
Scheduling under resource constraints using Dis-equalities

Abstract

Scheduling is one of the important tasks in high-level
synthesis. In this paper, an efficient formalism to express
resource constraints, using dis-equalities, is presented.
Scheduling is performed in two steps: (1) coarse-grain
scheduling, in which we take into account the whole con-
trol structure of the program including imperfect loop
nests, and (2) fine-grain scheduling, where we refine
each logical step using a detailed description of the
available resources. This paper focuses on the sec-
ond scheduling step by comparing two algorithms. The
first algorithm is based on a branch-and-bound method,
associated to variants of Dijsktra’s shortest path algo-
rithm, which guarantees the exactitude of solution. The
second solution is a greedy-scheduling heuristic. Both
algorithms are tested on on pieces of scientific appli-
cations from the PerfectClub benchmarks. The results
show that both methods are suitable for HLS tools.

1. Introduction

Both VLSI technology and embedded systems have
advanced to such a state that it would be extremely
complex to design circuits by hand. There has been
an ever increasing need for design automation or semi-
automation on more abstract levels where functionality
and tradeoffs can be clearly stated. High level synthesis
(HLS) is on the verge of becoming more cost effective
and less time consuming than full hand design [9]. Cur-
rently, many commercial and academic HLS tools exist
but the design community don’t integrate them into its
design flow, because of many reasons: they lack interac-
tion between them and the designers, they can support
only limited architectures and the quality of the design
which they generate is not up to that of manual design.

Our aim here is to improve those tools by reusing
some of the methods and models which have been pi-
oneered by the compiler community. Among these
powerful methods, operation research solutions have
strongly increased the performances of scheduling.

Scheduling is an important tasks in HLS. For effi-
ciently scheduling programs with resource constraints,
we propose to organize the scheduling process in two
hierarchical levels. The purpose of this hierarchical de-

composition is to avoid dealing with too large problems.
Finite State Machine with a Data path (FSMD) is the

most popular model that is used to describe digital sys-
tems. We construct the first FSMD from an equivalent
parallel code which exhibits all the inherent parallelism
in the input description by taking into account all the
nested loops. Afterwards, according to the resource con-
straints, we exploit a part or all of this parallelism.

This paper focuses on the second level of scheduling
by suggesting two solutions for scheduling data and con-
trol independent tasks sharing resources. Some schedul-
ing frameworks in HLS are presented below.Then, we
give an overview of our HLS framework. A new for-
malism to express resource constraints, is detailed in
Sect. 2. Then, in Sect. 3, we present an exact algorithm
to construct an optimal schedule which respects the re-
source constraints. Sect. 4 presents a simplegreedy-
schedulingheuristic that will be compared with the ex-
act solution. Lastly, in Sect. 5, we give experimental
results and demonstrate the effectiveness of both pro-
posed methods. Due to lack of space additional proofs
and examples can be found in [2]

1.1 Related Work

HLS has been subject for research for two decades
now [6]. We refer to [12] for a survey of scheduling
techniques used in HLS. We simply mention a few re-
lated work here. Gupta et al. [7], in theirSPARKtool,
applied loop transformations, speculative code motion
and dynamic renaming for mixed control-flow designs.
These techniques are used to exhibit more parallelism
and eliminate redundant sub-expressions. They show
that their list-scheduling heuristic improves the features
of the resulting design.

Donnet [4] in his User Guided HLS tool, introduced
more interactions between the tool and the user. He
searches for a best solution in a space of solutions ob-
tained by repeating his list-scheduling heuristic. Indeed,
for sharing resources, he designs a draft solution and did
a first list-scheduling pass. Afterwards, the user decides
if the synthesized cycle time respects all constraints (la-
tency, area). If not, he introduces some directives and
resume the process until acceptable solution is found.

