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ABSTRACT

Cache memories were invented to decouple fast processors
from slow memories. However, this decoupling is only par-
tial, and many researchers have attempted to improve cache
use by program optimization. Modeling the traffic between
levels is difficult; this observation has led to the use of heuris-
tics methods for steering program transformations. In this
paper, we propose another approach: we simplify the cache
model and we organize the target program in such a way
that an asymptotic evaluation of the memory traffic is possi-
ble. This information is used by our optimization algorithm
in order to find the best reordering of the program opera-
tions, at least in an asymptotic sense. Our method opti-
mizes temporal locality in the case of self and group-reuse.
It can be applied to any static control program with ar-
bitrary dependences. The optimizer has been implemented
and applied to non-trivial programs. We present experimen-
tal evidence that the amount of cache misses is drastically
reduced with corresponding energy saving and performance
improvements.
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1. INTRODUCTION

Technological advances in the realization of integrated chips
result in faster clocks for processors, and in larger capacity
for memory. In consequence, if nothing is done, processors
will soon starve because their memory systems cannot sup-
ply data at the required speed. Memory hierarchies are a
good solution to this problem: they are cheap and efficient,
at least for ordinary programs and situations. Nevertheless,
their efficiency decreases dramatically for scientific comput-
ing and signal processing codes, where large data sets are
accessed according to highly regular patterns. Next, their
temporal behavior is difficult to predict; this forbids their
use in systems with hard real time constraints. Lastly, mov-
ing data from level to level uses a lot of power [6], which
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renders them unsuitable for embedded systems.

A lot of work has been devoted to improving the behavior
of memory hierarchies. There are two kinds of approaches
for this problem. The first approach consists in designing
highly optimized libraries (LAPACK is a good example [2])
for the most common linear algebra and signal processing
algorithms. This method often gives the best results, pro-
vided the source problem and the target architecture are
within the scope of the available library. The second ap-
proach tries to optimize the source program at compile time.
This method is not restricted to a given set of algorithms
and can be adapted, with minor modifications, to any mem-
ory hierarchy architecture. The present work belongs to the
later approach.

Most optimizing compilers try to transform the source pro-
gram in order to improve the behavior of the memory hi-
erarchy. The basic principle is to regroup all accesses to a
given memory cell, in order to take a maximum advantage
of possible reuses. This is obtained first by applying loop
transformations [20, 15] according to some cost model [17],
then by tiling the resulting loop nest [21] with tiles having
a carefully chosen size [8]. Basically, this method applies
only to perfect loop nests in which dependences are nonex-
istent or have a special form (fully permutable loop nests).
Another, data-centric [13], approach starts from a memory
cell and tries to build the slice of the program that accesses
this cell. Here again, dependences greatly complicate the
transformation process.

As said above, previous methods require most of the time
severe limitations on the input program. Our work can be
applied to a wide application domain since we do not lay
down any requirement on dependences provided that the
program has static control [10]. This program class include
a large range of problems which are discussed in depth by
Xue [22]. The properties of such programs can be summa-
rized in this way: (1) control statements are the Fortran do
loop with affine bounds and if conditional with affine con-
ditions (in fact control can be more complex, see [22]); (2)
arrays are the only data structures, and their subscripts are
affine; (3) affine bounds, conditions and subscripts depend
only on outer loop counters and structure (or size) parame-
ters; (4) subroutine and function calls have been inlined.

All methods cited earlier are based on a heuristic cost model.
Let us consider for instance two accesses to the same mem-



ory cell. It seems probable that the longer the time interval
between these accesses, the higher is the probability of the
first reference to be evicted from the cache. Hence, loop
transformations aim at moving these references to neigh-
boring iterations of some innermost loop. Our technique is
based on an estimate of the memory traffic, and tries to find
the loop transformation that minimizes this estimate, un-
der the constraint that all dependences are satisfied. This
technique, which we call chunking is presented in section
2. Section 3 explains how to construct good chunking func-
tions for a given program. Section 4 deals with the problem
of code generation when the chunking functions are given.
Section 5 descripbes our implementation and experimental
results. Section 6 compare chunking to other approaches.
We then conclude and discuss future work.

