainly syntactical.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 14

for the definitions of b and c are ex-
clusive. Note that the difference between
Addition and AdditionBis is mainly
syntactical.
--
01: process AdditionBis =
02: (? integer a;
03: ! integer d;)
04: (| b := a when (a > 1)
05: | c := a when not (a > 0)
06: | d := b + c
07: |)
08: where
09: integer b, c;
10: end;
--

3) The last sample process shown below, in-
volves signals with exclusive clocks, bmin
and bmax, defined respectively at lines 04
and 05. But, another signal binterval,
defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock
because the two signals never occur at the
same time.
--
01: process Interval =
02: (? integer a;
03: ! event binterval;)
04: (| bmin := true when (a < 3)
05: | bmax := true when (a > 11)
06: | binterval := bmin when bmax
07: |)
08: where
09: event bmin, bmax;
10: end;
--

7.1.2 Program patterns involving identical
clocks
Here, we show two sample processes involving
signals with identical clocks. This is fixed by
our abstraction while the Boolean abstraction
of the SIGNAL compiler does not enable it.

1) In the following process, named
AdditionTer, the addition of signals b
and c, respectively defined at lines 04
and 05, is actually correct. Indeed, the
conditions specified for the definitions
of these two signals are proved to be
equivalent.
--
01: process AdditionTer =
02: (? integer a;
03: ! integer d;)
04: (| b := 5+a when (a > 0)
05: | c := 6+a when (a >= 1)
06: | d := b + c
07: |);
08: where
09: integer b, c;
10: end;
--

2) The process Game shown below exhibits
similar clock properties. More precisely,
the product at line 09 of the input signal
amount and the local signal factor de-
fined at lines 07--08, requires that both
signals have the same clock.
This is established by a careful
interpretation of the modulo operator
(used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by
∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤
r ≤ 1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and
r respectively denote the quotient and rest
of integer division.
--
01: process Game =
02: (? integer amount;
03: ! integer profit;)
04: (| nvisit := ((nvisit$1 init 0) + 1)
05: when (ˆamount)
06: | st := nvisit modulo 2
07: | factor := (15 when (st=0)) default
08: (0 when (st=1))
09: | profit := factor*amount
10: |)
11: where
12: integer st, factor, nvisit;
13: end;
--

7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
is embedded in that associated with clk_1
to reflect the clock inclusion. By this way,
whenever the triggering condition of clk_1
is false, there is no need to test the triggering
condition of clk_2 because it is necessarily
false due to the clock inclusion. Avoiding such
tests optimizes the execution of generated code.
Note that a major advantage of the multi-clock
model addressed by SIGNAL is to avoid the sys-
tematic trigger testing inherent to synchronized

3)	 The last sample process shown below, involves
signals with exclusive clocks, bmin and bmax, defined
respectively at lines 04 and 05. But, another signal
binterval, defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock because the two
signals never occur at the same time.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 14

for the definitions of b and c are ex-
clusive. Note that the difference between
Addition and AdditionBis is mainly
syntactical.
--
01: process AdditionBis =
02: (? integer a;
03: ! integer d;)
04: (| b := a when (a > 1)
05: | c := a when not (a > 0)
06: | d := b + c
07: |)
08: where
09: integer b, c;
10: end;
--

3) The last sample process shown below, in-
volves signals with exclusive clocks, bmin
and bmax, defined respectively at lines 04
and 05. But, another signal binterval,
defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock
because the two signals never occur at the
same time.
--
01: process Interval =
02: (? integer a;
03: ! event binterval;)
04: (| bmin := true when (a < 3)
05: | bmax := true when (a > 11)
06: | binterval := bmin when bmax
07: |)
08: where
09: event bmin, bmax;
10: end;
--

7.1.2 Program patterns involving identical
clocks
Here, we show two sample processes involving
signals with identical clocks. This is fixed by
our abstraction while the Boolean abstraction
of the SIGNAL compiler does not enable it.

1) In the following process, named
AdditionTer, the addition of signals b
and c, respectively defined at lines 04
and 05, is actually correct. Indeed, the
conditions specified for the definitions
of these two signals are proved to be
equivalent.
--
01: process AdditionTer =
02: (? integer a;
03: ! integer d;)
04: (| b := 5+a when (a > 0)
05: | c := 6+a when (a >= 1)
06: | d := b + c
07: |);
08: where
09: integer b, c;
10: end;
--

2) The process Game shown below exhibits
similar clock properties. More precisely,
the product at line 09 of the input signal
amount and the local signal factor de-
fined at lines 07--08, requires that both
signals have the same clock.
This is established by a careful
interpretation of the modulo operator
(used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by
∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤
r ≤ 1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and
r respectively denote the quotient and rest
of integer division.
--
01: process Game =
02: (? integer amount;
03: ! integer profit;)
04: (| nvisit := ((nvisit$1 init 0) + 1)
05: when (ˆamount)
06: | st := nvisit modulo 2
07: | factor := (15 when (st=0)) default
08: (0 when (st=1))
09: | profit := factor*amount
10: |)
11: where
12: integer st, factor, nvisit;
13: end;
--

7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
is embedded in that associated with clk_1
to reflect the clock inclusion. By this way,
whenever the triggering condition of clk_1
is false, there is no need to test the triggering
condition of clk_2 because it is necessarily
false due to the clock inclusion. Avoiding such
tests optimizes the execution of generated code.
Note that a major advantage of the multi-clock
model addressed by SIGNAL is to avoid the sys-
tematic trigger testing inherent to synchronized

