
Asymptotically E�cient Algorithms for Parallel Architectures �Paul FeautrierLaboratoire MASIUniversit�e P. et M. Curie75252 PARIS CEDEX 05 FRANCEJuly 25, 1996AbstractThis paper gives a general method for the construction of parallel algorithms. Start-ing from a conventional sequential program, one �rst constructs a timing function, i.e.a schedule for a paracomputer. It is shown that the ratio of the maximum value ofthe timing function to the total operation count is a good measure of the degree ofparallelism in the original algorithm. In particular, if this ratio tends to zero when theoperation count grows large, then there is an asymptotically e�cient parallel version ofthe original algorithm. This implementation is shown to be surprisingly robust in theface of variations, random and otherwise, of the operation execution times. The tech-nique may be used as the starting point of the construction of programs for all kinds ofparallel computers: vector, synchronous, asynchronous and distributed architectures.1 IntroductionMany people have argued that for building programs for parallel computers, some knowledgeof the execution time of tasks is necessary. However, experience has shown that one getsquite e�cient algorithms in spite of imprecise timing information ([9]). The aim of thispaper is to explain this apparent paradox.Recent research on the automatic construction of parallel programs has centered on thenotion of transformation. The rationale is that most programs were written with sequentialexecution in mind and are not well adapted to parallel execution. Transformations wereinvented to remove excessive optimization : expansion ([14], [4]), loop reordering and loopsplitting ([1]), algebraic expression rearrangement ([2], [10]). As always, if taken naively,the transformation approach leads to combinatorial explosion. For a given program, thereis a very large number of valid transformations which interact in a complex way; dependingon the target architecture, some of them improve the running time of the program and somedo not. Parallelization becomes a search for a minimum in a set of semantically equivalentprograms. Beside the mere size of the search space, one may be trapped in local minima.Mathematicians have a well known method for dealing with this kind of situation : in-stead of working with individual programs, work with equivalence classes under the selected�This work has been supported by DRET under contract 87/280 and by PRC C3 of the CNRS.1

Preliminary Version, May 23, 1989 2transformations. To apply this strategy, one obviously need a notation for one equivalenceclass; the notation should be simple and compact but carry enough information to enableone to compute the required objective function and to reconstruct the selected optimalrepresentative. This paper shows that, for a restricted class of programs (the static controlprograms of [4]), the data
ow graph as (DFG) de�ned in [5] answer at least part of ourrequirements.In paragraph 2, we give a more precise de�nition of static control programs; we reviewthe methods of [5] for computing their DFG. We then introduce the notion of timingfunction. A timing function simply is a representation of a schedule for a computer with anunllimited number of processors and no memory con
icts. J. T. Schwartz ([17]) has coinedthe term \paracomputer" for such a machine.In paragraph 3, we explain how to fold the paracomputer schedule to P processors. Weshow that the performance of the resulting algorithm is strongly related to the ratio D=S,where S is the size of the DFG and D is the length of its longest path 1. For many practicalalgorithms, this ratio tends to 0 as the size of the calculation grows large; as a consequence,the e�ciency of the parallel algorithm tends to 1. We shows that the resulting algorithm issurprisingly robust in the face of uncertainties in the execution time of operations. Basically,the reason is that such uncertainties introduce delays of the order of D while the runningtime is of the order of S=P .From these remarks to a practical restructuring compiler is still a long way. In theconclusion, we discuss how to attack the remaining problems: construction of linear andnon linear timing functions, code generation issues, memory management, extension todistributed systems.2 Models for algorithms and computersIt seems very di�cult to give interesting performance estimates for the parallel executionof arbitrary programs. There is a sharp distinction, for instance, between polynomialsalgorithms, non-polynomials algorithms, and programs whose termination is not guaran-teed. Now parallel program construction involves, among other problems, questions of loadbalancing and hence performance prediction. Obviously this is easiest for polynomial al-gorithms, and very di�cult for potentially non terminating processes. This has motivatedthe de�nition in [5] of static control programs, i.e. programs whose operation count may becalculated a priori as soon as the values of structure parameters are known.Brie
y speaking, a static control program has for loops as the only control instructions.The data processing instructions are simple or guarded assignments and input-output in-structions. Furthermore, in a loop nest, the bounds depend only on outer loop countersand structure parameters. Each structure parameter is de�ned by an input instruction andis not modi�ed anywhere else in the program.As a matter of technical convenience, we will restrict all array indices and loop bounds toa�ne integer expressions, and all structure parameters to integer variables. This restrictionis enforced because at the present time our main analysis tool is the parametric linear integer1which also is the maximum value of the timing function.

