
Communicating Regular Processes

Paul Feautrier

ENS de Lyon
Paul.Feautrier@ens-lyon.fr

17 juin 2009

1 / 33

The Challenge : Increased Parallelism

I Moore’s law is
slowing down, due
to fundamental
problems.

I On the other hand,
there are only
practical limitations
to the chip size.

I More logic, more
memory, more
parallelism.

2 / 33

Kahn Process Networks Revisited

To analyze a Kahn Process Network (deadlock detection,
scheduling, ...) one has to count the sends and receives on each
channel and relate the operations with the same count :

send message n ===> receive message n

θ(send , n) < θ(receive, n)

but the message count may be a polynomial (or a more complex
function) of the iteration vectors.

3 / 33

Communicating Regular Processes

A : blabalabla
 integer x, y, z
 for(i=0; i<n; i++)
B: A[i] := 0;
end

input channel

Process

port

port

port

text

output channel

input channel
(scalar)

CRP are similar to Kahn Process Networks but :
I Channels = unbounded shared arrays.

I Write once, read many. Implies determinism.

I A Write is non-blocking.

I A Read is blocking.

I Subscripts are affine.

4 / 33

The CRP language

source

filters

mixer

process filtre(inport float entree[],

outport float sortie[],

float poids[7]){

int i, j;

float s[7];

for(i=0;;i++){

Z: s[0] = 0.;

for(j=1; j<7; j++)

MAC: s[j] = s[j-1]

+ entree[i+j-1] * poids[j];

W: sortie[i] = s[6];

}

}

I Processes are executed in parallel and do not share variables.

I Communication and synchronization use ports and channels,
implemented as shared write once / read many arrays
(buffers).

5 / 33

A Video Example, I

Source
 1

Source
 2

VFilter

HFilter

Composer

RAMDAC

c1

c2

c3

c4

c5

2

1

I Picture-in-picture

I Two video sources

I Source 1 is scaled down.

I Composer : for each screen pixel,
select source 1 or 2.

I Ramdac : paint the screen.

6 / 33

A Video Example, II

Source
 1

Source
 2

VFilter

HFilter

Composer

RAMDAC

c1

c2

c3

c4

c5

The HFilter

struct bigLine {
char pixel[960];
};

struct smallLine {
char pixel[120];
}

process HFilter(inport struct bigLine x[],
outport struct smallLine y[]) {

int i, j;

for(i=0;;i++)
for(j=0; j<120; j++)
y[i].pixel[j] = x[i].pixel[8*j];

}

7 / 33

A Video Example, III

Source
 1

Source
 2

VFilter

HFilter

Composer

RAMDAC

c1

c2

c3

c4

c5

The Glue Code

void main(){
channel struct bigLine c1[];
channel struct bigLine c2[];
channel struct bigLine c3[];
channel struct smallLine c4[];
channel struct bigLine c5[];

source(c1, 1);
source(c3, 2);
VFilter(c1,c2);
HFilter(c2, c4);
composer(c3, c4, c5);
ramdac(c5);

}

8 / 33

The Composer Code

Source
 1

Source
 2

VFilter

HFilter

Composer

RAMDAC

c1

c2

c3

c4

c5

process composer(inport int s1[][960],

inport int s2[][120], outport int d[][960]) {

int i, l, c;

for(i=0;;i++){

for(l=0; l<90; l++)

for(c=0; c<960; c++)

d[960*i+l][c] = s1[960*i+l][c];

for(l=90; l<180; l++){

for(c=0; c<480; c++)

y[960*i+l][c] = s1[960*i+l][c];

for(c=480; c<600; c++)

y[960*i+l][c] = s2[120*i+l-90][c-480];

for(c=600; c<720; c++)

y[960*i+l][c] = s1[960*i+l][c];

}

for(l=180; l<720; l++)

for(c=0; c<960; c++)

y[960*i+l][c] = s1[960*i+l][c];

}

}

9 / 33

Modularity

I Scheduling is not scalable :
I Number of dependences ≈ square of the size of the program ;
I Simplex ≈ cube of the number of constraints.