2. CHUNKING

The principle of our method is to partition the set of op-
erations of a program in subsets small enough that their
accessed data fit in the cache: the chunks. The program
is then executed chunk by chunk, as if there was a cache
flush between each of them. These subsets must be such
that their sequential execution is equivalent to the execu-
tion of the original program. In practice, chunks will be
numbered and executed in order of increasing numbers. In
other words, for each statement S we seek a chunking func-
tion fs associating a chunk number fs(z) to each iteration
vector © . We present in figure 1 an example of chunking of
a simple program. We assume as input hypothesis that n
array elements can fit in the cache, but m cannot. Such a
simple code yet exhibits several difficulties: non-perfect loop
nest, dependences between different statements and multi-
ple references. In this example, the order of the operations

do i=1, n

a(i) =i ! S1
do j=1, m
b(j) = b(§) + a(i) ! S2
enddo
enddo

(a) source program

s (i) =i Yiosa (| 5 ]) =]

(b) chunking functions

do c=1, n
a(c) = c ! S1
enddo
do c=n+1, n+m
do i=1, n
b(c-n) = b(c-n) + a(i) 1 82
enddo
enddo

(c) target program

Figure 1: Running example

has been modified for a maximal use of temporal locality,
according to the chunking functions in figure 1(b). In the

target program, c gives the number of the current chunk.
This example will be used for illustration throughout this
paper. One can notice that the code can be restructured in
the same way by conventional loop distribution, loop per-
mutation and skewing. Chunking is set in the framework
of the polytope model and every chunking can be broken
down in a succession of well known transformations.In fact,
chunking do not aim to find new transformations but to find
the right transformation automatically.

3. COMPUTING CHUNKING FUNCTIONS

The quality of a chunking system can be assessed by using
two valuations. First, the footprint size which is the number
of memory cells accessed by the operations of a chunk. Next,
the traffic which is the number of data movements between
main and cache memories. We want to build an optimal
chunk system. In such a system, each chunk footprint fits in
the cache and each memory cell appears in as few footprints
as possible. To be able to generate the target code, we are
looking for affine chunking functions. For an operation S[z],
instance of the statement S with the iteration vector x in
the iteration domain Dgs, the chunk number can be written:

Os(z) =Tz + k.

T is the chunking matrix of dimension g X p(S) with p(S)
the number of loops surrounding S and k a constant vec-
tor; the choice of the value of g is postponed till section 3.2.
Chunking functions are calculated in several steps which are
discussed in the next sections. In section 3.1 we show how to
compute an asymptotic evaluation of the traffic with respect
to the chunking functions. Then we exhibit the constraints
which the chunking functions must satisfy to minimize the
traffic. Section 3.2 explains how to build the functions un-
der such constraints. Section 3.3 shows how to modify the
functions in such a way that the transformation is legal for
dependences. Lastly, section 3.4 gives the constraints which
have to be satisfied by the chunking functions in order to
achieve group-locality.

3.1 Asymptotic evaluation

It is hard to find an accurate solution to the traffic eval-
uation problem for a particular cache type. Modeling the
replacement mechanism is quite difficult, but it is bypassed
by chunking. However, several difficulties remains, hence we
propose the following simplifications:

e conflict misses don’t change the order of magnitude
of the traffic; this assumption is satisfied by fully as-
sociative caches and is close to be by modern caches
with high associativity; any discrepancy can be com-
pensated by using an effective cache size smaller than
the real one;

e we will be satisfied with asymptotic evaluation of the
traffic; In many cases, program transformations can
change the order of magnitude of the traffic. In these
cases, it would be useless to fiddle with constant factors
or worse, units in the last decimal place. In some cases,
e.g. when self-reuse has already been exploited, one
can only improve the constant factors; the question of
deciding if a more precise evaluation can influence the
target code is left for future work.



