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DEFINITION

The polyhedron model (earlier known as the polytope model [21, 37]), is an abstract
representation of a loop program as a computation graph in which questions such
as program equivalence or the possibility and nature of parallel execution can be an-
swered. The nodes of the computation graph, each of which represents an iteration of
a statement, are associated with points of Z". These points belong to polyhedra which
are inferred from the bounds of the surrounding loops. In turn, these polyhedra can
be analyzed and transformed with the help of linear programming tools. This enables
the automatic exploration of the space of equivalent programs; one may even formu-
late an objective function (such as the minimum number of synchronization points)
and ask the linear programming tool for an optimal solution. The polyhedron model
has stringent applicability constraints (mainly to FOR loop programs acting on arrays),
but extending its limits has been an active field of research. Beyond autoparalleliza-
tion, the polyhedron model can be useful in many situations which call for a program
transformation, such as in memory or performance optimization.



DISCUSSION

The basic model

Every compiler must have representations of the source program in various stages of
elaboration, as for instance by character strings, abstract syntax trees, control graphs,
three addresses code and many others. The basic component of all these represen-
tation is the statement, be it a high level language statement of a machine instruction.
Unfortunately, these representations do not meet the needs of an autoparallelizer, sim-
ply because parallelism does not occur between statements, but between statement
executions or instances. Consider:

fori =0ton—1do

S ali] = 0.0

od
It makes no sense to ask whether S can be executed in parallel with itself; in this case,
parallelism depends both on the way S accesses memory and on the way the loop
counter i is updated at each iteration.
A loop program must therefore be represented as a set of instances, its iteration do-
main, here named E. Each instance has a distinct name, and consists in the execution
of the related statement or instruction, depending on the granularity of the analysis.
This set is finite, in the case of a terminating program, or infinite in the case of a
reactive or streaming system.
However, this is not sufficient to specify the object program. One needs to know in
which order the instances are executed; £ must be ordered by some relation <. If
u,v € FE, u < v means that u is executed before v. Since an operation cannot be
executed before itself, < is a strict order. It is easy to see that the usual control
constructs (sequence, loops, conditionals, jumps) are compact ways of defining <. It
is also easy to see that, in a sequential program, two arbitrary instances are always
ordered: one says that, in this case, < is a total order. Consideration of an elementary
parallel program (in OpenMP notation):

#pragma omp parallel sections
S
#pragma omp section
S
#pragma omp end parallel sections

shows that S; may be executed before or after or simultaneously with S;, depending
on the available resources (processors) and the overall state of the target system. In
that case, neither S; < S, nor Sy < S; are true: one says that < is a partial order.
As an extreme case, an embarassingly parallel program, in which instances can be
executed in any order, has the empty execution order. Therefore, one may say that
parallelization results in replacing the total execution order of a sequential program by
a partial one, under the constraint that the outcome of the program is not modified.
This in turn raises the following question: Under which conditions are two programs
with the same iteration domain but different execution orders equivalent?
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Since program equivalence is undecidable in general, one must be content with con-
servative answers, i.e. with sufficient but not necessary equivalence conditions. The
usual approach is based on the concept of dependences (see also the [Dependence]
entry in this encyclopedia). Assuming that, given the name of an instance u, one can
characterize the sets (or supersets) of read and written memory cells, R(u) and W(u),
u and v are in dependence, written « 6 v, if both access some memory cell and one
of them at least modifies it. In symbols: udv iff at least one of the sets R(u) N W(v),
W(u) N R(v) or W(u) N W(v) is not empty. The concept of a dependence was first
formulated by Bernstein [8]. One can prove that two programs are equivalent if depen-
dent instances are executed in the same order in both.

