
COMPILING FOR MASSIVELY PARALLEL ARCHITECTURES:A PERSPECTIVEPaul FEAUTRIERLaboratoire PRiSMUniversit�e de Versailles Saint-Quentin45 Avenue des Etats-Unis,78035 VERSAILLES CEDEX FRANCEPaul.Feautrier@prism.uvsq.frABSTRACT: The problem of automatically generating programs for massively parallelcomputers is a very complicated one, mainly because there are many architectures, eachof them seeming to pose its own particular compilation problem. The purpose of thispaper is to propose a framework in which to discuss the compilation process, and to showthat the features which a�ect it are few and generate a small number of combinations.The paper is oriented toward �ne-grained parallelization of static control programs, withemphasis on data
ow analysis, scheduling and placement. When going from there to moregeneral programs and to coarser parallelism, one encounters new problems, some of whichare discussed in the conclusion.KEYWORDS Massively Parallel Compilers, Automatic Parallelization.@ARTICLE{Feau:95,AUTHOR = {Paul Feautrier},TITLE ={Compiling for Massively Parallel Architectures: aPerspective},JOURNAL = {Microprogramming and Microprocessors},YEAR = 1995,NOTE = {to appear}} 1



1 A FRAMEWORK FOR DISCUSSING MASSIVELY PARALLEL COMPI-LATIONThe problem of automatically generating programs for massively parallel computers is avery complicated one, mainly because there are many architectures, each of them seemingto pose its own particular compilation problem. The purpose of this paper is to propose aframework in which to discuss the compilation process, and to show that the features whicha�ect it are few and generate a small number of combinations.We will �rst introduce some notations for discussing parallel programs. We will thenrestate in our framework several classical techniques: data expansion, scheduling, parti-tioning, tiling and loop rewriting. It is then possible to explore the spectrum of parallelarchitectures, and to show that each of them may be programmed by one of the abovetechniques, or by a combination of them. In the conclusion, we will point to several shortrange and long range unsolved problems.1.1 Static Control ProgramsAn operation of a program is one execution of an instruction. While the number of instruc-tions is roughly proportional to the size of the program text, the number of operations isproportional to the running time of the program and may vary according to the size of thedata. What is to be taken as an instruction depends on the purpose of the analysis. Inthe case of source-to-source parallelization, which is our main concern here, we will identifyinstructions with simple statements in the source high level language. Other choices arepossible, e.g. in the case of Instruction Level Parallelization.At present, parallelization techniques apply only to static control programs, i.e. programsfor which one may describe at compile time the set of operations which are going to beexecuted in a program run. Static control programs are built from assignment statementsand DO loops. In such a program, the only mechanism which generates operations frominstructions is DO loop iteration. As a consequence, an operation may be named by a tuplehS; ~xi where S is the name { or label { of the parent instruction, and where the componentsof ~x { the iteration vector { are the values of the surrounding loop counters, from outsideinward. The dimension of ~x (i.e. the number of loops which surround S), will be denotedNS .The only data structures are arrays of arbitrary dimension. For technical reasons, loopbounds and array subscripts are restricted to a�ne forms in the loop counters and integralstructure parameters, which are assumed to be known at program loading. From eachof the surrounding DO statements, we may extract an upper and a lower bound for thecorresponding counter. Under the above hypotheses, these bounds may be collected as asystem of 2NS a�ne constraints:DS~x+ ~dS � 0:The integer solutions of these inequalities de�ne the iteration domain DS of S. Such a setis known as a Z-polyhedron.Generally, the result of a program depends on the order in which its operations are2



executed. The fact that operation u is executed before operation v is written u � v.If several programs are under discussion, their execution orders will be distinguished bysubscripts. A sequential program is associated to a total execution order. A parallelprogram is associated to a partial execution order. For the purpose of understanding whatis the result of a parallel program, one may assume that, for each run, target computerselects in some way a total extension of this partial order and executes it sequentially. Sincein general a partial order has many total extensions, it follows that a parallel program hasmany possible executions, with potentially many di�erent results. The central question ofautomatic parallelization is: when do all these executions give the same result?Two operations u and v are independent if their order of execution can be reversedwithout changing the global e�ect on the program store. Let R(u) and M(u) be the setsof memory locations which are read and modi�ed by operation u. A su�cient condition forindependence of u and v is [Ber66]:M(u)\M(v) = ;; (1)R(u)\M(v) = ;; (2)M(u)\R(v) = ;: (3)If these conditions are not satis�ed, the operations u and v are said to be dependent, writtenu � v.Suppose that two programs have the same set E of operations. One of them is sequential,with total execution order �. The other one has execution order �==, presumably parallel.One may show that a su�cient condition for the equivalence of these two programs is:8u; v 2 E : u � v ^ u � v ) u �== v; (4)in words, that if two operations are dependent, then they are executed in the same orderin the sequential and the parallel version.Another equivalent formulation is that the execution order of any correct parallelizationmust be a transitive extension of the relation � \ � , the Detailed Dependence Graph (DDG)of the source program.As a consequence, the parallel compilation process may be divided in two steps: �rstly,compute the DDG of the source program, then select any extension of the DDG which canbe executed e�ciently on the target architecture.With the exception of programs without loops { the basic blocs { this proposal cannot becarried out litteraly, since the size of the DDG is enormous and may vary from run to run.The concern of most parallelization methods is to construct a summary of the DDG, theobjective being to keep just enough information for the construction of a parallel program.2 BASIC ANALYSIS TECHNIQUESRecent research on automatic parallelization has concentrated on two topics: improvingthe dependence calculation, and �nding well-de�ned algorithms for the construction ofextensions of the DDG. 3



