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AbstractWe introduce a general static analysis framework to reasonabout program properties at an in�nite number of runtimecontrol points, called instances. In�nite sets of instancesare represented by rational languages. Based on this in-stancewise framework, we extend the concept of inductionvariables to recursive programs. For a class of monoid-baseddata structures, including arrays and trees, induction vari-ables capture the exact memory location accessed at everystep of the execution. This compile-time characterization iscomputed in polynomial time as a rational function.1 IntroductionStatic program analysis aims at the compile-time computa-tion of program properties. Despite tremendous theoreticalprogresses and application success stories, this old problemis still a di�cult one for two main reasons.First of all, general properties of the concrete programsemantics are undecidable, and most practical analyses eval-uate conservative approximations. There are three mainparadigms for static analysis [26]: type systems, data-�ow(or constraint-based) analysis and abstract interpretation.Together, they contribute to the formalization, proof, com-putation and implementation of approximate static analy-ses and their applications. These approximate analyses donot capture cases in which exact properties can be evalu-ated on Turing-incomplete domain-speci�c languages � likebounded memory usage in synchronous languages [3] or ar-ray dependences on Fortran loop nests [15].For a wide area of static analysis problems, there is an-other, more technical, but probably more important di�-culty: static analyses lack the ability to attach properties atan in�nite set of control points. Indeed, program semanticsassigns �meaning� to a �nite set of syntactic elements �statements or variables � using inductive de�nitions (rules,sequents, etc.). It is very natural to attach static proper-ties to these syntactic elements: e.g., constant propagation[1] is interested in computing a property of a variable v ata statement s, asking whether v has some value v before sexecutes. For more complex analyses, attaching propertiesto a �nite set of syntactic elements is not practical. E.g., in-duction variable recognition [18] captures the value of somevariable v at a statement s as a function fv of the numberof times s has been executed. In other words, it capturesv as a function of the execution path itself. Of course, thevalue of a variable at any stage of the execution is a func-

tion of the initial contents of memory and of the executionpath leading to this stage. For complexity reasons, the ex-ecution path may not be recoverable from memory. In thecase of induction variables, we may assume the number ofexecutions of s is recorded as a genuine loop counter. Fromsuch a function fv, we can discover other induction variablesusing analyses of linear constraints [12].1.1 Statementwise Analysis.We use the term statementwise to refer to the classicaltype systems, data-�ow analysis and abstract interpretationframeworks, that de�ne and compute program properties ateach program statement. A typical example is static analysisby abstract interpretation [11, 9, 10]: it relies on the collect-ing semantics to operate on a lattice of abstract properties.This restricts the attachment of properties to a �nite set ofcontrol points. Few works addressed the attachment of staticproperties at a �ner grain than syntactic program elements.Re�nement of this coarse grain abstraction involves a pre-vious partitioning [9] of the control points: e.g., polyvariantanalysis distinguishes the context of function calls, and loopunfolding virtually unrolls a loop several times. Dynamicpartitioning [5] integrates partitioning into the analysis it-self; but we are not aware of any type-system, abstract in-terpretation or data-�ow analysis allowing the attachmentof program properties to a �nitely-presented, unbounded setof control points.11.2 Instancewise Analysis.On the other hand, domain-speci�c approaches to staticanalysis are able to compute program properties at an in�-nite number of control points. The so-called polytope modelencompasses most works on analysis and transformationof the (Turing-incomplete) class of static-control programs[15, 28], roughly de�ned as nested loops with a�ne loopbounds and array accesses. An iteration vector abstractsthe runtime control point corresponding to a given itera-tion of a statement. Program properties are expressed andcomputed for each vector of values of the surrounding loopscounters. Instead of iteratively merging data-�ow prop-erties, most analyses in the polytope model use algebraicsolvers for the direct computation of symbolic relations: e.g.,array dependence analysis uses integer linear programming[15]. Iteration vectors are quite di�erent from time-stamps1However, unbounded lattices have long been used to capture ab-stract properties in statementwise analyses [12, 13].



in control point partitioning techniques [5]: they are multi-dimensional, lexicographically ordered, unbounded, and con-strained by Presburger formula [29].First Contribution. We introduce a general static analysisframework for sequential procedural languages. Within thisframework, one may de�ne, abstract and compute programproperties at an in�nite number of runtime control points.Our framework is called instancewise and runtime points arefurther referenced as instances. We will formally de�ne in-stances as trace abstractions, understood as iteration vectorsextended to arbitrary recursive programs. The mathemat-ical foundation for instancewise analysis is formal languagetheory : rational languages �nitely represent in�nite set ofinstances, and instancewise properties may be captured byrational relations [4]. This paper goes far beyond our pre-vious attempts to extend iteration vectors to recursive pro-grams, for the analysis of arrays [8, 7, 6, 2] or recursive datastructures [16, 6].Second Contribution. Building on the instancewise frame-work, we extend the concept of induction variables to arbi-trary recursive programs. The valuation of induction vari-ables is analog to parameter passing in a purely functionallanguage: each statement is considered as a function, bind-ing and initializing one or more induction variables. Wepropose two algorithms for the exact (i.e., non approximate)evaluation of induction variables. The result of these algo-rithms is a binding function mapping instances to the ab-stract memory locations they access. It is a rational func-tion on the Cartesian product of two monoids and can bee�ciently represented as a rational transducer [4].To focus on the core concepts and contributions, we in-troduce MoGuL, a language with high-level constructs fortraversing data structures addressed by induction variablesin a �nitely presented monoid. In a general-purpose (imper-ative or functional) language, our technique would requireadditional information about the shape of data structures,using dedicated annotations [22, 23, 17] or shape analyses[19, 31]. Despite the generality of the control structures inMoGuL, binding functions are exact and may be used to de-rive alias and dependence information of recursive programswith an unprecedented precision [6, 2].Organization of the Paper. Section 2 describes the controlstructures and trace semantics of the MoGuL language.Section 3 de�nes the abstraction of runtime control pointsinto instances. Section 4 extends induction variables to re-cursive control and data structures. Section 5 states theexistence of rational binding functions. Section 6 addressesthe computation and representation of binding functions asrational transducers. We consider practical examples in Sec-tion 7, before we conclude and outline ongoing and futurework.2 Control Structures and Execution TracesWe consider a simpli�ed notion of execution trace with em-phasis on the identi�cation of runtime control points. Forour purpose, a trace is a sequence of symbols called labelsthat denotes a complete execution of a program. Each labelregisters either the beginning of a statement execution or itscompletion. A trace pre�x is the trace of a partial execution,given by a pre�x of a complete trace. In the remainder, we

