
A Parallel ization Framework for Recursive Tree
Programs

Paul Feautrier*

Laboratoire PRISM,
Universit4 de Versailles St-Quentin

45 Avenue des Etats-Unis
78035 VERSAILLES CEDEX FRANCE

Abs t r ac t . The automatic parallelization of "regular" programs has en-
countered a fair amount of success due to the use of the polytope model.
However, since most programs are not regular, or are regular only in
parts, there is a need for a parallelization theory for other kinds of pro-
grams. This paper explore the suggestion that some "irregular" programs
are in fact regular on other data and control structures. An example of
this phenomenon is the set of recursive tree programs, which have a well
defined parallelization model and dependence test.

1 A M o d e l f o r R e c u r s i v e T r e e P r o g r a m s

The polytope model [7, 3] has been found a powerful tool for the parallelization of
array programs. This model applies to program tha t use only DO loops and arrays
with afline subscripts. The relevant entities of such programs (iteration space,
da ta space, execution order, dependences) can be modeled as Z-polytopes, i.e.
as sets of integral points belonging to bounded polyhedra. Finding parallelism
depends on our ability to answer questions about the associated Z-polytopes,
for which task one can use well known results from mathemat ics and operat ion
research.

The aim of this paper is to investigate whether there exists other p rogram
models for which one can devise a similar au tomat ic parallelization theory. The
answer is yes, and I give as an example the recursive tree programs, which
are defined in sections 1.4 and 1.5. The relevant parallelization f ramework is
presented in section 2. In the conclusion, I point to unsolved problems for the
recursive tree model, and suggest a search for other examples of parallelization
frameworks.

1.1 A n A s s e s s m e n t o f t h e P o l y t o p e M o d e l

The main lesson of the polytope model is that the suitable level of abstract ion
for discussing parallelization is the operation, i.e. an execution of a s ta tement .

* e-mail : Paul.FeautrierOprism.uvsq.fr

471

In the case of DO loop programs, operations are created by loop iterations.
Operations can be named by giving the values of the surrounding loop counters,
arranged as an iteration vector. These values must be within the loop bounds.
If these bounds are affine forms in the surrounding loop counters and constant
structure parameters, then the iteration vector scans the integer points of a
polytope, hence the name of the model.

To achieve parallelization, one has to find subsets of independant operations.
Two operations are dependent if they access the same memory cell, one at least of
the two accesses being a write. This definition is useful only if operations can be
related to the memory cells they access. When the data structures are arrays, this
is possible if subscripts are affine functions of iteration vectors. The dependence
condition translates into a system of linear equations and inequations, whose
unknowns are the surrounding loop counters. There is a dependence iff this
system has a solution in integers.

These observations can be summarized as a set of requirements for a paral-
lelization framework:

1. We must be able to describe, in finite terms, the set of operations of a
program. This set will be called the control domain in what follows. The
control domain must be ordered.

2. Similarly, we must be able to describe a data structure as a set of locations,
and a fonction from locations to values.

3. We must be able to associate sets of locations to operations through the use
of address functions.

The aim of this paper is to apply these prescriptions to the design of a
parallelization framework for recursive tree programs.

1.2 R e l a t e d W o r k

This section follows the discussion in [5]. The analysis of programs with dynamic
da ta structures has been carried mainly in the context of pointer languages like
C. The first step is the identification of the type of data structures in the program,
i.e. the classification of the pointer graph. The main types are trees (including
lists), DAG and general graphs. This can be done by static analysis at compile
t ime [4], or by asking the programmer for the information. This paper uses the
second solution, and the data structures are restricted to trees.

The next step is to collect information on the possible values of pointers. This
is done in a static way in the following sense: the sets of possible pointer values
are associated not to an operation but to a statement. These sets will be called
regions here, by analogy to the array regions [9] in the polytope model. Regions
are usually represented as path expressions, which are regular expressions on the
names of structure attributes [8].

Now, a necessary (but not sufficient) condition for two statements to be in
dependence is that two of their respective regions intersect. It is easy to see that
this method incurs a loss of information which may forsake parallelisation in

472

important cases. The main contribution of this paper is to improve the precision
of the analysis for a restricted category of recursive tree programs.

1.3 Basic Concepts and Notat ions

The main tool in this paper is the elementary theory of finite state au tomata
and rational transductions. A more detailed treatment can be found in Berstel's
book [1].

