Storage Management in Parallel Programs

Vincent Lefebvre, Paul Feautrier
Laboratoire PRiSM, batiment Descartes
Université de Versailles St-Quentin
45 Avenue des Etats-Unis
78 035 VERSAILLES Cédex FRANCE

e-mail : {Vincent.Lefebvre,Paul.Feautrier } @prism.uvsq.fr
URL : http://www.prism.uvsq.fr

Abstract

The litterature on automatic parallelization generally focuses on data dependency analysis. We have
been interested in this article on the data stuctures generation as part of the polyedric technique
designed in PATF (Paralléliseur Automatique pour Fortran). The removal of dependences which are
not data flows in a program is generally realized by a total memory expansion of data structures.
We present a new technique which allows to reduce the memory cost by expanding carefully selected
parts of code only. It consists in limiting the memory expansion process in accordance with contraints
imposed by the schedule determined for the parallel program.

Key words: Automatic Parallelization of static control programs, Storage Management, Array
Dataflow Analysis, Scheduling.

Résumé

La littérature consacrée a la parallélisation automatique se focalise généralement sur ’analyse du flot
de données. Nous nous intéressons dans cet article sur la génération des structures de données dans
le cadre de la méthode polyedrique définie dans le compilateur PAF (Paralléliseur Automatique
pour Fortran). La suppression des dépendances qui n’appartiennent pas au flot de données est
généralement effectuée avant la parallélisation par une mise en assignation unique du programme
source. Ceci revient a effectuer une expansion totale des données. Nous présentons une nouvelle
technique qui permet de réduire le cout mémoire induit par I’expansion en limitant ce processus aux
cas ol il s’avere indispensable. Cela consiste a ne supprimer les dépendances parasites que lorsqu’elles
entrent en contradiction avec I’ordonnancement calculé pour les opérations du programme dans la
version parallelisée.

Mots-clefs:

Parallélisation automatique des programmes & controle statique, Gestion des données en mémoire,
Analyse du flot de données, Ordonnancement.

1 Introduction

The polyedric method, an automatic parallelization technique, uses explicit schedules. A schedule
has to satisfy constraints which are given by dataflow analysis. The goal is to determine the execution
date of each operation of the source program. Operations which have the same execution date are
gathered in wavefronts, which can be executed in parallel. The removal of dependences which are
not flow dependences, is the price to pay in order to restore the correctness of the parallel program.
One generally builds a single assignment form for the source program. Total memory expansion
has a high memory cost. For instance, in matrix multiplication, the single assignment form has a
data space of O(n®) memory words, instead of O(n?) in the classical version. This paper presents
a new technique which limits memory expansion in accordance with contraints imposed by the
schedule of the parallel program. We will first restate several classical techniques of program semantic
analysis (array dataflow analysis) and transformations (scheduling, existing memory management
techniques). Finally, we will present our optimized storage technique for parallel programs.

2 Array Dataflow Analysis of Static Control Program

We focuse on automatic parallelization of static control programs. Static control programs are
programs for which one may describe the set of operations which are going to be executed in a given
program run. Let be E the operations set of a program. Static control programs are built from
assignment statements and DO loops. The only data structures are arrays of arbitrary dimensions.
Loop bounds and array subscripts are affine functions in the loop counters and integral structure
parameters. An operation is one execution of a statement. It may be named (R, Z) where R is a
statement and & the iteration vector built from the surrounding loop counters. The iteration domain
D(R) of a statement R, is the set of instances of R and can be described by the conjunction of all
inequalities for the surrounding loops. We will take as a running example the sequential program
of figure (1). Let us introduce the following notations. The k-th entry of vector # is denoted by
Z[k]. The subvector built from component k to [is written as: #[k..]. The expression R < .5
indicates that statement R is before statement S in the program text. Ngg is the number of loops
surrounding both R and S. The fact that operation (R, #) is executed before operation (S,%) is
written: (R, #) < (S, #). It is shown in [5] that:

<R, l_"> < <S, g> = f[l..NRs] < g[l..NRs] \ (f[l..NRs] = g[l..NRs] AR« S) (1)
The sequential order can be split with respect to depths:

Ngs

(R.E) < (5,5) = \[(R.&) < (5.9) (2)

where
0<p< Nas: (RF) <, (5,9) & (#1op] = glL-p]) A (#lp+ 1] < Glp+ 1]) (3)
<R, f> < Ngs <S, g> @f[l..NRs] :g[l..NRs]ARQS (4)