7.1.2 Program patterns involving identical clocks

Here, we show two sample processes involving signals
with identical clocks. This is fixed by our abstraction while
the Boolean abstraction of the SIGNAL compiler does not
enable it.
1)	 In the following process, named AdditionTer, the addition

of signals b and c, respectively defined at lines 04 and
05, is actually correct. Indeed, the conditions specified
for the definitions of these two signals are proved to be
equivalent.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

8 : 96
	 Enhancing the Compilation of

Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 14

for the definitions of b and c are ex-
clusive. Note that the difference between
Addition and AdditionBis is mainly
syntactical.
--
01: process AdditionBis =
02: (? integer a;
03: ! integer d;)
04: (| b := a when (a > 1)
05: | c := a when not (a > 0)
06: | d := b + c
07: |)
08: where
09: integer b, c;
10: end;
--

3) The last sample process shown below, in-
volves signals with exclusive clocks, bmin
and bmax, defined respectively at lines 04
and 05. But, another signal binterval,
defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock
because the two signals never occur at the
same time.
--
01: process Interval =
02: (? integer a;
03: ! event binterval;)
04: (| bmin := true when (a < 3)
05: | bmax := true when (a > 11)
06: | binterval := bmin when bmax
07: |)
08: where
09: event bmin, bmax;
10: end;
--

7.1.2 Program patterns involving identical
clocks
Here, we show two sample processes involving
signals with identical clocks. This is fixed by
our abstraction while the Boolean abstraction
of the SIGNAL compiler does not enable it.

1) In the following process, named
AdditionTer, the addition of signals b
and c, respectively defined at lines 04
and 05, is actually correct. Indeed, the
conditions specified for the definitions
of these two signals are proved to be
equivalent.
--
01: process AdditionTer =
02: (? integer a;
03: ! integer d;)
04: (| b := 5+a when (a > 0)
05: | c := 6+a when (a >= 1)
06: | d := b + c
07: |);
08: where
09: integer b, c;
10: end;
--

2) The process Game shown below exhibits
similar clock properties. More precisely,
the product at line 09 of the input signal
amount and the local signal factor de-
fined at lines 07--08, requires that both
signals have the same clock.
This is established by a careful
interpretation of the modulo operator
(used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by
∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤
r ≤ 1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and
r respectively denote the quotient and rest
of integer division.
--
01: process Game =
02: (? integer amount;
03: ! integer profit;)
04: (| nvisit := ((nvisit$1 init 0) + 1)
05: when (ˆamount)
06: | st := nvisit modulo 2
07: | factor := (15 when (st=0)) default
08: (0 when (st=1))
09: | profit := factor*amount
10: |)
11: where
12: integer st, factor, nvisit;
13: end;
--

7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
is embedded in that associated with clk_1
to reflect the clock inclusion. By this way,
whenever the triggering condition of clk_1
is false, there is no need to test the triggering
condition of clk_2 because it is necessarily
false due to the clock inclusion. Avoiding such
tests optimizes the execution of generated code.
Note that a major advantage of the multi-clock
model addressed by SIGNAL is to avoid the sys-
tematic trigger testing inherent to synchronized

2)	 The process Game shown below exhibits similar clock
properties. More precisely, the product at line 09 of the
input signal amount and the local signal factor defined
at lines 07–08, requires that both signals have the same
clock.
This is established by a careful interpretation of the
modulo operator (used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by $q, r Î N, s.t. r = nvisit
– 2q Ù 0 < r < 1 Ù 2q < nvisit < 2q + 1, where q and
r respectively denote the quotient and rest of integer
division.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 14

for the definitions of b and c are ex-
clusive. Note that the difference between
Addition and AdditionBis is mainly
syntactical.
--
01: process AdditionBis =
02: (? integer a;
03: ! integer d;)
04: (| b := a when (a > 1)
05: | c := a when not (a > 0)
06: | d := b + c
07: |)
08: where
09: integer b, c;
10: end;
--

3) The last sample process shown below, in-
volves signals with exclusive clocks, bmin
and bmax, defined respectively at lines 04
and 05. But, another signal binterval,
defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock
because the two signals never occur at the
same time.
--
01: process Interval =
02: (? integer a;
03: ! event binterval;)
04: (| bmin := true when (a < 3)
05: | bmax := true when (a > 11)
06: | binterval := bmin when bmax
07: |)
08: where
09: event bmin, bmax;
10: end;
--

7.1.2 Program patterns involving identical
clocks
Here, we show two sample processes involving
signals with identical clocks. This is fixed by
our abstraction while the Boolean abstraction
of the SIGNAL compiler does not enable it.

