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In this paper, we propose an enhancement of the compilation of synchronous programs with a 
combined numerical-Boolean abstraction. While our approach applies to synchronous dataflow 
languages in general, here, we consider the SIGNAL language for illustration. In the new 
abstraction, every signal in a program is associated with a pair of the form (clock, value), where 
clock is a Boolean function and value is a Boolean or numeric function. Given the performance level 
reached by recent progress in Satisfiability Modulo Theory (SMT), we use an SMT solver to reason 
on this abstraction. Through sample examples, we show how our solution is used to determine 
absence of reaction captured by empty clocks; mutual exclusion captured by two or more clocks 
whose associated signals never occur at the same time; or hierarchical control of component 
activations via clock inclusion. We also show that the analysis improves the quality of the code 
generated automatically by a compiler, e.g., a code with smaller footprint, or a code executed 
more efficiently thanks to optimizations enabled by the new abstraction. The implementation of 
the whole approach includes a translator of synchronous programs towards the standard input 
format of SMT solvers, and an ad hoc SMT solver that integrates advanced functionalities to cope 
with the issues of interest in this work.

Index Terms -	Static analysis, compilation, code generation, SIGNAL, satisfiability modulo theory, synchronous  
	 languages.

I.	 Introduction

Embedded systems are omnipresent in our daily life. 
They are typically found in consumer electronics, automotive 
and avionic systems, and medical systems. In most of these 
application domains, systems are safety-critical. They 
therefore call for well-suited design approaches that can 
fulfill their stringent requirements.

Synchronous languages [1] have been introduced in the 
early 80’s in order to address the reliable development of 
safety-critical embedded systems. Some of these languages 
are LUSTRE [2], ESTEREL [3] and SIGNAL [4]. Nowadays, 
they are successfully adopted by the European industry as 
illustrated by the use of the Scade tool to develop the Airbus 
A380 control and display system. Among the features that 
make synchronous programming suitable for the design 

of safety-critical systems, we mention their mathematical 
foundation that offers a precise semantics of programs, a 
trustworthy reasoning on program properties, and automatic 
generation of correct-byconstruction implementations.

Synchronous languages consider a high abstraction level 
for system design. A central assumption is that computation 
and communications are instantaneous from the viewpoint 
of a logical time, referred to as ”synchrony hypothesis”. 
This favors deterministic models of system behaviors 
for safe analysis. The existing synchronous languages 
distinguish themselves from each other by adopting different 
programming styles, e.g., ESTEREL has an imperative style 
suitable for control-dominant applications while LUSTRE 
and SIGNAL1 respectively borrow functional and relational 

1. Note however that the multi-clock design model associated with SIGNAL is also relevant for describing control aspects.
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styles suitable for dataflow-oriented applications. In this 
paper, we mainly concentrate on the last family of languages, 
i.e., dataflow synchronous languages.

The design approach of an embedded system with 
the LUSTRE language usually assumes a reference clock 
providing the time scale for all system sub-parts. In terms of 
set of instants, the activation clocks of sub-parts are subsets 
of this reference clock. While this “synchronized” model of a 
system is suitable for guaranteeing determinism, it suggests 
a monolithic vision of design so that one cannot focus on the 
activity of a given sub-part of a system regardless of the 
reference clock.

The design model adopted in the SIGNAL language is 
different from that of LUSTRE: the description of system sub-
parts is enabled, without assuming any reference clock. It is 
referred to as polychronous model [4]. In this model, abstract 
clocks, consisting of discrete sets of logical instants at which 
events occur in system sub-parts, play a fundamental role 
in designs. They are used to describe all the control part: 
triggering of system components and interaction between 
different components. The control flow expressed by abstract 
clocks serves to derive an optimized control structure in 
automatic code generation. Thus, the quality of clock analysis 
has a strong impact on the correctness and efficiency of 
implementations.

1.1	 Compilation of programs: limitations

Beyond the usual syntax and type checking, the compilers 
of synchronous languages implement powerful static analysis 
and code optimization, allowing for a correct and efficient 
code generation.

In SIGNAL, the static analysis relies on a Boolean 
abstraction of programs, internally represented as binary 
decision diagrams (BDDs) [5] for an efficient reasoning [6]. 
However, one main limitation of this static analysis arises 
when the SIGNAL compiler addresses clock properties of 
a program defined by numerical expressions. Indeed, the 
adopted Boolean abstraction loses relevant information, 
which makes it quite inadequate for such a program. This 
has a strong impact on the analysis precision and the quality 
of generated code. Such an issue occurs when defining the 
activation clocks of a system as sets of events that occur when 
the values of some signals satisfy a numerical property. An 
example scenario is the activation of a (rescue) computation 
node in a fault-tolerant embedded system when a signal 
from executing nodes reaches a particular numerical value. 
In order to suitably address this issue, a new abstraction is 
required, which fully takes into account the numerical part 
beside the Boolean part of SIGNAL programs.

In the LUSTRE compilation [7], the same kind of Boolean 
abstraction is used before code generation. Thus, it suffers 
from the same lack of precision. Nevertheless, the static 
analysis of LUSTRE programs has been studied with various 
precise methods, for instance in [8] and more recently in [9], 
but the purpose was verification, and not the improvement of 
the compilation.

1.2	 Contribution of this paper

We propose an enhancement of the compilation of 
synchronous dataflow programs with a combined numerical-
Boolean sound abstraction. Here, this is mainly illustrated 
on SIGNAL programs. However, we believe the same 
workflow can be easily adapted to other synchronous 
dataflow languages, such as LUSTRE or MRICDF (Multi-
Rate Instantaneous Channel connected Data Flow) [10]. Note 
that the current paper is an extended version of a previous 
one [11]. Our solution permits an analysis that significantly 
enhances the quality of the subsequent code generated by 
compilers, e.g., a code with smaller footprint, a code executed 
more efficiently thanks to further optimizations.

The present tool is also an invaluable aid to debugging. 
For instance, as will be shown in Section 7 or in the discussion 
of the Bathtub example, we are able to statically detect empty 
clocks. Depending on the context, this can be interpreted as 
a proof of safety (an alarm will never sound), or as a bug (an 
operation on signals with incompatible clocks).

In the new abstraction, every signal in a program is 
associated with a pair of the form (clock, value), where clock is 
a Boolean function and value is a Boolean or numeric function. 
Given the performance level reached by recent progress in 
Satisfiability Modulo Theory (SMT) [12], we use an SMT 
solver to reason on the new abstraction. We show through a 
few examples, how relations between abstract clocks defined 
with numerical and logical expressions are adequately 
analyzed, to determine for instance absence of reactivity 
captured by empty clocks; mutual exclusion captured by two 
or more clocks whose associated signals never occur at the 
same time; or a better control of node activations via clock 
inclusion.
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Fig. 1. Overview of the proposed approach.

The advocated approach is depicted by Fig.
1. Given a synchronous dataflow program P ,
we define a corresponding abstraction, used to
check the satisfiability of properties of interest,
i.e., those involving numerical expressions. For
this purpose, we use an ad hoc SMT solver
offering tailored functionality for an adequate
usage in our approach. Once identified, all
properties of interest are concretized into syn-
chronous dataflow programs, which are later
composed with the initial program P . The re-
sulting composed program is equivalent to P in
which properties involving numerical expres-
sions have been made explicit in a form that
is suitably addressable by a synchronous lan-
guage compiler. Then, it becomes easier for the
compiler to do an efficient analysis and code

generation. The main part of our contribution
is on the right-hand side of Fig. 1. Notice that
an important advantage of this contribution is
its modular, i.e., non-intrusive, implementation
regarding compilers. This clearly facilitates its
integration to a given compiler and makes it
easy to isolate a bug in the global framework
(in comparison to a compiler-intrusive solu-
tion).

Compared to our preliminary publication
[11], the present article brings new improve-
ments regarding the following aspects:

• definition of an “ad hoc” SMT solver,
while the off-the-shelf Yices solver was
considered previously. This enables us to
implement property search inside the new
solver, thus avoiding costly pretty printing
and parsing;

• a proposal within the same solver to com-
pute strongly connected components of the
clock implication graph for determining an
enhanced clock hierachy useful to efficient
code generation;

• additional examples illustrating the rele-
vance of our solution.

1.3 Outline
The remainder of this paper is organized as
follows. Section 2 compares the proposed ap-
proach to some relevant existing works. Sec-
tion 3 gives an overview of SIGNAL. Section
4 discusses the current limitations of the static
analysis achieved by the SIGNAL compiler, re-
garding clock analysis and code generation.
Section 5 exposes a new combined numerical-
Boolean abstraction for improving this static
analysis by using first-order logic formulas.
Section 6 presents an implementation of our ap-
proach. Section 7 addresses typical application
examples for which our proposal is very useful.
Finally, Section 8 gives concluding remarks.

2 RELATED WORK

We discuss in this section some relevant stud-
ies about static analysis techniques for syn-
chronous programming. Since these techniques
apply both to verification and compilation, we
distinguish them w.r.t. both topics.
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identified, all properties of interest are concretized into 
synchronous dataflow programs, which are later composed 
with the initial program P. The resulting composed program 
is equivalent to P in which properties involving numerical 
expressions have been made explicit in a form that is suitably 
addressable by a synchronous language compiler. Then, it 
becomes easier for the compiler to do an efficient analysis and 
code generation. The main part of our contribution is on the 
right-hand side of Fig. 1. Notice that an important advantage 
of this contribution is its modular, i.e., non-intrusive, 
implementation regarding compilers. This clearly facilitates 
its integration to a given compiler and makes it easy to isolate 
a bug in the global framework (in comparison to a compiler-
intrusive solution).

Compared to our preliminary publication [11], the 
present article brings new improvements regarding the 
following aspects:
�� definition of an “ad hoc” SMT solver, while the off-

the-shelf Yices solver was considered previously. This 
enables us to implement property search inside the new 
solver, thus avoiding costly pretty printing and parsing;

�� a proposal within the same solver to compute strongly 
connected components of the clock implication graph 
for determining an enhanced clock hierachy useful to 
efficient code generation;

�� additional examples illustrating the relevance of our 
solution.

1.3	 Outline

The remainder of this paper is organized as follows. 
Section 2 compares the proposed approach to some relevant 
existing works. Section 3 gives an overview of SIGNAL. 
Section 4 discusses the current limitations of the static 
analysis achieved by the SIGNAL compiler, regarding clock 
analysis and code generation. Section 5 exposes a new 
combined numerical- Boolean abstraction for improving this 
static analysis by using first-order logic formulas. Section 
6 presents an implementation of our approach. Section 7 
addresses typical application examples for which our proposal 
is very useful. Finally, Section 8 gives concluding remarks.

2.	 Related Work
We discuss in this section some relevant studies about 

static analysis techniques for synchronous programming. 
Since these techniques apply both to verification and 
compilation, we distinguish them w.r.t. both topics.

2.1	 Static analysis for verification

A few combinations of numerical and Boolean verification 
techniques have been studied for LUSTRE verification. In [8], 
the technique used is a dynamic partitioning of the control flow 
obtained by LUSTRE compilation with respect to constraints 
coming from a given proof goal. Our approach does not depend 
on any proof goal. A recent work [13] proposed a method based 
on a combination of abstract acceleration techniques [14] and 
control-flow refinement [8] in order to prove reachability. The 

results are very accurate, but the analysis is very expensive 
to be integrated to a compiler for the moment. Our analysis 
is cheaper and does not suffer from the same state explosion 
problem.

An important work is the polyhedral-based static 
analysis for synchronous languages, and in particular, for the 
SIGNAL language [15]. The authors give a technique based 
on fixpoint iteration on a lattice combining Boolean and affine 
constraints. More recently, a polyhedral analysis library has 
been integrated to the SIGNAL open-source compiler in 
order to compute safe operating ranges for input variables 
of programs [16]. This was intended for an improvement of 
the causality analysis of SIGNAL programs. Our technique 
is less precise than [15] and [16] because it cannot deal with 
polyhedral invariants. But, the complexity of the analysis in 
our case is lesser and the implementation is much simpler.

In another study, a clock language CL has been 
introduced to capture the static control part of SIGNAL 
programs [17]. The author also considers SAT decision 
procedures to prove clock properties. However, statements 
involving the delay construct are not taken into account in 
this study. This reduces the scope of the proposed analysis. 
Our proposition aims to cover programs containing any 
construct of the SIGNAL language. In particular, regarding 
the delay construct, we propose here two abstractions with 
different precision levels: one solution that only captures the 
synchronization property related to manipulated variables 
(note that this property can be also addressed with CL even 
though not considered by its author); and a more precise 
solution that refines the first one with additional constraints 
on data values carried by manipulated variables. Thus, 
our approach slightly offers more expressivity than CL. 
In addition, while the main motivation of the abstraction 
considered for CL is to prove clock properties of a subset 
of SIGNAL, the goal of our approach goes beyond that by 
focusing more generally on SIGNAL program compilation, 
including both clock property analysis and code generation 
optimization. Furthermore, compared to [17] that considers 
SAT solvers, here the use of SMT solvers provides a more 
powerful analysis, especially on numerical properties.

Finally, SMT techniques were used to verify safety 
properties in LUSTRE [18]. The authors consider a specific 
form of LUSTRE language and propose a modeling in a typed 
first order logic with uninterpreted function symbols and 
built-in integers and rationals. While this work also aims at 
benefiting from SMT solving in synchronous programming, 
it misses all useful clock analysis achieved by the SIGNAL 
compiler in our case. Such an analysis includes suitable 
heuristics to address polychronous specifications. Neither an 
SMT solver nor the LUSTRE compiler makes this analysis 
possible.

2.2	 Static analysis for compilation

In [19], [20], an interval-based data structure referred 
to as interval-decision diagram (IDD) is considered for the 
analysis of numerical properties in SIGNAL programs. While 
the main idea is similar to that of this paper, the choice of 
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SMT solvers appears however more judicious. First, in IDDs, 
intervals are only defined on integers. As a result, to deal 
with other numerical types such as reals, IDDs require a 
prior encoding into integers. With SMT solvers, a wide range 
of arithmetic theories are made possible, which allows a more 
expressive analysis without much effort compared to IDDs. 
Second, from a practical point of view, the integration of IDDs 
in the SIGNAL compiler is more difficult since it requires a 
very careful coupling with the other data structures used 
during the static analysis. One important question is how 
to make efficient and costless the management of binary 
decision diagrams (BDDs), which are part of IDDs and are 
already present in the compiler. In this paper, we rather 
consider the modular solution shown in Fig. 1.

