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is to be a success, it must be able to do a very thorough analysis of theadressing patterns in such loops. If taken in full generality, the problemis intractable. In this paper, we delimit a class of programs for which thisanalysis is possible: programs with so-called static control and linear indices.There are reasons to believe that a large proportion of all numerical programsbelongs to this class, and that many more may be converted to this form byappropriate preprocessing. The analysis of adressing patterns in this classmay be reduced to the solution of parametric systems of linear inequalitiesin integers, for which we have devised an e�cient algorithm in [Fea88b].The �rst problem we will explore is the calculation of the data depen-dence relation. Beyond the construction of the dependence graph as usedfor instance by [Kuc78] or [AK82], our technique gives a precise criteriumfor loop interchange and allows the exact computation of direct dependencesas de�ned in [Bra88]. In favourable cases, such dependences are regular andmay be described by a set of vectors which spans the dependence cone [Iri87].We will then study data-
ow analysis; here, our aim is to �nd the source ofthe values which are used at each stage of the computation. Such informationis very useful for array expansion [Fea88a], for verifying program correctness,etc.Lastly, we will show how to solve the problem of enumerating the integervectors which lies inside a polyhedron. This technique may be applied tocode generation problems (loop interchange, supernode construction, etc.)and to memory management problems.1.1 NotationsNotwithstanding the fact that most parallelizers use Fortran as a sourcelanguage, all examples here will be given in Pascal.Bold letters will denote vectors or vector valued functions; jaj is thedimension of vector a. a[i::j] is the subvector of a built from components ito j. a[i] is a shorthand for a[i::i]. Familiar operators and predicates like +and � will be tacitly extended to vectors. The sign � will denote lexicalordering of integer vectors. The remainder operator will be written as % inthe C fashion. Large letters will usually denote sets; N will be the set ofnon-negative integers. If A is a matrix, Aij will be its generic element, Ai�its generic row and A�j its generic column.2



2 The program modelIn this chapter, we delimit the set of programs to which our methods areapplicable. We will distinguish in the sequel between instructions, whichare syntactical parts of the program text, and operations which are actionsinducing modi�cations of the computer store. Most often, an instruction willbe executed several times, giving rise to as many distinct operations.2.1 Static control programsTo recognize a static control program, one must �rst identi�es its structureparameters: a set of integer variables which are de�ned only once in theprogram, the de�ning value depending only on the outside world (throughtan input instruction) or on other already de�ned structure parameters.Secondly, when the structure parameters are known, one must be able toenumerate the operations which will be executed when the program is run.If the program uses only if-then-else, for loops and procedure calls ascontrol instructions, this imply that the predicate of an if or the boundsof a for loop may depend only on structure parameters and enclosing loopcounters, and that the same restrictions should apply to all procedures. Inthe sequel, we will consider the special case where for is the only controlinstruction. Many programs may be brought to this form by preprocessing;the case of the while loop is an important exception and will be the subjectof future studies. In a program in which the for loop is the only controlinstruction, naming an operation is easy; one only has to give the nameof the instruction of which the operation is an instance, and the values ofthe surrounding loops counters. Such a tuple forms what we have called in[Fea88a] an (operation) coordinate.2.2 Linearity conditionsThe techniques we have devised are applicable only to linear problems. Tobe able to use them, we will suppose that our object programs obey thefollowing restrictions:� The loop bounds are integral a�ne functions of the structure param-eters and of enclosing loop counters. This insure that the loop body3



is executed for all integer vectors inside a polyhedron whose equationsare easily retrieved from the program text; if fr;ag is the coordinateof an operation which belong to a given loop nest, the constraints ona will be written: er(a) � 0 (1)where er is an a�ne function of a. (1) is the existence predicate ofoperation fr;ag.� The indices of arrays are a�ne functions of the surrounding loop coun-ters and the structure parameters.As is customary, we will suppose that all arrays are non overlapping andthat all indices are within the array bounds.2.3 The sequencing predicateWhen given two coordinates fr;ag and fs;bg, knowing which one will beexecuted �rst is an important information. We have shown in [Fea88a] thatif Nrs is the number of loops which enclose both r and s, and if Trs is truei� r precedes s in the text of the program, then the execution order of fr;agand fs;bg is given by the sequencing predicate:fr;ag � fs;bg = a[1::Nrs]� b[1::Nrs] _ (a[1::Nrs] = b[1::Nrs] ^ Trs): (2)This is not linear, but may be split into Nrs + 1 linear predicates byreplacing the lexicographical order by its familiar de�nition. The sequencingpredicate at depth p, (p = 0; Nrs � 1) is:fr;ag �p fs;bg = a[1::p] = b[1::p] ^ a[p+ 1] < b[p+ 1]; (3)while the version for p = Nrs is:fr;ag �p fs;bg = a[1::Nrs] = b[1::Nrs] ^ Trs: (4)When dealing with program transformations, we will select one particu-lar coordinate system which will remain �xed. The transformations will be4



