Laboratoire de I'Informatique du Parallélisme

Ecole Normale Supérieure de Lyon
Institut IMAG
Unité de recherche associée au CNRS n°1398

Construction of DO Loops from
Systems of Affine Constraints

Jean-Francois Collard
Paul Feautrier May 1993
Tanguy Risset

Research Report N© 93-15

Ecole Normale Supérieure de Lyon
II“ 46, Allée d'ltalie, 69364 Lyon Cedex 07, France,
Téléphone : + 33 72 72 80 00; Télécopieur : + 3372 72 8
Adresses électroniques :
lip@frensl6l.bitnet; lip@lip.ens—lyon.fr (uucy

Construction of DO Loops from Systems of Affine
Constraints

Jean-Francois Collard
Paul Feautrier
Tanguy Risset

May 1993

Abstract

Most parallelization techniques for DO loop nests are based on
reindexation. Reindexation yields a new iteration space, which is
a convex integer polyhedron defined by a set of affine constraints.
Parallel code generation needs thus to scan all the integer points
of this convex, thereby requiring the construction of a new DO
loop nest. We detail an algorithm for this purpose, which relies
on a parametrized version of the Dual Simplex. We show how
the resulting loop nest and especially the loop bounds can be
kept simple and streamlined, so as not to reduce the benefits of
parallelization.

Keywords: automatic parallelization, convex integer polyhedron, code
generation.

Résumé

La plupart des techniques de parallélisation des nids de boucles
DO sont basées sur la reindexation. La reindexation génere un
nouvel espace d’itération, qui est un polyedre convexe entier
défini par un systeme d’inéquations affines. La génération du
code parallele nécessite donc d’énumeérer tous les points entiers de
ce convexe, ce qui s’obtiendra grace a un nouveau nid de boucles.
Nous présentons un algorithme construisant ces boucles, qui
repose sur une version paramétrée du Simplexe Dual. Nous
montrons comment les boucles générées, et en particulier leurs
bornes, peuvent étre gardées simples, de facon a obtenir un code
efficace ol les bénéfices de la parallélisation ne soient pas amoin-
dris.

Mots-clés: parallélisation automatique, polyedre convexe entier, généra-
tion de code.

Construction of DO Loops from Systems of Affine

Constraints
Jean-Francois Collard, Tanguy Risset Paul Feautrier
LIP MASI Laboratory
URA CNRS 1398, ENS Lyon Université de Versailles
46 Allée d’Italie 45 Avenue des Etats-Unis
F-69364 Lyon Cedex 07 F-78035 Versailles Cedex

{jfcollar,risset}@lip.ens-lyon.fr feautrier@masi.ibp.fr

May 18, 1993

1 Introduction

Parallel computing is one of the most promising way to increase the com-
putational power available to scientists. Recent experiences on parallel
machines confirm what has been foreseen: the dramatic need of automa-
tion in parallelization [Lam74, Wol89, WL91, ZC90, HKT91, LHS90, SF91,
DRR93].

Most parallelization techniques for DO loop nests are based on reindex-
ation, i.e. on a change of basis of the iteration space. Since the values
of the new loop counters will be enumerated in a DO loop nest, innermost
loop bounds have to be expressed as functions of the outermost ones. These
computations must be exact, so as to preserve the semantics of the origi-
nal program. Furthermore, they need to be as simple as possible: control
overhead should not reduce the benefits of parallelization.

The problem of finding loop bounds of a reindexed loop nest is tightly
connected to various problems on integer convex polyhedra [AI91]. Few al-
gorithms have been designed to solve this problem. The Fourier-Motzkin
pairwise elimination method is relevant here, but this method generates
redundant constraints. An interesting alternative for this particular appli-
cation is the Simplex method. A parametrized version of the Dual Simplex
method has been developed by Feautrier and implemented in the PIP (Pa-
rameter Integer Programming [Fea88]) software. Unfortunately, the results
produced by the PIP algorithm may sometimes be more intricate than nec-
essary. In this paper, we show that the solution produced by PIP can be
simplified.

After setting the notations and recalling general definitions in Section 2,
Section 3 illustrates some program transformations we are dealing with in
automatic parallelization. The problem of scanning a polyhedron and the
loop bounds computation algorithm are explained in Section 4. Section 5

presents the PIP algorithm and gives an extensive example of loop bounds
determination, hinting at a simplification possibility. Section 6 formally de-
scribes and proves our simplification proposal. The last section summarizes
our results and indicates directions for future work.

2 General Definitions

Throughout this paper, arrowed lowercase letters denote “column” vectors
with integer or rational entries. The k-th entry of vector & = (zy,...,2,)"
is denoted by #[k] or, if there is no ambiguity, z;; its subvector built from
components k to [is written as: (ay,...,2;)"; if & > [, then this vector is by
convention the vector of dimension 0. Vector concatenation is denoted by -,
thus for example & = (xy,...,2,_1)" - (4,...,2,)". The null vector with
appropriate dimension is denoted 0. Furthermore, we denote by < (resp.
<) the lexicographic order (resp. the strict lexicographic order) on such
vectors. Finally, if A is a matrix, then A;, represents the i** row of A, and

A,; the 7' column.

Definition 1 (Structure parameters) Structure parameters are integer
symbolic constants, generally defining array sizes, iteration bounds, etc.
Structure parameters may be defined once in the prologue of a program, and
may not be modified elsewhere.

Throughout this paper, the p structure parameters are merged into a p-
vector Z.

Definition 2 (Perfect loop nest) A perfect loop nest is a nest of DO state-
ments where, for a given counter, lower and upper bounds are affine func-
tions of enclosing loop counters and possibly of structure parameters.

