
Storage Management in Parallel ProgramsVincent Lefebvre, Paul FeautrierLaboratoire PRiSM, bâtiment DescartesUniversit�e de Versailles St-Quentin45 Avenue des Etats-Unis78 035 VERSAILLES C�edex FRANCEe-mail : fVincent.Lefebvre,Paul.Feautrierg@prism.uvsq.frURL : http://www.prism.uvsq.frAbstractThe litterature on automatic parallelization generally focuses on data dependency analysis. We havebeen interested in this article on the data stuctures generation as part of the polyedric techniquedesigned in PAF (Parall�eliseur Automatique pour Fortran). The removal of dependences which arenot data 
ows in a program is generally realized by a total memory expansion of data structures.We present a new technique which allows to reduce the memory cost by expanding carefully selectedparts of code only. It consists in limiting the memory expansion process in accordance with contraintsimposed by the schedule determined for the parallel program.Key words: Automatic Parallelization of static control programs, Storage Management, ArrayData
ow Analysis, Scheduling.R�esum�eLa litt�erature consacr�ee �a la parall�elisation automatique se focalise g�en�eralement sur l'analyse du 
otde donn�ees. Nous nous int�eressons dans cet article sur la g�en�eration des structures de donn�ees dansle cadre de la m�ethode poly�edrique d�e�nie dans le compilateur PAF (Parall�eliseur Automatiquepour Fortran). La suppression des d�ependances qui n'appartiennent pas au 
ot de donn�ees estg�en�eralement e�ectu�ee avant la parall�elisation par une mise en assignation unique du programmesource. Ceci revient �a e�ectuer une expansion totale des donn�ees. Nous pr�esentons une nouvelletechnique qui permet de r�eduire le coût m�emoire induit par l'expansion en limitant ce processus auxcas o�u il s'av�ere indispensable. Cela consiste �a ne supprimer les d�ependances parasites que lorsqu'ellesentrent en contradiction avec l'ordonnancement calcul�e pour les op�erations du programme dans laversion parall�elis�ee.Mots-clefs:Parall�elisation automatique des programmes �a contrôle statique, Gestion des donn�ees en m�emoire,Analyse du 
ot de donn�ees, Ordonnancement.
1



1 IntroductionThe polyedric method, an automatic parallelization technique, uses explicit schedules. A schedulehas to satisfy constraints which are given by data
ow analysis. The goal is to determine the executiondate of each operation of the source program. Operations which have the same execution date aregathered in wavefronts, which can be executed in parallel. The removal of dependences which arenot 
ow dependences, is the price to pay in order to restore the correctness of the parallel program.One generally builds a single assignment form for the source program. Total memory expansionhas a high memory cost. For instance, in matrix multiplication, the single assignment form has adata space of O(n3) memory words, instead of O(n2) in the classical version. This paper presentsa new technique which limits memory expansion in accordance with contraints imposed by theschedule of the parallel program. We will �rst restate several classical techniques of program semanticanalysis (array data
ow analysis) and transformations (scheduling, existing memory managementtechniques). Finally, we will present our optimized storage technique for parallel programs.2 Array Data
ow Analysis of Static Control ProgramWe focuse on automatic parallelization of static control programs. Static control programs areprograms for which one may describe the set of operations which are going to be executed in a givenprogram run. Let be E the operations set of a program. Static control programs are built fromassignment statements and DO loops. The only data structures are arrays of arbitrary dimensions.Loop bounds and array subscripts are a�ne functions in the loop counters and integral structureparameters. An operation is one execution of a statement. It may be named hR;~xi where R is astatement and ~x the iteration vector built