
Automati
 Distribution of Data andComputationsPaul Feautrier �Mar
h 27, 2000I said it in Hebrew { I said it in Dut
h {I said it in German and Greek,But I wholly forgot (and it vexes me mu
h)That English is what you speak.Lewis Carrol.Abstra
tThe most
riti
al fa
tor in the performan
e of a distributed mem-ory
omputer is the a

ess frequen
y to remote data. This frequen
ymay be redu
ed by a
lever distribution of data and
omputationsamong pro
essors and their memories. In the
ontext of data parallellanguages { as for instan
e, HPF { �nding the proper distribution isthe responsibility of the programmer. This paper explores anotherpossibility, namely having the
ompiler determine the distribution us-ing only information available in the sour
e program. The paper showsthat, with the help of elementary linear algebra te
hniques, one may�nd satisfa
tory pla
ements provided the sour
e program is limited toDO loops and arrays with aÆne subs
ripts.�This report is a litteral translation by the author of \Distribution Automatique desDonn�es et des Cal
uls", TSI vol. 15, pages 529-557, 1996.
1

R�esum�ePour un multipro
esseur �a m�emoire distribu�ee, le fa
teur de per-forman
e le plus
ritique est le taux d'a

�es �a des informations�eloign�ees. Ce taux d'a

�es peut être
onsid�erablement r�eduit si l'ondistribue habilement les donn�ees et les
al
uls parmi les pro
esseurset leurs m�emoires. Si l'on utilise un langage de programmation �a par-all�elisme de donn�ees
omme HPF,
e travail est de la responsabilit�ede l'utilisateur. On explore i
i une autre possibilit�e,
elle d'une distri-bution automatique �a la
ompilation �a partir des seules informationsdisponibles dans le texte sour
e. On montre qu'il est possible, en util-isant des te
hniques peu
omplexes d'alg�ebre lin�eaire, de trouver despla
ements satisfaisants �a
ondition que le programme sour
e se lim-ite �a des bou
les DO et �a des tableaux index�es au moyen de fon
tionsaÆnes.1 Introdu
tionModern
omputer appli
ations need pro
essing power far beyond what
an beobtained from a
ommodity mi
ropro
essor. This is true in the �eld of HighPerforman
e Computation but also for Data Base Management and Dis
reteEvent Simulation. One may try to implement High Performan
e Monopro-
essors, but one is qui
kly limited by the performan
es of the then
urrentte
hnology. Moore law says that mi
ropro
essor performan
e in
reases by afa
tor of two ea
h year and a half. There is no equivalent for mainframesand super
omputers, whose design
y
le is mu
h longer.The obvious solution is the
onstru
tion of super
omputers from standardparts. But this is by no means a simple task. Suppose that one needs, ata given time, twi
e the power of the most powerful
urrent multipro
essor.One is tempted to build a bipro
essor, but if this task takes more than 18months, a better solution is to do nothing and wait for the next generation.A multipro
essor is interesting only if its degree of parallelism is high and ifit
an be implemented in a short time.From that point of view, distributed memory
omputers have the advan-tage. They
an be easily
onstru
ted by inter
onne
ting
ommodity elements{ for instan
e, ordinary workstations { using a
ommuni
ation network whi
h
an also be o� the shelf, for instan
e an Ethernet or an ATM based swit
h.2

The operating system
an also be a standard Unix, although spe
ial librarieslike PVM [BDG+91℄ have been spe
ially designed for HPC appli
ations. Theprogramming model for su
h
omputers is message passing . Message passingo

urs whenever a pro
essor needs data whi
h is lo
ated in the memory ofanother pro
essor. Su
h a
ommuni
ation always has a high
ost { mostoften, the equivalent of the exe
ution time of several thousands of pro
essorinstru
tions. Hen
e, to obtain reasonable performan
es, the program mustbe designed in su
h a way that
ommuni
ations o

urs very seldom.Usually, parallel programs are
lassi�ed a

ording to their grain. Our
ontention is that there are several types of grains, and that
omparing themallows a very
rude evaluation of a parallel program performan
e.The ar
hite
ture grain, noted G in the following, is de�ned as the numberof instru
tions whi
h
ould have been exe
uted in the time taken by a typi
alintera
tion between pro
essors. To get a feeling for the importan
e of thisparameter,
onsider a program whi
h runs parallel phases on ea
h pro
essor,followed by a set of
ommuni
ation between all pro
essors. Let N be thetotal number of instru
tions whi
h are exe
uted by the parallel phases. If wesuppose that phases are perfe
tly balan
ed, the eÆ
ien
y is easily seen to be:� = 11 + PG=N :This
learly shows that the eÆ
ien
y of the program de
reases with the num-ber of pro
essors, whi
h must be small with respe
t to N=G. The quantityN is is the grain of the parallel program. One
an summarize these observa-tions by saying that a good parallel program must have a grain whi
h is mu
hlarger thant the grain of the ar
hite
ture. Redu
ing the hardware grain isthe task of the ar
hite
t, while in
reasing the program grain is the problemof the programmer or of the
ompiler.On the hardware side, high performan
e networks have been designedwith a view of in
reasing throughput, and of redu
ing laten
y, and thesee�orts have had spe
ta
ular results. However, sin
e at the same time theperforman
e of pro
essors has steadily in
reased, the hardware grain hasstayed almost
onstant. The overal ar
hite
ture of su
h super
omputers hasnot varied sin
e the �rst Intel designs: the building blo
k is an ordinarypro
essor and its memory. Pro
essors are
onne
ted through a network whosetopology is
hosen among a few basi
 possibilities: grids with dimension1 to 3, hyper
ubes, multistage networks. The important point is that a3

lo
al memory a

ess is faster by several order of magnitude than a messageex
hange. The a
tual performan
e of a program is governed by the frequen
yof inter-pro
essors ex
hanges. Diminishing this frequen
y
an be obtainedby two methods:� One starts from an arbitrary distribuation, and tries to improve it asthe program is being exe
uted, by migrating either programs or data.Some distributed operating systems provide tools for program migra-tion. Shared virtual memory systemes move data as near as possibleto the tasks whi
h are using them.� The other possibility is to build the program a

ording to an optimaldata distribution. This
an be the responsibility of the programmer orof the
ompiler.The �rst method has the advantage of simpli
ity: no preliminary analysis isneeded. Besides, it is a dynami
 solution, and there is no reason to believethat a unique solution
an be optimal for the whole of a large program. These
ond method must be applied to reasonably sized kernels, with redistri-bution phases in between. This has the potential of giving better results,be
ause the programmer or the
ompiler has, at least in theory, a
ompleteview of the behaviour of the program, while the hardware or the operatingsystem knows only its past. Even with
omplete information, �nding a gooddistribution is a diÆ
ult optimization problem. The main goal of this paperis to explore ways and means of having the
ompiler
hoose an optimal (ornearly optimal) distribution.1.1 An Elementary ExampleLet us
onsider the following very simple example:program Ax = y + zTo \distribute" this statement, we have to spe
ify whi
h pro
essors hold x, yand z, and whi
h pro
essor exe
ute the addition. We
an for instan
e a�e
tea
h variable to a di�erent pro
essor, and use a fourth pro
essor for the
omputation. This distribution obviously entails three message ex
hanges.At the opposite, we
an sele
t a pro
essor to hold all three variables and do4

the
al
ulation. In this
ase, no message passing is ne
essary. The se
ondsolution probably is the most eÆ
ient. It has no parallelism, but, after all,neither had the original program.Consider now a similar example:program Bdo i = 1,nx(i) = y(i) + z(i) {S}end doAs a �rst try, one may
onsider that arrays x, y and z, and all iterations ofstatement S are to be distributed as a whole. One obtain results similar tothose for program A, with either too many
ommuni
ations or not enoughparallelism. Another
hoi
e is to handle the arrays on a word per word basis,and to
onsider ea
h iteration of S independently. It is easy to see that ifx(i), y(i), z(i) and iteration i of S are assigned to the same pro
essor, no
ommuni
ation will be ne
essary. On the other hand, there is no
onstrainton the pla
ement of words or iterations asso
iated to distin
t values of i.Let P be the number of available pro
essors. One may for instan
e dividethe interval [1; n℄ into P (almost) equal segments, the
orresponding strip ofarrays x, y and z, and the
orresponding iterations of S being attributed tothe same pro
essor.This example shows the importan
e of another grain, the analysis grain,whi
h
hara
terize the smallest analyzable part of the sour
e program asseen by the
ompiler. In this
ase, we have
ompared the results of a
oarsegrain and of a �ne grain analysis, with an obvious advantage for the se
ondsolution. It is important to note that the parallel program grain is mu
hlarger (by a fa
tor of n=P) than the grain of the analysis. There is a naturaltenden
y to mat
h the grain of analysis to the grain of the target ar
hite
ture.Perhaps paradoxi
ally, our example shows that it is better to run the analysisat the smallest possible grain and to leave it to the
ompiler to
onstru
tbigger
hunks of operations by a pro
ess of aggregation. However, there isa level at whi
h one gains nothing by further disse
tion of the operations.Experien
e shows that one exe
ution of one high-level language statement(e.g. an assignment in Fortran or Pas
al or C) is pre
ise enough for automati
parallelisation. A �ner grain might be needed for other optimizations, likeILP or register assignment or lo
ality enhan
ement.5

