Asymptotically Efficient Algorithms for Parallel Architectures *

Paul Feautrier
Laboratoire MASI
Université P. et M. Curle
75252 PARIS CEDEX 05 FRANCE

July 25, 1996

Abstract

This paper gives a general method for the construction of parallel algorithms. Start-
ing from a conventional sequential program, one first constructs a timing function, i.e.
a schedule for a paracomputer. It is shown that the ratio of the maximum value of
the timing function to the total operation count is a good measure of the degree of
parallelism in the original algorithm. In particular, if this ratio tends to zero when the
operation count grows large, then there is an asymptotically efficient parallel version of
the original algorithm. This implementation is shown to be surprisingly robust in the
face of variations, random and otherwise, of the operation execution times. The tech-
nique may be used as the starting point of the construction of programs for all kinds of
parallel computers: vector, synchronous, asynchronous and distributed architectures.

1 Introduction

Many people have argued that for building programs for parallel computers, some knowledge
of the execution time of tasks is necessary. However, experience has shown that one gets
quite efficient algorithms in spite of imprecise timing information ([9]). The aim of this
paper is to explain this apparent paradox.

Recent research on the automatic construction of parallel programs has centered on the
notion of transformation. The rationale is that most programs were written with sequential
execution in mind and are not well adapted to parallel execution. Transformations were
invented to remove excessive optimization : expansion ([14], [4]), loop reordering and loop
splitting ([1]), algebraic expression rearrangement ([2], [10]). As always, if taken naively,
the transformation approach leads to combinatorial explosion. For a given program, there
is a very large number of valid transformations which interact in a complex way; depending
on the target architecture, some of them improve the running time of the program and some
do not. Parallelization becomes a search for a minimum in a set of semantically equivalent
programs. Beside the mere size of the search space, one may be trapped in local minima.

Mathematicians have a well known method for dealing with this kind of situation : in-
stead of working with individual programs, work with equivalence classes under the selected

*This work has been supported by DRET under contract 87/280 and by PRC C® of the CNRS.

Preliminary Version, May 23, 1989 2

transformations. To apply this strategy, one obviously need a notation for one equivalence
class; the notation should be simple and compact but carry enough information to enable
one to compute the required objective function and to reconstruct the selected optimal
representative. This paper shows that, for a restricted class of programs (the static control
programs of [4]), the dataflow graph as (DFG) defined in [5] answer at least part of our
requirements.

In paragraph 2, we give a more precise definition of static control programs; we review
the methods of [5] for computing their DFG. We then introduce the notion of timing
function. A timing function simply is a representation of a schedule for a computer with an
unllimited number of processors and no memory conflicts. J. T. Schwartz ([17]) has coined
the term “paracomputer” for such a machine.

In paragraph 3, we explain how to fold the paracomputer schedule to P processors. We
show that the performance of the resulting algorithm is strongly related to the ratio D/S,
where § is the size of the DFG and D is the length of its longest path '. For many practical
algorithms, this ratio tends to 0 as the size of the calculation grows large; as a consequence,
the efficiency of the parallel algorithm tends to 1. We shows that the resulting algorithm is
surprisingly robust in the face of uncertainties in the execution time of operations. Basically,
the reason is that such uncertainties introduce delays of the order of D while the running
time is of the order of S/ P.

From these remarks to a practical restructuring compiler is still a long way. In the
conclusion, we discuss how to attack the remaining problems: construction of linear and
non linear timing functions, code generation issues, memory management, extension to
distributed systems.

2 Models for algorithms and computers

It seems very difficult to give interesting performance estimates for the parallel execution
of arbitrary programs. There is a sharp distinction, for instance, between polynomials
algorithms, non-polynomials algorithms, and programs whose termination is not guaran-
teed. Now parallel program construction involves, among other problems, questions of load
balancing and hence performance prediction. Obviously this is easiest for polynomial al-
gorithms, and very difficult for potentially non terminating processes. This has motivated
the definition in [5] of static control programs, i.e. programs whose operation count may be
calculated a priori as soon as the values of structure parameters are known.

Briefly speaking, a static control program has for loops as the only control instructions.
The data processing instructions are simple or guarded assignments and input-output in-
structions. Furthermore, in a loop nest, the bounds depend only on outer loop counters
and structure parameters. Each structure parameter is defined by an input instruction and
is not modified anywhere else in the program.