from the surrounding loop counters. The iteration domainD(R) of a statement R, is the set of instances of R and can be described by the conjunction of allinequalities for the surrounding loops. We will take as a running example the sequential programof �gure (1). Let us introduce the following notations. The k-th entry of vector ~x is denoted by~x[k]. The subvector built from component k to l is written as: ~x[k::l]. The expression R � Sindicates that statement R is before statement S in the program text. NRS is the number of loopssurrounding both R and S. The fact that operation hR;~xi is executed before operation hS; ~yi iswritten: hR;~xi � hS; ~yi. It is shown in [5] that:hR; ~xi � hS; ~yi � ~x[1::NRS]� ~y[1::NRS] _ (~x[1::NRS] = ~y[1::NRS] ^R� S) (1)The sequential order can be split with respect to depths:hR; ~xi � hS; ~yi � NRS_p=0 hR; ~xi �p hS; ~yi (2)where 0 � p < NRS : hR; ~xi �p hS; ~yi , (~x[1::p] = ~y[1::p]) ^ (~x[p+ 1] < ~y[p+ 1]) (3)hR; ~xi �NRS hS; ~yi , ~x[1::NRS] = ~y[1::NRS] ^R� S (4)Two operations hR;~xi and hS; ~yi are independent if their order of execution can be reversed withoutchanging the global e�ect on the program store. If not, the operations are said to be dependent. Thegoal of automatic parallelization is to build a parallel program which exactly gives the same resultsas the sequential program. R(R;~x) is the set of memory cells which are read by hR;~xi andM(R;~x),is the set of memory cells which are modi�ed by hR;~xi. Supposing for instance that hR;~xi �hS; ~yi, one can distinguish three kinds of dependences: 
ow dependence (M(R;~x) \R(S; ~y) 6= ;,written hR;~xi � hS; ~yi), anti-dependence (R(R;~x) \M(S; ~y) 6= ;, written hR;~xi � hS; ~yi), outputdependence (M(R;~x) \M(S; ~y) 6= ;, written hR;~xi �� hS; ~yi). Dependences are constraints thatlimit the parallelism of an algorithm. It would be interesting to delete as many dependences aspossible without changing the semantic of the original program. In fact, the sole real dependencesinherent to the algorithm are direct 
ow dependences from a de�nition to a use of the same memorycell (data 
ows). All others dependences are due to memory reuse and can be deleted by dataexpansion. Direct 
ow dependences are detected by data
ow analysis technique. If a memory cell cis read in an operation hS; ~yi, data
ow analysis determines the latest writing into c, which is givenby the source function [5]:source(c; hS; ~yi) = max� fhR; ~xi j hR; ~xi � hS; ~yi; c 2M(R; ~x)g (5)2



The result of the analysis is a quasi-a�ne tree or quast, i.e. a many-level conditionnal in whichpredicates are tests for the positiveness of a�ne forms in the loop counters and structure parametersand leaves are either operation names, or ?. ? indicates that the array cell under study is notmodi�ed. For our example, we have:source(s; hS; i; ji) = 8<: If j � 2Then hS; i; j � 1iElse hR; ii3 Program Transformations3.1 SchedulingFrom constraints given by data
ow analysis, one deduces a schedule which gives a logical executiondate to each operation of the source program. It must also respect the constraints implied by thesource functions. If �(S; ~y) is the schedule of hS; ~yi, one must have:8hS; ~yi 2 E ; 8c 2 R(S; ~y) : �(source(c; hS; ~yi))� �(S; ~y) (6)For complexity reasons, �nding the exact solution of (6) is not practicable. One limits oneself toa�ne one-dimensionnal ([6]) or multidimensionnal schedules ([7]). In the case of our example, onemust have: (if (j � 2) then �(S; i; j � 1) else �(R; i)) � �(S; i; j). One may show that �(R; i) = 0and �(S; i; j) = j is the best schedule for our example, i.e gives the largest operations fronts. Froma schedule given by �, one deduces operations fronts: F(~t) = fhR;~xi 2 E j �(R;~x) = ~tg. There is nodata