The optimization of synchronous programs described as 
synchronous guarded actions is studied in [21]. From such 
descriptions, extended finite state machines (EFSMs) are 
generated, in which each state is associated with dataflow 
guarded actions to be executed in this state. EFSMs make 
explicit the controlflow of the sequential code to be generated 
from input synchronous programs (while the dataflow part 
is captured symbolically). Based on EFSMs, authors use an 
SMT solver to check the validity of guards. Valid guards lead 
to actions that are executed every time, while invalid guards 
refer to actions that are never executed, i.e., dead code. Our 
solution is similar to this approach. However, the abstraction 
we consider for SMT reasoning covers both the control part, 
i.e., clocks, and the data part, i.e., values.

Finally, in [22], [23], authors address the static analysis 
and code generation for applications defined in MRICDF, 
which is a visual actor-oriented polychronous formalism, 
strongly inspired by SIGNAL. The static analysis in 
MRICDF also relies on a Boolean encoding of specifications, 
thus ignoring non-Boolean properties. In [22], [23], an SMT-
based implementation of this static analysis is proposed as 
an efficient alternative to the initial implementation using 
a prime implicant generator. This implementation showed 
a noticeable speed-up. The combined numerical-Boolean 
abstraction proposed in the current paper can be seen 
as one major improvement applicable to this SMT-based 

implementation, as for SIGNAL.

3.	 Overview of Signal Language
SIGNAL [4] [24] is a data-flow relational language 

that handles unbounded series of typed values (xt)tÎN, called 
signals, implicitly indexed by discrete time, and denoted as 
x. For instance, a signal can be either of Boolean or integer 
or real types. At any logical instant tÎN, a signal may 
be present, at which point it holds a value; or absent and 
denoted by ^ in the semantic notation. There is a particular 
type of signal called event. A signal of this type always 
holds the value true when it is present. The set of instants 
at which a signal x is present is referred to as its clock, noted 
x̂. A process is a system of equations over signals, specifying 
relations between values and clocks of the signals. A program 
is a process. Before presenting the primitive statements (or 
constructs) of SIGNAL, we introduce a denotational semantic 
model used to formally define these statements.

3.1	 A trace denotational semantic model

We present the basic elements of a trace semantics [25] 
for Signal. Let us consider a finite set X = {x1, . . . , xn} of typed 
variables called ports. For each xi Î X, Dxi

 is its domain of 
values. In addition, we have:
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tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

where ^ Ï D denotes the absence of value associated 
with a port at a given instant. The domains 
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 and  
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flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

  
are defined in a similar way with X1 Í X.

Definition 1 (events): Given a non-empty set X1 Í X, the 
set of events on X1, denoted by 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1, is the set of all applications 
(functions) m defined from X1 to 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

.
The expression m(x) = ^ means x holds no value while 

m(x) = v means that x holds the value v, and m(X1) = {m(x)/x 
Î X1}. The set of events on X1 is denoted by 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1 = X1®
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

, 
and the set of all possible events is therefore e = U X1 ÍX 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1
. 

By convention, the event on an empty set of ports is noted by 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

Æ
 = {Æ}.

Definition 2 (traces): Given a non-empty set X1 Í X, the 
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TABLE 1
Trace semantics for SIGNAL primitives.

process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥

{x1,...,xn,y}/ ∀t ∈ N,
(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and ∀i, T (t)(xi) �=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥
{x,y}/ ∀t ∈ N,

(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and T (t)(x) �=⊥ and T (t0)(y) = c and
(
(t ≥ t0) ⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))

with t0 = inf{t/T (t)(x) �=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) �=⊥} }

y:= x when b
{ T ∈ T ⊥

{x,b,y}/ ∀t ∈ N,
(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) �= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥

{x,y,z}/ ∀t ∈ N,
(
T (t)(x) �=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥
X1, [[P2]] ⊆ T ⊥

X2, { T ∈ T ⊥
X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}

P1 where x Assuming that [[P1]] ⊆ T ⊥
X1, {T ∈ T ⊥

X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

of T (t) to X2, noted X2.T : N → EX2 , satisfies:
∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x). �

We have ∅.T ∈ T∅ (which is a singleton).
We extend the notion of trace restriction to a

set T of traces on a set of variables X ⊆ XT as
follows: X.T = {X.T |T ∈ T }.

A process on a set of variables X1 ⊆ X
is a set of constrained traces on X1. In other
words, it is a subset of T ⊥

X1. The semantics of
statements defining a process P is denoted by
a set of traces [[P]].

3.2 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the
core language. The syntax of the constructs is
given below, with some informal explanations.
Their formal semantics according to the trace
model is summarized in Table 1.

• Instantaneous relations:
y:= R(x1,...,xn) where y, x1, ...,
xn are signals and R is a point-wise n-ary
relation/function extended canonically to
signals. This construct imposes y, x1,
..., xn i) to be simultaneously present,
i.e. ˆy = ˆx1 = ...= ˆxn (i.e. synchronous
signals), and ii) to hold values satisfying
y = R(x1,...,xn) whenever they
occur.

• Delay: y:= x $ 1 init c where y, x
are signals and c is an initialization con-
stant. It imposes i) x and y to be syn-
chronous, i.e. ˆy = ˆx, while ii) y must
hold the value carried by x on its previous
occurrence.

• Under-sampling: y:= x when b where
y, x are signals and b is of Boolean
type. This construct imposes i) y to be
present only when x is present and b
holds the value true, i.e. ˆy = ˆx ∩ [b]
(where [b] ∪ [¬b] = ˆb and [b] ∩ [¬b] = ∅),
while ii) y holds the value of x at those
logical instants. The sub-clock [b] (resp.
[¬b]) denotes the set of instants where b is
true (resp. false).

• Deterministic merging: z:= x default y
where x, y and z are signals. This con-
struct imposes i) z to be present when
either x or y are present, i.e. ˆz = ˆx ∪ ˆy,
while ii) z holds the value of x if present,
otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2

are processes. It denotes the union of equa-
tions defined in processes, leading to the
conjunction of the constraints associated
with these processes. A signal variable
cannot be assigned a value in P1 and P2

at the same time. SIGNAL adopts single
assignment. A variable defined in P1 can
be an input of P2, and vice versa. The
composition operator is commutative and
associative.

• Restriction (or Hiding): P ≡ P1 where x,
where P1 and x are respectively a process
and a signal. It states that x is a local signal
of process P1. The process P holds the same
constraints as P1.

The core language of SIGNAL is expressive
enough to derive new constructs of the

Table 1 : 
Trace semantics for SIGNAL primitives.
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

 : N ® 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1, is defined by 
the set of applications T defined from the set N of natural 
numbers to 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X1 .
The set of all possible traces is T^ = U X1ÍX 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

. Moreover, 
T

Æ
 = 1 = N ® 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

Æ
.

Definition 3 (trace restriction): Given a nonempty set  
X1 Í X, and a set X2 Ì X1 with a trace T being defined on X1, 
the restriction of T(t) to X2, noted X2.T : N ® 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X2
, satisfies:  
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TABLE 1
Trace semantics for SIGNAL primitives.

process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥

{x1,...,xn,y}/ ∀t ∈ N,
(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and ∀i, T (t)(xi) �=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥
{x,y}/ ∀t ∈ N,

(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and T (t)(x) �=⊥ and T (t0)(y) = c and
(
(t ≥ t0) ⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))

with t0 = inf{t/T (t)(x) �=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) �=⊥} }

y:= x when b
{ T ∈ T ⊥

{x,b,y}/ ∀t ∈ N,
(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) �= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥

{x,y,z}/ ∀t ∈ N,
(
T (t)(x) �=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥
X1, [[P2]] ⊆ T ⊥

X2, { T ∈ T ⊥
X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}

P1 where x Assuming that [[P1]] ⊆ T ⊥
X1, {T ∈ T ⊥

X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

of T (t) to X2, noted X2.T : N → EX2 , satisfies:
∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x). �

We have ∅.T ∈ T∅ (which is a singleton).
We extend the notion of trace restriction to a

set T of traces on a set of variables X ⊆ XT as
follows: X.T = {X.T |T ∈ T }.

A process on a set of variables X1 ⊆ X
is a set of constrained traces on X1. In other
words, it is a subset of T ⊥

X1. The semantics of
statements defining a process P is denoted by
a set of traces [[P]].

3.2 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the
core language. The syntax of the constructs is
given below, with some informal explanations.
Their formal semantics according to the trace
model is summarized in Table 1.

• Instantaneous relations:
y:= R(x1,...,xn) where y, x1, ...,
xn are signals and R is a point-wise n-ary
relation/function extended canonically to
signals. This construct imposes y, x1,
..., xn i) to be simultaneously present,
i.e. ˆy = ˆx1 = ...= ˆxn (i.e. synchronous
signals), and ii) to hold values satisfying
y = R(x1,...,xn) whenever they
occur.

• Delay: y:= x $ 1 init c where y, x
are signals and c is an initialization con-
stant. It imposes i) x and y to be syn-
chronous, i.e. ˆy = ˆx, while ii) y must
hold the value carried by x on its previous
occurrence.

• Under-sampling: y:= x when b where
y, x are signals and b is of Boolean
type. This construct imposes i) y to be
present only when x is present and b
holds the value true, i.e. ˆy = ˆx ∩ [b]
(where [b] ∪ [¬b] = ˆb and [b] ∩ [¬b] = ∅),
while ii) y holds the value of x at those
logical instants. The sub-clock [b] (resp.
[¬b]) denotes the set of instants where b is
true (resp. false).

• Deterministic merging: z:= x default y
where x, y and z are signals. This con-
struct imposes i) z to be present when
either x or y are present, i.e. ˆz = ˆx ∪ ˆy,
while ii) z holds the value of x if present,
otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2

are processes. It denotes the union of equa-
tions defined in processes, leading to the
conjunction of the constraints associated
with these processes. A signal variable
cannot be assigned a value in P1 and P2

at the same time. SIGNAL adopts single
assignment. A variable defined in P1 can
be an input of P2, and vice versa. The
composition operator is commutative and
associative.

• Restriction (or Hiding): P ≡ P1 where x,
where P1 and x are respectively a process
and a signal. It states that x is a local signal
of process P1. The process P holds the same
constraints as P1.

The core language of SIGNAL is expressive
enough to derive new constructs of the

t Î N; 
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TABLE 1
Trace semantics for SIGNAL primitives.

process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥

{x1,...,xn,y}/ ∀t ∈ N,
(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and ∀i, T (t)(xi) �=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥
{x,y}/ ∀t ∈ N,

(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) �=⊥ and T (t)(x) �=⊥ and T (t0)(y) = c and
(
(t ≥ t0) ⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))

with t0 = inf{t/T (t)(x) �=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) �=⊥} }

y:= x when b
{ T ∈ T ⊥

{x,b,y}/ ∀t ∈ N,
(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) �= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥

{x,y,z}/ ∀t ∈ N,
(
T (t)(x) �=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥
X1, [[P2]] ⊆ T ⊥

X2, { T ∈ T ⊥
X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}

P1 where x Assuming that [[P1]] ⊆ T ⊥
X1, {T ∈ T ⊥

X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

of T (t) to X2, noted X2.T : N → EX2 , satisfies:
∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x). �

We have ∅.T ∈ T∅ (which is a singleton).
We extend the notion of trace restriction to a

set T of traces on a set of variables X ⊆ XT as
follows: X.T = {X.T |T ∈ T }.

A process on a set of variables X1 ⊆ X
is a set of constrained traces on X1. In other
words, it is a subset of T ⊥

X1. The semantics of
statements defining a process P is denoted by
a set of traces [[P]].

3.2 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the
core language. The syntax of the constructs is
given below, with some informal explanations.
Their formal semantics according to the trace
model is summarized in Table 1.

• Instantaneous relations:
y:= R(x1,...,xn) where y, x1, ...,
xn are signals and R is a point-wise n-ary
relation/function extended canonically to
signals. This construct imposes y, x1,
..., xn i) to be simultaneously present,
i.e. ˆy = ˆx1 = ...= ˆxn (i.e. synchronous
signals), and ii) to hold values satisfying
y = R(x1,...,xn) whenever they
occur.

• Delay: y:= x $ 1 init c where y, x
are signals and c is an initialization con-
stant. It imposes i) x and y to be syn-
chronous, i.e. ˆy = ˆx, while ii) y must
hold the value carried by x on its previous
occurrence.

• Under-sampling: y:= x when b where
y, x are signals and b is of Boolean
type. This construct imposes i) y to be
present only when x is present and b
holds the value true, i.e. ˆy = ˆx ∩ [b]
(where [b] ∪ [¬b] = ˆb and [b] ∩ [¬b] = ∅),
while ii) y holds the value of x at those
logical instants. The sub-clock [b] (resp.
[¬b]) denotes the set of instants where b is
true (resp. false).

• Deterministic merging: z:= x default y
where x, y and z are signals. This con-
struct imposes i) z to be present when
either x or y are present, i.e. ˆz = ˆx ∪ ˆy,
while ii) z holds the value of x if present,
otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2

are processes. It denotes the union of equa-
tions defined in processes, leading to the
conjunction of the constraints associated
with these processes. A signal variable
cannot be assigned a value in P1 and P2

at the same time. SIGNAL adopts single
assignment. A variable defined in P1 can
be an input of P2, and vice versa. The
composition operator is commutative and
associative.

• Restriction (or Hiding): P ≡ P1 where x,
where P1 and x are respectively a process
and a signal. It states that x is a local signal
of process P1. The process P holds the same
constraints as P1.

The core language of SIGNAL is expressive
enough to derive new constructs of the

x2 X2.T (t)(x) = T(t)(x).			     
We have Æ.T Î T 

Æ
 (which is a singleton).

We extend the notion of trace restriction to a set T of traces 
on a set of variables X Í XT as follows: X.T = {X.T|T Î T }.

A process on a set of variables X1 Í X is a set of 
constrained traces on X1. In other words, it is a subset of  

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

. The semantics of statements defining a process P is 
denoted by a set of traces [P].

3.2	 Primitive constructs of the language
SIGNAL relies on six primitive constructs: the core 

language. The syntax of the constructs is given below, 
with some informal explanations. Their formal semantics 
according to the trace model is summarized in Table 1.
�� Instantaneous relations: y:= R(x1,...,xn) where 

y, x1, ..., xn are signals and R is a point-wise 
n-ary relation/function extended canonically to signals. 
This construct imposes y, x1, ..., xn i) to be 
simultaneously present, i.e. ˆy = ˆx1 = ...= ˆxn (i.e. 
synchronous signals), and ii) to hold values satisfying y 
= R(x1,...,xn) whenever they occur.