Perfect loop nests thus follow the scheme below:

DO il = lbl(g) N Ubl(g)
DO iz = lbz(ll,g) N sz(il,g)

DO iy = lbo(iy, ..y in_1s) > ubp(in, .. in_1,5)
S
ENDDO
ENDDO
ENDDO

Definition 3 (Iteration vector) For a given statement S in a perfect loop
nest, the iteration vector ¥ is the vector of the surrounding loop counters.

For instance, the iteration vector of statement 5 in the loop nest above is
f: (ilv' . .,in)T.

Definition 4 (Operation) The execution of S for a given iteration vector
T is called an operation, denoted by the pair (5, 7).

Definition 5 (Iteration space) The iteration space of a given statement
S in a given perfect loop nest is the set of the values taken by its ilteration
vector when executing the loop nest.

Since the loop nests we are dealing with are “perfect”, the iteration
spaces are finite convex polyhedra of Z". Such polyhedra can always be
defined by a set of inequalities such as:

D={ZF|T€Z"CT+C'Z+b>0}

where C' and C’ are constraint matrices of size m x n and m X p respectively,
and b is a constant m-vector. This is equivalent to describing a polyhedron
as the intersection of a set of half-spaces.

3 Program Transformation

Current parallelizing methods are inherited from automatic systolic design
and transform programs through basis changes of iteration spaces. These
basis changes are affine or linear, and usually unimodular, transformations.
In the case of unimodular linear transformation [BL92b, BL92a], vector
coordinates (yi,...,y,)" and (zy,...,2,)7, respectively in the old and new
bases, are related by:

where ¢ is a n X n matrix such that det(/) = £1.

The generated code will have to scan the new iteration space, and this
will be done using a new DO0-loop nest. To illustrate the point, consider the
following depth-3 perfect loop nest, parametrized by Z= (m,n)":

DOi=0,nm
DO j=0,n
DOk =0 , i+]
S
ENDDO
ENDDO

ENDDO

The iteration space D(m,n) is described by:
D(m,n) = {(i,j, k)" | (1,4, k) € 5,0 <i<m,0<j <m0 < k< it}

This set is a convex polyhedron in Z32, which can be written as:

D(m,n)={Z|F€Z>CFi+C'Z+0b> 0} (2)

with:
1 0 0 0 0 0
Z 0 1 0 0 0 0
I o 0o 1 , 0 0 - | o
v ‘17{ C=1 4 o o =11 b=1y
0 -1 0 0 1 0
1 1 -1 0 0 0

We give below two examples of such basis changes:

Example 1 : Loop interchange. Assume data dependencies allow the
loop nest above to be transformed using loop interchange while pre-
serving its semantics. This transformation would rewrite the loop with
counters in the order k, j,7 instead of ¢, 7, k:

DO k= lb,(m,n), uby(m,n)
DO j=Ilbj(m,n, k), ubj(m,n, k)
DO i={(b;(m,n,k,j),ub(m,n,k,j)
S
ENDDO
ENDDO
ENDDO

In this case, the corresponding matrix I/ is:

<
ll
—_o o
o = o
oo =

Example 2 : the “systolic” point of view. The goal of the “systolic”
method is to find a new iteration space basis in which the first coordi-
nate(s) represent the execution time or schedule of the operations' and
the remaining coordinate(s) represent the virtual processor address on
which this operation is to be executed. In this new nest, the loops
on time have to be executed sequentially, but not the loops on space.
The loop above can for example be eventually expressed with respect
to counters (¢, z,y)”, where t is the schedule and (z,y) the coordinates
of virtual processors on a two-dimensional grid.

The code generated by such a transformation will look like:

!To see why this time may be multidimensional, see [Fea92b].

DO t={by(m,n),ub(m,n)
DOALL (x=lb.(m,n,t): ubs(m,n,t))
DOALL (y=lb,(m,n,t,z): ub,(m,n,t, z))
S
ENDDOALL
ENDDOALL
ENDDO

Methods of dependence analysis [Fea89, Fea91] and schedule compu-
tation [Fea92a, Fea92b, QR&9, Quil7] are now well understood and
provide an appropriate matrix .

In the transformation examples above, the parallelizer has to compute
new loop bounds, and this is all but obvious. The rest of this paper concen-
trates on the algorithm for this computation and on the application of the
PIP algorithm to this purpose.

4 The Polyhedron Scanning Problem

Our motivation is to show how loop bounds can be computed algorithmically
from systems of affine constraints. The DO loop nest obtained will scan once
and only once all the integer points of the corresponding polyhedron.

4.1 The Input

The input of our computation is a polyhedron D(Z) expressed in the original
basis as a set of m inequations:

D(Z)={F|CT+C'Z+0b> 0} (3)
where €' and C"' are constraint matrices of size m x n and m X p respectively,
and b is a constant m-vector.

This expression of polyhedron D(Z) is obtained by parsing the program
text and writing two inequalities lb;, < iy < uby, per loop. Observe that one
may still construct D(Z) if the lower (resp. upper) bound involves ceiling
and maximum (resp. floor and minimum) operators. In that case there will
be more inequalities than in the simple case.

4.2 The Output

The result must be a loop nest L:

DO T :al,bl

DO =z, = a,,b,
S
ENDDO
ENDDO

whose iteration vector is Z in the new basis, and which enumerates the inte-
ger points in D(Z) in lexicographic order with respect to the new coordinate
system. We have to decide whether D(Z) if empty and, if not, generate loop
L. L is not a perfect loop nest as defined in Section 2: for a given counter
x1, both lower and upper bounds follow the requirements below:

R1 : Bounds may be affine functions of x,,...,2;_; and %,
R2 : Bounds may be ceiling/floor functions of R1 expressions,
R3 : Bounds may be maxima/minima of R1 or R2 expressions.