ow between operations of a given front. Hence, all such operations can be executed in parallel.The parallel program must enumerate all lexicographical executions dates :f~t j ~t 2 �execute in parallel operations in F(~t)synchronizeg (7)The set � is the lexicographical enumeration of each possible execution date.3.2 Changing Data StructuresHowever, using any execution order which satis�es (6) for constructing a parallel program will givean incorrect result, because output dependences, anti-dependences and spurious 
ow dependences(
ow dependences which are not data
ows) have not been taken into account. One can get rid ofthese dependences by data expansion. Several techniques have been proposed in the litterature.3.2.1 Total Memory ExpansionThe easiest solution consists in translating the source program in single assignment form. Thereis a strong relation between output dependences and anti-dependences. Consider two operationshS; ~yi, hT; ~zi, and c a cell memory, such as c 2 R(S; ~y) and c 2M(T; ~z). In a correct program, eachvariable must be set before being read. So, there is necessarily an operation hR;~xi which sets c andwhich is executed before hS; ~yi: hR;~xi � hS; ~yi � hT; ~zi. There is also a output dependence betweenhR;~xi and hT; ~zi. From this, one may deduce that if all output dependences are deleted, thenanti-dependences and spurious 
ow dependences also disappear. Total memory expansion consistsin assigning one distinct memory cell to each operation. The following algorithm presented in [3]establishes the single assignment form of a static control program:1. Renaming : for each statement R, with ~x as iteration vector, associate a speci�c data struc-ture MR: R : a[~f (~x)] = ::: ! MR[~f(~x)] = :::2. Expanding: for each instruction R, replace the subscript function ~f (~x) in MR by ~x in lefthand-sides: R :MR[~f (~x)] = ::: ! MR[~x] = :::3



3. Reconstructing the data
ow: replace all read reference by its new representation as givenby the source function. The value produced by hR;~xi is stored in MR[~x]. So if one �nds thefollowing source function for a memory cell c in an operation hS; ~yi: source(c; hS; ~yi) = hS; ~xi,then c must be replaced by MR[~x] in the single assignment program.Renaming deletes all output dependences which appear between two operations instances of twodi�erent instructions. Expanding deletes output dependences which appear between two operationsinstances of the same instruction. One can build the abstract parallel program from our runningexample,(cf �rst parallel version of �gure (1)). It is clear that the memory cost is high. Startingfrom a scalar s, one gets an array of n elements and another one with n2 elements. After t � 2, thevalues stored in fMS [p; t] j 1 � p � ng are read by operations executed at logical time t + 1, thenthey become useless.sequential program : parallel program in single assignment form: parallel program with memory optimization:program scalar program scalar program scalarinteger s,i,j,n integer MR[n], MS[n] integer s[n]Do i=1,n integer p,t,n integer p,t,n{R} s = 0 Doall p=1,n Doall p = 1,nDo j=1,n MR[p] = 0 s[p] = 0{S} s = s + 1 enddo enddoenddo Do t=1,n Do t = 1,nenddo Doall p=1,n Doall p = 1,nend MS[p,t] = if (t >= 2) then MS[p,t-1] s[p] = s[p] + 1else MR[p] + 1 enddoenddo enddoenddo endend�e Figure 1:3.2.2 Previous Techniques to Reduce Memory CostSome methods try to eliminate these dependences with a reduced memory cost. Wolfe in [11]de�nes the method of array contraction for vector architectures. After scalar expansion and loop in-terchange, he performs array contraction because the vector instructions only concern the innermostloop of each loop nest. Maydan and Lam in [8], Li and Lee in [9] de�ne a method which optimize ar-ray privatization after a renaming phase. Privatization is equivalent to expansion. They don't deletean output dependence between operations instances of a same instruction R, if it is masked by adata
ow. Darte, Vivien, Calland and Robert in [1] intoduce two graph transformations to eliminateanti and output dependences by renaming. They give an uni�ed framework for such transformationand prove that the problem of determining a minimal process of renaming is NP-complete. ValuesLifetime Analysis is a technique which comes from the "systolic" community. It takes into accountsingle assignment form programs and try to generate output and anti-dependences without changingthe data