As amatter of technical convenience, we will restrict all array indices and loop bounds to
affine integer expressions, and all structure parameters to integer variables. This restriction
is enforced because at the present time our main analysis tool is the parametric linear integer

Ywhich also is the maximum value of the timing function.

Preliminary Version, May 23, 1989 3

programming algorithm of [6]. It may be possible to extend the class of tractable programs
by using formal computation techniques, (see for instance [13]).

An important distinction when discussing parallel programs is the one between instruc-
tions and operations. An instruction is a static entity, which may be identified with a syn-
tactic unit in the program text. An operation is one particular execution of an instruction
in a given context. Most often, an instruction will be executed many times. Fach execution
will be considered as a distinct operation. In a static control program, an operation may
be identified by specifying the parent instruction and the values of the surrounding loop
counters or iteration vector. If array indices depends only on loop counters, a knowledge of
an operation name allows one to compute the adresses of accessed memory cells, and hence
its dependencies to other operations.

In a sequential program, operations are totally ordered in time. In a parallel program,
the execution order is partial. Non-comparable operations may be executed simultaneously
if sufficient ressources exists. We will postulate that the total running time of a program
may be computed simply by summing the duration of elementary operations. Specifically,
we will ignore phenomena like pipe-line loading and unloading, cache hit or miss, and
memory contention. In fact, we will show in 3.4 how to model these effects as random
fluctuations in the execution times.

2.1 The Dataflow Graph

For a static control program, it is possible to analyze the flow of data through the operations
and the memory cells. The basic technique is presented in [7] and in more details in [5]; a
brief description follow. For each read access in the program, the set of all preceeding write
accesses to the same memory cell is characterized and its temporal maximum is computed.
The result is the source of the value obtained by the read access. A source is composed
of an instruction name and an iteration vector. Both these elements may depend on the
iteration vector of the read access. The method of [5] yields a source function in the form
of a more or less complicated conditional expression.

Consider for instance the following Fortran code which is a part of a Cholesky solver:

program choles
integer i, j, k

real x(10), =z(10, 10)
real a(10,10), p(10)

do1i=1,n
x(i) = a(i,i) {1}
do 2k =1, i-1

2 x(1) = x(i) - a(i,k)**2 {2}
p(i) = 1.0/sqrt(x) {3}
do 3 j =1i+1, n
z(i,j) = a(i,]j) {4}
do 4k =1,i-1

4 z(i,j) = z(i,j) - a(i,j) * a(i,k) {5}
a(j,i) = z(i,j) * p(i) {6}

1 continue

Preliminary Version, May 23, 1989 4

end

Let us consider statement {6}. This instruction is executed once for each integer point
in the set
Ds={<i,j>|1<i<n,i+1<j<n}.

Deg is the ezecution domain of {6}. FEach operation produces a value for a(i,j) and
consumes one value for z(i,j) and one value for p(i). Let us investigate, e.g., the
source of the value for z(i,j). There are two a priori possibilities: statements {4} and
{5}. One sees that the last iteration of {6} will destroy all preceding values, provided
this instruction is executed at least once. This is always true unless ¢ = 1, in which
case the source is instruction {4}. Let us note (n, ¢, ..., k) the value which is produced
by instruction n when the surrounding loop counters have values ¢, ..., k. The value of
z(i,j) in {6} is given by the following conditional:

if i >= 2 then (5, i, j, i-1) else (4, i, j)

This reasoning may be reproduced (with suitable modifications), for all right-hand side
(rhs) references in the program. Whe have shown in [5] that the process is completely
mechanical, the basic tool being an algorithm for solving parametric linear programing
problems in integers ([6]). The corresponding program has been inplemented partly in Lisp
and partly in C, and runs on various computers including a Dec Vax, a Sun workstation
and a personnal computer.