�� Delay: y:= x $ 1 init c where y, x are signals and 
c is an initialization constant. It imposes i) x and y to 
be synchronous, i.e. ˆy = ˆx, while ii) y must hold the 
value carried by x on its previous occurrence.

�� Under-sampling: y:= x when b where y, x are signals 
and b is of Boolean type. This construct imposes i) y to 
be present only when x is present and b holds the value 
true, i.e. ˆy = ˆx Ç [b] (where [b] È [Øb] = ˆb and [b] Ç 
[Øb] = Ø), while ii) y holds the value of x at those logical 
instants. The sub-clock [b] (resp. [Øb]) denotes the set of 
instants where b is true (resp. false).

�� Deterministic merging: z:= x default y where x, y and 
z are signals. This construct imposes i) z to be present 
when either x or y are present, i.e. ˆz = ˆx È ˆy, while 
ii) z holds the value of x if present, otherwise that of y.

�� Composition: P º P1|P2 where P1 and P2 are processes. 
It denotes the union of equations defined in processes, 
leading to the conjunction of the constraints associated 
with these processes. A signal variable cannot be 
assigned a value in P1 and P2 at the same time. SIGNAL 
adopts single assignment. A variable defined in P1 can be 
an input of P2, and vice versa. The composition operator 
is commutative and associative.

�� Restriction (or Hiding): P º P1 where x, where P1 and x 
are respectively a process and a signal. It states that x is 
a local signal of process P1. The process P holds the same 
constraints as P1.

�� The core language of SIGNAL is expressive enough to 
derive new constructs of the language for programming 
comfort and structuring. In particular, SIGNAL allows 
one to explicitly manipulate clocks through some derived 
constructs that can be rewritten in terms of primitive 
ones. For instance, the clock extraction statement y:= 
ˆx, meaning y is defined as the clock of x, is equivalent 
to y:= (x = x) in the core language. A similar statement 
y:= when b, defining y as the set of instants where the 
Boolean signal b is present and true, is equivalent to 
y:= b when b. The clock union y:= x1 ˆ+ x2, rewritten 
as y:= ˆx1 default ˆx2, denotes the set of instants at 
which at least a signal xi occurs. In the same way, clock 
intersection y:= x1 ˆ�* x2 and difference y:= x1 ˆ– x2 
are respectively defined as: y:= ˆx1 when ˆx2 and y:= 
when(not(ˆx2) default ˆx1). The synchronizer x1 ˆ= 
x2 that constrains x1 and x2 to have the same clock, is 
rewritten as (| x:= ˆx1 = ˆx2 |) where x. The empty 
clock is denoted by ˆ0.

�� For syntactical convenience, SIGNAL enables a modular 
definition of processes by providing a notion of subprocess 
(or local process). The statement P1 where P2, where P1 
and P2 are processes, denotes the fact that the latter 
process is a subprocess of the former process. Then, the 
body of P

1
, i.e., its associated set of equations, contains 

(at least) a call to process P2. The compilation process 
of SIGNAL basically inlines the body of P2 in P1 (with 
variable substitution). Note that a process P1 may have 
more than one subprocess, and those subprocesses may 
have themselves sub-subprocesses, ad infinitum.

3.3	 Example: a bathtub model in Signal
The simple SIGNAL process shown in Fig. 2 specifies the 

status of a bathtub [15]. It has no input signal (line 02), but 
has three output signals (line 03).

The signal level, defined at line 04, reflects the 
water level in the bathtub at any instant. It is determined 
by considering two signals, faucet and pump, which are 
respectively used to increase and decrease the water level. 
These signals are increased by one under some specific 
conditions (lines 06 and 08), in order to maintain the water 
level in a suitable range of values.
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language for programming comfort and
structuring. In particular, SIGNAL allows one
to explicitly manipulate clocks through some
derived constructs that can be rewritten in
terms of primitive ones. For instance, the clock
extraction statement y:= ˆx, meaning y is
defined as the clock of x, is equivalent to
y:= (x = x) in the core language. A similar
statement y:= when b, defining y as the set of
instants where the Boolean signal b is present
and true, is equivalent to y:= b when b.
The clock union y:= x1 ˆ+ x2, rewritten as
y:= ˆx1 default ˆx2, denotes the set of
instants at which at least a signal xi occurs.
In the same way, clock intersection y:= x1
ˆ∗ x2 and difference y:= x1 ˆ− x2 are
respectively defined as: y:= ˆx1 when ˆx2
and y:= when(not(ˆx2) default ˆx1).
The synchronizer x1 ˆ= x2 that constrains x1
and x2 to have the same clock, is rewritten
as (| x:= ˆx1 = ˆx2 |) where x. The
empty clock is denoted by ˆ0.

For syntactical convenience, SIGNAL enables
a modular definition of processes by provid-
ing a notion of subprocess (or local process).
The statement P1 where P2, where P1 and P2

are processes, denotes the fact that the latter
process is a subprocess of the former process.
Then, the body of P1, i.e., its associated set of
equations, contains (at least) a call to process
P2. The compilation process of SIGNAL basi-
cally inlines the body of P2 in P1 (with variable
substitution). Note that a process P1 may have
more than one subprocess, and those subpro-
cesses may have themselves sub-subprocesses,
ad infinitum.

3.3 Example: a bathtub model in SIGNAL

The simple SIGNAL process shown in Fig. 2
specifies the status of a bathtub [15]. It has no
input signal (line 02), but has three output
signals (line 03).

The signal level, defined at line 04, reflects
the water level in the bathtub at any instant.
It is determined by considering two signals,
faucet and pump, which are respectively used
to increase and decrease the water level. These
signals are increased by one under some spe-
cific conditions (lines 06 and 08), in order to

----------------------------------------------------
01:process Bathtub =
02:(?
03: ! integer level; boolean alarm, ghost_alarm; )
04:(|(| level := zlevel + faucet - pump
05: | zlevel := level$1 init 1
06: | faucet := zfaucet + (1 when zlevel <= 4)
07: | zfaucet := faucet$1 init 0
08: | pump := zpump + (1 when zlevel >= 7)
09: | zpump := pump$1 init 0 |)
10: |(| overflow := level >= 9
11: | scarce := 0 >= level
12: | alarm := scarce or overflow
13: | ghost_alarm:= (true when scarce when overflow)
14 default false |)|)
15: where
16: integer zlevel,zfaucet,zpump,faucet,pump;
17: boolean overflow,scarce;
18:end;
----------------------------------------------------

Fig. 2. A bathtub model in SIGNAL.

maintain the water level in a suitable range of
values.

An alarm signal is defined at line 12 when-
ever the water overflows (line 10) or becomes
scarce (line 11) in the bathtub. An additional
“ghost” alarm is defined at line 13/14, which
is not expected to occur. Here, it is just intro-
duced to illustrate one limitation of the static
analysis of SIGNAL. The clock of this signal
is not completely specified in Bathtub. As
stated in the previous section, this clock is
the union of those associated with the two
arguments of the default operator. The clock
of the left argument is exactly known. The
clock of the right-hand one is contextual because
the argument is a constant (that is, a constant
signal is always available whenever required
by its context of usage): it is equal to the
difference of ghost_alarm’s clock and first
argument’s clock. Since, this difference cannot
be defined exactly from the program, further
clock constraints on ghost_alarm will be re-
quired from the environment of Bathtub for
an execution.

4 A LIMITATION IN SIGNAL COMPILER

The static analysis of SIGNAL programs, re-
ferred to as clock calculus, primarily aims at
proving the consistency of clock relations as
well as the absence of cyclic data dependencies
induced by program definition. This is neces-
sary in order to prove the reactivity and the
determinism of a modeled system. For instance,

Fig. 2 : A bathtub model in SIGNAL.
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An alarm signal is defined at line 12 whenever the 
water overflows (line 10) or becomes scarce (line 11) in the 
bathtub. An additional “ghost” alarm is defined at line 13/14, 
which is not expected to occur. Here, it is just introduced to 
illustrate one limitation of the static analysis of SIGNAL. The 
clock of this signal is not completely specified in Bathtub. As 
stated in the previous section, this clock is the union of those 
associated with the two arguments of the default operator. 
The clock of the left argument is exactly known. The clock 
of the right-hand one is contextual because the argument 
is a constant (that is, a constant signal is always available 
whenever required by its context of usage): it is equal to the 
difference of ghost_alarm’s clock and first argument’s 
clock. Since, this difference cannot be defined exactly from the 
program, further clock constraints on ghost_alarm will be 
required from the environment of Bathtub for an execution.

4.	 A Limitation In Signal Compiler
The static analysis of SIGNAL programs, referred to 

as clock calculus, primarily aims at proving the consistency 
of clock relations as well as the absence of cyclic data 
dependencies induced by program definition. This is 
necessary in order to prove the reactivity and the determinism 
of a modeled system. For instance, the presence of empty 
clocks in a program reduces its reactivity since the concerned 
signals are always absent. Unless such behaviors are 
absolutely required, they have to be avoided, in particular for 
the reactivity of embedded realtime systems. Determinism is 
characterized by the inference of a single master clock from 
a program. All system events are observed according to this 
clock. Another property is clock mutual exclusion, which 
ensures some events never occur at the same time.

In SIGNAL, clocks are fundamentally the main means to 
express control (synchronizations between signals). Together 
with their associated relations, they are formalized through 
a clock algebra [6]. In particular, the set of clocks associated 
with set inclusion forms a lattice. Based on clock inclusion, 
the SIGNAL compiler computes a clock hierarchy on which 
the automatic code generation strongly relies . However, 
for the under-sampling construct, remember that the clock 
of the Boolean expression b is partitioned into [b] and [Øb], 
which are referred to as condition-clocks. If b is defined by a 
numerical expression such as an integer comparison, [b] and 
[Øb] are seen as black boxes when compared separately to 
other clock expressions. This reduces the power of the clock 
calculus analysis whenever a program contains numerical 
expressions.

4.1	 Clock analysis for the bathtub model

Fig. 3 partially shows the result of the clock calculus 
generated automatically by the compiler in POLYCHRONY. 
Here, we focus on two issues that the clock analysis was 
not able to fix adequately. First, a clock constraint is 
generated, stating that signals CLK_level, CLK_zfaucet 
and CLK_zpump must have the same clock (lines 05–07), 
while signals CLK_zfaucet and CLK_zpump have exclusive 
clocks (lines 03–04). Second, at line 11, the right-hand side 

of the synchronization equation about CLK_ghost_alarm 
should be (not CLK_29) since the clock CLK_36 is empty by 
definition (line 10).

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 8

the presence of empty clocks in a program re-
duces its reactivity since the concerned signals
are always absent. Unless such behaviors are
absolutely required, they have to be avoided, in
particular for the reactivity of embedded real-
time systems. Determinism is characterized by
the inference of a single master clock from a
program. All system events are observed ac-
cording to this clock. Another property is clock
mutual exclusion, which ensures some events
never occur at the same time.

In SIGNAL, clocks are fundamentally the
main means to express control (synchroniza-
tions between signals). Together with their as-
sociated relations, they are formalized through
a clock algebra [6]. In particular, the set of
clocks associated with set inclusion forms a
lattice. Based on clock inclusion, the SIGNAL
compiler computes a clock hierarchy on which
the automatic code generation strongly relies
. However, for the under-sampling construct,
remember that the clock of the Boolean expres-
sion b is partitioned into [b] and [¬b], which
are referred to as condition-clocks. If b is defined
by a numerical expression such as an integer
comparison, [b] and [¬b] are seen as black boxes
when compared separately to other clock ex-
pressions. This reduces the power of the clock
calculus analysis whenever a program contains
numerical expressions.

4.1 Clock analysis for the bathtub model

-----------------------------------------------------
01:(| CLK_level := ˆlevel
02: | CLK_level ˆ= alarm ˆ= zlevelˆ= faucetˆ= pump
02b: ˆ= overflow ˆ= scarce
03: | CLK_zfaucet ˆ= when (zlevel<=4)
04: | CLK_zpump ˆ= when (zlevel>=7)
05: | (| CLK_level ˆ= CLK_zpump
06: | CLK_level ˆ= CLK_zfaucet
07: |)%**WARNING: Clocks constraints%
08: | CLK_22 := when level>=9
09: | CLK_25 := when 0>=level
10: | CLK_36 := CLK_22 ˆ* CLK_25
11: | (| CLK_ghost_alarm ˆ= CLK_36 default (not CLK_29)
12: | CLK_29 := CLK_ghost_alarm ˆ- CLK_36
13: | (| ghost_alarm := CLK_36 default (not CLK_29)
14: |) |) ... |)
-----------------------------------------------------

Fig. 3. A sketch of clock calculus.

Fig. 3 partially shows the result of the clock
calculus generated automatically by the com-
piler in POLYCHRONY. Here, we focus on two
issues that the clock analysis was not able

to fix adequately. First, a clock constraint is
generated, stating that signals CLK_level,
CLK_zfaucet and CLK_zpump must have
the same clock (lines 05–07), while signals
CLK_zfaucet and CLK_zpump have exclu-
sive clocks (lines 03–04). Second, at line 11,
the right-hand side of the synchronization
equation about CLK_ghost_alarm should be
(not CLK_29) since the clock CLK_36 is
empty by definition (line 10).

The previous two issues illustrate typical
limitations of the Boolean abstraction in the
clock calculus. This does not enable to verify
simple static properties of a program, such
as clock exclusion or emptiness, since numeri-
cal expressions are not suitably abstracted. A
more expressive clock analysis would detect
the fact that CLK_level, CLK_zfaucet and
CLK_zpump must be empty clocks in order to
satisfy the clock constraints of the Bathtub
process. Section 7 discusses another issue about
the hierarchical control of component activa-
tions.

4.2 Code generation of the bathtub model
The above limitations also have an important
impact on the quality of the code generated
automatically by the compiler since it relies on
the clock hierarchy resulting from the analysis.
Fig. 4 sketches a C code generated automati-
cally based on the clock analysis.

---------------------------------------------------
01: if (C_level)
02: { C_zfaucet = level <= 4;
03: C_zpump = level >= 7;
04: if ((C_zpump) != (C_level))
04b: polychrony_exception("..." );
05: if ((C_zfaucet) != (C_level))
05b polychrony_exception(" ... " );
06: if (C_zfaucet) { faucet = zfaucet + 1; }
07: if (C_zpump) { pump = zpump + 1; }
08: level = (level + faucet) - pump;
09: overflow = level >= 9; scarce = 0 >= level;
10: alarm = scarce || overflow; ...

