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Abstract

We introduce a general static analysis framework to reason
about program properties at an infinite number of runtime
control points, called instances. Infinite sets of instances are
represented by rational languages. Based on this instance-
wise framework, we extend the concept of induction vari-
ables to recursive programs. For a class of monoid-based
data structures, including arrays and trees, induction vari-
ables capture the exact memory location accessed at every
step of the execution. This compile-time characterization is
computed in polynomial time as a rational function.

1 Introduction

Static program analysis aims at the compile-time compu-
tation of program properties, an undecidable problem in
general. Aiming at conservative approximations of static
properties, three popular analysis paradigms have enabled
tremendous theoretical progresses and a wide area of appli-
cations [41]: type systems, data-flow (or constraint-based)
analysis and abstract interpretation. They contribute to the
formalization, proof and implementation of analyses and
their applications. These three paradigms are directly rooted
into formal program semantics. Whether denotational, oper-
ational or axiomatic, program semantics assigns “meaning”
to a finite set of syntactic elements — statements or vari-
ables — using inductive definitions (rules, sequents, etc.).
When designing a static analysis framework to reason about
programs (e.g., program transformation or verification), it is
natural to attach static properties to these syntactic elements.

For example, it is natural to formalize constant-
propagation [1] as a type system, in a data-flow setting or in
abstract interpretation: to substitute a variable v by a value
v in a statement s, one must analyze whether v has the value
v before s executes, in every possible execution of the pro-
gram.

Now, for some program analysis problems, computing
static properties as functions of a finite set of syntactic el-
ements is not practical. Consider induction variable recog-

nition [28], a kind of extension of constant propagation to
characterize the value of a variable v in a statement s as a
function fv of the number of times s has been executed (in
the enclosing control structures). In other words, induction
variable recognition captures v as a function of the execution
path itself. Of course, the value of a variable at any stage of
the execution is a function of the initial contents of memory
and of the execution path leading to this stage. For com-
plexity reasons, the execution path may not be recoverable
from memory. In the case of induction variables, we may as-
sume the number of executions of s is recorded as a genuine
loop counter. From such a function fv for s, we can discover
other induction variables using analyses of linear constraints
[17, 40].

Besides induction variable recognition, many compila-
tion problems have driven researchers off the three main
analysis paradigms, to reason in different, ad-hoc terms in-
stead. Analyses for loop-restructuring frameworks are typi-
cal examples [56], targeting vectorization, instruction-level,
thread-level or data parallelism, scheduling, locality opti-
mization, etc. [45, 2]. These problems share the need to
characterize static properties as functions of an infinite set
of runtime control points, not as functions of syntactic pro-
gram elements. Indeed, it would be rather awkward to design
a type system or data-flow analysis whose abstraction of the
program semantics maps every individual iteration of a loop
to a different property, as in the induction variable example
[28].

1.1 Motivating Examples

Figure 1 shows a synthetic example where an array A is ini-
tialized in a loop nest and read in a recursive procedure. The
footprint of reads to A in procedure line is a “chessboard”:
the procedure only reads elements A[i][j] such that i + j
is an even number. This observation leads to a simple opti-
mization: half of the dynamic assignments to A in the loop
nest are useless, they can be avoided through a simple trans-
formation of the bounds and strides. We call this optimiza-
tion instancewise dead-code elimination.

A typical technique to address this problem is called



array-region analysis [17, 18, 10]. However, because the
“chessboard” footprint is not a convex polyhedron, all the
array-region analyses we are aware of will fail on this exam-
ple. In theory, recovering such precise information seems
possible by abstract interpretation, provided the widening
operator for Z-polyhedra (also called lattice polyhedra) can
handle some level of non-convexity [52, 36], which is not the
case in the current state of the art [6]. In addition, such pre-
cision may only be achieved by a context-sensitive analysis
[53, 33].

Figure 2 shows a slightly obfuscated version of the previ-
ous code: the procedure recursively swaps its arguments and
only one the two initial calls remains in the loop. Although it
may not seem obvious, this code has the same “chessboard”
footprint as the previous one for reads to A, and the useless
array assignments can still be removed. In this new form, it
is much harder to imagine a precise enough widening oper-
ator. Recent techniques based on model-checking of push-
down systems [22, 23, 8, 48] would suffer from a similar
limitation: although such techniques provide virtually un-
limited context-sensitivity, operations on polyhedra will in-
cur to necessary approximations and lead to a convex region
instead of a “chessboard”.

This paper proposes a static analysis framework suitable
for this kind of problems. Instead of searching for more
precision in the lattice, it provides unlimited precision and
context-sensitivity in the control domain, computing static
properties as functions of an infinite set of run-time program
points.

1.2 Statementwise Analysis

We use the term statementwise to refer to the classical
type systems, data-flow analysis and abstract interpretation
frameworks, that define and compute program properties at
each program statement. A typical example is static analysis
by abstract interpretation [16, 14, 15]: it relies on the collect-
ing semantics to operate on a lattice of abstract properties.
This restricts the attachment of properties to a finite set of
control points. Few works addressed the attachment of static
properties at a finer grain than syntactic program elements.
Refinement of this coarse grain abstraction involves a previ-
ous partitioning [14] of the control points: e.g., polyvariant
analysis distinguishes the context of function calls, and loop
unfolding virtually unrolls a loop several times. Dynamic
partitioning [9, 38] integrates the refinement into the anal-
ysis itself. Control points can be extended with call strings
(abstract call stacks) and timestamps, but ultimately rely on
k-limiting [53, 33, 31, 55] or summarization heuristics [47]
to achieve convergence. Although complex unbounded lat-
tices are commonly used to capture properties [17, 19]), few
works considered the computation of data-flow facts using
an unbounded set of control points, following the seminal
paper by Esparza and Knoop [22]. This approach is the clos-

est to our work; it builds on model-checking of push-down
systems to extend precision and context sensitivity, without
sacrificing efficiency [23, 8, 48], but it ultimately results in
the computation of data-flow properties as functions of a fi-
nite set of control points.

1.3 Instancewise Analysis

On the other hand, ad-hoc approaches to static analysis can
represent and compute static program properties as func-
tions defined on an infinite (or unbounded) number of run-
time control points. For example, the polytope model en-
compasses most works on analysis and transformation of
the (Turing-incomplete) class of static-control programs
[24, 45], roughly defined as nested loops with affine loop
bounds and array accesses. An iteration vector abstracts the
runtime control point corresponding to a given iteration of
a statement. Program properties are expressed as functions
of vectors of values of the surrounding loop counters. In
general, the result of the analysis is a mapping from the in-
finite set of iteration vectors (the runtime control points) to
an arbitrary (analysis-specific) vector space. Instead of it-
eratively merging data-flow properties, most analyses in the
polytope model use algebraic solvers for the direct compu-
tation of symbolic relations: e.g., array dependence analy-
sis uses integer linear programming [24]. Iteration vectors
differ from time-stamps in control point partitioning tech-
niques [9, 38]: they are multidimensional, lexicographically
ordered, unbounded, and constrained by Presburger formula
[52, 46].

1.4 Contributions

We introduce a general framework that uncompasses most
ad-hoc formalisms for the fine grain analysis of loops and ar-
rays in sequential procedural languages. Within this frame-
work, one may define, abstract and compute program prop-
erties as functions of an infinite number of runtime con-
trol points. Our framework is called instancewise and run-
time points are further referenced as instances. We de-
fine instances as trace abstractions, understood as iteration
vectors extended to arbitrary recursive programs. Rational
(a.k.a. regular) languages finitely represent infinite sets of
instances, and instancewise properties may be captured by
rational relations or functions [7]. This paper goes far be-
yond our previous attempts to extend iteration vectors to re-
cursive programs, for the analysis of arrays [12, 11, 13, 3] or
recursive data structures [26, 13, 11].