Thus, the output is a list of bounds: first, the bounds of the outermost
counter x, then the bounds on x, as a function of the structure parameters
plus z,, and so on for all entries in .

4.3 The Algorithm

The basic method has been presented in [Fea89]. The first question is to
know how one can exactly scan the integer points of D(Z), that is, to build
the L loop nest. The method proceeds by constructing n polyhedra:

Di(ay .. .2p.2) = {(2py1...20) | CE+C'Z4 b > 0}
for k= 0,n — 1. Obviously, D(2) = Dy(%). Let:

l_;g(acl...xk_l,é’):rrgnDk_l(xl...xk_l,E), (4)
(@) ... 241, 2) :méLXDk_l(xl...xk_l,E). (5)
Note that we use PIP to compute these lexicographic extrema, but the
algorithm given here is independant of PIP.
We assert that the bounds of the k-th loop are:

a = [fk(wl . .xk_l,g)m :

by = | @2y 21, D[1]]

Proof Let ¥ be an integer point in D(Z). For all k, (2 ...2,)"

is an element of Dy_y(a,...25_1, 7). As a consequence,

—

(g oapy,)<L (2 .xn)Tgﬁk(xl T, 2),
which implies:

lk($1 . .$k_1,g)[1] S Tp S ﬁk($1 . .$k_1,g)[1],

which says in effect that z; is within the bounds of the k-th loop,
by the properties of the floor and ceiling functions.

Conversely, let & be an iteration vector of the loop nest.
Dn_1(xy...x5_1,7) is a one dimensional polyhedra. Obviously:

—

ln(zy . cxn_1,2) <, < tp(x)...2,5-1,7),

which implies, by convexity, that z,, € D,,_i(@;...2,_1, Z), which

is equivalent to saying that & € D(2)

As a consequence, we have proved that the loop nest L scans all
integer points of D(Z) and nothing but integer points of D(Z). O

We may in fact prove a more precise result. The result above would still
be true if we enlarged arbitrarily the bounds of all loops but the last one.
The effect would be that most of the time, the bounds for the z, loop would
be undefined, the end result being that only the proper iterations would be
executed. The scheme above does not suffer from this waste of processing

power:
Let Py(Z) be the projection of D(Z) on the space of the first k loop
counters:

Pu(Z) = {(x1...xp)" | Fapqs ... : CE+C'Z4 b > 0},

It is well known that all Pj(Z) are convex polyhedra. Obviously, P, (%) =
D(Z). We assert that the first k& loops of L scan Py (2).

Proof The proof that all points of P,(Z) are visited by the loop
nest is exactly the same as above. The proof of the reciprocal
is by recurrence on k. The property is obvious for £ = 1, since
P.(Z) is one dimensional and convex. Suppose the property is
true up to k — 1. Let (z;...2;)" be a valid iteration vector. By
definition of a loop nest, so is (.. .xk_l)T. By the induction
hypothesis,
(.. .xk_l)T € Pr_1(2).

As a consequence, Dy_,(%) is not empty and l_;c(wl ..Tp_1,7)and
Up(xy...24_1, 2) are well defined. Both

—

($1 .. .$k_1)T . lk($1 .. .$k_1)

and
($1 .. .$k_1)T . ﬁk($1 .. .$k_1)

belong to D(Z), and so does, by convexity, all

glp) = M[(wl---wk—l)T 'fk(ﬂfl--wk—l)]
(1=)[(2y . oapoy)” @y py)]

for 0 < p < 1. Now, since:

—

lk($1 . $k_1)[1] S Tp S ﬁk($1 . .$k_1)[1],
there exists a value of u such that:
Jp)[k] = .

Since (1) € D(Z), we have proved that (z;...2;) € Pp(%). O

4.4 The example, revisited

This section illustrates the use of the Parametric Integer Programming Al-
gorithm (PIP) to get new loop bounds after loop transformation. In the
example (Section 3), the first step consists in finding the lexical extrema of:

Do((m,n)) = {(k,j,))"[i <m,j <nk<i+j},

where m and n are structure parameters. For this first problem, structure
parameters are supposed to be non-negative. PIP has to be called twice
(once for upper bounds and once for lower bounds, in any order). The
result is:

0 k m-4+n
0] 7 |x n : (6)
0 1 m

From the definition of lexical ordering, we know that this entails:
0<k<m+n.

We cannot, however, deduce anything about ¢ or j from the above result.
The second problem is:

Dy(k, (m,n)) = {(j.)i <m,j < nk<i+j}
This yields the following bounds on j:

f k—m—-1>0

thenif k—m—-n—-1>0
then 1 <j (7)
else k—m

else 0

and:
j<@Gf (k—=m-n—-12>0) then 1 else n). (8)

The bound of j in (7) is called a quast (for quasi affine solution tree).
These expressions are very intricate because, as we have said earlier, they
include information both on the j loop and on the k loop. They can be
simplified by noticing that k& < m+ n implies that k—m —n—1 > 0 is never
true. PIP has a mechanism for doing that. The conteztis a set of constraints
on the parameters, which are used to simplify (if possible) expressions such
as (7) above. If we have k < m + n as context, the new result is:

(if (m—%k>0) then 0 else k—m)<j<n. (9)
The last problem is:

We may use £ < m 4+ n and 5 < n as context, but we cannot use the lower
bound of j in (9) since it is not in the format of a linear constraint. The
solution for ¢ is then:

if j—k>0
then 0 if m-—k+5>0
elseif m—-k+35>0 <1< then m

then k£ —j else L

else 1)

(10)
Had our program been smarter, it could have noticed that (7) is equiv-

alent to:
max(0,k—m) < j (11)

which implies 5 > 0 and 7 > & — m. Using these two constraints as context
would have given:

if j—k>0
then 0 <i1<m (12)
else k —j

There again, the lower bound is max(0,k — 7). Is this a general property?
From the run-time point of view, one may say that the computation of the
max in (11) is no easier than computation of the if in (7). That is true, but
the point is not computation time but useless bound intricacy, such as for i
in (10).