ow([2],[10]).4 Minimal Memory Expansion With Respect to a Schedule4.1 Neutral DependencesConsider an operation hR;~xi instance of an assignment statement R. Let U (R;~x) be the set ofoperations such that there is a data
ow from hR;~xi to each operation hS; ~yi of U (R;~x): U (R;~x) =fhS; ~yi 2 E j source(c; hS; ~yi) = hR;~xig. Let be V(R;~x) the value produced by hR;~xi, V(R;~x) mustabsolutly reside in memory for ~t 2 [�(R;~x); maxU(R;~x) �(S; ~y)]. Before and after these dates this valueis useless in memory. Suppose that one has an output dependence at depth p between hR;~xi andan operation hT; ~zi (written R��p T ) in the sequential program. If �(T; ~z)� maxU(R;~x) �(S; ~y), it is clear4



that this output dependence can be maintened in the parallel program, because V(R;~x) is uselessin memory at �(T; ~z). To improve this idea, we will develop the concept of neutral dependences.De�nition 1 An output dependence is neutral for a schedule �, which sati�es (6), i� keeping thisdependence doesn't change the sequential data
ow in the parallel program obtained from � by scheme(7).An output dependence can be maintained in a parallel program i� it is neutral. In this case,the results of the parallel program are still valid. The following proposition gives speci�c conditionsthat an output dependence must verify to be neutral.Proposition 1 A output dependence R��p T (R and T are two statements) is neutral for � i�:M(R;~x) =M(T; ~z) ^ hR;~xi �p hT; ~zi ) �(R;~x)� �(T; ~z) (8)and �(T; ~z)� maxU(R;~x)(�(S; ~y)) (9)(8) ensures that the execution order between hR;~xi and hT; ~zi is the same in the sequential and paral-lel programs. (9) veri�es that data
ow between hR;~xi and operations in U (R;~x) won't be a�ected byhT; ~zi. This condition ensures that V(R;~x) is present in memory when ~t 2 [�(R;~x); maxU(R;~x)(�(S; ~y))],even if the output dependence is not removed in the parallel program.We can extend this de�nition to anti-dependences and 
ow dependences which are not data
ows.For these kinds of dependences it is just necessary to verify that the execution order of operationsis the same in the sequential and parallel programs.De�nition 2 An anti-dependence between two instructions S and T is neutral for a schedule func-tion � which satis�es (6) i� the execution order of these operations is the same in the sequential andparallel programs.The de�nition is the same for a 
ow dependence which is not a data
ow.Proposition 2 A anti-dependence S �p T is neutral according to � i�:R(S; ~y) \M(T; ~z) 6= ; ^ hS; ~yi �p hT; ~zi ) �(S; ~y)� �(T; ~z) (10)(10) ensures that if this dependence is not deleted, it will still be veri�ed in the parallel program.Proposition 3 A 
ow dependence R�p T which is not a data
ow is neutral for � i�:M(R;~x) \R(S; ~y) 6= ; ^ hR;~xi �p hS; ~yi ) �(R;~x)� �(S; ~y) (11)4.2 Tests of Neutrality4.2.1 Neutral Output DependencesLet's consider: R : a[~f(~x)] = :::T : a[~g(~z)] = :::Consider the output dependences between operations instances ofR and T at depth p. A dependenceR��p T , is characterized by the following conditions:� hR; ~xi and hT; ~zi must exist: ~x 2 D(R); ~z 2 D(T );� Access con
ict: ~f(~x) = ~g(~z);� Sequencing Predicate at depth p: hR; ~xi �p hT; ~zi5



