
Reordering methods for data locality improvement

Cédric Bastoul
Laboratoire PRiSM, Université de Versailles

45 avenue deśEtats-Unis
78035 Versailles Cedex, France
cedric.bastoul@prism.uvsq.fr

Paul Feautrier
École Normale Supérieure de Lyon

46 Allée d’Italie
60364 Lyon, France

paul.feautrier@ens-lyon.fr

Abstract

Cache memories were invented to decouple fast proces-
sors from slow memories. However, this decoupling is only
partial, and many researchers have attempted to improve
cache use by program optimization. Potential benefits are
significant since both energy dissipation and performance
highly depend on the traffic between memory levels. But
modeling the traffic is difficult; this observation has led to
the use of heuristic methods for steering program transfor-
mations. In this paper, we propose another approach: we
simplify the cache model and we organize the target pro-
gram in such a way that an asymptotic evaluation of the
memory traffic is possible. This information is used by our
optimization algorithm in order to find the best reordering
of the program operations, at least in an asymptotic sense.
Our method optimizes both temporal and spatial locality. It
can be applied to any static control program with arbitrary
dependences. The optimizer has been partially implemented
and applied to non-trivial programs. We present experimen-
tal evidence that the amount of cache misses is drastically
reduced with corresponding performance improvements.

1 Introduction

Technological advances in the realization of integrated
chips result in faster clocks for processors, and in larger ca-
pacity for memory. In consequence, if nothing is done, pro-
cessors will starve because their memory systems cannot
supply data at the required speed. Memory hierarchies are a
good solution to this problem: they are cheap and efficient,
at least for ordinary programs and situations. Nevertheless,
their efficiency decreases dramatically for scientific com-
puting and signal processing codes, where large data sets
are accessed according to highly regular patterns. Next,
their temporal behavior is difficult to predict; this forbids
their use in systems with hard real time constraints. Lastly,
moving data from level to level uses a lot of power, which

renders them unsuitable for embedded systems.
A lot of work has been devoted to improving the be-

havior of memory hierarchies. There are two kinds of ap-
proaches for this problem. The first approach consists in
designing highly optimized libraries (LAPACK is a good
example [1]) for the most common linear algebra and sig-
nal processing algorithms. This method often gives the best
results, provided the source problem and the target architec-
ture are within the scope of the available library. The second
approach tries to optimize the source program at compile
time. This method is not restricted to a given set of algo-
rithms and can be adapted, with minor modifications, to any
memory hierarchy architecture. The present work belongs
to the later approach.

Most optimizing compilers try to transform the source
program in order to improve the behavior of the memory
hierarchy. The basic principle is to regroup all accesses toa
given memory cell, in order to take a maximum advantage
of possible reuses. This is obtained first by applying loop
transformations [16, 12] according to some cost model [14],
then by tiling the resulting loop nest [17] with tiles hav-
ing a carefully chosen size [6]. Basically, this method ap-
plies only to perfect loop nests in which dependences are
non-existent or have a special form (fully permutable loop
nests). Another data-centric [10] approach starts from a
memory cell and tries to build the slice that accesses this
cell. Here again, dependences greatly complicate the trans-
formation process.

As said above, previous methods require most of the time
severe limitations on the input program. Our work can be
applied to a wide application domain since we do not lay
down any requirement on dependences provided that the
program has static control [7]. This program class includes
a large range of problems which are discussed in depth by
Xue [18]. The properties of such programs can be sum-
marized in this way: (1) control statements aredo loops
with affine bounds andif conditionals with affine conditions
(in fact control can be more complex, see [18]); (2) arrays
are the only data structures, and their subscripts are affine;

(3) affine bounds, conditions and subscripts depend only on
outer loop counters and structure (or size) parameters.

All methods mentioned earlier are based on a heuristic
cost model. Let us consider for instance two accesses to the
same memory cell. It seems probable that the longer the
time interval between these accesses is, the higher the prob-
ability of the first reference to be evicted from the cache is.
Hence, loop transformations aim at moving these references
to neighboring iterations of some innermost loop. Our tech-
nique is based on an estimate of the memory traffic, and tries
to find the loop transformation that minimizes this estimate,
under the constraint that all dependences are satisfied. This
technique, which we callchunkingis presented in section
2. Section 3 explains how to construct good chunking func-
tions for a given program. Section 4 deals with the problem
of code generation when the chunking functions are given.
Section 5 describes our implementation and experimental
results. Section 6 compares chunking to other approaches.
We then conclude and discuss future work.