will consider trace pre�xes instead of the intuitive notion ofruntime control point.Figure 1 presents our running example. It features arecursive call to the Toy function, nested in the body of a forloop, operating on an array A. Thus, there is no simple wayto remove the recursion. In this paper, we will construct a�nite-state representation for the in�nite set of trace pre�xesof Toy, then compute an exact �nite-state characterizationof the elements of A accessed by a given trace pre�x.2.1 Control Structures in the MoGuL LanguageFigure 2 gives the MoGuL version of Toy. It abstracts theshape of array A through a monoid type Monoid_int. Induc-tion variables i and k are bound to values in this monoid.Traversals of A are expressed through i, k and the monoidoperation �.�. Further explanations about MoGuL datastructures and induction variables are deferred to Section 4.We present in Figure 3 a simpli�ed version of the MoGuLsyntax, focusing on the control structures.This is a C-like syntax with some speci�c concepts.Italic non-terminals are de�ned elsewhere in the syntax:elementary_statement covers the usual atomic statements,including assignments, input/output statements, void state-ments, etc.; predicate is a boolean expression; init_listcontains a list of initializations for one or more loop vari-ables, and translation_list is the associated list of con-stant translations for those induction variables.Every executable part of a program is labeled, either byhand or by the parser.2.2 Interprocedural Control Flow GraphToy(20, 0)Toyk < n i = k
b

b i <= nReturn A[i] = A[i]+A[n-i]Toy(20, k+1)End i = i.2
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Figure 4: Interprocedural Control Flow GraphWe start with an intuitive presentation of the trace se-mantics of a MoGuL program, using the InterproceduralControl Flow Graph (ICFG): an extended control �ow graph[1] with function call and return nodes. The ICFG associ-ated to Toy is shown in Figure 4.Each elementary statement, conditional and function callis a node of the ICFG, and more speci�cally:� one node corresponds to each block entry;� for loops generate three nodes: initialization (entry),condition (termination), and iteration;2



int A[20];void Toy(int n, int k) {if (k < n){ for (int i=k; i<=n;i+=2){ A[i] = A[i] + A[n-i];Toy(n, k+1);}}return}int main() {Toy(20, 0);} Figure 1: Program Toy in C

structure Monoid_int A;A function Toy(Monoid_int n, Monoid_int k) {B if (k < n)C {D for (Monoid_int i=k; i<=n;d i=i.2)E {F A[i] = A[i] + A[n-i] ;G Toy(n, k.1);}}}H function main() {I Toy(20, 0);} Figure 2: Program Toy in MoGuLprogram ::= function (S1)j function program (S2)function ::= 'function' ident '(' formal_parameter_list ')' block (S3)block ::= LABEL ':' '{' init_list statement_list '}' (S4)j LABEL ':' '{' statement_list '}' (S5)statement_list ::= " (S6)j LABEL ':' statement statement_list (S7)statement ::= elementary_statement ';' (S8)j ident '(' actual_parameter_list ')' ';' (S9)j 'if' predicate block 'else' block (S10)j 'for' '(' init_list ';' predicate '; LABEL ':' translation_list ')' block (S11)j block (S12)Figure 3: Simpli�ed MoGuL syntax (control structures)� return nodes are implicitly added.The iteration node follows the last node of the loop blockand leads to the condition node. Given a function call c inthe program source, there is an edge in the ICFG from thenode associated to c to the corresponding function body.Moreover, there is an edge from the return node to thestatement following the function call in the source program.To forbid impossible matchings of function calls and re-turns, i.e., to preserve context-sensitivity [26], we providethe ICFG with a control stack [1], see Figure 4. The resultis the graph of a pushdown automaton.Due to loops and conditionals, some accepted paths cor-respond to valid execution traces, but others may still takewrong branches. Since we focus on a static scheme to nameruntime control points, our trace semantics will make thesame simplifying assumption and we will consider a super-set of the valid traces.2.3 The Pushdown Trace AutomatonAlthoughMoGuL uses a C syntax, the instancewise frame-work in Section 3 considers each statement as a call to afunction implementing elementary operations, conditionalbranches and iteration (as in a purely functional language).We extend the control stack of the ICFG to take these im-plicit calls into account. The stack alphabet now holds every

statement label. Each statement is also provided an addi-tional label to separate the implicit function call from theimplicit return. If ` a label, ` corresponds to the beginningof the execution of a statement, and ` indicates its comple-tion. The �rst one labels arcs targetting the statement node,the second labels arcs departing from the node. Regardingthe control stack, ` pushes ` while ` pops `.The result is called the pushdown trace automaton andthe recognized words are the execution traces.When all states are considered �nal, the automaton rec-ognizes all trace pre�xes. It also recognizes pre�xes of non-terminating traces when the program loops inde�nitely. Wethus exclude non-terminating programs in the following.Figure 5 presents the trace pushdown automaton of theToy program: IBDFFGBDFFGGdFFGGdddDBGdF is apre�x of a valid trace.2.4 The Trace GrammarAfter the intuitive presentation above, this section gives aformal de�nition of traces. There is one context-free tracegrammar GP per program P .1. For each call to a function id, i.e., each derivation ofproduction (S9), there is a production schemaCid ::= Label Bid Label (1)3
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Figure 5: Pushdown Trace Automatonwhere Cid and Bid are the respective non-terminals ofthe function call and body. Label is the terminal labelof the call to function id, and Label marks the end ofthe statement, here a return statement.2. For each loop statement s, i.e., each derivation of pro-duction (S11), there are four production schemasLs ::= " j Labele Bs Os Labele (2)Os ::= " j Labeli Bs Os Labeli (3)where the three non-terminals Ls, Os and Bs corre-spond to the loop entry, iteration and body, respec-tively. Labele and Labeli are terminals, they are thelabels of the loop entry and iteration, respectively.3. For each conditional s, i.e., each derivation of produc-tion (S10), there are two productions schemasIs ::= Label Ts Label j Label Fs Label (4)where the three non-terminals Is, Ts and Fs correspondto the conditional, then branch and else branch, re-spectively. Label is the terminal label of the condi-tional.4. For each block s, i.e., each derivation of produc-tions (S4) or (S5), there is a production schemaBs ::= Label S1 : : : Sn Label (5)where the non-terminal Bs corresponds to the blockand non-terminals S1; : : : ; Sn correspond to each state-ment in the block. Label is the terminal label of Bs.5. For each elementary statement s, there is a productionschema Ss ::= Label Label (6)where Label is the terminal label of statement s.The axiom of the trace grammar is the non-terminal as-sociated with the block of the main function.De�nition 1 (Trace Language) The set of traces of aprogram P � called the trace language of P � is the set ofterminal sentences of GP .

For a given execution trace t, runtime control points aresequentially ordered according to the appearance of state-ment labels in t.De�nition 2 (Sequential Order) The sequential order<seq is the strict pre�x order of the trace pre�xes. It isa total order for a given execution trace.Calling Lab the alphabet of labels, the trace language rec-ognized by GP is a context-free (a.k.a. algebraic) subset ofthe free monoid L�ab, and " denotes its empty word. Clearly,the trace language �ts the intuition about program execu-tion and the previous presentation in terms of the interpro-cedural control �ow graph: the pushdown trace automatonrecognizes the trace language.Grammar GP generates many terminal sentences thatare possible execution sequences for P . These sentences de-pend on choices between productions (1) to (6). In a realexecution of P , these choices are dictated by the outcome ofloop and test predicates, which our grammar does not takeinto account. It is customary to say that predicates are notinterpreted (in the model theory sense), or that P is a pro-gram schema [25]. We are free to select which predicatesand operations should be interpreted: e.g., the polytopemodel interprets every loop bound and array subscript innumber theory [28]. In this paper, we will interpret addresscomputations in the theory of �nitely-presented monoids;everything else will remain uninterpreted.Eventually, a runtime execution may be represented inthe shape of an activation tree [1]: the sequential execution�ow corresponds to the depth-�rst traversal of the activationtree. This representation is used in the formal de�nition ofinstances. Figure 6 shows an activation tree for Toy. Welabel each arc according to the target node statement. Thetrace is obtained while reading the word along the depth-�rsttraversal: each downward step produces the arc label, andeach upward step produces the associated overlined label.IBDF GBDF G dF dG
d F