In our model, it is possible to make estimates of footprint
sizes and traffic. Considering a statement S, an array A and
a subscript function f, the footprint generated by this ref-
erence is the set of memory cells accessed during the chunk
execution:

fs,A,f(t)z{f(a:) | mEDs,Qs(m)zt}. (1)

Suppose that the cache is empty at the start of a chunk
and that its footprint fits in the cache. Then any cells in the
footprint is copied once to the cache at some time during the
execution of the chunk and stays there until the termination
of the chunk. Hence the traffic can be estimated as the
number of pairs (data, chunk number).

Ts,4,5 = Card {(f(z),0s(z)) | © € Ds}. (2)

Note that there is no need to insert a flush instruction be-
tween chunks provided that the replacement mechanism al-
ways selects data from previous chunks for eviction. This is
true for the LRU and FIFO policies, but not for RANDOM.

Since input programs have static control, subscript functions
are affine and can be written:

f(z) = Fa +a,

where F is the subscript matrix of dimension p(A4) x p(S),
with p(A) the dimension of array A, and a a constant vector.

The orders of magnitude of the cardinals of sets describing
footprints (1) and traffic (2) are known: if the value of each
component of z is an integer in a segment of length m, then:

Card Fs,a,5(t) = O (ml) , =rank ( £ ) —rank 7,

Toas = O(m*),k=rank (£>

where ( g > is a matrix composed of the matrix T for its

first rows and of the matrix F' for the next rows.

These evaluations depend on F' which can be extracted by
analysis of the source code and T which is the unknown of
the problem. Thus we can find the constraints that T has
to satisfy in order that the footprints fit in the cache and
the traffic is minimal. [ and k are not arbitrary; it is easy
to check that:

0 < rank (T) < p(S)

T
max (rank F,rank T) <rank ( F > 3)
rank ( £ ) < min (p(S),rank T + rank F)

Let us consider one statement with n array accesses, the
subscript matrix of the it" access being F;. We can enumer-

ate all tuples <rank T,rank < ; ) for 1 << n> which

satisfy the constraints (3). We need to know the cache size
C and an estimate of the size parameter m. We then deter-
mine an integer « such that m* < C. A footprint of size
0] (ml) fits in the cache if I < a. We can thus eliminate all
tuples for which this condition is not satisfied, and we can
rank the remaining ones in order of increasing traffic. It then

remains to try building a 7" which satisfies the rank condi-
tion of the best tuple. If this is proved to be impossible, we
start again with the next tuple.

3.2 Building chunking matrices

Thanks to the evaluations, we know which rank constraints
must be satisfied by the chunking matrices to minimize the
traffic. In this section, we show how to build such matrices,
at first when the corresponding statement includes only one
reference. Then, we show that there always exists a chunk-
ing matrix such that each associated footprint fits in the
cache.

For a statement with one reference, building a matrix T
with rank v such that rank < 5 ) = w is always possible,

provided that v and w have compatible values. To do it,
we compose a generating matrix having the basis vectors of
ker F' as column vectors, which we extend to a non singular
matrix. We then compute the inverse of the generating ma-
trix. T is made of v rows of the inverse, completed with null
rows if necessary. The process is more formally described in
the algorithm in figure 2.

Algorithm Construction: Build a matrix under rank
constraints.

Input: the subscript matrix F' and the rank constraints

rank T = v and rank 5 = w.

Output: a matrix T respecting the rank constraints.

1. Compute B, a basis of ker F' and complete it to a
basis of N*(%).

2. Build the generating matrix G:

(a) For ¢ from 1 to p(S):

it" column of G = i**

vector of B.
3. Compute G™', inverse of G.
4. Build matrix T

(a) For i from 1 to v:

i'" row of T = (p(S) — w4 i)"" row of G 1.
(b) For i from v + 1 to g:

it" row of T = 0.

Figure 2: Algorithm Construction

Let us demonstrate that this algorithm builds a matrix T
that answers requirements. Since the matrix 7' is composed
of v linearly independent rows, the constraint rank 7" = v is
satisfied. These rows are those of G™' from p(S) —w + 1
to p(S) — w + v. Hence, the kernel of T is generated by the
column vectors of G from 1 to p(S) — w and from p(S) —
? ) is the intersection
of the kernel of T' with the kernel of F'| hence it is generated
by the p(S) — w first column vectors of G and the constraint

w+ v+ 1 to p(S). The kernel of



rank ( g ) = w is satisfied. As for the choice of g, it is

clear that bordering a matrix by null rows does not change
its rank. Since when reordering the program it is useful to
have all chunking function of the same dimension, we may
take g = max p(5).