For modeling constraints for HLS, Radivojevic et
al. [11] present an exact conditional resource sharing
analysis using a symbolic formalism. Their formalism

1

allows the generation of a set of valid schedules. A more
general formalism has been proposed by Kuchcinski [8].
Within his formalism, all kinds of constraints are uni-
formly modeled by finite domain constraints. The model
is solved by using constraint satisfaction/consistency
techniques. Verhaegh et al. [13], for high-throughput
DSPs, use stepwise scheduling. In their two stages pe-
riodic scheduling, they start by assigning periods to the
multidimensional periodic operations such that storage
costs are minimized. In the second stage, they assign
start times to the operations. In the two stages, they use
integer linear programming techniques.

Yang et al. [14, 15] draw Pareto diagrams for schedul-
ing under power constraints.

1.2 Context

We start from a specification in a programming lan-
guage which is a variant of C augmented with process
and channels. Our target is a hardware specification at
the RTL level:

1. A first level schedule is computed by modeling the
problem as a linear program [5].

2. Given this schedule, we useClooG1 for generat-
ing the control automaton.ClooG [1] gives a par-
allel code thanks to the polyhedral model and the
Quilleré’s algorithm [10]. In this automaton, each
state execute a set of independent operations.

At this point of the design, with no resource constraints,
we can synthesize the equivalent circuit using this au-
tomaton. The cycle time of this circuit is the delay
of the longest combinatorial chain linking two states.
However, if these operations share resources, we need
another scheduling step which subdivides this logic
state into steps that respect the given constraints. The
required scheduler represents our second level of the
scheduling process.

In this context, the aim of this paper is to propose
methods to schedule a set oftasks which share resources.

2 Task & Resource Constraints Model

In this section, we explain what is our task model and
how we represent resource constraints for such tasks.

2.1 Model: Tasks with Reservation Tables

In our model a taski is a set of elementary operations.
We assume that these operations are already scheduled
with respect to each other and mapped on the available
resources. In earlier work, the mapping is done after

1Chunky LOOp Generator

Res

Res

Res

tj

dij

Taskj

ti

tj

ti

Taski

Figure 1. Forbidden distance.

the scheduling task. In our case, the resource assign-
ment and schedule in each task defined by the first-level
schedule is done before the second-level scheduling. Af-
ter the first-level scheduling, all the states in the FSMD
are mutually exclusive. Thus, the binding operation con-
sists in assigning, for each state, all the resources.

The micro-schedule for each task is given by a reser-
vation table. The tasks are assumed to beindependent,
so our only goal is to fix the relative starting datesti
of those tasks, while respecting resource constraints and
minimizing the total execution time.

Let T be the set of task ,R the set of resources, and
pi the latency of taski (the unit is the clock cycle).

2.2 Forbidden Distances

Let two tasksi andj, with ti andtj their respective
starting dates. In a valid schedule,i andj can start at
any dates except those which put them into a resource
conflict. Thus the intuitive idea is to express the resource
constraints by defining the set of the forbidden distances
betweenti andtj .

Assume that a resourcer ∈ R is used both at step
ti + dk

i by taski and at steptj + dk
j by taskj. Note that

dk
i and dk

j are input to the problem as the reservation
tables are given, whereasti andtj are to be defined. To
respect the constraint on the resourcer, we need that:

ti + dk
i 6= tj + dk

j i.e., ti − tj 6= dk
j − dk

i = dk
i,j .

This dis-equality eliminates, from the solution space
of ti andtj, just the forbidden values.dk

i,j is a forbidden
distance. All the forbidden distances can be found by
examination of the reservations tables. Fig. 1 illustrates
the notion of forbidden distance.

Finding a schedule entails solving the following sys-
tem on integer values:

{

ti − tj 6= d k
i,jti ≥ 0 i, j ∈ T

ti ≥ 0
(1)

The set of inequalitiesti ≥ 0 is just added into the sys-
tem to fix the origin of the schedule. One can omit this
and apply a translation to a solution that does not meet
it. For a given pair of tasksi, j, there can be several for-
bidden distancesqi,j , hence the indexk. In addition, we
want to minimize the total time.