In this paper, the basic alphabet is]N (the set of non negative integers).
e is the zero-length word and the point (.) denotes concatenation. In practical
applications, the alphabet is always some finite subset of IN.

A finite state automaton (fsa) is defined in the usual way by states and
labelled transitions. One obtains a word of the language generated (or accepted)
by an automaton by concatenating the labels on a path from an initial state
to a terminal state. A rational transduction is a relation on IN* x IN* which
is defined by a generalized sequential automaton (gsa): an fsa whose edges are
labelled by input and output words. Each time an edge is traversed, its input
word is removed at the begining of the input, and its output word is added at
the end of the ouput. Gsa are also known as Moore machines. The family of
rational transductions is closed by inversion (simply reverse the elements of each
digram), concatenation and composition [1].

A regular language can also be represented as a regular expression: an ex-
pression built from the letters and r by the operations of concatenation (.), union
(+) and Kleene star. This is also true for gsa, with letters replaced by digrams.

The domain of a rational transduction is a regular language whose fsa is
obtained by deleting the second letter of each edge label. There is a similar
construction for the range of a rational transduction.

From one fsa c, one may generate many others by changing the set of initial
or terminal states, c(s;) is deduced from c by using s as the unique initial state.
c(; t) has t as its unique terminal state. In c(s; t), both the initial and terminal
states have been changed. Since rational transductions are defined by automata ,
similar operations can be defined for them.

1.4 T h e C o n t r o l D o m a i n o f R e c u r s i v e P r o g r a m s

The following example is written in a C-like language which will be explained
presently:

BOOLEAN tree leaf;

int tree value;

void sum(address I) {

void main(void) {

5 : sum([]);}
}

1 : if(! leaf[I]) {

2 : sum(I.1);

3 : sum(I.2);

4 : value[I] = valueEI.1] + valueEI.2]
}

473

v a l u e is a tree whose nodes hold integers, and l e a f is a Boolean tree. The
problem is to sum up all integers on the leaves, the final result being found at
the root of the tree. Addresses will be discussed in Sect. 1.5.

Let us consider s ta tement 4. Execution of this s ta tement results from a suc-
cession of recursive calls to sum, the s ta tement itself being executed as a par t
of the body of the last call. Naming these operations is achieved by recording
where each call to sum comes from: either line 2 or 3. The required call strings
can be generated by a control au tomaton whose states are the functions names
and the basic s ta tements of the program. The state associated to main is initial
and the states associated to basic s ta tements are terminal. There is a transit ion
f rom state p to state q if p is a function and q is a s ta tement occuring in p body.
The transit ion is labelled by the label of q in the body of p.

s2)

Fig. 1. The Control Automaton of stm

As the example shows, if the s ta tements in each function body are labeled
by ascending numbers, the execution order is exactly lexicographic ordering on
the call strings.

1.5 A d d r e s s i n g in T r e e s

Remark first tha t most tree algorithms in the li terature are expressed recursively.
Observe also tha t in the polytope model, the same mathemat ica l object is used
as the control space and the set of locations of the da ta space. Hence, it seems
quite natural to use trees as the prefered da ta structure for recursive programs.

In a tree, let us number the edges coming out of a node f rom left to right
by consecutive integers. The name of node n is then simply the string of edge
numbers which are encountered on the unique pa th f rom the root of the tree to
n. The name of the root is the zero-length string, e. This scheme dates back at
least to Dewey Decimal Notat ion as used by librarians the world over.

The set of locations of a tree structure is thus lN*, and a tree object is a
partial function from IN* to some set of values, as for instance the integers, the
floating point numbers or the characters.

474

Address functions map operations to locations, i.e. integer strings to integer
strings. The natural choice for them is the family of rational transductions [1].
Consider again the above example. Notice the global declaration for the trees
v a l u e and l e a f . add re s s is the type of integer strings. In line 4, such addresses
are used to access va lue . The second address, for instance, is built by postfixing
the integer 1 to the value of the address variable I. This variable is initialized
to e at line 5 of main. If the call at line 2 (resp. 3) of sum is executed, then a 1
(resp. 2) is postfixed to I.

The outcome of this discussion is that at entry into function sum, I comes
either from lines 2 or 3 or 5, hence the regular equation:

i = (5, + I.(2, + i . (a, 2),

whose solution is the regular expression:

I = (5, e).((1, 2) + (3, 2))*.