1) In the following process, named
AdditionTer, the addition of signals b
and c, respectively defined at lines 04
and 05, is actually correct. Indeed, the
conditions specified for the definitions
of these two signals are proved to be
equivalent.
--
01: process AdditionTer =
02: (? integer a;
03: ! integer d;)
04: (| b := 5+a when (a > 0)
05: | c := 6+a when (a >= 1)
06: | d := b + c
07: |);
08: where
09: integer b, c;
10: end;
--

2) The process Game shown below exhibits
similar clock properties. More precisely,
the product at line 09 of the input signal
amount and the local signal factor de-
fined at lines 07--08, requires that both
signals have the same clock.
This is established by a careful
interpretation of the modulo operator
(used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by
∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤
r ≤ 1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and
r respectively denote the quotient and rest
of integer division.
--
01: process Game =
02: (? integer amount;
03: ! integer profit;)
04: (| nvisit := ((nvisit$1 init 0) + 1)
05: when (ˆamount)
06: | st := nvisit modulo 2
07: | factor := (15 when (st=0)) default
08: (0 when (st=1))
09: | profit := factor*amount
10: |)
11: where
12: integer st, factor, nvisit;
13: end;
--

7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
is embedded in that associated with clk_1
to reflect the clock inclusion. By this way,
whenever the triggering condition of clk_1
is false, there is no need to test the triggering
condition of clk_2 because it is necessarily
false due to the clock inclusion. Avoiding such
tests optimizes the execution of generated code.
Note that a major advantage of the multi-clock
model addressed by SIGNAL is to avoid the sys-
tematic trigger testing inherent to synchronized

7.2	 Impact on code generation

Our abstraction is also usable for optimizing the control
structure of the code generated by the SIGNAL compiler. As
discussed in Section 4, the clock hierarchy resulting from
the static analysis of programs has a strong impact on the
quality of the generated code. Since clocks are considered as
trigger events for the actions described in a program, they
are translated as conditional statements in generated code,
e.g., in C.

Given two clocks clk_1 and clk_2 such that clk_2 is
a sub-clock of clk_1, the corresponding code is sketched in
Fig. 5: the conditional statement corresponding to clk_2 is
embedded in that associated with clk_1 to reflect the clock
inclusion. By this way, whenever the triggering condition
of clk_1 is false, there is no need to test the triggering
condition of clk_2 because it is necessarily false due to the
clock inclusion. Avoiding such tests optimizes the execution
of generated code. Note that a major advantage of the multi-
clock model addressed by SIGNAL is to avoid the systematic
trigger testing inherent to synchronized embedded systems
with a global clock. This reduces the computation overhead
resulting from the repeated wake up of computation nodes
on the global clock tick in order to check whether or not they

are active.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 15

embedded systems with a global clock. This
reduces the computation overhead resulting
from the repeated wake up of computation
nodes on the global clock tick in order to check
whether or not they are active.

clk_1

clk_2
clk_3

 if (clk_2)

 { ... };

 { ... };

 if (clk_3)

 { ...;

if (clk_1)

 if (clk_2 && clk_3)

 { if (clk_i)

 { ... };

 ...;

 }

 ...; }

clk_i

Fig. 5. Clock hierarchy-based code generation.

Currently, when clocks are defined by nu-
merical expressions, the static analysis of the
SIGNAL compiler fails to optimize the control
structure in the way discussed above.

Let us consider the sample process, named
Inclusion, as follows.
--
01: process Inclusion =
02: (? integer a;
03: ! integer d, e;)
04: (| b := 5+a when ((a > 3) and (a < 7))
05: | c := 6+a when ((a > 1) and (a < 11))
06: | d := 42 when (b ˆ* c)
07: | e := 52 when (b ˆ+ c)
08: |)
09: where
10: integer b, c;
11: end;

The clock of signal b is a subset of that of
c. But currently, the clock hierarchy computed
by the SIGNAL compiler is depicted in Fig. 6.
While the clocks of b and c appear to be sub-
clocks of the clock of a, the clock hierarchy
between b and c is not reflected. This leads
to a control structure in generated code where
the trigger testing related to b is always per-
formed, even though that of c is false while it
is unnecessary.

 { ... };

 { ... };

 }

 { ...;

clk_a

clk_b clk_c

if (clk_a)

 if (clk_b)

 if (clk_c)

Fig. 6. Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock
inclusion between b and c, with the following
reasoning. A clock x̂ is included in another
clock ŷ if the property x̂ ⇒ ŷ is true in all
models. Clock x̂ is equivalent to clock ŷ if both
x̂ ⇒ ŷ and ŷ ⇒ x̂ are true.

When all inclusions have been identified, one
can construct a graph whose vertices are the
clocks and whose edges represent the inclusion
relations. The strongly connected components
(SCC) of this graph represent classes of equiv-
alent clocks, and the reduced graph, which is
acyclic, represents the clock inclusion hierarchy.
As a particular case, if this graph has a max-
imum (an SCC without successors) this SCC
contains the largest clock of the whole process.
The set of SCCs and the reduced graph can
easily be constructed by an algorithm due to
Tarjan [28], which has been implemented in our
tool (more precisely in the solver part). As a
matter of fact, since inclusion is transitive, the
SCCs of the clock graph are cliques. However,
we do not believe that this property can be
used to improve on the complexity of Tarjan’s
algorithm. Note also that as soon as the maxi-
mal SCC has more than one element, the largest
clock cannot be identified by searching for
clocks without successors. Hence, the construc-
tion of SCCs is necessary. As a final remark, if
the SCC graph has more than one extrema, the
program has no sequential implementation.

In the Inclusion process above, one finds
three SCCs, {b̂, d̂}, {ĉ, ê} and {â}, and each SCC
is included in the next one. It follows that â is
the process largest clock, which provides the
clock inclusion hierarchy depicted in Fig. 7.

{ ...;

{ ...;

{ ... };
}

}

clk_a

clk_c

clk_b

if (clk_c)

if (clk_b)

if (clk_a)

Fig. 7. Optimized clock hierarchy for
Inclusion.