To illustrate instancewise analysis, we extend the con-
cept of induction variables to arbitrary recursive programs.
This demonstrates the characterization of static program
properties as functions of an infinite set of runtime con-
trol points, beyond the domain of static-control Fortran loop
nests. Technically, the valuation of induction variables is
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int A[10][10];

void line (int i, int j) {
... = A[i][j];
if (j<10) line (i, j+2)

}

int main () {
for (i=0; i<10; i++)
for (j=0; j<10; j++)
A[i][j] = ...;

for (i=0; i<10; i+=2) {
line(i, j);
line(i+1, j+1);

}

Figure 1: Dead-code

int A[10][10];

void line (int i, int j,
int k, int l) {

... = A[i][j];
if (j<10) line (k, l, i, j+2)

}

int main () {
for (i=0; i<10; i++)

for (j=0; j<10; j++)
A[i][j] = ...;

for (i=0; i<10; i+=2) {
line(i, j, i+1, j+1);

}

Figure 2: Obfuscation

int A[20];
void Toy(int n, int k) {

if (k < n)
{
for (int i=k; i<=n;

i+=2)
{
A[i] = A[i] + A[n-i];
Toy(n, k+1);

}
}
return

}
int main() {

Toy(20, 0);
}

Figure 3: Toy in C

structure Monoid_int A;
A function Toy(Monoid_int n,

Monoid_int k) {
B if (k < n)
C {
D for (Monoid_int i=k; i<=n;
d i=i.2)
E {
F A[i] = A[i] + A[n-i] ;
G Toy(n, k.1);

}
}

}
H function main() {
I Toy(20, 0);

}

Figure 4: Toy in MOGUL

analog to parameter passing in a purely functional language:
each statement is considered as a function, binding and ini-
tializing one or more induction variables. Our analysis does
not take the outcome of loop and test predicates into ac-
count,1 hence we will consider a superset of the valid traces.
We propose a polynomial algorithm, computing for each in-
duction variable, a binding function mapping instances to
the abstract memory locations they access. Each binding
function is a rational function on the Cartesian product of
monoids and can be represented as a rational transducer [7].

To focus on the core concepts and contributions, we in-
troduce MOGUL, a domain-specific language with high-
level constructs for traversing data structures addressed by
induction variables in a finitely presented monoid. In a
general-purpose (imperative or functional) language, our
technique would require additional information about the
shape of data structures, using dedicated annotations [32, 34,
27] or shape analyses [29, 51]. Despite the generality of the
control structures in MOGUL, binding functions give exact
values for valid traces and this may be used to derive alias
and dependence information of recursive programs with an
unprecedented precision [11, 13, 3]. We will survey the cur-
rent applications of instancewise analysis for recursive pro-
grams; the reader interested in more details (for loop nests
or more general recursive programs) may refer to [13] for a
pedagogical and synthetic presentation.

1.5 Organization of the Paper

Section 2 describes the control structures and trace seman-
tics of the MOGUL language. Section 3 defines the abstrac-
tion of runtime control points into instances. Section 4 ex-
tends induction variables to recursive control and data struc-
tures. Section 5 states the existence of rational binding func-
tions. Section 6 addresses the computation and represen-
tation of binding functions as rational transducers. We de-
scribe our implementation and some experiments with prac-
tical examples in Section 7. Section 8 studies applications of

1This limitation can be overcome thanks to approximations and higher
complexity algorithms. We will present solutions and applications in an-
other paper.

instancewise analysis to program optimization.

2 Control Structures and Execution Traces

For our purpose, a trace is a sequence of symbols called la-
bels that denotes a complete execution of a program. Each
label registers either the beginning of a statement execution
or its completion. A trace prefix is the trace of a partial exe-
cution, given by a prefix of a complete trace. In the remain-
der, we will consider trace prefixes instead of the intuitive
notion of runtime control point.

Figure 3 presents our running example. It features a re-
cursive call to the Toy function, nested in the body of a loop,
operating on an array A; there is no simple way to remove
the recursion. We will construct a finite-state abstraction of
the infinite set of trace prefixes of Toy, then compute a finite-
state characterization of the function mapping trace prefixes
to the elements of A it reads or writes.

2.1 Control Structures in MOGUL

Figure 4 gives the MOGUL version of Toy. It abstracts the
shape of array A through a monoid type Monoid_int. Induc-
tion variables i and k are bound to values in this monoid.
Traversals of A are expressed through i, k and the monoid
operation ·. Further explanations about MOGUL data struc-
tures and induction variables are deferred to Section 4. We
present in Figure 5 a simplified version of the MOGUL syn-
tax, focusing on control structures.

This is a C-like syntax with some specific concepts.
Italic non-terminals are defined elsewhere in the syntax:
elem_stmt covers the usual atomic statements, including
assignments, input/output statements, void statements, etc.;
predicate is a boolean expression; init_list con-
tains a list of initializations for one or more loop variables,
and trans_list is the associated list of constant trans-
lations for those induction variables; block collects a se-
quence of statements, possibly defining some induction vari-
ables. Every executable part of a program is labeled, either
by hand or by the parser.
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program ::=function (S1)
|function program (S2)

function ::=’function’ ident ’(’ formal_p_list ’)’
block (S3)

block ::=LABEL ’:’ ’{’ init_list statement_list ’}’ (S4)
|LABEL ’:’ ’{’ stmt_list ’}’ (S5)

stmt_list::=ε (S6)
|LABEL ’:’ stmt stmt_list (S7)

stmt ::=elem_stmt ’;’ (S8)
|ident ’(’ actual_p_list ’)’ ’;’ (S9)
|’if’ predicate block ’else’ block (S10)
|’for’ ’(’ init_list ’;’

LABEL ’:’ predicate ’;’
LABEL ’:’ trans_list ’)’

block (S11)
|block (S12)

Figure 5: Simplified MOGUL syntax

Main { Toy(20,0) Toy {

k < n

{

i = k i = i.2 i = k

k < n } i <= n i <= n i = i.2

{

A[i] = A[i]+A[n-i]

} Toy A[i] = A[i]+A[n-i]

Toy(20,k+1)

} Main return }

In the stack:
` pushes `, while ` pops `

I A

B

C
D

δ

E

δ

F

D
d

δ

C

B

A

I

G

E

F

B

G
d

δ

A

Figure 6: Pushdown trace automaton

2.2 The Pushdown Trace Automaton

We start with an intuitive presentation of the trace semantics
of a MOGUL program, using an extended control flow graph
[1] with function call/return nodes and a control stack.

Our framework considers each statement as a call to a
function implementing elementary operations, conditional
branches and iteration — as in a purely functional language.
Each statement is provided with an additional label to sep-
arate the implicit function call from the implicit return. If `
is a label of a MOGUL statement, ` corresponds to the be-
ginning of the execution of a statement, and ` indicates its
completion. Regarding the control stack, ` pushes ` while
` pops `. An additional state, called return state, is asso-
ciated to the completion of each statement. Loops are just
syntactic sugar for terminal recursion: the iteration node in
a loop follows the last node in its body and leads to the con-
dition node; a special state pops all iteration labels from the
stack at loop exit. The result is called the pushdown trace
automaton: it recognizes the trace language, i.e., the set of
execution traces. Calling Lab the alphabet of labels, the trace
language is a context-free (a.k.a. algebraic) subset of the free
monoid L∗

ab, and ε denotes its empty word. Figure 6 presents
the trace automaton of the Toy program.