/*production of level and alarm*/
11: C_106 = overflow && scarce;} ...
12: C_109 = (C_level ? C_106 : FALSE);
13: if (C_ghost_alarm)
14: { if (C_109) ghost_alarm = TRUE;
14b: else ghost_alarm = FALSE;
15: ... /* production of ghost_alarm */ } ...
---------------------------------------------------

Fig. 4. A sketch of the generated C code.

The previous clock constraint is imple-
mented by exception statements (lines 04–05).

Fig. 3 : A sketch of clock calculus

The previous two issues illustrate typical limitations of 
the Boolean abstraction in the clock calculus. This does not 
enable to verify simple static properties of a program, such 
as clock exclusion or emptiness, since numerical expressions 
are not suitably abstracted. A more expressive clock analysis 
would detect the fact that CLK_level, CLK_zfaucet and 
CLK_zpump must be empty clocks in order to satisfy the 
clock constraints of the Bathtub process. Section 7 discusses 
another issue about the hierarchical control of component 
activations.

4.2	 Code generation of the bathtub model

The above limitations also have an important impact 
on the quality of the code generated automatically by the 
compiler since it relies on the clock hierarchy resulting from 
the analysis. Fig. 4 sketches a C code generated automatically 
based on the clock analysis.
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the presence of empty clocks in a program re-
duces its reactivity since the concerned signals
are always absent. Unless such behaviors are
absolutely required, they have to be avoided, in
particular for the reactivity of embedded real-
time systems. Determinism is characterized by
the inference of a single master clock from a
program. All system events are observed ac-
cording to this clock. Another property is clock
mutual exclusion, which ensures some events
never occur at the same time.

In SIGNAL, clocks are fundamentally the
main means to express control (synchroniza-
tions between signals). Together with their as-
sociated relations, they are formalized through
a clock algebra [6]. In particular, the set of
clocks associated with set inclusion forms a
lattice. Based on clock inclusion, the SIGNAL
compiler computes a clock hierarchy on which
the automatic code generation strongly relies
. However, for the under-sampling construct,
remember that the clock of the Boolean expres-
sion b is partitioned into [b] and [¬b], which
are referred to as condition-clocks. If b is defined
by a numerical expression such as an integer
comparison, [b] and [¬b] are seen as black boxes
when compared separately to other clock ex-
pressions. This reduces the power of the clock
calculus analysis whenever a program contains
numerical expressions.

4.1 Clock analysis for the bathtub model

-----------------------------------------------------
01:(| CLK_level := ˆlevel
02: | CLK_level ˆ= alarm ˆ= zlevelˆ= faucetˆ= pump
02b: ˆ= overflow ˆ= scarce
03: | CLK_zfaucet ˆ= when (zlevel<=4)
04: | CLK_zpump ˆ= when (zlevel>=7)
05: | (| CLK_level ˆ= CLK_zpump
06: | CLK_level ˆ= CLK_zfaucet
07: |)%**WARNING: Clocks constraints%
08: | CLK_22 := when level>=9
09: | CLK_25 := when 0>=level
10: | CLK_36 := CLK_22 ˆ* CLK_25
11: | (| CLK_ghost_alarm ˆ= CLK_36 default (not CLK_29)
12: | CLK_29 := CLK_ghost_alarm ˆ- CLK_36
13: | (| ghost_alarm := CLK_36 default (not CLK_29)
14: |) |) ... |)
-----------------------------------------------------

Fig. 3. A sketch of clock calculus.

Fig. 3 partially shows the result of the clock
calculus generated automatically by the com-
piler in POLYCHRONY. Here, we focus on two
issues that the clock analysis was not able

to fix adequately. First, a clock constraint is
generated, stating that signals CLK_level,
CLK_zfaucet and CLK_zpump must have
the same clock (lines 05–07), while signals
CLK_zfaucet and CLK_zpump have exclu-
sive clocks (lines 03–04). Second, at line 11,
the right-hand side of the synchronization
equation about CLK_ghost_alarm should be
(not CLK_29) since the clock CLK_36 is
empty by definition (line 10).

The previous two issues illustrate typical
limitations of the Boolean abstraction in the
clock calculus. This does not enable to verify
simple static properties of a program, such
as clock exclusion or emptiness, since numeri-
cal expressions are not suitably abstracted. A
more expressive clock analysis would detect
the fact that CLK_level, CLK_zfaucet and
CLK_zpump must be empty clocks in order to
satisfy the clock constraints of the Bathtub
process. Section 7 discusses another issue about
the hierarchical control of component activa-
tions.

4.2 Code generation of the bathtub model
The above limitations also have an important
impact on the quality of the code generated
automatically by the compiler since it relies on
the clock hierarchy resulting from the analysis.
Fig. 4 sketches a C code generated automati-
cally based on the clock analysis.

---------------------------------------------------
01: if (C_level)
02: { C_zfaucet = level <= 4;
03: C_zpump = level >= 7;
04: if ((C_zpump) != (C_level))
04b: polychrony_exception("..." );
05: if ((C_zfaucet) != (C_level))
05b polychrony_exception(" ... " );
06: if (C_zfaucet) { faucet = zfaucet + 1; }
07: if (C_zpump) { pump = zpump + 1; }
08: level = (level + faucet) - pump;
09: overflow = level >= 9; scarce = 0 >= level;
10: alarm = scarce || overflow; ...

/*production of level and alarm*/
11: C_106 = overflow && scarce;} ...
12: C_109 = (C_level ? C_106 : FALSE);
13: if (C_ghost_alarm)
14: { if (C_109) ghost_alarm = TRUE;
14b: else ghost_alarm = FALSE;
15: ... /* production of ghost_alarm */ } ...
---------------------------------------------------

Fig. 4. A sketch of the generated C code.

The previous clock constraint is imple-
mented by exception statements (lines 04–05).

Fig. 4 : A sketch of the generated C code

The previous clock constraint is implemented by 
exception statements (lines 04–05). This can be seen currently 
as the way the compiler alerts a user that it was not able to 
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solve the clock constraints related to the exception statements 
generated from a SIGNAL program. Of course, such a C code 
is only useful for simulation.

Now, if the above C code is to be embedded in some 
real-life system, its quality could be significantly improved 
by noticing that since CLK_level, CLK_zfaucet and CLK_
zpump should be empty clocks, statements between lines 02 
and 11 are never executed (and consequently, the exception 
statements are useless). As a result, the generated C code 
shown in Fig. 4 contains dead code. In a similar way, the if 
statement at line 14/14b also contains a dead code since the 
variable ghost_alarm is always set to false.

5.	 Our Proposal for a Combined Numerical- 
	 Boolean Abstraction

We define an abstraction for SIGNAL program analysis. 
All considered programs are supposed to be in the syntax of 
the core language.

Our abstraction for program P is a logical formula F 
on the variables and clocks of P in a decidable theory (here, 
linear arithmetic of integers or reals) such that at any logical 
instant in an execution of P, the current values of signals and 
clocks satisfy F. In other words, at any instant in an execution 
of P, its variables and clocks are a model of F.

5.1	 Notations and restrictions

Let P be a SIGNAL program. We denote by XP = {x1, x2 
. . . xn} the set of all variables of P. Here, we consider scalar 
variables only. With each variable xi (numerical, Boolean or 
event), we associate two abstract values: x̂ i and x~i encoding 
respectively its clock and values.

The abstract semantics of the program, is a set of couples 
of the form (^, ~) where:
�� function ^: XP ® B = {true, false} assigns to a variable a 

Boolean value;
�� function  ~ : XP ® R È B assigns to a variable a numerical 

or Boolean value.
This abstract set is represented as a first order logic 

formula FP in which atoms are x~i and x̂ i , and the operators 
are usual logic operators and integer comparison functions.

5.2	 Abstraction for expressions

Our abstraction strongly relies on an abstraction for 
expressions, detailed in the sequel.

We restrict ourselves to the following subset of numerical 
and Boolean expressions in SIGNAL statements. For sake of 
simplicity and readability, here we simplify the abstraction 
previously provided in [11].
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This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . . ), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

where the symbols cst and var respectively denote a 
constant and a signal variable (x, y, . . . ), 
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This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . . ), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

Î {<, >, = }, 
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This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . . ), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

Î  

{ +, –} and 
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This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . . ), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

Î { /, *}
The abstraction of a given numerical SIGNAL expression 

nexp (resp a Boolean expression bexp) will be a numerical 
expression (resp. a Boolean expression) that expresses its 
behavior.

We define an abstraction f for these expressions by 
induction on their structure as follows:
�� atoms: given a signal x, if x is of Boolean or numeric type, 

f (x) = ~x; if x is of event type, f (x) = true,
�� f (true) = true and f (false) = false, and if c is a 

numerical constant, f (c) = c,
�� if b1 and b2 denote Boolean expressions, then f(b1 and b2) 

= f (b1) Ù f (b2); f (b1 or b2) = f (b1) Ú f (b2); f (not b1) 
= Øf (b1),

�� if n1 and n2 denote numerical expressions, then  
f(n1 < n2) = f(n1) < f(n2), f(n1 > n2) = f(n1) > f(n2) and f(n1 
= n2) = f(n1) = f(n2).

�� if n1 and n2 denote numerical expressions, then f(n1 + 
n2) = f(n1) + f(n2) and f(n1 – n2) = f(n1) – (n2)

�� if n is a numerical expression and c a constant, then  
f(c * n) = c.f(n) and f (n / c) = 
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This can be seen currently as the way the com-
piler alerts a user that it was not able to solve
the clock constraints related to the exception
statements generated from a SIGNAL program.
Of course, such a C code is only useful for
simulation.

Now, if the above C code is to be embedded
in some real-life system, its quality could be
significantly improved by noticing that since
CLK_level, CLK_zfaucet and CLK_zpump
should be empty clocks, statements between
lines 02 and 11 are never executed (and conse-
quently, the exception statements are useless).
As a result, the generated C code shown in
Fig. 4 contains dead code. In a similar way, the
if statement at line 14/14b also contains a
dead code since the variable ghost_alarm is
always set to false.

5 OUR PROPOSAL FOR A COMBINED
NUMERICAL-BOOLEAN ABSTRACTION

We define an abstraction for SIGNAL program
analysis. All considered programs are sup-
posed to be in the syntax of the core language.

Our abstraction for program P is a logical
formula Φ on the variables and clocks of P
in a decidable theory (here, linear arithmetic
of integers or reals) such that at any logical
instant in an execution of P , the current values
of signals and clocks satisfy Φ. In other words,
at any instant in an execution of P , its variables
and clocks are a model of Φ.

5.1 Notations and restrictions
Let P be a SIGNAL program. We denote by
XP = {x1, x2 . . . xn} the set of all variables of
P. Here, we consider scalar variables only. With
each variable xi (numerical, Boolean or event),
we associate two abstract values: x̂i and x̃i

encoding respectively its clock and values.
The abstract semantics of the program, is a

set of couples of the form (̂, ˜) where:
• function ̂: XP → B = {true, false} assigns

to a variable a Boolean value;
• function ˜ : XP → R ∪ B assigns to a

variable a numerical or Boolean value.
This abstract set is represented as a first order
logic formula ΦP in which atoms are x̃i and x̂i,

and the operators are usual logic operators and
integer comparison functions.

5.2 Abstraction for expressions
Our abstraction strongly relies on an abstrac-
tion for expressions, detailed in the sequel.

We restrict ourselves to the following sub-
set of numerical and Boolean expressions in
SIGNAL statements. For sake of simplicity and
readability, here we simplify the abstraction
previously provided in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp �� nexp

where the symbols cst and var respectively
denote a constant and a signal variable (x,
y, . . . ), ��∈ {<, >, = }, ♦ ∈ { +, -} and
♦′ ∈ { /, *}

The abstraction of a given numerical SIGNAL
expression nexp (resp a Boolean expression
bexp) will be a numerical expression (resp. a
Boolean expression) that expresses its behavior.

We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean
or numeric type, φ(x) = x̃; if x is of event
type, φ(x) = true,

• φ(true) = true and φ(false) = false,
and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expres-
sions, then φ(b1 and b2) = φ(b1) ∧ φ(b2);
φ(b1 or b2) = φ(b1) ∨ φ(b2); φ(not b1) =
¬φ(b1),

• if n1 and n2 denote numerical expres-
sions, then φ(n1 < n2) = φ(n1) <
φ(n2), φ(n1 > n2) = φ(n1) > φ(n2) and
φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions,
then φ(n1 + n2) = φ(n1) + φ(n2) and
φ(n1 - n2) = φ(n1)− φ(n2)

• if n is a numerical expression and c a
constant, then φ(c * n) = c.φ(n) and
φ(n / c) = φ(n)

c
.

The φ function is used to compute numerical
and Boolean exact abstractions for our subset

.

The f function is used to compute numerical and 
Boolean exact abstractions for our subset of expressions. 
Some approximations will be made in case of other signal 
expressions such as multiplication of variables, or modulo (an 
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y < 10) be a Boolean 
expression. Its abstraction is f (b) = x~ + y~ = 4 Ù y~ < 10.

5.3	 Abstraction of SIGNAL primitive constructs

We define FP as the intersection of the abstractions of 
statements stmi of P:
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:





∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

where n is the number of statements composed in P.
Each F (stmi) will be a formula of quantifierfree linear 

integer arithmetic (QF_LIA) or quantifier-free linear real 
arithmetic (QF_LRA).

In the next, we distinguish two possible definitions of F 
for each primitive construct of SIGNAL, according to the type 
of signal y in each equation: (a) when y is of numerical type 
and (b) when y is of logical type.

Instantaneous relations: y: = R(x1, . . . ,xn). The 
abstraction F of instantaneous relations is defined as follows:
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

where R(x1,... xn) is denoted by either nexp or bexp.
These expressions express the equalities between clocks 
and values that are induced by SIGNAL semantics.