The ability to compute the above clock inclu-
sions is a very useful information, which can be
exploited to efficiently construct clock hierar-
chy for SIGNAL programs based on arborescent

Fig. 5 : Clock hierarchy-based code generation.

Currently, when clocks are defined by numerical
expressions, the static analysis of the SIGNAL compiler fails
to optimize the control structure in the way discussed above.

Let us consider the sample process, named Inclusion, as
follows.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 15

embedded systems with a global clock. This
reduces the computation overhead resulting
from the repeated wake up of computation
nodes on the global clock tick in order to check
whether or not they are active.

clk_1

clk_2
clk_3

 if (clk_2)

 { ... };

 { ... };

 if (clk_3)

 { ...;

if (clk_1)

 if (clk_2 && clk_3)

 { if (clk_i)

 { ... };

 ...;

 }

 ...; }

clk_i

Fig. 5. Clock hierarchy-based code generation.

Currently, when clocks are defined by nu-
merical expressions, the static analysis of the
SIGNAL compiler fails to optimize the control
structure in the way discussed above.

Let us consider the sample process, named
Inclusion, as follows.
--
01: process Inclusion =
02: (? integer a;
03: ! integer d, e;)
04: (| b := 5+a when ((a > 3) and (a < 7))
05: | c := 6+a when ((a > 1) and (a < 11))
06: | d := 42 when (b ˆ* c)
07: | e := 52 when (b ˆ+ c)
08: |)
09: where
10: integer b, c;
11: end;

The clock of signal b is a subset of that of
c. But currently, the clock hierarchy computed
by the SIGNAL compiler is depicted in Fig. 6.
While the clocks of b and c appear to be sub-
clocks of the clock of a, the clock hierarchy
between b and c is not reflected. This leads
to a control structure in generated code where
the trigger testing related to b is always per-
formed, even though that of c is false while it
is unnecessary.

 { ... };

 { ... };

 }

 { ...;

clk_a

clk_b clk_c

if (clk_a)

 if (clk_b)

 if (clk_c)

Fig. 6. Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock
inclusion between b and c, with the following
reasoning. A clock x̂ is included in another
clock ŷ if the property x̂ ⇒ ŷ is true in all
models. Clock x̂ is equivalent to clock ŷ if both
x̂ ⇒ ŷ and ŷ ⇒ x̂ are true.

When all inclusions have been identified, one
can construct a graph whose vertices are the
clocks and whose edges represent the inclusion
relations. The strongly connected components
(SCC) of this graph represent classes of equiv-
alent clocks, and the reduced graph, which is
acyclic, represents the clock inclusion hierarchy.
As a particular case, if this graph has a max-
imum (an SCC without successors) this SCC
contains the largest clock of the whole process.
The set of SCCs and the reduced graph can
easily be constructed by an algorithm due to
Tarjan [28], which has been implemented in our
tool (more precisely in the solver part). As a
matter of fact, since inclusion is transitive, the
SCCs of the clock graph are cliques. However,
we do not believe that this property can be
used to improve on the complexity of Tarjan’s
algorithm. Note also that as soon as the maxi-
mal SCC has more than one element, the largest
clock cannot be identified by searching for
clocks without successors. Hence, the construc-
tion of SCCs is necessary. As a final remark, if
the SCC graph has more than one extrema, the
program has no sequential implementation.

In the Inclusion process above, one finds
three SCCs, {b̂, d̂}, {ĉ, ê} and {â}, and each SCC
is included in the next one. It follows that â is
the process largest clock, which provides the
clock inclusion hierarchy depicted in Fig. 7.

{ ...;

{ ...;

{ ... };
}

}

clk_a

clk_c

clk_b

if (clk_c)

if (clk_b)

if (clk_a)

Fig. 7. Optimized clock hierarchy for
Inclusion.

The ability to compute the above clock inclu-
sions is a very useful information, which can be
exploited to efficiently construct clock hierar-
chy for SIGNAL programs based on arborescent

The clock of signal b is a subset of that of c. But currently,
the clock hierarchy computed by the SIGNAL compiler
is depicted in Fig. 6. While the clocks of b and c appear to
be subclocks of the clock of a, the clock hierarchy between
b and c is not reflected. This leads to a control structure
in generated code where the trigger testing related to b is
always performed, even though that of c is false while it is
unnecessary.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 15

embedded systems with a global clock. This
reduces the computation overhead resulting
from the repeated wake up of computation
nodes on the global clock tick in order to check
whether or not they are active.

clk_1

clk_2
clk_3

 if (clk_2)

 { ... };

 { ... };

 if (clk_3)

 { ...;

if (clk_1)

 if (clk_2 && clk_3)

 { if (clk_i)

 { ... };

 ...;

 }

 ...; }

clk_i

Fig. 5. Clock hierarchy-based code generation.

Currently, when clocks are defined by nu-
merical expressions, the static analysis of the
SIGNAL compiler fails to optimize the control
structure in the way discussed above.

Let us consider the sample process, named
Inclusion, as follows.
--
01: process Inclusion =
02: (? integer a;
03: ! integer d, e;)
04: (| b := 5+a when ((a > 3) and (a < 7))
05: | c := 6+a when ((a > 1) and (a < 11))
06: | d := 42 when (b ˆ* c)
07: | e := 52 when (b ˆ+ c)
08: |)
09: where
10: integer b, c;
11: end;

The clock of signal b is a subset of that of
c. But currently, the clock hierarchy computed
by the SIGNAL compiler is depicted in Fig. 6.
While the clocks of b and c appear to be sub-
clocks of the clock of a, the clock hierarchy
between b and c is not reflected. This leads
to a control structure in generated code where
the trigger testing related to b is always per-
formed, even though that of c is false while it
is unnecessary.

