
Scanning polyhedra without Do-loops

Pierre BOULET
LIFL, USTL

Bâtiment M3, Cité scientifique
59655 Villeneuve d’Ascq Cedex, France

Pierre.Boulet@lifl.fr

Paul FEAUTRIER
Laboratoire PRiSM

Université de Versailles-St Quentin en Yvelines
Bâtiment Descartes, 45, av. des États-Unis

78035 Versailles Cedex, France
Paul.Feautrier@prism.uvsq.fr

Abstract

We study in this paper the problem of polyhedron
scanning which appears for example when generating
code for transformed loop nests in automatic paral-
lelization. After a review of related works, we detail our
method to scan affine images of polyhedra. After some
experimental results we show how our method applies to
unions of affine images of polyhedra.

We have taken the option to generate low level code
without loops. This has allowed us to have a completely
general and fully parameterized method without losing
efficiency.

1. Introduction

In the field of automatic parallelization, efforts have
been focused on parallelizing loops because they con-
centrate most of the computing time in a small number
of statements. The polytope model has been devised in
order to fully analyze loops. In this model, the iteration
domain (the set of operations) of a statement is described
as a parameterized polyhedron. Each operation is asso-
ciated to an iteration vector whose components are the
values of the surrounding loop counters. Translating the
loop bounds into inequalities gives a polyhedron which
the iteration vector must belong to.

In order to exhibit parallelism, one applies transfor-
mations to the iteration space. These transformations are
usually deduced from attempts to optimize the efficiency
of the transformed program. Scheduling, for instance,
aims at minimizing the running time on a parallel com-
puter, while mapping aims at minimizing communica-
tions. All in all, these transformations usually are affine
transformations. They map the original iteration domain
of each statement to a new iteration domain defined as
the set of images of the points of the original domain.

We will consider here only integral affine transforma-
tions, which means that the image domain is a set of
integer points.

The program which results from a given transforma-
tion is obtained by writing code for enumerating, or
scanning in a given order the resulting iteration domains.
This problem has been the subject of a large number of
papers, starting with Irigoin’s thesis [9] and the semi-
nal paper [1]. The order in which the points are enu-
merated is relevant since one of the constraints which
are imposed on the transformations is that the image set
must be enumerated in lexicographic order. In fact some
dimensions of the image iteration space are time dimen-
sions which are sequential while some others are space
dimensions which are parallel. The originality of our
method is that we do not try to generate a new loop nest
to be compiled later, but rather to directly generate low
level code. This gives us more freedom in the structure
of the generated code while retaining good efficiency.
Observe that the usual invective againstGOTO’s does not
apply in our case: the code we generate is not for human
consumption. It is just an intermediate representation
for the use of a compiler backend.

The organization of the paper is as follows: in Sect.
2, we present previous solutions to the same problem; in
Sect. 3 we study the case of a single linearly bounded
lattice, which we illustrate with some experiments in
Sect. 4. We then show in section 5 how the method
presented before can be extended to handle the general
case of the union of linearly bounded lattices and we
conclude in Sect. 6.

2. Related work

The problem of scanning polyhedra first arose in re-
lation with the loop inversion transform. While it is evi-
dent that the “inverse” of

do i = 1,n
do j = 1,m

S
end do

end do

is

do j = 1,m
do i = 1,n

S
end do

end do

it requires some thought to see that the inverse of

do i = 1,n
do j = i,n

S
end do

end do

is

do j = 1,n
do i = 1,j

S
end do

end do

This kind of problem occurs either when the polyhe-
dron to be scanned is given without any reference to a
loop nest (for instance when one use specification lan-
guages like ALPHA) or when the loop nest is submitted
to a unimodular transform. This situation is character-
ized by the fact thatall integer points in the given poly-
hedron are to be visited. In this form, the problem was
first solved by Irigoin in [9]; see also [8, 1, 5].