Delay: y:= x $ 1 init c. The abstraction F of the 
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delay construct is defined as follows:
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

The abstraction here only expresses the equalities 
between clocks. A better abstraction could be performed if 
the user (or a preanalysis) provides invariants for numerical 
variables. In that case, the global abstraction would be :
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

where invar(x~)[x~/y~] denotes the substitution of y~ in a 
formula that expresses a constraint on x’s values. Such an 
invariant can be a result of the methods proposed in [15] or 
[16].
�� Under-sampling: y:= x when b. The abstraction F of 

the under-sampling construct is defined as follows:
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

which expresses the fact that the signal y is present if 
and only if both signals b and x are present and b is true. The 
constraints on values are straightforward.
�� Deterministic merging: z:= x default y. The 

abstraction F of the deterministic merging construct is 
defined as follows:
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

The clock of variable y is the union of the clocks of x and 
z, and values are determined according to the presence of x.

Composition: P º P1|P2. The abstraction of the 
composition operator is defined as follows:
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

Restriction (or Hiding): P º P1 where x. The abstraction 
F of the restriction operator is defined as follows:
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of expressions. Some approximations will be
made in case of other signal expressions such
as multiplication of variables, or modulo (an
example will be found later in Section 7).

Example 1: Let b = (x + y = 4) and (y <
10) be a Boolean expression. Its abstraction is
φ(b) = x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of SIGNAL primitive con-
structs
We define ΦP as the intersection of the abstrac-
tions of statements stmi of P:

ΦP =
n∧
i

Φ(stmi)

where n is the number of statements composed
in P.

Each Φ(stmt) will be a formula of quantifier-
free linear integer arithmetic (QF LIA) or
quantifier-free linear real arithmetic (QF LRA).

In the next, we distinguish two possible def-
initions of Φ for each primitive construct of
SIGNAL, according to the type of signal y in
each equation: (a) when y is of numerical type
and (b) when y is of logical type.
• Instantaneous relations:
y:= R(x1,...,xn). The abstraction
Φ of instantaneous relations is defined as
follows:




∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧n
i=1(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either
nexp or bexp.
These expressions express the equalities be-
tween clocks and values that are induced by
SIGNAL semantics.

• Delay: y:= x $ 1 init c. The abstraction
Φ of the delay construct is defined as fol-
lows:

ŷ ⇔ x̂

The abstraction here only expresses the
equalities between clocks. A better abstrac-
tion could be performed if the user (or a pre-
analysis) provides invariants for numerical

variables. In that case, the global abstraction
would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitu-
tion of ỹ in a formula that expresses a con-
straint on x’s values. Such an invariant can
be a result of the methods proposed in [15]
or [16].

• Under-sampling: y:= x when b. The ab-
straction Φ of the under-sampling construct
is defined as follows:




(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is
present if and only if both signals b and x
are present and b is true. The constraints on
values are straightforward.

• Deterministic merging: z:= x default y.
The abstraction Φ of the deterministic merg-
ing construct is defined as follows:




(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the
clocks of x and z, and values are determined
according to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ
of the composition operator is defined as
follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The
abstraction Φ of the restriction operator is
defined as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1 (1)

This formula may be understood as follows.
The states of P are identical to the states of
P1, except that we have decided to ignore
the values of x̃ and x̂. Hence, we would
like to remove from ΦP1 all subformulas
containing x̃ or x̂. However, ΦP1 may imply

This formula may be understood as follows. The states of 
P are identical to the states of P1, except that we have decided 
to ignore the values of x~ and x̂. Hence, we would like to 
remove from FP1

 all subformulas containing x~ or x̂. However, 
FP1

 may imply other formulas which do not use x~ and x̂, and 
are also satisfied by all states of P. This extended formula 
is precisely $x~; $x̂ : FP1

 and may be found by a process of 
quantifier elimination. Conversely, it is obvious that a model 
of F can be extended to a model of FP1

 .
By applying the above rules, the following abstractions 

are obtained for derived constructs for clock manipulation:
��

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

 

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)
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∧ (ŷ ⇒ ỹ)
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)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

 
= true (as xi are events), and simplify the result.

��
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:
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∧
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)

∧
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)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

��
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

For the purpose of modularity, we also define the 
abstraction of processes containing subprocesses, such as in 
the statement P1 where P2, where P2 is a subprocess of P1. Let 
us assume the following : 

(i1, . . . , in) is the list of input parameters of P2,
o is a single2 output parameter of P2,
which represents the signature of P2. It follows that 

the abstraction FP2 is a formula composed of variables 
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

 To define the abstraction of P1 where P2, 
we first define the abstraction of process call: y := P2(x1, . . . , 
xn) in another process, here P1. The abstraction F (y := P2(x1, 
... , xn)) is defined as follows:
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

where 
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

 are fresh variables. This 
abstraction only relies on the previous signature of P2. Now, 
by using the previous abstraction, we finally define F (P1 
where P2) as follows:
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

which establishes the adequate relation between the formal 
parameters of P2 and the actual parameters defined in the 
function call within P1.

5.4	 Application to the bathtub example

By applying our abstraction to Bathtub (see Fig. 2), 
which is divided into P1 (lines 04 to 09) and P2 (lines 10 to 14) 
according to the process hierarchy, we obtain FBathtub = FP1

Ù 
FP2

 , where FP1
 equals to:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 11

other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

For FP2, we first rewrite equation at line 13/14 as follows:
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

2.	Here, we consider a single output only for the sake of simplicity. The same reasoning strictly applies for several outputs. 
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Then, we obtain that FP2 equals to:
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other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This
extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may be found by a process of quantifier
elimination. Conversely, it is obvious that a
model of Φ can be extended to a model of
ΦP1 .

By applying the above rules, the following
abstractions are obtained for derived constructs
for clock manipulation:
• Φ(y:= x1 ˆ+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒

ỹ). Here, we apply the default abstraction
rule with x̃1 = x̃2 = true (as xi are events), and
simplify the result.

• Φ(y:= x1 ˆ* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ˆ- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ˆ= x2) = x̂1 ⇔ x̂2

For the purpose of modularity, we also define
the abstraction of processes containing subpro-
cesses, such as in the statement P1 where P2,
where P2 is a subprocess of P1. Let assume the
following:

• (i1, ..., in) is the list of input parameters of
P2,

• o is a single2 output parameter of P2,
which represents the signature of P2. It follows
that the abstraction ΦP2 is a formula composed
of variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the ab-
straction of P1 where P2, we first define the
abstraction of process call: y := P2(x1, ..., xn)
in another process, here P1. The abstraction Φ(y
:= P2(x1, ..., xn)) is defined as follows:

(ŷ = r̂)∧(ỹ = r̃)∧
( ∧
i∈1..n

(x̂i = ẑi)
)
∧
( ∧
i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables.
This abstraction only relies on the previous
signature of P2. Now, by using the previous
abstraction, we finally define Φ(P1 where P2)
as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧
(r̂ = ô ∧ r̃ = õ)

∧
(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

2. Here, we consider a single output only for the sake
of simplicity. The same reasoning strictly applies for several
outputs.

which establishes the adequate relation be-
tween the formal parameters of P2 and the
actual parameters defined in the function call
within P1.

5.4 Application to the bathtub example
By applying our abstraction to Bathtub (see
Fig. 2), which is divided into P1 (lines 04 to 09)
and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1∧ΦP2 , where
ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
( ̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)

)

∧
( ̂zfaucet ⇒ f̃aucet = ( ˜zfaucet+ 1)

)
∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)
∧

(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2 , we first rewrite equation at line 13/14
as follows:

(| y1 := true when scarce
| y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

( ̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
( ˜overflow ⇔ (l̃evel ≥ 9)

)
∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

5.5 Concretisation
Let us recall that X = {x1, . . . xn} denotes the
set of all P variables. Intuitively, a valuation sat-
isfying Φ captures the numerical and Boolean
values of signals at a given logical instant.
Given a valuation v = (̂,˜), where all variables
have been assigned some values, we first con-
struct a set of events whose values are assigned
accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) =
if (x̂i = false) then ⊥ else x̃i}. The set of
all “valid” events is defined as Svalid(Φ) =

5.5	 Concretisation

Let us recall that X = {x1, . . . xn} denotes the set of all P 
variables. Intuitively, a valuation satisfying F captures the 
numerical and Boolean values of signals at a given logical 
instant. Given a valuation v = (^, ~), where all variables 
have been assigned some values, we first construct a set of 
events whose values are assigned accordingly: Svalid(v) = {S Î 
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part of IDDs and are already present in the
compiler. In this paper, we rather consider the
modular solution shown in Fig. 1.

The optimization of synchronous programs
described as synchronous guarded actions is
studied in [21]. From such descriptions, ex-
tended finite state machines (EFSMs) are gen-
erated, in which each state is associated with
dataflow guarded actions to be executed in
this state. EFSMs make explicit the control-
flow of the sequential code to be generated
from input synchronous programs (while the
dataflow part is captured symbolically). Based
on EFSMs, authors use an SMT solver to check
the validity of guards. Valid guards lead to
actions that are executed every time, while
invalid guards refer to actions that are never
executed, i.e., dead code. Our solution is simi-
lar to this approach. However, the abstraction
we consider for SMT reasoning covers both the
control part, i.e., clocks, and the data part, i.e.,
values.

Finally, in [22], [23], authors address the
static analysis and code generation for appli-
cations defined in MRICDF, which is a vi-
sual actor-oriented polychronous formalism,
strongly inspired by SIGNAL. The static analy-
sis in MRICDF also relies on a Boolean encod-
ing of specifications, thus ignoring non-Boolean
properties. In [22], [23], an SMT-based imple-
mentation of this static analysis is proposed as
an efficient alternative to the initial implemen-
tation using a prime implicant generator. This
implementation showed a noticeable speed-up.
The combined numerical-Boolean abstraction
proposed in the current paper can be seen as
one major improvement applicable to this SMT-
based implementation, as for SIGNAL.

3 OVERVIEW OF SIGNAL LANGUAGE

SIGNAL [4] [24] is a data-flow relational lan-
guage that handles unbounded series of typed
values (xt)t∈N, called signals, implicitly indexed
by discrete time, and denoted as x. For in-
stance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N,
a signal may be present, at which point it
holds a value; or absent and denoted by ⊥
in the semantic notation. There is a particular

type of signal called event. A signal of this
type always holds the value true when it is
present. The set of instants at which a signal
x is present is referred to as its clock, noted ˆx.
A process is a system of equations over signals,
specifying relations between values and clocks
of the signals. A program is a process. Before
presenting the primitive statements (or con-
structs) of SIGNAL, we introduce a denotational
semantic model used to formally define these
statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace seman-
tics [25] for SIGNAL. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X , Dxi

is its domain of values. In
addition, we have:

D =
n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ �∈ D denotes the absence of value
associated with a port at a given instant. The
domains D⊥

xi
and D⊥

X1
are defined in a similar

way with X1 ⊆ X .

Definition 1 (events): Given a non-empty set
X1 ⊆ X , the set of events on X1, denoted by
EX1, is the set of all applications (functions) m
defined from X1 to D⊥

X1
. �

The expression m(x) = ⊥ means x holds no
value while m(x) = v means that x holds the
value v, and m(X1) = {m(x)/x ∈ X1}. The set
of events on X1 is denoted by EX1 = X1 → D⊥

X1
,

and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an

empty set of ports is noted by E∅ = {∅}.

Definition 2 (traces): Given a non-empty set
X1 ⊆ X , the set of traces on X1, denoted
by T ⊥

X1 : N → EX1, is defined by the set of
applications T defined from the set N of natural
numbers to EX1 . �

The set of all possible traces is T ⊥ =⋃
X1⊆X T ⊥

X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction): Given a non-
empty set X1 ⊆ X , and a set X2 ⊂ X1 with
a trace T being defined on X1, the restriction

X|"i, S(i) = if (x̂ i = false) then ̂  else x~i}. The set of all “valid” 
events is defined as Svalid(F) = Èv|=F

 Svalid(v). Finally, the 
concretisation of F is the set of traces whose instantaneous 
values always verify F :

G(F) = {T Î TX|"t, T(t) Î Svalid(F)}		       (3)
Our abstraction is sound, in the sense that it preserves 

the behaviors of the abstracted programs: if a property is true 
on the abstraction, then it is also the case on the program. A 
proof of its soundness is given in [11].

5.6	 Properties

Let P be a SIGNAL process and F its abstraction. 
Assume that we can prove formulas of the form  
F   
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

, which is finite, and to scan it 
to identify interesting properties. For instance, the algorithm 
for finding empty clocks is to start from the set of all clocks, 
to examine each model in turn, removing a clock as soon as it 
appears to be true in the current model. This is the approach 
we have adopted in our implementation.

6.	 Implementation
We present an implementation of the previous 

abstraction and the way relevant properties are inferred. Our 
solution promotes a modular construction of this abstraction 
and its analysis.

6.1	 Tools

The implemented tools follow Fig. 1. The box referred 
to as “Abstraction of P” in this figure is achieved with the 
Sync2smt tool. Its output is given to an ad hoc SMT solver, 
which integrates the concretization of inferred properties.

Sync2smt (5kLOC in Ocaml) basically implements the 
translation developed in Section 5 : after a parsing phase, the 
internal representation of a SIGNAL program is translated 
into a bunch of smtlib3 files, including a special “driver” file. 
Such a file is used as an input to our ad hoc SMT solver. 
Note that our parser currently recognizes only a subpart 
of the grammar described in http://www.irisa.fr/espresso/
Polychrony/Signal-bnf.php.

There are two reasons for not using an off-the- shelf SMT 
solver like Yices or Z3. The first one is that we need more than 
a sat or unsat answer. Our solver must construct the set of all 
models of a satisfiable formula and return it for inspection. 
Usually, an SMT solver constructs just one model (this is 
enough for proving satisfiability), which can be retrieved 
or not depending on the solver. It is clear that our solver is 
less efficient than highly optimized softwares like Yices or 
Z3. However, since we trade just one call to a slow solver 
against many calls to a fast solver, the overall comparison 
is not obvious. Another point is that since the solver code is 
available to us, we have been able to implement the property 
search inside it, thus avoiding costly pretty printing and 
parsing.

Our SMT solver proceeds by constructing a semantic 
tableau [26], i.e., a tree whose nodes are decorated by 
subformulas of the root formula. A branch of the tree is closed 
if it contains a formula and its negation, or if the conjunction 
of its atomic formulas is unsatisfiable in the underlying 
theory, in our case, linear or integer programming. The tree 
construction rules are such that from each open branch, one 
can extract a model of the root formula. From then on, it is 
a simple matter to scan the open branches and extract clock 
properties.

6.2	 Modularity

While current SMT solvers are highly optimized tools, 
they may still take exponential time on large problems. It is 
therefore necessary to take advantage of the modular features 
of SIGNAL to improve the analysis efficiency. The key to this 
approach is formula (1), which allows the elimination of local 
variables when analyzing subprocesses.