I Modularity promote reuse.

I The trick : divide an application into processes with
multidimensional write-once read-many channels (the analysis
is simpler than for Kahn Process Netwoks).

I The application stays deterministics.

10 / 33

Modular Scheduling

downsamplersource <1>

source <2>

mixer RAMDAC

main

channel

channel clock

I Introduce channel clocks.

I Schedule source, downsampler, mixer RAMDAC
independently, with the channel clocks as parameters.

I Schedule main (i.e., compute the channel clocks).

I Substitute the solution into the schedules for downsampler
and mixer. The source processes are probably software and
the RAMDAC is an IP.

11 / 33

Channel Clocks

I The process schedules are not independant : they are linked
by communication dependences.

I To restore a degree of independence, one introduces channel
clocks. A being a channel, θ(A, x) is the date at which A[x] is
guaranteed to be available.

I A process schedule now depends only on the clocks of its
incoming and outgoing ports.

12 / 33

Modular Scheduling

target

code generation

objets with schedules

linker solve the communication
constraints

objects without schedules

compiler compiler

process a{
 ...
}

process b{
 ...
}

a.obj b.obj

specification

I Local scheduling for each process, communication schedules being
kept as parameters

I Communication scheduling
I Back substitution into local schedules
I The complexity of scheduling becomes almost linear in the number

of processes

13 / 33

The Projection Method

� �
� �
� �
� �

x1

x2

y

The trick : eliminate all inner
schedules and get constraints
involving only channel clocks.

I The projection of a polyhedron
is a polyhedron.

I There are many projection
algorithms :

I Fourier-Motzkin
(superexponential, redundant,
easy to program).

I Pip (fast, redundant).
I Chernikova (fast, no

redundancy).

14 / 33

Modular Scheduling

P Q

R

A B

P Q R A B

I One can eliminate the local schedule of each process independently.

I The result is a relation between the clocks of its input and output
ports (the input/ouput constraints).

I One can then interconnect the channels (i.e. identify variables in the
channel clocks) and solve the global scheduling problem.

I Once the global schedule is known, one can find the local schedules
by backpropagation.

15 / 33

Structured Scheduling

source

downsampler

split

vfilter hfilter

HD

HDR

HDG

HDB

SDR

SDG

SDB

SD
downsampler

downsampler

ramdacmix

16 / 33

Resource constraints, I/III

Buffer size

write a[x]

read a[x]alloc a[x]

free a[x]
alloc a[x+size]

read a[x] read a[x]

time

θ(write a[x]) ≥ θ(alloc a[x]),

θ(read a[x]) > θ(write a[x]),

θ(free a[x]) = θ(alloc a[x + size]) ≥ θ(read a[x]).

Apply Farkas and solve.

17 / 33

Resource constraints II/III

Objective : bounded parallelism.
Exemple :

for(i=0; i<n; i++)
S: a[i] = 0;

I Schedule θ(S , i) = 0. Degree of parallelism n, too much.

I Schedule θ(S , i) = i ÷ 4. Degree of parallelism 4, OK.

Method : Add a virtual dependence 〈S , 0〉 → 〈S , 4〉.
Question : How to infer virtual dependences ?

18 / 33

Resource constraints, III/III

Architecture exploration
I Assumption : the iteration domain is fat.

I Bounded parallelism implies that the schedule is full dimensional.

θ(S, t) = (Ts i + aS)÷ DS ,

where TS is of full row rank and DS is a vector of integers.

I An estimate of the degree of parallelism is XS = |DS |/|TS |, even if a fraction.

I Statements in the same scc of the dependence graph cannot be separated.

I Explore possible values for XS under the constraints :X
S∈r,S∈H

XS ≤ Nr

where H is an scc, r is a resource type with Nr instances.

I Question : how does one construct a schedule with a given determinant ?

19 / 33

Allocation functions

Rationale : it is useless to assign two dependent operations to
different resources, since they are never executed at the same time :

u δ v ⇒ α(u) = α(v). (1)

I It is in general not possible to satisfy (1) everywhere with a
non-zero α.