Aside. Proving equivalence starts by showing that under Bernstein’s conditions,
two independent consecutive instances can be interchanged without modifying
the final state of memory. In the case of a terminating program, the result follows
by specifying a succession of interchanges that convert one order into the other
without changing the final result. The proof is more complex for non terminating
programs and depends on a fairness hypothesis, namely that every instance is
to be executed eventually. One can then prove that the succession of values
assigned to each variable — its history — is the same for both programs. One
first shows that the succession of assignments to a given variable is the same for
both programs, since they are in dependence, and, as a consequence, that the
assigned values are the same, provided all instances are deterministic, i.e. return
the same value when executed with the same arguments.

To construct a parallel program, one wants to remove all orderings between indepen-
dent instances, i.e. construct the relation § N <, and take its transitive closure. This
execution order may be too complex to be represented by the available parallel con-
structs, like the parallel sections or the parallel loops of OpenMP. In this case, one has
to trade some parallelism for a more compact program.

It remains to explain how to name instances, how to specify the index domain of a
program and its execution order, and how to compute dependences. There are many
possibilities, but most of them ask for the resolution of undecidable problems, which is
unsuitable for a compiler. In the polyhedron model, sets are represented as polyhedra
in Z", i.e. sets of (integer) solutions of systems of affine inequalities (inequalities of the
form Ax < b, where A is a constant matrix, x a variable vector and b a constant vector).
It so happens that these sets are the subject of a well developed theory, (integer) linear
programming [43], and that all the necessary tools have efficient implementations.
The crucial observation is that the iterations of a regular loop (a Fortran DO loop, or a
Pascal FOR loop, or restricted forms of C, C++ and Java FOR loops) are represented
by a segment (which is a one-dimensional polyhedron), and that the iterations of a
regular loop nest are represented by a polyhedron with as many dimensions as the
nest has loops. Consider, for instance, the first statement of the loop program in Fig.
1(a). Itis enclosed in two loops. The instances it generates can be named by stating
the values of ¢ and j, and the iteration domain is defined by the constraints:

1<i<n, 1<5<i4+m
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for t=0 to m+2+xn—1 do
parfor p = max(0,t{—n+1) to min(¢, ([t+m)/2]) do
if 24p = t+m-+1 then

for =1 to n do So: A(p—m,p+1) = A(p—m—1,p) + A(p—m, p)
for j=1 to i+m do else
Si: A(g) = A(i—1,7) + A(i,j—1) Si: A(t—p+1,p+1) = A(t—p,p+1) + A(t—p+1,p)
od fi
So: A(i,i+m+1) = A(i—1,i+m)+ A4, i+m) od
od od
(a) source loop nest (d) target loop nest
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(b) source iteration domain (c) target iteration domain

Figure 1: Loop nest transformation in the basic polyhedron model



which are affine and therefore define a polyhedron. In the same way, the iteration do-
main of the second statement is 1 <i <n. For better readability, the loop counters are
usually arranged from outside inward in a vector, the iteration vector of the instance.
Observe that, in this representation, n and m are parameters, and that the size of the
representation is independent of their values. Also, the upper bound of the loop on j
IS not constant: iteration domains are not limited to parallelepipeds.

The iteration domain of the program is the disjoint union of these two polyhedra, as
depicted in Fig. 1(b) with dependences. (The dependences and the right side of the
figure are discussed below.) To distiguish the several components of the union, one
can use statement labels, as in:

E={(5,4,j) |1 <i<n,1<j<i+m}U{(S,i)|1<i<n}
The execution order can be deduced from two observations:

¢ In a program without control constructs, the execution order is textual order. Let
u <ty v be true iff u occurs before v in the program text.

e Loop iterations are executed according to the lexicographic order of the iteration
vectors. Let = <., y be true iff the vector z is lexicographically less than y.