2 Chunking

The principle of our method is to partition the set of op-
erations of a program in subsets small enough that their ac-
cessed data fit in the cache: thechunks. The program is then
executed chunk by chunk, as if there was a cache flush be-
tween each of them. These subsets must be such that their
sequential execution is equivalent to the execution of the
original program. In practice, chunks will be numbered then
executed in order of increasing numbers. A chunk number
will be assigned to each operation, i.e. to each instance of
each statement. In other words, for each statementS we
seek achunking function�S associating a chunk number�S(x) to each iteration vectorx. The original operations
will be rescheduled accordingly to these chunking func-
tions. We present in figure 1 an example of chunking of a
simple program. We assume as input hypothesis thatn array
elements can fit in the cache, butm cannot. Such a simple
code yet exhibits several difficulties: non-perfect loop nest,
dependences between different statements, parameters and
multiple references. In this example, the order of the oper-
ations has been modified for a maximal use of temporal lo-
cality, according to the chunking functions in figure 1(b). In
the target program,
 gives the number of the current chunk.
This example will be used for illustration throughout this
paper. It can be noticed that the code can be restructured in
the same way by conventional loop distribution, loop per-
mutation and skewing. Chunking is set in the framework
of the polytope model and every chunking can be broken
down in a succession of well known transformations. In
fact, chunking does not aim to findnewtransformations but
to find theright transformation automatically.

do i=1, n
a(i) = i ! S1
do j=1, m

b(j) = b(j) + a(i) ! S2
enddo

enddo

(a) source program�S1 �� i �� = � i � ; �S2�� ij �� = � j + n �
(b) chunking functions

do c=1, n
a(c) = c ! S1

enddo
do c=n+1, n+m

do i=1, n
b(c-n) = b(c-n) + a(i) ! S2

enddo
enddo

(c) target program

Figure 1. Running example

3 Computing chunking functions

The quality of a chunking can be assessed by using two
valuations. First, thefootprint sizewhich is the number of
memory cells accessed by the operations of a chunk. Next,
the traffic which is the number of data movements between
main and cache memories. We want to build an optimal
chunk systemi.e. where each chunk footprint fits in the
cache and the traffic is minimal. To be able to generate the
target code, we are looking for affine chunking functions.
Subsequently, for an operationS[x℄, instance of the state-
mentS with the iteration vectorx in the iteration domainDS , the chunk number can be written:�S(x) = TSx+ kS :TS is a matrix called thechunking matrix; its dimensions areg��(S) with �(S) the number of loops surroundingS. The
choice of the value ofg is postponed till section 3.2.kS is
a constant vector. Chunking functions are calculated in sev-
eral steps which are discussed in the next sections. In sec-
tion 3.1 we show how to compute an asymptotic evaluation
of the traffic with respect to the chunking functions. Then
we exhibit the constraints that the chunking functions must
satisfy to minimize the traffic. Section 3.2 explains how
to find all the functions verifying such constraints. Section
3.3 shows how to choose the functions in such a way that

the transformation is legal for dependences. Lastly, section
3.4 and 3.5 gives respectively the constraints which have to
be satisfied by the chunking functions in order to achieve
group-locality and spatial-locality.

3.1 Asymptotic evaluation

It is hard to find an accurate solution to the traffic eval-
uation problem for a particular cache type. Modeling the
replacement mechanism is quite difficult, but it is bypassed
by chunking. However, several difficulties remain, hence
we propose the following simplifications:� conflict misses do not change the order of magnitude

of the traffic; this assumption is satisfied by fully as-
sociative caches and is close to be satisfied by mod-
ern caches with high associativity; most discrepancies
can be compensated by using an effective cache size
smaller than the real one;� we will be satisfied with asymptotic evaluation of the
traffic; in many cases, program transformations can
change the order of magnitude of the traffic, then it
would be useless to fiddle with constant factors or
worse, units in the last decimal place; in some cases,
i.e. when self-reuse has already been exploited, only
the constant factors can be improved; the question of
deciding if a more precise evaluation can influence the
target code is left for future work.

In our model, it is possible to make estimates of foot-
print sizes and traffic with respect to the chunking functions.
Considering a statementS, an arrayA and a subscript func-
tion f , the footprint generated by this reference is the set of
memory cells accessed during the chunk execution:FS;A;f(t) = �f(x) j x 2 DS ; �S(x) = t	: (1)

Let us suppose that the cache is empty at the start of a chunk
and that its footprint fits in the cache. Then any cells in the
footprint is copied once to the cache at some time during
the execution of the chunk and stays there until the termina-
tion of the chunk. Hence the traffic can be estimated as the
number of pairshdata, chunk numberi:TS;A;f = Card �
f(x); �S(x)� j x 2 DS	: (2)

Note that there is no need to insert a flush instruction be-
tween chunks provided that the replacement mechanism al-
ways selects data from previous chunks for eviction. This is
true for the LRU and FIFO policies, but not for RANDOM.

Since input programs have static control, subscript func-
tions are affine and can be writtenf(x) = Fx+ a;
whereF is the subscript matrix of dimension�(A)� �(S),
with �(A) the dimension of arrayA, anda a constant vector.