Going from FP1
 to F in (1) is a process of quantifier 

elimination, which is trivial for booleans:
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6.2 Modularity

While current SMT solvers are highly opti-
mized tools, they may still take exponential
time on large problems. It is therefore necessary
to take advantage of the modular features of
SIGNAL to improve the analysis efficiency. The
key to this approach is formula (1), which
allows the elimination of local variables when
analyzing subprocesses.

Going from ΦP1 to Φ in (1) is a process
of quantifier elimination, which is trivial for
booleans:

∃b.Φ(b) ≡ Φ(true) ∨ Φ(false).

However, Φ usually contains many subformu-
las of the form x̂ ⇔ bexp (see Section 5.4 for
examples). Elimination of x̂ consists simply in
replacing it everywhere by bexp, a process akin
to Gaussian elimination.

There are many quantifier elimination algo-
rithms for reals, the simplest (but the less effi-
cient) being Fourier-Motzkin elimination [27].
Quantifier elimination for integers is much
more difficult, and may need the introduction
of other operators like integer division or mod-
ulo. To apply this method, our SMT solver has
been extended with a quantifier elimination
command, and several commands to manipu-
late a stack of formulas.

Let us consider the simple case of a program
of the form P1 where P2. From (2), the output
of SYNC2SMT consists first of the abstraction
of P2. A “driver” file first acquires the P2 file
and executes elimination of the local variables.
Another file contains the abstraction of P1,
augmented with a system of equations that
identifies the actual arguments of P2 in P1 to
the formal arguments of P2. The tool constructs
the conjunction of the two formulas, checks
satisfiability, and deduces clock properties from
the resulting models.

In more complex examples, one can apply
the same algorithm bottom-up to a tree of
processes. The properties found in this way
for the top process can be plugged top-down
into the subordinate processes. One may have
to use renaming to avoid symbol collision or
capture.

7 APPLICATION TO ILLUSTRATIVE EX-
AMPLES

We discuss the application of the previous
abstraction on sample SIGNAL programs, con-
sidered as basic patterns, for improving their
static analysis (Section 7.1) and the subsequent
automatic code generation (Section 7.2). Then,
we give a detailed illustration on the Bathtub
example (Section 7.3).

7.1 Some relevant program patterns
We present a few SIGNAL program patterns
for which our abstraction helps in detecting
some clocks anomalies. Such properties cannot
be detected currently by the SIGNAL compiler
because they involve numerical expressions,
which are not addressed by a Boolean abstrac-
tion. Our abstraction allows their easy detec-
tion.

For sake of simplicity, the illustrated pro-
grams are made small. But, the reader should
have in mind that such clock properties can
potentially occur in more complex programs.

7.1.1 Program patterns involving exclusive
clocks
The sample processes mentioned in this section
involve signals with exclusive clocks, i.e., sig-
nals that never occur at the same time.

1) In the following process Addition, the
signals aa and bb, respectively defined at
lines 05 and 06, never occur at the same
time, while the converse is necessary (ac-
cording to the semantics of instantaneous
functions in SIGNAL) for a correct addition
at line 04.
------------------------------------------------
01: process Addition =
02: ( ? integer a, b, treshold;
03: ! integer c; )
04: (| c := aa + bb
05: | aa := a when (treshold > 7)
06: | bb := b when (treshold < 4 )
07: |)
08: where
09: integer aa, bb;
10: end;
------------------------------------------------

2) For a similar reason, in the following pro-
cess AdditionBis, the addition of sig-
nals b and c, respectively defined at lines
04 and 05, cannot be achieved in a cor-
rect way. Indeed, the conditions specified

However, F usually contains many subformulas of the 
form x̂
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

bexp (see Section 5.4 for examples). Elimination of x̂  

3 http://www.smtlib.org/
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consists simply in replacing it everywhere by bexp, a process 
akin to Gaussian elimination.

There are many quantifier elimination algorithms for 
reals, the simplest (but the less efficient) being Fourier-
Motzkin elimination [27]. Quantifier elimination for integers 
is much more difficult, and may need the introduction of 
other operators like integer division or modulo. To apply this 
method, our SMT solver has been extended with a quantifier 
elimination command, and several commands to manipulate 
a stack of formulas.

Let us consider the simple case of a program of the form 
P1 where P2. From (2), the output of Sync2smt consists first 
of the abstraction of P2. A “driver” file first acquires the P2 
file and executes elimination of the local variables. Another 
file contains the abstraction of P1, augmented with a system 
of equations that identifies the actual arguments of P2 in 
P1 to the formal arguments of P2. The tool constructs the 
conjunction of the two formulas, checks satisfiability, and 
deduces clock properties from the resulting models.

In more complex examples, one can apply the same 
algorithm bottom-up to a tree of processes. The properties 
found in this way for the top process can be plugged top-
down into the subordinate processes. One may have to use 
renaming to avoid symbol collision or capture.

7.	 Application to Illustrative Examples
We discuss the application of the previous abstraction 

on sample SIGNAL programs, considered as basic patterns, 
for improving their static analysis (Section 7.1) and the 
subsequent automatic code generation (Section 7.2). Then, we 
give a detailed illustration on the Bathtub example (Section 
7.3).

7.1	 Some relevant program patterns

We present a few SIGNAL program patterns for which 
our abstraction helps in detecting some clocks anomalies. 
Such properties cannot be detected currently by the SIGNAL 
compiler because they involve numerical expressions, which 
are not addressed by a Boolean abstraction. Our abstraction 
allows their easy detection.

For sake of simplicity, the illustrated programs are made 
small. But, the reader should have in mind that such clock 
properties can potentially occur in more complex programs.

7.1.1 Program patterns involving exclusive clocks

The sample processes mentioned in this section involve 
signals with exclusive clocks, i.e., signals that never occur at 
the same time.
1)	 In the following process Addition, the signals aa and 

bb, respectively defined at lines 05 and 06, never occur at 
the same time, while the converse is necessary (according 
to the semantics of instantaneous functions in SIGNAL) 
for a correct addition at line 04.
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6.2 Modularity

While current SMT solvers are highly opti-
mized tools, they may still take exponential
time on large problems. It is therefore necessary
to take advantage of the modular features of
SIGNAL to improve the analysis efficiency. The
key to this approach is formula (1), which
allows the elimination of local variables when
analyzing subprocesses.

Going from ΦP1 to Φ in (1) is a process
of quantifier elimination, which is trivial for
booleans:

∃b.Φ(b) ≡ Φ(true) ∨ Φ(false).

However, Φ usually contains many subformu-
las of the form x̂ ⇔ bexp (see Section 5.4 for
examples). Elimination of x̂ consists simply in
replacing it everywhere by bexp, a process akin
to Gaussian elimination.

There are many quantifier elimination algo-
rithms for reals, the simplest (but the less effi-
cient) being Fourier-Motzkin elimination [27].
Quantifier elimination for integers is much
more difficult, and may need the introduction
of other operators like integer division or mod-
ulo. To apply this method, our SMT solver has
been extended with a quantifier elimination
command, and several commands to manipu-
late a stack of formulas.

Let us consider the simple case of a program
of the form P1 where P2. From (2), the output
of SYNC2SMT consists first of the abstraction
of P2. A “driver” file first acquires the P2 file
and executes elimination of the local variables.
Another file contains the abstraction of P1,
augmented with a system of equations that
identifies the actual arguments of P2 in P1 to
the formal arguments of P2. The tool constructs
the conjunction of the two formulas, checks
satisfiability, and deduces clock properties from
the resulting models.

In more complex examples, one can apply
the same algorithm bottom-up to a tree of
processes. The properties found in this way
for the top process can be plugged top-down
into the subordinate processes. One may have
to use renaming to avoid symbol collision or
capture.

7 APPLICATION TO ILLUSTRATIVE EX-
AMPLES

We discuss the application of the previous
abstraction on sample SIGNAL programs, con-
sidered as basic patterns, for improving their
static analysis (Section 7.1) and the subsequent
automatic code generation (Section 7.2). Then,
we give a detailed illustration on the Bathtub
example (Section 7.3).

7.1 Some relevant program patterns
We present a few SIGNAL program patterns
for which our abstraction helps in detecting
some clocks anomalies. Such properties cannot
be detected currently by the SIGNAL compiler
because they involve numerical expressions,
which are not addressed by a Boolean abstrac-
tion. Our abstraction allows their easy detec-
tion.

For sake of simplicity, the illustrated pro-
grams are made small. But, the reader should
have in mind that such clock properties can
potentially occur in more complex programs.

7.1.1 Program patterns involving exclusive
clocks
The sample processes mentioned in this section
involve signals with exclusive clocks, i.e., sig-
nals that never occur at the same time.

1) In the following process Addition, the
signals aa and bb, respectively defined at
lines 05 and 06, never occur at the same
time, while the converse is necessary (ac-
cording to the semantics of instantaneous
functions in SIGNAL) for a correct addition
at line 04.
------------------------------------------------
01: process Addition =
02: ( ? integer a, b, treshold;
03: ! integer c; )
04: (| c := aa + bb
05: | aa := a when (treshold > 7)
06: | bb := b when (treshold < 4 )
07: |)
08: where
09: integer aa, bb;
10: end;
------------------------------------------------

2) For a similar reason, in the following pro-
cess AdditionBis, the addition of sig-
nals b and c, respectively defined at lines
04 and 05, cannot be achieved in a cor-
rect way. Indeed, the conditions specified

2)	 For a similar reason, in the following process 
AdditionBis, the addition of signals b and c, respectively 
defined at lines 04 and 05, cannot be achieved in a correct 
way. Indeed, the conditions specified for the definitions of 
b and c are exclusive. Note that the difference between 
Addition and AdditionBis is mainly syntactical.
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for the definitions of b and c are ex-
clusive. Note that the difference between
Addition and AdditionBis is mainly
syntactical.
------------------------------------------------
01: process AdditionBis =
02: ( ? integer a;
03: ! integer d; )
04: (| b := a when (a > 1)
05: | c := a when not (a > 0)
06: | d := b + c
07: |)
08: where
09: integer b, c;
10: end;
------------------------------------------------

3) The last sample process shown below, in-
volves signals with exclusive clocks, bmin
and bmax, defined respectively at lines 04
and 05. But, another signal binterval,
defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock
because the two signals never occur at the
same time.
------------------------------------------------
01: process Interval =
02: ( ? integer a;
03: ! event binterval; )
04: (| bmin := true when (a < 3)
05: | bmax := true when (a > 11)
06: | binterval := bmin when bmax
07: |)
08: where
09: event bmin, bmax;
10: end;
------------------------------------------------

7.1.2 Program patterns involving identical
clocks
Here, we show two sample processes involving
signals with identical clocks. This is fixed by
our abstraction while the Boolean abstraction
of the SIGNAL compiler does not enable it.

1) In the following process, named
AdditionTer, the addition of signals b
and c, respectively defined at lines 04
and 05, is actually correct. Indeed, the
conditions specified for the definitions
of these two signals are proved to be
equivalent.
------------------------------------------------
01: process AdditionTer =
02: ( ? integer a;
03: ! integer d; )
04: (| b := 5+a when (a > 0)
05: | c := 6+a when (a >= 1)
06: | d := b + c
07: |);
08: where
09: integer b, c;
10: end;
------------------------------------------------

2) The process Game shown below exhibits
similar clock properties. More precisely,
the product at line 09 of the input signal
amount and the local signal factor de-
fined at lines 07--08, requires that both
signals have the same clock.
This is established by a careful
interpretation of the modulo operator
(used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by
∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤
r ≤ 1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and
r respectively denote the quotient and rest
of integer division.
------------------------------------------------
01: process Game =
02: ( ? integer amount;
03: ! integer profit; )
04: (| nvisit := ((nvisit$1 init 0) + 1)
05: when (ˆamount)
06: | st := nvisit modulo 2
07: | factor := (15 when (st=0)) default
08: (0 when (st=1))
09: | profit := factor*amount
10: |)
11: where
12: integer st, factor, nvisit;
13: end;
------------------------------------------------

7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
is embedded in that associated with clk_1
to reflect the clock inclusion. By this way,
whenever the triggering condition of clk_1
is false, there is no need to test the triggering
condition of clk_2 because it is necessarily
false due to the clock inclusion. Avoiding such
tests optimizes the execution of generated code.
Note that a major advantage of the multi-clock
model addressed by SIGNAL is to avoid the sys-
tematic trigger testing inherent to synchronized

3)	 The last sample process shown below, involves 
signals with exclusive clocks, bmin and bmax, defined 
respectively at lines 04 and 05. But, another signal 
binterval, defined at line 06 as an under-sampling 
over bmin and bmax, has an empty clock because the two 
signals never occur at the same time.
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for the definitions of b and c are ex-
clusive. Note that the difference between
Addition and AdditionBis is mainly
syntactical.
------------------------------------------------
01: process AdditionBis =
02: ( ? integer a;
03: ! integer d; )
04: (| b := a when (a > 1)
05: | c := a when not (a > 0)
06: | d := b + c
07: |)
08: where
09: integer b, c;
10: end;
------------------------------------------------

3) The last sample process shown below, in-
volves signals with exclusive clocks, bmin
and bmax, defined respectively at lines 04
and 05. But, another signal binterval,
defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock
because the two signals never occur at the
same time.
------------------------------------------------
01: process Interval =
02: ( ? integer a;
03: ! event binterval; )
04: (| bmin := true when (a < 3)
05: | bmax := true when (a > 11)
06: | binterval := bmin when bmax
07: |)
08: where
09: event bmin, bmax;
10: end;
------------------------------------------------

7.1.2 Program patterns involving identical
clocks
Here, we show two sample processes involving
signals with identical clocks. This is fixed by
our abstraction while the Boolean abstraction
of the SIGNAL compiler does not enable it.