However, the validity of such a transformation is by no means obvious.
In (7), the two inequations were:

iz0 ;5 j>2k-m (13)

These inequations were valid on very specific domains (respectively m —
k> 0and m —k < 0). Extension to the entire space remains to be
justified. The intuition is that this extension is valid for convex domains;
according to this intuition, a convex polyhedron is defined by a system of
inequalities which is satisfied by every point included in it. Thus, every point
(k,j)is such that j > O0Aj > k—m, which implies that j > max(0, k—m)
(see Fig. 1 where the two equations of (13) are drawn).

However, one should note how error-prone this intuition may be. Sup-
pose the lower bound on j had been defined by (see Fig.2):

if (m—£k>0)
then if (k—m > 0)
Jj> then 1 — & (14)
else k. —m
else 0

This is equivalent to the following three equations, with their respective
domains:

7

j=0

Figure 1: One can take the maximum of the two equations...

m—k>0Ak—m>0 : j=1-k
m—k>0 A k—m<0 : j=k-m
m—k<0 :7=0

Although this quast is perfectly correct since it describes the same lower
bound as (7), the first equation on j (j = 1 —k) implies that the lower bound
can’t be simplified as max(0,k — m,1 — k). In fact, this third equation is
unsuitable because the corresponding line cuts through the polyhedron. In
the terminology of [Sch86], the hyperplane {j|j = 1 —k} is not a supporting
plane of the polyhedron. The key remark is that the solutions given by PIP
will never cut the polyhedron.

5 Parametric Integer Programming

Our problem is now to compute the lexicographical minimum in (4) or maxi-
mum in (5). The problems are easily seen to be linear programming problems
with two differences:

e the cost function is the lexicographic order;
e parameter values are generally unknown.

PIP handles these two requirements?. We will briefly describe the PIP
algorithm, but the interested reader will find a more complete description
in [Fea88].

2PIP furthermore handles integer problems, thanks to the Gomory algorithm [Gom63].
This part of the algorithm is not described here.

10

j=0

Figure 2: ...but not the maximum of these three.

Suppose that we want the lexicographic minimum?® of D(Z) . Z is the
vector of structure parameters, submited to the context conditions. D(Z) is
a convex polyhedron whose points are non negative, which can be described
as:

D) ={F|CF+C'Z+ >0, >0} (15)

5.1 PIP Algorithm

In the Dual Simplex algorithm, the problem is solved by a succession of
variable changes until we reach a stopping condition (to be specified later).
Each iteration [changes #' into £'** by an affine invertible transformation®.
Since this transformation is invertible, we will express ' as a function of
#'*! so as to be able to replace &' by &' in (15). Furthermore, since this
transformation itself will change from iteration to iteration, it should also

be subscripted with [. We can sum this up with the following relation:

Fo= AlF 4 A7 (16)

where A and A" are |Z| x |Z|- and |Z| x | Z|-matrices respectively,
and @ is an |Z]-vector. Initially, A° and A’® are respectively the unit- and
zero-matrices, @ is 0 and #° = Z. Moreover one should note that this basis
change is such that:

*Maximum problems can be transformed into minimum ones by a simple trick which
is described in [Fea88].

Superscripts such as &' always denote the {! element of a sequence. This convention
does not interfere with the power function since the latter is never used in this paper.

11

o D)= & > 0;

o 7' and ' differ in only one entry, because each Parametric Dual
Simplex Algorithm iteration step changes one and only one basis vari-

able.

Thus D(Z) is:

D(2) = {A'FH + A7 4 @ ClEH 4 o7y (17)

Alpi+1 ‘|‘A/15‘|‘ it > 6
d>0

where C' and C"" are the mx |Z|- and mx |Z]-matrices derived from ' and
C’ at iteration [. We may consider the m+ |Z|-vector:

() = (i) £1 () (18)

and A" and C' as two blocks of an (m+ |Z|)x |Z| matrix S

5 = (A) (19)

[S!,#(2)] is the problem tableau in the sense of the simplex method. A
step of PIP’s algorithm is described as follows.

Qy R/

—

1. Determine the signs of the components of #(2)
2. If all components are positive, then the solution is found.
3. If there is a negative component #'(Z)[i], then two cases may occur.

e If all entries in the i-th row of S' are negative, then the solution
does not exist.

o If there is at least a positive entry Sfj,

pivoting step and thus to iteration [+ 1. The new problem tableau
is [S™1, #11(2)] where:

then it gives rise to a

Si}H = (1/‘9;]')‘91]'
Si-llc—l = Sik_f (Sgk/sij)sijv k #J
() = 1(2) = (11(2)/51;) 54

4. In the remaining case, select a #'(Z)[i] whose sign is unknown. This
yields two new subproblems, according to the signs. Both yield an
(I + 1)-th iteration.