However, not all parallelizing transformations are
unimodular. They may even be singular: this situation
occurs when constructing communication loops [11].
The solution is to write the transformationT = HU

whereU is unimodular andH is a Hermite normal form
of T . One first scans the image of the iteration space by
U , as above, then applyH, which has the property of be-
ing monotone, increasing with respect to lexicographic
order. See [6, 12, 13].

In the general case, there are several statements
which may be subjected to different transformations.
One has to scan the union of the images of several poly-
hedra, not necessarily of the same dimension. All solu-
tions which have been proposed [3, 10, 4] are compro-
mises between code size and performance, with no clear
way of selecting an optimum.

In all cases, the result is obtained by combining
several algorithms: Hermite normal form construction,
Fourier-Motzkin elimination, various methods for split-
ting domains. Our aim here is to give just one algorithm
for handling all cases. In the interest of clarity, we will
nevertheless split the presentation in two parts: firstly,
the case of a linearly bounded lattice (LBL), and sec-
ondly the case of a union of linearly bounded lattices.
Scanning a polyhedron is just a particular case of scan-
ning an LBL.

3. Scanning Linearly Bounded Lattices

We first describe in this section the problem we con-
sider (see section 3.1), then the algorithm used to solve it
(see section 3.2) and finally the code generation scheme
used by this algorithm (see section 3.3).

3.1. Problem specification

We consider here the problem of scanning alinearly
bounded latticein lexicographic order.

Definition 3.1 (Linearly Bounded Lattice). A linearly
bounded latticeL is a set of integer points verifying a
system of affine inequalities as follows:

L = fx 2Zn j 9y 2Zm; Ax+ By � cg

wheren;m; p 2 N�; A 2Zp�Zn;

B 2Zp�Zm andc 2Zp :

We will in fact handle parameterized linearly bounded
lattices:

L(z) = fx 2Zn j 9y 2Zm; Ax+By +Cz � dg

wheren;m; p; q 2 N�; A 2Zp�Zn;

B 2Zp�Zm; C 2Zp�Zq andd 2Zp :

Herez is a vector of parameters whose values are in a
polyhedronD defined as:

D = fz 2Zq j Ez � fg :

In the following, all the LBLs we will encounter will be
parameterized LBLs.

Definition 3.2 (lexicographic order).
The lexicographic order� overZm can be expressed as:

(x1; : : : ; xm) � (y1; : : : ; ym) ()

9k 2 f0; : : : ;m � 1g

j x1 = y1; : : : ; xk = yk; xk+1 < yk+1 :

We notemin� the lexicographic minimum.

3.2. Resolution method

The basic idea for the enumeration of the LBLL(z)
is to build a function, “next”, which, given a point in
L(z), returns the next higher point inL(z) according to
lexicographic order.

To initialize this process, we have to build a constant,
“�rst”, which is the lexicographic minimum ofL(z).
“�rst” is defined as:

�rst = min�fy 2 L(z)g :

Note. This kind of problem is a parameterized linear
program that can be solved using a tool such asPIP [7].
PIP computes lexicographic minima of domains defined
by integer linear inequations. The solutionsPIP returns
are in the form of aquasi-affine selection tree(QUAST).

Indeed, depending on the values of the parameters, a
solution may have different values. It has been shown
that these values can be expressed as linear expressions
of the parameters in polyhedral subdomains. Thus the
QUAST structure is a selection (if then else) tree
describing these subdomains and the associated solu-
tions. Two branches of this tree are separated by a linear
predicate defining an hyperplane, thus delimiting two
subdomains of the parameter domain. The leaves of this
tree are linear expressions of the searched minimum. We
note?when there is no solution for a given subdomain.
Some problems may require the presence of some inte-
ger modulos at some depth in the selection tree. These
modulos add complexity to the generated code.