Trace pre�x: IBDFFGBDFFGGdFFGGdddDBGdF : : :Figure 6: Activation tree3 The Instancewise ModelThis section is dedicated to the �rst part of our frame-work: the abstraction of trace pre�xes into control words,the formal representation of instances. The control wordabstraction characterizes an in�nite set of trace pre�xes in atractable, �nite-state representation. We present the prop-erties of control words from several points of view: push-down trace automata, trace pre�xes, activation trees, and4



MoGuL grammar. This last insight introduces a controlwords grammar that generates a superset of control words.We then investigate the conditions realizing the equivalenceof the language generated by the control words grammarand the set of control words. This section ends with thedescription of the control word language in the form of a�nite-state automaton, a counterpart of the pushdown traceautomaton. Finally, we expose one of the main results ofthis work, justifying the introduction of control words asthe basis for instancewise analysis.3.1 From the Pushdown Trace Automaton to Control WordsThe pushdown trace automaton will help us prove an im-portant property of control words.De�nition 3 (Stack Word Language) The stack wordlanguage of a pushdown automaton A is the set of stackwords u such that there exist a state q in A for which thecon�guration (q; u) is both accessible and co-accessible �there is an accepting path traversing q with stack word u.De�nition 4 (Control Word) The stack word languageof the pushdown trace automaton is called the control wordlanguage. A control word is the sequence of labels of allstatements that have begun their execution but not yet com-pleted it. Any trace pre�x has a corresponding control word.Since the stack word language of a pushdown automatonis rational [30], we have:Theorem 1 The language of control words is rational.The activation tree is a convenient representation of con-trol words. When the label of node n is at the top ofthe control stack, the control word is the sequence of la-bels along the branch of n in the activation tree, i.e., thepath from the root to node n [1]. Conversely, a word la-beling a branch of the activation tree is a control word.For example, IBDdF is the control word of trace pre�xIBDFFGBDFFGGdFFGGdddDBGdF in Figure 6.3.2 From Traces to Control WordsThe trace language is a Dyck language [4], i.e., a hierarchicalparenthesis language. The restricted Dyck congruence overL�ab is the congruence generated by `` � ", for all ` 2 Lab.2This de�nition induces a rewriting rule over L�ab, obviouslycon�uent. This rule is the direct transposition of the controlstack behavior. Applying it to any trace pre�x p we canassociate a minimal word w.Lemma 1 The control word w associated to the trace pre-�x p is the shortest element in the class of p modulo therestricted Dyck congruence.De�nition 5 (Slimming Function) The slimming func-tion maps each trace pre�x to its associated control word.Theorem 2 The set of control words is the quotient set oftrace pre�xes modulo the restricted Dyck congruence, andthe slimming function is the canonical projection of tracepre�xes over control words.2The restricted quali�er means that only `` couples are considered,`` being a nonsensical sub-word for the trace grammar.

From now on, the restricted Dyck congruence will becalled the slimming congruence. The following table illus-trates the e�ect of the slimming function on a few tracepre�xes.Trace pre�x IBDFFGBDFControl word IBD GBDFTrace pre�x IBDFFGBDFFGGdFFGControl word IBD GBD d GTrace pre�x IBDFFGBDFFGGdFFGGdddDBGdFControl word IBD dFThe slimming function extends Harrison's Net function,and control words are very similar to his procedure strings[21]. Harrison introduced these concepts for a statementwiseanalysis with dynamic partitioning.3.3 From the Trace Grammar to Control WordsWe may also derive a control words grammar from the tracegrammar. This grammar signi�cantly di�ers from the tracegrammar in three ways.1. Control words contain no overlined labels.The control stack ignores overlined labels.2. Each non-terminal is provided an empty production.A control word is associated to each trace pre�x.3. If the right-hand side of a production consists of mul-tiple non-terminals, it is replaced by an individual pro-duction for each non-terminal.Only the last statement of an uncompleted sequence re-mains in the control stack, i.e., in the control word.Under these considerations, the productions for the con-trol words grammar are the following, with the same nota-tions and comments as the trace grammar.1. For each function call id, i.e., each derivation of pro-duction (S9), there are two productionsCid ::= Label Bid j "2. For each loop statement s, i.e., each derivation of pro-duction (S11), there are six productionsLs ::= Labele Bs j Labele Os j "Os ::= Labeli Bs j Labeli Os j "3. For each conditional s, i.e., each derivation of produc-tion (S10), there are three productionsIs ::= Label Ts j Label Fs j "4. For each block s enclosing n statements, i.e., eachderivation of (S4) or (S5), there are n+ 1 productionsBs ::= Label S1 j � � � j Label Sn j "5. For each elementary statement s,Ss ::= Label j "The axiom of this grammar is the block of the main function.The control words grammar grammar above is right lin-ear,3 hence its generated language is rational.3At most one non-terminal in the right-hand side, and non-terminals are right factors.5



Lemma 2 The language of control words is a subset of thelanguage generated by the control words grammar.The proof comes from the three above observations thattranslate the e�ect of the slimming function. For each tracegrammar derivation, we associate a corresponding derivationof the control words grammar. The control words grammargenerates any stack word corresponding to a path � accept-ing or not � in the pushdown trace automaton.The next section will show that the control words gram-mar only generates control words, assuming the trace gram-mar satis�es a termination criterion.3.4 Control Words and Program TerminationAssuming any incomplete execution can be completed untilthe termination of the program, stack words correspondingto a path of the pushdown automaton are all stack words oftrace pre�xes, i.e., control words.Conversely, if a partial execution has entered a stepwhere the last opened statement can never be completed,a recursive cycle in the trace derivation cannot be avoided.Example. Consider the following trace grammar:S ! aAbba B ! fCfA ! cBc C ! gBgA ! deeda labels the body of function main and b labels an elemen-tary statement. A is a non-terminal for a conditional test;function B is called in the then branch, while elementarystatement s is executed in the else one. Function B callsfunction C and conversely. Thus, the then branch may neverterminate. The corresponding control words grammar is:S ! aA A ! "S ! ab B ! fCS ! " B ! "A ! cB C ! gBA ! de C ! "This grammar generates ac, thanks to the derivationS ! aA; A! cB; B ! ":However, no trace pre�x can be generated by the trace gram-mar for which the control word is ac, hence ac is not a con-trol word. To avoid this, we need a criterion that forbidsrecursive trap cycles. This criterion is de�ned through thestructure of the trace grammar; we refer to the de�nition ofa reduced grammar [32].De�nition 6 (Reduced Grammar) A reduced grammaris a context-free grammar such that:1. there is no A! A rule;2. any grammar symbol occurs in some sentential form (asentential form is any derivative from the axiom);3. any non-terminal produces some part of a terminal sen-tence.The third rule is the criterion we are looking for: a non-terminal which produces some part of a terminal sentenceis said active. The control words grammar of the programmust have only active non-terminals; it is called an unloopinggrammar. In the previous example, B and C are not active.