seen as modi�cations of the sequencing predicate. The distinguished coordi-nate system will usually be the one associated with the original sequentialprogram.We will use as example, in the sequel, the following version of the Gauss-Jordan elimination algorithm (declarations omitted):read(n);for i := 0 to n dobeginfor j := 0 to i-1 dofor k := i+1 to i+n dof1g a1[j,k] = a2[j,k] - a3[i,k] * a4[j,i] / a5[i,i];for j := i+1 to n dofor k := i+1 to i+n dof2g a6[j,k] = a7[j,k] - a8[i,k] * a9[j,i] / a10[i,i];endWe have indexed all references to a in the interest of clarity. n is the onlystructure parameter. The existence predicate for instances of instruction 1is: e1(i; j; k) = (0 � i � n) ^ (0 � j � i� 1) ^ (i+ 1 � k � n):The sequencing between an instance of 1 and an instance of 2 is given by:f1; i; j; kg � f2; i0; j0; k0g = i < i0 _ i = i0;since N12 = 1 and T12 = true .3 The dependence computationThe above version of the sequencing predicate de�nes a total order, and, assuch, re
ects only the execution of a sequential program. Now, there aremany parallel architectures and many styles of parallel programming. Toeach such style corresponds a particular structure for the sequencing predi-cate. In macrotasking style, the sequencing predicate is total for operationswhich belong to the same task, and is explicitly given by a �nite dag for5



di�erent tasks. In a synchronous machine (a SIMD or VLIW machine ora systolic array ), there is a timing function T (which may be extractedfrom the program or microprogram text) giving the date of execution of anyoperation; the squencing predicate is simply:x � y = T (x) < T (y):In general, the result of a computation depends on both the set of oper-ations and the sequencing predicate. In most programs, however, there is acertain degree of freedom: the result is the same as the sequential one as longas certain operations are properly ordered. Two operations are dependentif their original sequencing must not be modi�ed for the program to givethe proper result. The dependence relation is a preorder and its transitiveclosure is the coarsest sequencing predicate such that the parallel programgives the same result as the sequential one.Parallelization, may be seen as a two step process:1. Determine the dependence relation;2. For a given architecture (and hence for a given class of sequencing pred-icate) �nd the coarsest sequencing which is �ner than the dependancerelation.Here again, the calculation of the true dependence relation is a very dif-�cult task, which may involve complicated mathematical problems. Mostoften, one computes only the syntactical dependence relation, which is givenby [Ber66] conditions.3.1 The basic techniques and some extensionsBy Bernstein's conditions, two operations are dependent if they access atleast one common memory location, and one of these accesses is a write.Dependences may be classi�ed according to the position of the write oper-ation. If the write is executed �rst, one has a Producer-Consummer (PC)dependence. If executed last, one has a Consummer-Producer (CP) depen-dence, and �nally a Producer-Producer (PP) dependence if both operationsare writes. In general, the set of locations which are accessed by an opera-tion depends both on the corresponding instruction and the current memory6