This separation has a crucial consequence: there won’t be one and only
one solution, but a binary tree whose nodes are predicates with respect to the
parameters and whose leaves are either an affine function if a solution exists,
or, if not, the undefined solution written as L. Since each node produces
two subproblems, one has to remember the path taken and take account of

12

the corresponding predicates. This is called the problem context. For | = 0,
this context is a set of inequalities on the parameters; when point 4 of the
step algorithm above is reached, the first subproblem must be computed in
the previous context augmented with:

()] >0
Symmetrically, the second context is the parent’s one plus:
(D)< 0

In the end, each path in the tree is exactly what the actual simplex algorithm
would have done, but here the solution Sol(Z) is expressed as a function of
the parameters. The entire binary tree is called a quasi-affine solution tree
or quast, whose leaves are thus associated with a domain Dom; defined by
the conjunction of the predicates in the corresponding path. These domains
build up a partition of the problem space, since no point can belong to two
different domains (this would imply that one predicate in the quast is both
true and false), and since every predicate cuts the problem space in two
disjoint half-spaces. Moreover, since the quast leaves are affine functions in
the variables, they define hyperplanes in the Z* space for a given parameter
vector Z. A quast can thus be regarded as a multiguard:

(2) € Dom, : f1(Z)
Sol(Z) =<
(2) € Dom, : f1(%)
In our particular case, we are only interested in the first component of

the solution, since it gives us the bound of our loop counter. Thus, we
obtain:

(2) € Dom, : fH(2)[1]

IN

Ty

(2) € Dom, : (1)

5.2 Understanding PIP’s behavior

The aim of this section is to show how the solution (7) in the example of
section 4.4 is found and thus to get an intuition of where PIP’s solution
comes from. We will start at the D; problem : <¢,7,a,b, and ¢ are the
variables associated to D;’s inequations:

Jj 20
a=m-—1 >0
b=n—-j5 >0

c=i+j—-k >0

13

The initial Simplex tableau is Table 1, where rows are labeled with their
respective variables.

Jl 2| 1] kE|lm|mn
7 11 0{0] 0] 0|0
) 0] 1{0] 0] 0]0O0
a=m-—1 0|-110| 0| 1]0
b=n-—7 -1 0] 0] 011
c=t+j—k| 1| 1]0]-1] 0] 0

Table 1: First tableau

According to the notations in (18) and (19), we have:

10

Since the bounds on k are known, the solution of D; has to be computed
in context (6). All rows have non-negative constant terms excepted the ¢
row, whose constant term (#(7))[c] is —1 x k. A pivoting step is necessary
with entry (c,7) as the pivot. Variable ¢ enters the basis and ¢ leaves it,
giving Table 2 as the new problem tableau.

Now, all rows have non negative constant terms excepted the a row,
whose constant term (#(7))[a]is —1 x k+1xm = m—k. If m —k > 0, then
the optimum is reached. The basis variables are 7 and ¢, whose values are 0

as it can be read in Table 2 in their respective rows. Moreover,
c=0Aj=0=1i=k

and the tentative result is:

If m — k < 0, then another pivoting step is necessary. Entry (a, j) is the
new pivot, and variable a enters the basis and j leaves it. The new tableau
is the one in Table 3.

jl ell] kE|lmi|n
j| 1 0| 0] 0]0
-1 1]0] 1] 0]0
a| 1]-1]0]-1] 110
b |-1 0 01
c| 0] 1]0] 0| 0[O

Table 2: Second tableau

14

a| c|1] k|lmi|n
gl 1] 170 1]-1]0
-1 0]0| 0] 1]0
al| 1| 0]0| 0] 0]0
b|-1]-1]0]-1] 1|1
c| O 1]01 0] 010

Table 3: Third tableau

In the a row, the term m — k is necessarily positive. Basis variables are
a and ¢, and their values are both 0:

a=0Ac=0=i=mAj=k—m,
The final lower bound on j is thus:
(if (m—%k>0) then 0 else k—m)<j (20)

We thus have an illustration of how the Parametric Dual Simplex Algorithm
algorithm finds a solution: through a sequence of basis changes, it tests a
sequence of trial solution in ascending lexicographic order, until a feasible
point is found. The next section will try and explain how this can be used
for our purposes.

6 Simplification of the result

As we have stated in section 4.4, we would like to replace the solution given
by PIP (a quast) by a maximum upon the quast’s leaves. In this section,
we prove that this can be done safely.

6.1 An example

Consider the following example:

in context {z > 0}
get the lexicographic minimum of
D={i]i—z>0}

The hatched zone in figure 3 represents the domain as a convex polyhedron
of space (Z,¢). Suppose that, for some reason, one step of the algorithm has
to solve the following problem:

in context {z>0,2—1>0,—2+12>0} /* thus z =1%/
get the lexicographic minimum of
D=A{i|li—2>0} /* line d on Figure 3 */

We can see that the following solution is correct:

{ in context {z =1} (21)

the lexicographic minimum of D ={i|i—2>0}isi=1

15

i=z

5

Figure 3: Domain D of the example, z is a parameter, ¢ a variable.

But this solution cannot be extended to the complete parameter space. In-
deed, we do not have ¢ > 1 for all points of the hatched zone of figure 3.
This situation appears when the convex is not full dimensional (in this case
we do not have a unique minimal representation for domain D [Sch86]). As
it is hard to affirm that such domains will never appear, we will prove that
when they appear, the solution given is not (21) because inequalities such
as 1 > 1 do not define domain D.

In order to obtain this solution, we have taken the system of inequalities:

z—12>0
—z4+12>0
1—22>0

and we have solved (in ¢) an extracted system of equalities ({z =1, i =
z} for example). That is what PIP would do: choose n good inequalities
and solve the corresponding system of equalities. But PIP wouldn’t give
solution (21), but the following solution:

in context {z =1}
the minimum lexicographic of D ={i|i—2>0}isi =z

which can be extended to the complete parameter space.