Termination criterion for the trace grammar. Starting froma set of non-terminals N , we recall an inductive algorithmthat determines the set of active non-terminals N 0 � N ; ifN = N 0, the grammar is unlooping [32]. The initial set N 01contains active non-terminals that immediately produce apart of a terminal sentence; � denotes the set of grammarrules, T is the set of terminals, and m is the cardinal of N .Algorithm 1N 01  fA j A! � 2 � ^ � 2 T �gFor k = 2; 3; : : : ; mN 0k  N 0k�1 S fA j A! � 2 � ^ � 2 (T SN 0k�1)+gIf N 0k = N 0k�1 _ k = mThen N 0  N 0kApplied to our example where N = fS; A;B;Cg:N 01 = fAg; N 02 = fA; Sg; N 03 = N 02; N 0 = fA; Sg; N 6= N 0:Thanks to Lemma 2, we may state a necessary and su�-cient condition for the control words grammar to only gen-erate control words.Theorem 3 Let P be a program given by its trace grammarGP , and let G0P be the associated control words grammar.The control words language of P is generated by G0P if andonly if Algorithm 1 concludes that GP is unlooping.3.5 The Control Automaton01234
IBDF d G All states are �nal.A few control words:IBDdF ,IBDGBDF ,IBDGBDdG.Figure 7: Example Control AutomatonWe now assume the program satis�es Theorem 3.It is easy to build a �nite-state automaton accepting thelanguage generated by the right-linear control words gram-mar, i.e., a �nite-state automaton recognizing the languageof control words. We call the latter the control automaton.Figure 7 shows the control automaton for Toy; the controlword language is I +IB+IBD(d+GBD)�("+F+G+GB).The transformation from traces to control words is a sys-tematic procedure. A similar transformation exists from thepushdown trace automaton to the control automaton; thisis important for the design of e�cient instancewise analysisalgorithms (see Section 5).� In the pushdown trace automaton, a sequence of suc-cessive statements takes is a chain of arcs, while, in thecontrol automaton, each of these statement is linked byan edge from the common enclosing block, see Figure8. Thus, the control automaton makes no distinctionbetween the sequence and the conditional.� As in the pushdown automaton for trace pre�xes, allstates are �nal.� Since a return statement closes the correspondingfunction call and deletes every label relative to it in thecontrol word, return nodes are not needed anymore.6



A[i] = : : :Toy(20, k+1)FG �! F GEach statement in a sequence is linked to the enclosing block.Figure 8: Construction of the Control Automaton3.6 Instances and Control WordsConsider any trace t of a MoGuL program and any tracepre�x p of t. The slimming function returns a unique controlword. Conversely, it is easy to see that a given control wordmay be the abstraction of many trace pre�xes, possibly anin�nity. E.g., consider two trace pre�xes di�ering only bythe sub-trace of a completed conditional statement:4 theircontrol words are the same.This section will prove that, during any execution of aMoGuL program, the stack that registers the control wordat runtime cannot register twice the same control word (i.e.,for two distinct trance pre�xes). In others words, controlwords characterize runtime control points in a more com-pact way than trace pre�xes. For the demonstration, weintroduce a strict order over control words.De�nition 7 (Lexicographic Order) We �rst de�ne thepartial textual order <lab over labels. Given s1 and s2 twolabels in Lab, s1 <lab s2 if and only if� there is a production generated by (5) in the trace gram-mar, such as s1 is the label of Si and s2 is the label ofSj , with 1 � i < j � n;� or there is a production generated by (2) or (3) such ass1 is the label of Bs and s2 is the label of Os.We denote by <lex the strict lexicographic order over con-trol words induced by <lab.In other words, <lab is the textual order of appearanceof statements within blocks, considering the loop iterationstatement as textually ordered after the loop body.Lemma 3 The sequential order <seq over pre�x traces iscompatible with the slimming congruence. The lexicographicorder <lex is the quotient order induced by <seq through theslimming congruence.The proof takes two steps. First of all, let t be a trace andT its activation tree. The set of all paths in T is ordered bya strict lexicographic order, <T , isomorphic to <lex.Then, let � be the function mapping any path in T tothe last label of the path word (accurately speaking of thecontrol word labeling this path). Given a trace pre�x p andthe <T ordered sequence fb0 = "; b1; :::; bng of all paths inT , the (partial) depth-�rst traversal of T until p yields thefollowing word: dft(p) , �(b0)�(b1):::�(bq);where bq is the branch of p, q � n. Now, the de�nition ofdft(p) is precisely p.Let pq and pr be two pre�xes of t, pq being a pre�x of pritself, and writepq = �(b0)�(b1):::�(bq); pr = �(b0)�(b1):::�(br):4I.e., after both branches have been completed, the �rst sub-tracedenoting the then branch and the other the else one

We have the following: pq <seq pr () bq <T br. Togetherwith the �rst step, pq <seq pr () bq <lex br.We now come to the formal de�nition of instances.De�nition 8 (Instance) For a MoGuL program, an in-stance is a class of trace pre�xes modulo the slimming con-gruence.It is fundamental to notice that, in this de�nition, instancesdo not depend on any particular execution.From Lemma 3 and Theorem 2 (the slimming function isthe canonical projection of trace pre�xes to control words),we may state the two main properties of control words.Theorem 4 Given one execution trace of a MoGuL pro-gram, trace pre�xes are in bijection with control words.Theorem 5 For a given MoGuL program, instances arein bijection with control words.Theorem 4 ensures the correspondence between runtime con-trol points and control words. Theorem 5 is just a rewordingof Theorem 2, it states the meaning of control words acrossmultiple executions of a program.In the following, we will refer to instances or controlwords interchangeably, without naming a particular tracepre�x representative.4 Data Structure Model and Induction VariablesThis section and the following ones apply instancewise anal-ysis to the exact characterization of memory locations ac-cessed by a MoGuL program. For decidability reasons, wewill only consider a restricted class of data structures andaddressing schemes:� data structures do not support destructive updates(deletion of nodes and non-leaf insertions);5� addressing data-structures is done through so called in-duction variables whose only authorized operations arethe initialization to a constant and the associative op-eration of a monoid.In this context, we will show that the value of an inductionvariable at some runtime control point � or the memorylocation accessed at this point � only depends on the in-stance. Exact characterization of induction variables willbe possible at compile-time by means of so-called bindingfunctions from control words to abstract memory locations(monoid elements), independently of the execution.4.1 Data ModelTo simplify the formalism and exposition, MoGuL datastructures with side-e�ects must be global. This is not reallyan issue since any local structure may be �expanded� alongthe activation tree (e.g., several local lists may be seen as aglobal stack of lists).5Leaf insertions are harmless if data-structures are implicitly ex-panded when accessed.
7