state, throught the value of indices and pointers. In our program model,the situation is much simpler because the in
uence of the memory state issummarized by the values of the loop counters as embodied in the operationcoordinates. Let A[f(a)] and A[g(b)] be two references to array A by oper-ations fr;ag and fs;bg . These array elements refer to the same memorylocation i�: f(a) = g(b): (5)The dependence is from r to s i�:fr;ag � fs;bg: (6)Finally, fr;ag and fs;bg are valid coordinates i�:er(a) � 0 ^ es(b) � 0: (7)Formulae (5) to (7) give a complete speci�cation of the dependence re-lation of the object program. (5) and (7) are systems of linear constraints.If one goes back to (3), one sees that (6) splits into Nrs + 1 di�erent linearsystems. Each such system starts with p equalities (p = 0; : : : ; Nrs) and givesrise to the depth p dependences according to the de�nition of [AK82].3.1.1 Computing the dependence graphFor most parallelization or vectorization algorithms, one is interested only inthe existence of at least one dependence between r and s at a given depthp. This is equivalent to deciding whether (5){(7) has solutions in integers.This may be done by several integer programming algorithms, which werepioneereed by Gomory ([Gom63]). This technique is used in the parallelizerPAF ([TDF87]); a variation has been proposed in [Wal88].In the computation of dependences, wrong decision are harmless (at leastwith respect to program correctness) provided they are always taken con-servatively: deciding there is a dependence when in fact there is not. Thisremark may be applied in several ways:� One may solve (5){(7) in rationals by the Fourier-Motzkin eliminationalgorithm or by the simplex method;7



� If the indexing function and/or loop bounds contains non-linear termsor variables beyond the loop counters, one may consider them as sup-plementary unknowns in the resolution process in the manner of [LT88].� Lastly, one may use approximate decision methods like [Ban79] tests.The Gauss-Jordan example contains some eighty potential dependences.Most of these are proved spurious by our technique. The remaining 18 realdependences are all at depth 0.3.1.2 Loop InterchangeWhen restructuring a perfect loop nest for parallel or vector execution, oneis often interested in deciding whether two loops (say at level i and i + 1)may be interchanged. In accordance with a remark at the end of 2.3, thistransformation will be seen as a modi�cation of the sequencing predicate. Inthis case, let s be the loop body; two executions of s are sequenced accordingto: fs;ag � fs;bg = a� b; (8)After interchange, the new sequencing predicate �c, is given by:fs;ag �c fs;bg = Pi;i+1a� Pi;i+1b; (9)where Pi;i+1 is a permutation matrix. Now, this transformation will becorrect if all operations whose execution order is reversed:fs;ag � fs;bg ^ fs;ag �c fs;bg;or a� b ^ Pi;i+1b� Pi;i+1a; (10)are independent. Let k be the leftmost place at which a di�ers from b. Itis easy to see that for all value of k with k = i excepted, (a � b) and(Pi;i+1b � Pi;i+1a) have the same value. Hence k = i and the criticaloperations are given by:a[1::i� 1] = b[1::i� 1];a[i] < b[i];b[i+ 1] < a[i+ 1]:8



We conclude that loops i and i + 1 may be interchanged if there is nodependence at depth i � 1 which satis�es the added constraint b[i + 1] <a[i + 1]; this is again a linear inequality problem. This criterium for loopinterchange is more comprehensive than the one of [AK84], since it does notdepends on the possibility of de�ning direction vectors. Note that if thereare no dependences at depth i, the criterium above is trivially satis�ed, andloop i is parallel. This result gives the following corollary ([PK87]): a perfectloop nest may always be rewritten with the sequential loops outermost. Thereasoning may be extended to non-consecutive loops and to other kinds ofloop restructuring (e.g. the choice of a timing function for a systolic array).3.2 Direct dependencesThe dependence relation often contains redundant edges, i.e. edges whichcould be regenerated by transitivity. It would be interesting to eliminate allsuch edges, but this is a quite di�cult problem. A �rst step in this directionis the determination of direct dependences, a notion which was introducedin [Bra88]. Remember that the dependence relation is the union of all sets:Q(r; s; A; p) = f< fr;ag; fs;bg > j f(a) = g(b); (11)fr;ag �p fs;bg;er(a) � 0; es(b) � 0gfor all instructions r, s and all depths p not greater than Nrs and all arrayreferences A which are modi�ed in at least one of r and s. The direct depen-dences are obtained simply by removing all redundant edges fromQ(r; s; A; p).Theorem D The set of direct dependences in Q(r; s; A; p) is given by:D(r; s; A; p) = f< fr;K(b)g; fs;bg > jes(b) � 0gwhere K(b) = � maxF(b); (12)F(b) = fajf(a) = g(b); fr;ag �p fs;bg; er(a) � 0g;if the dependence is PC, and:D(r; s; A; p) = f< fr;ag; fs;K(a)g > jer(a) � 0g9