2.1 Array Data
ow AnalysisEach edge in the dependence relation may be seen as a constraint on the �nal parallelprogram. There is an obvious interest in removing as many edges as possible. Someedges are related to memory reuse (the so-called output- and anti-dependences) and can beremoved by modifying the data structure of the program. The remaining edges representdata
ow from a de�nition to a use of the same memory cell. However, a de�nition may bekilled before being used by another operation.The aim of array data
ow analysis is to characterize in a compact way the set of proper
ow dependences of a program. Let us consider an operation u in which a memory cell cis used. Let us write W(c) for the set of operations which write into c. The source of c atu is the latest write into c which precedes u:source(c; u) = max� fv j v � u; v 2 W(c)g:When the linearity hypotheses of section 1.1 are taken into account, this problem trans-lates into the calculation of the lexical maximum of a union of Z-polyhedra. To express theresult, we need the concept of quasi-a�ne form : a formula which is built from the variablesby the operations of addition, integer multiplication and integer division. One may show[Fea88b] that the source above can be expressed as a piecewise combination of quasi-a�neforms in the coordinates of the iteration vector ~x of u. In many cases, integer division doesnot occur, and each piece of the solution may be written:source(c; hR;~xi) = hS; LRS~x+ ~̀RSi; (5)where LRS is a matrix and ~̀RS is a vector of suitable dimensions.It may happen that some memory cell is not de�ned in the program fragment under study.In that case, we use the special operation ? which may be interpreted as the initial programloading. To simplify the exposition, we will suppose here that all initializations have beenmade explicit in the program text, and hence that ? never occurs in sources. Thereare practical algorithms for computing the source function, with the help, e.g., of linearprogramming [Fea88a, Fea91] or by simplifying Pressburger formulas [PW93]. It happensfrequently that the source can be found directly without resorting to linear programmingtechniques. See [MAL93] or [HT94] for a study of such cases.Consider the following matrix multiplication code:do i = 1,ndo j = 1,n1 a(i,j) = ...2 b(i,j) = ...end doend dodo i = 1,ndo j = 1,n3 c(i,j) = 0.0do k = 1,n4 c(i,j) = c(i,j) + a(i,k)*b(k,j)4



end doend doend doLet us investigate the source of c(i,j) in operation h4; i; j; ki. The candidates arestatement 3 and statement 4 itself. Let us consider an operation h4; i0; j0; k0i. A candi-date must write into the proper memory location, which implies i0 = i; j0 = j, and beexecuted earlier than h4; i; j; ki, which, together with the preceding equalities, impliesk0 < k. The latest possible source is thus h4; i; j; k � 1i. This operation exists only ifk � 2. If k = 1, a similar reasoning indicates that the source is h3; i; ji. These resultsmay be put together as a conditional:source(c(i,j); h4; i; j; ki) = if k � 2 then h4; i; j; k� 1i else h3; i; ji; (6)The other sources are simpler:source(a(i,k); h4; i; j; ki) = h1; i; ki; (7)source(b(k,j); h4; i; j; ki) = h2; k; ji: (8)When the source function is known, a new version of the equivalence condition (4) canbe stated. Let R(u) be the set of memory cells which are used by operation u. One musthave: 8u; 8c 2 R(u) : source(c; u) �== u; (9)in words, that the source of a value in any operation is executed before that operation inthe parallel version of the program. The graph whose vertices are the operations, with anedge from v to u i� v is the source of a value which is used by u, is the Data
ow Graph(DFG) of the program.However, using any execution order which satis�es (9) for constructing a parallel programwill give an incorrect result, because output- and anti-dependences have not been taken intoaccount. One can get rid of these dependences by data expansion. We will suppose here, forsimplicity, that each operation returns only one result. Let us associate to each operationu one distinct memory cell M [u]. Let us write the statement associated to u as:a := f(: : : ; c; : : :): (10)Consider the program in which operation u execute the following statement:M [u] := f(: : : ;M [source(c; u)]; : : :): (11)Since each operation u is executed only once, and since the result location M [u] is in one-to-one correspondence with u, this program has the single assignment property. Whenthe program starts, all memory cells are unde�ned. The cell M [u] gets a value when u isexecuted, and this value does not change until the end of the program. One may prove thatthis single assignment program, executed according to any order �== which satis�es (9) isequivalent to the original sequential program, in the following sense:Theorem 1 The value which is computed by operation u is the same in the original program(10) and in the parallel version (11). 5



It is clear that the sequential execution order � is well founded. Hence, we may useinduction on this order to prove equivalence. Let u be an operation, and suppose thatequivalence has been proved for all v � u. Let c be a memory cell in R(u). Its valuehas been generated by source(c; u) � u. By (9), source(c; u) has been executed before uin the parallel program, and the resulting value, which is written into M [source(c; u)],is, by the induction hypothesis, equal to the value generated by source(c; u) in thesequential program. This value is never overwritten by the single assignment property.As a consequence, the function f has the same arguments in (10) and in (11), andhence, gives the same results, QED.Single assignment programs have the property that their space complexity and timecomplexity are the same. This is in contrast to the situation which prevails for mostscienti�c computing algorithms, where the space requirement is an order of magnitude lessthan the time requirement. On the other hand, implementing an algorithm as a singleassignment program allows one to extract all the parallelism of which it is susceptible.In many cases, this degree of parallelism may be attainable with less than total memoryexpansion, and beside, this degree of parallelism may not be necessary, e.g. because thetarget computer cannot make use of it. It would be nice in these cases to be able to adjustthe amount of memory expansion, but this is still an open research subject.2.2 SchedulingThe problem is now to specify an execution order for the parallel program, i.e. an extensionof the DDG or of the DFG. The speci�cation of an order on a large set is very complex.Our aim here is to �nd simple representations, even if we have to sacri�ce some parallelismin order to achieve simplicity. The use of a schedule, i.e. of a function which maps the set ofoperations to logical time (i.e. to any linearly ordered set) is such a simple representation.To any function � mapping the set of operation to an ordered set, we may associate thepartial order:u �� v � �(u) < �(v):Usually, the range of � is taken to be the integers. � is a valid schedule if the correspondingorder satis�es (4) or (9), i.e:u � v ^ u � v ) �(u) < �(v); (12)or 8u; 8a 2 R(u) : �(source(a; u)) < �(u): (13)The latency of a schedule is the maximum value of the schedule over the set of operations.It may be interpreted as the running time of the parallel program on a PRAM. It is clearthat the source relation is included in the DDG. Hence, (12) is a tighter constraint than(13). As a consequence, the valid schedules according to (13) have a latency no larger thanthat of schedules which satisfy (12). The price to pay is that if a schedule for (13) is used,the data space has to be expanded in order to restore correctness.6