2

3 An Exact Branch-and-Bound Solution

As defined, the problem of solving such a system
of dis-equalities while minimizingmaxi ti is an NP-
Complete problem. This is easily seen since the graph
coloring problem is a particular case of the problem de-
fined in (1). Indeed in the case whereti − tj 6= 0 ,the
solution is to givei a different color thanj, while min-
imizing the number of colors (maxi ti). Nevertheless,
there are many methods for “solving” the system (1):
• one can be satisfied with a greedy heuristic;
• for optimality, some solutions from operation re-

search are available: theBranch-And-Bound(BAB)
methodorInteger linear programming.
• we can also use the technique of finite domain con-

straint satisfaction programming [8].
As is well known,BAB is a meta-algorithm for guiding
a search into the solution space. In our case,BABpro-
gressively builds a tree of subproblems as follows:

• At the root, we start with the empty system;
• At each nodeN of the tree structure, we deal with

a new constraint (dis-equalityl).This dis-equality
can be seen as the disjunction of the 2 inequalities:

ti − tj 6= dk
ij ⇔

{

l1 : ti − tj ≤ dk
ij − 1 or

l2 : ti − tj ≥ dk
ij + 1

so we perform a separation by introducing the in-
equality l1 (resp. l2) into the left son (resp. right
son) ofN : l1∩ l2 = ∅ andl1∪ l2 = l, which means
that we are not losing any solution in branching.
• During the resolution process, we maintain the la-

tency of the best schedule computed so far. At the
beginning, we can set this valueBest to

∑

i pi.
• At each nodeN , we compute a new lower bound

Local by solving a system. This system comprises
the inequalities introduced by all nodes belonging
to the branch from the root to this nodeN . If
Local ≥ Best the subtree belowN is not con-
structed as it will not lead to a better complete so-
lution. The system may also be not feasible; in this
case, the subtree belowN is not constructed either.
• At a leaf, we have exhausted all the constraints, so

now we can compute an actual solution. If its la-
tency is better thanBest, thenBest is updated.
• The algorithm stops when all the branches are ex-

plored.Best is returned as the optimum solution.

3.1 Finding the Local Bound

We now explain how to compute the local bound if
it exists. At each node in the tree structure, we have to
resolve a system ofl inequalities wherel is the level of
the node. This system can be normalized as follows:

tj − ti ≥ wi,j (2)

valueswi,j are inZ. This problem can be modeled by a
weighted directed graphG = (V, E, w), with one vertex
for eachi and an edge fromi to j with weightwi,j for
each inequality. Note thatG may have cycles.

In the scheduling literature, this graph is well known
as a potential graph, where each valueti represents the
starting date of the taski. In this formalism, the key
point is that an optimal schedule is obtained by comput-
ing the paths of maximal weight inG. Indeed note that
if G has a cycle with positive weight, then there is no so-
lution; by summing all inequalitiestj − ti ≥ wi,j along
a cycleC we get thatO ≥ w(C) Conversely, ifG has
only negative cycles, we can define, for each vertexj,
the maximal weightaj of a path leading toj We then
haveaj ≥ ai + wi,j as the maximal weight towardsj
is at least larger than when going throughi first. Fur-
thermore, for any solutionti and any path, we have (by
induction on the path length)ti ≥ ai. Thus, the set of
valuesai gives an optimal solution.

There are many algorithms for finding paths of max-
imal weights inG [3]; let us mention Bellman-Ford’s,
Dijkstra’s (only for nonnpositive weights) and Floyd’s
algorithms. In our context we can reduce the complexity
of the method by noticing that at each stage of theBAB
algorithm, we add a new edge to a graph in which some
information on paths of maximal weights may have al-
ready been computed. What we need then is an in-
cremental version of a maximal weight path algorithm.
In the following, we propose 2 incremental algorithms
based respectively on Floyd’s and Dijkstra’s algorithms.