Theorem 1 Let H = �Ux j V x = 0; x 2 D	 be a set
whereU andV are arbitrary integral matrices of the right
dimension, and whereD is a bounded full dimensional do-
main such that the value of each component of the vectorx
is an integer in a segment of lengthm. ThenCardH is of

the order ofml with l = rank � UV �� rank V .

Proof. Let us first study the dimension of the support-
ing subspaceK = �Ux j V x = 0	. This corresponds to
the rank of the applicationf from kerV to Im U that asso-
ciatesUx to x. According to a well known algebraic the-
orem, we havedim kerV = rank f + dim ker f . Asker f = kerU \ kerV , it follows:rank f = dim kerV � dim (kerU \ kerV):
SinceD is such that the value of each component ofx is
an integer in a segment of lengthm, it follows that each
component ofUx also is integral and belongs to a segment
of length proportional tom. Hence, the size ofH is of
the order ofml. Sincedim kerV + rank V = number of
column ofV , we have finallyCardH is of the order ofml
with l = rank � UV �� rank V .

The orders of magnitude of the cardinals of sets describ-
ing footprints (1) and traffic (2) are directly given by theo-
rem 1. The asymptotic size of footprints are found withV
asT andU asF , and considering the traffic, withV as the

null matrix andU as the block matrix

� TF �
composed of

the matrixT for its first rows and of the matrixF for the
next rows. If the value of each component ofx is an integer
in a segment of lengthm, we have:Card FS;A;f (t) = O �ml� ;with l = rank � TF � � rank T;TS;A;f = O �mk� ;with k = rank � TF � :
These evaluations depend onF which can be extracted by
analysis of the source code andT which is the unknown of
the problem. Thus we can find the constraints thatT has
to satisfy in order that the footprints fit in the cache and the
traffic is minimal.

Let us consider one statement withn array accesses,
the subscript matrix of theith access beingFi. All tuples�rank T; rank � TFi � for 1 � i � n� corresponding to

the possible sets of constraints can be enumerated. We need
to know the cache sizeC and an estimate of the size param-
eterm. We then determine an integer� such thatm� � C.
A footprint of sizeO �ml� fits in the cache ifl � �. We
can thus eliminate all tuples for which this condition is not
satisfied, and we can rank the remaining ones in order of

increasing traffic. It then remains to try building aT which
satisfies the rank condition of the best tuple. If this is proved
to be impossible, we start again with the next tuple.

3.2 Building chunking matrices

Thanks to the evaluations, we know which rank con-
straints must be satisfied by the chunking matrices to mini-
mize the traffic. In this section, we show how to build such
matrices, at first when the corresponding statement includes
only one reference. Then, we show that there always exists
a chunking matrix such that each associated footprint fits in
the cache.

For a statementS with one reference, it is always
possible to find a matrixT such thatrank T = v andrank � TF � = w, provided thatv andw have compati-

ble values (i.e.�(S) � w � v). The building process is
described by the algorithm in figure 2. From the returned
matrix T , we can generate the set of matrices with the re-
quired properties: the set ofCT matrix whereC is a matrix
of full row rank. We will choose in this set the matrices in
order to satisfy additional constraints described in section
3.3 and 3.4.

CONSTRUCTION ALGORITHM : Build a matrix under
rank constraints.

Input: the subscript matrixF and the rank constraintsrank T = v andrank � TF � = w.

Output: a matrixT respecting the rank constraints.

1. Compute a basis ofkerF and complete it to a basis ofN�(S).
2. LetG be the matrix of these vectors (vectors added to

complete to a basis ofN�(S) are the last columns).

3. ComputeG�1, inverse ofG.

4. Build matrixT :

(a) Fori from 1 tov:ith row of T = (�(S)� w + i)th row ofG�1.

(b) CompleteT with null rows.

Figure 2. Construction Algorithm

Let us demonstrate that this algorithm builds a matrixT that answers the requirements. Since the matrixT is
composed ofv linearly independent rows, the constraintrank T = v is satisfied. These rows are those ofG�1 from

�(S) � w + 1 to �(S) � w + v. Hence, the kernel ofT is
generated by the column vectors ofG from 1 to �(S) � w
and from�(S)�w+ v+1 to �(S). The kernel of

� TF �
is the intersection of the kernel ofT with the kernel ofF ,
hence it is generated by the�(S) � w first column vectors

of G and the constraintrank � TF � = w is satisfied. As

for the choice ofg, the number of rows ofT , it is clear
that bordering a matrix by null rows does not change its
rank. Since when reordering the program it is useful to have
all chunking function of the same dimension, we may takeg = max �(S).

The generalization ton references implies the combina-

tion of n constraints:rank � TFi � = wi, 1 � i � n. The

matrixG must have for each reference exactly�(S) � wi
vectors of a basis ofkerFi for a total of at mostv vectors.
Such a matrix does not always exist. The choice of vectors
to be included in the matrixG is essential. We can guide
this choice by adding for each reference as many vectors
from a preceding reference as possible. If a solution does
not exist for a tuple, then we try to find another one for the
next more interesting tuple.