The result of the analysis may be presented as a graph which we call the data flow graph
or DFG for short. The DFG has one node per instruction in the original program. There
is an edge from instruction s (the source) to instruction t (the sink) for each rhs reference
in t wich uses a value produced by s. Each edge is labelled by the following information:

e The governing predicate, which must be true for the value to be really used in the
sink instruction. For the exemple above, the governing predicate for the 5 — 6 edge
s 1 > 2.

e The sink-to-source transformation which allows one to compute the iteration vector
of the source instruction in term of the iteration vector of the sink instruction. In all
practical cases we have encountered so far, this transformation is affine, but there is
a possibility of encountering quasi-affine transformations as the result of the source
computation (see [4] for a somewhat artificial exemple). In the above case, this
transformation is:

i =K —i—1

Table 1 gives the complete DFG for the Cholesky program.

The DFG is similar to the usual dependence graph but has several advantages. The
edges in the DFG correspond only to true dependences in the program; anti-dependences
and output dependences are suppressed. Spurious true dependences (i. e. dependences on
values which are destroyed before being used) are suppressed as well. As a consequence,
the DFG is insensitive to expansion transformations ([14], [4]). The DFG is sensitive to
loop inversion and loop skewing ([19]). However, this effect is very limited : it is simply a
renaming of all nodes, with corresponding changes of variables in the governing predicates
and source-to-sink transformations.

Preliminary Version, May 23, 1989 5

source sink reference | governing | execution
predicate | domain

(2,1,k—1) (2,1, k) x(i) k>2 1<i<n
(1,7) (2,1, k) x(i) k=1 1<k<i—1
(6,7,k) (2,0, k) | a(ik) true

(2,7,i—1) (3,1) x(i) 1> 1 1<i<n
(1,7) (3,1) x(i) =1

(5,4,5,k—=1) | (5,4,7,k) | z(i,j) k>2 1<i<n
(4,7,7) (5,1,7,k) | z(i,j) k=1 1+1<5<n
(6,k,17) (5,1,7,k) | a(i,k) true 1<k<i-1
(5,7,7,1—1) | (6,7,7) z(i,j) > 2 1<i<n
(4,7,7) (6,7,7) z(i,j) =1 t+1<75<n
(3,1) (6,2,7) | p(i) true

Table 1: The DFG of the Cholesky Program

2.2 Expanded Dataflow Graph and Timing Functions

The DFG is a synthetic representation which abstracts over all values of the structure
parameters. For given values of the structure parameters, we may construct a more explicit
representation by the following expansion process. The expanded DFG will have one node
per operation. There will be an edge from (s,@) to (t,b) iff there is an edge from s to
t in the DFG, and if b satisfies its governing predicate, and if @ and b are related by its
source-to-sink transformation.

The expanded DFG has no loops; its transitive closure is a partial order < which is
coarser than the sequential execution order of the program. Let u and v be two operations.
u < v means that w produces a value which participates more or less directly in the
computation of v’s output value. Obviously this implies that « must be finished before
v may start. There are several paradigms for extracting a parallel program from a task
graph. For instance maximal chains with respect to < are processes. Conversely, maximal
antichains are wavefronts whose operations may be executed simultaneously.

In the classical scheduling approach, one tries to assign to each operation a start time
and a processor number in such a way that all constraints are satisfied. As is well known,
the scheduling problem is NP-complete unless the task graph is restricted to simple forms
which are not likely to be encountered in practice.

Our starting point will be the so-called timing functions, which are nothing more than
paracomputer schedules. A timing function should verify the following inequalities:

u=<v=0(u)+0(u) <0(v), (1)

where d(u) is the duration of w.

We will be interested mainly in the case where all operations have the same duration,
which may be taken as the time unit. Among all timing functions is a minimal one, which
is easily computed by the following formula:

Preliminary Version, May 23, 1989 6

0(u) = max{f(v)|v < u} + 1. (2)

The algorithm is linear in the number of edges in the expanded DFG. The important point,
however, is that in many cases we may obtain simple closed expressions for some timing
function; most often, this may be done uniformly in the structure parameters.

For instance, the reader may care to verify that the above Cholesky program admits
the following timing fonctions:

6(1,i) =0 0(2,i,k) = 3k
6(3,i)=3i—2 6(4,4i,)=0 (3)
6(5,i,5,k) =3k 6(6,i,j)=3i—1

The verification is nothing more than an examination of all edges in table 1. For an
edge from s to ¢t with governing predicate 7 and sink-to-source transform L, verify that
the inequality:

01t,dl > 0s, L(@)] + 1 (4)

is a consequence of @ € D, and #(d@).