In the case of our running example, the following functions:�(1; i; j) = 0; �(2; i; j) = 0; �(3; i; j) = 0; �(4; i; j; k) = k:are valid schedules. Consider for instance the constraint associated to memory cellc(i,j) in statement 4. We have to check that:(if k � 2 then �(4; i; j; k� 1) else �(3; i; j)) < �(4; i; j; k):The test splits into two subproblems. If k � 2, we have k� 1 < k. If k < 1, then, fromthe loop lower bound we deduce that k = 1, and the condition to be veri�ed is that0 < 1. The reader may care to test the other conditions on �.To solve the scheduling inequalities, one starts by postulating a simple prototype for �:�(S; ~x) = ~hS :~x+ kS ;where ~hS is known as the timing vector for S. These prototypes for � are substitutedinto (12) or (13). From the result one may deduce linear inequalities on the unknownscomponents of ~hS and kS .There are several methods for deducing these inequalities. One may give a set of cleverlychosen values to ~x (the vertices of the iteration domains [Qui87]) or apply Farkas lemma[Fea92a].Most of the time, these linear constraints have many solutions. One usually selects a\best" one according to some �gure of merit. One possibility is to optimize the latencyof the program [DR95]. Alternately, one may search for earliest start time or leftmostschedules [Fea92a]. In both cases, the solution is obtained by solving linear programmingproblems. The authors of [KP94] have attempted to optimize more complicated objectivefunctions by a search process.It may happen that the set of a�ne constraints which is deduced from the dependenceconditions (12) or (13) has no solution. A possibility in that case is to construct multi-dimensional schedules by the algorithm in [Fea92b] which has been proved optimal in thecase of uniform dependences in [DV94].To any function �, one may associate the system of disjoint sets:F(t) = fu j �(u) = tg: (14)F(t) is the front at time t. If � satis�es (12), it is clear that all operations inside a frontare independent, i.e. can be executed in parallel. If the schedule satis�es (13), then thesource and the sink of any value do not belong to the same front: there is no data exchangeinside a front. We may say that the set of operations has been partitioned into anti-chains{ sets of non comparable operations { which are executed sequentially. This is the SEQof PAR style of programming of [Bou93]. Two operations in di�erent fronts are executedin sequence, but are not necessarily in dependence: some parallelism has been lost in theinterest of a simple parallel program representation.7



2.3 DistributionLet Q be any partition of the set of operations of a given program. One may associate toQ an execution order in the following way. Operations which belongs to the same part ofQ are executed according to the sequential execution order. Operations which belong todi�erent parts are ordered in the sequential order if and only if they are in dependence.It is quite clear that the resulting order satis�es (4). Intuitively, each part corresponds toa process. Ordering between operations in di�erent parts necessitates a synchronizationoperation. This is the PAR of SEQ style of programming of [Bou93].In the same fashion, one may introduce an ordering between two operations in di�erentparts only if one is the source and the other a sink for a given value. In that case, theordering is obtained by transmitting a message from the source to the sink; the messagecarries the shared value.Theorem 2 The program obtained by partitioning and synchronization is correct, providedthat the workspace of the original program is replicated in all processors.We have to prove that the value which is computed by an operation u is the same in thesequential and in the distributed version. Here again, the proof is by induction on thesequential execution order. Let us suppose that the theorem is true for all operationv � u. Let c be a memory cell in R(u); in the distributed version, this cell is replicatedin all processors. There are two cases:� source(c; u) belongs to the same part as u. By construction, the source operationhas been executed before u in the distributed version, and has left the correctvalue in c. Beside, this value has not been obliterated in the distributed version,because this would contradict the de�nition of the source function.� source(c; u) belongs to a di�erent part. We have here to make some assumptionsabout the communication mechanism. Suppose for simplicity that as soon as thesource operation terminates, it broadcasts a message holding its name and itsresult. When u initiates, it waits for a message holding the name of the sourceoperation and gets the value contained therein. Since source(c; u) � u, the valueobtained in this way is the correct one by the induction hypothesis.All in all, the arguments of u are the same in the sequential and in the distributed case,hence its result is the same, QED.The communication mechanism which is postulated here relies on a kind of tuple space�a la Linda [CG89]. There are other possibilities, see section 4.3.Here, any partition gives a correct parallel program. However, e�ciency considerationsdictate that the set of residual synchronisation or communications be kept to a minimum,subject to the condition that all processes execute about the same amount of work. Theproblem has been widely studied [LC91, AL93, Fea94]. A plausible solution is the following.One postulates a placement function � from the set of operations to the set of processes(also called virtual processors). The virtual processors are understood to occupy the pointsof a g-dimensional Z-polyhedron (the template of HPF, the geometry of the CM-2, and soon). �(u) is a function from the set of operations to Zg which gives the coordinates of the8