Two operations (R, #) and (S, i) are independent if their order of execution can be reversed without
changing the global effect on the program store. If not, the operations are said to be dependent. The
goal of automatic parallelization is to build a parallel program which exactly gives the same results
as the sequential program. R(R, ¥) is the set of memory cells which are read by (R, Z) and M (R, %),
is the set of memory cells which are modified by (R, #). Supposing for instance that (R, #) <
(S, %), one can distinguish three kinds of dependences: flow dependence (M(R,Z) NR(S,7) # 0,
written (R,) d (S, 7)), anti-dependence (R(R, %) N M(S, 7) # 0, written (R, %) (S, 7)), output
dependence (M(R,Z) N M(S,7) £ 0, written (R, %) 3° (S, y)). Dependences are constraints that
limit the parallelism of an algorithm. It would be interesting to delete as many dependences as
possible without changing the semantic of the original program. In fact, the sole real dependences
inherent to the algorithm are direct flow dependences from a definition to a use of the same memory
cell (data flows). All others dependences are due to memory reuse and can be deleted by data
expansion. Direct flow dependences are detected by dataflow analysis technique. If a memory cell ¢
is read in an operation (S,), dataflow analysis determines the latest writing into ¢, which is given
by the source function [5]:

source(c, (S,) = mjx{(R7 Y| (R,£) < {(S,9),c € M(R, %)} (5)

The result of the analysis is a quasi-affine tree or quast, i.e. a many-level conditionnal in which
predicates are tests for the positiveness of affine forms in the loop counters and structure parameters
and leaves are either operation names, or L. 1 indicates that the array cell under study is not
modified. For our example, we have:

If j>2
source(s, (S,i,7)) = ¢ Then (S,i,j—1)
Else (R, i)

3 Program Transformations

3.1 Scheduling

From constraints given by dataflow analysis, one deduces a schedule which gives a logical execution
date to each operation of the source program. It must also respect the constraints implied by the
source functions. If 6(S, i) is the schedule of (S, #), one must have:

V(S,4) € E, Ve € R(S,§) : 0(source(c,(S,9))) <€ 8(S,9) (6)

For complexity reasons, finding the exact solution of (6) is not practicable. One limits oneself to
affine one-dimensionnal ([6]) or multidimensionnal schedules ([7]). In the case of our example, one
must have: (if (j > 2) then 0(S,4,j — 1) else (R, i)) < 0(S,4,j). One may show that #(R,i) =0
and 6(S, 4, j) = j is the best schedule for our example, i.e gives the largest operations fronts. From
a schedule given by 0, one deduces operations fronts: F(I) = {(R, &) € F|0(R, %) = t}. There is no
dataflow between operations of a given front. Hence, all such operations can be executed in parallel.
The parallel program must enumerate all lexicographical executions dates :

{T| Ter
execute in parallel operations in]-"(t_) (7)
synchronize

1

The set 7 is the lexicographical enumeration of each possible execution date.

3.2 Changing Data Structures

However, using any execution order which satisfies (6) for constructing a parallel program will give
an incorrect result, because output dependences, anti-dependences and spurious flow dependences
(flow dependences which are not dataflows) have not been taken into account. One can get rid of
these dependences by data expansion. Several techniques have been proposed in the litterature.

3.2.1 Total Memory Expansion

The easiest solution consists in translating the source program in single assignment form. There
is a strong relation between output dependences and anti-dependences. Consider two operations
(S,), (T,), and ¢ a cell memory, such as ¢ € R(S,7) and ¢ € M(T, 7). In a correct program, each
variable must be set before being read. So, there is necessarily an operation (R, Z) which sets ¢ and
which is executed before (S, ¥): (R, %) < (S,§) < (T, 7). There is also a output dependence between
(R, Z) and (T, Z). From this, one may deduce that if all output dependences are deleted, then
anti-dependences and spurious flow dependences also disappear. Total memory expansion consists
in assigning one distinct memory cell to each operation. The following algorithm presented in [3]
establishes the single assignment form of a static control program:

1. Renaming : for each statement R, with & as iteration vector, associate a specific data struc-

—

ture Mp: R: a[f(F)] = ... = Mg[f(&)] = ..

—

2. Expanding: for each instruction R, replace the subscript function f(Z) in Mg by & in left

—

hand-sides: R : Mg[f(Z)] = ... = Mg[Zd] = ...