Since the underlying control-flow graph lacks the out-
come of loop and test predicates, some accepted paths may
still take wrong branches. To design a static scheme to name
runtime control points, our trace semantics will make the
same simplifying assumption and accept a superset of the
valid traces.

For a given trace t, runtime control points are sequen-
tially ordered according to label appearance in t: the sequen-
tial order <seq is the strict prefix order of the trace prefixes.
It is a total order for a given execution trace.

When all states are considered final, the automaton
recognizes all trace prefixes. It also accepts prefixes
of non-terminating traces in case the program does not
terminate. We exclude this possibility in the follow-
ing. The following word is a prefix of a valid trace:
IABCDδEFFGABCDδEFFGABBAGEδdδEF.

For the sake of clarity, we simplify the push-down trace
automaton, omitting return states, except for Toy calls,
block statements and loop predicates. Now, the previous
prefix reduces to: IBDFFGBDFFGBBGdF. We will use
this simplified representation of traces in the following. To
complement this intuitive presentation, Section A.1 gives a
formal definition of traces.

3 The Instancewise Model

This section is dedicated to the first part of our frame-
work: the abstraction of trace prefixes into control words,
the formal representation of instances. The control word ab-
straction characterizes an infinite set of trace prefixes in a
tractable, finite-state representation. We present the proper-
ties of control words from several points of view, and we
conclude with a natural but fundamental property of control
words, justifying their introduction as the basis for instance-
wise analysis.

3.1 From Traces to Control Words

The stack word language of a pushdown automaton A is the
set of stack words u s.t. there is a state q in A for which the
configuration (q,u) is both accessible and co-accessible —
there is an accepting path traversing q with stack word u.
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Definition 1 (Control Word) The stack word language of
the pushdown trace automaton is called the control word
language. A control word is the sequence of labels of all
statements that have begun their execution but not yet com-
pleted it. Any trace prefix has a corresponding control word.

Since the stack word language of a pushdown automaton
is rational [49], the language of control words is rational.

A runtime execution may be represented in the shape
of an activation tree [1], where sequential execution corre-
sponds to depth-first traversal. Figure 7 shows an activa-
tion tree for Toy. We label each arc according to the target
node statement. The trace is obtained while reading the word
along the depth-first traversal: each downward step produces
the arc label, and each upward step produces the associated
overlined label.

Activation trees provide a convenient interpretation of
control words. When the label of node n is at the top of
the control stack, the control word is the sequence of labels
along the branch of n in the activation tree, i.e., the path from
the root to node n [1]. Conversely, a word labeling a branch
of the activation tree is a control word. For example, IBDdF
is the control word for the black node (runtime control point)
in Figure 7.

Notice the trace language is a Dyck language [7], i.e., a
hierarchical parenthesis language. The restricted Dyck con-
gruence over L∗

ab is the congruence generated by `` ≡ ε, for
all `∈ Lab.2 This definition induces a rewriting rule over L∗

ab,
obviously confluent. This rule is the direct transposition of
the control stack behavior. Applying it to any trace prefix
p we can associate a minimal word w: the control word w
associated to the trace prefix p is the shortest element in the
class of p modulo the restricted Dyck congruence. Let the
slimming function denote the mapping of each trace prefix to
its associated control word.

Theorem 1 The set of control words is the quotient set of
trace prefixes modulo the restricted Dyck congruence, and
the slimming function is the canonical projection of trace
prefixes over control words.

The restricted Dyck congruence is called the slimming
congruence. The table in Figure 8 illustrates the effect of
the slimming function on a few trace prefixes. The slim-
ming function extends Harrison’s NET function, and control
words are very similar to his procedure strings [31]. Harri-
son introduced these concepts for a statementwise analysis
with dynamic partitioning.

A formal construction from the trace grammar is pre-
sented in Section A.2.

2The restricted qualifier means that only `` couples are considered, ``
being a nonsensical sub-word for the trace grammar.

3.2 The Control Automaton

It is easy to build a finite-state automaton recognizing the
language of control words. We call the latter the control
automaton.

Figure 9 shows the control automaton for Toy; the control
word language is I + IB+ IBD(d+GBD)∗(ε+F +G+GB).

A[i] = ...

Toy(20, k+1)
F

G

−→
F G

Each statement in a sequence is linked to the enclosing block.

Figure 10: Construction

There is a systematic transformation from the pushdown
trace automaton to the control automaton; it is important for
the design of analysis algorithms.

• In the trace automaton, successive statements are
chained in sequence, while in the control automaton,
each statement is directly rooted in its enclosing block,
see Figure 10 (as for conditional branches).

• As in the pushdown automaton for trace prefixes, all
states are final.

• return nodes are not needed anymore.

3.3 Instances and Control Words

Consider any trace t of a MOGUL program and any trace
prefix p of t. The slimming function returns a unique control
word. Conversely, it is easy to see that a given control word
may be the abstraction of many trace prefixes, possibly an
infinity. E.g., consider two trace prefixes differing only by
the sub-trace of a completed conditional statement:3 their
control words are the same.

This section proves that, during any execution of a
MOGUL program, the stack that registers the control word at
runtime cannot register twice the same control word (i.e., for
two distinct trace prefixes). In others words, control words
characterize runtime control points in a more compact way
than trace prefixes. For the demonstration, we introduce a
strict order over control words.

We first define the partial textual order <lab over labels:
<lab is the order of appearance of statements within blocks,
considering the loop iteration statement as textually ordered
after the loop body. <lex denotes the strict lexicographic
order over control words induced by <lab.

Lemma 1 The sequential order <seq over prefix traces is
compatible with the slimming congruence. The lexico-
graphic order <lex is the quotient order induced by <seq

through the slimming congruence.
3I.e., after both branches have been completed, the first sub-trace denot-

ing the then branch and the other the else one.
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Trace prefix IBDFFGBDF
Control word IBD GBDF
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Figure 8: Slimming function
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All states are final.

A few control words:

IBDdF,
IBDGBDF,
IBDGBDdG.

Figure 9: Control automaton

Section A.3 gives the proof. We now come to the formal
definition of an instance.

Definition 2 (Instance) For a MOGUL program, an in-
stance is a class of trace prefixes modulo the slimming con-
gruence.

It is fundamental to notice that, in this definition, instances
do not depend on any particular execution. From Lemma 1
and Theorem 1 (the slimming function is the canonical pro-
jection of trace prefixes to control words), we may state the
two main properties of control words.

Theorem 2 Given one execution trace of a MOGUL pro-
gram, trace prefixes are in bijection with control words.

Theorem 3 For a given MOGUL program, instances are in
bijection with control words.

Theorem 2 ensures the correspondence between runtime
control points and control words. Theorem 3 is a rewording
of Theorem 1, it states the meaning of control words across
multiple executions of a program.

In the following, we will refer to instances or control
words interchangeably, without naming a particular trace
prefix representative.

4 Data Structures and Induction Variables

This section and the following ones apply instancewise anal-
ysis to the characterization of memory locations accessed by
a MOGUL program as functions of runtime control points.
For decidability reasons, we consider a restricted class of
data structures and addressing schemes:

• destructive updates are forbidden (deletions and non-
leaf insertions);4

• addressing data-structures is done through induction
variables whose only authorized operations are the ini-
tialization to a constant and the associative operation of
a monoid.

These restrictions are reminiscent of purely functional data
structures [42].