The generalization to n references implies the combination
of n constraints: rank ( ;C ) = w; for 1 < i < n. The gen-

erating matrix must have for each reference exactly p(S)—w;
vectors of a basis of ker F; for a total of at most v vectors.
Such a matrix doesn’t always exist. The choice of vectors
to be included in the generating matrix is essential. We
can guide this choice by adding for each reference as many
vectors from a preceding reference as possible. If a solution
doesn’t exist for a tuple, then we try to find another one for
the next more interesting tuple.

A chunking matrix such as each footprint fits in the cache
always exists. The hardest constraint for the footprints is to
have a size in O (mo), and the last tried possibility will be
the tuple (p(S), wi = p(S) for 1 <i < n). The correspond-
ing chunking generates for the ;** reference footprint sizes of
(0] (m?) and the maximal traffic of O (mp(s)). Its solution

T = Id always exists and is the trivial chunking where there
is one chunk per operation.

Example Let us consider the source code in figure 1. We
assume that a is an array of n cells which fits in the cache and
b is an array of m cells which does not fit in the cache. Then,
the acceptable orders of magnitude for the footprints size are
(0] (nl) and O (mo). The program has two statements:

e the statement S1 has just one reference to the array
a with the index matrix Fsi1,1 = [ 1 ]; the matrix T'1
having the best properties corresponds to the tuple
(1,1), it will generate footprint sizes of O (n') and a

traffic of O (nl); one builds Ts; = [ 1 ];

e the statement S2 has two references, the first one to
the array a with the index matrix Fs21 = [ 1 0 ]
and the second one to the array b with the index ma-
trix Fisoo = [ 0 1 ]; the matrix Ts2 having the best
properties would correspond to the tuple (1,2,1), it
would generate footprint sizes of O (mo + nl) and a
traffic of O (m1 + n2); the construction is possible and

. 01
glVesTSQZ[O 0 ]

3.3 Legality

Since chunking reorders operations, it must satisfies depen-
dences. In this section, we explain how chunking functions
can be modified in such a way that the transformation sat-
isfies dependences. We will show that there always exists
a valid solution which satisfies the constraints described in
previous sections.

Chunks are numbered in the order they will be executed, and
inside each of them, operations are executed in the original

sequential order. Let us consider Ip, the statement set of
the program P, and dp, the dependence relation on P; a
chunking system is legal if and only if:

VS,R € Ip, Sa]dpRly] = 0(Sla)) <O(RIy).  (4)

In this formula, if the chunking function is many-dimensional,
< has to be interpreted as lexicographic ordering. This can
be done in the following way: the problem u > 0 where u is
n-dimensional can be replaced by n problems

u120
u120 .
u121,{u221 : . (5)
Up >0

Let us call € any one of the 0-1 vectors on the right hand
sides of (5). (4) can be split into n problems

S[z]dp Rly] = 6(S[z]) + € < 0(R[y]), (6)
where < is now componentwise ordering. Let us write
0si(S[z]) = tsiz + kss

for the i*" component of fs; equivalently, ts; is the i*" row
of the matrix Ts and ks; is the i** component of the vector
ks. The Farkas algorithm [11] allows one to eliminate z and
y from (6) and other similar constraints. The result is a
system of linear inequalities which we write

®(T,K,e) >0, (7)

where 7 and IC are the concatenation of the ts; and ks;.
There is no a priori reason for (7) to be satisfied by the
chunking matrices as constructed by the previous algorithm.
However, we are free to modify them as long as we do not
change their rank properties. We are also free to adjust the
ks, as they have no impact on the footprints and traffic (at
least asymptotically). We choose first to replace the first
row of Ts by a linear combination of all rows:

g

!

ts1 = E csitsi.
i—1

When substituted into (7), this gives a new system of linear
constraints in the cs;, which we try to solve with any linear
programming code. If the problem has a solution, we apply
the same algorithm to the next row. If not, we declare a
failure and try the next best traffic/footprint combination.