 { ... };

 { ... };

 }

 { ...;

clk_a

clk_b clk_c

if (clk_a)

 if (clk_b)

 if (clk_c)

Fig. 6. Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock
inclusion between b and c, with the following
reasoning. A clock x̂ is included in another
clock ŷ if the property x̂ ⇒ ŷ is true in all
models. Clock x̂ is equivalent to clock ŷ if both
x̂ ⇒ ŷ and ŷ ⇒ x̂ are true.

When all inclusions have been identified, one
can construct a graph whose vertices are the
clocks and whose edges represent the inclusion
relations. The strongly connected components
(SCC) of this graph represent classes of equiv-
alent clocks, and the reduced graph, which is
acyclic, represents the clock inclusion hierarchy.
As a particular case, if this graph has a max-
imum (an SCC without successors) this SCC
contains the largest clock of the whole process.
The set of SCCs and the reduced graph can
easily be constructed by an algorithm due to
Tarjan [28], which has been implemented in our
tool (more precisely in the solver part). As a
matter of fact, since inclusion is transitive, the
SCCs of the clock graph are cliques. However,
we do not believe that this property can be
used to improve on the complexity of Tarjan’s
algorithm. Note also that as soon as the maxi-
mal SCC has more than one element, the largest
clock cannot be identified by searching for
clocks without successors. Hence, the construc-
tion of SCCs is necessary. As a final remark, if
the SCC graph has more than one extrema, the
program has no sequential implementation.

In the Inclusion process above, one finds
three SCCs, {b̂, d̂}, {ĉ, ê} and {â}, and each SCC
is included in the next one. It follows that â is
the process largest clock, which provides the
clock inclusion hierarchy depicted in Fig. 7.

{ ...;

{ ...;

{ ... };
}

}

clk_a

clk_c

clk_b

if (clk_c)

if (clk_b)

if (clk_a)

Fig. 7. Optimized clock hierarchy for
Inclusion.

The ability to compute the above clock inclu-
sions is a very useful information, which can be
exploited to efficiently construct clock hierar-
chy for SIGNAL programs based on arborescentFig. 6 : Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock inclusion
between b and c, with the following reasoning. A clock x̂ is
included in another clock by if the property x̂

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

ŷ is true in
all models. Clock x̂ is equivalent to clock ŷ if both x̂

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

ŷ and
ŷ

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 12

∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

 x̂ are true.
When all inclusions have been identified, one can

construct a graph whose vertices are the clocks and whose
edges represent the inclusion relations. The strongly
connected components (SCC) of this graph represent classes
of equivalent clocks, and the reduced graph, which is acyclic,

CSI Journal of Computing | Vol. 1 • No. 4, 2012

Paul Feautrier, et. al.	 8 : 97

represents the clock inclusion hierarchy. As a particular case,
if this graph has a maximum (an SCC without successors) this
SCC contains the largest clock of the whole process. The set of
SCCs and the reduced graph can easily be constructed by an
algorithm due to Tarjan [28], which has been implemented in
our tool (more precisely in the solver part). As a matter of fact,
since inclusion is transitive, the SCCs of the clock graph are
cliques. However, we do not believe that this property can be
used to improve on the complexity of Tarjan’s algorithm. Note
also that as soon as the maximal SCC has more than one
element, the largest clock cannot be identified by searching for
clocks without successors. Hence, the construction of SCCs is
necessary. As a final remark, if the SCC graph has more than
one extrema, the program has no sequential implementation.

In the Inclusion process above, one finds three SCCs,
{b̂, d̂ }, {ĉ , ê} and {â}, and each SCC is included in the next one.
It follows that â is the process largest clock, which provides
the clock inclusion hierarchy depicted in Fig. 7.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 15

embedded systems with a global clock. This
reduces the computation overhead resulting
from the repeated wake up of computation
nodes on the global clock tick in order to check
whether or not they are active.

clk_1

clk_2
clk_3

 if (clk_2)

 { ... };

 { ... };

 if (clk_3)

 { ...;

if (clk_1)

 if (clk_2 && clk_3)

 { if (clk_i)

 { ... };

 ...;

 }

 ...; }

clk_i

Fig. 5. Clock hierarchy-based code generation.

Currently, when clocks are defined by nu-
merical expressions, the static analysis of the
SIGNAL compiler fails to optimize the control
structure in the way discussed above.

Let us consider the sample process, named
Inclusion, as follows.
--
01: process Inclusion =
02: (? integer a;
03: ! integer d, e;)
04: (| b := 5+a when ((a > 3) and (a < 7))
05: | c := 6+a when ((a > 1) and (a < 11))
06: | d := 42 when (b ˆ* c)
07: | e := 52 when (b ˆ+ c)
08: |)
09: where
10: integer b, c;
11: end;

The clock of signal b is a subset of that of
c. But currently, the clock hierarchy computed
by the SIGNAL compiler is depicted in Fig. 6.
While the clocks of b and c appear to be sub-
clocks of the clock of a, the clock hierarchy
between b and c is not reflected. This leads
to a control structure in generated code where
the trigger testing related to b is always per-
formed, even though that of c is false while it
is unnecessary.