virtual processor which executes u. For each value which is used by u, one may de�ne acommunication distance:d(a; u) = �(source(a; u))� �(u) (15)and the equation d(a; u) = 0 expresses the fact that the source for cell a in operation u isin the same process as u. If all such equations can be satis�ed, all residual communicationswill disappear.Since an arbitrary placement function is useless for program restructuring purposes, onemakes the additional assumption that � is a�ne:�(R;~x) = ~�R:~x+ qR;where ~�R is an unknown vector and qR an unknown alignment constant. Let us recallformula (5):source(c; hR;~xi) = hS; LRS~x+ ~̀RSi:If we substitute this formula and the above prototype placement function into (15), thenidentify, we get a system:~�SLRS = ~�R;~�S :`RS + qS = qR:The �rst line expresses the fact that the communication distance is a constant (a verydesirable property), and the second line that this constant is null. Let us write ~� for avector in which all unknowns ~�R for all R are collected. Similarly, let ~q be the vector of allalignment constants. The above system may be summarized as:C~� = 0;D ~�~q ! = 0;where C is known as the communication matrix of the program. The meaning of the �rstline is that ~� must belong to the null space of C [BKK+94]. If, as is likely for real worldprograms, C is of full row rank, ~� = 0 is the only solution, and the calculation collapses onprocessor 0. To obtain an interesting solution, one needs g linearly independent placementfunctions, where g is the dimension of the processor grid. This means that one has toselect a submatrix of C with a g-dimensional null space. The excluded rows corresponds toresidual communications. Heuristics may be used to select the excluded communicationsamong those with the lightest load [Fea94]. When ~� has been selected, one tries to satisfyas many alignment conditions as possible, thus obtaining local communications.In some cases, it is possible to solve the placement equations without any hypotheseson the form of the placement functions. To the source functions (6{8) are associatedthe following placement equations:�(4; i; j; k) = �(4; i; j; k� 1); (16)�(4; i; j; 1) = �(3; i; j); (17)�(4; i; j; k) = �(1; i; k); (18)�(4; i; j; k) = �(2; k; j): (19)From (16) we deduce that �(4; i; j; k) does not depend on k. Similarly, (18{19) im-ply that this function does not depend on either j or i, and hence is a constant. It9



is thus impossible to build a distributed program for our example without residualcommunications.Suppose now we ignore (19). We may now take:�(4; i; j; k) = �(1; i; j) = �(3; i; j) = i:Equations (16{18) are satis�ed. We may choose �(2; i; j) arbitrarily. Let us take�(2; i; j) = j. There are then two solutions. The �rst one is to program a communi-cation from processor j to processor i in which b(k,j) is sent. The second one is toduplicate b on all processors. There is no residual communication in this case.In writing (15), it has been supposed that the value which is generated by u is held inthe memory of processor �(u). This is the well known \owner computes rule". Relaxingthis rule may give more e�cient placements, see [DR94].A linear placement function for a program whose iteration domain has characteristicdimension n has a range of cardinality O(n), and hence, generates O(n) processes. Thismay be too much for some architectures. In that case, one folds the placement functionby assigning several processes to one physical processor. Alternatively, O(n) may not beenough for some architectures like the CM2 or Maspar. In that case one uses two ormore linearly independent placement functions. Such a g-dimensional placement functiongenerates O(ng) processes, g being limited only by the dimension of the iteration space.One can compute a placement function without any reference to a schedule. However,there are two reasons not to do that. The �rst one is that knowing the schedule allows oneto choose the dimensionality of the placement. If the iteration space has dimension d, andif the schedule is one dimensional, then each front is included in a subspace of dimensiond � 1, and there is no need to use a processor grid of higher dimension. More generally,for each statement the maximum dimension of the grid which allows full utilisation of theprocessors is d � s where s is the dimension of the schedule. Secondly, the schedule andplacement function seen as a space-time transform has to be one-to-one, meaning that eachprocess executes at most one operation at any given time:�(u) = �(v)^ �(u) = �(v)) u = v: (20)2.4 Supernode PartitioningIn this technique [IT88], one starts again with a partition S of the operation set. Theelements of S are called supernodes or tiles. This partition is subjected to the requirementthat the quotient of the dependence graph by S is acyclic:8�; � 2 S; 6 9u; v 2 �; x; y 2 � : u � x; y � v; u � x; v � y:In the parallel version of the program, operations which belong to the same supernode areexecuted sequentially according to �, while supernodes themselves are executed accordingto the quotient order. Supernode partitioning is an important technique for improving theperformance of a parallel program, by adapting the \grain of parallelism" of the programto the grain of the target computer. Most often, supernodes are de�ned as identical tileswhich have to cover the set of operations of the program. As a �rst approximation, the10