4.1.1 Data Structure MonoidsA �nitely-generated monoid M = (G;�) is speci�ed by a�nite list of generators G and a congruence � given by a�nite list of equations over words in G�. Elements of Mare equivalence classes of words in G� modulo �. When thecongruence is empty, M is a free monoid. The operation ofM is the quotient of the concatenation on the free monoidG� modulo �; it is an associative operation denoted by �with neutral element "m.De�nition 9 (Abstract Location) An abstract memorylocation is a pair of a data structure name and an elementof a �nitely-generated monoid M = (G;�). It is representedby an address word in G�. By de�nition, two congruentaddress words represent the same memory location.Typical examples are the n-ary tree � the free monoidwith n generators (with an empty congruence) � and the n-dimensional array � the free commutative monoid Zn (withvector commutation and inversion). See Section A.1 for awider coverage.4.2 Induction VariablesTraditionally, induction variables are scalar variables withinloop nests with a tight relationship with the surroundingloop counters [1, 18]. This relationship, deduced from theregularity of the induction variable updates, is a critical in-formation for many analyses (dependence, array region, ar-ray bound checking) and optimizations (strength-reduction,loop transformations, hoisting).A basic linear induction variable x is assigned (once ormore) in a loop, each assignment being of the form x = c or x= x + c, where c is a constant known at compile-time. Moregenerally, a variable x is called a linear induction variableif on every iteration of the surrounding loop, x is added aconstant value. This is the case when assignments to x inthe cycle are in the basic form or in the form x = y + c, ybeing another induction variable. The value of x may thenbe computed as an a�ne function of the surrounding loopcounters.MoGuL extensions are twofold:� induction variables are not restricted to arrays but han-dle all monoid-based data structures;� both loops and recursive function calls are considered.As a consequence, induction variables represent abstract ad-dresses in data structures, and the basic operation over in-duction variables becomes the monoid operation.De�nition 10 (Induction Variable) A variable x is aninduction variable if and only if the three following condi-tions are satis�ed:a. x is de�ned at a block entry, a for loop initialization,or x is a formal parameter;b. x is constant in the block, the for loop or the functionwhere it has been de�ned;c. the de�nition of x (according to a) is in one of the forms:1. x = c, and c is a constant known at compile-time,2. x = y � c, and y is an induction variable, possi-bly equal to x.

A MoGuL induction variable can be used in di�erentaddress expressions which reference distinct data structures,provided these structures are de�ned over the same monoid.This separation between data structure and shape followsthe approach of the declarative language 81=2 [20]. It isa convenient way to expose more semantics to the staticanalyzer, compared with C pointers or variables of producttypes in ML.Eventually, the MoGuL syntax is designed such thatevery variable of a monoid type is an induction variable,other variables being ignored. The only valid de�nitionsand operations on MoGuL variables are those satisfyingDe�nition 10. Data structure accesses follow the C arraysyntax: D[x] denotes element x of structure D. The samesyntax holds for all monoid shapes.65 The Binding FunctionInMoGuL, the computations on two induction variables intwo distinct monoids are completely separate. Thus, with-out loss of generality, we suppose that all induction variablesbelong to a single monoidMloc, with operation � and neutralelement "m, called the data structure monoid.5.1 From Instances to Memory LocationsIn a purely functional language, function application is theonly way to de�ne a variable. In MoGuL, every statementis handled that way; the scope of a variable is restricted tothe statement at the beginning of which it has been declared,and an induction variable is constant in its scope.Since overloading of variable names occurs at the begin-ning of each statement, the value of an induction variabledepends on the runtime control point of interest. Let x bean induction variable, we de�ne the binding for x as the pair(p, vp), where p is a trace pre�x and vp the value of x afterexecuting p.Consider two trace pre�xes p1 and p2 representative ofthe same instance. The previous rules guarantee that allinduction variables living right after p1 (resp. p2) have beende�ned in statements not closed yet. Now, the respectivesequences of non-closed statements for p1 and p2 are iden-tical and equal to the control word of p1 and p2. Thus thebindings of x for p1 and p2 are equal. In others words, thefunction that binds the trace pre�x to the value of x is com-patible with the slimming congruence.Theorem 6 Given an induction variable x in a MoGuLprogram, the function mapping a trace pre�x p to the valueof x only depends on the instance associated to p, i.e., onthe control word.In other words, given an execution trace the bindings atany trace pre�x are identi�ed by the control word (i.e., theinstance).De�nition 11 (Binding Function) A binding for x is acouple (w; v), where w is a control word and v the value ofx at the instance w.�x denotes the binding function for x, mapping controlwords to the corresponding value of x.6If A is an array (i.e., A is addressed in a free commutative group),the a�ne subscript A[i+2j-1] is not a valid MoGuL syntax. This isnot a real limitation, however, since a�ne subscripts may be replacedby new induction variables de�ned every-time i or j are de�ned.8



5.2 BilabelsWe now describe the mathematical framework to computebinding functions.De�nition 12 (Bilabel) A bilabel is a pair in the setL�ab � Mloc. The �rst part of the pair is called the inputlabel, the second one is called the output label.B = L�ab �Mloc denotes the set of bilabels. From the directproduct of the control word free monoid L�ab and the datamonoid Mloc, B is provided with a monoid structure: itsoperation � is de�ned componentwise on L�ab and Mloc,(�ja) � (�jb) def= (��ja � b): (7)A binding for an induction variable is a bilabel. Everystatement updates the binding of induction variables accord-ing to their de�nitions and scope rules, the correspondingequations will be studied in Section 5.3.De�nition 13 The set of rational subsets of a monoid Mis the least set that contains the �nite subsets of M , closedby union, product and the star operation [4].A rational relation over two monoids M and M 0 is arational subset of the monoid M �M 0.We focus on the family Brat of rational subsets of B.De�nition 14 A semiring is a monoid for two binary op-erations, the �addition� +, which is commutative, and the�product� �, distributive over +; the neutral element for +is the zero for �.The powerset of a monoid M is a semiring for union andthe operation of M [4]. The set of rational subsets of M isa sub-semiring of the latter [4]; it can be expressed throughthe set of rational expressions inM . Thus Brat is a semiring.We overload � to denote the product operation in Brat;; is the zero element (the empty set of bilabels); and theneutral element for � is E = f("; "m)g. From now on, weidentify Brat with the set of rational expressions in M , andwe also identify a singleton with the bilabel inside it: {(sjc)}may be written (sjc).5.3 Building Recurrence EquationsTo compute a �nite representation of the binding functionfor each induction variable, we show that the bindings canbe expressed as a �nite number of rational sets. First ofall, bindings can be grouped according to the last executedstatement, i.e., the last label of the control word. We build asystem of equations in which unknowns are sets of bindingsfor induction variable x at state n of the control automaton.Given An the control automaton modi�ed so that n is theunique �nal state, let Ln be the language recognized by An.The binding function for x at state n, �nx , is the bindingfunction for x restricted to Ln. We also introduce a newinduction variable z, constant and equal to "m.The system of equations is a direct translation of the se-mantics of induction variable de�nitions; it follows the syn-tax of a MoGuL program P ; we illustrate each rule on therunning example.1. At the initial state 0 and for any induction variable x,�0x = E (8)