4Leaf insertions are harmless if data-structures are implicitly expanded
when accessed.

In this context, we will show that the value of an induc-
tion variable at some runtime control point only depends on
the instance. Exact characterization of induction variables
will be possible at compile-time by means of so-called bind-
ing functions from control words to abstract memory loca-
tions (monoid elements), independently of the execution.

To simplify the formalism, MOGUL data structures with
side-effects must be global. This is not an issue since any
local structure may be “expanded” along the activation tree
(several local lists may be seen as a global stack of lists).

A finitely-generated monoid M = (G,≡) is specified by
a finite list of generators G and a congruence ≡ given by
a finite list of equations over words in G∗. Elements of M
are equivalence classes of words in G∗ modulo ≡. When
the congruence is empty, M is a free monoid. The operation
of M is the quotient of the concatenation on the free monoid
G∗ modulo≡; it is an associative operation denoted by · with
neutral element εm.

A data structure is a pair of a data structure name and a
finitely-generated monoid M = (G,≡). An abstract memory
location in this data structure is an element of the monoid.
It is represented by an address word in G∗. By definition,
two congruent address words represent the same memory
location.

Typical examples are the n-ary tree — the free monoid
with n generators (with an empty congruence) — and the n-
dimensional array — the free commutative monoid Zn (with
vector commutation and inversion). More details can be
found in Figure 15 in the appendix.

Traditionally, induction variables are scalar variables
within loop nests with a tight relationship with the surround-
ing loop counters [1, 28]. This relationship, deduced from
the regularity of the inductive updates, is a critical informa-
tion for many analyses — dependence, array region, array
bound checking — and optimizations — strength-reduction,
loop transformations, hoisting.

A basic linear induction variable x is assigned (once or
more) in a loop, each assignment being in the form x = c
or x = x + c, where c is a constant known at compile-time.
More generally, a variable x is called a linear induction vari-
able if on every iteration of the surrounding loop, x is added
a constant value. This is the case when assignments to x in
the cycle are in the basic form or in the form x = y + c, y
being another induction variable. The value of x may then
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be computed as an affine function of the surrounding loop
counters.

MOGUL extensions are twofold:

• induction variables address all monoid-based struc-
tures, not only arrays;

• both loops and recursive function calls are considered.

Thus, induction variables represent abstract addresses in
data structures, and the basic operation over induction vari-
ables is the monoid operation.

Definition 3 (Induction Variable) A variable x is an in-
duction variable if and only if the three following conditions
are satisfied:

a. x is defined at a block entry, a for loop initialization, or
x is a formal parameter;

b. x is constant in the block, the for loop or the function
where it has been defined;

c. the definition of x (according to a) is in one of the forms:

1. x = c, and c is a constant known at compile-time,

2. x = y · c, and y is an induction variable, possi-
bly equal to x.

A MOGUL induction variable can be used in different
address expressions which reference distinct data structures,
provided these structures are defined over the same monoid.
This separation between data structure and shape follows the
approach of the declarative language 81/2 [30]. It is a con-
venient way to expose more semantics to the static analyzer,
compared with C pointers or variables of product types in
ML.

Eventually, the MOGUL syntax is designed such that ev-
ery variable of a monoid type is an induction variable, other
variables being ignored. The only valid definitions and op-
erations on MOGUL variables are those satisfying Defini-
tion 3. For any monoid shape, data structure accesses follow
the C array syntax: D[a] denotes element with address a of
structure D, where a is in the form x or x · c, x an induction
variable and c a constant.

If A is an array (i.e., A is addressed in a free commu-
tative group), the affine subscript A[i+2j-1] is not a valid
MOGUL syntax. This is not a real limitation, however, since
affine subscripts may be replaced by new induction variables
defined when necessary while i or j are defined. As an illus-
tration, let k be the induction variable equal to i+2j-1, the
subscript in the reference above. We have to build, through
a backward motion, static chains of induction variables from
the program start point to the considered reference. Suppose
the last modification of the subscript before the considered
program point is given by the statement j= h denoted by
s, where h is another induction variable. We have to de-
fine a new induction variable g = i+2h-1, living before this

statement, and to consider that s initializes k through an ad-
ditional assignment k= g. This work has to be done recur-
sively for all paths in the control flow graph until reaching
the start point.

5 Binding Functions

In MOGUL, the computations on two induction variables in
two distinct monoids are completely separate. Thus, without
loss of generality, we suppose that all induction variables
belong to a single monoid Mloc, with operation · and neutral
element εm, called the data structure monoid.

5.1 From Instances to Memory Locations

In a purely functional language, function application is the
only way to define a variable. In MOGUL, every statement
is handled that way; the scope of a variable is restricted to
the statement at the beginning of which it has been declared,
and an induction variable is constant in its scope.

Since overloading of variable names occurs at the begin-
ning of each statement, the value of an induction variable
depends on the runtime control point of interest. Let x be
an induction variable, we define the binding for x as the pair
(p, vp), where p is a trace prefix and vp the value of x after
executing p.

Consider two trace prefixes p1 and p2 representative of
the same instance. The previous rules guarantee that all in-
duction variables living right after p1 (resp. p2) have been
defined in statements not closed yet. Now, the respective
sequences of non-closed statements for p1 and p2 are iden-
tical and equal to the control word of p1 and p2. Thus the
bindings of x for p1 and p2 are equal. In others words, the
function that binds the trace prefix to the value of x is com-
patible with the slimming congruence.

Theorem 4 Given an induction variable x in a MOGUL
program, the function mapping a trace prefix p to the value
of x only depends on the instance associated to p, i.e., on
the control word.

In other words, given an execution trace, the bindings at any
trace prefix are identified by the control word (i.e., the in-
stance).

Definition 4 (Binding Function) A binding for x is a cou-
ple (w,v), where w is a control word and v the value of x at
the instance w.

Λx denotes the binding function for x, mapping control
words to the corresponding value of x.

We now describe the mathematical framework to com-
pute binding functions. A bilabel is a pair in the set
L∗

ab ×Mloc. The first part of the pair is called the input la-
bel, the second one is called the output label. B = L∗

ab×Mloc

denotes the set of bilabels. From the direct product of the
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control word free monoid L∗
ab and the data monoid Mloc, B is

provided with a monoid structure: its operation • is defined
componentwise on L∗

ab and Mloc,

(α|a)• (β|b)
de f
= (αβ|a ·b). (1)

A binding for an induction variable is a bilabel. Every
statement updates the binding of induction variables accord-
ing to their definitions and scope rules, the corresponding
equations will be studied in Section 5.2.

The set of rational subsets of a monoid M is the least
set that contains the finite subsets of M, closed by union,
product and the star operation [7]. A rational relation over
two monoids M and M′ is a rational subset of the monoid
M ×M′. We focus on the family Brat of rational subsets of
B. A semiring is a monoid for two binary operations, the
“addition” +, which is commutative, and the “product” ×,
distributive over +; the neutral element for + is the zero for
×.

The powerset of a monoid M is a semiring for union and
the operation of M [7]. The set of rational subsets of M is
a sub-semiring of the latter [7]; it can be expressed through
the set of rational expressions in M. Thus Brat is a semiring.

We overload • to denote the product operation in Brat; /0 is
the zero element (the empty set of bilabels); and the neutral
element for • is E = {(ε,εm)}. From now on, we identify
Brat with the set of rational expressions in M, and we also
identify a singleton with the bilabel inside it: {(s|c)} may be
written (s|c).