The determination of timing functions is outside the scope of this paper. Let us note,
however, that the problem is strongly connected to the construction of systolic arrays.
In fact, from most systolic designs one may retrieve a (linear) timing function for the
underlying algorithm. Conversely, a well known synthesis method ([16]), starts by the
construction of a linear timing function from the DFG 2.

Another source of timing functions is the wavefront method ([12]). A wavefront is a set
of independent operations. Wavefronts are hyperplanes in the iteration space:

F, = {alh.d = t}. (5)

Obviously, §(@) = h.d@ is a timing function.

One should note, lastly, that guessing timing functions for illustration purposes is quite
easy. Iirst, construct an expanded DFG and a sample timing function with the help of (2).
Next, guess a simple representation of the “experimental” values. Lastly, check that the
proposed timing function is compatible with the DFG. The Cholesky timing functions (3)
were obtained in this way.

3 Theoretical results

We will suppose that we are given a timing function # which satisfies (2). Let S(n) be the
total operation count (which may be taken as the sequential running time), and D(n) be
the maximum value of 6. Let us define:

F(1) = {ulf(u) = 1}. (6)

2
Or rather from an equivalent representation as a set of uniform recurrence equations.

Preliminary Version, May 23, 1989 7

F(t) is the set of operations which are executed from time ¢ to time ¢ + 1 by the paracom-
puter, and will be called a front

An obvious way to fold the paracomputer schedule into a schedule for P processors is
to distribute the operations of F(¢) between the available processors. F(t) will now be
executed in a time which is roughly proportional to its size. The resulting program may be
sketched as follow:

for t := 1 to D(n) do

begin
execute F(t) in parallel on P processors; {A}
synchronize;

end;

It is an interesting exercise to apply the above recipe to the Cholesky program and its
set of timing functions (3). There is obviously a set of initialisations which are done at
time 0. Hence the program starts as 3 :

PCASE
DOALL 10 i = 1,n
10 x(i) = a(i,i)
PAR
DOALL 11 i = 1,n
DOALL 11 j = 1+1,n
11 z(i,j) = a(di,j)
END PCASE

An examination of the timing functions (3) shows that the contents of F'(¢) depends on
(t mod 3). In fact, F'(3s — 2) contains only instances of {3}, F'(3s — 1) instances of {6}
and F'(3s) contains both instances of {2} and {5}. This suggests rewriting the original
program in the form:

DO1s =1, n
F(3s-2)
F(3s-1)
F(3s)

1 CONTINUE

The explicit coding of each front is now a straightforward problem of loop transforma-
tion, see [7] for a general solution. The result is:

DO1 s =1,n
p(s) = 1.0/sqrt(x(s))
DOALL 2 j = s+1, n

2 a(j,s) = z(j,s) * p(s)
PCASE
DOALL 3 i = s+1i,n
3 x(1) = x(1) - a(i,s)**2

®We will use the parallel programming primitives of [11].

Preliminary Version, May 23, 1989 8

PAR
DOALL 4 i = s+1, n
DOALL 4 j = i+1, n
4 z(i,j) = z(i,j) - a(4i,j) * a(d,s)
END PCASE
1 CONTINUE

Let us return to a general analysis of {A}. There is no reason for this program to be
optimal. It is a well known fact, however, that most super-computers usually operate one
or two orders of magnitude below their peak performance. Hence, while optimality would
be a very desirable characteristics, a substantial increase in efficiency would be interesting
enough.

The efficiency of a parallel programs for P processors is usually defined as:

T
PTp

€ =

where Ty is the sequential elapsed time (which we will identify to the execution time on one
processor), and T'p is the elapsed time on P processors.

Another point to keep in mind is that super-computers are specially adapted to large
computations. Having good values of € for large values of n is all we need in practice. We
will say that a parallel algorithm is asymptotically efficient iff ¢ — 1 when the structure
parameters tend to infinity. OQur aim in this paper is to investigate conditions under which
algorithm {A} is asymptotically efficient.