A legal solution such as the footprints fit in the cache always
exists. It corresponds to the worst solution, in which all
the chunking matrices are identity matrices. In this case,
the original program is not modified. This possibility must
always be left open, since it might happen that the source
program is already optimal.

Example Let us continue the example of section 3.2. The
chunking functions associated to the proposed matrices are:

cos (i) =[11[i1+T0]=Ti].
'952([-]) H"HBF[ST

These functions do not describe a valid chunking: the de-
pendence from S1 to S2 is not satisfied. For instance, the



operation S2 [ 2 ] is executed in chunk number 1 whereas

1

the operation S1 [ 2 ] on which it depends is executed later,
in chunk number 2. Our method makes it possible to correct
this chunking so that all the dependences are respected and
the quality is preserved. The correction suggested by our
prototype is the following one:

sosi([i]) =110 .
o ([5])=10 ol (1] 10 ]=17%" ]

To homogenize the chunking functions, one can add null
dimensions, or remove them if they are null for all the func-
tions, since this does not change the ranks. One has finally

951([i])=[i]andes2([;])=[j+n]. .

3.4 Group-reuse

There is group-reuse when two statements, S1 and S2, ac-
cess the same array A throught indexing matrices F1 and F»
(for the sake of readability, we will use homogeneous coordi-
nates in this section). There is reuse if there exists iteration
vectors 1 and z2 such that Frxs = Fizi, and this reuse is
exploited if these two operations are in the same chunk:

V$1V$2, Foxo — Fiz1 = 6 = Toxo —Tha1 = 6 (8)

Observe that this constraint has the same shape as a depen-
dence constraint. If Foxs = Fizi, then S1[zi] and Sa[z2]
are in dependence. This dependence may be a read-read de-
pendence, which may not be taken into account in other cir-
cumstances, but which exists nevertheless. As to the right-
hand side of (8), it is similar but more restrictive than the
right-hand side of (4).As a consequence, we can give a more
precise result:

THEOREM 1. (8) is true iff (To —Ti) = N(F» — Fi)
where N is a matriz of full row rank.

PrROOF. Let = be the concatenation of vectors =1 and z»:
1

T = < . > Formula (8) can be written

Va:, (F2 —Fl)m=02 (Tg —Tl)a:=0.

(Fz — Fl)m =0 and (Tz — Tl)m = 0 describe two hyper-
plans where one point belonging to the first one necessarily
belongs to the second one too. Therefore the first one is
a subspace of the second one. So it can be written as the
second one with b additional constraints:

(T2 — T1)$ =0

(Fz —Fl)m=0©{ QIZO
then (Fg — Fl) =M ( T éTl ) with M a matrix such
that det M # 0 (the system don’t change by linear transfor-

I —T ) =M~ (F, —F). Let us write

mations), and < 0

M1 as ( ]]\\;, > where N’ is the submatrix made with the

b last lines of M ~!. Now we have

(75")-() -

and ﬁnally (Tg —Tl) =N(F2 —Fl). D

The unknowns are the entries of NV, which define the linear
transformations to apply to (F» — F1) in such a way that
the chunking functions respect the dependences. This is
clearly the same problem as the correction for dependences
in section 3.3. We solve them at the same time, by adding
the necessary constraints (a set of constraints by pairs of
references in which group-reuse is detected) to the initial
problem.

This theory, which does not assume that group-reuse is asso-
ciated to constant dependences, can even be used for “self-
group-reuse”, when the two accesses to A are in the same
statement. Here, we deduce from (8) that the linear sub-
sspace G = {z2 — z1|Fiz1 — Fhz2 = 0} is included in the
kernel of T = T1 = T>.. It is easy to find a basis for G by
gaussian elimination techniques. The resulting vectors can
be taken into account when building the chunking matrices.