1.2 Related WorkData distribution is the
ore problem in data-parallel programming languages[Bou93℄, and these languages have been re
ognized as the preferred methodfor programming distributed memory ar
hite
tures. In the best known data-parallel language, [For94℄, the user has the responsibility of spe
ifying thedata distribution, and the
ompiler applies the \owner
omputes rule" todistribute the
omputations. The underlying hypothesis is that the userknows the data
ow in his program, sin
e this is to be an analogue of a
tual
ows in the modeled system. The awkward
onsequen
e is that the
ompilerhas to be able to translate any spe
i�
ation, whatever its eÆ
ien
y or la
kthereof. The reason is that the
ompiler has no
ontrol on the de
isions ofthe programmer, and that human beings, while very good at �nding eÆ-
ient distributions when they exist, perform poorly when the problem is to�nd a
ompromise between ne
essary evils. This has lead to the sear
h forautomati
 distribution algorithms.Early work (see [JC90℄ for a typi
al example) used the
onstraint satis-fa
tion paradigm. An analysis of the sour
e program allows one to dete
trelations between array pla
ement for an eÆ
ient exe
ution. The result isthe aÆnity graph, whi
h is usually in
onsistent. Various heuristi
s are usedto satisfy as mu
h
onstraints as possible. The pla
ements whi
h are foundin this way are usually more limited than those whi
h are dealt with in thispaper.The aÆne pla
ement paradigm, whi
h used here, was introdu
ed by Ra-manujam and Sadayappan in [RS91℄. These authors did not give a universalmethod for solving the pla
ement equations. In paper [Fea94℄, we introdu
edthe te
hnique of in
remental Gaussian elimination, whi
h will be des
ribed inSe
tion 3.2.1. The authors of [BKK+94℄ linked the solution of the pla
ementproblem to the dimension of the kernel of a matrix known as the
ommuni
a-tion matrix of the program. However, their
riterion is valid in the
ase of aperfe
tly nested loop only; more
ompli
ated tests are needed in the general
ase.In a sequen
e of papers ([DR94a, DR93, DR94b℄) Y. Robert et. al. atta
kthe pla
ement problem by te
hniques from linear algebra and matrix
al
u-lus. An important
ontribution of these papers is that several subproblems
onne
ted to pla
ement are proved to be NP-hard. This is the justi�
ationfor the use of heuristi
s in the solution. Papers [DR94a, DR93℄ are restri
ted6

to the
ase where the subs
ript fun
tions are translations in a perfe
t loopnest. More re
ently, paper [DR94b℄ handles arbitrary loop nests and arbi-trary aÆne subs
ripts. The authors build an a

ess graph, whi
h is similarto the
ommuni
ation graph. The dire
tion of ea
h edge depends on whetherthe asso
iated subs
ript fun
tion
an be inverted or not. Finding a maximumweight bran
hing for this graph gives the order in whi
h pla
ement fun
tionare to be
omputed. The edges whi
h do not belong to the sele
ted bran
hing
orrespond to residual
ommuni
ations.2 Formal SolutionOur obje
tive is now to
onstru
t an eÆ
ient pla
ement of data and
ompu-tation at
ompile time. In this work, we will limit ourselves to the analysisof one pro
edure only. Finding a pla
ement for several pro
edures is a verydiÆ
ult problem, whether the pla
ement is found automati
ally or \manu-ally". In this se
tion we will set up the problem and analyze its properties.The
onstru
tion of a solution method is dealt with in the next se
tion.2.1 Notations and
onventionsIn the present state of the theory, there is no hope of �nding a pla
ementfor an arbitrary program. In fa
t, even in the simplest languages { Fortranfor instan
e { one
an spe
i�es dynami
 a

ess patterns, as for instan
e withsubs
ript arrays:program Cdo i = 1,na(b(i)) =end doIn this example, one
annot
hara
terize at
ompile time the relation betweenoperations (one iteration of the loop body) and the array
ells whi
h it mod-i�es, sin
e one has to know the
ontents of array b. The only possibility isto restri
t the allowed a

ess patterns to a few simple
onstru
tions.Firstly, one must be able to identify and to give a name to ea
h operationof the program. An operation is the exe
ution of one ma
hine instru
tionor of one statement in a high level language, depending on the granularity7

of the analysis. In ordinary programs, statements are repeated many times;ea
h repetition has to be named. This is easy in the
ase of well stru
turedprograms with DO loops and
onditionals. In this
ase, a repetition of a state-ment is named by giving the values of the surrounding loop
ounters. It is
onvenient to write these values, from the outermost loop to the innermostone, as a ve
tor, the iteration ve
tor of the statement. The name of theoperation is a
ouple hS; ~xi where S is the name of the statement and where~x is the iteration ve
tor. For ea
h statement, the dimension of the iterationve
tor is �xed: it is equal to the number of surrounding loops. Ea
h
oor-dinate of the iteration ve
tor
annot take arbitrary values: it is
onstrainedby the bounds of the
orresponding loop. The set of integer ve
tor whi
hsatis�es the loop bounds is the iteration domain of the given statement. Theiteration domain of S is DS . D is the set of all operations of the program,i.e. the disjoint union of all iteration domains.If statement S is
ontrolled by one or more tests, its iteration domainmay be a subset of the iteration domain of the surrounding loops. In this
ase, a pre
ise determination of its iteration domain may be impossible at
ompile time if the tests predi
ates are
omplex or depend on the input dataof the programs. In this
ase, one has to resort to approximations [CBF95℄.On the
ontrary, there is no diÆ
ulty at all if the
onditional tests the signof an aÆne form in the loop
ounters: we will suppose this is the
ase in allprograms to be
onsidered in this paper.Consider:program Ddo i = 1,ndo j = 1,i-1a(j,i) = a(i,j) {S}end doend doThe iteration domain of S is the set of integer points belonging to thetriangle: 1 � i � n; 1 � j � i� 1:The obje
tive of the
ompiler is, roughly, to distribute ea
h operation tothe pro
essor whi
h holds the maximum number of its operands. It thus has8

to dedu
e from the program text the set of memory
ells whi
h are a

essedby ea
h operation. This is very
ompli
ated in general. The only simple
aseis that in whi
h data stru
tures are arrays or s
alar. Furthermore, one hasto restri
t subs
ripts to aÆne fun
tions of the surrounding loop
ounters. Tosimplify notations, the subs
ripts of an array are gathered into a subs
riptve
tor. With this
onvention, for ea
h array a

ess, there exist an aÆnetransformation whi
h asso
iate a subs
ript ve
tor to ea
h iteration ve
tor.S
alars are handled as 0-subs
ript ve
tors.Consider again example D. The transformation asso
iated to the ref-eren
e to a in the right hand side of S is:f(~x) = x2x1 ! = 0 11 0 !~x;where ~x is the iteration ve
tor. In its last version, this formula showsthat f is asso
iated to the matrix: 0 11 0 !.The pla
ement problem for data and
omputations
an now be formalizedin the following way. The
omputation pla
ement fun
tion � asso
iates toea
h operation hS; ~xi a pro
essor number �(S; ~x). Without loss of generality,one may suppose that pro
essors are numbered, and hen
e that the value of� is an integer (we will see later that it is sometime useful to have integerve
tors as pro
essor numbers).In the same way, �(A;~i) is the number of the pro
essor whi
h holds thememory
ell whose subs
ripts are ~i in array A. � is the pla
ement fun
tionof the program.If q is some pro
essor number, then:Dq = fu j u 2 D;�(u) = qg (1)is the set of operations whi
h are exe
uted by q. One
an de�ne in thesame way the subarray of A whi
h is resident in q memory. Pla
ementfun
tions must be su
h that these sets
an be des
ribed in simpleterms. Besides, the sets Dq must be of roughly the same size for loadbalan
ing. 9