3.1 The case of perfect information

As we have said earlier, T's = S(n). The duration of iteration ¢ of the algorithm is easily
seen to be :

d, = [Card](DF(t))

where ¢ is the duration of the synchronization operation. Obviously:

I+e (7)

r<Jz]<z+ 1 (8)
Hence :

Card Card(F(1)) fito),

S(n)

Tp < Z

< (oc+1)D(n)+ 5 (9)
which implies that :
1
€ > 10
+ (0 +)P (1)

From this we deduce that:

Preliminary Version, May 23, 1989 9

Theorem 1 All algorithms such that the ratio D(n)/S(n) — 0 as n — oo have an asymp-
totically efficient parallel implementation, provided that the execution times of all operations
are equal.

The above ratio may thus be seen as a characterization of the degree of parallelism of the
source algorithm. Since this caracterization is derived from the DFG, it does not depends
on implementation details such as memory management or loop ordering. In the case of
the Cholesky algorithm, for instance, this ratio is of order O(1/n?), which indicates very
good parallelism. The same is true for matrix multiplication, Gauss-Jordan elimination
and LU factorisation. At the other end of the spectrum are summation algorithms (the
dot product is an exemple), for which the ratio is O(1). An interesting situation obtains
in the case of the solution of a triangular system, which is O(1) or O(1/n) depending on
whether the dot products are computed left-to-right or right-to-left. This indicates that
while our theory abstracts from a large number of possible transformations, it still does not
take into account algebraic properties of operators like associativity and commutativity.
Further work is needed in this direction.

In the sequel we will say that an algorithm has degree of parallelism o if the ratio

D(n)/S(n)is O(1/n") when n — oo.

3.2 A Worst Case Analysis

The hypothesis that the duration of an operation is always exactly one time unit is not
likely to be realized in practice, with the important exception of strongly synchronous
architectures like the Connexion Machine or VLIW computers. We would like to know
what happens in the face of such variations. Let the mean duration of an operation be
1 time unit, and let 7 be an upper bound. Obviously, the worst case occurs when the
longest operations are all executed by the same processor. Since there is a synchronization
operation at the end of each iteration, each processor will wait for the slowest one. In this
case we may neglect the synchronization time and ceiling effects. The new iteration time
is:

7_C:au’d(F(t))

and the efficiency becomes:
1
=, 12
=1 (12)

The conclusion is that {A} no longer is asymptotically efficient, and that the degradation is
directly proportional to the variability in operation time. This result, however, is not very
realistic. Arranging for the longest operations to be executed by one particular processor is
as difficult a task as distributing them equally among all processors. We will next investigate
two more realistic models. In the first one, the so-called self-scheduling approach, the
allocation of an operation to a processor is done on the fly at execution time. In the other
one, we will suppose that the operation durations are independent random variables and
compute the expected value of the parallel running time.

Preliminary Version, May 23, 1989 10

3.3 Greedy Self-scheduling

A greedy scheduler works in the following way. When starting the execution of a front,
all its operations are put into a (real or virtual) queue. When a processor terminates an
operation, it removes an arbitrary operation from the queue and start executing it. If the
queue is empty, it stops until all pending operations are terminated and then start again
on the next front. We deduce that under the greedy scheduling policy, no processor is idle
as long as there is work to be done.

Let us take as origin the time at which front F'(¢) start executing. Let dg be the time at
which the work queue becomes empty, d be the time at which all work on the current front
is terminated, and let f, C F(t) be the set of operations which are executed by processor
p,p = 1, P. Processor p finishes working at time Zuefp d(u) and find the work queue empty.

Hence:
do < Y O(u) (13)
u€ fp
and if we sum all such inequalities for p = 1, P we obtain:

Pdy < > 0(uw). (14)

ueF(t)
Now, since from time dg to d each processor execute at most one operation, we have

d — dy < 7, and hence:
d < ZuEFt 8(“)
- P
Summing on all fronts, and taking care of including the synchronisation time, we get:

P
S(n)
< —p + D)7+ o).

+ 7. (15)

Tp <

+ D(n)(t +0),

and hence: |

D(n)

: (16)
st (7 9)

c>

T 14 P

which gives us the

Theorem 2 All algorithms such that D(n)/S(n) — 0 as n — oo have an asymptotically
efficient parallel implementation provided that the execution time of all operations is bounded
uniformly in n.