Preliminary Version, May 23, 1989 3programming algorithm of [6]. It may be possible to extend the class of tractable programsby using formal computation techniques, (see for instance [13]).An important distinction when discussing parallel programs is the one between instruc-tions and operations. An instruction is a static entity, which may be identi�ed with a syn-tactic unit in the program text. An operation is one particular execution of an instructionin a given context. Most often, an instruction will be executed many times. Each executionwill be considered as a distinct operation. In a static control program, an operation maybe identi�ed by specifying the parent instruction and the values of the surrounding loopcounters or iteration vector. If array indices depends only on loop counters, a knowledge ofan operation name allows one to compute the adresses of accessed memory cells, and henceits dependencies to other operations.In a sequential program, operations are totally ordered in time. In a parallel program,the execution order is partial. Non-comparable operations may be executed simultaneouslyif su�cient ressources exists. We will postulate that the total running time of a programmay be computed simply by summing the duration of elementary operations. Speci�cally,we will ignore phenomena like pipe-line loading and unloading, cache hit or miss, andmemory contention. In fact, we will show in 3.4 how to model these e�ects as random
uctuations in the execution times.2.1 The Data
ow GraphFor a static control program, it is possible to analyze the
ow of data through the operationsand the memory cells. The basic technique is presented in [7] and in more details in [5]; abrief description follow. For each read access in the program, the set of all preceeding writeaccesses to the same memory cell is characterized and its temporal maximum is computed.The result is the source of the value obtained by the read access. A source is composedof an instruction name and an iteration vector. Both these elements may depend on theiteration vector of the read access. The method of [5] yields a source function in the formof a more or less complicated conditional expression.Consider for instance the following Fortran code which is a part of a Cholesky solver:program cholesinteger i, j, kreal x(10), z(10, 10)real a(10,10), p(10)do 1 i = 1,nx(i) = a(i,i) {1}do 2 k = 1, i-12 x(i) = x(i) - a(i,k)**2 {2}p(i) = 1.0/sqrt(x) {3}do 3 j = i+1, nz(i,j) = a(i,j) {4}do 4 k = 1,i-14 z(i,j) = z(i,j) - a(i,j) * a(i,k) {5}3 a(j,i) = z(i,j) * p(i) {6}1 continue

Preliminary Version, May 23, 1989 4endLet us consider statement f6g. This instruction is executed once for each integer pointin the set D6 = f< i; j > j1 � i � n; i+ 1 � j � ng:D6 is the execution domain of f6g. Each operation produces a value for a(i,j) andconsumes one value for z(i,j) and one value for p(i). Let us investigate, e.g., thesource of the value for z(i,j). There are two a priori possibilities: statements f4g andf5g. One sees that the last iteration of f6g will destroy all preceding values, providedthis instruction is executed at least once. This is always true unless i = 1, in whichcase the source is instruction f4g. Let us note (n; i; :::; k) the value which is producedby instruction n when the surrounding loop counters have values i; : : : ; k. The value ofz(i,j) in f6g is given by the following conditional:if i >= 2 then (5, i, j, i-1) else (4, i, j)This reasoning may be reproduced (with suitable modi�cations), for all right-hand side(rhs) references in the program. Whe have shown in [5] that the process is completelymechanical, the basic tool being an algorithm for solving parametric linear programingproblems in integers ([6]). The corresponding program has been inplemented partly in Lispand partly in C, and runs on various computers including a Dec Vax, a Sun workstationand a personnal computer.The result of the analysis may be presented as a graph which we call the data
ow graphor DFG for short. The DFG has one node per instruction in the original program. Thereis an edge from instruction s (the source) to instruction t (the sink) for each rhs referencein t wich uses a value produced by s. Each edge is labelled by the following information:� The governing predicate, which must be true for the value to be really used in thesink instruction. For the exemple above, the governing predicate for the 5! 6 edgeis i � 2.� The sink-to-source transformation which allows one to compute the iteration vectorof the source instruction in term of the iteration vector of the sink instruction. In allpractical cases we have encountered so far, this transformation is a�ne, but there isa possibility of encountering quasi-a�ne transformations as the result of the sourcecomputation (see [4] for a somewhat arti�cial exemple). In the above case, thistransformation is: i0 i; j0 j; k0 i� 1Table 1 gives the complete DFG for the Cholesky program.The DFG is similar to the usual dependence graph but has several advantages. Theedges in the DFG correspond only to true dependences in the program; anti-dependencesand output dependences are suppressed. Spurious true dependences (i. e. dependences onvalues which are destroyed before being used) are suppressed as well. As a consequence,the DFG is insensitive to expansion transformations ([14], [4]). The DFG is sensitive toloop inversion and loop skewing ([19]). However, this e�ect is very limited : it is simply arenaming of all nodes, with corresponding changes of variables in the governing predicatesand source-to-sink transformations.