A more general formulation
an be obtained if � is supposed to be arelation rather than a fun
tion. This
onvention allows the represen-tation of redundan
y, both for data and
omputations. This aspe
t ofthe pla
ement problem is not well understood at present, and will bethe subje
t of future resear
h. A spe
ial
ase of the problem is solvedin [BKK+94℄: the dupli
ation of read-only data.2.2 Cutting ConditionsIn this framework, it is easy to write the
onditions that are to be satis�edby � if one wants to remove all
ommuni
ations. Let S be a statement, ~x itsiteration ve
tor, A[f(~x)℄ a referen
e to A in S. Operation hS; ~xi is exe
utedby pro
essor �(S; ~x). Memory
ell A[f(~x)℄ is in the memory of pro
essor�(A; f(~x)). No
ommuni
ation is ne
essary if these two pro
essors are thesame: �(S; ~x) = �(A; f(~x)): (2)These equations are
alled
utting
onditions, sin
e they have to be satis�edfor
ommuni
ations between
ell A[f(~x)℄ and operation hS; ~xi to be \
ut".The pla
ement problem is thus seen to be equivalent to �nding a fun
tion� whi
h satis�es all of the
utting
onditions, for all statements in the pro-gram and all referen
es therein. If su
h a solution does not exists, the set ofresidual
ommuni
ations due to referen
e A[f(~x)℄ in statement S as the set:RSA = f~x j ~x 2 DS;�(S; ~x) 6= �(A; f(~x))g (3)and the problem is to minimize the sum of the sizes of all these sets1An important point is that if we do not add
onstraints, the problemhas a trivial solution, in whi
h all data and all
omputations are assignedto one and only one pro
essor. When
onstru
ting a distributed program,this
ollapse must be avoided at all
osts. We have already en
ounteredthe ne
essary
onstraint: it is in fa
t the load balan
ing
onstraint, i.e. thestipulation that all sets Dq (see Equ. 1) have the same size.1It is
lear that our formalization is approximative. We are ignoring phenomena su
has the reuse of the same value by several operations, or the possibility of moving a valuefrom pro
essor to pro
essor as the
omputation pro
eeds.10

2.3 Formal solutionIn the above form, the problem has a simple solution. Let us
onsider thefollowing bipartite graph. The verti
es are operations and array
ells. Thereis an edge between an operation and an array
ell if the operation a

ess the
ell, whether as a read or as a write. This un-oriented graph is the
ommuni-
ation graph of the program. Finding a pla
ement is equivalent to asso
iatinga pro
essor number to ea
h vertex, and the
utting
onditions express thefa
t that neighbours must reside on the same pro
essor . By transitivity, thisimplies that all verti
es on a path are on the same pro
essor, and �nally thatall verti
es in one
onne
ted
omponent are the same pro
essor.One may thus �nd the prin
ipal solution of the pla
ement problem by
omputing the
onne
ted
omponents of the
ommuni
ation graph and as-signing one pro
essor to ea
h
omponent. If $ is the prin
ipal solution, allother solutions are found by
omposition of an arbitrary fun
tion:� = � Æ$: (4)When a pla
ement is given, as above, by the
omposition of two fun
-tions, it is usual to say that fun
tion $ gives a virtual pro
essor num-ber, and that � spe
i�es the distribution of virtual pro
essors on realones. This
onvention has been introdu
ed by the designers of theConnexion Ma
hine and is found, with a slightly di�erent terminol-ogy in the HPF language.A
onsequen
e of these observations is that the maximum degree of
ommuni
ation-free parallelism is an intrinsi

hara
teristi
s of a program.In fa
t, the use of a folding fun
tion � is a way of redu
ing this degree (byassigning several
onne
ted
omponents to the same pro
essor) but it
annotbe used to in
rease it. In fa
t most programs have a
onne
ted
ommuni-
ation graph, hen
e no
ommuni
ation-free parallelism. Our aim is now tounderstand why, and to �nd ways of improving the situation.
11

2.4 Some elementary examplesLet us
onsider �rst the following transposition
ode:program Edo i = 1,ndo j = 1,i-1r = t(i,j) {S1}t(i,j) = t(j,i) {S2}t(j,i) = r {S3}end doend doThe
onne
ted
omponent of r obviously in
ludes all operations from S1 andall operations from S3. It then follows from the text of S1 that this
omponentin
lude also all t(i,j), for j < i, then, a

ording to S3, all t(i,j) for j > i.Lastly, all operations from S2 are in the
onne
ted
omponent of r. Hen
e,the
ommuni
ation graph of this program is
onne
ted, and the only way ofobtaining a
ommuni
ation-free obje
t program is to use only one pro
essor.One sees
learly that this situation is due to the use of a unique s
alar s.There is a well known remedy: one must expand r to, e.g., a two dimensionalarray :program EEdo i = 1,ndo j = 1,i-1r(i,j) = t(i,j) {S1}t(i,j) = t(j,i) {S2}t(j,i) = r(i,j) {S3}end doend doThis transformation
an be done me
hani
ally by using the results of the ar-ray data
ow analysis of the original program [Fea88, Fea91, MAL93, PW93℄.In the
ommuni
ation graph of program EE, from the vertex representing
ellr(i,j) for j < i, one may rea
h
ells t(i,j) et t(j,i), and also operationshS1; i; ji; hS2; i; ji and hS3; i; ji. On the other hand, an operation whose ve
-tor is hi; ji a

esses only array
ells whose subs
ript are hi; ji or hj; ii. There12

an be a
ommuni
ation between iterations hi; ji and hi0; j 0i only in the
asei = j 0; j = i0 whi
h is ex
luded by the loop bounds2.All in all, the prin
ipal solution for program EE
an be written:$(S1; i; j) = $(S2; i; j) = $(S3; i; j) = $(t; i; j) = $(r; i; j) == if i � j then ij ! else ji !One may observe that in this
ase,
onne
ted
omponents have ve
tor names.The
orresponding program is
ommuni
ation-free and
an be exe
uted in
onstant time on O(n2) pro
essors. This number
an be redu
ed throughtthe use of a well
hoosen folding fun
tion.Let us now
onsider a single assignment version of the matrix produ
t
ode:program Fdo i = 1,ndo j = 1,n
(i,j,0) = 0 {S1}do k = 1,n
(i,j,k) =
(i,j,k-1) + a(i,k)*b(k,j) {S2}end doend doend doThe
utting
onditions are:�(S1; i; j) = �(
; i; j; 0) (5)�(S2; i; j; k) = �(
; i; j; k) (6)= �(
; i; j; k � 1) (7)= �(a; i; k) (8)= �(b; k; j) (9)2Remark that this reasoning depends on the hypothesis that two a

esses to the samearray with di�ering subs
ripts are a

esses to di�ering memory
ells, or, equivalently,that subs
ripts are always within the array dimensions. Almost all resear
h in automati
parallelization impli
itly a

epts this hypothesis, whi
h belongs to the garbage in, garbageout
ategory. 13

One easily sees that (8) et (9), entails that �(S2; i; j; k) does not depend oneither i or j by using the rule: \if �(x) = (y) where x et y are distin
tindependent variables then � and are
onstant fun
tions". For the samereason, (6) et (7) entails that �(
; i; j; k) does not depend on k. All in all,these result imply that all � fun
tions are
onstant, that the
ommuni
ationgraph is
onne
ted, and
onsequently that there is no
ommuni
ation-freeparallel version of program F. Furthermore, sin
e the obje
t program was insingle assignment form, the situation
annot be improved by expansion. It is
lear, however, that many
ommuni
ations are linked to the use of read onlyvariables, namely a and b. If one ignore the
utting
onditions (8) and (9),one �nds the prin
ipal solution :$(S1; i; j) = $(S2; i; j; k) = ij ! ;This solution
an only be used if all or parts of a et b are repli
ated before-hand. This
oupling by
onstant sharing o