A chunking matrix such as each footprint fits in the cache
always exists. The hardest constraint for the footprints isto
have a size inO �m0�, and the last tried possibility will be
the tuple

�(S); wi = �(S) for 1 � i � n�. The corre-
sponding chunking generates for theith reference footprint

sizes ofO �m0i � and the maximal traffic ofO �m�(S)i �
. Its

solutionT = Id always exists and is the trivial chunking
where there is one chunk per operation.

Example Let us consider the source code in figure 1. We
assume thata is an array ofn cells which fits in the cache
andb is an array ofm cells which does not fit in the cache.
Then, the acceptable orders of magnitude for the footprints
size areO �n1� andO �m0�. The program has two state-
ments:� the statementS1 has just one reference to the array

a with the index matrixFS1;1 = � 1 �
; the matrixTS1 having the best properties corresponds to the tupleh1; 1i, it will generate footprint sizes ofO �n0� and a

traffic ofO �n1�; the algorithm buildsTS1 = � 1 �
;� the statementS2 has two references, the first one to

the arraya with the index matrixFS2;1 = � 1 0 �
and the second one to the arrayb with the index ma-
trix FS2;2 = � 0 1 �

; the matrixTS2 having the
best properties would correspond to the tupleh1; 2; 1i,
it would generate footprint sizes ofO �m0 + n1� and
a traffic ofO �m1 + n2�; the construction is possible

and givesTS2 = � 0 10 0 �
.

3.3 Legality

Since chunking reorders operations, it must satisfies de-
pendences. In this section, we explain how chunking func-
tions can be chosen in such a way that the transformation
satisfies dependences. We will show that there always ex-
ists a valid solution which satisfies the constraints described
in previous sections.

Chunks are numbered in the order they will be executed,
and inside each of them, operations are executed in the orig-
inal sequential order. Let us considerIP , the statement set
of the programP , and ÆP , the dependence relation onP ; a
chunking is legal if and only if:8S;R 2 IP ; S[x℄ ÆPR[y℄) �S(x) � �R(y): (3)

There is noa priori reason for (3) to be satisfied by the
chunking matrices as constructed by the algorithm in previ-
ous section. However, we are free to modify them as long
as we do not change their rank properties. We are also free
to adjust the constant vectorsk, as they have no impact on
the footprints and traffic (at least asymptotically). Thus,for
any statementS, the chunking function can be written�S(x) = CSTSx+ kS ;
whereCS is a matrix of full row rank. We use the Farkas
algorithm [8] to solve (3) and to find the set of allCS andkS . If the problem has no solution, we declare a failure and
try the next best traffic/footprint combination.

A legal solution such as the footprints fit in the cache
always exists. It corresponds to the worst solution, in which
all the chunking matrices are identity matrices. In this case,
the original program is not modified. This possibility must
always be left open, since it might happen that the source
program is already optimal.

Example Let us continue the example of section 3.2. The
chunking functions associated to the proposed matrices are:� �S1 �� i �� = � 1 � � i �+ � 0 �

;� �S2�� ij �� = � 0 10 0 � � ij �+ � 00 �
.

These functions do not describe a valid chunking: the de-
pendence fromS1 to S2 is not satisfied. For instance, the

operationS2 � 21 �
is executed in chunk number1 whereas

the operationS1 � 2 �
on which it depends is executed

later, in chunk number2. Our method makes it possible
to correct this chunking so that all the dependences are re-
spected and the quality is preserved. The correction sug-
gested by our prototype is the following one:

� �S1 �� i �� = � 1 � � i �+ � 0 �
;� �S2�� ij �� = � 0 10 0 � � ij �+ � n0 �

.

To homogenize the chunking functions, one can add null
dimensions, or remove them if they are null for all the func-
tions, since this does not change the ranks. We have finally�S1 �� i �� = � i � and�S2�� ij �� = � j + n �

.

3.4 Group-reuse

There is group-reuse when two statements,S1 andS2,
access the same arrayA through indexing matricesF1 andF2 (for the sake of readability, we will use homogeneous
coordinates in this section). There is reuse if there exists
iteration vectorsx1 andx2 such thatF2x2 = F1x1, and this
reuse is exploited if these two operations are in the same
chunk:8x18x2; F2x2 � F1x1 = ~0) T2x2 � T1x1 = ~0: (4)

Observe that this constraint has the same shape as a depen-
dence constraint. IfF2x2 = F1x1, thenS1[x1℄ andS2[x2℄
are in dependence. This dependence may be a read-read de-
pendence, which may not be taken into account in other cir-
cumstances, but which exists nevertheless. As to the right-
hand side of (4), it is similar but more restrictive than the
right-hand side of (3). As a consequence, we can give a
more precise result:

Theorem 2 (4) is true iff
�T2 �T1� = N�F2 �F1� whereN is a matrix of full row rank.