 { ... };

 { ... };

 }

 { ...;

clk_a

clk_b clk_c

if (clk_a)

 if (clk_b)

 if (clk_c)

Fig. 6. Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock
inclusion between b and c, with the following
reasoning. A clock x̂ is included in another
clock ŷ if the property x̂ ⇒ ŷ is true in all
models. Clock x̂ is equivalent to clock ŷ if both
x̂ ⇒ ŷ and ŷ ⇒ x̂ are true.

When all inclusions have been identified, one
can construct a graph whose vertices are the
clocks and whose edges represent the inclusion
relations. The strongly connected components
(SCC) of this graph represent classes of equiv-
alent clocks, and the reduced graph, which is
acyclic, represents the clock inclusion hierarchy.
As a particular case, if this graph has a max-
imum (an SCC without successors) this SCC
contains the largest clock of the whole process.
The set of SCCs and the reduced graph can
easily be constructed by an algorithm due to
Tarjan [28], which has been implemented in our
tool (more precisely in the solver part). As a
matter of fact, since inclusion is transitive, the
SCCs of the clock graph are cliques. However,
we do not believe that this property can be
used to improve on the complexity of Tarjan’s
algorithm. Note also that as soon as the maxi-
mal SCC has more than one element, the largest
clock cannot be identified by searching for
clocks without successors. Hence, the construc-
tion of SCCs is necessary. As a final remark, if
the SCC graph has more than one extrema, the
program has no sequential implementation.

In the Inclusion process above, one finds
three SCCs, {b̂, d̂}, {ĉ, ê} and {â}, and each SCC
is included in the next one. It follows that â is
the process largest clock, which provides the
clock inclusion hierarchy depicted in Fig. 7.

{ ...;

{ ...;

{ ... };
}

}

clk_a

clk_c

clk_b

if (clk_c)

if (clk_b)

if (clk_a)

Fig. 7. Optimized clock hierarchy for
Inclusion.

The ability to compute the above clock inclu-
sions is a very useful information, which can be
exploited to efficiently construct clock hierar-
chy for SIGNAL programs based on arborescent

Fig. 7 : Optimized clock hierarchy for Inclusion.

The ability to compute the above clock inclusions is a
very useful information, which can be exploited to efficiently
construct clock hierarchy for SIGNAL programs based on
arborescent canonical forms of clocks [6]. The identification
of a master clock in a program relies on that clock hierarchy.

7.3	 Application to the bathtub example

We consider the Bathtub program given in Fig. 2 to
illustrate how relevant properties are identified and checked
against its abstraction. By making these properties explicit
in the program, we show a noticeable amelioration of both its
static analysis and code generation by the SIGNAL compiler.

Given the formula FBathtub obtained previously in Section
5.3, as the abstraction of the bathtub SIGNAL specification,
the main properties of interest are the following:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 16

canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
--
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
--

The result of its analysis performed by the
compiler is now as follows:
--
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
--

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
--
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
--

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

Some of these properties are currently inferred directly
from FBathtub by our considered SMT solver. It is the case
of properties 1) and 3). However, note that property 2)
could also be inferred provided an extension of the current
implementation of the solver so that various combinations of

Boolean variables can be checked. Here, for more convenience,
we reason on isolated parts of FBathtub, which are relevant to
a given property. But, since automating such an operation
on an abstraction is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the abstraction
of Bathtub process. As a result, their corresponding
concretisations can be safely composed with Bathtub without
changing its semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 16

canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
--
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
--

The result of its analysis performed by the
compiler is now as follows:
--
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
--

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
--
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
--

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

By composing these statements with Bathtub, one
obtains the semantically equivalent process, named
Bathtub_Bis, shown in the following:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 16

canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
--
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
--

The result of its analysis performed by the
compiler is now as follows:
--
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
--

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
--
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
--

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

The result of its analysis performed by the compiler is
now as follows:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 16

canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
--
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
--

The result of its analysis performed by the
compiler is now as follows:
--
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
--

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
--
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
--

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

The whole set of constraints inferred by the compiler is
now restricted to the fact that the ghost_alarm signal is
always equal to false. The compiler has also detected that
the clocks of the other signals are all empty (lines 04/04b).
Finally, the corresponding generated code is provided below,
where the dead code is avoided.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 16

canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
--
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
--

The result of its analysis performed by the
compiler is now as follows:
--
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
--

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
--
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
--

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

Sections 7.1, 7.2 and 7.3 demonstrate the relevance of our
abstraction for analyzing clock properties that combine both
logical and numerical expressions. For instance, checking
the mutual exclusion between multiple computation nodes
whose activation conditions consist of such clocks, is useful

CSI Journal of Computing | Vol. 1 • No. 4, 2012

8 : 98
	 Enhancing the Compilation of

Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

to address sharing problems in a GALS system. In addition,
establishing that some nodes or events in a system never
occur, via empty clocks, can serve to guarantee that undesired
behaviors never happen, or conversely to detect that some
expected behaviors are never observed. Concerning the code
generated automatically by the SIGNAL compiler, the gain
expected in terms of optimizations is also important. On the
one hand, dead code elimination is made possible thanks to
information resulting from the analysis of our abstraction. It
is usually of high importance in compilers [29]. On the other
hand, the control conditions of the code are better organized
thanks to their evaluation in the abstraction. As a result,
optimized control structures can be derived, as it is done in
[30] by identifying regions in a control flow graph.