Preliminary Version, May 23, 1989 5source sink reference governing executionpredicate domain(2; i; k� 1) (2; i; k) x(i) k � 2 1 � i � n(1; i) (2; i; k) x(i) k = 1 1 � k � i� 1(6; i; k) (2; i; k) a(i,k) true(2; i; i� 1) (3; i) x(i) i � 1 1 � i � n(1; i) (3; i) x(i) i = 1(5; i; j; k� 1) (5; i; j; k) z(i,j) k � 2 1 � i � n(4; i; j) (5; i; j; k) z(i,j) k = 1 i+ 1 � j � n(6; k; i) (5; i; j; k) a(i,k) true 1 � k � i� 1(5; i; j; i� 1) (6; i; j) z(i,j) i � 2 1 � i � n(4; i; j) (6; i; j) z(i,j) i = 1 i+ 1 � j � n(3; i) (6; i; j) p(i) trueTable 1: The DFG of the Cholesky Program2.2 Expanded Data
ow Graph and Timing FunctionsThe DFG is a synthetic representation which abstracts over all values of the structureparameters. For given values of the structure parameters, we may construct a more explicitrepresentation by the following expansion process. The expanded DFG will have one nodeper operation. There will be an edge from (s;~a) to (t;~b) i� there is an edge from s tot in the DFG, and if ~b satis�es its governing predicate, and if ~a and ~b are related by itssource-to-sink transformation.The expanded DFG has no loops; its transitive closure is a partial order � which iscoarser than the sequential execution order of the program. Let u and v be two operations.u � v means that u produces a value which participates more or less directly in thecomputation of v's output value. Obviously this implies that u must be �nished beforev may start. There are several paradigms for extracting a parallel program from a taskgraph. For instance maximal chains with respect to � are processes. Conversely, maximalantichains are wavefronts whose operations may be executed simultaneously.In the classical scheduling approach, one tries to assign to each operation a start timeand a processor number in such a way that all constraints are satis�ed. As is well known,the scheduling problem is NP-complete unless the task graph is restricted to simple formswhich are not likely to be encountered in practice.Our starting point will be the so-called timing functions, which are nothing more thanparacomputer schedules. A timing function should verify the following inequalities:u � v) �(u) + @(u) � �(v); (1)where @(u) is the duration of u.We will be interested mainly in the case where all operations have the same duration,which may be taken as the time unit. Among all timing functions is a minimal one, whichis easily computed by the following formula:

Preliminary Version, May 23, 1989 6�(u) = maxf�(v)jv � ug+ 1: (2)The algorithm is linear in the number of edges in the expanded DFG. The important point,however, is that in many cases we may obtain simple closed expressions for some timingfunction; most often, this may be done uniformly in the structure parameters.For instance, the reader may care to verify that the above Cholesky program admitsthe following timing fonctions:�(1; i) = 0 �(2; i; k) = 3k�(3; i) = 3i� 2 �(4; i; j) = 0�(5; i; j; k) = 3k �(6; i; j) = 3i� 1 (3)The veri�cation is nothing more than an examination of all edges in table 1. For anedge from s to t with governing predicate � and sink-to-source transform L, verify thatthe inequality: �[t;~a] � �[s; L(~a)] + 1 (4)is a consequence of ~a 2 Dt and �(~a).The determination of timing functions is outside the scope of this paper. Let us note,however, that the problem is strongly connected to the construction of systolic arrays.In fact, from most systolic designs one may retrieve a (linear) timing function for theunderlying algorithm. Conversely, a well known synthesis method ([16]), starts by theconstruction of a linear timing function from the DFG 2.Another source of timing functions is the wavefront method ([12]). A wavefront is a setof independent operations. Wavefronts are hyperplanes in the iteration space:Ft = f~aj~h:~a = tg: (5)Obviously, �(~a) = ~h:~a is a timing function.One should note, lastly, that guessing timing functions for illustration purposes is quiteeasy. First, construct an expanded DFG and a sample timing function with the help of (2).Next, guess a simple representation of the \experimental" values. Lastly, check that theproposed timing function is compatible with the DFG. The Cholesky timing functions (3)were obtained in this way.3 Theoretical resultsWe will suppose that we are given a timing function � which satis�es (2). Let S(n) be thetotal operation count (which may be taken as the sequential running time), and D(n) bethe maximum value of �. Let us de�ne:F (t) = fuj�(u) = tg: (6)2Or rather from an equivalent representation as a set of uniform recurrence equations.

Preliminary Version, May 23, 1989 7F (t) is the set of operations which are executed from time t to time t+ 1 by the paracom-puter, and will be called a front.An obvious way to fold the paracomputer schedule into a schedule for P processors isto distribute the operations of F (t) between the available processors. F (t) will now beexecuted in a time which is roughly proportional to its size. The resulting program may besketched as follow:for t := 1 to D(n) dobeginexecute F(t) in parallel on P processors; {A}synchronize;end;It is an interesting exercise to apply the above recipe to the Cholesky program and itsset of timing functions (3). There is obviously a set of initialisations which are done attime 0. Hence the program starts as 3 :PCASEDOALL 10 i = 1,n10 x(i) = a(i,i)PARDOALL 11 i = 1,nDOALL 11 j = 1+1,n11 z(i,j) = a(i,j)END PCASEAn examination of the timing functions (3) shows that the contents of F (t) depends on(t mod 3). In fact, F (3s� 2) contains only instances of f3g, F (3s� 1) instances of f6gand F (3s) contains both instances of f2g and f5g. This suggests rewriting the originalprogram in the form:DO 1 s = 1, nF(3s-2)F(3s-1)F(3s)1 CONTINUEThe explicit coding of each front is now a straightforward problem of loop transforma-tion, see [7] for a general solution. The result is:DO 1 s = 1,np(s) = 1.0/sqrt(x(s))DOALL 2 j = s+1, n2 a(j,s) = z(j,s) * p(s)PCASEDOALL 3 i = s+1,n3 x(i) = x(i) - a(i,s)**23We will use the parallel programming primitives of [11].

Preliminary Version, May 23, 1989 8PARDOALL 4 i = s+1, nDOALL 4 j = i+1, n4 z(i,j) = z(i,j) - a(i,j) * a(i,s)END PCASE1 CONTINUELet us return to a general analysis of fAg. There is no reason for this program to beoptimal. It is a well known fact, however, that most super-computers usually operate oneor two orders of magnitude below their peak performance. Hence, while optimality wouldbe a very desirable characteristics, a substantial increase in e�ciency would be interestingenough.The e�ciency of a parallel programs for P processors is usually de�ned as:� = TsPTPwhere Ts is the sequential elapsed time (which we will identify to the execution time on oneprocessor), and TP is the elapsed time on P processors.Another point to keep in mind is that super-computers are specially adapted to largecomputations. Having good values of � for large values of n is all we need in practice. Wewill say that a parallel algorithm is asymptotically e�cient i� � ! 1 when the structureparameters tend to in�nity. Our aim in this paper is to investigate conditions under whichalgorithm fAg is asymptotically e�cient.3.1 The case of perfect informationAs we have said earlier, TS = S(n). The duration of iteration t of the algorithm is easilyseen to be : dt = dCard(F (t))P e+ � (7)where � is the duration of the synchronization operation. Obviously:x � dxe < x+ 1: (8)Hence : TP < D(n)Xt=1 (Card(F (t))P + 1 + �);< (� + 1)D(n) + S(n)P ; (9)which implies that : � > 11 + (� + 1)P D(n)S(n) (10)From this we deduce that:

Preliminary Version, May 23, 1989 9Theorem 1 All algorithms such that the ratio D(n)=S(n)! 0 as n!1 have an asymp-totically e�cient parallel implementation, provided that the execution times of all operationsare equal.The above ratio may thus be seen as a characterization of the degree of parallelism of thesource algorithm. Since this caracterization is derived from the DFG, it does not dependson implementation details such as memory management or loop ordering. In the case ofthe Cholesky algorithm, for instance, this ratio is of order O(1=n2), which indicates verygood parallelism. The same is true for matrix multiplication, Gauss-Jordan eliminationand LU factorisation. At the other end of the spectrum are summation algorithms (thedot product is an exemple), for which the ratio is O(1). An interesting situation obtainsin the case of the solution of a triangular system, which is O(1) or O(1=n) depending onwhether the dot products are computed left-to-right or right-to-left. This indicates thatwhile our theory abstracts from a large number of possible transformations, it still does nottake into account algebraic properties of operators like associativity and commutativity.Further work is needed in this direction.In the sequel we will say that an algorithm has degree of parallelism � if the ratioD(n)=S(n) is O(1=n�) when n!1.3.2 A Worst Case AnalysisThe hypothesis that the duration of an operation is always exactly one time unit is notlikely to be realized in practice, with the important exception of strongly synchronousarchitectures like the Connexion Machine or VLIW computers. We would like to knowwhat happens in the face of such variations. Let the mean duration of an operation be1 time unit, and let � be an upper bound. Obviously, the worst case occurs when thelongest operations are all executed by the same processor. Since there is a synchronizationoperation at the end of each iteration, each processor will wait for the slowest one. In thiscase we may neglect the synchronization time and ceiling e�ects. The new iteration timeis: dt = � Card(F (t))P ; (11)and the e�ciency becomes: � = 1� : (12)The conclusion is that fAg no longer is asymptotically e�cient, and that the degradation isdirectly proportional to the variability in operation time. This result, however, is not veryrealistic. Arranging for the longest operations to be executed by one particular processor isas di�cult a task as distributing them equally among all processors. We will next investigatetwo more realistic models. In the �rst one, the so-called self-scheduling approach, theallocation of an operation to a processor is done on the
y at execution time. In the otherone, we will suppose that the operation durations are independent random variables andcompute the expected value of the parallel running time.

Preliminary Version, May 23, 1989 103.3 Greedy Self-schedulingA greedy scheduler works in the following way. When starting the execution of a front,all its operations are put into a (real or virtual) queue. When a processor terminates anoperation, it removes an arbitrary operation from the queue and start executing it. If thequeue is empty, it stops until all pending operations are terminated and then start againon the next front. We deduce that under the greedy scheduling policy, no processor is idleas long as there is work to be done.Let us take as origin the time at which front F (t) start executing. Let d0 be the time atwhich the work queue becomes empty, d be the time at which all work on the current frontis terminated, and let fp � F (t) be the set of operations which are executed by processorp; p = 1; P . Processor p �nishes working at timePu2fp @(u) and �nd the work queue empty.Hence: d0 � Xu2fp @(u) (13)and if we sum all such inequalities for p = 1; P we obtain:Pd0 � Xu2F (t)@(u): (14)Now, since from time d0 to d each processor execute at most one operation, we haved� d0 � � , and hence: d � Pu2Ft @(u)P + �: (15)Summing on all fronts, and taking care of including the synchronisation time, we get:TP � PD(n)t=1 Pu2Ft @(u)P +D(n)(� + �);� S(n)P +D(n)(� + �):and hence: � � 11 + P D(n)S(n) (� + �) ; (16)which gives us theTheorem 2 All algorithms such that D(n)=S(n) ! 0 as n ! 1 have an asymptoticallye�cient parallel implementation provided that the execution time of all operations is boundeduniformly in n.In the above analysis, we have neglected the time it takes to extract the next operationfrom the scheduler queue. On most computers, this must be done from within a criticalsection. Let � be the extraction time; the global memory must be considered as one moreprocessor, with a running time of �S(n), to be compared to the total running time whichis of the order of S(n)P . This mean that self-scheduling is e�cient only if � � 1=P . Forways of improving this situation by lumping several operations, see [15]. On machines