Proof. Let x be the concatenation of vectorsx1 andx2.
Formula (4) can be written8x; �F2 � F1�x = 0) �T2 � T1�x = 0:�F2 � F1�x = 0 and

�T2 � T1�x = 0 describe two sets
where one point belonging to the first one necessarily be-
longs to the second one too. Therefore the first one is a
subset of the second one. So it can be written as the second
one withb additional constraints:�F2 � F1�x = 0, � �T2 � T1�x = 0Qx = 0
then

� T2 � T1Q � = M�F2 � F1� with M a matrix

such thatdetM 6= 0 (the system is not modified by linear

transformations). Let us writeM as

� NN 0 � whereN 0
is the matrix made with theb last lines ofM . Now we

have

� T2 � T1Q � = � NN 0 ��F2 � F1� and finally�T2 � T1� = N�F2 � F1�.
The unknowns are the entries ofN , which define the lin-

ear transformations to apply to
�F2 � F1� in such a way

that the chunking functions respect the dependences. This is
clearly the same problem as the correction for dependences
in section 3.3. We solve them at the same time, by adding
the necessary constraints (a set of constraints by pairs of ref-
erences in which group-reuse is detected) to the initial prob-
lem. This theory, which does not assume that group-reuse
is associated to constant dependences, can even be used for
“self-group-reuse”, when the two accesses toA are in the
same statement. Here, we deduce from (4) that the linear
subspaceG = fx2 � x1jF1x1 � F2x2 = 0g is included in
the kernel ofT = T1 = T2:. It is easy to find a basis forG
by gaussian elimination techniques. The resulting vectors
can be taken into account when building the chunking ma-
trices. Improving group-locality do not change the order of
magnitude of the traffic. It can divide the traffic generated
byn references by a factor ofn.

Example Let us consider the following pseudo-code:

do i=1, n
do j=5, n-10
f(C(i,j) , A(i,j-5)) ! S1
g(D(i,j) , A(j+10,i)) ! S2

enddo
enddof andg are not function or procedure calls but all possible

statements using the given references. All control centric
methods will estimate that there is no self reuse and no ex-
ploitable group-reuse. The reason is that they fail to con-
sider non uniformly generated references (uniformly gener-
ated references are such as their subscript functions differ in
at most the constant term [9]). In fact there is good reuse be-
tween the two statements for a part of the arrayA as shown
by the figure 3. In this example, if there is no dependence

Zone accessed by S1

Zone accessed by S2 .

n15

n

n-15

1

1

Figure 3. Accessed zones of A

we can use the trivial solution of
�T2 �T1� = N�F2 �F1�,

that isT1 = F1 andT2 = F2. Therefore, the chunking func-
tions will be :� �S1�� ij �� = � ij � 5 � ;� �S2�� ij �� = � j + 10i � :
This transformation leads to the target pseudo-code below.
The group-locality is now maximal: in the shared zone of
A, the two statements access the same memory cell during
the same iteration.

do c1=1, 14
do c2=0, n-15

f((c1,c2+5) , A(c1,c2)) ! S1
enddo

enddo
do c1=15, n

f(C(c1,5) , A(c1,0)) ! S1
do c2=1, n-15

f(C(c1,c2+5) , A(c1,c2)) ! S1
g(D(c2,c1-10) , A(c1,c2)) ! S2

enddo
do c2=n-14, n

g(D(c2,c1-10) , A(c1,c2)) ! S2
enddo

enddo

The selection of pairs of references offering a good
group-reuse is an interesting problem. On one hand, it is
certainly not possible to satisfy all constraints for all pos-
sible pairs. Hence, there is a need to find a priority order
on the sets of constraints according to the potential benefits.
On the other hand, improving group-locality is less interest-
ing than improving self locality: it can’t change the order of
magnitude of the traffic. But adding constraints can compli-
cate the chunking functions and as a consequence the target
code. Thus, there is a need to evaluate which constraints
can give a performance benefit in spite of the control over-
head (this question has no sense when energy is the critical
resource). It is quite easy to know if there exists group-
reuse between a pair of references: it is sufficient to find an
integral solution to the system of constraints consisting of
the conjunction of the equality of subscripts, the iteration
domains and the contexts. It is much harder to compare
the number of integral solutions the different systems have.
This question amounts to the well known problem of count-
ing integral points in polyhedra. There are exact solutions
when the parameters have fixed values [3, 5]. When there
is just one unfixed parameter, it is still possible to compare
the parametric numbers [5]. But in the general case, the use
of heuristics is needed.