urs quite frequently and
an besolved by data repli
ation.As a last example,
onsider the following Gaussian elimination
ode:program Gdo i = 1,ndo j = i+1,ndo k = i+1,na(j,k) = a(j,k) - a(j,i)*a(i,k)/a(i,i) {S}end doend doend doThe
utting
onditions are:�(S; i; j; k) = �(a; j; k) = �(a; j; i) = �(a; i; k) = �(a; i; i); (10)and this also implies that � is a
onstant: G has a
onne
ted
ommuni
a-tion graph. Here, it is neither a problem of s
alar expansion nor of
onstantsharing, but an intrinsi
 property of the Gaussian algorithm. Finding a nontrivial pla
ement for G { and for a lot of similar programs - entails ignoringsome of the
utting
onditions, and this will generates residual
ommuni
a-tions. In the next se
tion, I will present and dis
uss an algorithm for the14

sele
tion of residual
ommuni
ations and for the
al
ulation of asso
iatedpla
ement fun
tions.3 Solving the pla
ement problemIn the simple examples above, the
utting
onditions
ould be solved withoutre
ourse to any hypothesis on the shape of the pla
ement fun
tions. In thegeneral
ase, the
utting
onditions are very
omplex. Beside, the obje
tiveof this work is to �nd a pla
ement algorithm; a
olle
tion of spe
ial te
hniquesis not an adequate solution. There is small hope of rea
hing this goal unlesswe restri
t the input programs, espe
ially in the matter of the subs
riptfun
tions. We will suppose here that all subs
ript fun
tions are aÆne.f(~x) = F~x+ ~h: (11)If jSj is the number of loops surrounding statement S, and if jAj is the rankof array A, then in the above formula F is a matrix of dimension jAj � jSjand ~h is a ve
tor of dimension jAj.This hypothesis is frequently made by automati
 parallelizers. Programs withonly DO loops and aÆne subs
ripts were named stati

ontrol programs in [Fea88℄.There are reasons to believe, �rstly that this is the only
lass of programs whi
hhave a well de�ned
ompilation algorithm toward parallel
omputers. Less
on-strained programs
an be handled either by approximate methods [CBF95℄, or byrun-time parallelization methods.Se
ondly, the authors of [SLY89℄ have shown that a large proportion of nu-meri
al programs { about 80% { belongs to the stati

ontrol
lass. An importantresear
h domain deals with methods for
onverting some sub
lasses of non stati

ontrol programs to stati

ontrol. Relevant methods in
lude elimination of GOTO[Amm92℄, identi�
ation of indu
tive variables [ASU86℄, identi�
ation of DO loopsand others.But this hypothesis is not enough for solving the pla
ement problem. Onemust also suppose that the unknown fun
tions � also are aÆne:�(S; ~x) = PS~x+ ~qS; (12)�(A; ~x) = PA~x+ ~qA: (13)Within this framework, the unknown are now the matri
es PS , PA and the ve
tors~qS and ~qA. 15

It is
lear that this hypothesis is rather ad ho
. One may observe that apla
ement is uninteresting if it
annot be used as the blueprint for a parallelprogram. The present state of the art applies only to aÆne (or pie
ewise aÆne)pla
ements [AI91, CFR95, Xue94, KP94℄.It is
lear nevertheless that one may build very simple examples with very
ompli
ated pla
ements:program Hdo i = 1,na(i) = a(2*i)end doThe
utting
ondition for this program is:�(a; i) = �(a; 2i):All iterations whose
ounter is of the form (2p + 1):2k
learly are in the same
onne
ted
omponent. The prin
ipal solution of the pla
ement problem is thusthe fun
tion whi
h asso
iates to i its largest odd fa
tor. This fun
tion is neitheraÆne nor pie
ewise aÆne.In formula (12), the dimensions of matrix PS are g� jSj. g is the dimension ofthe pla
ement. The
hoi
e of the value of g depends both on the stru
ture of theinter
onne
tion network and on the degree of parallelism of the program.Most inter
onne
tion networks have a regular stru
ture, sin
e this allows theuse of identi
al pro
essors everywhere. Among the most frequently used regularnetworks are the grids: the pro
essors have
oordinates in INd, and ea
h pro
essoris
onne
ted to its 2d nearest neighbors. d is the dimension of the grid. Usualvalues are 1 (linear arrays), 2 and 3. On a d dimensional grid, the natural
hoi
efor pro
essor names are d dimensional ve
tors, and the natural
hoi
e for g is d.One looks for a pla
ement with the same dimension as the pro
essor grid.However, there is another point to
onsider. The inter
onne
tion networkmay not be a grid, or be a grid with adjustable dimension, as is the
ase for thehyper
ube. Let us suppose that in the sour
e program, a loop generates about niterations. An aÆne form on the loop
ounters will also have about n di�erentvalues, whatever the number of independent variables. If one uses a g dimensionalpla
ement, the number of virtual pro
essors will be of the order of ng. This valuemust be
ompared on one side to the number of physi
al pro
essors on the targetar
hite
ture, and on the other side to the maximum degree of parallelism of thesour
e
ode. 16

Let us
onsider the
ase of the inversion of a matrix of dimensionn = 1000 on a distributed memory ma
hine with about 100 pro
essors.A one dimensional pla
ement generates 1000 virtual pro
essors, or avp-ratio of 10.Suppose now that the
omputer is somewhat like a CM-1, with 64ksmall pro
essors. One has to swit
h to a two dimensional pla
ementif the vp-ratio is to stay large enough. Lastly, if the dimension ofthe matrix is only 100, it is useless to generate a three dimensionalpla
ement, sin
e the mean degree of parallelism of matrix inversion isonly n2.Our
on
lusion is thus that the
hoi
e of the pla
ement dimension is a
omplexproblem, in whi
h one has to take into a

ount both the sour
e program and thetarget
omputer. We feel that in most
ase, experimental eviden
e is the only wayof sele
ting the best dimension. All we
an do here is a

ept the value of g as aparameter of the pla
ement problem; our algorithm has to be general enough notto depend on its pre
ise value.3.1 The Communi
ation Matrix: the UnidimensionalCaseIn order to simplify the notations, we will �rst present the
ase of a one dimensionalpla
ement (g = 1). Su
h a pla
ement is adapted to a linear or ring network.Matri
es PS and PA of (12,13) be
omes ve
tors ~pS ans ~pA. Similarly, ve
tors ~qSand ~qA be
omes s
alars. The
utting
ondition (2) be
omes:~pS:~x+ qS = ~pA:(F~x+ ~h) + qA:This equation summarizes as many
onstraints as there are points in the iterationdomain of S. In fa
t, most of these
onstraints are redundant. It is easy to seethat it is enough to have them satis�ed at d + 1 points ~x0; : : : ; ~xd to have themsatis�ed at all points of the aÆne subspa
e generated by these points. Most ofthe time, there are enough points in the iteration domain of S to generate the jSjdimensional spa
e itself. Among others, this spa
e has for elements the origin andthe ve
tors of a
anoni
al basis. If we write the
utting
ondition at those points,we obtain: ~pS = ~pAF; (14)qS = ~pA:~h+ qA (15)17