Preliminary Version, May 23, 1989 11with recombining networks, like the New York Ultracomputer ([8]), there is no interferencebetween queue accesses, and the extraction time may simply be added to the operationexecution time.3.4 A Probabilistic AnalysisIn this section, we will suppose that an element of chance enter in the de�nition of theoperation execution time. If randomness is de�ned as the interaction of two independentcausal sequences then in a complicated architecture, there must be many random events.Furthermore, one may further contribute to the randomness of the process by allocatingan operation to a processor according to some pseudo-random or hashing function (see [18]for an exemple).Let us suppose that the duration of an operation is a random variable with expectationone time unit and variance �2. All such variables are deemed independent. Let us �rstconsider a front F . Suppose that operations in F are partitionned equally between Pprocessors. The workload of processor p will be a random variable Xp with expectation mand variance m�2, where m = Card(F)=P . The duration of front F is the random variable:Z = Pmaxp=1 Xp; (17)and we are interested in the expectation of Z. We will suppose that the Xp have a commondistribution function: �(x) = ProbfXp � xg; (18)and a density 4 �(x) = �0(x): (19)Since the event fZ � zg is equal to fXp � z; p = 1; Pg, the distribution function of Z is�(z)P , and its density is P�(z)P�1�(z). The expectation of Z is then:E(Z) = P Z 10 z�(z)P�1�(z)dz: (20)The integral may easily be bounded by Schwartz inequality:E(Z)2 � P 2 Z 10 z2�(z)dz Z 10 �(z)2P�2�(z)dz: (21)The �rst integral is E(X2p). The second evaluates to 1=(2P � 1), to give :E(Z) � PsE(X2p)2P � 1 : (22)Let a be any non-random number. From the identity:Pmaxp=1 (Xp) = a+ Pmaxp=1 (Xp � a) (23)4The reader may care to convince himself that all our conclusions would stand in the case of a discretedistribution function (and even in more complicated cases).

Preliminary Version, May 23, 1989 12we may deduce a whole family of analogous bounds for E(Z). The most precise one isassociated to the minimum value of E((Xp � a)2), which obtains when a = m = E(Xp).The �nal result is: E(Z) � E(Xp) + PsVar(Xp)2P � 1 : (24)Replacing E(Xp) and Var(Xp) by their values, we get 5:d � Card(F)P + �s P2P � 1qCard(F) (25)for the expected duration of front F . Summing on all fronts, we get:E(TP) � S(n)P + �s P2P � 1 D(n)Xt=1 qCard(F (t)) (26)The sum is easily seen to be maximum when all summands are equal, i.e. whenCard(F (t)) = S(n)=D(n):This gives the �nal bound:E(TP) � S(n)P + �s P2P � 1qS(n)D(n): (27)� � 11 + P�q P2P�1rD(n)S(n) (28)From this we deduce theTheorem 3 If the operation durations of an algorithm may be represented by randomindependent variables with �nite expectation and variance, then the fact that the ratioD(n)=S(n)! 0 as n!1 is a su�cient condition for the algorithm to have an asymptot-ically e�cient parallel implementation.One should note that random
uctuations in the execution times e�ectively halve the degreeof parallelism, a not unexpected result ! The factorpP=(2P � 1) vary between 1 and 1=p2.It should not be an important element in the following discussion. With this proviso inmind, to get, say, more than 80% e�ciency, one should keep P�=n� < :25, where � issome characteristic time and � is the e�ective degree of parallelism. This will allow moremassive parallelism on synchronous machine and coarser parallelism on asynchronous anddistributed systems.5Here again we neglect synchronization time and ceiling e�ects.