3.1.1 Incremental Floyd’s algorithm
Floyd’s algorithm [3] computes, with complexity
O(n3), for each couple of vertices(i, j), the maximal
weight ai,j of a path fromi to j. This algorithm as-
sumes thatG has no cycle with positive weight , but it
can be modified to also detect positive cycles, in which
case the system defined by (2) has no solution.

Let us recall that, at a node of theBAB process, we
have to compute the maximal weighta′

i,j of a path from

i to j, for anyi andj, in the graphG
′

= (V, E ∪ {e}),
whereG = (V, E) is the graph at its parent and the edge
e = (x, y) with weightwx,y = w0 represents the con-
straint to be added at this node. InG, we have already
computed the maximal weightai,j for anyi andj.

We first need to check thatG′ has no cycle of positive
weight. If this is the case, this means that there is a cy-
cle of positive weight that goes throughe with weightw0

and then back tox, in particular through a path of max-
imal weight (inG), i.e., of weightay,x. Thus,G′ has a
cycle of positive weight if and only ifw0 + ay,x > 0. If

3

Algorithm 1: Incremental Floyd’s algorithm

Data: G(V,E,w), a: Floyd’s matrix,e = (x, y, w0)
begin

if w0 + ay,x > 0 then
Exit; /* Elimination, no solution below */

if w0 > ax,y then
for i from 1 to n do

for j from 1 to n do
ai,j = max{ai,j, aix + w0 + ayj} ;

end

this is not the case, the newa′

i,j can be easily obtained

by the relationa
′

i,j = max{ai,j , ai,x +w0 +ay,j}. Note
also that whenw0 ≤ ax,y, the new constraint is actually
redundant and no update is necessary.

Algorithm 1 has complexityO(n2) instead ofO(n3).
At each node, we get the datesti asti = maxj aj,i and
an evaluation ofLOCAL asmaxi ti.

In the worst case (no elimination) we have to examine
each node of the tree structure of theBAB algorithm;
2m+1 nodes wherem is the number of dis-equalities.
At each node we update Floyd’s matrix.Hence theBAB
algorithm complexity isO(n2.2m+1).

3.1.2 Incremental Dijsktra’s algorithm

In this algorithm, we only compute the maximal weight
ti of a path leading to each vertexi, instead of allai,j for
any i andj. We use an idea similar to Johnson’s algo-
rithm [3] to be able to use Dijsktra’s algorithm although
this algorithm needs nonpositive weights whereas our
graph may contain positive weights. In Algorithm 2,
we compute, for a node of theBAB tree, the valuest′i
in G

′

= (V, E ∪ {e}, w) whereG = (V, E, w) is the
graph at its parent node ande = (x, y), with weight
wx,y = w0, represents the constraint to be added. We
assume that theti for G are available from the parent
node. First, we need to check the feasibility of the prob-
lem, second, if the problem is feasible, we need to com-
pute the new solutiont′i.

Let us first explain the general mechanism we use
in this algorithm to be able to use Dijsktra’s algorithm.
When all edge weightsw in a graphG = (V, E, w) are
nonpositive, we can find a path of maximal weight from
a sources to each vertexi ∈ V by running the Dijsk-
tra’s algorithm. IfG has a positive weight, we will first
modify the edge weightsw into nonpositive weightswr,
thanks to a well-chosen reweighting functionr (a func-
tion that assigns an integerri to each vertexi) such that
wr

i,j = wi,j + rj − ri ≤ 0. It is easy to check that

G = (V, E, w) has a cycle of positive weight if and only
if Gr = (V, E, wr) has a cycle of positive weight be-
cause cycle weights are not changed by a reweighting.
Furthermore, the weightwr(P) of a pathP in Gr from
i to j is equal tow(P) + rj − ri.