Once we know how to compute “�rst”, “ next” can
be described in the following way:

next : L(z)! L(z) [f?g

x 7! min�fy 2 L(z) j x � yg :

So, we have to solve the following problem:

find the minimumx0 subject to the constraints:
8>><
>>:

z 2 D
x 2 L(z)
x0 2 L(z)
x � x0

()

8>><
>>:

Ez � f

Ax+By +Cz � d

Ax0 + By0 + Cz � d

x � x0

This problem is non-linear due to the constraintx �
x0. We have to decompose it into smaller linear prob-
lems and to compose their results. To build these smaller
problems, we use definition 3.2 to decompose the con-
straintx � x0 into the disjunction:

x1 < x01

or x1 = x01; x2 < x02

...

or x1 = x01; : : : ; xm�1 = x0m�1; xm < x0m

We can now build the linear subproblemsP1; : : : ;Pm.
Here is the general form ofPk:

minimizex0 subject to the constraints:8>>>>>>>>><
>>>>>>>>>:

Ez � f

Ax+ By + Cz � d

Ax0 + By0 +Cz � d

x1 = x01
...
xk�1 = x0k�1

xk < x0k

Using the results of these parameterized linear prob-
lems, we can now generate the iteration code.

The abstract program looks like:

x = �rst
1 if x = ? then goto 2

loop body
x = next(x)
goto 1

2

This prescription is sufficient when one just has to write
sequential code, as for instance scatter/gather code in
communication routines. But one may wonder how par-
allelism will be expressed in this framework. In the stan-
dard scheme, those loops whose counter is not one of the
components of time are flagged as parallel. One then re-
lies on a low level parallel compiler to write the actual
parallel code.

In our context, the solution is to select some of the
variables as virtual processor names, and to scan the re-
maining variables with the virtual processor names as
parameters. This will naturally generate SPMD code. If
p is the virtual processor name, and if we want to use
blocking in the virtual processor space, we just add the
constraints:a � p � b ; a andb being new parameters.
Our system then automatically writes the virtualization
loop.

The next step is to insert synchronization primitives.
In the case of a distributed memory machine, synchro-
nization is a byproduct of message passing. For a global
memory machine, one has to use a new synchronization
primitive: synch(t) .

Each processor has its own virtual clock in shared
memory. Thesynch primitive first sets this clock tot ,
then enters a busy waiting loop. Ateach iteration, the
processor computes (redundantly) the minimum of all
clocks. It leaves the waiting loop iff its clock is equal to
the said minimum.

Note. The above is just a definition of the semantics of
synch . Its performance can be enhanced in various
ways: relinquishing the processor in coarse grained sit-
uations, logarithmic update of the minimum, and others.

One may extend this definition to multidimensional
time. This being done, one just has to insert asynch in
the above code at each point where a component of time
is modified. Since thesynch primitive has the ability
of “jumping ahead” in time, our parallel program will be
at least as efficient as an implementation with barriers,
in which there are as many synchronization operations
as there are time steps.

3.3. Code generation algorithm

Let us now consider the iteration code. Ideally, this
code should be as efficient as a loop would be, in the case
when a loop can be designed to iterate over the same set
of pointsL(z).

First we can observe that any solution of the problem
Pk is lexicographically greater than any solution of the
subproblemPl whenk < l. This comes from the def-
inition of these problems. Indeed, in any solutionsx0

k

of Pk andx0l of Pl , 8i < k; x0
k
i = xi, x0

k
k > xk and

8i < l; x0
l
i = xi. As k < l, 8i < k; x0

k
i = x0

l
i and

x0
k
k > x0

l
k, which meansx0k � x0

l. This allows us to
seek the next point in the domain by first looking for so-
lutions ofPm, then, if there is no solution, ofPm�1,
and so on untilP1. If this last problem has no solution,
then we have finished scanning the setL(z).

In the simple example where the given polyhedron is
a cube,f(i; j; k) j 1 � i; j; k � ng, the scanning code is
as follows.

i = 1 \
j = 1 | first
k = 1 /

2 CONTINUE
c --- loop body ---

if (k.le.n-1) then \
k = 1+k |
GOTO 2 |

endif |
if (j.le.n-1) then |

k = 1 | next
j = 1+j |
GOTO 2 |

endif |
if (i.le.n-1) then |

k = 1 |
j = 1 |
i = 1+i |
GOTO 2 |

endif /
1 CONTINUE

Remark.The storage of the new values ofi , j andk —
which representx1, x2 andx3— is done in reverse order
to avoid using temporary variables. This is not useful on
this particular example but the advantage of this method
can be seen in more complicated examples. We have
also suppressed useless storage statements likei = i .