The basic intuitive idea is simple. The Dual simplex algorithm chooses n
inequations from m until it reaches a problem P(Z) such that the solution is
obvious (7 = 0). During these transformations, no additional constraint ap-
pears (except in the parameter space), but the algorithm is doing two things
simultaneously: finding which constraints define the optimum (i.e. finding
the basis for which the solution is & = 6), and solving the corresponding

16

system of n equalities (because the solution is directly given by the constant
term of S& + #(%)). As PIP will choose its inequalities from the domain
constraints (and not from the context constraints), and as the solution of
the equality system will correspond to a positive combination of these equal-
ities (at least for the first variable), this solution will be extensible to the
inequalities system. That is what we prove in the next section.

6.2 Setting the problem
PIP’s algorithm finds the lexicographic minimum of
DY) ={F€Z"|CT+C'Z4+&>0,7> 0}
as a function of 7 in the domain {Z| KZ+ h > 0} called the context. Thus,

the general form of a parametrized problem solved by PIP is:

P() = { in context: 7€ {KZ+ h > 0} (22)

get the lexicographic minimum of the domain: D°(2)

e n is the dimension of #, m is the number of inequations of the system
CZ+C'Z+ &> 0, pis the number of parameters.

e (is a m x n matrix, C' is a m X p matrix.

The solution Sol(Z) given by PIP in the context is in the form of a
multiguard
Z€ Domy : f1(Z)
Sol(7) = : (23)
Ze Dom, : fi()

o (Domy,...,Dom,) being a partition of the context

e fi(Z) being an affine function from Z?* to Z".
We now prove the following proposition:

Proposition 1 Given a parametrized problem P°(Z) (22), the solution
Sol(Z) (23) given by PIP is such that, for each solution fi(Z), the inequation

= (A =0 (24)
is a positive linear combination of n inequations of D°(Z).

Proof

In the following, we will deal with basis changes. Thus it is
important to know in which basis the coordinates of ¥ are ex-
pressed. For the sake of clarity, we introduce the following no-
tations:

17

o % = (2,...,20)is the original (canonical) coordinates sys-
tem of Z". We will note B, the corresponding canonical
basis.

o 7' = (2f,...,2!) is another coordinate system of Z". We

will note B; the corresponding basis.

e We will use the problem tableau notation:

DY(2) = {7 | S&° + (%) > 0}

(here, sz(é) ﬂg):(ﬁ,)ﬂ(i))

e The i*" row of S7° + #(?) represents an expression denoted

by ineg (. 7)
ineq(#,7) = (S0 + A = 50+ 1(3)
We have seen in section 5 that, when solving (22), PIP’s algo-

rithm executes a succession of steps, each step having to solve a
problem P'(Z) whose form is:

in context: 7€ {K7+ B> 0,K'7+ B> 6}
get the lexicographic minimum of the domain:

Al + A%z4+a >0,

ClF+C"24+8>0
Remind that we denote:

L Al 7—»_ A/l .
ve(&) e (e)= (7

We will show that at each step, P'(Z) has the following proper-
ties:

P2 =
DI(2) = {AT + A7+ @ }

(25)

SYRSTS

1. D!(Z) represents exactly the points of D°(Z), & being ex-
pressed in a basis B; such that the expressions of 7' in terms
of 7 are given by the left parts of n inequalities defining
Do(Z). This can be expressed by: oy : [1,n] — [1,m] injec-
tive, such that:

Vi € [1,n], 2} = ineqq,i(Z°, 7)

2. Each line of S'# + /() > 0 is the expression in the new

basis of the corresponding inequality of DY(2). i.e:
Vi€ [1,m], 5,3 + ti(2) = ineqi(°, 7).

3. The coefficients of the first row of S' are non negative.

18

As one could argue that PIP’s algorithm is not exactly the Dual
simplex method (due to the lexicographical cost function), we
give a technical demonstration of these intuitive properties, based
on the implemented algorithm itself. We will show these prop-
erties by recurrence on the steps of the algorithm.

The three properties are true for the first problem P°(2) (22).
Indeed, we have z! = ineq;(7°,), thus o is the identity. Prop-
erty 2 is verified by definition of ineq;(Z,) and, as the first line
of §%is (1,0,...,0) it has all its coefficients non negative thus
property 3 holds too.

Consider now a problem P!(Z) generated by PIP from P,(Z):

in context: e {KZ+h>0,K'Z+h > ()
P'(#) =< get the lexicographic minimum of the domain:

D) ={AF + A7+d | ST +1(2)>0)}

and suppose that the three properties are true for this problem.
We will study the different subproblems that can be generated
by PIP in one step and see that the three properties hold for
each of these subproblems.

A step of PIP’s algorithm is divided into four possible cases:

e if each component of t7(5) is non negative, then the solution

is reached (it is given by the first n components of t7(5)).
No subproblem is generated.

e if no component of 157(5) is known as negative and if there
is a t}(Z) whose sign is unknown, then the two subproblems
generated are:

in context: Z€ < Z| K'Z4+ i

P (z) =) >0

get the lexicographic minimum

of the domain D'(%)

and
KZ4+h>0

in context: 7€ ¢ 7| K'Z4+h >0

P (z) = (%) <0

get the lexicographic minimum

of the domain D'(%)

PI*Y(2) and Pit(Z) have obviously the three properties
requested (these properties do not take the context into
account).

e if there is a negative t!(Z) such that all the elements of
S;e are negative, then there is no solution in this leaf, no
subproblem is generated.