3. Reconstructing the dataflow: replace all read reference by its new representation as given
by the source function. The value produced by (R, Z) is stored in Mp[Z]. So if one finds the
following source function for a memory cell ¢ in an operation (S, §): source(c, (S, 7)) = (S, &),
then ¢ must be replaced by Mg[#] in the single assignment program.

Renaming deletes all output dependences which appear between two operations instances of two
different instructions. Expanding deletes output dependences which appear between two operations
instances of the same instruction. One can build the abstract parallel program from our running
example,(cf first parallel version of figure (1)). It is clear that the memory cost is high. Starting
from a scalar s, one gets an array of n elements and another one with n? elements. After t > 2, the
values stored in {Mg[p,¢]|1 < p < n} are read by operations executed at logical time ¢ + 1, then
they become useless.

sequential program : parallel program in single assignment form: parallel program with memory optimization:
program scalar program scalar program scalar
integer s,i,j,n integer MR[nl, MS[n] integer slnl
Do i=1,n integer p,t,n integer p,t,n
{R} s=0 Doall p=1,n Doall p = 1,n
Do j=i,n MR[p] = 0 slpl =0
{s} s =5+ 1 enddo enddo
enddo Do t=1,n Do t = 1,n
enddo Doall p=1,n Doall p = 1,n
end MS[p,t] = if (t >= 2) then MS[p,t-1] s[p]l = slp] + 1
else MR[p] + 1 enddo
enddo enddo
enddo end
end
é
Figure 1:

3.2.2 Previous Techniques to Reduce Memory Cost

Some methods try to eliminate these dependences with a reduced memory cost. Wolfe in [11]
defines the method of array contraction for vector architectures. After scalar expansion and loop in-
terchange, he performs array contraction because the vector instructions only concern the innermost
loop of each loop nest. Maydan and Lam in [8], Li and Lee in [9] define a method which optimize ar-
ray privatization after a renaming phase. Privatization is equivalent to expansion. They don’t delete
an output dependence between operations instances of a same instruction R, if it is masked by a
dataflow. Darte, Vivien, Calland and Robert in [1] intoduce two graph transformations to eliminate
anti and output dependences by renaming. They give an unified framework for such transformation
and prove that the problem of determining a minimal process of renaming is NP-complete. Values
Lifetime Analysis is a technique which comes from the ”systolic” community. It takes into account
single assignment form programs and try to generate output and anti-dependences without changing

the dataflow([2],[10]).

4 Minimal Memory Expansion With Respect to a Schedule

4.1 Neutral Dependences

Consider an operation (R, #) instance of an assignment statement R. Let U(R,Z) be the set of
operations such that there is a dataflow from (R, #) to each operation (S, §) of U(R,%): U(R, %) =
(5, %) € E|source(c,(S,4)) = (R, %) }. Let be V(R, ¥) the value produced by (R, Z), V(R, ¥) must

=

absolutly reside in memory for t € [0(R, %), Ur{l}g)ﬁ) 0(S,¥)]. Before and after these dates this value

is useless in memory. Suppose that one has an output dependence at depth p between (R, #) and
an operation (7', 7) (written R4, 7T") in the sequential program. If 6(7', 7) > r?ax) 0(S,), it is clear
U(R,#

)

that this output dependence can be maintened in the parallel program, because V(R, ¥) is useless
in memory at (T, Z). To improve this idea, we will develop the concept of neutral dependences.

Definition 1 An output dependence is neutral for a schedule 0, which satifies (6), iff keeping this
dependence doesn’t change the sequential dataflow in the parallel program obtained from 0 by scheme

(7).

An output dependence can be maintained in a parallel program iff it is neutral. In this case,
the results of the parallel program are still valid. The following proposition gives specific conditions
that an output dependence must verify to be neutral.

Proposition 1 A oulput dependence R, T (R and T are two statements) is neutral for 0 iff:

M(R, %) = M(T,2) AR, Z) <, (T, 7) = 0(R, &) < 0(T, ?) (8)
and
0(T,72) > Ulfllgg)(ﬁ(& ¥)) (9)

(8) ensures that the execution order between (R,) and (T,) is the same in the sequential and paral-
lel programs. (9) verifies that dataflow between (R, Z) and operations in U (R, Z) won’t be affected by
(T, %). This condition ensures that V(R, ¥) is present in memory when ¢ € [0(R, 7), Ur{l}g)ﬁ)(ﬁ(S,),

)

even if the output dependence is not removed in the parallel program.

We can extend this definition to anti-dependences and flow dependences which are not dataflows.
For these kinds of dependences it is just necessary to verify that the execution order of operations
is the same in the sequential and parallel programs.