1) In the following process, named
AdditionTer, the addition of signals b
and c, respectively defined at lines 04
and 05, is actually correct. Indeed, the
conditions specified for the definitions
of these two signals are proved to be
equivalent.
------------------------------------------------
01: process AdditionTer =
02: ( ? integer a;
03: ! integer d; )
04: (| b := 5+a when (a > 0)
05: | c := 6+a when (a >= 1)
06: | d := b + c
07: |);
08: where
09: integer b, c;
10: end;
------------------------------------------------

2) The process Game shown below exhibits
similar clock properties. More precisely,
the product at line 09 of the input signal
amount and the local signal factor de-
fined at lines 07--08, requires that both
signals have the same clock.
This is established by a careful
interpretation of the modulo operator
(used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by
∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤
r ≤ 1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and
r respectively denote the quotient and rest
of integer division.
------------------------------------------------
01: process Game =
02: ( ? integer amount;
03: ! integer profit; )
04: (| nvisit := ((nvisit$1 init 0) + 1)
05: when (ˆamount)
06: | st := nvisit modulo 2
07: | factor := (15 when (st=0)) default
08: (0 when (st=1))
09: | profit := factor*amount
10: |)
11: where
12: integer st, factor, nvisit;
13: end;
------------------------------------------------

7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
is embedded in that associated with clk_1
to reflect the clock inclusion. By this way,
whenever the triggering condition of clk_1
is false, there is no need to test the triggering
condition of clk_2 because it is necessarily
false due to the clock inclusion. Avoiding such
tests optimizes the execution of generated code.
Note that a major advantage of the multi-clock
model addressed by SIGNAL is to avoid the sys-
tematic trigger testing inherent to synchronized

7.1.2 Program patterns involving identical clocks

Here, we show two sample processes involving signals 
with identical clocks. This is fixed by our abstraction while 
the Boolean abstraction of the SIGNAL compiler does not 
enable it.
1)	 In the following process, named AdditionTer, the addition 

of signals b and c, respectively defined at lines 04 and 
05, is actually correct. Indeed, the conditions specified 
for the definitions of these two signals are proved to be 
equivalent.
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for the definitions of b and c are ex-
clusive. Note that the difference between
Addition and AdditionBis is mainly
syntactical.
------------------------------------------------
01: process AdditionBis =
02: ( ? integer a;
03: ! integer d; )
04: (| b := a when (a > 1)
05: | c := a when not (a > 0)
06: | d := b + c
07: |)
08: where
09: integer b, c;
10: end;
------------------------------------------------

3) The last sample process shown below, in-
volves signals with exclusive clocks, bmin
and bmax, defined respectively at lines 04
and 05. But, another signal binterval,
defined at line 06 as an under-sampling
over bmin and bmax, has an empty clock
because the two signals never occur at the
same time.
------------------------------------------------
01: process Interval =
02: ( ? integer a;
03: ! event binterval; )
04: (| bmin := true when (a < 3)
05: | bmax := true when (a > 11)
06: | binterval := bmin when bmax
07: |)
08: where
09: event bmin, bmax;
10: end;
------------------------------------------------

7.1.2 Program patterns involving identical
clocks
Here, we show two sample processes involving
signals with identical clocks. This is fixed by
our abstraction while the Boolean abstraction
of the SIGNAL compiler does not enable it.

1) In the following process, named
AdditionTer, the addition of signals b
and c, respectively defined at lines 04
and 05, is actually correct. Indeed, the
conditions specified for the definitions
of these two signals are proved to be
equivalent.
------------------------------------------------
01: process AdditionTer =
02: ( ? integer a;
03: ! integer d; )
04: (| b := 5+a when (a > 0)
05: | c := 6+a when (a >= 1)
06: | d := b + c
07: |);
08: where
09: integer b, c;
10: end;
------------------------------------------------

2) The process Game shown below exhibits
similar clock properties. More precisely,
the product at line 09 of the input signal
amount and the local signal factor de-
fined at lines 07--08, requires that both
signals have the same clock.
This is established by a careful
interpretation of the modulo operator
(used at line 06). Indeed, the expression
nvisit modulo 2 is abstracted by
∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤
r ≤ 1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and
r respectively denote the quotient and rest
of integer division.
------------------------------------------------
01: process Game =
02: ( ? integer amount;
03: ! integer profit; )
04: (| nvisit := ((nvisit$1 init 0) + 1)
05: when (ˆamount)
06: | st := nvisit modulo 2
07: | factor := (15 when (st=0)) default
08: (0 when (st=1))
09: | profit := factor*amount
10: |)
11: where
12: integer st, factor, nvisit;
13: end;
------------------------------------------------

7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
is embedded in that associated with clk_1
to reflect the clock inclusion. By this way,
whenever the triggering condition of clk_1
is false, there is no need to test the triggering
condition of clk_2 because it is necessarily
false due to the clock inclusion. Avoiding such
tests optimizes the execution of generated code.
Note that a major advantage of the multi-clock
model addressed by SIGNAL is to avoid the sys-
tematic trigger testing inherent to synchronized

2)	 The process Game shown below exhibits similar clock 
properties. More precisely, the product at line 09 of the 
input signal amount and the local signal factor defined 
at lines 07–08, requires that both signals have the same 
clock.
This is established by a careful interpretation of the 
modulo operator (used at line 06). Indeed, the expression 
nvisit modulo 2 is abstracted by $q, r Î N, s.t. r = nvisit 
– 2q Ù 0 < r < 1 Ù 2q < nvisit < 2q + 1, where q and 
r respectively denote the quotient and rest of integer 
division.
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7.2 Impact on code generation
Our abstraction is also usable for optimizing
the control structure of the code generated by
the SIGNAL compiler. As discussed in Section
4, the clock hierarchy resulting from the static
analysis of programs has a strong impact on
the quality of the generated code. Since clocks
are considered as trigger events for the actions
described in a program, they are translated as
conditional statements in generated code, e.g.,
in C.

Given two clocks clk_1 and clk_2 such
that clk_2 is a sub-clock of clk_1, the cor-
responding code is sketched in Fig. 5: the
conditional statement corresponding to clk_2
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structure of the code generated by the SIGNAL compiler. As 
discussed in Section 4, the clock hierarchy resulting from 
the static analysis of programs has a strong impact on the 
quality of the generated code. Since clocks are considered as 
trigger events for the actions described in a program, they 
are translated as conditional statements in generated code, 
e.g., in C.

Given two clocks clk_1 and clk_2 such that clk_2 is 
a sub-clock of clk_1, the corresponding code is sketched in 
Fig. 5: the conditional statement corresponding to clk_2 is 
embedded in that associated with clk_1 to reflect the clock 
inclusion. By this way, whenever the triggering condition 
of clk_1 is false, there is no need to test the triggering 
condition of clk_2 because it is necessarily false due to the 
clock inclusion. Avoiding such tests optimizes the execution 
of generated code. Note that a major advantage of the multi-
clock model addressed by SIGNAL is to avoid the systematic 
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are active.
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embedded systems with a global clock. This
reduces the computation overhead resulting
from the repeated wake up of computation
nodes on the global clock tick in order to check
whether or not they are active.

clk_1

clk_2
clk_3

        

     if (clk_2)   

       { ... };

        { ... }; 

     if (clk_3)

  { ...;

if (clk_1)

    if (clk_2 && clk_3)

       { if (clk_i)

             { ... };         

          ...;

        }

          ...;        }

clk_i

Fig. 5. Clock hierarchy-based code generation.

Currently, when clocks are defined by nu-
merical expressions, the static analysis of the
SIGNAL compiler fails to optimize the control
structure in the way discussed above.

Let us consider the sample process, named
Inclusion, as follows.
----------------------------------------------------
01: process Inclusion =
02: ( ? integer a;
03: ! integer d, e; )
04: (| b := 5+a when ((a > 3) and (a < 7))
05: | c := 6+a when ((a > 1) and (a < 11))
06: | d := 42 when (b ˆ* c)
07: | e := 52 when (b ˆ+ c)
08: |)
09: where
10: integer b, c;
11: end;
-----------------------------------------------------

The clock of signal b is a subset of that of
c. But currently, the clock hierarchy computed
by the SIGNAL compiler is depicted in Fig. 6.
While the clocks of b and c appear to be sub-
clocks of the clock of a, the clock hierarchy
between b and c is not reflected. This leads
to a control structure in generated code where
the trigger testing related to b is always per-
formed, even though that of c is false while it
is unnecessary.

        

        { ... }; 

       { ... };

        }

  { ...;

clk_a

clk_b clk_c

if (clk_a)

     if (clk_b)   

     if (clk_c)

Fig. 6. Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock
inclusion between b and c, with the following
reasoning. A clock x̂ is included in another
clock ŷ if the property x̂ ⇒ ŷ is true in all
models. Clock x̂ is equivalent to clock ŷ if both
x̂ ⇒ ŷ and ŷ ⇒ x̂ are true.

When all inclusions have been identified, one
can construct a graph whose vertices are the
clocks and whose edges represent the inclusion
relations. The strongly connected components
(SCC) of this graph represent classes of equiv-
alent clocks, and the reduced graph, which is
acyclic, represents the clock inclusion hierarchy.
As a particular case, if this graph has a max-
imum (an SCC without successors) this SCC
contains the largest clock of the whole process.
The set of SCCs and the reduced graph can
easily be constructed by an algorithm due to
Tarjan [28], which has been implemented in our
tool (more precisely in the solver part). As a
matter of fact, since inclusion is transitive, the
SCCs of the clock graph are cliques. However,
we do not believe that this property can be
used to improve on the complexity of Tarjan’s
algorithm. Note also that as soon as the maxi-
mal SCC has more than one element, the largest
clock cannot be identified by searching for
clocks without successors. Hence, the construc-
tion of SCCs is necessary. As a final remark, if
the SCC graph has more than one extrema, the
program has no sequential implementation.

In the Inclusion process above, one finds
three SCCs, {b̂, d̂}, {ĉ, ê} and {â}, and each SCC
is included in the next one. It follows that â is
the process largest clock, which provides the
clock inclusion hierarchy depicted in Fig. 7.

{ ...;

{ ...;

{ ... };
}

}

clk_a

clk_c

clk_b

if (clk_c)

if (clk_b)

if (clk_a)

Fig. 7. Optimized clock hierarchy for
Inclusion.

The ability to compute the above clock inclu-
sions is a very useful information, which can be
exploited to efficiently construct clock hierar-
chy for SIGNAL programs based on arborescent

Fig. 5 : Clock hierarchy-based code generation.

Currently, when clocks are defined by numerical 
expressions, the static analysis of the SIGNAL compiler fails 
to optimize the control structure in the way discussed above.

Let us consider the sample process, named Inclusion, as 
follows.
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The clock of signal b is a subset of that of c. But currently, 
the clock hierarchy computed by the SIGNAL compiler 
is depicted in Fig. 6. While the clocks of b and c appear to 
be subclocks of the clock of a, the clock hierarchy between 
b and c is not reflected. This leads to a control structure 
in generated code where the trigger testing related to b is 
always performed, even though that of c is false while it is 
unnecessary.
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Our abstraction is able to prove the clock inclusion 
between b and c, with the following reasoning. A clock x̂  is 
included in another clock by if the property x̂
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it
preserves the behaviors of the abstracted pro-
grams: if a property is true on the abstraction,
then it is also the case on the program. A proof
of its soundness is given in [11].

5.6 Properties

Let P be a SIGNAL process and Φ its abstrac-
tion. Assume that we can prove formulas of
the form Φ ⇒ Π, where Π is a formula on the
atoms of Φ. It is clear that Φ and Φ ∧ Π have
the same models. Some such formulas have the
property that they are abstraction of SIGNAL
processes. These processes can be composed
with P to the benefit of the SIGNAL compiler
without modifying the semantics of P .

The properties we are interested in are clock
emptiness: x̂ = false, which gives the equiv-
alent of dead code elimination, and clock in-
clusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔
ŷ, which allow simplification of the control
code. There are two strategies for finding such
properties. The first one consists in guessing
Π and proving Φ ⇒ Π with the help of
an SMT solver, by showing that ¬(Φ ⇒ Π)
is unsatisfiable. The second strategy consists
in asking the SMT solver to construct the set
of (Boolean) models of Π, which is finite, and
to scan it to identify interesting properties.
For instance, the algorithm for finding empty
clocks is to start from the set of all clocks, to
examine each model in turn, removing a clock
as soon as it appears to be true in the current
model. This is the approach we have adopted
in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box
referred to as “Abstraction of P” in this figure is
achieved with the SYNC2SMT tool. Its output is
given to an ad hoc SMT solver, which integrates
the concretization of inferred properties.

SYNC2SMT (5kLOC in Ocaml) basically im-
plements the translation developed in Sec-
tion 5 : after a parsing phase, the internal
representation of a SIGNAL program is trans-
lated into a bunch of smtlib3 files, including
a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

ŷ  is true in 
all models. Clock x̂  is equivalent to clock ŷ  if both  x̂
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depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

ŷ  and 
ŷ  
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∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values
always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)
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preserves the behaviors of the abstracted pro-
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then it is also the case on the program. A proof
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Let P be a SIGNAL process and Φ its abstrac-
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the form Φ ⇒ Π, where Π is a formula on the
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in our implementation.

6 IMPLEMENTATION

We present an implementation of the previous
abstraction and the way relevant properties
are inferred. Our solution promotes a modular
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The implemented tools follow Fig. 1. The box
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given to an ad hoc SMT solver, which integrates
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a special “driver” file. Such a file is used as
an input to our ad hoc SMT solver. Note that
our parser currently recognizes only a subpart
of the grammar described in http://www.irisa.
fr/espresso/Polychrony/Signal-bnf.php.

There are two reasons for not using an off-
the-shelf SMT solver like Yices or Z3. The first
one is that we need more than a sat or unsat
answer. Our solver must construct the set of all
models of a satisfiable formula and return it for
inspection. Usually, an SMT solver constructs
just one model (this is enough for proving
satisfiability), which can be retrieved or not
depending on the solver. It is clear that our
solver is less efficient than highly optimized
softwares like Yices or Z3. However, since we
trade just one call to a slow solver against many
calls to a fast solver, the overall comparison
is not obvious. Another point is that since the
solver code is available to us, we have been
able to implement the property search inside
it, thus avoiding costly pretty printing and
parsing.

Our SMT solver proceeds by constructing a
semantic tableau [26], i.e., a tree whose nodes
are decorated by subformulas of the root for-
mula. A branch of the tree is closed if it con-
tains a formula and its negation, or if the con-
junction of its atomic formulas is unsatisfiable
in the underlying theory, in our case, linear
or integer programming. The tree construction
rules are such that from each open branch, one
can extract a model of the root formula. From
then on, it is a simple matter to scan the open
branches and extract clock properties.