19

e in the remaining case a pivoting step is performed. There
is an io such that # (%) is negative and some elements S;,;
are positive. Among all the possible j, we choose j, such
that it minimizes (lexicographically speaking) the vector
Sejo/Sinjo- Then we consider a new basis By of Z" such
that:

it =2l for i # jy
l+1 — gl (7
]D Slu' + tiu(Z) (26)

(We say that z! leaves the basis and z'" enters it). This
basis change is Vahd because S;,;, # 0. If we note:

1 0o ... 0
1 0 0

Piio = | 5t S on Suge oo S |G T | 10D
0 0 1

then we have:

=l4+1 =l 7 =l -1
gt = Piujuw —I_Ciuju =T =P

tojo

(fH—l - C_;Djo)‘

If we want to express the problem tableau in the new basis,
we obtain:

S H(2) = §'PLL(EH — Cy,) +H(2)

The problem P'(Z) expressed in basis By, is:

in context: 7€ {KZ+ h > 6, K'Z4+ B > 6}

get the lexicographic minimum of the domain:

DY) = {A"P,] (@ = Cypyy) + AT+ @
|Sl+1fl+1 —I—t_l'l'l()Z 0 }

with the relations:

Sef = (1/54,,)54,

Si-llc—l Sik (Dk/Slo]o) jo? k#]O
f41(2) = 8(2) = (#,(2)/ 51,7, S0

And this is exactly the subproblem generated by PIP as
P'F1(Z). This implies several things:

— P!Y(Z) and P'T'(Z) are the same problems expressed in
different bases; thus they have the same solution (in-
deed, PIP takes the solution of P'*!(Z) as the solution
of P'(2)).

20

— As P!(Z) has property 2, from (26) we have:

Si 1 (2) = ineq;, (0, 2) = xé‘(’)’l = ineq;, (7%, 7)

P'(Z) has also property 1, thus:
Vi€ [1,n], i # jo = 2™ = ineqal(i)(fo,é’)

If we note 0,11(7) = o,(3) for i # jo and 0151(jo) = ‘o,
we have property 1 for P*1(Z) with o;4,. We just have
to check that o;,, is injective. This is enforced by the
fact that B, is a basis. If 0;;; was not injective, two
components of 7! would always be equal (we could
also note that, if line 7y, had already been chosen, the
corresponding line of §(Z)+#(Z) > 0 would be: xi >0
for some j, thus ¢ (%) wouldn’t be negative). Finally:
we have property 1 for P'*1(2).

— Property 2 becomes obvious too:
Vi€ [1,m], S{F & 4t (2) = SL, 7 H(2) = ineq; (20, 2)

— The coefficients of the first line of $'*! are still non neg-
ative because j; has been chosen in such a way that the
first component of the column that will be subtracted to
all columns is minimum. (If 57, — (5] ./ 5:,5,)51;, <0,
k would have been chosen instead of j,.) Thus prop-
erty 3 holds for P'(2).

We have the partial result:

e Properties 1, 2 and 3 hold for any subproblem generated by
PIP

Consider now a subproblem P'(Z) for which a solution is found
(i.e all the components of /() are positive). We have seen that
the solution to P'(Z) (thus to P°(Z) with the additional context

—.
—

{K'Z + k' > 0}) is given by the first n components of i'(%):
f(2) = ({t(2),...,t(2))". From property 2 we know that

S1E + 1(2) = ineqy(,2) = ! (27)

From Property 1, we know how to express each components of
Z' in terms of Z%’s components:

p = ineqy, i) (T°, 2) (28)
Thus, from (27) and (28), we get:

S{lineqal(l)(fo, H+...+ S{nineqal(n)(fo, Z) = 2! — tll(é’) (29)

21

Finally, consider the positive linear combination of the n inequa-

tions numbered by oy(1),...,0;(n) as indicated in equation (29)

(remember that, from property 3, each element of S, is non
negative). We get:

ineqy, 1y (£°, %) > 0

: = 2l —1($) 20

ine(ZUz(n)(fovg) >0

Thus we have proposition 1. O

We are now able to prove our result which is stated in Proposition 2:

Proposition 2 Given a parametrized problem P°(Z) (22), the solution
Sol(Z) (23) given by PIP is such that the relation:

Vi€ [1,q], (F€ Dom,, € D°(2)) = &[1] > fi(DH[1]
can be replaced by:

€ D°(7) = &l1] = max(F(2)[1])

Proof Directly from proposition 1:
The inequation
71 > fi(H]
is implied by the inequations defining D°(Z). Thus, the relation

(Z € Domy, @ € D°(%)) = #[1] > FI(D)[1]

can be extended to:

O

7 Conclusion

In this paper, we have presented a method to solve the loop rewriting prob-
lem. This problem is present in most automatic parallelization techniques.
Generalizations of the simplex algorithm, like PIP, are particularly well-
suited for this problem, except that the output of the PIP algorithm could
not be directly transformed into a loop nest conforming to the definition
given in Section 4.2. We have shown that, if the parameters Z are such that
the polyhedron D(Z) is not empty, the result can be rewritten as the maxi-
mum of a finite number of affine forms in 2. A symmetrical result holds for
the upper bound.

22

In some languages (notably Fortran), expressing loop bounds as maxima
or minima is simpler than using conditional expressions, which must be
converted to conditional instructions by the introduction of temporaries.

When rewriting a single loop nest, after a transformation like loop in-
terchange, we have shown (see Section 4.3) that the values of the outer loop
bounds are such that the range of inner loop is never empty. Hence, we may
directly use the results of PIP in the form of maxima and minima.

In the systolic approach, however, we may have to construct the union
of two or more iteration domains, and the above property will no longer be
true. In that case, each inner loop must be guarded by a test. For example,
take an instruction whose iteration space is the one below:

X
P | e
| J |
\ \
\ \
/,B// \~b
< 1 2 \y
~ -
-
e~ ~d
\ \ Z
a B

where a, ..., f are affine forms in z. The first application of PIP yields:
a<z<j
and the second one gives:
max(e,d) < z < min(a,b).