5.2 Building Recurrence Equations

To compute a finite representation of the binding function
for each induction variable, we show that the bindings can
be expressed as a finite number of rational sets. First of all,
bindings can be grouped according to the last executed state-
ment, i.e., the last label of the control word. Next, we build a
system of equations in which unknowns are sets of bindings
for induction variable x at state n of the control automaton.
Given An the control automaton modified so that n is the
unique final state, let Ln be the language recognized by An.
The binding function for x at state n, Λn

x, is the binding func-
tion for x restricted to Ln. We also introduce a new induction
variable z, constant and equal to εm.

The system of equations is a direct translation of the se-
mantics of induction variable definitions; it follows the syn-
tax of a MOGUL program P; we illustrate each rule on the
running example.

1. At initial state 0 and for any induction variable x,

Λ0
x = E (2)

E.g., the Toy program involves three induction variables, the
loop counter i and the formal parameters k and n. We will not

consider n since it does not subscript any data structure. The
output monoid is Z, its neutral element εm is 0: Λ0

k = Λ0
i =

(ε|0).

2. Λn
z denotes the set defined by

Λn
z =

[

w∈Ln

(w|εm). (3)

Λn
z is the binding function for the new induction vari-

able z restricted to Ln; it is constant and equal to εm.

For each statement s defining an induction variable x
to csx (case c.1 of Definition 3), and calling d and a the
respective departure and arrival states of s in the control
automaton,

Λa
x ⊇ Λd

z • (s|csx). (4)

Since Λd
z • (s|csx) =

S

w∈Ld
(ws|csx), (4) means: if w ∈

Ld is a control word, ws is also a control word and its
binding for x is (ws|csx).

The control automaton automaton of Toy has 5 states. For the
case c.1 of Definition 3, statement I: k = 0, and (4) yields
Λ1
k ⊇ Λ0

z • (I|0).

3. For each statement s defining an induction variable x to
y · c (case c.2 of Definition 3), and d and a the respec-
tive departure and arrival states of s,

Λa
x ⊇ Λd

x • (s|csx). (5)

To complete the system, we add for every induction
variable x unchanged by s a set of equations in the form
(5), where csx = εm.

E.g., for case c.2 of Definition 3, statement G: k = k · 1,
statement d: i = i · 2, statement D: i = k, and (5) yields

Λ1
i ⊇ Λ3

i • (G|0)

Λ1
k ⊇ Λ3

k • (G|1)

Λ2
i ⊇ Λ1

i • (B|0)

Λ2
k ⊇ Λ1

k • (B|0)

Λ3
i ⊇ Λ2

k • (D|0)

Λ3
i ⊇ Λ3

i • (d|2)

Λ3
k ⊇ Λ2

k • (D|0)

Λ3
k ⊇ Λ2

k • (d|0)

Λ4
i ⊇ Λ3

i • (F |0)

Λ4
k ⊇ Λ3

k • (F |0)

Λ1
z ⊇ Λ0

z • (I|0)

Λ1
z ⊇ Λ3

z • (G|0)

Λ2
z ⊇ Λ1

z • (B|0)

Λ3
z ⊇ Λ2

z • (D|0)

Λ3
z ⊇ Λ2

z • (d|0)

Λ4
z ⊇ Λ3

z • (F |0)

Gathering all equations generated from (2), (4) and (5)
yields a system (S) of nv × ns equations with nv × ns un-
knowns, where nv is the number of induction variables, in-
cluding z, and ns the number of statements in the program.5

Toy yields the system

Λ0
i = E

Λ0
k = E

Λ0
z = E

Λ1
i = Λ3

i • (G|0)+(I|0)

Λ1
k = Λ3

k • (G|1)+(I|0)

Λ2
i = Λ1

i • (B|0)

Λ2
k = Λ1

k • (B|0)

5Some unknown sets are useless, they correspond to unbound variables.
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Λ3
i = Λ3

i • (d|2)+Λ2
k • (D|0)

Λ3
k = Λ3

k • (d|0)+Λ2
k • (D|0)

Λ4
i = Λ3

i • (F |0)

Λ4
k = Λ3

k • (F |0)

Λ1
z = Λ3

z • (G|0)+(I|0)

Λ2
z = Λ1

z • (B|0)

Λ3
z = Λ2

z • (D|0)+Λ2
z • (d|0)

Λ4
z = Λ3

z • (F|0)

Let Λ be the set of unknowns for (S), i.e., the set of Λn
x for

all induction variables x and nodes n in the control automa-
ton. Let C be the set of constant coefficients in the system.
(S) is a left linear system of equations over (Λ,C) [49]. Let
Xi be the unknown in Λ appearing in the left-hand side of the
ith equation of (S). If + denotes the union in Brat, we may
rewrite the system in the form

∀i ∈ {1, . . . ,m},Xi =
m

∑
j=1

X j •Ci, j +Ri, (6)

where Ri results from the terms Λ0
x = E in right-hand side.

Note that Ci, j is either /0 or a bilabel singleton of Brat. Thus
(S) is a strict system, and as such, it has a unique solution
[49]; moreover, this solution can be characterized by a ratio-
nal expression for each unknown set in Λ.

If M and M′ are two monoids, a rational function is a
function from M to M′ whose graph is a rational relation.

We may conclude that the solution of (S) is a character-
ization of each unknown set Xi in Λ as a rational function:
for any induction variable x and node n in the control au-
tomaton, the binding function for x restricted to Ln Λn

x is a
rational function.

Since functions Λn
x are defined on disjoint subsets of con-

trol words, partitioned according to the suffix n, we eventu-
ally prove our main result.

Theorem 5 For any induction variable x, the binding func-
tion for x Λx is a rational function.

Properties of rational relations and functions are similar
to those of rational languages [7]: membership, inclusion,
equality, emptiness and finiteness are decidable, projection
on the input or output monoid yields a rational sub-monoid,
and rational relations are closed for union, star, product and
inverse morphism, to cite only the most common properties.
The main difference is that they are not closed for comple-
mentation and intersection, although a useful sub-class of
rational relations has this closure property — independently
discovered in [44] and [11]. Since most of these properties
are associated with polynomial algorithms, binding func-
tions can be used in many analyses, see [12, 26, 11, 3] for
our previous applications to the automatic parallelization of
recursive programs.

6 Computing Binding Functions

This section investigates the resolution of (S). Starting from
(6), one may compute the last unknown in terms of others:

Xm = C∗
m,m

(m−1

∑
i=1

X j •Ci, j +Rm

)

. (7)

The solution of (S) can be computed by iterating this pro-
cess analogous to Gaussian elimination. This was the first
proposed algorithm [11]; but Gaussian elimination on non-
commutative semirings leads to exponential space require-
ments. We propose two alternative methods to compute and
represent binding functions effectively. The first one im-
proves on Gaussian elimination but keeps an exponential
complexity; its theoretical interest is to capture the relations
between all induction variables along a single path on the
control automaton. If we only need to represent the com-
putation of induction variables separately from each other,
Section 6.2 presents a polynomial algorithm.

6.1 Binding Matrix

Mrat denotes the set Bm×m
rat of square matrices of dimension m

with elements in Brat; Mrat is a semiring for the induced ma-
trix addition and product and Mrat is closed by star operation
[49]. The neutral element of Mrat is

E =

[

E /0. . .
/0 E

]

. (8)

Practical computation of the transitive closure of a square
matrix C is an inductive process, using the following block
decomposition where a and d are square matrices:

C =

[

a c
b d

]

.