where K(a) = � minF(a); (13)F(a) = fbjf(a) = g(b); fr;ag �p fs;bg; es(b) � 0g;if the dependence is PP or CP.The proof is easy if one notice that, e.g., if fr;ag and fr;a0g both arein PC dependence with fs;bg and a � a0 then fr;ag and fr;a0g are inPP dependence and the result follows by transitivity. The computation ofK(a) is no longer a simple integer programming probleme. The reasons aretwofold:� The feasible set F(a) is not constant: it depends on integer parametersa and may even be empty for some values of these parameters. We areinterested in the solution as a fonction of a. One may remark also thatthe parameters are not entirely arbitrary: the solution is interestingonly if a satis�es the existence predicate er.� The elements of the feasible set are not ranked according to a linear costfunction, as is customary, but according to the lexicographical order,�.The problem may be solved by an extension of Gomory's algorithm, theParametric Integer Programming (PIP) algorithm of [Fea88b]. A short de-scription may be found in the appendix; the algorithm may be adapted tocope with the computation of the lexical maximum, and for the eliminationof one or more variables from a system of constraints.3.3 Dependence vectorsIn the general case, the solution of a PIP is a multilevel conditional withquasi-a�ne predicates and values. The dependence is said to be regular ifK(b) is a conditional whith one leaf of the form b+d (d a constant vector)all other leaves being ;. The vectors d which are constructed in this way aredependence vectors in the sense of [Lam74]. In fact, from the way they areconstructed, they are the generators of the dependence cone as de�ned in[Iri87]. Dependence vectors are important for the application of algorithmssuch as the wavefront method [Lam74], for loop partitioning ([Iri87]) and forthe automatic construction of systolic arrays ([Qui88]).10



In the Gauss-Jordan example, reference 6 generates by itself a PP depen-dence for which the K function is:if (k � i� 2 � 0)(if (j � i� 2 � 0)hi + 1; j; ki else ;) else ;;which is regular with the dependence vector h1; 0; 0i. On the other hand,references 6 and 5 give rise to a PC dependence for which K is hi � 1; i; ii,which is not regular.4 Data 
ow analysisThe aim of data 
ow analysis is to keep track of the values which are gener-ated in the course of the calculation, in contrast to the program itself which iswritten in term of memory locations. The �rst step in the analysis is to givea name to each value. We will suppose that all instructions in our languageproduce one and only one value: a value may be named by the coordinate ofthe generating operation. The main problem is how to �nd the name of thevalues which are used in the right hand side (rhs) of instructions.4.1 The source computationA partial answer is given by the results of 3.2. If the source is reference i inthe left hand side (lhs) of instruction r, then r and s are in PC dependence,and the source is the latest such operation, i.e. the one which produce thedirect dependence from r to s. To each depth p and each possible source iin instruction si is associated a function Kip which is de�ned by 12. Thisfunction is easily converted to a coordinate by inserting instruction names atappropriate places. What we need is an algorithm to compute the maximumof these sources according to the sequencing order, �. The solution is givenby the following set of rewrite rules:� max(x; ;) => x;� max(if (p)x else y; z) => if (p) � max(x; z) else � max(y; z);� max(fr;ag; fs;bg) = if (fr;ag � fs;bg)fs;bg else fr;ag;11



and their symmetric counterparts. Note that a direct dependence is inthe form of a quasi-a�ne selection tree. One may see that when startingfrom such initial data, the rewriting process always terminate, and that theresult is again in the correct format. Most often, the result may be furthersimpli�ed by checking the compatibility of the predicates along each branchof the tree, again by using linear integer programming, and by applying therule: if (x)y else y => y:Let us consider reference 2 in the example. There are two possible sources,references 1 and 6. A straightforward application of the above rewriting rulesgives a tree with �ve leaves. Two of these are eliminated by the compatibilitytest or otherwise simpli�ed, and the �nal result is:if (i� j � 2 � 0)f1; i� 1; j; kg else if (j � 1 � 0)f2; j � 1; j; kg else ;:4.2 Total expansionA knowledge of the source of each value in a computation allows one to solvevarious problems connected to scalar and array expansion and renaming. Allsuch transformation consist in modifying some or all lhs references with theaim of removing PP and CP dependences. "Evaluating" a source is the pro-cess of replacing in its leaves all operation coordinates by the correspondinglhs. After one or more references have been expanded or renamed, all rhsreferences which are in PC dependence with at least one modi�ed lhs mustbe replaced by the evaluation of their sources in the modi�ed context.For instance, if in the above Gauss-Jordan program, reference 1 is changedto a1[i,j,k] and 6 to a2[i,j,k], then reference 2 becomes1:if(i-j-2 >= 0) a1[i-1, j, k]else if(j -1 >= 0) a2[j-1,j, k]else ;.Note that all renaming and expansion are not legitimate. When one needsa value, one must take care that it has not been overwritten sometime before.The following stategies are safe:1For the meaning of the last term, see 4.312