7.4	 On the scalability of our approach

Beyond all examples mentioned in this paper, we have
experimented further ones, including the dining philosophers
program provided in [24], which is relevant enough to assess
the scalability of our tool-chain, but which strains the present
capabilities of our SMT solver.

Among applicable solutions that already hold for our
approach in case of large programs to be addressed, we suggest
the systematic use of modularity to divide-and-conquer such
programs. As a matter of fact, given a property to be checked
(or to be inferred) in an SMT formula F resulting from the
translation of a program, one can restrict the analysis to the
sub-formulas Fi of this formula, which are only required for
the reasoning. Whenever a property is valid for Fi, it will be
also valid for F. Currently, identifying such sub-formulas is
done only manually.

For the aforementioned dining philosophers program,
which is around one hundred and seventy lines of code in
SIGNAL, our translation tool automatically generates (in less
than a second) an abstraction in the “smt2” format composed
of: four hundred and fourty variables and, four hundred and
eighty six clauses. Since this generated abstraction is not
currently tractable by our SMT solver, we manually applied
a divide-and-conquer strategy to check that two adjacent
philosophers cannot simultaneously eat because only one of
them can hold their shared fork at any time.

8.	 Conclusion
In this paper, we presented an enhancement of the

compilation of synchronous dataflow programs with a
combined numerical-Boolean abstraction.We considered
SIGNAL language as an illustrative language. The analysis
and code generation achieved by its compiler, which is based
on a Boolean abstraction, has been extended in a modular
way by defining a sound and more expressive abstraction.
This makes it possible to suitably address both numerical
and logical properties specified via abstract clock relations
and data dependencies.

Clocks play a central role in SIGNAL: they fundamentally
express the control in programs and typical properties of
embedded systems, such as reactivity or determinism, are
dealt with by analyzing clock relations. Moreover, their

related properties are extensively exploited by the SIGNAL
compiler for optimizing the automatic code generation
process. We showed via our approach, in a pragmatic way,
how the new abstraction combined with SMT solving infers
very useful information, which strongly help the compiler to
solve more clock constraints and generate high-quality code,
e.g., by avoiding dead code. Several sample examples have
been presented in order to exhibit the add-on of our solution.

To implement the whole approach, we developed a
translator of synchronous programs towards the standard
input format of SMT solvers, and an ad hoc SMT solver that
integrates advanced functionalities to cope with the issues
of interest in this work. These tools are just proof-of concept
implementations; we do not claim that they can be used on
lifesize programs in their present state. Improvements are
needed in four directions:
�� replace our home-made SMT solver by a state-of-the-

art one, provided that its source code is available and
that it can be adjusted to implement the supplementary
facilities we need;

�� improve the SYNC2SMT translator to obtain a more
compact abstraction;

�� implement an interval pre-analysis to get value ranges
for numerical variables and thus provide a better
abstraction for delays;

�� systematically use modularity to divide-and-conquer
large programs.

References
[1]	 A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le

Guernic, and R. de Simone, “The synchronous languages twelve
years later.” in Special issue on Embedded Systems, IEEE, 2003.

[2]	 N. Halbwachs, “A synchronous language at work: the story
of LUSTRE,” in 3th ACM-IEEE International Conference on
Formal Methods and Models for Codesign (MEMOCODE’ 05),
Verona, Italy, july 2005.

[3]	 G. Berry, “The foundations of ESTEREL,” in Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press,
2000.

[4]	 P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for
System Design,” Journal for Circuits, Systems and Computers,
vol. 12, no. 3, pp. 261–304, April 2003.

[5]	 R. Bryant, “Graph-based algorithms for boolean function
manipulation.” IEEE transactions on computers, vol. C-35, no.
8, pp. 677–691, August 1986.

[6]	 T. Amagbegnon, L. Besnard, and P. Le Guernic, “Arborescent
canonical form of Boolean expressions,” INRIA, Tech. Rep. 2290,
June 1994. [Online]. Available: http://www.inria.fr/rrrt/rr-2290.
html

[7]	 N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and
verifying real-time systems by means of the synchronous data-
flow programming language LUSTRE.” IEEE Transactions on
Software Engineering, Special Issue on the Specification and
Analysis of Real-Time Systems, September 1992.

[8]	 B. Jeannet, “Dynamic partitioning in linear relation analysis.
application to the verification of reactive systems,” Formal
Methods in System Design, vol. 23, no. 1, pp. 5–37, July 2003.

[9]	 P. Schrammel, “Logico-Numerical Verification Methods for
Discrete and Hybrid Systems,” Ph.D. dissertation, Université
de Grenoble, 2012.

[10]	 B. A. Jose and S. K. Shukla, “An alternative polychronous
model and synthesis methodology for model-driven embedded

CSI Journal of Computing | Vol. 1 • No. 4, 2012

Paul Feautrier, et. al.	 8 : 99

software,” in Proceedings of the 2010 Asia and South Pacific
Design Automation Conference, ser. ASPDAC ’10. Piscataway,
NJ, USA: IEEE Press, 2010, pp. 13–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1899721.1899725

[11]	 A. Gamatié and L. Gonnord, “Static analysis of synchronous
programs in signal for efficient design of multiclocked embedded
systems,” in International conference on Languages, Compilers
and Tools for Embedded Systems, LCTES’11, Chicago, USA,
Mar. 2011.

