
The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Automatic Parallelization for the Next Ten Years

Paul Feautrier

ENS de Lyon
Paul.Feautrier@ens-lyon.fr

June 17, 2012

1 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

The Context

Consequences

The Parallel Programming Problem

Streaming Languages

Evaluation

2 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

The Context, I

Revolutionary Technologies are still more than 10 years in the
future.

I quantum and one-electron transistors

I molecular, nano-tubes

I organic, DNA

I optical

Exception Non volatile mass memory devices.

3 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

The Context, II

The clock frequency no longer increases beyond about 3 Ghz.

I The electric power consumption and heat generation is
proportional to frequency

I which is constrained by the amount of heat that can be
dissipated.

It may even be lowered to around 1 Ghz to reduce electric power
consumption.

4 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

The Context, III

The device density still increases, but at a lower rate:

I Doubling every 2-3 years

I The delay is expected to increase slowly

I and stop sometime in the next decade.

Hence the prevalence of multicores. Two approaches:

I A small number (≈ 10) of powerfull processors

I A much larger number (100 to 1000) of small processors

5 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

The Context, IV

The memory wall is still with us, only more so.

I The technology is not keeping pace (latency, bandwidth, pin
count)

I Each core has a minimum bandwith requirement. Adding
cores when the memory subsystem is saturated is useless.

Present and future architectures features deep memory hierarchies
and rely on locality for performance.

6 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

The Context, V

Electric power consumption will be a major concern.

I Mobile devices

I Today HP computers draw around 1 MW.

I Extrapolating present technology toward exascale (1018 flops)
requires GWs of power

I Admissible limit: 25 MW.

Something must be done. Observe that parallel computers are less
power hungry than sequential ones.

7 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Consequences, I

Very high degree of parallelism:

I around 10 for PC,

I around 1000 for embedded devices

I more than 109 for HPC.

8 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Consequences, II

Deep memory hierarchy

I Several cache levels, scratchpads, not always hardware
coherent (coherence does not scale).

I Dual Data Rate memories,

I Global memory, probably distributed (scalability again)

I Non volatile memory, ...

Served by several levels of interconnects, from shared registers,
NoC to WLAN.
Shared memory for each cluster (a few tenth of processors),
distributed memory beyond.

9 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Other Problems

Not adressed here.

I Reliability

I Heterogeneity

I Debugging

I Scalability

10 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

The Parallel Programming Problem

Hand-crafting up to several billion threads is not practical.
The parallel programmer needs to take much more decisions than
the sequential programmer:

I Distribute the workload among the processors

I Distribute the data among the memory subsystems

I Arrange for cooperation between processes

Parallel systems are inherently non deterministics, which make
debugging very difficult.

Solutions?

11 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Solutions, I

Leave parallel programming to specialists, which use low level
parallel programming languages and libraries.

I Game and special effects designers

I DBMS creators

I The Joes and Stephanies approach

Not suitable for research and development.

12 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Solutions, II

Parallel Programming Languages and Libraries

I Some examples: OpenMP, MPI, HPF.

I New Languages: Chapel, Parallex, X10

I Very high level languages: Concurrent Haskell

Problem: how much parallelism to hide? Efficiency / portability
tradeoff.

13 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Solution, III

Autoparallelization would be the best solution (ease of use,
determinism, portability, efficency) but:

I works well only for highly regular programs (the polyhedral
model)

I works well only for fine grain paralellism (vector or SIMD
processors)

14 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Solution, IV

There have been attempts to combine the two approaches:

I Hints to the compiler, Cray Fortran Translator pragmas,
OpenMP

I Transformation scripts (Nicolas Vasilache’s WrapIt, AlphaZ)

Problem: Human Computer Interaction: most users (physicists,
biologists) do not understand the language of parallel compilers!

15 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Solution, V

Distribute the work according to each partner expertise:
Human are good at finding coarse-grain parallelism:

I The real world is parallel, and most HPC programs are
simulations or emulations

I Consider the success of MPI over OpenMP

Compilers are good at fine grain parallelism:

I Instruction Level Paralellism

I Software pipelining

I Vectorization

I Polyhedral programs

16 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Example I: the Dependence Calculation

The most demanding part of a parallelizing compiler is the
dependence calculation (quadratic in the size of the program).
It would be nice to be able to parallelize it.

I It is obvious that each dependence test is independent of all
others, but this may not be evident from the code. Ask the
programmer.

I Each test is an LP program (a variation on Gaussian
elimination) which is almost polyhedral (selection of the
pivot). A case for autoparallelization.

17 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Example II: Dataflow

A program in which no control is specified: an operation is “fired”
as soon as its operands are available.

I The “grain” (size of an atomic operation) is a design choice in
the model (made by the programmer):

I for pmake, compilation of one file,
I for a dataflow processor, one machine instruction.

I Parallelism: several operations may be ready to fire at the
same time and can execute in parallel (resources permitting).

I Some examples:
I Alpha
I Lucid, Sisal
I Synchronous languages such as Lustre and Signal.

18 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Streaming

A streaming program is simply a program with an outermost
infinite loop, consuming and producing data (i.e., streams).

I Depending on the model, this loop can be:
I implicit: KPN, SDF, Lustre, Signal, StreamIt, Faust
I explicit: CRP (see later), Stream-OpenMP, Alpha

19 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Streaming Dataflow Programs

A dataflow program in which the set of operations is infinite.

I Especially adapted to signal processing.