In the above analysis, we have neglected the time it takes to extract the next operation
from the scheduler queue. On most computers, this must be done from within a critical
section. Let k be the extraction time; the global memory must be considered as one more
processor, with a running time of kK5(n), to be compared to the total running time which
is of the order of %. This mean that self-scheduling is efficient only if kK < 1/P. For
ways of improving this situation by lumping several operations, see [15]. On machines

Preliminary Version, May 23, 1989 11

with recombining networks, like the New York Ultracomputer ([8]), there is no interference
between queue accesses, and the extraction time may simply be added to the operation
execution time.

3.4 A Probabilistic Analysis

In this section, we will suppose that an element of chance enter in the definition of the
operation execution time. If randomness is defined as the interaction of two independent
causal sequences then in a complicated architecture, there must be many random events.
Furthermore, one may further contribute to the randomness of the process by allocating
an operation to a processor according to some pseudo-random or hashing function (see [18]
for an exemple).

Let us suppose that the duration of an operation is a random variable with expectation

one time unit and variance v?

. All such variables are deemed independent. Let us first
consider a front F. Suppose that operations in F' are partitionned equally between P
processors. The workload of processor p will be a random variable X, with expectation m

and variance mv?, where m = Card(F')/P. The duration of front F is the random variable:
7 = max X, (17)
p=1

and we are interested in the expectation of Z. We will suppose that the X, have a common
distribution function:
®(z) = Prob{X, < a}, (18)
and a density *
o(x) = @'(x). (19)
Since the event {Z < z} is equal to {X, < z,p = 1, P}, the distribution function of Z is
®(2)7, and its density is P®(2)F~1¢(z). The expectation of Z is then:

E(Z) =P / 20(2)P1g(2)dz. (20)
0
The integral may easily be bounded by Schwartz inequality:
E(7) < P2/ 22¢(2)dz/ ()P 2g(2)dz. (21)
0 0

The first integral is £(X?). The second evaluates to 1/(2P — 1), to give :

EZ)y< P L(Xg) 22
Let a be any non-random number. From the identity:
P P
max(X,) = a+ max(X, — a) (23)
p=1 p=1

*The reader may care to convince himself that all our conclusions would stand in the case of a discrete
distribution function (and even in more complicated cases).

Preliminary Version, May 23, 1989 12

we may deduce a whole family of analogous bounds for E(Z). The most precise one is
associated to the minimum value of E((X, — a)?), which obtains when a = m = E(X,).
The final result is:

Var(X,)

E(Z) < E(X,) + Py 55—

(24)

Replacing E(X,) and Var(X,) by their values, we get °:

d< %@—I—V\/QPP_l\/Card(F) (25)

for the expected duration of front F'. Summing on all fronts, we get:

S(n) p R
E(Tp) < 7 T 5p 1 Z_: \/Card(F (1)) (26)

The sum is easily seen to be maximum when all summands are equal, i.e. when

Card(F'(t)) = S(n)/D(n).

This gives the final bound:

E(Tp) < @ + 1y QPP_ -\/S(n)D(n). (27)

€

1
>
o P D(n
Lt Pry/ o509
From this we deduce the

Theorem 3 If the operation durations of an algorithm may be represented by random
independent variables with finite expectation and variance, then the fact that the ratio
D(n)/S(n) — 0 as n — oo is a sufficient condition for the algorithm to have an asymptot-
ically efficient parallel implementation.

One should note that random fluctuations in the execution times effectively halve the degree
of parallelism, a not unexpected result ! The factor \/P/(2P — 1) vary between 1 and 1/v/2.
It should not be an important element in the following discussion. With this proviso in
mind, to get, say, more than 80% efficiency, one should keep P8/n® < .25, where 6 is
some characteristic time and « is the effective degree of parallelism. This will allow more
massive parallelism on synchronous machine and coarser parallelism on asynchronous and
distributed systems.

®Here again we neglect synchronization time and ceiling effects.

Preliminary Version, May 23, 1989 13

4 Relation to Previous Work

As the reader may have gathered by now, the aim of this paper is to put in perspective a
host of existing techniques rather than introduce new ones. In this context, our debt to
work on the construction of systolic arrays should be obvious.