It may happen that the iteration domain of some statement is not offull dimension. An example is:do i = 1,ndo j = 1,nif(i.eq.j) thena(i,j) = 1. {S}elsea(i,j) = 0.end ifend doend doIt is always possible to handle this problem by
onstru
ting the sup-porting subspa
e of the iteration domain, then rewriting the loop inthis subspa
e by a simple
hange of basis.One builds the set of
onditions for a
ommuni
ation-free pla
ement by
olle
tingall equations (14,15) for all referen
es in the program. In the resulting system,the unknowns are the (
omponents of) the ve
tors ~pS, ~pA and the s
alars qS etqA. The other terms, the F matri
es and the ~h ve
tors,
an be extra
ted from theprogram text, by synta
ti
 analysis in simple
ases, or by a more
omplex analysis,indu
tive variable dete
tion for instan
e. The important point is that from thepresent point of view, ea
h referen
e generates a linear homogeneous system ofequations.The two equations (14,15) are in fa
t quite di�erent. The quantity:d(S; A; ~x) = �(S; ~x)��(A; f(~x))is the \distan
e" from the pro
essor exe
uting iteration hS; ~xi to the pro
essorholding A[f(~x)℄. This distan
e may have a physi
al interpretation | in the
ase ofa grid | or not. However, it always gives a indi
ation on the transmission delay.In the
ase of an aÆne pla
ement, we get:d(S; A; ~x) = (~pS � ~pAF):~x+ qS � ~pA:~h� qA:This formula shows that if (14) is satis�ed, the
ommuni
ation distan
e does notdepend on ~x. On most inter
onne
tion networks, this kind of
onstant distan
e
ommuni
ation or shift is mu
h faster than an arbitrary point to point
ommuni-
ation. The ratio has been measured to be more than 30 on the CM-5 [Pla95℄. Ifthe equations (14) are satis�ed, then one may try to satisfy (15). If this is possible,18

all
ommuni
ations are eliminated. Nevertheless, this is not our primary obje
tive:one may still have some
onstant distan
e
ommuni
ations without doing mu
hharm to the program performan
e. Furthermore, the problems of satisfying (14)and (15) are separated here only for expository purposes; in our implementation,their handling is similar.One
an get a
learer appre
iation of the problem to be solved by
olle
tingall unknowns in a unique ve
tor in whi
h all ~pS and ~pA are
on
atenated. Thepla
ement ve
tor obtained in this way is of dimension:N =XS jSj+XA jAjThe order in whi
h statements and arrays are enumerated is arbitrary. We willwrite, for instan
e: S < T to indi
ate that statement or array S
omes beforestatement or array T in this enumeration.With these de�nitions, equation (14) be
omes:~pCSA = 0;where CSA is the following blo
 matrix:CSA = 0BBBBB� Z1IZ2�FZ3
1CCCCCA :I is the unit matrix of dimension jSj�jSj and F is the subs
ript matrix of (11). TheZi are null matri
es with appropriate dimensions. For instan
e, Z1 is of dimensionN1 � jSj, where: N1 = XR<S jRj:Matrix CSA is the elementary
ommuni
ation matrix for the referen
e to A instatement S. One then
olle
t all su
h equations in the form:~pC = 0: (16)Matrix C is obtained by
on
atenating matri
es CSA3 and is the
ommuni
ationmatrix of the whole program. When formulated in this way, the solution is obvious.3Our formulation is predi
ated on the hypothesis that ea
h statement has at most onereferen
e per array. The general
ase just requires more
ompli
ated notations.19

The pla
ement ve
tor ~p
an be
hosen arbitrarily in the kernel of C. An eventual
ollapse on one pro
essor o

urs when C is of full row rank, and its kernel is thetrivial subspa
e f~0g, whi
h
orresponds to a one pro
essor pla
ement.There is no
ollapse for example D above. The problem is to pla
estatement S and array a, whose domains are two-dimensional. Hen
e,~p has dimension 4. There are two subs
ript matri
es:F1 = 0 11 0 ! ; F2 = 1 00 1 ! :Substituting these matri
es into (14) and
on
atenating, one obtainsthe following
ommuni
ation matrix:C = 0BBB� 1 0 1 00 1 0 10 �1 �1 0�1 0 0 �1 1CCCA :The reader will readily �nd that the kernel of C is generated by theve
tor (1; 1; 1; 1).3.2 A Greedy AlgorithmWhen the
ommuni
ation matrix has a null kernel, we
annot �nd
ommuni
a-tion free-parallelism. Either the program stays sequential, or we have to a

eptresidual
ommuni
ations, whi
h is equivalent to ignoring some of the elementary
ommuni
ation matri
es. One obtain in this way a partial
ommuni
ation matrixC 0, and it seems plausible that if one ignore enough referen
es, C 0 will have a nontrivial kernel. As an extreme solution, if all referen
es are ignored, C 0 be
omesempty, its kernel is the whole spa
e, and the pla
ement
an be
hosen arbitrarily.It might seem that the
orre
t approa
h would be to
ompute the
ommuni-
ation volume a

ording to (3) and to �nd its minimum. But this is a uselessre�nement. In fa
t, the set of all iterations giving rise to a
ommuni
ation is:RSA = DS � f~x j ~x 2 DS ; d(S; A; ~x) = 0g:If the
ommuni
ation distan
e is null, then RSA is empty. Otherwise, let n bethe order of magnitude of the size of loops. The size of DS is O(njSj). On theother hand, sin
e the equation d = 0 de�ne an hyperplane, the size of the se
ondterm is O(njSj�1), whi
h is negligible when n is large. The out
ome of these20

estimates is that our reasoning
an be \all or nothing" : either the elementary
ommuni
ation matrix CSA is part of C 0, and the
orresponding
ommuni
ationsare eliminated4 or CSA is not taken into a

ount, and this generates a volume of
ommuni
ation whi
h has to be estimated, but whi
h is nearly independent of the
hosen pla
ement. A te
hnique for estimating this volume is given in se
tion 3.2.2.Let us summarize our �ndings. Our problem is to sele
t whi
h elementary
ommuni
ation matri
es are going to be part of C 0, the
onstraint being that C 0kernel is non trivial and the obje
tive being that the volume of residual
ommuni-
ations is minimal. This suggests the use of a greedy algorithm, whi
h is des
ribedbelow. In the body of the algorithm, we suppose that all referen
es in the programhave been numbered from 1 to L, that the elementary
ommuni
ation matrix
or-responding to referen
e number k is Ck, and that referen
e are listed by order ofde
reasing
ommuni
ation volume.Algorithm E1. Initially, C 0 is the empty matrix.2. For k = 1; L :(a) Constru
t C 00 = � C 0 Ck �(b) If ker(C 00) 6= f0g, then C 0 = C 00.3. Any ve
tor in ker(C 0)
an be used as a pla
ement ve
tor.The test in step 2b, whi
h de
ide whether ker(C 0) has a non zerove
tor, will be
alled the triviality test in the following.As for any greedy algorithm, there is no guarantee that the solution will be anoptimum. Algorithm E
an readily be transformed into a bran
h and bound onein the following way. We suppose that to ea
h referen
e is asso
iated a weight wkwhi
h is a measure (in some sense) of the volume of
ommuni
ation generated bythe
orresponding referen
e. The algorithm build a solution tree in whi
h de
isionare taken sequentially. To ea
h node of the problem tree are asso
iated the setsA (of a

epted referen
es) and D (of dis
arded referen
es). Referen
es are hereidenti�ed to their
ommuni
ation matri
es. In a node of depth k, all referen
esfrom 1 to k have been
lassi�ed:A [D = [1; k℄; A \D = ;:4or, in the worst
ase, transformed into shifts.21

The value of the node is Pi2D wi, i.e. the volume of the residual
ommuni
ations.In the
ourse of the algorithm, one
omputes the best
urrent solution, of valueW .Algorithm B1. If the
ommuni
tion matrix of the
urrent node has a trivial kernel, thisnode is a failure.2. If the
urrent node has height L, this node is a su

ess. Adjust the bestvalue W a

ordingly.3. If the value of the
urrent node is larger than W , it is a failure.4. Otherwise, let k be the height of the
urrent node. One
onstru
ts its leftson by adding Ck+1 to A, and its right son by adding it to D.Limited experien
e with this algorithm has shown that results are not signif-i
antly better than those of the greedy algorithm. The greedy algorithm itself isjust the �rst part of algorithm B (the sear
h for the �rst feasible solution, providedone explore the solution tree depth �rst, the left son being developed �rst).These algorithms are just skeletons. To
esh them up, one has to explain howto eÆ
iently
onstru
t the kernel of C, how to order the referen
es by de
reasing
ommuni
ation volume, and, lastly, how to sele
t the o�set
onstants when thepla
ement ve
tor is known.3.2.1 Computing KernelsFrom the point of view of eÆ
ien
y, the important point in the
omputation ofkernels is to make use of the fa
t that
ommuni
ation matri
es are
onstru
tedin
rementally. The best solution is to reformulate the problem as the solution ofa system of linear and homogeneous equations [Fea94℄. One introdu
es variablenames to represent the
omponents of ~p, let us say p1; : : : ; pN . The
urrent solution
an be represented as a substitution � whi
h repla
es some of the pi by linearforms in the other unknowns. In what follows, symbol C represents the system ofequations: (p1; : : : ; pN)C = 0asso
iated to the matrix C. At any given step of the algorithm, let � be thesolution asso
iated to the
urrent
ommuni
ation matrix. A base for its kernelis obtained simply by applying � to the ve
tor (p1; : : : ; pN) and separating the22