In more complex cases, these two observations may be combined to give:
(Ryx) < (S,y) =x[l : N] <iex y[1L : N]V (z[1: N] =y[1l: NJA R <tz S),

where R and S are two statements, = and y their iteration vectors, N is the number of
loops which encloses both R and S, and z[1 : N] is the vector z restricted to its N first
components. Returning to Fig. 1, one has:

(S1,1,7) < (Sq,4")y =i < i’V (i =4 Atrue),

which simplifies into (54,14, 7) < (Ss, ") =i <7’

The assumption behind dependence analysis is that the sets R(u) and W(u) above
depend only on the name of the instance «. This is obviously not true in general. In the
polyhedron model, one assumes that all accesses are to scalars and arrays, and that,
in the latter case, subscripts are known functions of the surrounding loop counters.
One usually also assumes that there is no aliasing — two arrays with different names
do not overlap — and that subscripts are always within the array bounds. Techniques
for detecting and correcting violations of these assumptions are beyond the scope of
this entry. With these assumptions, two instances (R, z) and (S, y) are in dependence
if they both access the same array A of dimension d 4, and if the subscript equations

fr(z) = fs(y)

have solutions within the iteration domains of R and S. Here, fr and fs are the re-
spective subscript functions of A in R and S. Solving such equations is easy only if
each subscript is an affine function of the iteration vector:

fr(x) = Frx + gr,
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where F is a matrix of dimension d 4 xdr with di being the number of loops surround-
ing R, and gp is a vector of dimension d,. One may associate with each candidate
dependence a system of constraints by gathering the subscripts equations, the con-
straints which define the iteration domains of R and S, and the sequencing predicate
above. All of these constraints are affine, with the exception of the sequencing pred-
icate which is a disjunction of affine constraints. Each disjunct can be tested for so-
lutions, either by ad hoc conservative methods — see the [Banerjee test] entry in this
encyclopedia — or by linear programming algorithms — see the [Dependence] entry.

In summary, a program can be handled in the polyhedron model — and is then called a
regular or static control program — if its only control constructs are (also called regular)
loops with affine bounds and its data structures are either scalars or arrays with affine
subscripts in the surrounding loop counters. It should be noted that these restrictions
must not be taken syntactically but semantically. For instance, in the program:

1 =0k =0;
while i <n do
alk] = 0.0;
1 =1+1;
k=k+3
od

the loop is in fact regular with counter ¢, and the subscript of a is really 34, which is
affine. There are many classical techniques — here, induction variable detection — for
transforming such constructs into a more “polyhedron-friendly” form.

Regular programs are mainly found in scientific computing, linear algebra and signal
processing, where unbounded iteration domains are frequent. Perhaps more surpris-
ingly, many variants of the Smith and Waterman algorithm [44], which is the basic tool
for genetic sequence analysis, are regular and can be optimized with polyhedral tools
[30]. Also, while large programs rarely fit in the model, it is often possible to extract
regular kernels and to process them in isolation.

Transformations

The main devices for program optimization in the polyhedron model are coordinate
transformations of the iteration domain.

An example

Consider Fig. 1 as an illustration of the use of transformations. Fig. 1(a) presents a
sequential source program with two nested loops. The loop nest is imperfect: not all
statements belong to the innermost loop body.

Fig. 1(b) depicts the iteration domain of the source program, as explained in the pre-
vious section. The arrows represent dependences and impose a partial order on the
loop steps. Apart from these ordering constraints, steps can be executed in any order
or in parallel.



In the source iteration domain, parallelism is in some sense hidden. The loop on j is
sequential, since the value stored in A(, j) at iteration j is used as A(i,j—1) in the
next iteration. The same is true for the loop on i. However, parallelism can be made
visible by applying a skewing transformation as in Fig. 1(c). For a given value of ¢,
there are no dependences between iterations of the p loop, which is therefore parallel.
The required transformation can be viewed as a change of coordinates or a renaming:

()=o) () (2) = ()= (1) o ()

Observe that the transformation for S; has the non-singular matrix and,

0 1
hence, is bijective. Furthermore, the determinant of this matrix is 1 (the matrix is
unimodular), which means that the transformation is bijective in the integers.