Example Let us consider the following source code:

do i=1, n

do j=5, n-10
C(i,j) = A(i,j-5) ! S1
D(i,j) = A(j+10,1) ! 52
enddo
enddo

A simple control centric method will estimate that there is
no self reuse and no exploitable group-reuse. In fact there
is good reuse between the two statements for a part of the
array A as shown by the figure 3. In this example, there

n_j
n-15
Zone accessed by S1
Zone accessed by S2
1
1 15 n

Figure 3: Accessed zones of A
is no dependence, then we can use the trivial solution of

(T2 — Tl) = N(F2 — Fl), that is T1 = F1 and T2 = FQ.
Therefore, the chunking functions will be :

(3D
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This transformation leads to the target code below. The
group-locality is now maximal: in the shared zone of A, the
two statements access the same memory cell during the same
iteration.

do cl1=1, 14
do c2=0, n-15
C(c1,c245) = A(c1,c2) ! s1
enddo
enddo
do c1=15, n
C(c1,5) = A(c1,0) ! S1
do c2=1, n-15
C(cl,c2+5)
D(c2,c1-10)
enddo
do c2=n-14, n
D(c2,c1-10)
enddo
enddo

A(c1,c2) ! S1
A(c1,c2) 1 S2

A(c1,c2) 1 S2

The selection of pairs of references offering a good group-
reuse is an interesting problem. On one hand, it is certainly
not possible to satisfy all constraints for all possible pairs.
Hence, there is a need to find a priority order on the sets of
constraints according to the potential benefits. On the other
hand, improving group-locality is less interesting than im-
proving self locality: it can’t change the order of magnitude
of the traffic. But adding constraints can complicate the
chunking functions and as a consequence the target code.
There is a need to evaluate which constraints can give a
performance benefit in spite of the control overhead (this
question has no sense when energy is the critical resource).
It is quite easy to know if there exists group-reuse between
a pair of references: it is sufficient to find an integral solu-
tion to the system of constrains consisting of conjunction of
the equality of the subscrpts, the iteration domains domains
and the contexts. It is much harder to compare the numbers
of integral solutions that the different systems have. This
question amounts to the well known problem of counting in-
tegral points in polyhedra. There are exact solutions when
the parameters have fixed values [4, 7. When there is just
one unfixed parameter, it is still possible to compare the
parametric numbers [7]. But in the general case, the use of
heuristics is needed.

4. CODE GENERATION

Code generation is the last step to the final program. It is
often ignored in spite of its impact on the target code qual-
ity. We must ensure that a bad control management does
not spoil performance, for instance by producing redundant
guards or complex loop bounds. Because the input problem
is a static control program, the execution domain of each
statement can be represented as a polyhedron [14]. In the
chunking case, we change the scanning order of this polyhe-
dron by substitution of the original dimensions by chunking

dimensions. The code generation is then a well known Z-
polyhedron scanning problem. This problem was first solved
by Ancourt and Irigoin [1] for the simple case of Z-polyhedra
with unit lattice. They used the Fourier-Motzkin elimina-
tion technique to compute loop bounds. For more complex
situation, the best solution is the Quilleré et al. one [18].
Their technique generates each loop level by separating the
polyhedra until they are disjoint on the current dimension,
then recursively generating loop nests that scan each of them
and lastly sorting polyhedra in order to respect the execu-
tion order. This method is well adapted to the chunking
problem provided we generalize it somewhat. We have to
deal with sequential inner loops, and we have to optimize
the code in the case of imperfect loop nests. Our resulting
code is quite efficient.