Therefore, there is a dependence i�, system QpRT (~x; ~z),QpRT (~x; ~z) = f ~x 2 D(R) ^ ~z 2 D(T ) ^ ~f(~x) = ~g(~z) ^ hR; ~xi �p hT; ~zighas a solution. To verify (8), one must have a dependence in the sequential program, whichmust still be veri�ed in the parallel program. Therefore, in the parallel program, we must have:�(R;~x) � �(T; ~z). If this execution order is not respected for only one of the operations instancesof R and T linked by this dependence, the condition (8) is not veri�ed. So we simply consider that(8) is veri�ed if for no operation of R and T in dependence, one has �(T; ~z)��(R;~x) that is to sayif the system NpRT (~x; ~z),NpRT (~x; ~z) = f ~x 2 D(R) ^ ~z 2 D(T ) ^ ~f(~x) = ~g(~z) ^ hR; ~xi �p hT; ~zi ^ �(T; ~z)��(R; ~x)ghas no solution. QpR;T (~x; ~z) is a Z � polyhedron. �(R;~x) and �(T; ~z) are vectors of a�ne functionsin the loop counters. Hence NpR;T (~x; ~z) is a disjunction of Z � polyhedron which must all beempty. So verifying the emptyness of NpR;T (~x; ~z) can be easily done by the PIP (Parametric IntegerPrograming) tool (see [4] for more explanations). Remember that in our example, we have chosenthe schedule function �(R; i) = 0 and �(S; i; j) = j. Let's verify (8) for program scalar. For theR��0 R dependence, one has if 1 � i � n then N0RR(i) 6= ; ) this dependence is not neutral. Forothers dependences, one can �nd that (8) is veri�ed for R��0 S, R��1 S and S ��1 S dependences andnot veri�ed by S ��0 R and S ��0 S dependences (hence these dependences are not neutral).Theorem 1 The condition (9) is veri�ed for a given output dependence i� all anti-dependencesgenerated by this dependence, are neutral.Proof: consider the operations of U (R;~x). If there is an output dependence between hR;~xi and anoperation hT; ~zi at depth p, there is also an anti-dependence between any operation hS; ~yi 2 U (R;~x)and hT; ~zi at depth p0: �: hR; ~xi : c = :::hS; ~yi : ::: = ::: c :::hT; ~zi : c = :::If every dependence S �p0 T is neutral, it ensures that �(S; ~y) � �(T; ~z) (according to (10)) .Therefore �(T; ~z)� �(S; ~y); 8hS; ~yi 2 U (R;~x) hence �(T; ~z)� maxU(R;~x) �(S; ~y). So (9) is veri�ed.4.2.2 Neutral Anti-dependencesConsider: S : ::: = ::: a[~h(~y)] :::T : a[~g(~z)] = :::One must determine if the S �p T dependence is neutral, that is to say verify (10). To determine if(10) is respected, one has to verify that the execution order between hS; ~yi and hT; ~zi stays the samein the parallel program for the operations instances of S and T which are linked by this dependence.Also the dependence S �p T is neutral i� the system NpST (~y; ~z)NpST (~y; ~z) = f ~y 2 D(S) ^ ~z 2 D(T ) ^ ~h(~y) = ~g(~z) ^ hS; ~yi �p hT; ~zi ^ �(T; ~z)��(S; ~y)ghas no solution.When one knows that an anti-dependence is not neutral, one knows that for the associatedoutput dependence the condition (9) is invalidated and the dependence is not neutral. Suppose, onehas the following situation: c = M(R;~x) = M(T; ~z) and hR;~xi = source(c; hS; ~yi). If the S �p Tdependence is not neutral, then the operation hT; ~zi kills the value produced by hR;~xi and storedin c before it is read by hS; ~yi in the parallel program. This situation would have occurred if theoutput dependence between hR;~xi and hT; ~zi was not deleted. So the output dependence betweenhR;~xi and hT; ~zi is not neutral. We know the depths p and p0 of S �p T and R�p0 S dependences.We must determine the depth p00 of R��p00 T dependence. With the S �p T dependence, we have:hS; ~yi �p hT; ~zi , (~y[1::p] = ~z[1::p])^ (~y[p + 1] < ~z[p+ 1]). With the R�p0S dependence, we have:hR;~xi �p0 hS; ~yi , (~x[1::p0] = ~y[1::p0]) ^ (~x[p0 + 1] < ~y[p0 + 1]). We must consider, three cases:6



1. p = p0 : (~x[1::p] = ~z[1::p])^ (~x[p+ 1] < ~z[p+ 1])) hR;~xi �p hT; ~zi ) p00 = p2. p < p0 : (~x[1::p] = ~z[1::p])^(~x[p+1] < ~z[p+1])^(~x[p+1] < ~z[p+1])) hR;~xi �p hT; ~zi ) p00 = p3. p > p0 : (~x[1::p0] = ~z[1::p0]) ^ (~x[p0 + 1] < ~z[p0 + 1]) ^ (~x[p0 + 1] < ~z[p0 + 1]) ) hR;~xi �p0hT; ~zi ) p00 = p0So, if the S �p T dependence is not neutral, then the R��min(p;p0) T dependence is not neutraleither. In our running example, consider the S �0 S dependence, we have:source(s; hS; i; ji) = 8<: If j � 2Then hS; i; j � 1iElse hR; iiThe �rst leaf of the source function concerns a instance of S, so one must determinate if the S �0 Sdependence is neutral. One �nds that N0SS(i; j) 6= ; ) so this dependence is not neutral, and S ��0 Sdependence is not neutral either. The second leaf of the source function concerns an instance of R,hence the dependence R��0 S is not neutral. For others anti-dependences, one �nds that dependenceS �1 S is neutral and that S �0R is not neutral. As a consequence the dependences S ��0 S and R��0 Sare not neutral.Finally, we have for the output dependences in our running example: R��0 R, S ��0 S S ��0 R whichare not neutral, R��1 S and S ��1 S which are neutral.4.2.3 Neutral Spurious Flow DependencesTheorem 2 It is useless to verify if a 