An other important speed factor in loops is that loop
bounds are only evaluated once at the beginning of the
loop. We can refine our code generation scheme to do
the same here. In each predicate of a conditional, one
has just to compute the invariant part beforehand and
store it in some variable. Here is what our example fi-
nally looks like:

i = 1
j = 1
k = 1
b3 = -1+n

4 b2 = -1+n
3 b1 = -1+n
2 CONTINUE
c --- loop body ---

if (k.le.b1) then
k = 1+k
GOTO 2

endif
if (j.le.b2) then

k = 1
j = 1+j
GOTO 3

endif
if (i.le.b3) then

k = 1
j = 1
i = 1+i
GOTO 4

endif
1 CONTINUE

Note. If i is the time variable, one just has to insert a
synch(i) just after statement 4.

The generated code has the following general form:

~x = �rst
computation of level 1 constants

label1 computation of level 2 constants
label2 computation of level 3 constants

: : :

labelm�1 computation of level m constants
labelm loop body

nextm � goto labelm
nextm�1 � goto labelm�1
: : :

next1 � goto label1

where “nexti � goto labeli” corresponds to a selec-
tion tree (if then else) which translates the QUAST
nexti. At each leaf of this selection tree, there are, first,
the storage of the new values of the indices (~x), and next,
a “goto labeli” statement to start the next iteration.

4. Experimental results

We study here how the code we generate compares
with loop methods in terms of compactness and speed.

4.1. Simple 3D example:permutation

The domain we consider here is the affine image of
the polyhedron:

8<
:

1 � i � n

1 � j � n

1 � k � i+ j

by the permutation
0
@

0 0 1
1 0 0
0 1 0

1
A :

Any (good) loop transformation method would pro-
duce the following code:

do x = 1, 2*n
do y = max(1,x-n), n

do z = max(1,x-y), n
c --- loop body ---

enddo
enddo

enddo

Here is the code we produce:

x = 1
y = 1
z = 1
b9 = -1+2*n
b8 = 1-n

8 b7 = -1+n
b5 = -2+x
b6 = -1+x

7 b4 = -1+n
6 CONTINUE
c --- loop body ---

if (z.le.b4) then
z = 1+z
GOTO 6

endif
if (y.le.b7) then

if (y.ge.b5) then
z = 1
y = 1+y
GOTO 7

else
z = b6-y
y = 1+y
GOTO 7

endif
endif
if ((n-x).ge.0) then

z = x
y = 1
x = 1+x
GOTO 8

else
if (x.le.b9) then

z = n
y = b8+x
x = 1+x
GOTO 8

endif
endif

5 CONTINUE

The two codes share a common structure. Hence, the
execution times are similar with a slight advantage to the
second one. The running times and code sizes are shown
in Tab. 1.

time (s) / size (bytes) loops gotos

without opt. 1.87 / 2,192 1.75 / 3,300
with opt. 0.14 / 1,416 0.12 / 1,668

Table 1. Execution times and object code
sizes for the permutation example

All the execution times have been measured on a
SUN SPARCstation 20. All the programs have been
compiled with the SUN f77 FORTRAN compiler. We
have compiled our programs both without any compiler
optimization and with the-O option.

These results confirm that the two codes share a com-
mon structure, but as we generate lower level code, we
are able to have slightly better execution times.

Remark.Further optimizations such as replacing non
strict inequalities by strict ones to remove some inter-
mediate variables or merging some intermediate vari-
ables with the same value may reduce the non optimized
running time but do not improve the optimized running
time. This is due to the good optimizations done by the
compiler. These optimizations can even increase the op-
timized running time because they reduce the number of
variables, which reduces opportunities to allocate vari-
ables to registers.