3.5 Spatial-reuse

There is spatial reuse for a reference if it accesses data on
the same cache line during different iterations. As for group
locality, improving spatial locality do not change the order
of magnitude of the traffic. It can divide the traffic gener-
ated by a reference by a factor ofd, whered is the cache
line length in words. Spatial locality is achieved if the oper-
ations accessing the same cache line are in the same chunk.
Let us consider a reference to an arrayA with the subscript
functionF . Let i be the number of the major dimension ofA, i.e. the dimension with data lines ordered successively
in memory. Then spatial locality is achieved forA if the
operations accessing the memory cells of the major dimen-
sion are in the same chunk. In other words, spatial locality
is achieved ifFi;: 2 ker T .

This constraint is added in theT construction algorithm
seen in section 3.2 by asking for a more accurate choice
of vectors to be included in the matrixG. If the new con-
straint prevents the construction ofT , we can try with an-
other component of the index function and suggest the cor-
responding data layout transformation.

Example Let us consider the following pseudo-code:

do i=1, m
do j=1, n
do k=1, p

f(A(i+k,j) , B(i+j,k)) ! S1
enddo

enddo
enddo

We assume as the only input hypothesis thatn array ele-
ments cannot fit in the cache, and without loss of generality,
the FORTRAN’s column major. Then the major dimension
is the first dimension for each reference. Both[1 0 1℄ and[1 1 0℄ must belong toker T in order to achieve spatial
locality. This would lead to a solution without respect to
the input hypothesis (thej loop would be done inside the
chunks). A solution is to change the data layout of the arrayB to row major. In this case, the vectors[1 0 1℄ and[0 0 1℄
must belong toker T . Then we can findT = [0 1 0℄ and
the target pseudo-code achieving spatial locality would be:

do c=1, n
do i=1, m
do k=1, p

f(A(i+k,c) , B(k,i+c)) ! S1
enddo

enddo
enddo

4 Code generation

Code generation is the last step to the final program. It is
often ignored in spite of its impact on the target code qual-
ity. We must ensure that a bad control management does
not spoil performance, for instance by producing redundant
guards or complex loop bounds. An outline of the resulting
code is a loop on the number of chunksL which contains
the chunk operations.

do c=1, L
! execute operations in chunk c

enddo

If the chunk numbers are vectors, we have as many sur-
rounding loops as chunking dimensions.

Because the input problem is a static control program,
the bounds on statement iteration spaces can be specified by
a set of linear inequalities defining a polyhedron [11]. In the
chunking case, we change the scanning order of this poly-
hedron by substitution of the original dimensions by chunk-
ing dimensions. The code generation is then a well known
Z-polyhedron scanning problem. At present, the best solu-
tion is the Quilleré et al. one [15]. Their technique generates
loop levels by projecting the polyhedra onto the correspond-
ing dimension. Then by splitting the projection into disjoint
polyhedra and sorting the resulting polyhedra in order to
respect the lexicographic order. Lastly, it recursively gen-
erates loop nests that scan each resulting polyhedron. This
method is well adapted to the chunking problem provided
we generalize it somewhat. We have implemented an ex-
tended version, CLooG, which can handle sequential inner
loops and imperfect loop nests. Our resulting code is quite
efficient.

Example Let us continue the example of section 3.3. The
polyhedra describing the execution domains ofS1 andS2
result from the study of the original code. We complete
them with the chunking dimension
 and the chunking con-
straints. The figure 4 describe the iteration domain trans-
formation and show the chunks, i.e. the operations having
the same chunking coordinates. The constraint systems de-
scribing the iteration domains are:S1 constraint system S2 constraint system(
 � i = 0� i + n � 0i � 1 � 0 8>>><>>>:
 � j � n = 0� i + n � 0i � 1 � 0� j + m � 0j � 1 � 0
On the first dimension
, polyhedra are already disjoint: the
first one covers1 �
 � n while the second one coversn + 1 �
 � n +m, hence there is no need to separate or

j

m

(a) original iteration domain (b) new iteration domain

j

operation of S1

m

n
n+1

n+m

i

c

i
1 n n

1

operation of S2

chunk

Figure 4. Iteration domain transformation for the running example

aggregate them. As a consequence, there will be one loop
nest per statement; the recursion on each of them is then
trivial. Lastly, we must order the loop nests in such a way
that they respect the execution order. It is easy to see that the
first polyhedron must precede the second one. The resulting
code is the one shown in figure 1(c) as the target program.

5 Experimental results

We are implementing our approach in thechunky1

source-to-source optimizing tool. This prototype imple-
ments at present the process from the chunking function cal-
culation to the code generation, but without group and spa-
tial locality improvement support. This prototype already
allows us to present preliminary results for some impor-
tant non-trivial problems. The experiments were conducted
on a PC workstation with a Pentium III processor running
at 1GHz. This processor comes with two cache levels: a
split first level (L1) for instructions and data of 16KB each
and an unified second level (L2) of 256KB. Figure 5 shows
the evolutions of the number of cache misses observed with
hardware counters for the original and target versions of the
running example (see figure 1), according to the value of the
parameterm.