Example Let us continue the example of section 3.3. The
polyhedra describing the execution domains of S1 and S2
result from the study of the original code. One complete
them with the chunking dimension ¢ and the chunking con-
straints. The constraint systems describing the iteration
domains are:

S1 constraint system S2 constraint system
c — j — n =0

c — 1 =0 -1 + n >0
-4+ + n >0 i — 1 >0

i — 1 >0 - J + m >0

i -1 >0

On the first dimension ¢, polyhedra are already disjoint:
the first one covers 1 < ¢ < n while the second one covers
n+1 < ¢ < n+ m, hence there is no need to separate
or aggregate them. As a consequence, there will be one
loop nest per statement; the recursion on each of them is
then trivial. Lastly, we must order the loop nests in such a
way that they respect the execution order. It is easy to see
that the first polyhedron must precede the second one. The
resulting code is the one shown in figure 1(b) as the target
program. [

5. IMPLEMENTATION AND RESULTS

From the chunking function calculation to the code gener-
ation, our method is completely automated. The chunky
prototype implements the full process in C except for the
dependence calculation and application of the Farkas lemma,
which it still uses a Maple solver. The dependence correc-
tion and code generation make an intensive use of polyhedral
operations, as implemented in the Polylib' [19] and PIP? [9].

This prototype allows us to test various non-trivial prob-
lems. The experiments were conducted on a PC worksta-
tion with a Pentium IIT processor running at 1GHz. This
processor comes with two cache levels: a split first level (L1)
for instructions and data of 16KB each and an unified sec-
ond level (L2) of 256KB. L1 is a 4-way set associative cache

!The Polylib is freely available under GNU license at
http://icps.u-strasbg.fr/PolyLib

2PIP is freely available under the GNU public license at
http://www.prism.uvsq.fr/~paf




with a miss penalty of 3 cycles. L2 is an 8-way set asso-
ciative cache with a miss penalty of 44 cycles. Both cache
levels are non-blocking and have a line size of 32 bytes. To
make the best evaluations, we choose to use the hardware
counters of the Pentium III to compare the number of cache
misses [5]. Figure 4 shows the evolutions of the number of
cache misses for the original and target versions of the run-
ning example (see figure 1), according to the value of the
parameter m. The ratio m/n is set to 64 in order to better

le+1l — : — . .
| original L1 misses ——
1e+10 chunking L1 misses -
1e+09 | original L2 misses -
chunking L2 misses -&

1e+08
1e+07
1e+06
100000
10000

1000

100 Faas B

10 1 1 1 1 1 1 1
1K 4K 16K 64K 256K 1M 4M

m : array dimension (words)

Cache misses

Figure 4: Cache misses for the running example

show the impact of our method. The number of cache misses
sharply grows when the array b becomes larger than a cache
level in the original program. The chunked program has a
better behavior. The miss growth comes later, when the in-
put hypothesis are no longer satisfied, ¢.e. when the array
a cannot fit in the cache. We have observed the same phe-
nomenon on most of the programs with good data reuse we
have tested. Some experimental results on well known prob-
lems are shown in figure 5. The compiler option was O3 for
the original programs, but O1 for the transformed programs
in order to prevent any compiler optimization that can dis-
turb the chunking. Since chunking reorders operations, it
can influence the spatial locality. For better comparison,
we have selected by hand the layout giving the best results.
This improvement has been applied both to the original pro-
gram and to the chunked code. We plan to automate this
task in the near future. The results are presented with log-
arithmic scale. As for the running example, chunking can
reduce the number of cache misses by more than one order of
magnitude. For instance, chunking cuts down the L1 cache
misses of a Cholesky factorization on 70 * 70 arrays by 63%
and L2 cache misses by 92% on 300 = 300 arrays. Since the
number of cache misses is one of the main factors of energy
dissipation [6], this cache miss reduction implies a signifi-
cant improvement. At the same time, performance can be
increased: in the Cholesky factorization case, we obtain a
speedup of 35% for 300300 arrays and of some percents for
70 % 70 arrays. The performance/energy rate is then greatly
improved.

Despite the high theoretical complexity of many of our meth-
ods (for instance, parametrized linear programming solvers,
polyhedral manipulations, and code generator have expo-
nential complexities), the prototype seems to offer good per-
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Figure 5: Experimental results (log. scale)

formance. The reason is that the main parameters are loop
nest depths and array dimension numbers which are usually
small. To give an idea, the chunking of a Cholesky factor-
ization with 7 statements, a maximal loop nest depth of 3
and a maximal array dimension number of 2 requires about
20 seconds on the test machine. Most of the time is spent
in Maple code and we have many reasons to think that a
better implementation will significantly improve the proto-
type performance. Nevertheless, the question of scalability
remains, and will be tested on a larger benchmark suite.