oeÆ
ients of the remaining unknowns. Hen
e, the dimension of the kernel is thenumber of independent unknowns in �.Let Ck be the system asso
iated to elementary
ommuni
ation matrix Ck andlet C be the
urrent
ommuni
ation matrix with solution �. The �rst step is toapply � to Ck and to eliminate trivial rows (0 = 0) and redundant rows. Theremaining rows are a system of linear homogeneous equations in the remainingunknowns, whi
h is solved by Gaussian elimination. One obtain a new substitution,� , and one build �0 = � Æ� . The kernel of the new
ommuni
ation matrix is trivialif and only if �0 assign the value 0 to all variables.Let us return to program D. Here the two referen
es have the same
ommuni
ation volume and
an be solved in any order. The systemwhi
h is asso
iated to referen
e 1 is:p1 � p4 = 0p2 � p3 = 0and its solution is �1 = [p1 p4; p2 p3℄. Sin
e there are tworesidual unknowns, the
orresponding kernel is of dimension 2.The next system is: p1 � p3 = 0p2 � p4 = 0If one applies �1 to it, one obtain the equation p4 � p3 = 0 repeatedtwi
e. to whi
h
orresponds � = [p3 p4℄, then �2 = [p1 p4; p2 p4; p3 p4℄. This gives the following pla
ement ve
tor: p4(1; 1; 1; 1),whi
h is equivalent to the kernel we found earlier.3.2.2 Ordering Referen
esTo apply algorithm E, the referen
es in the program have to be ordered by de-
reasing
ommuni
ation volume. Here, we need some information on the targetar
hite
ture. The simplest
ase is that of a NUMA ma
hine (Non UniformMemoryA

ess): ea
h pro
essor
an read and write in the memory of of other pro
essors,but a remote memory a

ess takes mu
h longer than a lo
al memory a

ess. Inthe obje
t
ode, there is no di�eren
e between between lo
al and remote a

esses.The
ommuni
ation volume of a referen
e is thus equal to the number of iterationsof this referen
e, i.e. to the volume of5 DS .5Here, the volume of a subset of INd is taken to be the number of points with integer
oordinates whi
h belong to this subset. 23

In fa
t, most NUMA ma
hines have
oherent
a
hes. When a memory
ell isa

essed, a
opy is stored in the
a
he, and su

essive a

esses are lo
al. If anotherpro
essor modify the distinguished memory
ell, the
oheren
e me
hanism insurethat the lo
al
opy is invalidated, whi
h implies that the next a

ess will be distant.The behavior of a message passing ar
hite
ture is similar. When a memory
ellhas been a

essed by a pro
essor, it
an be kept in lo
al memory as long as it is notmodi�ed by another pro
essor. When this happens, a new message ex
hange isne
essary. One may summarize this analysis by saying that what must be
ountedis not the number of memory
ells but the number of values.Let us evaluate the
ommuni
ations volumes asso
iated to the ref-eren
es in program G. A detailed study of the program shows, forinstan
e, that the value in a(i,i) does not
hange while the loopson j and k are exe
uted. This is a
onsequen
e of the values of thelower bounds of these loops. On the other hand, the value of a(i,i)
hanges at ea
h iteration of the i loop; the
orresponding
ommuni-
ation volume is thus n.On the
ontrary, it is easy to see that ea
h read a

ess to a(j,k)returns a new value, hen
e the traÆ
 is O(n3). One may also observethat, sin
e we
annot have any information on the
oeÆ
ients of thematrix, one has to suppose that the values written into a are distin
t.Hen
e, the
ommuni
ation volume of the left hand side referen
e in anystatement is always taken to be equal to the volume of DS . We leaveit to the reader to dedu
e that the
ommuni
ation volume asso
iatedto the two remaining referen
es is O(n2).The important point is that this analysis is not a dire
t synta
ti
 out
ome ofthe sour
e program. It would be a gross error to say that sin
e referen
e a(j,k)depends on two subs
ripts whose range is [1; n℄, the generated traÆ
 is O(n2).What is needed here is a data
ow analysis in the spirit of [Fea91℄, in whi
h theinterested reader will �nd a
omplete study of program G. This analysis gives,for ea
h read, the name of the operation whi
h produ
ed the
orresponding value,as a fun
tion of the name of the read operation. In the present framework, thisfun
tion is aÆne or pie
ewise aÆne.In all
ases, one is left with the problem of
ounting the points in a subset ofINd. This is feasible sin
e the loop bounds are aÆne, and hen
e sin
e the relevantsubsets are in
luded in polyhedra [Taw91℄. However, the
ounting algorithm isquite
omplex, the result is a polynomial on the loop bounds, and may be diÆ
ultto interpret. Lastly, it is not evident that su
h pre
ision is really ne
essary. Ex-perien
e has shown that evaluating the order of magnitude of the
ommuni
ation24

volume is quite suÆ
ient. This order of magnitude is dire
tly related to the dimen-sion of the polyhedron whi
h bounds the
ommuni
ation points. In the
ase wherethis polyhedron is DS , this dimension is jSj with the ex
eption of some patholog-i
al
ases. If the
ommuni
ation volume is bounded by a set of the form f(DS),where f is the sour
e fun
tion as given by data
ow analysis, the
omputation of itsdimension is more
omplex sin
e one has to de
ide whether f is one-to-one or not.But sin
e, by hypothesis, f is an aÆne fun
tion, this is another
ase of Gaussianelimination. One �nds that one obtains good results if, for the use of algorithm E,one order referen
es by de
reasing dimension6..3.2.3 Computing Shift ConstantsThe same reasoning as above
an be applied to the resolution of [15℄. This is anon homogeneous linear system whi
h may or may not be overdeterminate, as inthe following
ase:program Kdo i = 2,na(i) = a(i-1)end doHere again, the method is to sort the referen
es in order of de
reasing traÆ
, andthen to solve this system in
rementally, with ba
ktra
king when an impossibilityis found. This sub-algorithm
an easily be integrated into algorithm E: one onlyhas to order equations in the proper way.3.3 The \Owner Computes" Rule and the Single As-signment FormThe \owner
omputes" rule edi
ts that a
omputation is always done on the pro-
essor whi
h holds the results. In our formalism, this rule translate to the rule thatleft hand side referen
es must always be in
luded in the
ommuni
ation matrix.We have seen earlier a justi�
ation for this rule: in all
ases, the
ommuni
ation volume for the left hand side referen
e is at least equalto the volume of any other referen
e in the same statement. The otherjusti�
ation is that if one
omplies with the \owner
omputes" rule,6Note added by the translator: Nowadays, I would probably amend this dis
ussion totake into a

ount the revival of Ehrhardt polynomials due to Philippe Clauss.25

the target program is simpli�ed sin
e one does not have to implementa remote write proto
ol.The "owner
omputes" rule
an always be enfor
ed, provided there is no
on-
i
t with the desired pla
ement dimension. For instan
e, there is no non-trivialpla
ement for:do i = 1,ns = ...end doif the "owner
omputes" rule is enfor
ed. This is never a problem if the programarrays have been extended up to a single assignment form, whi
h
an always bedone as a by-produ
t of array data
ow analysis. In this
ase, all assignment areof the form:do ~x 2 DSAS[~x℄ = � � �end doand ea
h write is to a distin
t array
ell. The
utting
ondition for the left handside referen
e is: �(S; ~x) = �(AS ; ~x):Enfor
ing the "owner
omputes" rule is equivalent to using this equation to elim-inate either �(S; :) or �(AS ; :).Nevertheless, the "owner
omputes" rule is one more
onstraint on the pla
e-ment, and, as all additional
onstraints, it may lower the quality of the result. Thereader will �nd an example of this phenomenon in [DR93℄.3.4 Multidimensional Pla
ementOne has already seen that in some
ases, using a s
alar pla
ement fun
tion maynot result in enough parallelism for the target ar
hite
ture. The obvious solution(whi
h is suggested by the stru
ture of grid networks) is to use multidimensionalpla
ement fun
tions; let g be the dimension of the pla
ement. All �ndings ofthe pre
eding se
tion are still valid. In pla
ement prototypes [12,13℄, one repla
eve
tors ~pS; ~pA by matri
es PS ; PA. One may
onsider a global pla
ement matrix Pof dimension N � g, whi
h must satis�es the analogue of [16℄:PC = 0:26