Definition 2 An anti-dependence between two instructions S and T is neutral for a schedule func-
tion 0 which satisfies (6) iff the execution order of these operations is the same in the sequential and
parallel programs.

The definition is the same for a flow dependence which is not a dataflow.
Proposition 2 A anti-dependence S@T 1s neutral according to 0 iff:
R(S,9) N M(T,2) # DA (S,) <p (T,7) = 0(5,) < O(T') (10)
(10) ensures that if this dependence is not deleted, it will still be verified in the parallel program.
Proposition 3 A flow dependence R, T which is not a dataflow is neutral for 0 iff:

M(R,) OR(S, §) # DA (R, T) <, (S, §) = 0(R,) < 0(S,) (11)

4.2 Tests of Neutrality

4.2.1 Neutral Output Dependences

Let’s consider: .

R: a[f(®)] = ...

T: alg(2)] = ...
Consider the output dependences between operations instances of R and T" at depth p. A dependence
Ré; T, is characterized by the following conditions:

o (R, %) and (T, Z) must exist: ¥ € D(R), Z € D(T);

-

o Access conflict: f(Z) = §(2);

5

o Sequencing Predicate at depth p: (R, &) <, (T, 2}

Therefore, there is a dependence iff, system Q% (Z, 7),
bo(#2) ={& € D(R) A Z€ D(T) A J(¥) = §(2) A (R, &) <, (T, 2)}

has a solution. To verify (8), one must have a dependence in the sequential program, which
must still be verified in the parallel program. Therefore, in the parallel program, we must have:
O(R, %) < 6(T, 7). If this execution order is not respected for only one of the operations instances
of R and T linked by this dependence, the condition (8) is not verified. So we simply consider that
(8) is verified if for no operation of R and T in dependence, one has §(7, 2)<0(R, ¥) that is to say
if the system N%..(Z, Z),

NP (2,7)={T € D(R) A 7€ D(T) A f(T) = §(Z) A (R, T) <p (T,7) A (T, D)<O(R, T)}

has no solution. Q%T(f, Z)is a Z — polyhedron. 6(R,Z) and 6(T, Z) are vectors of affine functions

in the loop counters. Hence N%T(f, 7) is a disgjunction of Z — polyhedron which must all be
empty. So verifying the emptyness of N, ,.(Z, Z) can be easily done by the PIP (Parametric Integer
Programing) tool (see [4] for more explaﬁations). Remember that in our example, we have chosen
the schedule function 0(R,7) = 0 and 6(S,4,j) = j. Let’s verify (8) for program scalar. For the
R 4§ R dependence, one has if 1 < i < nthen NJ (i) # # = this dependence is not neutral. For
others dependences, one can find that (8) is verified for Rd§ S, Rd7 S and 5437 S dependences and
not verified by S 3 R and S 63 .S dependences (hence these dependences are not neutral).

Theorem 1 The condition (9) is verified for a given output dependence iff all anti-dependences
generated by this dependence, are neutral.

Proof: consider the operations of U(R, Z). If there is an output dependence between (R, #) and an
operation (T, Z) at depth p, there is also an anti-dependence between any operation (S, %) € U(R, &)
and (T, Z) at depth p’:

< (R, &) : c=
(5,9) : ... = ..c..
1,2y : ¢ =
If every dependence Sd, T is neutral, it ensures that 6(S,%) < 6(T, 7) (according to (10)) .

Therefore 0(T, Z) 3 0(S, y) Y{(S,y) € U(R Z) hence 0(T, %) > max 9(,¥). So (9) is verified.

4.2.2 Neutral Anti-dependences

Consider:

One must determine if the S@T dependence is neutral, that is to say verify (10). To determine if
(10) is respected, one has to verify that the execution order between (S, #) and (T, Z) stays the same
in the parallel program for the operations instances of S and 7" which are linked by this dependence.
Also the dependence S4, 7' is neutral iff the system N%,. (v, Z)

NEp(§,2) ={F € D(S) A Z€D(T) AR(H) = §(Z) A (S,5) <p (T, 7) A O(T, 2)<6(5, §)}

has no solution.