3. http://www.smtlib.org/

 x̂  are true.
When all inclusions have been identified, one can 

construct a graph whose vertices are the clocks and whose 
edges represent the inclusion relations. The strongly 
connected components (SCC) of this graph represent classes 
of equivalent clocks, and the reduced graph, which is acyclic, 
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represents the clock inclusion hierarchy. As a particular case, 
if this graph has a maximum (an SCC without successors) this 
SCC contains the largest clock of the whole process. The set of 
SCCs and the reduced graph can easily be constructed by an 
algorithm due to Tarjan [28], which has been implemented in 
our tool (more precisely in the solver part). As a matter of fact, 
since inclusion is transitive, the SCCs of the clock graph are 
cliques. However, we do not believe that this property can be 
used to improve on the complexity of Tarjan’s algorithm. Note 
also that as soon as the maximal SCC has more than one 
element, the largest clock cannot be identified by searching for 
clocks without successors. Hence, the construction of SCCs is 
necessary. As a final remark, if the SCC graph has more than 
one extrema, the program has no sequential implementation. 

In the Inclusion process above, one finds three SCCs,  
{b̂, d̂ }, {ĉ , ê} and {â}, and each SCC is included in the next one. 
It follows that â  is the process largest clock, which provides 
the clock inclusion hierarchy depicted in Fig. 7.
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embedded systems with a global clock. This
reduces the computation overhead resulting
from the repeated wake up of computation
nodes on the global clock tick in order to check
whether or not they are active.

clk_1

clk_2
clk_3

        

     if (clk_2)   

       { ... };

        { ... }; 

     if (clk_3)

  { ...;

if (clk_1)

    if (clk_2 && clk_3)

       { if (clk_i)

             { ... };         

          ...;

        }

          ...;        }

clk_i

Fig. 5. Clock hierarchy-based code generation.

Currently, when clocks are defined by nu-
merical expressions, the static analysis of the
SIGNAL compiler fails to optimize the control
structure in the way discussed above.

Let us consider the sample process, named
Inclusion, as follows.
----------------------------------------------------
01: process Inclusion =
02: ( ? integer a;
03: ! integer d, e; )
04: (| b := 5+a when ((a > 3) and (a < 7))
05: | c := 6+a when ((a > 1) and (a < 11))
06: | d := 42 when (b ˆ* c)
07: | e := 52 when (b ˆ+ c)
08: |)
09: where
10: integer b, c;
11: end;
-----------------------------------------------------

The clock of signal b is a subset of that of
c. But currently, the clock hierarchy computed
by the SIGNAL compiler is depicted in Fig. 6.
While the clocks of b and c appear to be sub-
clocks of the clock of a, the clock hierarchy
between b and c is not reflected. This leads
to a control structure in generated code where
the trigger testing related to b is always per-
formed, even though that of c is false while it
is unnecessary.

        

        { ... }; 

       { ... };

        }

  { ...;

clk_a

clk_b clk_c

if (clk_a)

     if (clk_b)   

     if (clk_c)

Fig. 6. Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock
inclusion between b and c, with the following
reasoning. A clock x̂ is included in another
clock ŷ if the property x̂ ⇒ ŷ is true in all
models. Clock x̂ is equivalent to clock ŷ if both
x̂ ⇒ ŷ and ŷ ⇒ x̂ are true.

When all inclusions have been identified, one
can construct a graph whose vertices are the
clocks and whose edges represent the inclusion
relations. The strongly connected components
(SCC) of this graph represent classes of equiv-
alent clocks, and the reduced graph, which is
acyclic, represents the clock inclusion hierarchy.
As a particular case, if this graph has a max-
imum (an SCC without successors) this SCC
contains the largest clock of the whole process.
The set of SCCs and the reduced graph can
easily be constructed by an algorithm due to
Tarjan [28], which has been implemented in our
tool (more precisely in the solver part). As a
matter of fact, since inclusion is transitive, the
SCCs of the clock graph are cliques. However,
we do not believe that this property can be
used to improve on the complexity of Tarjan’s
algorithm. Note also that as soon as the maxi-
mal SCC has more than one element, the largest
clock cannot be identified by searching for
clocks without successors. Hence, the construc-
tion of SCCs is necessary. As a final remark, if
the SCC graph has more than one extrema, the
program has no sequential implementation.

In the Inclusion process above, one finds
three SCCs, {b̂, d̂}, {ĉ, ê} and {â}, and each SCC
is included in the next one. It follows that â is
the process largest clock, which provides the
clock inclusion hierarchy depicted in Fig. 7.

{ ...;

{ ...;

{ ... };
}

}

clk_a

clk_c

clk_b

if (clk_c)

if (clk_b)

if (clk_a)

Fig. 7. Optimized clock hierarchy for
Inclusion.

The ability to compute the above clock inclu-
sions is a very useful information, which can be
exploited to efficiently construct clock hierar-
chy for SIGNAL programs based on arborescent

Fig. 7 : Optimized clock hierarchy for Inclusion.

The ability to compute the above clock inclusions is a 
very useful information, which can be exploited to efficiently 
construct clock hierarchy for SIGNAL programs based on 
arborescent canonical forms of clocks [6]. The identification 
of a master clock in a program relies on that clock hierarchy.

7.3	 Application to the bathtub example

We consider the Bathtub program given in Fig. 2 to 
illustrate how relevant properties are identified and checked 
against its abstraction. By making these properties explicit 
in the program, we show a noticeable amelioration of both its 
static analysis and code generation by the SIGNAL compiler.

Given the formula FBathtub obtained previously in Section 
5.3, as the abstraction of the bathtub SIGNAL specification, 
the main properties of interest are the following:

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 16

canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
----------------------------------------------------
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm; )
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
----------------------------------------------------

The result of its analysis performed by the
compiler is now as follows:
----------------------------------------------------
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
----------------------------------------------------

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
----------------------------------------------------
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
----------------------------------------------------

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

Some of these properties are currently inferred directly 
from FBathtub by our considered SMT solver. It is the case 
of properties 1) and 3). However, note that property 2) 
could also be inferred provided an extension of the current 
implementation of the solver so that various combinations of 

Boolean variables can be checked. Here, for more convenience, 
we reason on isolated parts of FBathtub, which are relevant to 
a given property. But, since automating such an operation 
on an abstraction is generally not easy, our implementation 
currently reasons on the whole abstraction.

These properties are easily verified on the abstraction 
of Bathtub process. As a result, their corresponding 
concretisations can be safely composed with Bathtub without 
changing its semantics. Possible concretisations of the above 
properties in SIGNAL are as follows:
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canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
----------------------------------------------------
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm; )
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
----------------------------------------------------

The result of its analysis performed by the
compiler is now as follows:
----------------------------------------------------
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
----------------------------------------------------

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
----------------------------------------------------
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
----------------------------------------------------

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

By composing these statements with Bathtub, one 
obtains the semantically equivalent process, named 
Bathtub_Bis, shown in the following:
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canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
----------------------------------------------------
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm; )
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
----------------------------------------------------

The result of its analysis performed by the
compiler is now as follows:
----------------------------------------------------
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
----------------------------------------------------

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
----------------------------------------------------
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
----------------------------------------------------

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

The result of its analysis performed by the compiler is 
now as follows:
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canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
----------------------------------------------------
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm; )
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
----------------------------------------------------

The result of its analysis performed by the
compiler is now as follows:
----------------------------------------------------
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
----------------------------------------------------

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
----------------------------------------------------
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
----------------------------------------------------

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

The whole set of constraints inferred by the compiler is 
now restricted to the fact that the ghost_alarm signal is 
always equal to false. The compiler has also detected that 
the clocks of the other signals are all empty (lines 04/04b). 
Finally, the corresponding generated code is provided below, 
where the dead code is avoided.
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canonical forms of clocks [6]. The identification
of a master clock in a program relies on that
clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in
Fig. 2 to illustrate how relevant properties are
identified and checked against its abstraction.
By making these properties explicit in the pro-
gram, we show a noticeable amelioration of
both its static analysis and code generation by
the SIGNAL compiler.

Given the formula ΦBathtub obtained previ-
ously in Section 5.3, as the abstraction of the
bathtub SIGNAL specification, the main prop-
erties of interest are the following:

1) pump and faucet have disjoint clocks:
¬(f̂aucet ∧ p̂ump),

2) The water cannot overflow and be scarce
at the same time: ¬

(
s̃carce ∧ ˜overflow ∧

ŝcarce ∧ ̂overflow
)
,

3) alarm and level have the same clock:
âlarm ⇔ l̂evel.

Some of these properties are currently in-
ferred directly from ΦBathtub by our considered
SMT solver. It is the case of properties 1)
and 3). However, note that property 2) could
also be inferred provided an extension of the
current implementation of the solver so that
various combinations of Boolean variables can
be checked. Here, for more convenience, we
reason on isolated parts of ΦBathtub, which
are relevant to a given property. But, since
automating such an operation on an abstrac-
tion is generally not easy, our implementation
currently reasons on the whole abstraction.

These properties are easily verified on the ab-
straction of Bathtub process. As a result, their
corresponding concretisations can be safely
composed with Bathtub without changing its
semantics. Possible concretisations of the above
properties in SIGNAL are as follows:

1) faucet ˆ* pump ˆ= ˆ0
2) true when scarce when overflow ˆ= ˆ0
3) alarm ˆ= level

By composing these statements with
Bathtub, one obtains the semantically

equivalent process, named Bathtub_Bis,
shown in the following:
----------------------------------------------------
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm; )
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm:=(true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ˆ= ˆ0
15: | faucet ˆ* pump ˆ= ˆ0
16: | alarm ˆ= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;
----------------------------------------------------

The result of its analysis performed by the
compiler is now as follows:
----------------------------------------------------
01: (| CLK_ghost_alarm := ˆghost_alarm
02: | CLK_ghost_alarm ˆ= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%ˆ0 ˆ= level ˆ= alarm
04b ˆ= zlevel ˆ= zfaucet ˆ= zpump
05: ***WARNING: null clock signals%
----------------------------------------------------

The whole set of constraints inferred by the
compiler is now restricted to the fact that
the ghost_alarm signal is always equal to
false. The compiler has also detected that the
clocks of the other signals are all empty (lines
04/04b). Finally, the corresponding generated
code is provided below, where the dead code
is avoided.
----------------------------------------------------
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
----------------------------------------------------

Sections 7.1, 7.2 and 7.3 demonstrate the
relevance of our abstraction for analyzing clock
properties that combine both logical and nu-
merical expressions. For instance, checking the
mutual exclusion between multiple computa-
tion nodes whose activation conditions consist
of such clocks, is useful to address sharing
problems in a GALS system. In addition, estab-
lishing that some nodes or events in a system
never occur, via empty clocks, can serve to
guarantee that undesired behaviors never hap-
pen, or conversely to detect that some expected
behaviors are never observed. Concerning the
code generated automatically by the SIGNAL
compiler, the gain expected in terms of opti-
mizations is also important. On the one hand,

Sections 7.1, 7.2 and 7.3 demonstrate the relevance of our 
abstraction for analyzing clock properties that combine both 
logical and numerical expressions. For instance, checking 
the mutual exclusion between multiple computation nodes 
whose activation conditions consist of such clocks, is useful 
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to address sharing problems in a GALS system. In addition, 
establishing that some nodes or events in a system never 
occur, via empty clocks, can serve to guarantee that undesired 
behaviors never happen, or conversely to detect that some 
expected behaviors are never observed. Concerning the code 
generated automatically by the SIGNAL compiler, the gain 
expected in terms of optimizations is also important. On the 
one hand, dead code elimination is made possible thanks to 
information resulting from the analysis of our abstraction. It 
is usually of high importance in compilers [29]. On the other 
hand, the control conditions of the code are better organized 
thanks to their evaluation in the abstraction. As a result, 
optimized control structures can be derived, as it is done in 
[30] by identifying regions in a control flow graph.

7.4	 On the scalability of our approach

Beyond all examples mentioned in this paper, we have 
experimented further ones, including the dining philosophers 
program provided in [24], which is relevant enough to assess 
the scalability of our tool-chain, but which strains the present 
capabilities of our SMT solver.

Among applicable solutions that already hold for our 
approach in case of large programs to be addressed, we suggest 
the systematic use of modularity to divide-and-conquer such 
programs. As a matter of fact, given a property to be checked 
(or to be inferred) in an SMT formula F resulting from the 
translation of a program, one can restrict the analysis to the 
sub-formulas Fi of this formula, which are only required for 
the reasoning. Whenever a property is valid for Fi, it will be 
also valid for F. Currently, identifying such sub-formulas is 
done only manually.

For the aforementioned dining philosophers program, 
which is around one hundred and seventy lines of code in 
SIGNAL, our translation tool automatically generates (in less 
than a second) an abstraction in the “smt2” format composed 
of: four hundred and fourty variables and, four hundred and 
eighty six clauses. Since this generated abstraction is not 
currently tractable by our SMT solver, we manually applied 
a divide-and-conquer strategy to check that two adjacent 
philosophers cannot simultaneously eat because only one of 
them can hold their shared fork at any time.

8.	 Conclusion
In this paper, we presented an enhancement of the 

compilation of synchronous dataflow programs with a 
combined numerical-Boolean abstraction.We considered 
SIGNAL language as an illustrative language. The analysis 
and code generation achieved by its compiler, which is based 
on a Boolean abstraction, has been extended in a modular 
way by defining a sound and more expressive abstraction. 
This makes it possible to suitably address both numerical 
and logical properties specified via abstract clock relations 
and data dependencies.

Clocks play a central role in SIGNAL: they fundamentally 
express the control in programs and typical properties of 
embedded systems, such as reactivity or determinism, are 
dealt with by analyzing clock relations. Moreover, their 

related properties are extensively exploited by the SIGNAL 
compiler for optimizing the automatic code generation 
process. We showed via our approach, in a pragmatic way, 
how the new abstraction combined with SMT solving infers 
very useful information, which strongly help the compiler to 
solve more clock constraints and generate high-quality code, 
e.g., by avoiding dead code. Several sample examples have 
been presented in order to exhibit the add-on of our solution.

To implement the whole approach, we developed a 
translator of synchronous programs towards the standard 
input format of SMT solvers, and an ad hoc SMT solver that 
integrates advanced functionalities to cope with the issues 
of interest in this work. These tools are just proof-of concept 
implementations; we do not claim that they can be used on 
lifesize programs in their present state. Improvements are 
needed in four directions:
�� replace our home-made SMT solver by a state-of-the-

art one, provided that its source code is available and 
that it can be adjusted to implement the supplementary 
facilities we need;

�� improve the SYNC2SMT translator to obtain a more 
compact abstraction; 

�� implement an interval pre-analysis to get value ranges 
for numerical variables and thus provide a better 
abstraction for delays;

�� systematically use modularity to divide-and-conquer 
large programs.
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