Although the Fortran codes have different lengths,
the object codes generated have nearly the same size
with a slight advantage to the loop version.

4.2. Lefur’s Example P1

This more complex example is detailed in an ex-
tended version of this article [2]. In this case, the goto
code is slightly slower than the do-loop code.

5. Extension to unions of linearly bounded
lattices

We study here how the method presented in Sect. 3
can be extended to deal with unions of LBLs, which ap-
pear when generating code for non perfect loop nests
where each statement may be subjected to a different
affine transformation: each LBL is the image of the it-
eration domain of some statement by an affine transfor-
mation.

5.1. Preliminary remarks

The basic idea is to apply the previous method to
each LBL and to combine the results. There are how-
ever some issues to deal with:

LBLs of different dimensions. To be able to speak
about union of sets, we must deal with sets of the
same dimension. If one set has less dimensions
than the others, one can just complete the missing
dimensions with a constant. The choice of this con-
stant is arbitrary; one can set it to0.

Reducing the complexity of the computation.
We have remarked that computing a minimum of
several QUASTs can be costly, as much during
code generation as during the execution of this
code. So one of our aims when developing the code
generation algorithm for unions of LBLs has been
to avoid computing these minima.

Code duplication. Code duplication is also an issue
when dealing with this kind of transformation.
Though it can be costly, we have not focused on
its complete elimination.

5.2. Formal method

Considering the previous remarks, we have designed
a method to iterate over unions of LBLs.

Let us consider that we havep LBLs
L1(z); : : : ;Lp(z), depending on some parameters
z 2 D. These LBLs are defined by:

Li(z) = fx 2Zn

j 9y 2Zmi; Aix+ Biy + Ciz � dig :

We noteU(z) =
S

1�i�pLi(z).
We use here the same method as in Sect. 3.2, by

building a constant, “�rst”, and a function, “next”.
“�rst” is defined as:�rst = min�fy 2 U(z)g, and as

before, this is an integer programming problem directly
solvable byPIP. Function “next” is defined as:

next : U(z)! U(z) [f?g

x 7! min�fy 2 U(z) j x � yg :

To compute this function, we decompose it into linear
integer programming problems.

If we suppose that, for a given pointx of U(z), we
know whichLi(z) it belongs to,next(x) can be ex-
pressed as:nexti(x) = min�j2N�p nexti;j(x) for any
i such thatx 2 Li(z) and wherenexti;j is defined by:

nexti;j : Li(z)! Lj(z) [f?g

x 7! min�fy 2 Lj(z) j x � yg :

As in Sect. 3.2, we decompose the constraintx �
y into k linear constraints to build the linear problems
Pk
i;j; 1 � i; j � p; 1 � k � n whose solutions are the

following point inLj whose first different coordinate is
thek-th, considering that the current point is inLi. The
general form ofPk

i;j is:

minimizex0 subject to the constraints:

8>>>>>>>>><
>>>>>>>>>:

Ez � f

Aix+ Biy +Ciz � di
Ajx

0 + Bjy
0 +Cjz � dj

x1 = x01
...
xk�1 = x0k�1

xk < x0k

We then combine the results of these problems to find
the following point,nextki (x), in U(z) whose first dif-
ferent coordinate is thek-th, considering that the cur-
rent pointx is in a selectedLi(z): it is the minimum of
the solutions of thePk

i;j for all j. Such a minimum of
QUASTs is a QUAST. We label each branch of this min-
imum QUAST by the indicesj of the QUASTs it comes
from, i.e. the statements which should be executed at the
corresponding point. This branch labeling allows us to
know whichLj(z) the following point belongs to.