E.g., the Toy program involves three induction variable, theloop counter i and the formal parameters k and n. We willnot consider n since it does not subscript any data structure.The output monoid is Z, its neutral element "m is 0.�0k = �0i = ("j0):2. �nz denotes the set de�ned by�nz = [w2Ln(wj"m): (9)�nz is the binding function for the new induction vari-able z restricted to Ln; it is constant and equal to "m.For each statement s de�ning an induction variable xto csx (case c:1 of De�nition 10), and calling d and athe respective departure and arrival states of s in thecontrol automaton,�ax � �dz � (sjcsx): (10)Since �dz � (sjcsx) = Sw2Ld(wsjcsx), (10) means: if w 2Ld is a control word, ws is also a control word and itsbinding for x is (wsjcsx).The control automaton automaton of Toy has 5 states. Forthe case c:1 of De�nition 10,statement I : k = 0; (11)and (10) yields �1k � �0z � (Ij0):3. For each statement s de�ning an induction variable xto y � c (case c:2 of De�nition 10), and d and a therespective departure and arrival states of s,�ax � �dx � (sjcsx): (12)To complete the system, we add for every inductionvariable x unchanged by s a set of equations in theform (12), where csx = "m.E.g., for case c:2 of De�nition 10,statement G : k = k � 1 (13)statement d : i = i � 2 (14)statement D : i = k (15)and (12) yields�1i � �3i � (Gj0)�1k � �3k � (Gj1)�2i � �1i � (Bj0)�2k � �1k � (Bj0)�3i � �2k � (Dj0)�3i � �3i � (dj2)�3k � �2k � (Dj0)�3k � �2k � (dj0)
�4i � �3i � (F j0)�4k � �3k � (F j0)�1z � �0z � (Ij0)�1z � �3z � (Gj0)�2z � �1z � (Bj0)�3z � �2z � (Dj0)�3z � �2z � (dj0)�4z � �3z � (F j0)Gathering all equations generated from (8), (10) and (12)yields a system (S) of nv � ns equations with nv � ns un-knowns, where nv is the number of induction variables, in-cluding z, and ns the number of statements in the program.7Toy yields the system7Some unknown sets correspond to variables that are not boundat the node of interest, they are useless.9



�0i = E�0k = E�0z = E�1i = �3i � (Gj0) + (Ij0)�1k = �3k � (Gj1) + (Ij0)�2i = �1i � (Bj0)�2k = �1k � (Bj0)
�3i = �3i � (dj2) + �2k � (Dj0)�3k = �3k � (dj0) + �2k � (Dj0)�4i = �3i � (F j0)�4k = �3k � (F j0)�1z = �3z � (Gj0) + (Ij0)�2z = �1z � (Bj0)�3z = �2z � (Dj0) + �2z � (dj0)�4z = �3z � (F j0)Let � be the set of unknowns for (S), i.e., the set of�nx for all induction variables x and nodes n in the controlautomaton. Let C be the set of constant coe�cients in thesystem. (S) is a left linear system of equations over (�; C)[30]. Let Xi be the unknown in � appearing in the left-handside of the ith equation of (S). If + denotes the union inBrat, we may rewrite the system in the form8i 2 f1; : : : ;mg; Xi = mXj=1Xj � Ci;j +Ri; (16)where Ri results from the terms �0x = E in right-hand side.Note that Ci;j is either ; or a bilabel singleton of Brat. Thus(S) is a strict system, and as such, it has a unique solution[30]; moreover, this solution can be characterized by a ratio-nal expression for each unknown set in �.De�nition 15 (Rational Function) If M and M 0 aretwo monoids, a rational function is a function from M toM 0 whose graph is a rational relation.Combined with Theorem 6, we may conclude that thesolution of (S) is a characterization of each unknown set Xiin � as a rational function.Theorem 7 The binding function for a MoGuL programis a �nite set of rational functions �nx , for all induction vari-ables x and nodes n in the control automaton.Properties of rational relations and functions are similarto those of rational languages [4]: membership, inclusion,equality, emptiness and �niteness are decidable, projectionon the input or output monoid yields a rational sub-monoid,and rational relations are closed for union, star, productand inverse morphism, to cite only the most common prop-erties. The main di�erence is that they are not closed forcomplementation and intersection, although a useful sub-class of rational relations has this closure property � in-dependently discovered in [27] and [6]. Since most of theseproperties are associated with polynomial algorithms, bind-ing functions can be used in many analyses, see [7, 16, 6, 2]for our previous and ongoing applications to the automaticparallelization of recursive programs.6 Computing the Binding FunctionThis section investigates the resolution of (S). Starting from(16), one may compute the last unknown in terms of others:Xm = C�m;m�m�1Xi=1 Xj � Ci;j +Rm�: (17)The solution of (S) can be computed by iterating this pro-cess analogous to Gaussian elimination. This was the �rst

proposed algorithm [6]; but Gaussian elimination on non-commutative semirings leads to exponential space require-ments. We propose two alternative methods to computeand represent the binding function e�ectively. The �rst oneimproves on Gaussian elimination but keeps an exponen-tial complexity; it has a strong theoretical interest becauseit captures the relations between all induction variables ina single representation, see Section A.2. If we only needto represent induction variables separately from each other,this Section presents a polynomial algorithm.We recall a few de�nitions and results about transducers[4].De�nition 16 A rational transducer is a �nite-state au-tomaton where each transition is labeled by a pair of inputand output symbols (borrowing from De�nition 12), a sym-bol being a letter of the alphabet or the empty word.8A pair of words (u; v) is recognized by a rational trans-ducer if there is a path from an initial to a �nal state whoseinput word is equal to u and output word is equal to v.9Theorem 8 A rational transducer recognizes a rational re-lation, and reciprocally.A transducer o�ers either a static point of view � as amachine that recognizes pairs of words � or a dynamic pointof view � the machine reads an input word and outputs theset of image words.The use of transducers lightens the burden of solvinga system of regular expressions, but we lose the ability tocapture all induction variables and their relations in a singleobject. The representation for the binding function of aninduction variable is called the binding transducer.Algorithm 2Given the control automaton and a monoid with nv in-duction variables (including z), the binding transducer isbuilt as follows.� For each control automaton state, create a set of nvstates, called a product-state; each state of a product-state is dedicated to a speci�c induction variable.� Initial (resp. �nal) states correspond to the product-states of all initial (resp. �nal) states of the controlautomaton.� For each statement s, i.e., for each transition (d; a) la-beled s in the control automaton; call P d and P a thecorresponding product-states; and create an associatedproduct-transition ts. It is a set of nv transitions,each one is dedicated to a speci�c induction variable.We consider again the two cases mentioned in De�ni-tion (10.c).� case c:1: the transition runs from state P dz in P dto the state P ax in P a. The input label is s, theoutput label is the initialization constant c;� case c:2: the transition runs from state P dy in P dto state P ax in P a. The input label is s, the outputlabel is the constant c;8Pair of words lead to an equivalent de�nition.9A transducer is not reducible to an automaton with bilabels aselementary symbols for its alphabet; as an illustration, both paths(xj")(yjz) and (xjz)(yj") recognize the pair of words (xyjz).10



The binding transducer for Toy is shown in Figure 9.Notice that nodes allocated to the virtual induction variablez are not co-accessible except the initial state (there is nopath from them to a �nal state), and initial states dedicatedto i and k are not co-accessible either. These states areuseless, they are trimmed from the binding transducer.zi ki ki ki k
I |0 I |0B |0 B |0D |0 D |0F |0 F |0d |2 d |0G|0 G|1