When one knows that an anti-dependence is not neutral, one knows that for the associated
output dependence the condition (9) is invalidated and the dependence is not neutral. Suppose, one
has the following situation: ¢ = M(R,#) = M(T,?) and (R, &) = source(c, (S, 7). If the S6,T
dependence is not neutral, then the operation (7' 2} kills the value produced by (R, Z) and stored
in ¢ before it is read by (S, #) in the parallel program. This situation would have occurred if the
output dependence between (R, #) and (T, Z) was not deleted. So the output dependence between
(R, %) and (T, %) is not neutral. We know the depths p and p’ of Sé,7 and Rd, S dependences.
We must determine the depth p’’ of Ré;,, T dependence. With the S@T dependence, we have:
(S.9) <p (T,2) & (y[Ll..p] = Z[L..p]) A (glp + 1] < Z[p+ 1]). With the RS dependence, we have:
(R, %) <p (S, 4y & (Z[L..p] = ¢[1..p7]) A (Z[p" + 1] < ¢[p' + 1]). We must consider, three cases:

Lp=p: @FLlp=7l.ph)A(Ep+1<Zp+1]) = (R T <, (T.2)=p"'=p
2. p<yp: (Z[1..p) = Z[L.p)A(@p+1] < Zp+1)A(ZF[p+1] < Zp+1]) = (R, Z) <, (I, Z) = p" =p

3.p > (F[Lp] = ALy AGEY +1] < Zp + 1) A G + 1] < 2P +1]) = (R, T) <p
<T’ 5’> :> p// — p/

So, if the S@T dependence is not neutral, then the R‘qum(p) T dependence is not neutral
cither. In our running example, consider the S &y .S dependence, we have:
If j>2
source(s,(S,4,7)) = ¢ Then (S,i,j—1)
Else (R, i)

The first leaf of the source function concerns a instance of S, so one must determinate if the S dy S
dependence is neutral. One finds that N2¢(i,7) # § = so this dependence is not neutral, and S 63 S
dependence is not neutral either. The second leaf of the source function concerns an instance of R,
hence the dependence R] .S is not neutral. For others anti-dependences, one finds that dependence
S 3y S is neutral and that S &y R is not neutral. As a consequence the dependences S 3 S and Rdg S
are not neutral.

Finally, we have for the output dependences in our running example: RJ§ R, Sd5 S S5 R which
are not neutral, R47 S and S 47 S which are neutral.

4.2.3 Neutral Spurious Flow Dependences

Theorem 2 [t is useless to verify of a flow dependence, which is not a dataflow, is neutral.

Proof : consider the following operations:

<: (R, &): ¢c= ..
(1,2y: c= ..
(5, 9): .= ..c..

Suppose that (S,4) € U(T, 7). Dependence R, S is not a dataflow, because the value stored in
¢ by (R, %) is killed by (T, Z) before the reading of ¢ by (S,%). In the parallel program, one has
O(T,7) < 6(S,§) according to (6). We must consider two cases:

1. If the output dependence between R and T is not neutral, then it must be removed in the
parallel program and the flow dependence has disappeared.

2. If this output dependence is neutral, one has also (R, Z) < 0(T,7) = 6(R, %) < 0(5,¥) hence
(11) is verified and it means that the dependence RJ, S is neutral.

4.3 Exploitation of Results

The examination of neutrality of output dependences will help us to decide if we must add a dimen-
sion or new elements in a specific dimension (minimal expanding) or if we must proceed or not in
renaming a data structure used by two different instructions (minimal renaming). We have devel-
opped the following algorithm which gives an optimized storage for datas of a parallel static control
program:

1. Minimal expansion for each statement R: if a is the data structure in the left hand
side of R, one must find the minimal shape that a can have in R. The goal 1s to eliminate
all output dependences R4&° R which are not neutral. If an output dependence at depth p
between operations instances of R is not neutral, one must expand a according to Z[p+ 1]:

e one adds one dimension to a. The size of this dimension is the number of iterations of
the loop p + 1 which surrounds R;

e This new dimension must be indexed by the counter of this loop in left hand side of R.

— —

R :alf(#)] = ... = a[f(@),Z[p+1]] = ...

In our running example, in R, the dependence R4§ R is not neutral hence R : (s = ... —
s[f] = ...). The scalar s is now an array of n elements because there are n iterations in the
loop i. In S, the dependence S 63 S is not neutral, the dependence S 49 S is neutral, so it can
be maintained: S : (s = ... = s[i] = ...).

With these new subscript functions, we are sure that every output dependences which only
concern operations instances of a single statement R and which are not neutral, are deleted.