A target loop nest which corresponds to the target iteration domain is depicted in
Fig. 1(d). The issue of target code generation is addressed later. For now, just note
that the target loop nest is much more complex than the source loop nest, and that it
would be cumbersome and error-prone to derive it manually. On the other hand, the
fact that both transformation matrices are unimodular simplifies the target code: both
loops have unit stride.

The search for a transformation

The fundamental constraint on a transformation in the polyhedron model is affinity.
As explained before, each row of the transformation matrix corresponds to one axis
of the target coordinate system. Each axis represents either a sequential loop or a
parallel loop. Iterations of a sequential loop are executed successively; hence, the
loop counter can be interpreted as (logical) time. Iterations of a parallel loop are
executed simultaneously (available resources permitting) by different processors; the
values of their loop counters correspond to processor names. Finding the coefficients
for the sequential axes constitutes a problem of scheduling, finding the coefficients for
the parallel axes one of placement or allocation. Different methods exist for solving
these two problems.

The order in which sequential and parallel loops are nested is important. One can
show that it is always possible to move the parallel loops deeper inside the loop nest,
which generates lock-step parallelism, suitable for vector or VLIW processors. For less
tightly coupled parallelism, suitable for multicores or message-passing architectures,
one would like to move the parallel loops farther out, but this is not always possible.

Scheduling

A schedule maps each instance in the iteration domain to a logical date. In contrast to
what happens in task graph scheduling (see the corresponding entry), the number of
instances is large, or unknown at compile time, or even infinite, so that it is impossible
to tabulate this mapping. The schedule must be a closed-form function of the iteration



vector; we will see presently that its determination is easy only if restricted to affine
functions.
Let 0z (i) be the schedule of instance (R, ). Since the source of a dependence must
be executed before its destination, the schedule must satisfy the following causality
constraint:

Vi, j i (R,i) 6 (S, ) = Or(i) < 0s(j).

There are as many such constraints as there are dependences in the program. The
unknowns are the coefficients of 6z and 6s. The first step in the solution is the elimina-
tion of the quantifiers on 7 and j. There are general methods of quantifier elimination
[38] but, due to the affinity of the constraints in the polyhedron model, more efficient
methods can be applied. In fact, the form of the causality constraint above asserts
that the affine delay 6s(j)—60r(7) must be positive inside the dependence polyhedron
{i,j | (R,4)d (S, j)}. Tothis end, it is necessary and sufficient that the delay be positive
at the vertices of the dependence polyhedron, or that it be an affine positive combina-
tion of the dependence constraints (Farkas lemma). The result of quantifier elimination
is a linear system of inequalities which can be solved by any linear programming tool.
This system of constraints may not be feasible, i.e. it may have no solution. This
means simply that no linear-time parallel execution exists for the source program. The
solution is to construct a multidimensional schedule. In the target loop nest, there will
be as many sequential loops as the schedule has dimensions.

More information on scheduling can be found in the [Scheduling Algorithms] entry of
this encyclopedia.

Placement

A placement maps each instance to a (virtual) processor number. Again, this mapping
must be in the form of a closed affine function. In contrast to scheduling, there is no
legality constraint for placements: any placement is valid, but may be inefficient.

For each dependence between instances that are assigned to distinct processors,
one must generate a communication or a synchronization, depending on whether the
target architecture has distributed or shared memory. These are costly operations,
which must be kept at a minimum. Hence, the aim of a placement algorithm is to find
a function:

T E—[0,P]

where P is the number of processors, such that the size of the set:
C={u,ve€e E|udv,m(u) #m(v)}

is minimal. Since counting integer points inside a polyhedron is difficult, one usu-
ally uses the following heuristics: try to “cut” as many dependences as possible. A
dependence from statement R to S can be cut if the following constraint holds:

(R,3)0(S, j) = mr(i) = 7s(j).