The
ommuni
ation matrix C is the same as in the one-dimensional
ase. It is
lear that the row ve
tors of P are solutions to [16℄, hen
e belong to the kernelof C. The solution of the problem is then obvious: to
onstru
t a g-dimensionalpla
ement, one sele
ts g linearly independent ve
tors in ker(C).But this
ondition, while ne
essary, is not suÆ
ient. If the
hosen solutionis su
h that the row ve
tors of one of the PS matri
es are linearly dependent,statement S will be exe
uted only by a subset of the available pro
essors, and thisentails a loss of pro
essing power. We have to use a stronger triviality test in thegreedy algorithm. The C 0 matrix is satisfa
tory for step 2b of algorithm E if itskernel is spanned by at least g ve
tors whose proje
tion in ea
h of the iterationspa
es of the program statements are linearly independent. Note however that thisis impossible if the iteration spa
e has dimension less than g. The �rst
on
lusionis that it is useless to
hose a g whi
h is larger than the maximum nesting level ofthe program. But, even in
ases where this
onstraint is satis�ed, it may happenthat some statement has nesting level less than g. One must a

ept a performan
eloss in this
ase. If the kernels are
omputed by the in
remental Gauss algorithmwe have de�ned above (see se
tion 3.2.1), this extended triviality test is quitesimple. It is enough to
he
k that the pla
ement ve
tor of ea
h statement dependsat least on g independent variables.It is
lear that the triviality test will grow more stringent when g in
reases. Itfollows from this remark that the amount of residual
ommuni
ation in
reases withg. Whether this e�e
t is
ompensated by in
reased
ommuni
ation bandwidth andin
reased parallelism
an only be judged experimentally.3.5 ExampleLet us sele
t a pla
ement for example G. There is one statement at depth 3, andone array of rank 2, hen
e 5 unknown
oeÆ
ients p1 to p5. On the other hand,there are 5 array referen
es, but two of them are the same, hen
e there are onlyfour
utting
onditions. We
an in that
ase give the expli
it
ounterpart of [16℄:p1 = 0; p2 = p4; p3 = p5p1 = p5; p2 = p4; p3 = 0p1 = p4; p2 = 0; p3 = p5p1 = p4 + p5; p2 = 0; p3 = 0The
ommuni
ation volumes asso
iated to ea
h referen
e have been
omputedin se
tion 3.2.2. One �nds that the left hand side and the �rst right hand sidereferen
e generates a
ommuni
ation volume of order n3, the next two referen
ea volume of the order of n2, and the last referen
e a volume of order n. As a27

onsequen
e, it is natural to follow the owner
ompute rule. Applying Gaussianelimination to the �rst three equations gives the solution:�1 = [p1 0; p2 p4; p3 p5℄:There are still two free variables. Hen
e, we
an
onstru
t a pla
ement ofdimension 2. If the above solution is applied to the next equation one �nd:0 = p5; 0 = 0; p5 = 0:when
e the new solution:�2 = [p1 0; p2 p4; p3 0; p5 0℄:There is only one free variable left. Hen
e, the pla
ement is only one-dimensional.The reader will easily show that, if one attempts to satisfy the remaining equations,the pla
ement be
omes trivial. The
omputation of shift
onstants is left to thereader: they are found to be 0 in all
ases.We
on
lude that example G, has, �rst of all, a two dimensional pla
ement:�(S; i; j; k) = jk ! ;whi
h generates two residual
ommuni
ations of volume n2 and a
ommuni
ationof volume n, and a one-dimensional pla
ement: �(S; i; j; k) = j, whi
h generatesonly one
ommuni
ation of volume n2 and one
ommuni
ation of volume n. Ifthe elimination order is
hanged, one may also �nd the symmetri
 pla
ement:�(S; i; j; k) = k.3.6 DistributionThe number of points in the range of the pla
ement fun
tion is equal to the numberof virtual pro
essors that is needed for running the target program. There is noreason for this number to be equal the number of physi
al pro
essors in the targetma
hine. One has to use a folding fun
tion whi
h
an be quite arbitrary. The
hoi
e of a folding fun
tion
orresponds to the sele
tion of a distribution in dataparallel languages. One uses simple distributions, like blo
k distributions:�(x) = x�B;
y
li
 distributions: �(x) = x mod P;28

or blo
k
y
li
 distribution: �(x) = (x�B) mod P:One
riterion is the study of residual
ommuni
ations. If those are uniform, theuse of a blo
k distribution allows an additional redu
tion of the
ommuni
ationvolume. On the other hand, blo
k distributions have no parti
ular advantages inthe
ase of general distributions. One should sele
t
y
li
 distribution for betterload balan
e.One may suggest the following rules:� If most of the residual
ommuni
ations have no parti
ular patterns, use a
y
li
 distribution.� If the residual
ommuni
ations are uniform, sele
t a blo

y
li
 distribution.The size of ea
h blo
 must be larger than the length of the
ommuni
ationve
tors.3.7 Code GenerationThe problem of generating the parallel
ode for a given pla
ement is beyond thes
ope of this paper. There are in fa
t many a
tive resear
hers in the �eld.One of the simplest methods [ZBG88℄
onsists in having ea
h pro
essor exe
utea
opy of the original program, ea
h statement S being guarded:if �(S; ~x) = q then Swhere q is the name of the
urrent pro
essor. Similarly, to ea
h referen
e is asso-
iated a
onditional whi
h de
ides if the referen
e is lo
al, or if it must be sent toor re
eived from another pro
essor. In both these
ases, one must write a messagepassing routine. This task might be simpli�ed by
alling a message passing librarylike [BDG+91℄. The resulting program is usually very ineÆ
ient, but it
an beoptimized by polyhedra s
anning te
hniques [AI91, CFR95, Xue94, KP94℄.4 Con
lusionThe proposals in this paper
an be summarized as follows:� Have the program submitted to a prepro
essing phase, not formalized here,in whi
h arrray a

esses are normalized, the granularity of parallelism andthe loop size is determined, the data
ow is
omputed, and arrays and s
alarsare expanded if ne
essary. 29

� Chose the dimension of the pla
ement fun
tions, taking into a

ount boththe parameters of the target ar
hite
ture (number of pro
essors, networktopology), and the
hara
teristi
s of the sour
e program.� Apply algorithm E to �nd a pla
ement with minimal residual
ommuni
a-tions.� Chose a distribution fun
tion a

ording to Se
tion 3.6 and generate thetarget program a

ording to Se
tion 3.7.There has been several implementations of this method for various target ar
hi-te
tures and target languages. One of them starts from Fortran and generate dataparallel
ode like CM-Fortran or CRAFT for the Cray T3D. Compilation timesare a

eptable and the performan
es of obje
t programs are good, giving in some
ases better results than the T3D library. There is obviously a lot of work to dofor transforming these pilot implementations into useful
ompilers.The above te
hnique
an be explained in the
ontext of re
ent resear
h onautomati
 parallelization, [Fea92
, Fea95℄, in whi
h a parallel program is repre-sented as a partial order on its operations. S
heduling te
hniques [Fea92a, Fea92b℄look for sets of unordered operations (anti-
hains of the parallel order), and arewell adapted to syn
hronous ar
hite
tures. Pla
ement, on the
ontrary, looks for
hains (sets of totally ordered operations), and
orresponds to distributed ar
hi-te
tures. Both methods are full-
edged
ompilation te
hniques. Their behaviorsare exa
tly opposite: s
heduling adds edges to the given partial order until it
anbe represented as a sequen
e of parallel
onstru
ts. This is the SEQ of PAR formof [Bou93℄. Conversely, the pla
ement method remove edges until the exe
utionorder takes the form of a parallel
omposition of sequential pro
esses { the PARof SEQ form. Sin
e edges have been removed, they must be reinserted as residual
ommuni
ations.There is no a priori reason for preferring one or the other method. Someorders are brought to the SEQ of PAR form by adding very few edges, othersbe
ome PAR of SEQ by suppressing very few edges. On the other hand, ea
hparallel ar
hite
ture has a prefered form, and in some
ases { SIMD ma
hines andsystoli
 arrays - one needs both a s
hedule and a pla
ement for the generation ofthe parallel program. The reader is referred to [Fea95℄ for a dis
ussion of these
ases.In the rare
ases where the original program is already in the PAR of SEQform, the algorithm should �nd dire
tly all independent
hains. As example Dshows, this is not really the
ase. A straightforward analysis gives a pie
ewisebidimensional pla
ement analogous to the one in example EE, giving O(n2)
hains.30