Feasibility: We use the same argument than we used
for Algorithm 1. The graphG

′

= (V, E∪{e}, w), where
the weight ofe is w0, has a cycle of positive weight if
and only if w0 + ay,x > 0 whereay,x is the maximal
weight of a path inG from y to x.

To computeay,x, thanks to Dijkstra’s algorithm, we
proceed as follows. Remember that we are giventi, for
all i ∈ V , the maximal weight of a path inG leading
to i. These values satisfy the system of constraints for
G i.e. tj − ti ≥ wi,j . Let us defineGr with r = −t.
We havewr

i,j = wi,j + rj − ri = wi,j − tj + ti ≤
0. We can therefore compute inGr, using Dijkstra’s
algorithm, the maximal weightar

y,z of a path fromy to
any reachable vertexz. We then obtainay,z thanks to
the relationay,z = ar

y,z + ry − rz . Thus the system
of constraints defined byG′ is feasible if and only if
w0 + ar

y,x + tx − ty ≤ 0 or x is not reachable fromy in
G (ay,x = ar

y,x = −∞).

New solution t′i: If the problem is feasible, we still
have to computet′i the maximal weight of a path leading
to i in G

′

. We can do this by adding a fictive source
in V , i.e., a new vertexs in V and for eachi in V

a new edge(s, i) of weight 0. We can then use Di-
jkstra’s algorithm inG′ if G′ has nonpositive weights.
If not, we have to perform a reweighting. But−t

may not be adequate because ofe of weight w0. Let
K = min{ay,j − tj | j reachable fromy}. We claim
that the functionr defined by

ri =

{

−ay,i if i reachable fromy
−ti −K otherwise

is a valid reweighting, i.e., is such thatwi,j +rj−ri ≤ 0
for each edge(i, j), including the new edgee = (x, y).
(Note: for s, we let ts = 0. For any vertexi in G,
we then also haveti ≥ ts + ws,i asti ≥ 0 and we let
rs = −ts −K as for any vertex not reachable fromy.)

Proof. Let us emphasize that, for each edge(i, j), only
three situations are possible: neitheri nor j are reach-
able fromy, both i andj are reachable fromy, or j is
reachable fromy but noti.

In the first case,wr
i,j = wi,j − tj − K + ti + K =

wi,j + ti − tj ≤ 0 since(i, j) is in E. In the second
case,wr

i,j = wi,j − ay,j + ay,i ≤ 0 by definition ofay,i

anday,j as maximal weights of paths fromy to i andj

respectively. In the last case,wr
i,j = wi,j − ay,j + ti +

K ≤ −ay,j + K + tj since(i, j) is in E, and finally
wr

i,j ≤ 0 sinceK ≤ ay,j − tj .

4

Algorithm 2: Incremental Bound Algorithm
Data: ti, the maximal weight of a path leading toi in

G = (V, E, w), e = (x, y, w0) edge to add
Result: t′i, the maximal weight of a path leading toi in

G
′

= (V, E ∪ {e}, w).
begin

if ty ≥ tx + w0 then
Return{ti}i∈V ; /* Redundant constraint, no
update */

else
ri = −ti for all i ∈ V ;
{ar

y,z}z∈V ← DIJKSTRA(Gr, y) ;
ay,z = ar

y,z + tz − ty for all z ∈ V ;
if w0 + ay,x > 0 then

Exit; /* Elimination, no solution below */
add as in V , ts = 0, and an edge(s, i),
ws,i = 0, for all i ∈ V ;
K = min{ay,j − tj | j reachable fromy};
ri = −ay,i for all i ∈ V reachable fromy;
ri = −ti −K otherwise;
{a′r

s,i}i∈V ← DIJKSTRA(G′r, s) ;
Return{t′i = a′r

s,i − ri + rs}i∈V ;

end

We can then compute, using Dijsktra’s algorithm, the
maximal weightt′r

Dijsktra’s algorithm has a complexityO(n2), for n

vertices andm = O(n2) edges. However, if one
implements its priority queue with binary heap (resp.
Fibonacci heap), the running time becomesO((n +
m) lg n) (resp. O(n lg n + m)). Thus Algorithm 2,
whose core is Dijsktra’s algorithm, has the same com-
plexity. Moreover, onlyO(n) memory is needed here
Thus Algorithm 2 is faster and less memory consuming.