A recent paper by Eager et. al. ([3]) is very near to our concerns and results. In
[3], one starts with a task graph and finds bounds on its efficiency when execulted on a
multiprocessor. The authors show that most of the details of the Task Graph may be
summarized by the Average Parallelism Measure, which is exactly the same as the ratio
D/S of the present paper.

From here on the papers take somewhat divergent directions. Fager et. al. suppose
that the task graph has been constructed elsewhere, that the tasks are few and that their
durations are large. This allows them to lump the synchronization time with execution
time and to use processor sharing as a scheduling policy. The main cause of inefliciency in
their task graphs is variation in the workload.

Here on the contrary our main objective is the construction of a task graph from the
DFG. Nodes of the DFG are build from a few machine instructions; there is almost always
adequate workload (as long as D/S — 0), and the main causes of inefficiencies are the
synchronization operations, the impossibility to use processor sharing at the instruction
level, and inaccuracies in the operation durations.

As a result we feel that the two papers give complementary information at the two
extremities of the granularity spectrum. It is a very striking fact that the main controlling
parameter (the average degree of parallelism), is the same in both cases.

5 Conclusion

Let us summarizes what has been achieved so far. When given a (FORTRAN) program,
we start by building its dataflow graph by techniques which are described in [5] and have
been sketched here. From the DFG we construct a timing function and obtain two crucial
informations:

e the sequential operation count, S(n),
e the length of the longest path in the expanded DFG, D(n).

We claim that the ratio p = D(n)/S5(n) is a fair measure of the inherent parallelism in the
original program. If p — 0, then there is an asymptotically efficient parallel implementation,
and the faster p tends to zero, the faster the efficiency tends to one. Conversely, since D(n)
is a lower bound on the parallel execution time on a finite number of processors, if p does
not tend to zero, the advantage to be gained from a parallel execution is limited.

All these results depends on the hypothesis that all operation are executed in unit time.
Let us note first that all our results would subsist under the less stringent hypothesis that
all operations inside one front have the same duration. In the presence of timing variations
inside a front, we have investigated two solutions:

Preliminary Version, May 23, 1989 14

o In self-scheduling, the allocation of operations to processors is done at execution time.
Self-scheduling is very efficient but precludes the use of fine grain parallelism.

¢ Randomization allocates operations at compilation time according to some determin-
istic approximation of a random process. The method has low overhead but reduces
the effective degree of parallelism.

Choosing between the two approaches will obviously depends on details of the source pro-
gram and object computer structure.

Let us now investigates the technical feasibility of our proposal. There is no problem
with the construction of the DFG. Constructing linear timing functions also is a well known
procedure, but there are programs for which such a function does not exists. An elementary
exemple is:

DO11i=1,n
D013 =1,i
1 s =8 + x(i, j)

One may try to look for polynomial timing functions. This does not look a very promising
approach, since the next task is to invert the timing function for the construction of fronts. It
seems much more promising to search for multidimensional and multiphase timing functions.
This problem will be the subject of future research.

The construction of fronts is a problem in loop transformation, for which we have given
the elements of a solution in [7]. It is here that a knowledge (even an approximate one), of
execution time may be helpful when distributing the workload between processors.

Once the fronts are constructed, one must insert appropriate synchronization instruc-
tions in the code. In the skeletal algorithm {A}, this has been done in a systematic, uneco-
nomical way. In some cases one may get away with much less synchronization (consider the
case of matrix multiplication), and this will generally be worthwhile as synchronizations
operations are always quite costly. In machines which are inherently synchronous, there
will be no need for explicit synchronization. As a counterpart, these architectures are only
able to execute homogeneous fronts. Fronts with more than one type of operations (like
F(3s) in the Cholesky exemple), will have to be split into several sub-fronts. Since the
number of sub-fronts will always be finite, this will not decrease the asymptotic degree of
parallelism.

Next come memory management. Most of the time, the program obtained in the
above way will be incorrect, since we have not taken into account anti- and output-
dependencies([14]). Correctness must be restored by minimal scalar and array expansion,
and this is a whole research subject in itself.