2. Correcting the dependence graph: the minimal expansion can suppress some output
dependences which appear between operations instances of different instructions. Consider our
previous statements R and 7' (R # T'). Suppose that in the next steps ot this algorithm, one
doesn’t proceed in renaming the array a shared by the statements. After minimal expansion,
one gets two data structures which can be different. If there is no renaming, the data struture
shared by R and T must be in fact the rectangular hull of the union of the two data structures
defined by minimal expansion of R and T'. Imagine that there is an output dependence R§°T
at depth p in the original program. If, for instance, one had expanded a in R according to
Z[p+ 1], it adds the following constraint in Q% (Z, Z) which is Z[p+ 1] = z[p+ 1]. One knows
that (R, Z) <, (T,%) = &[p+ 1] < Z[p + 1]. Hence, now Q% (Z, Z) has no solution and the
output dependence has disappeared. In our running example; minimal expansion deletes the

dependences S5 R and RJJ S.

3. Minimal renaming: we must take into account all residual output dependences between R
and T, Vp € Ngp. If only one of these dependences is not neutral, we must rename a in 7T,
because all these kind of dependences must be deleted. If all dependences are neutral, the
data structure may remain the same in two statements. Finding the minimal number of data
structures to rename is a NP-complete problem, as it shown in [1]. We suggest the following
heuristics: one builds a graph for each data structure a which appears at least once in a left
hand side of a statement in the original program. Each vertex represents a statement where a
is the left hand side. There is an edge from a vertex R to another one T iff there is a R5 T
dependence which is not neutral (Vp € Ngp). Then one can apply on this graph a greedy
coloring algorithm. Finally it is clear that vertices that have the same colour can share the
same data structure. In our example, the residual output dependence between R and S is
R 69 S which is neutral. So it is unnecessary to rename s in S. The final shape of each data
structure shared by many statements must be the rectangular hull of the union of all shapes
built form minimal expansion. The program is reconstructed with the new data structures
and their subscripts functions.

Finally, one gets the second abstract parallel program of figure (1). The removal of the conditional
expression is due to the fact, that s has not been renamed.

5 Conclusion

Notice that if one builds a schedule function equivalent to the sequential execution order, one finds
that all dependences are neutral, so there is no expanding and no renaming and we keep the scalar s.
We have then obtained a very satisfying result: inherently sequential programs are fixed points for
our parallelization method. Our method effectively reduces the memory cost in the data expansion
process for static control programs. Our performances are strongly linked to the parallelism degree
(size of operations fronts) given by the schedule. Hence one can go further and improves our results
by adjusting the scheduling to the architecture. Consider for instance, that the target architecture
is a pipeline processor Cray. In this case, the real size of a front is limited to 64 which is the size
of a vector register. One can easily adjust the schedule function such as no front has more than 64
operations. In the case of our running example, the memory requirement is reduced to an array of
64 elements. The interest of our method is that it can have result on one hand on the expansion

and on the other hand on renaming. All previous methods focused on only one of these two topics.
The technique has been implemented in Lisp within the PAF project.

References

(1]

[9]

P.Y Calland, A. Darte, Y. Robert, F. Vivien. On the removal of anti and output dependences.
Technical report RR96-04, laboratoire LIP - école normale supérieure de Lyon - Feb 1996.

Zbigniew Chamski. Environnement logiciel de programmation d’un accélérateur de calcul paral-
léle. These de I'université de Rennes I - chapitre IV - 1993, numéro d’ordre 957.

P. Feautrier. Array ezpansion. ACM Int. Conf on Supercomputing, pages 429-441, 1988.

P. feautrier. Parametric integer programing. RAIRO Recherche opérationnelle, 22:243-268, Sept
1988

P. Feautrier. Dataflow Analysis of Array and Scalar References. Int. J. of Parallel Programming,
20(1):23-53, February 1991.

P. Feautrier. Some efficients solutions to the affine scheduling problem, I, one dimensionnal time.

Int J. of Parallel Programming, 21(5):313-348, October 1992.

P. Feautrier. Some efficient solutions to the affine scheduling problem part II : multidimensional
time. Int J. of Parallel Programming, 21(6):389-420, December 92.

D. E. Maydan, S. P. Amarasinghe, M. S. Lam. Array Data-Flow Analysis and its Use in Array
Privatization. In Proc. of ACM Conf. on Principles of Programming Languages, pages 2-15,
January 1993.

Z. L1, G. and G. Lee. Symbolic array dataflow analysis for array privatization and program
parallelization. In Supercomputing 95, 1995

[10] S. Rajopadhye and D. Wilde. The Power of Polyhedra. To appear.

[11] M. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman 1989.