ow dependence, which is not a data
ow, is neutral.Proof : consider the following operations:� : hR; ~xi : c = :::hT; ~zi : c = :::hS; ~yi : ::: = ::: c :::Suppose that hS; ~yi 2 U (T; ~z). Dependence R�p S is not a data
ow, because the value stored inc by hR;~xi is killed by hT; ~zi before the reading of c by hS; ~yi. In the parallel program, one has�(T; ~z)� �(S; ~y) according to (6). We must consider two cases:1. If the output dependence between R and T is not neutral, then it must be removed in theparallel program and the 
ow dependence has disappeared.2. If this output dependence is neutral, one has also �(R;~x)� �(T; ~z)) �(R;~x)� �(S; ~y) hence(11) is veri�ed and it means that the dependence R�p S is neutral.4.3 Exploitation of ResultsThe examination of neutrality of output dependences will help us to decide if we must add a dimen-sion or new elements in a speci�c dimension (minimal expanding) or if we must proceed or not inrenaming a data structure used by two di�erent instructions (minimal renaming). We have devel-opped the following algorithm which gives an optimized storage for datas of a parallel static controlprogram:1. Minimal expansion for each statement R: if a is the data structure in the left handside of R, one must �nd the minimal shape that a can have in R. The goal is to eliminateall output dependences R��R which are not neutral. If an output dependence at depth pbetween operations instances of R is not neutral, one must expand a according to ~x[p+ 1]:� one adds one dimension to a. The size of this dimension is the number of iterations ofthe loop p+ 1 which surrounds R; 7



� This new dimension must be indexed by the counter of this loop in left hand side of R.R : a[~f (~x)] = ::: ! a[~f (~x); ~x[p+ 1]] = :::In our running example, in R, the dependence R��0 R is not neutral hence R : (s = ::: !s[i] = :::). The scalar s is now an array of n elements because there are n iterations in theloop i. In S, the dependence S ��0 S is not neutral, the dependence S ��1 S is neutral, so it canbe maintained: S : (s = ::: ! s[i] = :::).With these new subscript functions, we are sure that every output dependences which onlyconcern operations instances of a single statement R and which are not neutral, are deleted.2. Correcting the dependence graph: the minimal expansion can suppress some outputdependences which appear between operations instances of di�erent instructions. Consider ourprevious statements R and T (R 6= T ). Suppose that in the next steps ot this algorithm, onedoesn't proceed in renaming the array a shared by the statements. After minimal expansion,one gets two data structures which can be di�erent. If there is no renaming, the data strutureshared by R and T must be in fact the rectangular hull of the union of the two data structuresde�ned by minimal expansion of R and T . Imagine that there is an output dependence R��Tat depth p in the original program. If, for instance, one had expanded a in R according to~x[p+ 1], it adds the following constraint in QpRT (~x; ~z) which is ~x[p+ 1] = ~z[p+ 1]. One knowsthat hR;~xi �p hT; ~zi ) ~x[p + 1] < ~z[p + 1]. Hence, now QpRT (~x; ~z) has no solution and theoutput dependence has disappeared. In our running example, minimal expansion deletes thedependences S ��0 R and R��0 S.3. Minimal renaming: we must take into account all residual output dependences between Rand T , 8p 2 NRT . If only one of these dependences is not neutral, we must rename a in T ,because all these kind of dependences