3.2 Constraints Reordering

We have done some experiments which show that the
BAB run time depends also on the order of constraints.
For this reason, we have designed three heuristics. The
main idea of these heuristics is to arrange the constraints
to make positives circuits appear as soon as possible.

Heuristic 1 This heuristic is greedy. We consider cir-
cuits without computing their weight. We ignore the
constraint that the circuit must be positive. For this, the
algorithm treats each dis-equalityti−tj 6= di,j as an arc
(i, j) without weight. This algorithm builds the list of
constraints progressively: 1)first, one constraint is arbi-
trarily chosen;2) at each step, one constraint is selected
and added to the list. By maintaining a listL of ver-

tices which are visited, the criterion of selection favors
the constraintc whose extremity is inL. If no constraint
satisfy the criterion, start again at step 1.

Heuristic 2 In this heuristic, we model the problem by
an undirected graphG(V, E). This graph is obtained by
representing each dis-equalityti − tj 6= di,j by an edge
(i, j). At the beginning, edges are not weighted. We
consider all the elementary cyclesC = (v1, v2, ..., v1)
in G. Only the elementary cycles are examined

We build the cycles ofG using the standard spanning
tree alghorithm. Once a cycle is detected, one checks its
weight in both directionsv1, v2 v1 andv1, vp v1.
If at least one of them is positive the cycle is chosen. In
this way, we enumerate all positive cycles. These cycles
are sorted in order of increasing number of edges.

Heuristic 3 Another possibility would be to represent
each dis-equality by one of its two exclusive arcs. We
choose to represent each dis-equality by its positive arc.
Thus, in the resulting directed graph, all eventual circuits
are positive. Then, like in heuristic 2, we enumerate all
circuits. Here, the non-trees edges are classified into for-
ward, across and back arcs. Only the back arcs are part
of circuits.

4 A Greedy Heuristic

As mentioned earlier, one can use aGreedy-
Scheduling GSheuristic. Without any data dependences,
all the tasks are ready at time zero. Hence, the heuristic
starts by launching the first task. The scheduling is done
task by task. In each scheduling step, we have sched-
uled a subsetTm of tasks, and we have to schedule the
remaining tasks. We choose the next taski and we see if
it is possible to schedule it at time 0, i.e. if all forbidden
distances betweenti and all tasks inTm are respected. If
not, the start time is incremented, and the process is reit-
erated. This heuristic has a complexity inO(n.

∑

i pi).

5 Experimental Results and Discussion

We have implemented the two scheduling algorithms
and three heuristics presented in the previous sections
in our framework. The experiments are performed on
pieces of real-life applications. They consist of 26 tests
from thePerfectClubbenchmarks2 The run time is com-
puted in user seconds on a 1.8GhzIntel PIV running
Linux. Results are reported in Table 1.

In the first two rows of Table (1), we report the name
of the test and the number of included tasks. The 3rd
to the 8th rows present results for theBAB scheduler:

2citeseer.ist.psu.edu/berry88perfect.html

5

the 1st one presents the size of the system of constraints,
the 2nd presents the length of the optimal schedule, the
third and the fourth row gives the scheduling time with-
out reordering constraints respectively by the incremen-
tal Floyd’s and Dijkstra’s algorithms. H1, H2 and H3
columns present the run time after reordering constraints
respectively by heuristic 1, 2 and 3 for the incremental
Dijkstra’s procedure.