Preliminary Version, May 23, 1989 134 Relation to Previous WorkAs the reader may have gathered by now, the aim of this paper is to put in perspective ahost of existing techniques rather than introduce new ones. In this context, our debt towork on the construction of systolic arrays should be obvious.A recent paper by Eager et. al. ([3]) is very near to our concerns and results. In[3], one starts with a task graph and �nds bounds on its e�ciency when execulted on amultiprocessor. The authors show that most of the details of the Task Graph may besummarized by the Average Parallelism Measure, which is exactly the same as the ratioD/S of the present paper.From here on the papers take somewhat divergent directions. Eager et. al. supposethat the task graph has been constructed elsewhere, that the tasks are few and that theirdurations are large. This allows them to lump the synchronization time with executiontime and to use processor sharing as a scheduling policy. The main cause of ine�ciency intheir task graphs is variation in the workload.Here on the contrary our main objective is the construction of a task graph from theDFG. Nodes of the DFG are build from a few machine instructions; there is almost alwaysadequate workload (as long as D=S ! 0), and the main causes of ine�ciencies are thesynchronization operations, the impossibility to use processor sharing at the instructionlevel, and inaccuracies in the operation durations.As a result we feel that the two papers give complementary information at the twoextremities of the granularity spectrum. It is a very striking fact that the main controllingparameter (the average degree of parallelism), is the same in both cases.5 ConclusionLet us summarizes what has been achieved so far. When given a (FORTRAN) program,we start by building its data
ow graph by techniques which are described in [5] and havebeen sketched here. From the DFG we construct a timing function and obtain two crucialinformations:� the sequential operation count, S(n),� the length of the longest path in the expanded DFG, D(n).We claim that the ratio � = D(n)=S(n) is a fair measure of the inherent parallelism in theoriginal program. If �! 0, then there is an asymptotically e�cient parallel implementation,and the faster � tends to zero, the faster the e�ciency tends to one. Conversely, since D(n)is a lower bound on the parallel execution time on a �nite number of processors, if � doesnot tend to zero, the advantage to be gained from a parallel execution is limited.All these results depends on the hypothesis that all operation are executed in unit time.Let us note �rst that all our results would subsist under the less stringent hypothesis thatall operations inside one front have the same duration. In the presence of timing variationsinside a front, we have investigated two solutions:

Preliminary Version, May 23, 1989 14� In self-scheduling, the allocation of operations to processors is done at execution time.Self-scheduling is very e�cient but precludes the use of �ne grain parallelism.� Randomization allocates operations at compilation time according to some determin-istic approximation of a random process. The method has low overhead but reducesthe e�ective degree of parallelism.Choosing between the two approaches will obviously depends on details of the source pro-gram and object computer structure.Let us now investigates the technical feasibility of our proposal. There is no problemwith the construction of the DFG. Constructing linear timing functions also is a well knownprocedure, but there are programs for which such a function does not exists. An elementaryexemple is:DO 1 i = 1,nDO 1 j = 1,i1 s = s + x(i, j)One may try to look for polynomial timing functions. This does not look a very promisingapproach, since the next task is to invert the timing function for the construction of fronts. Itseems much more promising to search for multidimensional and multiphase timing functions.This problem will be the subject of future research.The construction of fronts is a problem in loop transformation, for which we have giventhe elements of a solution in [7]. It is here that a knowledge (even an approximate one), ofexecution time may be helpful when distributing the workload between processors.Once the fronts are constructed, one must insert appropriate synchronization instruc-tions in the code. In the skeletal algorithm fAg, this has been done in a systematic, uneco-nomical way. In some cases one may get away with much less synchronization (consider thecase of matrix multiplication), and this will generally be worthwhile as synchronizationsoperations are always quite costly. In machines which are inherently synchronous, therewill be no need for explicit synchronization. As a counterpart, these architectures are onlyable to execute homogeneous fronts. Fronts with more than one type of operations (likeF (3s) in the Cholesky exemple), will have to be split into several sub-fronts. Since thenumber of sub-fronts will always be �nite, this will not decrease the asymptotic degree ofparallelism.Next come memory management. Most of the time, the program obtained in theabove way will be incorrect, since we have not taken into account anti- and output-dependencies([14]). Correctness must be restored by minimal scalar and array expansion,and this is a whole research subject in itself.Let us now examine two open problems. We have said in section 3.1 that the degree ofparallelism of the triangular solver algorithm depends on the order in which a dot productis computed. Mathematically speaking, all such orders are equivalent, since addition isassociative and commutative, but this is no longer true if rounding errors are taken intoaccount. There are reasons to believe that, with the exception of some pathological cases,the summation order is not critical. Hence, a technique for including such equivalence inthe calculation of the timing function would be highly interesting. There should however