� Gives a new name to an array or scalar;� Replace the index list by the counters of all surrounding loops.If this is done systematically, one gets a single assignment program orequivalently a system of recurrence equations ([Qui88]).4.3 Program correctness and optimizationThe results of the source computation may be used for program checking andimprovement. If an instruction occurs in no source, it can be removed ; theprocess can be iterated until all such dead code is eliminated.The presence of a ; in a source indicates access to an unde�ned memorycell. According to the context, this may be taken as an error (if the programis complete) or as the caracterization of an input datum. In the case of thesource for reference 2 which was given above, the presence of ; simply meansthat array amust be initialized somewhere else before being used by iteration0 of the i loop.5 Enumeration problemsWe have already said that scienti�c computations are repetitive: the sameinstruction or block of instructions is executed many times according to thevariation of the surrounding loop counters. In so doing, indices range oversubarrays whose caracterization is important for architectures with morethan one level of memory. For programs which conform to the model ofparagraph 2, all these problems may be expressed as the enumeration ofthe integers vectors which lie inside a polyhedron. We will �rst present thegeneral technique then give several applications.5.1 Enumerating the integer vectors of a polyhedronLet: B = fijAi+ b 2 N; i 2 Ng;be the set of integer vectors belonging to a polyhedron de�ned by a systemof linear inequalities. Vector b may depend on auxilliary integer parameters.Let n be the dimension of i. The problem is to construct a loop nest:13



for i1 := a1 to b1 do...for in := an to bn do ...such that hi1; :::; ini visits all vectors inside B. Let Dk(x) be the followingpolyhedron : Dk(x) = fyjxy 2 Bg;where x is of dimension k � 1 and y is of dimension n� k + 1. Compute :u =� minDk(i1; : : : ; ik�1);v =� maxDk(i1; : : : ; ik�1);by algorithms M and N. It easy to prove that the solution to the enumerationproblem is given by : ak = u[1]; bk = v[1]:Here again the solutions are quasi-a�ne selection trees. The value ;indicates that the corresponding polyhedron is empty. This is no problemif we extend the semantics of for loops by the convention that a loop withunde�ned bounds is not executed at all.The expressions for ak and bk may be somewhat simpli�ed if one takesinto account the bounds on i1; : : : ; ik�1 which where obtained at the previoussteps of the algorithm. This is most easily done if these bounds are a�ne,by adding them as context when computing u and v.5.2 Loop interchangeAs a �rst application of the above method, consider the problem of rewritinga loop nest after one or more loop interchanges. In the case of rectangularloops there is no di�culty. In the general case, each bound may depend onouter loop variables. One simply has to express the loop bounds as linearinequalities, reorder the variables to re
ect the new nesting pattern, andapply the above method. Consider for instance the following nest:for i:= 0 to m dofor j := 0 to n dofor k := 0 to i+j do 14



which is to be rewritten in the order k; j; i. The �rst problem to be solved is:D1 = fk; j; iji � m; j � n; k � i+ jgand the result is 0 � k � m+ n. The second problem is:D2(k) = fj; iji � m; j � n; k � i+ jg;which is to be solved in the context k � m+ n. The result is:(if (m� k � 0) 0 else k �m) � j � n;which is by no means obvious. The last problem is :D3(k; j) = fiji � m; j � n; k � i+ jg;in the context k � m+ n; j � n. We get the following bounds for i:if (j � k � 0) 0else if (m� k + j � 0) k �melse ; 375 � i � " if (m� k + j � 0)melse ; :This result could have been simpli�ed by taking into account the factthat m� k + j � 0 is a consequence of the bounds on j, but this is, at thepresent time, beyond the capabilities of our algorithm.5.3 Region extractionWhen using computers with several levels of memory, one has to plan (oranalyze) the movements of data between levels. In its most basic form, theproblem may be cast in the following terms:� Consider a loop nest and an array reference in the body of the loop:for i1 := a1 to b1 do...for in := an to bn do{r} ... A[f(i1,...,in)] ...15