computing time of a tile is of the order of its volume, while the necessary communicationsor synchronization are of the order of its surface. Increasing the size of tiles improves thecomputation to communication ratio, at the price of reducing the amount of parallelism.The extreme is the case of only one tile, which generates no communication and no paral-lelism. The problem of writing the actual parallel program after tiling is simply displacedfrom the original dependence graph to the quotient graph, and the methods above stillapply.Some loop nests contain fully permutable loops [WL91] i.e. loops which can be arbitrarilyreordered without change in the results of the nest. The problem of tiling is much simplerin that case.3 LOOP REWRITINGThe aim of the methods that have been discussed in the preceding section is to expose theparallelism in the source program. There is still the problem of rewriting the program insuch a way that this parallelism may be easily exploited by, e.g., the native compiler orrun-time system.To the system of fronts (14), we may associate the following program:do t = 0; Ldoall F(t)end doHowever, in this program, the doall is purely a notational convention. If this codeis to be submitted to a real compiler, we have to �nd a parametric representation ofF(t) in term of t and of a set of new variables, and to construct a set of loops for theenumeration of F(t). We know in advance that these loops will be parallel.In full generality, the problem may be expressed in the following terms [KP92]. We aregiven a one-to-one mapping T from the set of operation to Nd:T (u) = T (v)) u = v: (21)The execution order �T which is associated to T is the lexicographic order on T (u):u �T v � T (u)� T (v):The selection of T is the important step in the parallelization process. As we will see inthe next section, it is strongly in
uenced by the target architecture. In particular, by aclever choice of T , it will happen that some of the components of T (u) may be interpretedas processor numbers, the corresponding loops being parallel. Other components may beinterpreted as logical time, giving sequential loops. However, the loop rewriting process iscompletely independent of these considerations.The T transformation is not arbitrary. In fact, as we will see later, it is made up bycombining in various ways a�ne schedules and a�ne placement functions. The consequence11



is that the restriction of T to any statement S is an a�ne transform from the iterationdomain of S to Nd:T (S; ~x) = TS~x+ ~rS; (22)where TS is a d�NS matrix. For the condition (21) to be satis�ed, TS has to be of rankNS .Loop rewriting in general is a very complicated process. It is helpful to start by solvingseveral simpler subproblems. The basic problem is, a Z-polyhedron being given as a set ofinequalities:D = f~x j D~x+ ~d � 0g;to construct a loop nest which scans D in lexicographic order. The �rst solution hasbeen given in [Iri87] (see also [AI91]), using an extension of the Fourier-Motzkin pairwiseelimination method.Basically, let xd be the counter of the innermost loop. One rewrites a row of D inwhich xd has a positive coe�cient as a lower bound on xd. Similarly, a row where thecoe�cient is negative gives a lower bound. The lower bound of xd is the maximumof allthe lower bounds found in this way. An upper bound is found in a similar fashion. Onethen eliminates xd, and the process is repeated for all counters from inside outward.Other solutions use parametric linear programming [CFR94] or the Chernikova algorithmfor constructing the vertices of a polyhedron [VWD94].The next problem is the one in which the loop nest is subjected to a transformationassociated to a unimodular matrix T . Let T�1 be its integral inverse. In that case, theiteration domain after the transformation is still a Z-polyhedron, which is given by theinequalities:DT�1~y + ~d � 0:The new loop bounds are found by one of the above methods.If T is not unimodular, the image of the iteration domain is no longer a Z-polyhedron.The �rst step is to compute the left Hermite normal form of T [Min83]:T = HQ;where Q is unimodular. Since T is of rank NS , H is lower triangular with positive elements.Let us introduce an auxiliary integral vector ~z such that:~z = Q~x;~y = H~z:The special form of H implies that ~y is a monotone increasing function of ~z. Since Qis unimodular, we may �nd a loop nest wich scans the Z-polyhedron QDS by the abovemethod. This loop nest is then rewritten in term of ~y by applying the matrix H . Inparticular, the diagonal elements of H give the steps of the new loop nest [Dar93, Ris94,Xue94]. 12



The most complicated case is the one in which we have to rewrite several statements withdi�erent transformations. Each transformation has the same target space and is supposedto have full rank. However, it is not necessary to suppose that the whole transformation isone to one. If two operations (or more) coming from di�erent statements are scheduled atthe same time and place, it is a simple matter to have them executed in an arbitrary order.We have to scan the union of the various images of iteration domains. However, it is wellknown that the union of several polyhedra is not necessarily a polyhedron. One possibilityis to scan the convex hull of this union, inserting guards to avoid executing non-existantoperations. The compiler should be careful to detect trivial guards in order to reduceoverhead. The other possibility is to dissect the union of iteration domains into an unionof disjoint polyhedra, and to write a loop nest for each subset. The drawback of thismethod is code duplication. The reader is referred to the original publications for details[Col94, AALL93, KP92].After rewriting the loop nests, one still has to modify the statements themselves. Thiscan be done in two ways. The simplest solution is to express the old variables ~x in term ofthe new one ~y by inverting (22), which is always possible by (20). The values of ~x are thensubstituted into the array subscripts of S.When working with the single assignment form (11), there is a more interesting possi-bility, called reindexing . Let us introduce a new data space, N , which is indexed by thetransformed coordinates v = T (u):N [v] = M [u];N [T (u)] = M [u];N [v] = M [T �1(v)]:(11) is reindexed into:N [v] = f(: : : ; N [T (source(c; T �1(v))]; : : :) (23)As we shall see later, when T is constructed from a schedule and/or a placement, this formhas specially interesting properties.4 ADAPTING THE COMPILER TO THE ARCHITECTURE4.1 Classifying Architectures and LanguagesIt is a truism that each programming language de�nes { sometime explicitly, most of thetime implicitly { an underlying virtual architecture. In many cases, the user of a massivelyparallel computer only sees the virtual architecture provided by his favorite programminglanguage. This leads to the distinction between the programming model and the executionmodel [Bou93]. In this discussion, we will mostly stay at the level of the programmingmodel. For instance, any computer which runs Fortran 90 will be deemed a vector processor.Obviously, when constructing programs for massively parallel computers, one has to takethe target architecture into account. My contention is that only broad characteristics ofthe target computer are important for the compiling process. Detailed parameters, likee.g. message latencies or cache size, are to be taken into account only when �ne tuning the13