The ratiom=n is set to64 in order to better show the
impact of our method. The number of cache misses sharply
grows when the arrayb becomes larger than a cache level
in the original program. The chunked program has a bet-
ter behavior. The miss growth comes later, when the in-

1Parts of Chunky are freely available under GNU license at
http://www.prism.uvsq.fr/�cedb

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1K 4K 16K 64K 256K 1M 4M

C
ac

he
 m

is
se

s
(lo

g
sc

al
e)

m : array dimension (words, log scale)

original L1 misses
chunking L1 misses

original L2 misses
chunking L2 misses

Figure 5. Cache misses for the running example

put hypothesis are no longer satisfied,i.e. when the arraya
cannot fit in the cache. We have observed the same phe-
nomenon on most of the programs with good data reuse
we have tested. Some experimental results on well known
problems are shown in figure 6. The compiler option was
O3 for the original programs, but O1 for the transformed
programs in order to prevent any compiler optimization that
can disturb the chunking.

As for the running example, chunking can reduce the
number of cache misses by more than one order of mag-
nitude. This cache miss reduction can imply a significant
performance improvement. The speedup is better with big
problems. Since the miss penalty for an L2 miss is of the
order of 10 times an L1 miss, these results are not surpris-
ing. The situation of Gauss-Jordan for80 � 80 arrays shows

how it is necessary to avoid control overheads. In this (rare)
case, despite the attention given to code generation and a
significant cache miss reduction, our method fails to im-
prove performance on small problems. The point of view is
quite different when the critical resource is energy, like in
embedded systems. Cathoor et al. [4] show that data move-
ments in the hierarchy is one of the main cause of energy
consumption. In this case, a cache miss reduction is always
a benefit.

While some parts of our method have high theoretical
complexity at worst (code generator and parametrized lin-
ear programming solver have exponential complexities at
worst), the prototype seems to offer good performance. The
reason is that the main parameters are loop nest depths and
array dimension which are usually small numbers. To give
an idea, the chunking of a Cholesky factorization with 7
statements, a maximal loop nest depth of 3 and a maximal
array dimension number of 2 requires about 20 seconds on
the test machine. Most of the time is spent in Maple code
and we have many reasons to think that a better implemen-
tation will significantly improve the prototype performance.
Nevertheless, the question of scalability remains, and will
be tested on a larger benchmark suite.

6 Related work

The effort of research to create effective locality optimiz-
ing compilers began with Wolf and Lam [16] and theirdata
locality optimizing algorithm. This algorithm applies uni-
modular transformations to loop nests in order to maximize
locality, according to evaluations of legal loop transforma-
tions relevance. Then it applies tiling [17] to the innermost
loops. In comparison, our approach is applicable to a wider
range of programs since in one hand we do not require per-
fect nests or nests such as they can be made perfect. And on
the other hand because we do not require that dependences
must have any simplified shape (Wolf and Lam algorithm
needs that the dependence vectors be lexicographically pos-
itive). Moreover, to make perfect loops and to tile imply
severe control overhead while we minimize it thanks to an
accurate code generation method.

Li [12] generalizes the framework of unimodular matri-
ces [2] by using linear, non-unimodular transformations to
change the iteration space. We expect our algorithm will
find more accurate transformations in practice since Li’s
transformation and dependence types are quite simple: the
transformations do not handle parameters and the only case
discussed is the one where dependences are represented by
distance vectors.

McKinley et al. [14] propose a technique based on a de-
tailed cost model that drives the use of loop permutation,
fusion and distribution. They apply the basic transforma-
tions according to a definite order, while this strategy can

be ineffective for some problems. To find which is the best
application order of the transformations for a given program
is known to be very hard. Chunking bypasses this difficulty
because it unifies all kind of linear transformations in a sin-
gle framework. For group-reuse, McKinley et al. consider
the classic case ofuniformly generated references[9], with
small restrictions. We propose to go beyond this case by op-
timizing group-locality between non uniformly generated
references when they are in different statements. In com-
pensation, chunking processing is heavier than the McKin-
ley et al. algorithm.

Alternatively to these control centric techniques, Ko-
dukula et al. [10] propose a data centric approach that plans
to act on data movement directly, rather than as a side-effect
of control flow manipulations. Our work shares many fea-
tures with [10]. Both papers are set in the framework of the
polytope model, and aim at partitioning the code in pieces
which are (almost) free of cache misses. Both techniques
transform the code by well known transformations (loop ex-
change, loop skewing...): the problem is not to inventnew
transformations, but to find theright transformation for a
given program. There are however several important dif-
ferences. Kodukula et al. start from the following intuition:
once a datum has been brought into the cache, it is benefi-
cial to execute all operations which access this datum. Our
approach is different since we start from an estimate of the
traffic and try to minimize it. In both cases we have to find a
transformation legal for dependences. But while Kodukula
et al. can just check if their transformation respects depen-
dences, we have integrated the legality in the transformation
construction. Lastly, while Kodukula et al. use an arbitrary
array blocking, we show that significant improvements can
be obtained without blocking. Testing whether blocking can
improve our results is left for future studies.