Taking the minimum of thenextki (x) gives us
nexti(x). These functions,nextki , are sufficient to com-
pute functionnext in all cases. In fact, let us sup-
pose that we know, for the current pointx, the set
Ix(z) = fi j x 2 Li(z)g. The following point is one
of thenexti(x) for i 2 Ix(z). Indeed, as the problems
Pk
i;j differ only by their context for differenti 2 Ix(z),

all their solutions are correct. So all thenexti(x) with
i 2 Ix(z) are the point followingx in U(z). And, by
reading the labels of the QUAST branches, we can now

identify Inext(x)(z). By induction, we can iterate all the
points ofU(z) given the computation of all thePk

i;j.
We only lack the knowledge ofI�rst(z). The solution

is to decompose the linear problemmin�fy 2 U(z)g
intomin�fmin�fy 2 Li(z)g j i 2Z�pg and to label the
branches as above.

Let us clarify this on a simple example :

Example 5.1 (Simple 2D example).
Let us consider two statements➀ and➁ whose iteration
domains areD1 = D2 = f(a; b) j 1 � a � n; 1 � b �
ng and that are transformed by, respectively:

f1 : (a; b) 7! (3a; b) andf2 : (a; b) 7! (3a+ 1; b):

k i nextki

2
1

if b � n� 1
then a; b+ 1 f➀g
else?

2
if b � n� 1
then a; b+ 1 f➁g
else?

1
1

if a � 3n� 3
then a+ 1; 1 f➁g
else?

2
if a � 3n� 2
then a+ 2; 1 f➀g
else?

Table 2. nextki .

Table 2 shows thenextki computed for this particular
case. The symbols➀ and➁ label the leaves ofnextki ,
indicating which statement has to be executed at the cor-
responding point.

min� f1(D1) min� f2(D2) start

3; 1 4; 1 3; 1 f➀g

Table 3. Starting point.

To determine the starting point, we have to solve the
minima off1(D1) andf2(D2) and their minimum. See
Tab. 3 for these computations.

We have now computed all the information needed to
scan the unionL1(n) [L2(n) lexicographically.

5.3. Code generation

Let us now explore the details of the iteration code
generation. We have the same constraints as in Sect.

3.3: avoid as much as possible unneeded computations.
The solution is also the same as before: we will try to
avoid computing several times the same expressions.

Let us remark that the labels of the branches of the
QUASTs are sets of statements (theIx(z)). So, to be
able to do a complete optimization, we have to consider
these sets and to generate a separate piece of code for
each of them. Let us label these setsI1; I2; : : : ; IS . The
abstract coding scheme is described below.

x, s = �rst
if x = ? then goto endlabel
goto labels

label1 statements of set I
1

x, s = nexti2I1(x)
if x = ? then goto endlabel
goto labels
: : :

labelS statements of set I
S

x, s = nexti2I1(x)
if x = ? then goto endlabel
goto labels

endlabel

To generate such a code while avoiding computing
minima of QUASTs, the base functions we use are
the nextki . We can now extract from the QUASTs all
constant expressions with respect to their nesting level.
Reusing the same structure as in Sect. 3.3, we would
like to branch directly to the deepest nesting level, thus
avoiding the computation of outer level constants.

We must be careful when doing this because some
statements appear in several setsIs and so we have to
devise a mean to compute the constants at the right time.
One solution is to use variables indicating whether these
computations have to be done.

Let us clarify this: letiniti;k = true mean that con-
stants for statementi at dimensionk have to be com-
puted. These variables are all initiallytrue . They are
set tofalse each time they are computed and totrue
whenever there is a change in the iteration dimension.
We summarize this below with the coding scheme cor-
responding to the abstract code of a given setIs.

labels;1 foreach i 2 I
s do

if initi;1 then
computation of level 1

constants for statement i

initi;1 = false
endif

enddo
labels;2 foreach i 2 I

s do
if initi;2 then

computation of level 2
constants for statement i

initi;2 = false
endif

enddo
: : :

labels;d foreach i 2 I
s do

if initi;d then
computation of level d

constants for statement i

initi;d = false
endif

enddo
computation of the statements

of set I
s

nexti;d � goto labelj;d
do j = 1, n

initj;d = true
enddo
nexti;d�1 � goto labelj;d�1
do j = 1, n

initj;d�1 = true
enddo
: : :

nexti;1 � goto labelj;1
goto endlabel

Finally, using the same optimizations as in Sect. 3.3,
we are now able to generate the iteration code for a union
of LBLs. The generated code for our simple example is
available in an extended version of this paper[2].