This condition can be transformed into a system of homogeneous linear equations for
the coefficients of =. The problem is that, in most cases, if one tries to satisfy all the
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cutting constraints, the only solution is 7(u) = 0, which corresponds to execution on
only one processor: this, indeed, results in the minimal number of synchronizations
(namely zero)! A possible way out is to solve the cutting constraints one at time, in
order of decreasing size of the dependence polyhedron, and to stop just before gener-
ating the trivial solution. The uncut dependences induce synchronization operations.
If all dependences can be cut, the program has communication-free parallelism and
can be rewritten with one or more outermost parallel loops.

In the special case of a perfect loop nest with uniform dependences, one may ap-
proximate the dependence graph by the translations of the lattice generated by the
dependence vectors. If the determinant of this lattice is larger than 1, the program can
be split into as many independent parts [17].

Lastly, instead of assigning a processor number to each instance, one may assign
all iterations of one statement to the same processor [35, 47]. This results in the
construction of a Kahn process network [33].

Code generation

In the polyhedron model, a transformation of the source iteration domain can be found
automatically, which optimizes some objective function. The highest execution speed
(i.e. the minimum number of steps to be executed in sequence) may be the first thing
that comes to mind, but many other functions are possible.

Unfortunately, it is not trivial to generate efficient target code from the optimal solution
in the model. There are several factors that can degrade performance seriously. The
enumeration of the points in the target iteration domain involves tests for the lower and
upper border. If the code is not chosen wisely, these tests will often degrade scalabil-
ity. For example, in Fig. 1, a maximum and a minimum is involved. The example of
Fig. 1 also shows that additional control (the IF statement) may be introduced, which
degrades performance. Of course, synchronizations and communications can also
degrade performance seriously.

For details on code generation in the polyhedron model, see the [Parallel Code Gen-
eration] entry.

Extensions

The following extensions have successively been made to the basic polyhedron model.

WHILE loops

The presence of a WHILE loop in the loop nest turns the iteration domain from a finite
set (a polytope) into an infinite set (a polyhedron). If the control dependence that the
termination test of the loop imposes is being respected, the iteration must necessarily
be sequential. However, the steps of a WHILE loop in a nest with further (FOR or
WHILE) loops may be distributed in space. There have been two approaches to the
parallelization of WHILE loops.



for i=0to n—1 do

) A(i,0) = ... A(2¥n—i—1,0)
for i=0to2*n—1 do q
o]
A(:,0) = ... A(2%¥n—i—1,0) -
d for i=n to 2*xn—1 do
o]
A(i,0) = ... A(2%¥n—i—1,0)
od

e e o o ¢
—v v v v v

Figure 2: Iteration domain splitting

The conservative approach [22, 25] respects the control dependence. One challenge
here is the discovery of global termination. The speculative approach [14] does not
respect the control dependence. Thus, several loop steps may be executed in parallel
if there is no other dependence between them. The price paid is the need for storage of
intermediate results, in case a rollback needs to be done when the point of termination
has been discovered but further steps have already been executed. In some cases,
overshooting the termination point does not jeopardize the correctness of the program
and no rollback is needed. Discovering this property is beyond the capability of present
compilers.

Conditional statements

The basic model permits only assignment statements in the loop body. The challenge
of conditionals is that a dependence may hold only for certain executions, i.e., not for
all branches. A static analysis can only reveal the union of these dependences [13].

Iteration domain splitting

In some cases, the schedule can be improved by orders of magnitude if one splits the
iteration domain in appropriate places [24]. One example is depicted in Fig. 2. With
the best affine schedule of |i/2] each parallel step contains two loop iterations, i.e.
the execution is sped up by a factor of 2. (The reason is that the shortest dependence
has length 2.). The domain split on the right yields two partitions, each without de-
pendences between its iterations. Thus, all iterations of the upper loop (enumerating
the left partition) can be executed in a first parallel step, and the iterations of the lower
loop (enumerating the right partition) in a second one, for a speedup of n/2

Tiling

The technique of domain splitting has a further, larger significance. The polyhedron
model is prone to yielding very fine-grained parallelism. To coarsen the grain when
not enough processors are available, one partitions (parts of) the iteration domain in
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equally sized and shaped tiles. Each tile covers a set of iterations and the points
in a tile are enumerated in time rather than in space, i.e., the iteration over a tile is
resequentialized.