If the statement is to be executed alone, we may write:

D0z=a,f
DO z = max(e,d), min(a,b)
S
ENDDO
ENDDO

Suppose however that we are forced to enlarge the z loop, possibly because
it represents logical time over the whole program. Since zones 1 and 2 must
not be scanned, we must write:

DOz=0,L
IFa<z<pj
DO z = max(e,d), min(a,b)
S
ENDDO

23

ENDIF
.. other statements ...
ENDDO

The expressions of the bounds as maxima or minima have the added
advantage that they may be converted to linear constraints. They thus
can be used as context for the computation of the next inner loop. This
is optional, since PIP will find equivalent results whenever the parameters
belong to the context. Choice between the two methods must be based on
considerations of compile time performance. Results of Chamski in [Cha93]
tend to show that omitting the context gives a faster algorithm, but this has
to be confirmed by more extensive experiments.

Our aim now is to use this method in the back-end of the PATF parallelizer
(Paralléliseur Automatique pour Fortran) [Fea91, RWF90, RWF91]. In PAF,
the hidden parallelism of the sequential code is expressed according to the
systolic point of view of section 3. We thus hope to be able to produce, in
a mechanical way, streamlined parallel code from PAF’s front end systolic
descriptions.

Acknowledgments

This work has been partially supported by the Coordinated Research
Project on Concurrency, Communication and Cooperation C* of the French
Council for Research CNRS. The first author (J.F.C.) wishes to acknowl-
edge the support of PRC/MRE contract “ParaDigme” and DRET contract
91/1180. The third author (T.R.) has also been partially supported by the
ESPRIT Basic Research Action 6632 “NANA2” of the Furopean Economic
Community.

References

[AI91] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In
Proc. ACM SIGPLAN 91, pages 39-50, June 1991.

[BL92a] M. Barnett and Ch. Lengauer. Loop parallelization and unimod-
ularity. In Algorithmique paralléle, pages 369-379, Paris, 1992.
Masson.

[BL92b] M. Barnett and Ch. Lengauer. Unimodularity considered non-
essential. In Proc. CONPAR 92 - VAPP V, LNCS 634, pages
659-664, Lyon, September 1992.

[Cha93] Z. Chamski. Fnovironnement logiciel de programmation d’un ac-
célérateur de calcul paralléle. PhD thesis, Univ. Rennes I, Rennes,
February 1993.

[DRRI93] A. Darte, T. Risset, and Y. Robert. Loop nest scheduling and
transformations. In J.J. Dongarra and B. Tourancheau, editors,

24

[Feal8]

[Feal9]

[Feadl]

[Fea92a)

[Fea92b]

[Gom63]

[HKT91]

[Lam74]

[LHS90]

[QRR9]

[Quis7]

[RWF90]

Environments and Tools for Parallel Scientific Computing. North
Holland, 1993.

P. Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243-268, September 1988.

P. Feautrier. Semantical analysis and mathematical programming;
application to parallelization and vectorization. In P. Quinton
M. Cosnard, Y. Robert and M. Raynal, editors, Workshop on
Parallel and Distributed Algorithms, Bonas, pages 309-320. North
Holland, 1989.

P. Feautrier. Dataflow analysis of scalar and array references. Int.
Journal of Parallel Programming, 20(1):23-53, February 1991.

P. Feautrier. Some efficient solution to the affine scheduling
problem, part I, one-dimensional time. Technical Report 92.28,

IBP/MASI, May 1992.

P. Feautrier. Some efficient solution to the affine scheduling prob-
lem, part II, multidimensional time. Technical Report 92.78,

IBP/MASI, October 1992.

R. E. Gomory. An algorithm for integer solutions to linear pro-
grams. In R. L. Graves and P. Wolfe, editors, Recent Advances in
Math. Programming, chapter 34, pages 269-302. Mac-Graw Hill,
New York, 1963.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler opti-
mizations for Fortran D on MIMD distributed-memory machines.
In Supercomputing 91, pages 86-100. IEEE Computer Society
Press, November 1991.

L. Lamport. The parallel execution of do loops. Communications
of The ACM, 17(2):83-93, February 1974.

L.S. Liu, C.W. Ho, and J.P. Sheu. On the parallelism of nested
for-loops using index shift method. In Proceedings of International
Conference on Parallel Processing, volume 2, pages 119-123, Au-
gust 1990.

P. Quinton and Y. Robert. Systolic Algorithms and Architectures.
Prentice Hall and Masson, 1989.

P. Quinton. The systematic design of systolic arrays. In
Francoise Fogelman Soulie, Yves Robert, and Maurice Tchuente,
editors, Automata Networks in Computer Science, chapter 9,
pages 229-260. Manchester University Press, 1987.

M. Raji-Werth and P. Feautrier. Systematic construction of
programs for distributed memory systems. In P. Feautrier and

25

[RWF91]

[Sch&6]

[SF91]

[WL91]

[Wol89]

[2.C90]

Francois Irigoin, editors, Proc. of the Int. Workshop on Compiler
for Parallel Computers, Paris, December 1990.

M. Raji-Werth and P. Feautrier. On parallel program gener-
ation for massively parallel architectures. In M. Durand and
F. El Dabaghi, editors, High Performance Computing II. North-
Holland, October 1991.

A. Schrijver. Theory of linear and integer programming. Wiley,
New York, 1986.

W. Shang and A.B. Fortes. Time optimal linear schedules for al-
gorithms with uniform dependencies. IEFFE Trans. on Computers,
40(6):723-742, June 1991.

M. E. Wolf and M. S. Lam. A loop transformation theory and
an algorithm to maximize parallelism. IFEF Trans. Parallel Dis-
tributed Systems, 2(4):452-471, October 1991.

M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT
Press, Cambridge MA, 1989.

H. Zima and B. Chapman. Supercompilers for Parallel and Vector
Computers. ACM Press, 1990.

26