6. Conclusion

We have presented a general method for scanning lin-
early bounded lattices and unions of linearly bounded
lattices. The power of this method comes from the fact
that it accepts any number of parameters. Indeed, as all
the underlying computations are done withPIP which
is parameterized, one can for example parameterize the
code generation by the number of the target processor
and the size of the domain.

This method distinguishes itself from the other ex-
isting ones by producing low level code and not using
Do-loops. We have however tried to keep the efficiency
of the loop structure and the experimental results we
have obtained show that we have achieved our goal. We
should note that the efficiency of the produced code de-
pends greatly on the optimizations done afterwards by
the native compiler.

The codes we generate may look very complex. One
however must keep three points in mind:

� Firstly, the generated code is to be compiled with-
out human intervention. Hence, the only relevant
figure of merit is execution time. From this point
of view, our codes qualify.

� Next, we generate directly low level code. Low
level code equivalent to loops such as in Sect. 4.2
would probably look as complicated as our own.

� Lastly, in many cases, the scanning code is inher-
ently complex. The constraint that the scanning
code must be simple and elegant should be taken
care of when selecting code transformations. How
to express this constraint and solve the associated
optimization problem is unknown at present.

Further experimentation of the general case will be
done with the inclusion of the prototype in a complete
parallelizer.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO
loops. InProc. of the 3rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
39–50, Apr. 1991.

[2] P. Boulet and P. Feautrier. Scanning polyhedra
without do-loops. Technical report, Laboratoire
PRiSM, Université de Versailles-St Quentin en Yvelines,
France, 1998. available athttp://www.lifl.fr/
~boulet/publi/polyscanRR.ps.gz .

[3] Z. Chamski. Scanning polyhedra with do loop se-
quences. InWorkshop on Parallel Algorithms ’92, Sofia,
1992.

[4] J.-F. Collard. Code generation in automatic paralleliz-
ers. In C. Girault, editor,Proc. Int. Conf. on Application
in Parallel and Distributed Computing. IFIP WG 10.3,
pages 185–194. North Holland, Apr. 1994.

[5] J.-F. Collard, P. Feautrier, and T. Risset. Construction
of DO loops from systems of affine constraints.Parallel
Processing Letters, 5(3):421–436, Sept. 1995.

[6] A. Darte. Techniques de parallélisation automatique de
nids de boucles. PhD thesis, Ecole Normale Supérieure
de Lyon, 1993.

[7] P. Feautrier. Parametric integer programming.RAIRO
Recherche Opèrationnelle, 22:243–268, Sept. 1988.

[8] P. Feautrier. Semantical analysis and mathematical pro-
gramming. In M. C. et al., editor,Parallel and dis-
tributed algorithms, pages 309–320, North Holland,
1989. Elsevier Science Publishers B.V.

[9] F. Irigoin. Partitionnement des boucles imbriquées, une
technique d’optimisation pour les programmes scien-
tifiques. PhD thesis, Ecole Nationale Supérieure des
Mines de Paris, June 1987.

[10] W. Kelly, W. Pugh, and E. Rosser. Code generation
for multiple mappings. InThe 5th Symposium on Fron-
tiers of Massively Parallel Computation, pages 332–341,
McLean, Virginia, Feb. 1995.

[11] G.-R. Perrin and C. Reffay. Communication code gener-
ation in systems of affine recurrence equations.Integra-
tion: the VLSI Journal, 20:63–83, 1995.

[12] J. Xue. Automatic non-unimodular transformations of
loop nests. Parallel Computing, 20(5):711–728, May
1994.

[13] J. Xue. Unimodular transformations of non-perfectly
nested loops.Parallel Computing, 22:1621–1645, Feb.
1997.