The formula is illustrated by the finite-state automaton in
Figure 11; its alphabet is constituted of labels {a,b,c,d}
of the block matrices; i and j are the two states, they are
both initial and final. If i and j denote the languages com-
puted iteratively for the two states, and matrix C repre-
sents a linear transformation of the vector (i, j): (i1, j1) =
(i0a+ j0b, i0c+ j0d). We compute the transitive closure of C
as the union of all words labeling a path terminated in states i
or j, respectively, after zero, one, or more applications of C:
(i∗, j∗) =

(

(i0 + j0d∗b)(a+cd∗b)∗,( j0 + i0a∗c)(d+ba∗c)∗
)

.
Writing P = (a+ cd∗b)∗ and Q = (d +ba∗c)∗,

C∗ =

[

a c
b d

]∗

=

[

P d∗bP
a∗cQ Q

]

. (9)

i ja
b

c
d

Figure 11: Computation of a matrix star

From (6), system (S) can be written X = XC +R, where
matrix C = (Ci, j)1≤i, j≤m and vectors R = (R1, . . . ,Rm), X =
(X1, . . . ,Xm). Vector RC∗ is the solution of (S), but direct
application of (9) is still laborious, given the size of C.
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Matrix automaton. Our solution relies on the sparsity of
C: we represent the system of equations in the form of an
automaton A , called the matrix automaton.

The graph of the matrix automaton is the same as the
graph of the control automaton. Each statement s is repre-
sented by a unique transition, gathering all information about
induction variable updates while executing s. The binding
function for x after statement s, Λsx, maps control words
ended by s to the value of x. It is the set of all possible bind-
ings for x after s.

−→
Λn denotes the binding vector at state n,

i.e., the tuple of binding functions for all induction variables
at state n (including z). Conversely,

−→
Λs denotes the binding

vector after statement s, i.e., the tuple of binding functions
for all induction variables after executing statement s.

With d the departure state of the transition associated to
statement s, we gather the previous linear equations referring
to s and present them in the form:

∀S ∈ Mrat,
−→
Λs =

−→
Λd ×S. (10)

As an example, we give the result for statement G of Toy:

ΛGi = Λ3
i • (G|0), ΛGk = Λ3

k • (G|1), ΛGz = Λ3
z • (G|0)

−→
ΛG =

−→
Λ3 ×





(G|0) /0 /0
/0 (G|1) /0
/0 /0 (G|0)



 .

Now, the transition of statement s in A is labeled by the
statement matrix S. Thus, A recognizes words with alphabet
in Mrat: concatenation is the matrix product and words are
rational expression in Mrat, hence elements of Mrat. Group-
ing equations according to the transitions’ arrival state, we
get, for each state a,

−→
Λa = ∑

d∈pred(a)

−→
Λd ×Sda,Sda ∈ Mrat, (11)

where pred(a) is the set of predecessor states of a and Sda is
the statement matrix associated to the transition from d to a.

E.g., state number 1 in the matrix automaton of Toy yields

−→
Λ1 =

−→
ΛI +

−→
ΛG =

−→
Λ0 × I+

−→
Λ3 ×G.

Theorem 6 Let
−→
Λ0 = (E , . . . ,E) be the binding vector at

the beginning of the execution. The binding vector for any
state f can be computed as

−→
Λ f =

−→
Λ0 ×L, (12)

where L is a matrix of regular expressions of bilabels; L

is computed from the regular expression associated to the
matrix automaton A , when its unique final state is f .

This result is a corollary of Theorem 5.
Because this method operates on regular expressions, it

has a worst-case exponential complexity in the number of
states and induction variables. However, this worst-case be-
havior is not likely on typical examples.

Application to the running example. We now give the
statement matrices for the Toy example. With the three in-
duction variables i, k and z, the binding vector after state-
ment I,

−→
ΛI = (ΛIi,ΛIk,ΛIz) and I the statement matrix for I,

we have:

−→
ΛI =

−→
Λ0 × I,

−→
ΛB =

−→
Λ1 ×B,

−→
ΛD =

−→
Λ2 ×D

−→
Λd =

−→
Λ3 ×D,

−→
ΛG =

−→
Λ3 ×G,

−→
ΛF =

−→
Λ3 ×F

with the following statement matrices:

statement I : I =





I|0 /0 /0
/0 /0 /0
/0 I|0 I|0





statement G : G =





G|0 /0 /0
/0 G|1 /0
/0 /0 G|0





statement d : D =





d|2 /0 /0
/0 d|0 /0
/0 /0 d|0





statement D : D =





/0 /0 /0
D|0 D|0 /0

/0 /0 D|0





The other statements matrices let unchanged the induction
variables.

statement B : B =





B|0 /0 /0
/0 B|0 /0
/0 /0 B|0





statement F : F =





F|0 /0 /0
/0 F|0 /0
/0 /0 F|0





The resulting matrix automaton is shown in Figure 12 (all
states are final).

0

1

2

3

4

I

B

D

F

D

G

L = I + IB+ IBD
(

D+GBD
)∗(

E+F+G+GB
)

(E is the neutral element of Mrat.)

Figure 12: Matrix automaton for Toy
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6.2 Binding Transducer

We recall a few definitions and results about transducers [7].
A rational transducer is a finite-state automaton where each
transition is labeled by a pair of input and output symbols,
a symbol being a letter of the alphabet or the empty word.6

A pair of words (u,v) is recognized by a rational transducer
if there is a path from an initial to a final state whose input
word is equal to u and output word is equal to v.7 A rational
transducer recognizes a rational relation, and reciprocally. A
transducer offers either a static point of view — as a machine
that recognizes pairs of words — or a dynamic point of view
— the machine reads an input word and outputs the set of
image words.

The use of transducers lightens the burden of solving a
system of regular expressions, but we lose the ability to cap-
ture all induction variables and their relations in a single ob-
ject. The representation for the binding function of an induc-
tion variable is called the binding transducer.

Algorithm 1
Given the control automaton and a monoid with nv induc-

tion variables (including z), the binding transducer is built
as follows:

• For each control automaton state, create a set of nv

states, called a product-state; each state of a product-
state is dedicated to a specific induction variable.

• Initial (resp. final) states correspond to the product-
states of all initial (resp. final) states of the control au-
tomaton.

• For each statement s, i.e., for each transition (d,a) la-
beled s in the control automaton; call Pd and Pa the
corresponding product-states; and create an associ-
ated product-transition ts. It is a set of nv transitions,
each one is dedicated to a specific induction variable.
We consider again the two cases mentioned in Defini-
tion (3.c).

– case c.1: the transition runs from state Pd
z in Pd to

the state Pa
x in Pa. The input label is s, the output

label is the initialization constant c;

– case c.2: the transition runs from state Pd
y in Pd

to state Pa
x in Pa. The input label is s, the output

label is the constant c.

The binding transducer for Toy is shown in Figure 13.
Notice that nodes allocated to the virtual induction variable z
are not co-accessible except the initial state (there is no path
from them to a final state), and initial states dedicated to i

6Pair of words leads to an equivalent definition.
7A transducer is not reducible to an automaton with bilabels as elemen-

tary symbols for its alphabet; as an illustration, two paths labeled (x|ε)(y|z)
and (x|z)(y|ε) recognize the same pair of words (xy|z).

and k are not co-accessible either. These states are useless,
they are trimmed from the binding transducer.

The binding transducer does not directly describe the
binding functions. A binding transducer is dedicated to an
induction variable x when its final states are restricted to the
states dedicated to x in the final product-states.

Theorem 7 The binding transducer dedicated to an induc-
tion variable x recognizes the binding function for x.

This result is a corollary of Theorem 5.