[12]	 A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. Amsterdam, The Netherlands, The Netherlands:
IOS Press, 2009.

[13]	 P. Schrammel and B. Jeannet, “From hybrid data-flow languages
to hybrid automata: A complete translation,” in Hybrid Systems:
Computation and Control. ACM, 2012, pp. 167–176.

[14]	 L. Gonnord and N. Halbwachs, “Combining widening and
acceleration in linear relation analysis,” in 13th International
Static Analysis Symposium, SAS’06, Seoul, Korea, Aug. 2006.

[15]	 F. Besson, T. Jensen, and J.-P. Talpin, “Polyhedral analysis for
synchronous languages,” in Proceedings of the 6th International
Symposium on Static Analysis, volume 1694 of Lecture Notes in
Computer Science. Springer-Verlag, September 1999, pp. 51–68.

[16]	 M. Nanjundappa, M. Kracht, J. Ouy, and S. Shukla,
“Synthesizing embedded software with safety wrappers through
polyhedral analysis in a polychronous framework,” in Electronic
System Level Synthesis Conference (ESLsyn), 2012, june 2012,
pp. 24–29.

[17]	 M. Nebut, “Specification and analysis of synchronous reactions,”
Formal Aspects of Computing, vol. 16, no. 3, pp. 263–291, august
2004.

[18]	 G. Hagen and C. Tinelli, “Scaling up the formal verification of
lustre programs with smt-based techniques,” in FMCAD ’08:
Proceedings of the 2008 International Conference on Formal
Methods in Computer-Aided Design. Piscataway, NJ, USA:
IEEE Press, 2008, pp. 1–9.

[19]	 A. Gamatié, T. Gautier, and P. Le Guernic, “Towards static
analysis of SIGNAL programs using interval techniques.” in
Synchronous Languages, Applications, and Programming
(SLAP’06), March 2006.

[20]	 A. Gamatié, T. Gautier, and L. Besnard, “An Interval-Based
Solution for Static Analysis in the SIGNAL Language,” in
15th Annual IEEE International Conference and Workshop on
Engineering of Computer Based Systems (ECBS’2008), Belfast,
Northern Ireland, April 2008, pp. 182–190.

[21]	 Y. Bai, J. Brandt, and K. Schneider, “Smt-based optimization for
synchronous programs,” in Proceedings of the 14th International
Workshop on Software and Compilers for Embedded Systems,
ser. SCOPES ’11. New York, NY, USA: ACM, 2011, pp. 11–20.
[Online]. Available: http://doi.acm.org/10.1145/1988932.1988935

[22]	 B. A. Jose, A. Gamatié, J. Ouy, and S. K. Shukla, “SMT
Based False Causal loop Detection during Code Synthesis
from Polychronous Specifications,” in ACM/IEEE Ninth
International Conference on Formal Methods and Models for
Codesign (MEMOCODE), 2011, pp. 109 –118.

[23]	 B. A. Jose, A. Gamatié, M. Kracht, and S. K. Shukla, “Improved
False Causal Loop Detection in Polychronous Specification
of Embedded Software, Research report,” 2011. [Online].
Available: http://hal.inria.fr/inria-00637582

[24]	 A. Gamatié, Designing Embedded Systems with the SIGNAL
Programming Language: Synchronous, Reactive Specification.
Springer, New York, 2009.

[25]	 P. Le Guernic and T. Gautier, Advanced Topics in Data-Flow
Computing. Prentice-Hall, J.-L. Gaudiot and L. Bic eds., 1991,
ch. Data-Flow to von Neumann: the SIGNAL approach, pp.
413–438.

[26]	 R. M. Smullyan, First Order Logic. Dover, 1968.
[27]	 A. Schrijver, Theory of linear and integer programming.

NewYork: Wiley, 1986.
[28]	 R. E. Tarjan, “Depth first search and linear graph algorithms,”

SIAM J. on Computing, vol. 1, pp. 146–160, 1972.
[29]	 R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, pp. 451–490, October 1991. [Online]. Available:
http://doi.acm.org/10.1145/115372.115320

[30]	 J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans.
Program. Lang. Syst., vol. 9, pp. 319–349, July 1987. [Online].
Available: http://doi.acm.org/10.1145/24039.24041

About the Authors

Paul Feautrier is a graduate of École Normale Supérieure and Paris University, where he got his Doctorat d’Etat on a
subject in Computational Astrophysics in 1968. In 1969, he was appointed professor of Computer Science at University
Pierre et Marie Curie in Paris. He moved to Université de Versailles in 1992, then to Ecole Normale Supérieure
de Lyon in 2002. His research interests include computer architecture, operating systems, parallel programming,
automatic parallelization and program optimization.

Abdoulaye Gamatié is currently a CNRS Research Scientist in the LIRMM laboratory of Montpellier (France). He
received his Habilitation and Ph.D. theses in Computer Science, respectively in 2012 from Université de Lille 1 and
in 2004 from Université de Rennes 1. His research activity focuses on methodologies and tools for the design and
validation of high performance and embedded systems. He authored a book on synchronous programming using the
SIGNAL language.

Laure Gonnord obtained a PhD in Computer Science from the University of Grenoble in 2007, during which she
worked on improving numerical invariant generation of flowcharts programs. From 2009 she is an associate professor
(University of Lille/LIFL until august 2013, then University of Lyon/LIP). She works on static analyses for the design,
compilation and safety of embedded systems.