One can tile the source iteration domain or the target iteration domain. In the latter
case, one can tile space and also time. Tiling time corresponds to adding hands to
a clock and has the effect of coarsening the grain of processor communications. The
habilitation thesis of Martin Griebl [23] offers a comprehensive treatment of this topic
and an extensive bibliography. See also the [Tiling] entry of this encyclopedia.

Treatment of expressions

In the basic model, expressions are considered atomic. There is an extension of the
polyhedron model to the parallelization of the evaluation of expressions [18]. It also
permits the identification of common subexpressions and provides a means to choose
automatically the suitable point in time and the suitable place at which to evaluate it
just once. Its value is then communicated to other places.

Relaxations of affinity

The requirement of affinity enters everywhere in the polyhedron model: in the loop
bounds, in the array index expressions, in the transformations. Quickly, after the poly-
hedron model had been developed, the desire arose to transcend affinity in places.
Iteration domain splitting is one example.

Lately, a more encompassing effort has been made to leave affinity behind. One
circumstance that breaks the affinity of index expressions is that the so-called structure
parameters (e.g. variables n and m in the loops of Fig. 1 and 2) enter multiplicatively as
unevaluated variables, not as constants. For example, when a two-dimensional array
is linearized, array subscripts are of the form n i+ j with 7, j being the loop iterators. As
a consequence, subscript equations are non-linear in the structure parameters, too.
An algorithm for computing the solutions of equation systems with exactly one such
structure parameter exists [29].

In transformations and code generation, non-linear structure parameters, as in ex-
pressions ni, n?i or nmi, can be handled by generalizing existing algorithms (for
the case without non-linear parameters) using quantifier elimination [28]. Code gen-
eration can even be generalized to handle non-linear loop indices, as in ni?, n?i? or
ij. To this end, cylindrical algebraic decomposition (CAD) [27], which corresponds
to Fourier-Motzkin elimination in the basic model, is used for computing loops nests
which enumerate the points in the transformed domains efficiently. This extends the
frontier of code generation to arbitrary polynomial loop bounds.
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Applications other than loop parallelization
Array expansion

It is easy to see that, if a loop modifies a scalar, there is a dependence between any
two iterations, and the loop must remain sequential. When the modification occurs
early in the loop body, before any use, the dependence can be removed by expanding
the scalar to a new array, with the loop counter as its subscript. This idea can be
extended to all cases in which a memory cell — be it a scalar or part of an array — is
modified more than once. The transformation proceeds in two steps:

e Replace the left side of each assignment by a fresh array, subscripted by the
counters of all enclosing loops.

¢ Inspect all the right sides and replace each reference by its source [20].

The source of a use is the latest modification that precedes the use in the sequential
execution order. It can be computed by parametric integer programming. The result
of this transformation is a program in dynamic single-assignment form. Each memory
cell is written to just once in the course of a program execution. As a consequence,
the sets W(u) N W(v) are always empty: the transformed program has far fewer de-
pendences and, occasionally, much more parallelism than the original.

Array shrinking

A consequence of the previous transformation is a large increase in the memory foot-
print of the program. In many cases, the same degree of parallelism can be achieved
with less expansion, or the target architecture cannot exploit all parallelism there is,
and some of the parallel loops have to be sequentialized. Another situation, in a
purely sequential context, is when a careless programmer has used more memory
than strictly necessary to implement an algorithm.

The aim of array shrinking is to detect these situations, and to reduce the memory
needs by inserting modulo operators in subscripts. Suppose, for instance, that in the
following code:

fori=0ton—1do
alil = ... ;

od

one replaces afi| by a[i mod 16]. The dimension of a, which is n in the first version, is
reduced to 16 in the second version. Of course, this means that the value stored in af]
is destroyed after sixteen iterations of the loop. This transformation may change the
outcome of the program, unless one can prove that the lifetime of a[:] does not exceed
sixteen iterations.