Preliminary Version, May 23, 1989 15be a directive for turning the facility on and o� according to the numerical stability of thesource algorithm.While we have used the language of shared memory architectures, this work is equallyapplicable (in fact, perhaps more so), to distributed systems. A frequently used paradigmfor the construction of distributed programs is the graph partitionning approach. Edges inthe task graph represent information transfer. They may be valued by the volume of thetransfered data. One then proceed to partition the task graph in such a way that the sum ofthe values of interpartition edges is minimal. What is lacking in this approach is a sense oftime. There is a big di�erence between a transfer which is evenly distributed all along thelifetime of the computation, and one which is concentrated, e.g. at the beginning or end.The graph partitionning approach cannot take these phenomena into account. We thinkthat timing functions will provide the required time scale. Note �rst that, by construction,there is no information exchange inside a front. All communication occur between di�erentfronts, and the communication overhead will be minimal if communicating operations areallocated to the same processor. This will obviously con
icts with the objective of loadequalization; one should try to locate an optimum. This problem will be the subject offuture research.References[1] J.R. Allen and Ken Kennedy. Automatic loop interchange. SIGPLAN Notices, 19,1984.[2] Jean-Loup Baer. A survey of some theoretical aspects of multiprogramming. Comput-ing Surveys, 5:31{80, March 1973.[3] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup versus e�ciencyin parallel systems. IEEE Transactions on Computers, 38:408{423, March 1989.[4] Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing, St Malo,1988.[5] Paul Feautrier. Data Flow Analysis of Scalar and Array References. Technical Re-port 282, MASI, April 1989.[6] Paul Feautrier. Parametric integer programming. RAIRO Recherche Op�erationnelle,22:243{268, September 1988.[7] Paul Feautrier. Semantical analysis and mathematical programming; application toparallelization and vectorization. In Workshop on Parallel and Distributed Algorithms,Bonas, October 1988.[8] Allan Gottlieb, Ralph Grishman, Clyde P Kruskal, Kevin P. McAuli�e, Larry Rudolf,and Marc Snyr. The nyu ultracomputer : designing an mimd shared memory parallelcomputer. IEEE Transactions on Computers, C32:175{189, February 1983.

Preliminary Version, May 23, 1989 16[9] William Jalby and Ulrike Meier. Optimizing Matrix Operations on a Parallel Multi-processor with a Memory Hierarchy. Technical Report, CSRD, February 1986.[10] Pierre Jouvelot. Semantic parallelization, a practical exercise in abstract interpreta-tion. In ACM-POPL '87, Munich, 1987.[11] J. Karp. Programming for parallelism. IEEE Transactions on Computers, May 1987.[12] Leslie Lamport. The parallel execution of do loops. CACM, 17:83{93, February 1974.[13] Alain Lichnewsky and Fran�cois Thomasset. Introducing symbolic problem solvingtechniques in the dependence testing phases of a vectorizer. In ACM Int. Conf. onSupercomputing, St Malo, France, July 1988.[14] D. A. Padua and Michael J. Wolfe. Advanced compiler optimization for super com-puters. CACM, 29:1184{1201, December 1986.[15] Constantine Polychronopoulos and Donald J Kuck. Guided self-scheduling. IEEETransactions on Computers, C-36:1425{1439, December 1987.[16] Patrice Quinton. Mapping recurrences on parallel architectures. In 3rd Int. Conf. onSupercomputing, Boston, May 1988.[17] Julius T. Schwartz. Ultracomputers. ACM Transactions on Programming Languagesand Systems, 484{521, 1980.[18] Nadia Tawbi and Paul Feautrier. Parall�elisation automatique de programmes pourordinateur multiprocesseur �a m�emoire partag�ee. Technical Report 285, MASI, March1989. Journ�ees algorithmes parall�eles et architectures nouvelles.[19] Michael J. Wolfe. Loop skewing, the wavefront method revisited. Int. J. of ParallelProcessing, 15, August 1988.