7 Conclusion

In this article, we have presented a method based on traf-
fic evaluations for data locality improvement. It exhibits
many advantages. First of all, the computed solution always
fulfills the memory requirements imposed. Next, it can be
applied to any static control slice of a program. Lastly,
there is no requirement on dependences and we compute
the space of all legal transformations directly. The method
requires nothing besides the original code but the relative
sizes of the cache and data.

First results are very encouraging and make us believe
that our technique is a new significant way to achieve
data locality automatically for a large amount of problems.
Moreover, chunking seems to be well adapted to several ex-
tensions and we plan to obtain even better theoretical and
practical results. We are currently working on tiling which
seems to be the natural continuation of our approach. Intu-

problem array size (words) missdown (%) speedup (%)
running example 16K 99.1 (L1) 7

1M 99.9 (L2) 427
LU decomposition 80 � 80 79.3 (L1) 2256 � 256 84.1 (L2) 43

Cholesky factorization 80 � 80 70.3 (L1) 2256 � 256 85.5 (L2) 46
Gauss-Jordan 80 � 80 70.2 (L1) -13256 � 256 93.1 (L2) 26

Figure 6. Experimental results

itively, tiling is a question of aggregating small chunks or
splitting big ones. We are also working on a more accurate
solution for spatial locality improvement. A step in that di-
rection is the work of Loechner, Meister and Clauss [13],
which is based on precise counting of memory accesses.
Lastly, we must deal with programs which have static con-
trol regions but do not have static controlin toto. Locality
optimization have the nice property that there is no need of
applying it to far away statements, since the hope of having
reuse in this situation is very small. Hence chunking can
be applied locally, i.e. to loop nests or small subroutines,
and there is no danger of an excessive compilation time.
Our method can be adapted to local memories (or software
managed caches) at the price of more attention to footprint
layout.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen.LAPACK User’s Guide,
Third Edition. SIAM, 1999.

[2] U. Banerjee. Unimodular transformations of double loops.
pages 192–219, Irvine, august 1990.

[3] A. Barvinok. A polynomial time algorithm for count-
ing integral points in polyhedra when the dimension is
fixed. Mathematics of Operations Research, 19(4):769–779,
november 1994.

[4] F. Cathoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachter-
gaele, and A. Vandecappelle.Custom memory managament
methodology. Kluwer Academic Publishers, 1998.

[5] P. Clauss. Handling memory cache policy with integer
points counting. InEuro-Par’97 European Conference on
Parallel Processing, pages 285–293, Passau, august 1997.

[6] S. Coleman and K. McKinley. Tile size selection using cache
organization and data layout. InACM SIGPLAN’95 Confer-
ence on Programming Language Design and Implementa-
tion, pages 279–290, La Jolla, june 1995.

[7] P. Feautrier. Dataflow analysis of scalar and array ref-
erences. International Journal of Parallel Programming,
20(1):23–53, february 1991.

[8] P. Feautrier. Some efficient solutions to the affine scheduling
problem, part I: one dimensional time.International Journal
of Parallel Programming, 21(5):313–348, october 1992.

[9] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache
and local memories management by global program trans-
formation. Journal of Parallel and Distributed Computing,
(5):587–616, 1988.

[10] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric
multi-level blocking. InACM SIGPLAN’97 Conference on
Programming Language Design and Implementation, pages
346–357, Las Vegas, june 1997.

[11] D. Kuck. The Structure of Computers and Computations.
John Wiley & Sons, Inc., 1978.

[12] W. Li. Compiling for NUMA parallel machines. PhD thesis,
Cornell University, 1993.

[13] V. Loechner, B. Meister, and P. Clauss. Precise data locality
optimization of nested loops.Journal of Supercomputing,
21(1):37–76, january 2002.

[14] K. McKinley, S. Carr, and C. Tseng. Improving data locality
with loop transformations.ACM Transactions on Program-
ming Languages and Systems, 18(4):424–453, july 1996.

[15] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of
efficient nested loops from polyhedra.International Journal
of Parallel Programming, 28(5):469–498, october 2000.

[16] M. Wolf and M. Lam. A data locality optimizing algo-
rithm. In ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation, pages 30–44, New
York, june 1991.

[17] M. Wolfe. Iteration space tiling for memory hierarchies. In
3rd SIAM Conference on Parallel Processing for Scientific
Computing, pages 357–361, december 1987.

[18] J. Xue. Transformations of nested loops with non-convex
iteration spaces.Parallel Computing, 22(3):339–368, 1996.