6. RELATED WORK

The effort of research to create effective locality optimizing
compilers began with Wolf and Lam [20] and their data local-
ity optimizing algorithm. This algorithm applies unimodular
transformations to loop nests in order to maximize locality,
according to evaluations of legal loop transformations rel-
evance. Then it applies tiling [21] to the innermost loops.
In comparison, our approach is applicable to a wider range
of programs since in one hand we do not require perfect
nests or nests such as they can be made perfect. And on the
other hand because we do not require that dependences must
have any simplified shape (Wolf and Lam algorithm needs
that the dependence vectors be lexicographically positive).
Li [15] generalizes the framework of unimodular matrices [3]
by using linear, non-unimodular transformations to change
the iteration space. We expect our algorithm will find more
accurate transformations in practice since Li’s transforma-
tion and dependence types are quite simple: the transforma-
tions do not handle parameters and the only case discussed
is the one where dependences are represented by distance
vectors. McKinley et al. [17] propose a technique based on a
detailed cost model that drives the use of loop permutation,



fusion and distribution. They apply the basic transforma-
tions according to a definite order, while this strategy can
be ineffective for some problems. To find which is the best
application order of the transformations for a given program
is known to be very hard. Chunking bypasses this difficulty
because it unifies all kind of linear transformations in a sin-
gle framework. For group-reuse, McKinley et al. consider
the classic case of uniformly generated references [12], with
small restrictions. We propose to go beyond this case by
optimizing group-locality between non uniformly generated
references when they are in different statements. In com-
pensation, chunking processing is heavier than the McKin-
ley et al. algorithm, and in addition, both [20] and [17] deal
with spatial reuse while we don’t. Alternatively to these
control centric techniques, Kodukula et al. [13] propose a
data centric approach that plans to act on data movement
directly, rather than as a side-effect of control flow manip-
ulations. Our work shares many features with [13]. Both
papers are set in the framework of the polytope model, and
aim at partitioning the code in pieces which are (almost)
free of cache misses. Both techniques transform the code
by well known transformations (loop exchange, loop skew-
ing...): the problem is not to invent new transformations,
but to find the right transformation for a given program.
There are however several important differences. Kodukula
et al. start from the following intuition: once a datum has
been brought into the cache, it is beneficial to execute all
operations which access this datum. Our approach is differ-
ent since we start from an estimate of the traffic and try to
minimize it. In both cases we have to find a transformation
legal for dependences. But while Kodukula et al. can just
check if their transformation respects dependences, we have
integrated the legality in the transformation construction.
Lastly, while Kodukula et al. use an arbitrary array block-
ing, we show that significant improvements can be obtained
without blocking. Testing whether blocking can improve our
results is left for future studies.

7. CONCLUSION

In this article, we have presented a method based on traffic
evaluations for data locality improvement. It exhibits many
advantages. First of all, it is not based on heuristics and the
proposed transformation can’t spoil the temporal locality, in
the worst case it leaves the original code intact. Next, it can
be applied to any static control program without other limi-
tations. Lastly, there is no requirement on dependences and
it is often possible to make a transformation legal without
decreasing its quality. The method is completely automated,
and requires nothing besides the original code but the rela-
tive sizes of the cache and data. The proposed optimizations
remain stable for large size variations.

First results are very encouraging. Nevertheless, there re-
main several kinds of problems for which we need to extend
our method before we can compete with the classic optimiza-
tion techniques. We are currently working on tiling which
seem to be the natural continuation of our approach. In-
tuitively, tiling is a question of aggregating small chunks or
splitting big ones. We must also deal with spatial locality
improvement. A step in that direction is the work of Loech-
ner, Meister and Clauss [16], which is based on precise count-
ing of memory accesses. Lastly, we must deal with programs
which have static control regions but have not static control

in toto. Our method can be adapted to local memories (or
software managed caches) at the price of more attention to
footprint layout.
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