Finding an automatic solution to this problem has been the subject of much work since
1990 (Darte [16] offers a good discussion). The proposed solution is to construct an
interference polyhedron for the elements of a fixed array, and to cover it by a maximally
tight lattice such that only the lattice origin falls inside the polyhedron. The basis
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vectors of the lattice are taken as coordinate axes of the reduced array, and their
lengths are related to the modulus of the new subscripts.

Communication Generation

When constructing programs for distributed memory architectures, be it with data dis-
tribution directives in languages like High-Performance Fortran (HPF) or under the
direction of a placement function, one has to generate communication code. It so
happens that this is also a problem in polyhedron scanning. It can be solved with the
same techniques and the same tools that are used for code generation.

Locality enhancement

Most modern processors have caches: small but fast memories that retain a copy of
recently accessed memory cells. A program has locality if memory accesses are clus-
tered such that there is a high likelihood of finding a copy of the needed information in
cache rather than in main memory. Improving the locality of a program is highly bene-
ficial for performance, since caches are usually accessed in one cycle while memory
latency may range from ten to a hundred cycles.

Since the cache controller returns old copies to memory in order to find room for new
ones, locality is enhanced by changing the execution order such that the reuse dis-
tance between successive accesses to the same cell is minimal. This can be achieved,
for instance, by moving all such accesses to the innermost loop of the program [49].
Another approach consists of dividing a program into chunks whose memory footprints
are smaller than the cache size. Conceptually, the program is executed by filling the
cache with the necessary data for one chunk, executing the chunk without any cache
miss, and emptying the cache for the next chunk. One can show that the memory
traffic will be minimal if each datum belongs to the footprint of only one chunk. The
construction of chunks is somewhat similar to scheduling [7]. It is enough to have
asymptotic estimates of the footprint sizes. One advantage of this method is that it can
be adapted easily to the management of scratchpad memories, software-controlled
caches as can be found in embedded processors.

Dynamic optimization

Dynamic optimization resulted from the observation that modern processors and com-
pilers are so complex that building a realistic performance estimator is nearly impos-
sible. The only way of evaluating the quality of a transformed program is to run it and
take measurements.

In the polyhedron model, one can define the polyhedron of all legal schedules (see the
previous section on scheduling). Usually, one selects one schedule in this polyhedron
according to some simple objective function. Another possibility is to generate one
program for each legal schedule, measure its performance, and retain the best one.
Experience shows that, in many cases, the best program is unexpected, the proof of its
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legality is not obvious, and the reasons for its efficiency are difficult to fathom. As soon
as the source program has more than a few statements, the size of the polyhedron
of legal schedules explodes: sophisticated techniques including genetic algorithms
and machine learning are needed to restrict the exploration to “interesting” solutions
[39, 40].

Tools

There is a variety of tools which support several phases in the polyhedral paralleliza-
tion process.

Mathematical support

PIP [19] is an all integer implementation of the Simplex algorithm, augmented with
Gomory cuts for integer programming [43]. The most interesting feature of PIP is that
it can solve parametric problems, i.e. find the lexicographic minimal = such that

Ax < By +c¢

as a function of .

Omega [41] is an extension of the Fourier-Motzkin elimination method to the case of
integer variables. It has been extended into a fully fledged tool for the manipulation
of Presburger formulas (logical formulas in which the atoms are affine constraints on
integer variables).

There are many so-called polyhedral libraries; the oldest one is the PolyLib [11]. The
core of these libraries is a tool for converting a system of affine constraints into the
vertices of the polyhedron it defines, and back. The PolyLib also includes a tool for
counting the number of integer points inside a parametric polyhedron, the result being
an Ehrhart polynomial [10]. More recent implementations of these tools, occasionally
using different algorithms, are the Parma Polyhedral Library [2], the Integer Set Library
[46], the Barvinok Library [48], and the Polka Library [32]. This list is probably not
exhaustive.

