
Rank: A Tool to Check Program Termination and
Computational Complexity

Christophe Alias∗, Alain Darte∗, Paul Feautrier∗, and Laure Gonnord†
∗Compsys, LIP, UMR 5668 CNRS, INRIA, ENS-Lyon, UCB-Lyon

Email: firstname.lastname@ens-lyon.fr
†LIFL, Université Lille I, Email: Laure.Gonnord@lifl.fr

Introduction. Proving the termination of a flowchart program
can be done by exhibiting a ranking function, i.e., a function
from the program states to a well-founded set, which strictly
decreases at each program step. In a previous paper published
at SAS’10, we proposed an efficient algorithm to compute
multidimensional affine ranking functions on flowcharts of
arbitrary structure. Our second contribution was to show how
to use the ranking functions we generate to get upper bounds
for the computational complexity (number of transitions) of
the source program. This estimate is a polynomial, which
means that we can handle programs with more than linear
complexity. This short abstract aims at presenting our prior
work on RANK, the tool implementing our algorithm.

Our tool. RANK starts from a C program, translated as an
integer interpreted automaton with state invariants. RANK
tries to prove the termination of the program by computing
(multidimensional affine) ranking functions. Two cases arise:

• In case of success, RANK computes the worst-case
computational complexity of the program.

• In case of failure, RANK tries to exhibit an input that
causes non-termination.

The termination part requires to solve large ILP programs.
This is achieved thanks to the Piplib library (http://www.piplib.
org/). The dimension of the ILP grows with the square of
the program size. By construction, many useless variables are
introduced (as a result of the application of Farkas lemma).
Some of them can be eliminated by Gaussian elimination, and
the remaining with Fourier-Motzkin projection.

The non-termination part consists in detecting infinite loops
with ILP as well. Usually, the ILPs involved are reasonnably
small and can be solved directly. This feature appears to be
very useful, and helps us to debug some of our test programs
which were unexpectedly non-terminating (example of “bug”:
precondition p, q ≥ 0 missing in gcd(p, q)).

The WCCC part requires counting the number of points into
a Z-polyhedron. This is done thanks to the Ehrhart polynomial
part of the Polylib library (http://icps.u-strasbg.fr/polylib). The
final result is a set of Ehrhart polynomials, guarded by affine
predicates on program parameters.

RANK can be tested online at the url:

http://compsys-tools.ens-lyon.fr/rank

RANK has been tested successfully on examples collected
from the extent literature, and provided on the web page.

Discussion. All in all, RANK is bounded by (i) the cost of
ILP and (ii) the precision of state invariants. Surprisingly, (ii)
was precise enough to solve most of our termination problems.
Most of the failures come from the approximations made while
translating the program to an integer interpreted automaton,
when control structures involve non-affine expressions. Some
properties could be inferred, as the non-negativity of a square.
(i) can be reduced by analyzing the program in a modular
fashion. The program can be split into a set of slices, which
can be analyzed separately. Such an approach would allow to
explore the trade-off between the size of the slices (impacting
(i)), and the precision of the invariants (impacting (ii)).