where f is an a�ne multi-dimensional function of i = hi1; : : : ; ini andperhaps other structure parameters.� Write a copy loop to move the elements of A which are in the range off from one level of memory to another one. Such a subset of A will becalled a region.� The problem is to be solved with varying precision. There is usuallyno harm done (except to the program run time) if one reads morethan necessary. In contrast, writing more than necessary may inducecoherence problems, unless special help is provided by the hardware;see [GJG88] for details. The hardware itself may impose restrictionson the shape of the regions which can be handled e�ciently.The �rst step is to decide if f is bijective or not. This is done simplyby testing for autodependence on the distinguished reference (whether thisreference is a read or a write). Similarly, testing for dependence between twodistinct references indicates whether the corresponding regions are disjointor not.Let u be a vector of the same dimension as f . The accessed region is theset: R = fuj9i : u = f(i); er(i) � 0gThis set is not necessarily convex. If R is computed by algorithm E in theappendix, the result will be in the form of a boolean expression in disjunctivenormal form with quasi-a�ne predicates. Each litteral will describe a subsetof R, these subsets being mutually disjoint. If such a subset is a polyhedron(i.e. if its equations do not use the div operator), application of the methodof 5.1 will give the required copy code. There are two reasons for the presenceof div operators. First, all points of R lies on the lattice generated by thecolumn vectors of f . This lattice does not necessarily span all space. Theproblem may be corrected by computing the Hermitte normal form of f andusing its column vectors as a new base. The second reason is that, due to theintegrity condition, the edges of R are not necessarily straight lines. Theymay exhibit periodic patterns which are described by remainder operators.Consider the following example, which is adapted from [GJG88]:for i := 0 to l dofor j := 0 to m do 16



for k := 0 to n do... a[3*i+k, j+k] ...In this case, the lattice generated by h3; 0i, h0; 1i and h1; 1i spans all space.Let u and v be the components of u. The result of algorithm E in this case(in Lisp notation), is:(or (and (plusp (+ v (* -1 u)))(plusp (+ m (* -1 v) u))(plusp (+ n (* -1 u))))(and (plusp (+ v (* -1 u)))(plusp (+ m (* -1 v) u))(plusp (+ (* -1 n) u -1))(plusp (+ n (* 3 l) (* -1 u)))(plusp (+ n m (* -1 v)))(plusp (+ (* 3 (div (+ n (* 2 u)) 3)) m (* -1 v) (* -2 )))))(and (plusp (+ (* -1 v) u -1))(plusp (+ (* 3 l) v (* -1 u)))(plusp (+ n (* -1 v)))(plusp (+ (* 3 (div (+ v (* 2 u)) 3)) (* -2 u))))(and (plusp (+ (* -1 v) u -1))(plusp (+ (* 3 l) v (* -1 u)))(plusp (+ (* -1 n) v -1))(plusp (+ n (* 3 l) (* -1 u))) (plusp (+ n m (* -1 v)))(plusp (+ (* 3 (div (+ n (* 2 u)) 3)) m (* -1 v) (* -2 u)))))The �rst litteral describe the polyhedronfv � u; v � u+m;u � ng:The second litteral includes the following predicate:3((n + 2u)� 3) +m� v � 0;which is equivalent to: v � m+ n� (n+ 2u)%3;and is a description of the characteristic saw-tooth shape of the upper edgeof the region. Let us note that this technique is not limited by the nature ofloop bounds. It applies equally well to constant, symbolic or variable bounds.17