resulting program, as for instance when one has to decide the size of supernodes.The main characteristics of a parallel architecture are the following:� Is there a central clock which synchronizes all processors?� Is there a global address space which can be accessed in a uniform manner by allprocessors?These two parameters are largely independent, and thus gives rise to four architecturalclasses.4.2 Global Memory Synchronous ArchitecturesUnder this category fall static control superscalar and VLIW processors, and also a fewdesigns like Opsila (a global memory SIMD machine [ABD90]). Parallelism is obtainedby executing a large number of operations simultaneously at each clock cycle. One mayargue that pipeline processors belong to this class, if one stays at the level of the vectorinstructions, and one ignores the detailed programming of the pipelines.For a synchronous computer, each operation has a well de�ned date, which is obtainedsimply by counting clock cycles from the beginning of the program. This gives a natu-ral schedule. Conversely, to a given schedule, one may associate the following abstractsynchronous program:do t = 0; Ldoall F(t)end dowhere L is the latency of the schedule. The body of the loop may be understood as avery large instruction, each processor taking charge of one of its elementary operations.This program cannot in general be executed directly. Firstly, in a synchronous computer,all operations in a front are to be instances of the same instruction. Secondly, the sizeof the front is limited by the number of identical processors. One has to split the frontinto subfronts FS according to the statement S which is executed. One also has to adjustthe schedule in such a way that no front has more operations than the available numberof processors. This can be integrated into the scheduling process, or done a posteriori byvariants of the well-known strip mining technique, or left to the run-time system.The code generation process for this case may be explained simply in term of loop rewrit-ing. Let us suppose �rst that the schedule for statement S, �S is one dimensional and isde�ned by a primitive timing vector1 ~hS . One extends ~hS to a unimodular matrix by con-structing its Hermite normal form [Dar93]. A more complicated process is needed when thetiming vector is not primitive or when the schedule is multidimensional, see [Col94].If the schedule has been computed from the data
ow graph, one has to do some form ofdata expansion to obtain a correct program. Single assignment conversion is usually too1A vector is primitive i� its coordinates are mutually prime integers.14



much expansion. The problem of �nding the minimum expansion which still gives a correctparallel program is a very important one, see [MAL93, Cha93]. A partial solution may beobtained by reindexing. If the �rst row of T is given by a schedule, the shape of (23) is:N [t; : : :] = f(: : : ; N [t� d; : : :]; : : :);where t is logical time and d is a positive delay by (13). If the delays for the variousstatements have an upper bound D, then the �rst subscript ofN may be folded moduloD+1without introducing unwanted dependence. This process usually reduces data expansion tomore manageable proportions.4.3 Distributed Memory Asynchronous ArchitecturesThis is a class of computers with a very large population, from workstation networks tohypercube based architectures. Each processor works in asynchrony and has its own inde-pendent memory. A message exchange is necessary if one processor needs a value whichhas been computed elsewhere, and, since message passing is always much slower than com-putation, such exchanges must be kept to a minimum.These computers are best programmed from a partition as in Section 2.3. To a �rstapproximation, the data space of the original program can be replicated in each memory,thus insuring the needed data expansion. Each processor runs a copy of the source program,each instruction being guarded to insure that it is only executed if it has been assigned tothat processor. The overall e�ect is SPMD programming.Let us suppose that distribution is speci�ed by a placement function �, and let q be thecurrent processor number. Operation u is replaced by the following code [ZBG88]:8a 2 R(u) : if �(u) 6= q ^�(source(a; u)) = q then Send(a) to �(u)if �(u) = q ^�(source(a; u)) 6= qthen Receive(a) from �(source(a; u))if �(u) = q then c = f(R(u))One may prove that there is a one-to-one correspondence between Sends and Receives,that values are sent in the order in which they are received, and that Send-Receive pairsimplement the needed synchronization between operations in di�erent processors.The e�ciency of the above scheme can be improved in several ways. Firstly, as manyguards as possible should be pushed up into the surrounding loop bounds. This can be doneonly for simple forms of the placement function. Secondly, proper choice of the placementfunction should minimize the number of residual communications. Sends and Receivesshould be grouped in order to have longer messages, perhaps by supernode partitioning.Nevertheless, any partition function leads to a correct if perhaps ine�cient object pro-gram. This is the reason why it is feasible to have the distribution speci�ed by the pro-grammer, as in the HPF language. 15



4.4 SIMD ArchitecturesSIMD architectures, as for instance the CM-2 or Maspar computers, or systolic arrays,have synchronous processors and a distributed memory. Hence, for generating a parallelprogram, one needs both a schedule and a placement function which together have tosatisfy constraint (20). Once these functions have been found, they are put together as the�rst rows of the space-time transformation T . If the template is of small dimension (forinstance, because the target computer is a linear array) it may be necessary to completethe transformation by adding extra loops, which are to be executed sequentially by theprocessing elements. Most of the time, the resulting transformation will not be unimodular,and the more complicated algorithms of section 3 have to be used.Data expansion poses the same problem here as in the global memory case. In addition,one has to construct communications statements for residual communications. Here again,reindexing is the key to the solution. The components of T (source(c; T �1(v)) which corre-sponds to processor numbers give the routing transformation for operation v. A speciallye�cient case is that in which the routing depends only on the processor numbers. If therouting is one to one, it has to be implemented as a bulk communication. If the routing isde�ned by a translation, this communication is a neighbor to neighbor shift. If the routingis not one to one, it may be implemented as a broadcast [RWF91].The question of satisfying (20) is very di�cult. Experience shows that actual solutionsof the placement and scheduling constraints usually have the right property. Whether thisis a coincidence or a feature of our algorithms is unknown at present.Some authors have proposed that scheduling and placement be coupled in some way. Onepossibility is to select a placement �rst, then to take the data transfer time into accountwhen computing a schedule. One rewrites (13) in the form:8u; 8a 2 R(u) : �(source(a; u)) + 1 + �(u; source(a; u)) � �(u): (24)�(u; source(a; u)) is the transfer time from processor �(source(a; u)) to processor �(u). Itis zero if the source and sink operations are executed by the same processor, and depends ina complicated way on the network topology and possibly on simultaneous communications(through contention phenomena) if not.The only situation in which an analogous problem has an easy solution is that of systolicarrays. In that case, the communications are \pushed up" among the computationsby a transformation known as uniformization [QD89]. The transformed algorithm isthen scheduled in the usual way. Since the communication network is custom builtaccording to the structure of the transformed algorithm, no contention is ever possible.Attempts to transpose this paradigm to SIMD architectures did not give satisfactoryresults, perhaps because general purpose communication networks are quite di�erentfrom systolic array networks.4.5 Asynchronous Shared Memory ArchitecturesAn asynchronous multiprocessor with a global address space is apparently the easiest par-allel architecture to program. In fact, there are two ways of tackling the job. Firstly, it is16