The 9th row presents the length of the schedule com-
puted by theGSheuristic. The run time ofGS is less
than the resolution of the Linux clock. Knowing that
GSheuristic is sensitive to the order of the task list, we
ran the algorithm on a sample of permutation of tasks.
The size of this sample is the square of the number of
tasks, and the permutation are random. The maximum
deviation (DevMax) presents the difference between the
worst length in the sample and the optimum as given by
BAB. The DevMin column presents the deviation of the
best schedule (in a sample ofn permutations) from the
optimum.

The first fact to deduce from those results is that the
GSalgorithm has a good behaviour: it never doubles the
length of the optimum schedule. In addition, the length
of the worst schedule (in the sample) is not very far from
the optimum computed by theBAB. The result in the last
column demonstrates that in a sample (of onlyn permu-
tations) the schedule obtained is very close to the opti-
mum. Hence one can reach the best schedule by apply-
ing onlyGSto a sample ofn permutations.

On the other hand, the analysis of the run time ofBAB
shows that its times are sufficiently acceptable in con-
trast to its high exponential theoretic complexity. How-
ever theBAB algorithm associated to the incremental
Dijsktra’s procedure is clearly speed. We observed one
pathologic case (css21). In this test, it happens that the
local lower bounds are close to the optimum, so no early
elimination is possible.

Results show that heuristic 1 and heuristic 2 improve
the run time. But it is difficult to choose one among them
because there are some compromises. H3 has the worst
runtime; this result can be explained by the fact that only
positive circuits composed by exclusively positive arcs
are taken into account.

Let us recall the fact that embedded systems design-
ers tolerate much longer compilation time Thus when
one is in the iterative process of improving the design,
one can useGH. If the design do not meet the target per-
formances, and needs more optimizations, one can use
theBABalgorithm in the late steps.

6 Conclusion and Future Directions
This paper presents a formalism to accurately express

resource constraints for data independent tasks in HLS.
The resource constraints are modeled by dis-equations
and finding an optimal schedule entails resolving a sys-
tem of dis-equations.

Within two-step scheduling, we have proposed two
solutions for the second step: an exact algorithm based
on theBAB algorithm and aGSheuristic. Scheduling
results show that, in effect, theGSheuristic has a suit-
able behaviour. TheBABalgorithm associated to incre-
mental Dijkstra’s has an acceptable run time but can be
vulnerable to rare pathologic cases. We have designed
three constraints ordering heuristics for improving the
runtime of theBAB algorithm. The results show they
give better runtime than the original solution.

In future work, we will extend theGSalgorithm by
establishing a convenient order on the task list.

References

[1] C. Bastoul. Efficient code generation for automatic par-
allelization and optimization. InISPDC’03 IEEE Inter-
national Symposium on Parallel and Distributed Com-
puting, pages 23–30, Ljubjana, october 2003.

[2] H. Cherroun, P. Feautrier, and A. Darte. Scheduling un-
der resource constraints using dis-equalities. Technical
report, Laboratoire LIP, Ecole Normale Supérieure de
Lyon,, September 2005. Reference deleted for anony-
mous reviewing.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Intro-
duction to Algorithms. The MIT Press and McGraw-Hill
Book Company, 1989.

[4] F. Donnet. Synthèse de haut niveau contrôlée par
l’utilisateur. PhD thesis, Université Paris VI, Janvier
2004.

[5] P. Feautrier. Some efficient solutions to the affine
scheduling problem: II. multi-dimensional time.Int. J.
Parallel Program., 21(6):389–420, 1992.

[6] D. D. Gajski. Principle of digital design. Prentice Hall
international edition, 1997.

[7] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: A
high-level synthesis framework for applying paralleliz-
ing compiler transformations. InVLSID ’03: Proceed-
ings of the 16th International Conference on VLSI De-
sign, page 461. IEEE Computer Society, 2003.