6 ConclusionsWe hope that these examples su�ce to give an idea of the power and adapt-ability of the parametric integer programming algorithm. We have found itvery robust. The largest example in this paper (paragraph 5.3) involve 3unknowns, 6 parameters, and 9 constraints. Our C code solved it on a 16-bitmicrocomputer in about 4". Porting it to a 32-bits mini would allow thespeedy solution of quite larger problems.Some of our results are preliminary in nature and must be further devel-opped, especially as regard total expansion and the simpli�cation of quasi-a�ne selection trees. There are also a host of new problems which suggestthemselves: let us note the construction of independence condition, the con-struction of array predicates, the resolution of array recurrences, etc.A last question: is there a way of extending our results to more generalprograms, in the presence of conditionals, while loops, procedure and functioncalls?A The parametric integer algorithmA.1 The basic algorithmA parametric integer program (PIP) may be formulated in the following way.Let F(z) be the set of integer points inside a convex polyhedron:F(z) = fxjSx+ t(z) 2 Ng=Kz + h 2 N; (14)where S and K are matrices and t(z) is an integer vector whose compo-nents are a�ne functions of the integer vector z. z is not arbitrary, but isconstrained by the set of inequalitiesKz+ h 2 N;the context of the problem. As a matter of convenience, we will suppose thatboth S and K are such that they restrict x and z to non-negative integervalues.The problem is to decide for which values of z is F(z) empty, and if not,to compute its lexical minimum, as a function of z. The solution is given bythe following algorithm: 18



Algorithm N1. Determine the signs of the components of t(z) in the context(Kz+ h � 0), by solving non-parametric auxilliary integer programs2;2. If there is a negative ti(z), then either:(a) All elements of Si�. are negative. In this case, F(z) is empty, andthe solution is written as ;;(b) There is at least a positive Sij; a pivoting step is executed, giving anew problem hS0; t0(z)i. The solution of the initial problem is thesame as that of the problem hS0; t0(z)i in the context (Kz+h � 0);in so doing, keep track of D, the product of the pivots;3. If all ti(z) are positive, select the earliest row i such that (DSij)%D and(Dti(z))%D are not identically 0. If no such row exists (in particularif D = 1), the solution has been found; it is given by the �rst jxjcomponents of t(z). If such a row exists, let q be a new parameter.Add: 0 � ((�Dti(z))%D)� qD � D � 1to the context. Let m be the number of rows in S. Add to the S thenew row m+ 1 with the following coe�cients:S(m+1)j = ((DSij)%D)=D;tm+1(z) = (�((�Dti(z))%D)=D) + q;and start again at step (1).4. In the remaining case, select a ti(z) whose sign is unknown; let x+ andx� be respectively the solutions of hS; t(z)i in the contexts fKz+h �0; ti(z) � 0g and fKz + h � 0; ti(z) < 0g. The solution of the initialproblem is: if (ti(z) � 0)x+ else x�:2For instance, t(z) � 0 if the program fKz + h � 0; t(z) < 0g has no solution.19



This algorithm is guaranteed to terminate (see [Fea88b]). The result is amultilevel conditional expression whose predicates and leaves are a�ne func-tions of the parameters. The new parameters like q above may be replacedby their expressions as integer quotients of a�ne forms. In this paper, thiskind of expression will be called a quasi-a�ne selection tree.The algorithm above is not entirely deterministic; there are many equiv-alent solutions to the same PIP. Experience has shown that a few simpleheuristics su�ce for selecting a well behaved solution; avoid splitting at allcost (e.g. by grouping the case ti(z) = 0 with the positive or negative case ifthe other does not exist); if forced to split, select a row with all coe�cientsnegative, which implies that x� = ;. This algorithm has been implementedboth in Le Lisp and C; these codes have been used to run all examples inthis paper.A.2 Some extensionsA.2.1 The lexical maximumIn many cases of interest, one has to compute the lexical maximum ratherthan a minimum. Sometimes, a transformation from one problem to the otheris in evidence. We favour, however, the following systematic procedure.Algorithm MRefering back to (14), introduce a new "very large" parameter m andsolve: u =� minG(z;m)=Kz+ h 2 N;where3: G(z;m) = fyj0 � y � m;�Sy+ S1m+ t(z) 2 Ng:Compute v = m1� u and prune the solution by replacing all predicatesin which m has a positive coe�cient by true and conversely. A leaf in whichm occurs with a positive coe�cient is associated to a range of the parameterswhere F(z) is unbounded. This case will never occur in the problems we areinterested in.It is easy to prove that v is the required maximum; it is also easy to devisemethods to do the pruning "in line", so as to keep the extra computation31 is the vector all of whose components are 1.20