Let us now examine two open problems. We have said in section 3.1 that the degree of
parallelism of the triangular solver algorithm depends on the order in which a dot product
is computed. Mathematically speaking, all such orders are equivalent, since addition is
associative and commutative, but this is no longer true if rounding errors are taken into
account. There are reasons to believe that, with the exception of some pathological cases,
the summation order is not critical. Hence, a technique for including such equivalence in
the calculation of the timing function would be highly interesting. There should however

Preliminary Version, May 23, 1989 15

be a directive for turning the facility on and off according to the numerical stability of the
source algorithm.

While we have used the language of shared memory architectures, this work is equally
applicable (in fact, perhaps more so), to distributed systems. A frequently used paradigm
for the construction of distributed programs is the graph partitionning approach. Edges in
the task graph represent information transfer. They may be valued by the volume of the
transfered data. One then proceed to partition the task graph in such a way that the sum of
the values of interpartition edges is minimal. What is lacking in this approach is a sense of
time. There is a big difference between a transfer which is evenly distributed all along the
lifetime of the computation, and one which is concentrated, e.g. at the beginning or end.
The graph partitionning approach cannot take these phenomena into account. We think
that timing functions will provide the required time scale. Note first that, by construction,
there is no information exchange inside a front. All communication occur between different
fronts, and the communication overhead will be minimal if communicating operations are
allocated to the same processor. This will obviously conflicts with the objective of load
equalization; one should try to locate an optimum. This problem will be the subject of
future research.

References

[1] J.R. Allen and Ken Kennedy. Automatic loop interchange. SIGPLAN Notices, 19,
1984.

[2] Jean-Loup Baer. A survey of some theoretical aspects of multiprogramming. Comput-
ing Surveys, 5:31-80, March 1973.

[3] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup versus efficiency
in parallel systems. IEFFE Transactions on Computers, 38:408-423, March 1989.

[4] Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing, St Malo,
1988.

[5] Paul Feautrier. Data Flow Analysis of Scalar and Array References. Technical Re-
port 282, MASI, April 1989.

[6] Paul Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
22:243-268, September 1988.

[7] Paul Feautrier. Semantical analysis and mathematical programming; application to
parallelization and vectorization. In Workshop on Parallel and Distributed Algorithms,
Bonas, October 1988.

[8] Allan Gottlieb, Ralph Grishman, Clyde P Kruskal, Kevin P. McAuliffe, Larry Rudolf,
and Marc Snyr. The nyu ultracomputer : designing an mimd shared memory parallel
computer. IEFE Transactions on Computers, C32:175-189, February 1983.

Preliminary Version, May 23, 1989 16

[9]

[10]

[11]
[12]
[13]

[14]

[15]

William Jalby and Ulrike Meier. Optimizing Matriz Operations on a Parallel Multi-
processor with a Memory Hierarchy. Technical Report, CSRD, February 1986.

Pierre Jouvelot. Semantic parallelization, a practical exercise in abstract interpreta-
tion. In ACM-POPL 87, Munich, 1987.

J. Karp. Programming for parallelism. IFEF Transactions on Computers, May 1987.
Leslie Lamport. The parallel execution of do loops. CACM, 17:83-93, February 1974.

Alain Lichnewsky and Frangois Thomasset. Introducing symbolic problem solving
techniques in the dependence testing phases of a vectorizer. In ACM Int. Conf. on
Supercomputing, St Malo, France, July 1988.

D. A. Padua and Michael J. Wolfe. Advanced compiler optimization for super com-
puters. CACM, 29:1184-1201, December 1986.

Constantine Polychronopoulos and Donald J Kuck. Guided self-scheduling. [IFFFE
Transactions on Computers, C-36:1425-1439, December 1987.

Patrice Quinton. Mapping recurrences on parallel architectures. In 3rd Int. Conf. on
Supercomputing, Boston, May 1988.

Julius T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages
and Systems, 484-521, 1980.

Nadia Tawbi and Paul Feautrier. Parallélisation automatique de programmes pour
ordinateur multiprocesseur ¢ mémoire partagée. Technical Report 285, MASI, March
1989. Journées algorithmes paralléles et architectures nouvelles.

Michael J. Wolfe. Loop skewing, the wavefront method revisited. Int. J. of Parallel
Processing, 15, August 1988.