[8] K. Kuchcinski. Constraints-driven scheduling and re-
source assignment.ACM Trans. Des. Autom. Electron.
Syst., 8(3):355–383, 2003.

[9] G. D. Mecheli.Synthesis and optimization of digital cir-
cuits. Mc Graw Hill, 1994.

[10] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation
of efficient nested loops from polyhedra.International
Journal of Parallel Programming, 28(5):469–498, octo-
ber 2000.

6

Test T Branch-and-bound (BAB) greedy-scheduling (GS)
nbC Opt. Flyd Dijk H1 H2 H3 Sched DevMax DevMin

test1 4 6 4 0.1 s 0.09 s 0.10 s 0.08 s 0.08 s 4 0 0
test2 4 7 4 0.17 s 0.10 s 0.06 s 0.09 s 0.09 s 5 1 0
css1 4 9 5 0.17 s 0.14 s 0.10 s 0.09 s 0.11 s 6 2 1
css11 4 6 4 0.10 s 0.09 s 0.07 s 0.09 s 0.08 s 5 2 0
css12 4 9 5 0.10 s 0.12 s 0.09 s 0.09 s 0.11 s 6 3 1
css2 9 23 6 48.25 s 8.61 s 16.03 s 1.56 s 4.75 s 7 2 1
css3 7 36 9 1’ 1 s 5.95 s 5.15 s 4.26 s 9.76 s 10 3 0
css5 3 7 5 0.08 s 0.10 s 0.07 s 0.09 s 0.09 s 5 0 0
css6 8 7 4 1.75 s 0.29 s 0.20 s 0.21 s 0.25 s 4 0 0
wss3 5 7 4 0.18 s 0.11 s 0.08 s 0.09 s 0.10 s 4 0 0
wss31 5 12 6 1.50 s 0.44 s 0.26 s 0.20 s 0.29 s 6 1 0
wss32 5 6 4 0.18 s 0.10 s 0.08 s 0.09 s 0.10 s 4 0 0
woc1 4 5 5 0.08 s 0.09 s 0.07 s 0.08 s 0.08 s 5 0 0
woc2 7 10 4 2.99 s 0.49 s 0.46 s 0.25 s 0.46 s 4 1 0
wss1 4 54 17 2.76 s 0.79 s 0.81 s 0.75 s 1.99 s 21 5 0
wss11 4 49 16 2.74 s 0.85 s 0.6 s 0.55 s 1.6 s 19 4 1
wss2 3 7 8 0.07 s 0.08 s 0.06 s 0.08 s 0.08 s 10 1 0
wss12 4 49 16 3.29 s 0.83 s 0.43 s 1.23 s 2.56 s 17 5 1
wmt22 4 24 13 0.83 s 0.34 s 0.42 s 0.28 s 0.63 s 13 0 0
css21 9 44 10 5h 9’ 27’ 59 s 14’ 38 s 4’ 46 s 23’ 11 s 11 2 1

Table 1. Scheduling results for the various tests on the BAB and GS algorithms

[11] I. Radivojevic and F. Brewer. A new symbolic technique
for control-dependent scheduling.IEEE Transactions on
CAD, January 1996.

[12] L. Stok. Data path synthesis.Integr. VLSI J., 18(1):1–71,
1994.

[13] W. G. J. Verhaegh, E. H. L. Aarts, P. C. N. V. Gorp, and
P. Lippens. A two-stage solution approach to multidi-
mensional periodic scheduling.IEEE Trans. Computer-
Aided Design, 20(10):1185–1199, October 2001.

[14] P. Yang and F. Catthoor. Pareto-optimization-
based run-time task scheduling for embedded sys-
tems. In CODES+ISSS ’03: Proceedings of the
1st IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages
120–125. ACM Press, 2003.

[15] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet,
D. Verkest, and R. Lauwereins. Energy-aware runtime
scheduling for embedded-multiprocessor socs.IEEE
Des. Test, 18(5):46–58, 2001.

7