must be deleted. If all dependences are neutral, thedata structure may remain the same in two statements. Finding the minimal number of datastructures to rename is a NP-complete problem, as it shown in [1]. We suggest the followingheuristics: one builds a graph for each data structure a which appears at least once in a lefthand side of a statement in the original program. Each vertex represents a statement where ais the left hand side. There is an edge from a vertex R to another one T i� there is a R��p Tdependence which is not neutral (8p 2 NRT ). Then one can apply on this graph a greedycoloring algorithm. Finally it is clear that vertices that have the same colour can share thesame data structure. In our example, the residual output dependence between R and S isR��1 S which is neutral. So it is unnecessary to rename s in S. The �nal shape of each datastructure shared by many statements must be the rectangular hull of the union of all shapesbuilt form minimal expansion. The program is reconstructed with the new data structuresand their subscripts functions.Finally, one gets the second abstract parallel program of �gure (1). The removal of the conditionalexpression is due to the fact, that s has not been renamed.5 ConclusionNotice that if one builds a schedule function equivalent to the sequential execution order, one �ndsthat all dependences are neutral, so there is no expanding and no renaming and we keep the scalar s.We have then obtained a very satisfying result: inherently sequential programs are �xed points forour parallelization method. Our method e�ectively reduces the memory cost in the data expansionprocess for static control programs. Our performances are strongly linked to the parallelism degree(size of operations fronts) given by the schedule. Hence one can go further and improves our resultsby adjusting the scheduling to the architecture. Consider for instance, that the target architectureis a pipeline processor Cray. In this case, the real size of a front is limited to 64 which is the sizeof a vector register. One can easily adjust the schedule function such as no front has more than 64operations. In the case of our running example, the memory requirement is reduced to an array of64 elements. The interest of our method is that it can have result on one hand on the expansion8



and on the other hand on renaming. All previous methods focused on only one of these two topics.The technique has been implemented in Lisp within the PAF project.References[1] P.Y Calland, A. Darte, Y. Robert, F. Vivien. On the removal of anti and output dependences.Technical report RR96-04, laboratoire LIP - �ecole normale sup�erieure de Lyon - Feb 1996.[2] Zbigniew Chamski. Environnement logiciel de programmation d'un acc�el�erateur de calcul paral-l�ele. Th�ese de l'universit�e de Rennes I - chapitre IV - 1993, num�ero d'ordre 957.[3] P. Feautrier. Array expansion. ACM Int. Conf on Supercomputing, pages 429-441, 1988.[4] P. feautrier. Parametric integer programing. RAIRO Recherche op�erationnelle, 22:243-268, Sept1988[5] P. Feautrier. Data
ow Analysis of Array and Scalar References. Int. J. of Parallel Programming,20(1):23-53, February 1991.[6] P. Feautrier. Some e�cients solutions to the a�ne scheduling problem, I, one dimensionnal time.Int J. of Parallel Programming, 21(5):313-348, October 1992.[7] P. Feautrier. Some e�cient solutions to the a�ne scheduling problem part II : multidimensionaltime. Int J. of Parallel Programming, 21(6):389-420, December 92.[8] D. E. Maydan, S. P. Amarasinghe, M. S. Lam. Array Data-Flow Analysis and its Use in ArrayPrivatization. In Proc. of ACM Conf. on Principles of Programming Languages, pages 2-15,January 1993.[9] Z. Li, G. and G. Lee. Symbolic array data
ow analysis for array privatization and programparallelization. In Supercomputing 95, 1995[10] S. Rajopadhye and D. Wilde. The Power of Polyhedra. To appear.[11] M. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman 1989.

9