I The allocation function should at least respect dependences :

u δ v ⇒ α(u) ≤ α(v). (2)

I It is then suitable as the first row of the schedule and can be
tiled.

I Solves the matrix-vector multiply example.

20 / 33

Delay

I The delay (number of clock ticks) from a write to the last
read is a bound on the number of writable memory cells ...

I ... and hence on the degree of parallelism.

I One can construct bounded delay schedules, but the delay is
meaningful only in the one dimensional case.

I Solves the loop fusion and reversi examples.

21 / 33

Code Generation

Reconstructing a loop program from a schedule.

I Easy in theory. One just has to invert the schedule :

do t = 0, L
doall {u | θ(u) = t}

I Difficult in practice. One must avoid complex control
structures, which may offset the advantages of optimization or
parallelization.

I There are good stand-alone implementations : [Pugh, Quilleré,
Bastoul].

22 / 33

Memory Management

From a schedule, one can deduce the lifespan of each variable or
value.

time

write(x)

read(x)read(x) read(x)
last

lifespan

I Lifespans ⇒ Interference graph ⇒ Graph Coloring.

I Explicit graph coloring for registers and arrays as a whole,
symbolic graph coloring (modulo allocation, A. Darte) to
reduce the size of arrays.

I Unsolved problem : can one reverse the process, and build a
schedule under memory size constraints ?

23 / 33

Target Code Generation

I A loop program is OK for embedded processors – it can be
directly compiled for DSP or VLIW architectures.

I For an ASIC or FPGA, one has to construct the control FSM
and the datapath, or generate directly an RTL specification.

I The RTL specification can be deduced from the loop
program, but it might be better to construct it directly from
the schedule.

I The description may have a varying degree of details, from
plain RTL to CABA and more.

24 / 33

Conclusion

I A design can be divided in many processes, which can be
reused elsewhere.

I Each process can be scheduled independently. The result is a
set of constraints on its port clocks.

I A linker then solve the communication constraints, finalize the
process constraints, and generate the object code.

I No recompilation is needed for unmodified processes.

I One can add constraints on the size of channel buffers.

25 / 33

Future Work

I An implementation is under way.

I Explore the advantages of modularity : speed-up, reuse,
process libraries.

I Is there a way of taking into account ressource constraints
when solving the local scheduling problem ?

I Code generation for special purpose hardware (FPGA, ASIC).

26 / 33

Future Work

I An implementation is under way.

I Explore the advantages of modularity : speed-up, reuse,
process libraries.

I Is there a way of taking into account ressource constraints
when solving the local scheduling problem ?

I Code generation for special purpose hardware (FPGA, ASIC).

27 / 33

Future Work

I An implementation is under way.

I Explore the advantages of modularity : speed-up, reuse,
process libraries.

I Is there a way of taking into account ressource constraints
when solving the local scheduling problem ?

I Code generation for special purpose hardware (FPGA, ASIC).

28 / 33

Future Work

I An implementation is under way.

I Explore the advantages of modularity : speed-up, reuse,
process libraries.

I Is there a way of taking into account ressource constraints
when solving the local scheduling problem ?

I Code generation for special purpose hardware (FPGA, ASIC).

29 / 33

Restrictions à CRP

I L’analyseur syntaxique est incomplet.
I Pas de structures.
I Pas de tests ni d’expressions conditionelles.
I Rien sur les pointeurs.

I L’ordonnanceur est incomplet. Outre les défauts ci-dessus :
I Traitement imprécis des paramètres de structure.
I Pas de gestion de la mémoire et des ressources.
I Ordonnancements multi-dimensionnels et gestion des latences.

30 / 33

Tests

I Le traitement des tests est indispensable en synthèse.

I Instruction conditionnelle = test dans l’automate.

I Expression conditionnelle = test “cablé”

I Prendre en compte les dépendances de contrôle = “if
conversion”.

I Ne pas introduire de fausses dépendances entre branches
opposées d’un test = ordre textuel partiel.

31 / 33

QUESTIONS ?

32 / 33