easy to emulate a synchronous architecture { one needs only a fast barrier primitive { andstill easier to emulate a distributed memory machine: one has only to partition the addressspace and to restrict access of each processor to the associated memory segment. This isthe policy most operating systems implement for data security reasons. The memory accesslimitation is raised for the time it takes to execute communication primitives.However, one should be aware that today global memories are build on top of messagepassing architectures, either as a Shared Virtual Memory, or with the help of distributedcaches. In both cases, the performance of the computer is sensitive to the placement ofthe data and calculations. The most important parameter is the coherence protocol, whichinsures that no obsolete data is returned to a read request.Strong coherence protocols [CF78] work by invalidating extra copies of data before al-lowing a modi�cation. In that case, the main concern is to avoid coherence induced cachemisses. This is done, not by distributing the data, but by distributing the operations, twooperations sharing the same datum being preferably located on the same processor.Weak coherence protocols delimit sections of the code where it is safe to waive thecoherence check because there are no concurrent writes to the same memory cell. Observethat a front is such a section, because all operations inside it have the single assignmentproperty. Coherence is restored as a side e�ect of the barrier operation. It is clear thatfronts are exactly what is needed to construct weakly coherent sections of the code, andthat a schedule is the natural tool for constructing fronts.5 CONCLUSIONThis paper has attempted to give guidelines for the central part of massively parallel pro-gram synthesis in the case of static control programs. This has to be preceded by an analysisphase and followed by a loop rewriting phase. The construction of the DFG and schedulingare well understood processes. Distribution and placement is a fuzzier subject since thereis no real constraint on the placement function, the problem being one of trading o� loadbalancing against communications. Some work is still needed in that direction.The basic tools for code generation are well understood. There are, however complexinteractions between code generation, memory usage optimization and communication im-plementation, which are still largely unexplored. The problem is complicated by the factthat the choice of an optimal solution is strongly dependent of the structure of the runtime system (see e.g. [RWF95] for a discussion of the in
uence of the so-called vp-loopingscheme on the performances of the CM-2).The next step is to go beyond static control programs, exploring while loops and irregulardata structures. There is still some hope of improving analysis and synthesis techniques inthis direction [CBF95]. However, we are nearing the point at which the information contentof the program text is nearly exploited to the full. After this stage, the only possibilities areeither run-time parallelization methods or the de�nition of new programming languages,where more information is available for parallelization.17



ACKNOWLEDGMENTMany thanks to Luc Boug�e, who carefully criticized a �rst version of this paper.References[AALL93] Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and Amy W.Lim. An overview of a compiler for scalable parallel machines. In Sixth AnnualWorkshop on Languages and Compilers for Parallel Computing, pages 253{272.Springer Verlag, LNCS 768, August 1993.[ABD90] Michel Auguin, Fernand Bo�eri, and Jean-Paul Dalban. Synth�ese et �evaluationdu projet OPSILA. TSI, 9:79{98, 1990.[AI91] Corinne Ancourt and Fran�cois Irigoin. Scanning polyhedra with DO loops. InProc. third SIGPLAN Symp. on Principles and Practice of Parallel Program-ming, pages 39{50. ACM Press, April 1991.[AL93] Jennifer M. Anderson and Monica S. Lam. Global optimization for parallelismand locality on scalable parallel machines. ACM Sigplan Notices, 28:112{125,June 1993.[Ber66] A. J. Bernstein. Analysis of programs for parallel processing. IEEE Trans. onEl. Computers, EC-15, 1966.[BKK+94] David Bau, Indupras Kodukula, Vladimir Kotlyar, Keshav Pingali, and PaulStodghill. Solving alignment using elementary linear algebra. In Seventh AnnualWorkshop on Languages and Compilers for Parallel Computing, pages 46{60.Springer-Verlag, LNCS 892, August 1994.[Bou93] Luc Boug�e. Le mod�ele de programmation �a parall�elisme de donn�es : une per-spective s�emantique. T.S.I., 12(5):541{562, 1993.[CBF95] Jean-Fran�cois Collard, Denis Barthou, and Paul Feautrier. Fuzzy array data
owanalysis. In ACM SIGPLAN Symp. on Principles and Practice of Parallel Pro-gramming. ACM, July 1995.[CF78] Lucien M. Censier and Paul A. Feautrier. A new solution to coherence problemsin multicache systems. IEEE Trans. on Computers, C-27:1112{1118, December1978.[CFR94] Jean-Fran�cois Collard, Paul Feautrier, and Tanguy Risset. Construction of doloops from systems of a�ne constraints. Parallel Processing Letters, to appear,1994.[CG89] Nicholas Carriero and David Gelernter. How to write parallel programs: a guideto the perplexed. ACM Computing Surveys, 21(3), September 1989.[Cha93] Zbigniew Chamski. Environnement logiciel de programmation d'un acc�el�erateurde calcul parall�ele. PhD thesis, IFSIC, Rennes I, February 1993.18