7 Experiments

The construction of the binding transducer is fully imple-
mented in OCaml. Starting from a MOGUL program, the
analyzer returns the binding transducer according to the
choice of monoid. This analyzer is a part of a more ambi-
tious framework including dependence test algorithms based
on the binding transducer [3]. Our implementation is as
generic as the framework for data structure and binding
function computation: operations on automata and transduc-
ers are parameterized by the types of state names and tran-
sition labels. Graphs of automata and transducers are drawn
by the free dot software [35].

Figure 14 summarizes some results about recursive pro-
grams we implemented in MOGUL. The last column of the
table gives the number of states in the binding transducer.
Since the first survey of instancewise analyses techniques
[11], we discovered many recursive algorithms suitable for
implementation in MOGUL and instancewise dependence
analysis. Therefore, it seems that the program model encom-
passes many implementations of practical algorithms despite
its severe constraints.

Pascaline is a small kernel to evaluate the binomial co-
efficients. n-Queens solves the classical problem to place
n Queens on a n× n chessboard. To_&_fro is the recursive
merge-sort alternating between two arrays. It is optimized
in To_&_fro+insert_sort by using an insertion sort for
the leaves of the recursion (on small intervals of the origi-
nal array). Sort_3_colors consists in sorting an array of
balls according to one color among three, using only swaps.
Vlsi_test simulates a test-bed to filter-out good chips from
an array of untested ones; the process relies on peer-to-peer
test of two chips, a good chip giving a certified correct an-
swer about the other.

8 Applications of Instancewise Analysis

To illustrate the practical applications of the binding trans-
ducer, we revisit a simple program optimization that bene-
fit from the computation of instancewise binding functions,
then we outline the known applications and results.
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i k
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I|0 I|0

B|0 B|0

D|0
D|0

F|0 F|0

d|2
d|0

G|0 G|1

Figure 13: Binding transducer

Code name Data Lines Refs Loops Calls Nodes
Pascaline 1D array 21 2 1 2 13
Multiplication table 2D array 17 5 1 3 22
n-Queens 1D array 39 2 2 2 27
Merge_sort_tree ternary tree 75 8 0 8 80
To_&_fro 1D array 115 12 0 19 164
To_&_fro+insert_sort 1D array 162 17 2 26 195
Sort_3_colors 1D array 80 4 0 11 97
Vlsi_test linked lists 58 2 0 7 97

Figure 14: Application to sample programs

8.1 Instancewise Dead-Code Elimination

Going back to the motivating examples in Section 1.1 (either
code version), we call s the assignment to array A in the loop
nest and t the read reference in procedure line. We assume
the codes have been rewritten in MOGUL (the first version
has a single induction variable addressing Z2 and the second
one has two recursively swapped induction variables).

Let Bs and Bt denote the binding functions for the array
references in s and t, respectively, and L∗

ab denote the set of
all control words. The “chessboard” footprint, very hard to
compute by statementwise means, corresponds to the ratio-
nal set Bt(L∗

ab). An intensional representation for this ratio-
nal set can be computed, either as a finite-state automaton
(in a straightforward transducer projection [7]), or as a Z-
polyhedron (e.g., through a Parikh mapping [43, 49]).

From this first result, one may automatically character-
ize the iterations of the loop nest which correspond to use-
less assignments to A: the (conservative) set of dead itera-
tions is B−1

s (Bt(L∗
ab)). Once again, this turns out to be a

classical operation on transducers and finite-state automata.
To implement the actual optimization on the bounds and
strides, a polyhedral characterization of the iteration domain
can be deduced from the resulting automaton (because s is
surrounded by a loop nest, not arbitrary recursive control)
[45, 49].

8.2 State of the Art

Aggressive dead-code elimination is a very simple applica-
tion of the instancewise framework. One may imagine many
other extensions of scalar, loop and interprocedural opti-
mizations, working natively on recursive programs. How-
ever, published results are still preliminary [12, 26, 5, 11, 3]:
here is a short overview of the known applications of binding
functions to the analysis of recursive programs.

• Instancewise dependence analysis for arrays [12, 11].
The relation between dependent instances is com-
puted as a one-counter (context-free) transducer, or
by a multi-counter transducer in the case of multi-
dimensional arrays. In the multi-counter case, the char-
acterization of dependences is undecidable in general,
but approximations are possible.

• Instancewise reaching-definition analysis for arrays
[12, 11] (a.k.a. array data-flow analysis [25, 39]). Com-
pared to dependence analysis, kills of previous array
assignments are taken into account. Due to the conser-
vative assumptions about conditional guards (ignored
in this paper), one may only exploit kill information
based on structural properties of the program, i.e., ex-
clusive branches and ancestry of control words in the
call tree (whether an instance forcibly precedes another
in the execution). This limitation seems rather strong,
but it already subsumes the loop-nest case [11].

• Instancewise dependence and reaching-definition anal-
ysis for trees [11]. The relation between conflict-
ing instances is a rational transducer, from the Elgot
and Mezei theorem [20, 7]; the dependence relation
requires an additional sequentiality constraint, which
makes its characterization undecidable in general, but
an approximation scheme based on synchronous trans-
ducers is available [44, 11]. The array and tree cases
can be unified: [11] describes a technique to analyze
nested trees and arrays in free partially-commutative
monoids [50].

• Instancewise dependence test for trees [26, 5]. Instead
of a relation between instances, these tests leverage
on instancewise analysis to compute precise statemen-
twise dependence information with unlimited context-
sensitivity (not k-limited). Both [26] and [5] feature
a semi-algorithm to solve the undecidable dependence
problem; it is proven to terminate provided the approx-
imation scheme of the previous technique is used (un-
published result).

• Instancewise dependence test for arrays [3]. This pa-
per proves the decidability and NP-completeness of de-
pendence testing based on binding transducers, in the
case of arrays. An extension taking conditional guards
into account is possible, provided the guards can be
expressed as affine functions of some inductive vari-
ables lying in free-commutative monoids (unpublished
result).
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9 Conclusion and Perspectives

The instancewise paradigm paves the way for better, more
precise program analyses. It decouples static analyses from
the program syntax, allowing to evaluate semantic program
properties on an infinite set of runtime control points. This
paradigm abstracts runtime execution states (or trace pre-
fixes) in a finitely-presented, infinite set of control words.
Instancewise analysis is also an extension of the domain-
specific iteration-vector approach (the so-called polytope
model) to general recursive programs.

As an application of the instancewise framework, we
extend the concept of induction variables to recursive pro-
grams. For a restricted class of data structures (including
arrays and recursive structures), induction variables capture
the exact memory location accessed at every step of the exe-
cution. This compile-time characterization, called the bind-
ing function, is a rational function mapping control words to
abstract memory locations. We give a polynomial algorithm
for the computation of binding functions.

Our current work focuses on instancewise alias and de-
pendence analysis, for the automatic parallelization and op-
timization of recursive programs [3]. We also look after new
benchmark applications and data-structures to assess the ap-
plicability of binding functions; multi-grid and sparse codes
are interesting candidates. We would also like to release a
few constraints on the data structures and induction vari-
ables, aiming for the computation of approximate binding
functions through abstract interpretation.
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A Appendix

A.1 The Trace Grammar

There is one context-free trace grammar GP per program P.

1. For each call to a function id, i.e., each derivation of produc-
tion (S9), there is a production schema

Cid ::= Label Bid Label (13)

where Cid and Bid are the respective non-terminals of the
function call and body. Label is the terminal label of the call
to function id, and Label marks the end of the statement,
here a return statement.