Code generation

CLooG [6] takes as input the description of an iteration domain, in the form of a disjoint
union of polyhedra, and generates an efficient loop nest that scans all the points in
the iteration domain in the order given by a set of scattering functions, which can be
schedules, placements, tiling functions and more. For a detailed description of CL0o0G,
see the [Parallel Code Generation] entry in this encyclopedia.

Fully-fledged loop restructurers

LooPo [26] was the first polyhedral loop restructurer. Work on it was started at the
University of Passau in 1994 and it was developed in steps over the years and is still
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being extended. LooPo is meant to be a research platform for trying out and comparing
different methods and techniques based on the polyhedron model. It offers a number
of schedulers and allocators and generates code for shared-memory and distributed
memory architectures. All of the extensions mentioned above have been implemented
and almost all are being maintained.

Pluto [9] was developed at Ohio-State University. Its main objective is to use place-
ment functions to improve locality, and to integrate tiling into the polyhedron model. Its
target architectures are multicores and graphical processing units (GPUS).
GRAPHITE [45] is an extension of the GCC compiler suite whose ultimate aim is to
apply polyhedral optimization and parallelization techniques, where possible, to run-
of-the-mill programs. Graphite looks for static control parts (SCoPs) in the GCC in-
termediate representation, generates their polyhedral representation, applies trans-
formations, and generates target code using CLooG. At the time of writing, the set of
available transformations is still rudimentary, but is supposed to grow.

RELATED ENTRIES

Banerjee test
Dependence abstractions
Dependence analysis
High-Performance Fortran
Loop-level speculation
Loop nest parallelization
Loop scheduling
OpenMP

Parallel Code Generation
Scheduling algorithms
Task Graph Scheduling
Tiling

BIBLIOGRAPHIC NOTES AND FURTHER READING

The development of the polytope model was driven by two nearly disjoint communities.
Hardware architects wanted to take a set of recurrence equations, expressing, for in-
stance, a signal transformation, and derive a parallel processor array from it. Compiler
designers wanted to take a sequential loop nest and derive parallel loop code from it.
One can view the seed of the model for architecture in the seminal paper by Karp,
Miller and Winograd on analyzing recurrence equations [34] and the seed for software
in the seminal paper by Lamport on Fortran DO loop parallelization [36]. Lamport used
hyperplanes (the slices in the polyhedron that make up the parallel steps), instead of
polyhedra. In the early Eighties, Quinton drafted the components of the polyhedron
model [42], still in the hardware context (at that time: systolic arrays).
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The two communities met around the end of the Eighties at various workshops and
conferences, notably the International Conference on Supercomputing and CONPAR
and PARLE, the predecessors of the Euro-Par series. Two developments made the
polyhedron model ready for compilers: parametric integer programming, worked out
by Feautrier [19], which is used for dependence analysis, scheduling and code gener-
ation, and seminal work on code generation by Irigoin et al. [1, 31]. Finally, Lengauer
[37] gave the model its name.

The Nineties saw the further development of the theory underlying the model's meth-
ods, particularly for scheduling, placement and tiling. Extensions and applications
other than loop parallelization came mainly in the latter part of the Nineties and in the
following decade.

A number of textbooks focus on polyhedral methods. There is the three-part series
of Banerjee [3, 4, 5], a book on tiling by Xue [50] and a comprehensive book on
scheduling by Darte, Robert and Vivien [15]. Collard [12] applies the model to the
optimization of loop nests for sequential as well as parallel execution and studies a
similar model for recursive programs.

In the past several years, the polyhedron model has become more mainstream. The
seed of this development was an advance in code generation methods [6]. With the
GCC community taking an interest, it is to be expected that polyhedral methods will
increasingly find their way into production compilers.
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