to a minimum. For instance, in step (1) of algorithm N, if m occurs with apositive sign in ti(z), the i-th line may be taken as positive. We have found inpractice that in cases where we need to compute both the maximum and theminimum of the same set (see 5.1), both algorithms have operation countsof the same order of magnitude, and neither of them is systematically longerthan the other.A.2.2 EliminationLet Sx+ t 2 N be a system of linear constraints. Suppose vector x is splitin two parts x = yz; to eliminate z is simply to compute the predicate:P (y) = 9z : (Syz+ t 2 N):Now, if P (y) is true, the set:F(y) = fzjSyz+ t 2 Ngis not empty and hence, has a lexical minimum. This suggests the followingalgorithm:Algorithm E� Compute � minF(y) by algorithm N;� In the resulting conditional, replace ; by false and any other value bytrue, and simplify the result.Elimination may be seen as the projection of the set F on the plane of theun-eliminated variables. If F is taken as a set of rationals , the projection isagain a polyhedron, and the Fourier-Motzkin method directly gives the result(see [Tri84]). When working with integers, the projection is no longer convex;as a consequence, the result of algorithm E is not necessarily a conjunction oflinear predicates. We will use a simpli�cation method which yields a resultin disjunctive normal form.References[AK82] J. R. Allen and Ken Kennedy. PFC : a program to convert FOR-TRAN to parallel form. Technical Report MASC-TR82-6, RiceUniv., 1982. 21



[AK84] J.R. Allen and Ken Kennedy. Automatic loop interchange. In Proc.of the 1984 ACM SIGPLAN Compiler Conference, pages 233{246,June 1984.[Ban79] Utpal Banerjee. Data dependence in ordinary programs. TechnicalReport 79-989, Dept of Comp. Science., University of Illinois atUrbana-Champlain, 1979.[Ber66] A.J. Bernstein. Analysis of programs for parallel processing. IEEETrans. on El. Computers, EC-15, 1966.[Bra88] Thomas Brandes. The importance of direct dependences for auto-matic parallelization. In ACM Int. Conf. on Supercomputing, StMalo, France, July 1988.[Fea88a] Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercom-puting, St Malo, 1988.[Fea88b] Paul Feautrier. Parametric integer programming. RAIRORecherche Op�erationnelle, 22:243{268, September 1988.[GJG88] K. Gallivan, William Jalby, and D. Gannon. On the problem ofoptimizing parallel programs for hierarchical memory systems. InACM Int. Conf. on Supercomputing, St Malo, 1988.[Gom63] R. E. Gomory. An algorithm for integer solutions to linear pro-grams. Mac-Graw Hill, New York, 1963.[Iri87] Fran�cois Irigoin. Partitionnement de boucles imbriqu�ees, une tech-nique d'optimisation pour les programmes scienti�ques. PhD thesis,Universit�e P. et M. Curie, Paris, June 1987.[Kuc78] David J. Kuck. The Structure of Computers and Computations. J.Wiley and sons, New York, 1978.[Lam74] Leslie Lamport. The parallel execution of do loops. CACM, 17:83{93, February 1974.[LT88] Alain Lichnewsky and Fran�cois Thomasset. Introducing symbolicproblem solving techniques in the dependence testing phases of a22



vectorizer. In ACM Int. Conf. on Supercomputing, St Malo, France,July 1988.[PK87] Constantine Polychronopoulos and David J. Kuck. Guided self-scheduling. IEEE Transactions on Computers, C-36:1425{1439,December 1987.[Qui88] Patrice Quinton. Mapping recurrences on parallel architectures. In3rd Int. Conf. on Supercomputing, Boston, May 1988.[TDF87] Nadia Tawbi, Alain Dumay, and Paul Feautrier. PAF : un par-all�eliseur automatique pour FORTRAN. Technical Report 185,MASI, 1987.[Tri84] R�emi Triolet. Contribution �a la parall�elisation automatique de pro-grammes Fortran comportant des appels de proc�edures. PhD thesis,UPMC, Paris, 1984.[Wal88] D. R. Wallace. Dependence of multidimensional array references.In ACM Int. Conf. on Supercomputing, St Malo, France, 1988.
23