2. For each loop statement s, i.e., each derivation of produc-
tion (S11), there are four production schemas

Ls ::= ε | Labele Labelp Bs Os Labelp Labele(14)

Os ::= ε | Labeli Labelp Bs Os Labelp Labeli(15)

where the three non-terminals Ls, Os and Bs correspond to the
loop entry, iteration and body, respectively. Labele, Labelp
and Labeli are terminals, they are the labels of the loop entry,
predicate and iteration, respectively.

3. For each conditional s, i.e., each derivation of produc-
tion (S10), there are two productions schemas

Is ::= Label Ts Label | Label Fs Label (16)

where the three non-terminals Is, Ts and Fs correspond to
the conditional, then branch and else branch, respectively.
Label is the terminal label of the conditional.

4. For each block s, i.e., each derivation of productions (S4)
or (S5), there is a production schema

Bs ::= Label S1 . . . Sn Label (17)

where non-terminal Bs corresponds to the block and non-
terminals S1,. . . ,Sn correspond to each statement in the block.
Label is the terminal label of Bs.

5. For each elementary statement s, there is a production schema

Ss ::= Label Label (18)

where Label is the terminal label of statement s.

The axiom of the trace grammar is the non-terminal associated
with the block of the main function. The set of traces of a program
P — called the trace language of P — is the set of terminal sen-
tences of GP. Clearly, the trace language fits the intuition about
program execution and the previous presentation in terms of the
interprocedural control flow graph: the pushdown trace automaton
recognizes the trace language.

Grammar GP generates many terminal sentences that are possi-
ble execution sequences for P. These sentences depend on choices
between productions (13) to (18). In a real execution of P, these
choices are dictated by the outcome of loop and test predicates,
which our grammar does not take into account. It is customary to
say that predicates are not interpreted (in the model theory sense),
or that P is a program schema [37]. We are free to select which
predicates and operations should be interpreted: e.g., the polytope
model interprets every loop bound and array subscript in Presburger
arithmetic [45]. In this paper, we will interpret address computa-
tions in the theory of finitely-presented monoids; everything else
will remain uninterpreted.

A.2 Trace Grammar and Control Words

We may also derive a control words grammar from the trace gram-
mar. This grammar significantly differs from the trace grammar in
three ways.

1. Control words contain no overlined labels.
The control stack ignores overlined labels.

2. Each non-terminal is provided an empty production.
A control word is associated to each trace prefix.

3. If the right-hand side of a production consists of multiple non-
terminals, it is replaced by an individual production for each
non-terminal.

Only the last statement of an uncompleted sequence remains
in the control stack, i.e., in the control word.

Under these considerations, the productions for the control
words grammar are the following, with the same notations and
comments as the trace grammar.

1. For each function call id, i.e., each derivation of produc-
tion (S9), there are two productions

Cid ::= Label Bid | ε

2. For each loop statement s, i.e., each derivation of produc-
tion (S11), there are six productions

Ls ::= Labele Labelp Bs | Labele Os | ε
Os ::= Labeli Labelp Bs | Labeli Os | ε

3. For each conditional s, i.e., each derivation of produc-
tion (S10), there are three productions

Is ::= Label Ts | Label Fs | ε

4. For each block s enclosing n statements, i.e., each derivation
of (S4) or (S5), there are n+1 productions

Bs ::= Label S1 | · · · | Label Sn | ε

5. For each elementary statement s,

Ss ::= Label | ε

The axiom of this grammar is the block of the main function.
The control words grammar grammar above is right linear,8

hence its generated language is rational.

8At most one non-terminal in the right-hand side, and non-terminals are
right factors.
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Free monoid.
G = {right,left}, ≡ is the identity, · is the
concatenation: monoid elements address a binary tree.

left right

left right

Free group.
G = {right,left,right−1,left−1}, ≡ is the inversion of
left and right (without commutation): Cayley graphs
[21, 30].

right−1
left−1

left rightright−1

left right

Free commutative group.
G = {(0,1),(1,0),(0,−1),(−1,0)}, ≡ is the vector
inversion and commutation, · is vector addition: a
two-dimensional array.

(0,1) (0,1) (0,1)
(1,0)

(1,0)

(0,−1) (0,−1) (0,−1)

(−1,0)

(−1,0)

Free commutative monoid.
G = {(0,1),(1,0)}, ≡ is vector commutation: a
two-dimensional grid.

(0,1) (0,1) (0,1)
(1,0)

(1,0)

Commutative monoid.
G = {(0,1),(1,0)}, ≡ is vector commutation and
(0,1) · (0,1)≡ εm: a two-dimensional grid folded on the
torus Z× Z

2Z
.

(0,1) (0,1) (0,1)
(1,0) (1,0)

Free partially-commutative monoid.
G = {next,1,−1}, ≡ is the inversion and commutation of
1: nested trees, lists and arrays.

1 1 1
next

next next

−1 −1 −1

Monoid with right-inverse.
G = {right,left,parent}, right ·parent ≡ εm,
left ·parent ≡ εm: a tree with backward edges.

left right

parent parent

Figure 15: Monoid-addressable structures

Lemma 2 The language of control words is a subset of the lan-
guage generated by the control words grammar.

The proof comes from the three above observations that translate
the effect of the slimming function. For each trace grammar deriva-
tion, we associate a corresponding derivation of the control words
grammar. The control words grammar generates any stack word
corresponding to a path — accepting or not — in the pushdown
trace automaton.

Conversely, if a partial execution has entered a step where the
last opened statement can never be completed, a recursive cycle in
the trace derivation cannot be avoided.

Conversely, we can show that the control words grammar only
generates control words, assuming the trace grammar satisfies a ter-
mination criterion, defined through the concept of unlooping gram-
mar [54] (see the section on reduced grammars). More details and
a simple decision algorithm can be found in [4].

Thanks to Lemma 2, we may state a necessary and sufficient
condition for the control words grammar to only generate control
words.

Theorem 8 Let P be a program given by its trace grammar GP,
and let G′

P be the associated control words grammar. The control
words language of P is generated by G′

P if and only if GP is un-
looping.

We assume the program satisfies Theorem 8.

A.3 Proof of Lemma 1

For completeness, we formally define <lab from the MOGUL
grammar. Given s1 and s2 two labels in Lab, s1 <lab s2 if and only
if

• there is a production generated by (17) in the trace grammar,
such as s1 is the label of Si and s2 is the label of S j , with
1 ≤ i < j ≤ n;

• or there is a production generated by (14) or (15) such as s1
is the label of Bs and s2 is the label of Os.

The proof of Lemma 1 takes two steps. First of all, let t be a
trace and T its activation tree. The set of all paths in T is ordered
by a strict lexicographic order, <T , isomorphic to <lex.

Then, let α be the function mapping any path in T to the last
label of the path word (accurately speaking of the control word
labeling this path). Given a trace prefix p and the <T ordered se-
quence {b0 = ε,b1, ...,bn} of all paths in T , the (partial) depth-first
traversal of T until p yields the following word:

dft(p) , α(b0)α(b1)...α(bq),

where bq is the branch of p, q ≤ n. Now, the definition of dft(p) is
precisely p.

Let pq and pr be two prefixes of t, pq being a prefix of pr itself,
and write

pq = α(b0)α(b1)...α(bq), pr = α(b0)α(b1)...α(br).
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We have the following: pq <seq pr ⇐⇒ bq <T br. Together with
the first step, pq <seq pr ⇐⇒ bq <lex br.

A.4 Free Partially-Commutative Monoids

Figure 15 surveys representative monoid-addressable data struc-
tures fitting into our framework.
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