Figure 9: Binding Transducer for ToyThe binding transducer does not directly describe thebinding function. A binding transducer is dedicated to aninduction variable x when its �nal states are restricted tothe states dedicated to x in the �nal product-states.Theorem 9 The binding transducer dedicated to an induc-tion variable x recognizes the binding function for x.This result is a corollary of Theorem 7.7 ExperimentsThe construction of the binding transducer is fully imple-mented in OCaml. Starting from a MoGuL program, theanalyzer returns the binding transducer according to thechoice of monoid. This analyzer is a part of a more ambi-tious framework including dependence test algorithms basedon the binding transducer [2]. Our implementation is asgeneric as the framework for data structure and bindingfunction computation: operations on automata and trans-ducers are parameterized by the types of state names andtransition labels. Graphs of automata and transducers aredrawn by the free dot software [24].Section A.3 presents two examples processed by our in-stancewise analyzer of MoGuL programs. The �rst oneoperates on an array, the second one on a tree.Figure 10 summarizes some results about recursive pro-grams we implemented in MoGuL. Since the �rst survey ofinstancewise analyses techniques [6], we discovered many re-cursive algorithms suitable for implementation in MoGuLand instancewise dependence analysis. Therefore, it seemsthat the programmodel encompasses many implementationsof practical algorithms despite its severe constraints.Program n-Queens is the classical problem to place nQueens on a n � n chessboard. To_&_fro is the recursivemerge-sort algorithm alternating over two arrays. It is opti-mized in To_&_fro+Terminal_insert_sort by using an in-sertion sort for the leaves of the recursion (on small intervalsof the original array). Sort_3_colors consists in sorting anarray of balls according to one color among three, using onlyswaps. Vlsi_test simulates a test-bed to �lter-out goodchips from an array of untested ones; the process relies on

peer-to-peer test of two chips, a good chip giving a certi�edcorrect answer about the other.8 Conclusion and PerspectivesThe instancewise paradigm paves the way for better, moreprecise program analyses. It decouples static analyses fromthe program syntax, allowing to evaluate semantic programproperties on an in�nite set of runtime control points. Thisparadigm abstracts runtime execution states (or trace pre-�xes) in a �nitely-presented, in�nite set of control words.Instancewise analysis is also an extension of the domain-speci�c iteration-vector approach (the so-called polytopemodel) to general recursive programs.As an application of the instancewise framework, we ex-tend the concept of induction variables to recursive pro-grams. For a restricted class of data structures (includingarrays and recursive structures), induction variables capturethe exact memory location accessed at every step of the exe-cution. This compile-time characterization, called the bind-ing function, is a rational function mapping control words toabstract memory locations. We give a polynomial algorithmfor the computation of binding functions.Our current work focuses on instancewise alias and de-pendence analysis, for the automatic parallelization and op-timization of recursive programs. We also look after newbenchmark applications and data-structures to assess theapplicability of binding functions; multi-grid and sparsecodes are interesting candidates. We would also like to re-lease a few constraints on the data structures and inductionvariables, aiming for the computation of approximate bind-ing functions through abstract interpretation.References[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Princi-ples, Techniques and Tools. Addison-Wesley, 1986.[2] P. Amirano�, A. Cohen, and P. Feautrier. Instance-wise array dependence test for recursive programs. InProc. of the 10th Workshop on Compilers for ParallelComputers, Amsterdam, NL, Jan. 2003. University ofLeiden.[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,P. L. Guernic, and R. de Simone. The synchronous lan-guages 12 years later. Proceedings of the IEEE, 91(1),Jan. 2003.[4] J. Berstel. Transductions and Context-Free Languages.Teubner, Stuttgart, Germany, 1979.[5] F. Bourdoncle. Abstract interpretation by dynamicpartitioning. Journal of Functional Programming,2(4):407�423, 1992.[6] A. Cohen. Program Analysis and Transformation: fromthe Polytope Model to Formal Languages. PhD thesis,Université de Versailles, France, Dec. 1999.http://www-rocq.inria.fr/~acohen/publications/thesis.ps.gz.[7] A. Cohen and J.-F. Collard. Instancewise reaching def-inition analysis for recursive programs using context-free transductions. In Parallel Architectures and Com-pilation Techniques, pages 332�340, Paris, France, Oct.1998. IEEE Computer Society Press.11
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A AppendixThe following sections will not be included in the �nal ver-sion of the paper. The interested reader will be referred toa research report.A.1 Monoid-Based Data StructuresFigure 11 lists some practical examples of monoid-baseddata structures.A.2 Binding MatrixMrat denotes the set Bm�mrat of square matrices of dimensionm with elements in Brat; Mrat is a semiring for the inducedmatrix addition and product and Mrat is closed by star op-eration [30]. The neutral element of Mrat isE = " E ;. . .; E # : (18)Practical computation of the transitive closure of a squarematrix C is an inductive process, using the following blockdecomposition where a and d are square matrices:C = � a cb d � :The formula is illustrated by the �nite-state automaton inFigure 12; its alphabet is constituted of labels fa; b; c; dg ofthe block matrices; i and j are the two states, they are bothinitial and �nal. If i and j denote the languages computediteratively for the two states, and matrix C represents alinear transformation of the vector (i; j): (i1; j1) = (i0a +j0b; i0c + j0d). We compute the transitive closure of C asthe union of all words labeling a path terminated in states ior j, respectively, after zero, one, or more applications of C:(i�; j�) = �(i0 + j0d�b)(a + cd�b)�; (j0 + i0a�c)(d + ba�c)��.Writing P = (a+ cd�b)� and Q = (d+ ba�c)�,C� = � a cb d �� = � P d�bPa�cQ Q � : (19)i ja bc dFigure 12: Computation of a matrix starFrom (16), system (S) can be written X = XC +R, where matrix C = (Ci;j)1�i;j�m and vectors R =(R1; : : : ; Rm), X = (X1; : : : ; Xm). Vector RC� is the so-lution of (S), but direct application of (19) is still laborious,given the size of C.Matrix Automaton. Our solution relies on the sparsity ofC: we represent the system of equations in the form of anautomaton A, called the matrix automaton.The graph of the matrix automaton is the same as thegraph of the control automaton. Each statement s is rep-resented by a unique transition, gathering all informationabout induction variable updates while executing s. Thebinding function for x after statement s, �sx, maps con-trol words ended by s to the value of x. It is the set of