I Usually presented as a network of processes (or filters)
interconnected by channels. Processes consume data (tokens)
from their input ports and create tokens on their output ports.

source
sink

inport outport

process
channel

feedback loop

20 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Communication

Communication style:
I Channels: sends & receives via a communication medium.

I FIFO (e.g., KPN).
I Sliding window (e.g., StreamIt, Stream-OpenMP).

I Shared memory: read & write via addressable memory regions.

21 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Questions

Some properties that are obvious for sequential programs are
conjectural for process networks:

I Determinism: does the network always give the same result,
or always have the same behaviour? Sub-question: what is a
result, or a behaviour?

I Deadlocks: does the network stall for ever?

I Does or can the network run in bounded memory?

I Synchronization/communication: how to implement channels?

I Optimization: can the grain be changed? Can the degree of
parallelism be changed?

All these problems may be solved by the compiler, or left to the
programmer, or solved – at least partially – by a library.

22 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Kahn Process Networks (KPN)

I Channels: unbounded FIFOs, with one writer & one reader.

I Process body: sequential program augmented with send and
receive statements. There is no select statement.

I KPNs are deterministic by construction provided that the
process bodies are.

I KPNs may have deadlocks. Testing for deadlocks?

I It is in general impossible to bound the size of the channels,
and doing so may introduce new deadlocks.

I KPNs have been implemented mostly as libraries.

23 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Communicating Regular Processes (CRP)

The problems with KPN:

I For KPN analysis, one has to pair a send and a receive: the
send must be executed earlier than the corresponding receive.

I This is done by counting, but if the send or the receive is in a
multidimensional loop nest, the count is a polynomial.

The CRP approach:

I Instead of send and receive, write or read to an unbounded
array of the same dimension as the loop nest.

I It is the responsibility of the compiler to shrink each array as
much as possible.

I Determinism guaranteed when in write once / read many
mode.

24 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Answers

I Analysis: static analysis and static scheduling are possible.

I Determinism: CRP are deterministic if the Single Assignment
property holds.

I Deadlocks: if scheduling succeeds, no deadlock in the network.
I Buffer size:

I A partial solution: increase the size until deadlocks disappear.
I Incidentally, resizing buffers adjusts the degree of parallelism.
I Use array contraction and code transformations (e.g., tiling).

25 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Modular Scheduling

I Introduce channel clocks.
I Schedule source, downsampler, mixer, RAMDAC

independently, with the channel clocks as parameters.
I Schedule main (i.e., compute the channel clocks).
I Substitute solution into the process schedules.
I One can impose size constraints on the channels.

downsamplersource <1>

source <2>

mixer RAMDAC

main

channel

channel clock

26 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Evaluation, Pros

CRP has a compiler, a scheduler, and a rudimentary code
generator for shared memory (i.e. Pthreads). It provides:

I Modularity and reuse, both at design time and at compile
time.

I Scalability

I Determinism

I Safety: deadlocks can be detected without running the target
program.

27 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Evaluation, Cons

The present version is entirely static: it is not possible to extend
the process network at run time.

The handling of bulky data (e.g. a whole TV frame) is inefficient.

Some compile time checks are not implemented:

I The only one writer rule

I Reading an undefined channel cell

28 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Future Work

I Write one (or more) code generator
I Enlarge the language model

I Conditionals and while loops
I Dynamic creation of processes and channels, recursion.

I The user may have other interesting knowledge:
I reductions and scans
I convergence and numerical stability
I don’t cares

29 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Questions

QUESTIONS ?

30 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

A Video Example, I

Source
 1

Source
 2

VFilter

HFilter

Composer

RAMDAC

c1

c2

c3

c4

c5

2

1

I Picture-in-picture.

I Two video sources.

I Source 1 is scaled down.

I Composer: for each screen pixel,
select source 1 or 2.

I RAMDAC: paint the screen.

31 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

A Video Example, II

Source
 1

Source
 2

VFilter

HFilter

Composer

RAMDAC

c1

c2

c3

c4

c5

The HFilter

struct bigLine {

char pixel[960];

}

struct smallLine {

char pixel[120];

}

process HFilter(

inport struct bigLine x[],

outport struct smallLine y[]) {

int i, j;

for(i=0;;i++)

for(j=0; j<120; j++)

y[i].pixel[j] = x[i].pixel[8*j];

}

32 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

A Video Example, III

Source
 1

Source
 2

VFilter

HFilter

Composer

RAMDAC

c1

c2

c3

c4

c5

The Glue Code

void main(){

channel struct bigLine c1[];

channel struct bigLine c2[];

channel struct bigLine c3[];

channel struct smallLine c4[];

channel struct bigLine c5[];

source(c1, 1);

source(c3, 2);

VFilter(c1,c2);

HFilter(c2, c4);

composer(c3, c4, c5);

ramdac(c5);

}

33 / 34

The Context
Consequences

The Parallel Programming Problem
Streaming Languages

Evaluation

Buffer Size

write a[x]

read a[x]alloc a[x]

free a[x]
alloc a[x+size]

read a[x] read a[x]

time

θ(write a[x]) ≥ θ(alloc a[x]),

θ(read a[x]) > θ(write a[x]),

θ(free a[x]) = θ(alloc a[x + size]) ≥ θ(read a[x]).

Apply Farkas and solve.

34 / 34

	The Context
	Consequences
	The Parallel Programming Problem
	Streaming Languages
	Evaluation