[Col94] Jean-Fran�cois Collard. Code generation in automatic parallelizers. In ClaudeGirault, editor, Proc. Int. Conf. on Application in Parallel and Distributed Com-puting, IFIP WG 10.3, pages 185{194. North Holland, April 1994.[Dar93] A. Darte. Techniques de parall�elisation automatique de nids de boucles. PhDthesis, ENS Lyon, April 1993.[DR94] Alain Darte and Yves Robert. Mapping uniform loop nests onto distributedmemory architectures. Parallel Computing, 20:679{710, 1994.[DR95] Alain Darte and Yves Robert. A�ne-by-statement scheduling of uniform anda�ne loop nests over parametric domains. J. Parallel and Distributed Comput-ing, 1995. to appear.[DV94] Alain Darte and Fr�ed�eric Vivien. Automatic parallelization based on multidi-mensional scheduling. Technical Report RR 94-24, LIP, 1994.[Fea88a] Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing, pages429{441, 1988.[Fea88b] Paul Feautrier. Parametric integer programming. RAIRO RechercheOp�erationnelle, 22:243{268, September 1988.[Fea91] Paul Feautrier. Data
ow analysis of scalar and array references. Int. J. ofParallel Programming, 20(1):23{53, February 1991.[Fea92a] Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, I,one dimensional time. Int. J. of Parallel Programming, 21(5):313{348, October1992.[Fea92b] Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, II, mul-tidimensional time. Int. J. of Parallel Programming, 21(6):389{420, December1992.[Fea94] Paul Feautrier. Toward automatic distribution. Parallel Processing Letters,4(3):233{244, 1994.[HT94] C. Heckler and L. Thiele. Computing linear data dependencies in nested loopprograms. Parallel Processing Letters, 4(3):193{204, 1994.[Iri87] Fran�cois Irigoin. Partitionnement de boucles imbriqu�ees, une techniqued'optimisation pour les programmes scienti�ques. PhD thesis, Universit�e P.et M. Curie, Paris, June 1987.[IT88] Fran�cois Irigoin and R�emi Triolet. Supernode partitioning. In Proc. 15th POPL,pages 319{328, San Diego, Cal., January 1988.[KP92] Wayne Kelly and William Pugh. Generating schedules and code within a uni�edreordering transformation framework. Technical Report TR-92-126, Univ. ofMaryland, November 1992. 19



[KP94] Wayne Kelly and William Pugh. Selecting a�ne mappings based on performanceestimations. Parallel Processing Letters, 4(3):205{220, September 1994.[LC91] Jingke Li and Marina Chen. The data alignment phase in compiling programs fordistributed memory machines. Journal of Parallel and Distributed Computing,13:213{221, 1991.[MAL93] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array data
owanalysis and its use in array privatization. In Proc. of ACM Conf. on Principlesof Programming Languages, pages 2{15, January 1993.[Min83] Michel Minoux. Programmation Math�ematique, th�eorie et algorithmes. Dunod,Paris, 1983.[PW93] William Pugh and David Wonnacott. An evaluation of exact methods for anal-ysis of value-based array data dependences. In Sixth Annual Workshop on Pro-gramming Languages and Compilers for Parallel Computing, pages 546{566.Springer-Verlag LNCS 768, August 1993.[QD89] P. Quinton and V. Van Dongen. The mapping of linear recurrence equations onregular arrays. The Journal of VLSI Signal Processing, 1:95{113, 1989.[Qui87] Patrice Quinton. The systematic design of systolic arrays. In F. Fogelman,Y. Robert, and M. Tschuente, editors, Automata networks in Computer Science,pages 229{260. Manchester University Press, December 1987.[Ris94] Tanguy Risset. Parall�elisation Automatique: du mod�ele systolique au �a la com-pilation des nids de boucles. PhD thesis, ENS Lyon, February 1994.[RWF91] Mourad Raji-Werth and P. Feautrier. On parallel program generation for mas-sively parallel architectures. In M. Durand and F. El Dabaghi, editors, HighPerformance Computing II. North-Holland, October 1991.[RWF95] Mourad Raji-Werth and Paul Feautrier. On factors limiting the generation of ef-�cient compiler-parallelized programs. In Marc Moonen and Francky Catthoor,editors, Algorithms and Parallel VLSI Architectures, III, pages 331{340, Ams-terdam, 1995. Elsevier.[VWD94] Herv�e Le Verge, Doran K. Wilde, and Vincent Van Dongen. La synth�ese de nidsde boucles avec la biblioth�eque poly�edrique. In Luc Boug�e, editor, RenPar'6.ENS Lyon, June 1994.[WL91] M. Wolf and Monica S. Lam. A loop transformation theory and an algorithmto maximize parallelism. IEEE Trans. on Parallel and Distributed Systems,2(4):452{471, October 1991.[Xue94] J. Xue. Automatic non-unimodular transformations of loop nests. ParallelComputing, 20(5):711{728, May 1994.[ZBG88] H. P. Zima, H. J. Bast, and M. Gerndt. SUPERB : A tool for semi-automaticMIMD/SIMD parallelization. Parallel Computing, 6:1{18, 1988.20