The proposed method gives only one pla
ement ve
tor, giving only O(n)
hains.It would be interesting to extend the present method to more general pla
ementfun
tions. Example H shows that simple problems may have very
ompli
atedpla
ements fun
tions, thus limiting progress in this dire
tion.Another
onstraint results from the fa
t that pla
ements and distributions areonly intermediates for the ultimate
onstru
tion of the parallel
ode. With presentknowledge, this is possible only for aÆne and pie
ewise aÆne pla
ements. ExampleH shows that very simple subs
ript fun
tions generate
omplex pla
ements, whi
h
annot be
onverted into parallel programs in a simple and regular way. It thusseems hopeless to handle
omplex subs
ripts. A
ompromise solution is to ignore
omplex subs
ripts when sele
ting the pla
ement, and to have them reappear asresidual
ommuni
ations. One
an only hope that they will not result in too mu
hperforman
e loss.It may be possible to
onstru
t a pla
ement from an approximate analysis ofthe sour
e program [CBF95℄, but this is a fully unexplored avenue.Some distributed ar
hite
tures have been optimized for handling eÆ
ientlysome types of
ommuni
ations. This is often the
ase for uniform
ommuni
ations,but there are also broad
asts (a
ommuni
ation from one to many pro
essors), andredu
tions (a
ommuni
ation from many to one pro
essor). Re
ent studies [Pla95℄have shown that taking these pe
uliarities into a

ount results in greatly in
reasedperforman
e.Lastly, it seems
lear that when the number of statements in the programin
reases, the number of
onstraints in
reases faster than the number of free pa-rameters. Hen
e, the quality of the pla
ement de
reases. It thus seems interestingto disse
t a program into phases whi
h are pro
essed independently, with redistri-bution phases in between if ne
essary. Redistribution operations are provided indata parallel languages like HPL. If the basi
 te
hnology is simple (one just has torename arrays), the
hoi
e of
ut points is diÆ
ult and is a worthwhile subje
t forfurther resear
h.Referen
es[AI91℄ Corinne An
ourt and Fran�
ois Irigoin. S
anning polyhedra with DOloops. In Pro
. third SIGPLAN Symp. on Prin
iples and Pra
ti
e ofParallel Programming, pages 39{50. ACM Press, April 1991.[Amm92℄ Zahira Ammarguellat. A
ontrol-
ow normalization algorithm and its
omplexity. IEEE Transa
tions on Software Engineering, 18(3):237{251, Mar
h 1992. 31

[ASU86℄ A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin
iples, Te
h-niques and Tools. Addison-Wesley, Reading, Mass, 1986.[BDG+91℄ A. Beguelin, J. Dongarra, A. Geist, R. Man
hek, and V. Sunderam.A user guide to pvm: Parallel virtual ma
hine. Te
hni
al ReportORNL/TM-11826, Oak Ridge National Laboratory, July 1991.[BKK+94℄ David Bau, Indupras Kodukula, Vladimir Kotlyar, Keshav Pingali, andPaul Stodghill. Solving alignment using elementary linear algebra. InSeventh Annual Workshop on Languages and Compilers for ParallelComputing, pages 46{60. Springer-Verlag, LNCS 892, August 1994.[Bou93℄ Lu
 Boug�e. Le mod�ele de programmation �a parall�elisme de donn�es :une perspe
tive s�emantique. T.S.I., 12(5):541{562, 1993.[CBF95℄ Jean-Fran�
ois Collard, Denis Barthou, and Paul Feautrier. Fuzzy ar-ray data
ow analysis. In ACM SIGPLAN Symp. on Prin
iples andPra
ti
e of Parallel Programming. ACM, July 1995.[CFR95℄ Jean-Fran�
ois Collard, Paul Feautrier, and Tanguy Risset. Constru
-tion of do loops from systems of aÆne
onstraints. Parallel Pro
essingLetters, 5(3):421{436, 1995.[DR93℄ Alain Darte and Yves Robert. A graph-theoreti
 approa
h to the align-ment problem. Te
hni
al Report 93-20, LIP-IMAG, July 1993.[DR94a℄ Alain Darte and Yves Robert. Mapping uniform loop nests onto dis-tributed memory ar
hite
tures. Parallel Computing, 20:679{710, 1994.[DR94b℄ Mi
h�ele Dion and Yves Robert. Mapping aÆne loop nests: New results.Te
hni
al Report 94-30, LIP, 1994.[Fea88℄ Paul Feautrier. Array expansion. In ACM Int. Conf. on Super
omput-ing, pages 429{441, 1988.[Fea91℄ Paul Feautrier. Data
ow analysis of s
alar and array referen
es. Int.J. of Parallel Programming, 20(1):23{53, February 1991.[Fea92a℄ Paul Feautrier. Some eÆ
ient solutions to the aÆne s
hedulingproblem, I, one dimensional time. Int. J. of Parallel Programming,21(5):313{348, O
tober 1992.32

[Fea92b℄ Paul Feautrier. Some eÆ
ient solutions to the aÆne s
heduling prob-lem, II, multidimensional time. Int. J. of Parallel Programming,21(6):389{420, De
ember 1992.[Fea92
℄ Paul Feautrier. Te
hniques de parall�elisation. In M. Cosnard, M. Ni-vat, and Y. Robert, editors, Algorithmique Parall�ele, pages 243{257.Masson, May 1992.[Fea94℄ Paul Feautrier. Toward automati
 distribution. Parallel Pro
essingLetters, 4(3):233{244, 1994.[Fea95℄ Paul Feautrier. Compiling for massively parallel ar
hite
tures: a per-spe
tive. Mi
roprogramming and mi
ropro
essing, 1995. �a parâ�tre.[For94℄ High Performan
e Fortran Forum. High performan
e fortran languagespe
i�
ation, version 1.1. Te
hni
al report, Ri
e University, November1994.[JC90℄ Li Jinke and Marina Chen. Index domain alignment: Minimizing
ostof
ross-referen
ing between distributed arrays. In Pro
. Third Symp.on the Frontiers of Massively Parallel Computation, pages 424{433.IEEE, O
tober 90.[KP94℄ Wayne Kelly and William Pugh. Sele
ting aÆne mappings based onperforman
e estimations. Parallel Pro
essing Letters, 4(3):205{220,September 1994.[MAL93℄ Dror E. Maydan, Saman P. Amarasinghe, and Moni
a S. Lam. Arraydata
ow analysis and its use in array privatization. In Pro
. of ACMConf. on Prin
iples of Programming Languages, pages 2{15, January1993.[Pla95℄ Alexis Platono�. Contribution �a la distribution automatique desdonn�ees pour ma
hines massivement parall�eles. PhD thesis, Univer-sit�e P. et M. Curie, Mar
h 1995.[PW93℄ William Pugh and David Wonna
ott. An evaluation of exa
t meth-ods for analysis of value-based array data dependen
es. In Sixth An-nual Workshop on Programming Languages and Compilers for ParallelComputing, pages 546{566. Springer-Verlag LNCS 768, August 1993.[RS91℄ J. Ramanujan and P. Sadayappan. Compile-time te
hniques for datadistribution in distributed memory ma
hines. IEEE Trans. on Paralelland Distributed Systems, 2:472{482, O
tober 1991.33

[SLY89℄ Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An empiri
al study onarray subs
ripts and data dependen
ies. In 1989 Int. Conf. on ParallelPro
essing, pages II 145{152, 1989.[Taw91℄ Nadia Tawbi. Parall�elisation Automatique : Estimation des Dur�eesd'Ex�e
ution et Allo
ation Statique de Pro
esseurs. PhD thesis, Univer-sit�e P. et M. Curie, Paris, 1991. 19 Avril 1991.[Xue94℄ J. Xue. Automating non-unimodular loop transformations for massiveparallelism. Parallel Computing, 20(5):711{728, May 1994.[ZBG88℄ H. P. Zima, H. J. Bast, and M. Gerndt. SUPERB : A tool for semi-automati
 MIMD/SIMD parallelization. Parallel Computing, 6:1{18,1988.

34