all possible bindings for x after s. �!�n denotes the bindingvector at state n, i.e., the tuple of binding functions for allinduction variables at state n (including z). Conversely, �!�sdenotes the binding vector after statement s, i.e., the tuple ofbinding functions for all induction variables after executingstatement s.With d the departure state of the transition associatedto statement s, we gather the previous linear equations re-ferring to s and present them in the form:8S2Mrat;�!�s = �!�d � S: (20)As an example, we give the result for statement G of Toy:�Gi = �3i � (Gj0); �Gk = �3k � (Gj1); �Gz = �3z � (Gj0)�!�G = �!�3 � 24 (Gj0) ; ;; (Gj1) ;; ; (Gj0) 35 :Now, the transition of statement s in A is labeled bythe statement matrix S. Thus, A recognizes words with al-phabet in Mrat: concatenation is the matrix product andwords are rational expression in Mrat, hence elements ofMrat. Grouping equations according to the transitions' ar-rival state, we get, for each state a,�!�a = Xd2pred(a)�!�d � Sda;Sda 2Mrat; (21)where pred(a) is the set of predecessor states of a and Sdais the statement matrix associated to the transition from dto a.E.g., state number 1 in the matrix automaton of Toy yields�!�1 = �!�I +�!�G = �!�0 � I+�!�3 � G :Theorem 10 Let �!�0 = (E ; : : : ; E) be the binding vector atthe beginning of the execution. The binding vector for anystate f can be computed as�!�f = �!�0 � L; (22)where L is a matrix of regular expressions of bilabels; L iscomputed from the regular expression associated to the ma-trix automaton A, when its unique �nal state is f .This result is a corollary of Theorem 7.Application to the Running Example. We now give the state-ment matrices associated with equations (11) to (15). Withthe three induction variables i, k and z, the binding vectorafter statement I, �!�I = (�Ii;�Ik;�Iz) and I the statementmatrix for I, we have:�!�I = �!�0 � I; �!�B = �!�1 � B ; �!�D = �!�2 � D�!�d = �!�3 � ; �!�G = �!�3 � G ; �!�F = �!�3 � F
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Free monoid.G = fright; leftg, � is empty, � is the concate-nation: monoid elements address a binary tree. left rightleft rightFree group.G = fright; left; right�1; left�1g, � is the in-version of left and right (without commuta-tion): Cayley graphs [14, 20]. left�1 right�1left rightleft�1 left rightFree commutative group.G = f(0; 1); (1; 0); (0;�1); (�1; 0)g, � is the vec-tor inversion and commutation, � is vector addi-tion: a two-dimensional array. (0; 1) (0; 1) (0; 1)(1; 0)(1; 0) (0;�1) (0;�1) (0;�1)(�1; 0)(�1; 0)Free commutative monoid.G = f(0; 1); (1; 0)g, � is vector commutation: atwo-dimensional grid. (0; 1) (0; 1) (0; 1)(1; 0)(1; 0)Commutative monoid.G = f(0; 1); (1; 0)g, � is vector commutation and(0; 1) � (0; 1) � "m: a two-dimensional grid foldedon the torus Z� Z2Z. (0; 1) (0; 1) (0; 1)(1; 0) (1; 0)Free partially-commutative monoid.G = fnext; 1;�1g, � is the inversion and commu-tation of 1: nested trees, lists and arrays. 1 1 1nextnext next�1 �1 �1
Monoid with right-inverse.G = fright; left; parentg, right � parent � "m,left � parent � "m: a tree with backward edges. left rightparent parentFigure 11: Monoid-based structureswith the following statement matrices:statement I : I= 24 Ij0 ; ;; ; ;; Ij0 Ij0 35statement G : G = 24 Gj0 ; ;; Gj1 ;; ; Gj0 35statement d : = 24 dj2 ; ;; dj0 ;; ; dj0 35statement D : D = 24 ; ; ;Dj0 Dj0 ;; ; Dj0 35The other statements matrices let unchanged the inductionvariables.statement B : B = 24 Bj0 ; ;; Bj0 ;; ; Bj0 35statement F : F = 24 F j0 ; ;; F j0 ;; ; F j0 35

The resulting matrix automaton is shown in Figure 13 (allstates are �nal).01234
IBDF G L = I + IB+ IBD � + G B D ���E + F + G + G B �(E is the neutral element of Mrat.)Figure 13: Example of matrix automatonAbout Complexity The exponential complexity of the ma-trix method has two explanations:� the size of a regular expression can be exponentiallylarger than an equivalent �nite-state automaton;� despite our e�orts to reduce the complexity of the tran-sitive closure, we still achieve the simultaneous charac-14



terization of all induction variables and their relations;this leads to a large number of (non-commutative)cross-products between regular expressions of di�erentinduction variables.Indeed, a list of binding transducers for every individualinduction variable may not be converted into a transducerfor the full binding function in polynomial time. Intuitively,the alphabet of the latter must deal with tuples of induc-tion variables with diverging evolutions in the control au-tomaton. This shows that the exponential complexity ofthe matrix method is more fundamental than the fact weuse regular expressions.A.3 ExamplesThe Pascaline Program. Figure 14 shows a program toevaluate the binomial coe�cients (a line of Pascal's trian-gle). It exhibits both a loop statement and a recursive call,two induction variables I and L plus the constant inductionvariable n; x and y are not induction variables. StatementD,x = 1, is an elementary statement without induction vari-ables: MoGuL simply ignores it. The else branch of theconditional is empty: it ensures the termination of recursivecalls.structure Monoid_int A;A function Pascaline(Monoid_int L, Monoid_int n) {int x, y;B if (L < n)C {D x = 1;E for (Monoid_int I=1; I<n;e I=I.1)F {G y = A[I];H A[I] = x + y;I x = A[I];}J Pascaline(L.1, n);}}K function Main() {L Pascaline(0, 10);} Figure 14: Program PascalineFigure 15 shows the binding transducer for Pascaline, asgenerated by the software. The transducer is drawn by handto enhance readability, and in complement with the indica-tion of the dedicated induction variable, we �lled each nodeof the graph with a statement borrowed from the program:the statement is written in the arrival nodes of the associ-ated transitions. Nodes dedicated to the induction variablen are not used; they have been trimmed. Notice the use ofinduction variable z to initialize loop counter I.The Merge_sort_tree Program. Figure 16 shows an imple-mentation of the merge sort algorithm, implemented over abinary tree of lists, called Tree. The three functions Split,Merge and Sort are recursive. Induction variables A, B and Care locations in the tree; they are overloaded and exchangedas formal parameters of the three functions. Parameter nof Split is an independent induction variable not used formemory accesses, and p, q and r are not induction variables.@ denotes the empty word, i.e., the root of the tree.
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Figure 15: Binding transducer for PascalineAt the beginning, the unsorted list is stored in the nextbranch of the tree named Tree. It is split in two halvesstored in the left and right branches. Both these lists arerecursively sorted, then merged back in the root node. Fig-ure 17 shows the binding transducer for Merge_sort_treeas drawn by dot [24] from the MoGuL software output.Octogonal states correspond to the tree references at theelementary statements. These states are useful for the com-putation of data dependences. Indeed, from this bindingtransducer, we developed algorithms to detect that the twocalls to the Sort function (j and k) can be run in parallel[16, 6].
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monoid Monoid_tree [next, left, right];structure Monoid_tree Tree;t function Main() {s Sort(@, 37);}S function Split(Monoid_tree A, Monoid_tree B,Monoid_tree C, Monoid_int n) {F if (n>0)B {A Tree[B] = Tree[A];}L if (n>1)H {G Tree[C] = Tree[A.next];}R if (n>2)N {M Split(A.next.next, B.next, C.next, n-2);}}

h function Merge(Monoid_tree A, Monoid_tree B,Monoid_tree C, int p, int q) {g if ((q != 0) && ( p = 0 || Tree[B] < Tree[C]))V {T Tree[A] = Tree[B];U Merge(A.next, B.next, C, q-1, p );}e elsed {c if (p != 0)Y {W Tree[A] = Tree[C];X Merge(A.next, B, C.next, q, p-1);}}}r function Sort(Monoid_tree T, int r) {q if (r > 1)m {i Split(T, T.left, T.right, r);j Sort(T.left, (r+1)/2);k Sort(T.right, r/2);l Merge(T, T.left, T.right,(r+1)/2, r/2);}}Figure 16: Program Merge_sort_tree
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