Similarly, the second address in line 4 is given by the following rational trans-
duction : (4, @((2, 1) + (3, 2))*.(4, 1).

I conjecture that the reasoning that has been used to find the above address
functions can be automated, but the details have not been worked out yet. It
seems probable that this analysis will succeed only if the operations on adresses
are suitably limited. Here, the only allowed operator is postfixing by a word
of IN*. This observation leads to the definition of a toy language, T , which is
similar to C, with the following restrictions:

- No pointers are allowed. They are replaced by addresses.
- The only data structures are scalars (integers, floats and so on) and trees

thereof. Trees are always global variables. Addresses can only be used as
local variables or functions parameters. No function may return an address.

- The only control structures are the conditionals and the function calls, pos-
sibly recursive. No loops or go to are allowed.

2 D e p e n d e n c e A n a l y s i s o f 7 "

2.1 P a r a l l e l i z a t i o n M o d e l

When parallelizing static control programs, one has first to decide the shape of
the parallel version. One usually distinguishes between control parMIelism, where
operations executed in parallel are instances of different statements, and data
parMlelism, where parallelism is found among iterations of the same statement.
In recursive programs, repetition of a s tatement is obtained by enclosing it in
the body of a recursive function, as for example in the program of Fig. 2.

Suppose it is possible to decide that the operations associated to S and all
operations generated by the call to foo are independent. The parallel version
in Fig. 3 (where (^ . . . ~} is used as the parallel version of s . . . } [6]) is
equivalent to the sequential original. The degree of parallelism of this program

void foo(x) {
s;
if (p) foo(y);

}

Fig. 2. Sequential version

void foo(x) {
{-

S;
if(p) foo(y);

-}

}

Fig. 3. Parallel version

475

is of the order of the number of recursive calls to foo, which probably depends
on the da ta set size. This is da ta paralellism expressed as control parallelism. A
possible formalization is the following.

Let us consider a function foo and the s ta tements {$1, �9 . . , Sn} of its body.
The s ta tements are numbered in textual order, and i is the label of S~. Tests in
conditional s ta tements are to be considered as elementary, and must be num-
bered as they occur in the program text.

Let us construct a synthetic dependence graph (SDG) for foo . The vertices
of the SDG are the s tatements of foo. There is a dependence edge f rom S~ to
Sj, i < j iff there exists three iteration words u, v, w such that:

- u is an iteration of foo.
- Both u.i.v and u.j .w are iterations of some terminal s ta tements Sk and St.
- u.i.v and u.j .w are in dependence.

Observe tha t u is an iteration word for foo , hence belongs to the language
generated by c(; foo) . Similarly, v is an iteration of Sk relative to an i teration
of Si, hence belongs to c(Si;Sk), and w 6 c(Sj;St) . As a consequence, the pair
(u.i.v, u. j .w) belongs to the following rational transduction:

h = 4; j>.c(S,;

m which if a is an automaton, then a = is the transduction obtained by setting
each output word equal to the corresponding input word. This formula also uses
an au tomaton as a transduction whose output words have zero length. Similarly,
the inverse of an au tomaton is used as a t ransduction whose input words have
zero length.

S~ and Sj may also access local scalar variables, for which the dependence
calculation is trivial. Besides, one must remember to add control dependences,
f rom the test of each conditional to all s ta tements in its branches. Lastly, de-
pendences between stqtements belonging to opposite arms of a conditionM are
to be ommited.

Once the SDG is computed, a parallel program can be constructed in several
well known ways. Here, the program is put in serie/parallel form by topological
sorting of the SDG. As above, I will use the C-EARTH version of the f o r k . . .
j o in construct, {" . . . ~}. The run t ime exploitation of this kind of parallelism
is a well known problem [6].

476

2.2 T h e D e p e n d e n c e Tes t

Comput ing dependences for the body of function foo involves two distinct al-
gorithms. The first, (or outermost) one enumerates all pairs of references which
are to be checked for dependence. This is a purely combinatorial algori thm, of
polynomial complexity, which can be easily reconstructed by the reader.

The inner algorithm has to decide whether there exists three strings x, y, w
such that:

where the first term expresses the fact that x and y are iterations of Sk and
St which are generated by one and the same call to foo, the second and third
ones expressing the fact that both x and y access location w. f a n s g are the
address transductions of Sk and St. The first step is to el iminate w, giving
@, y) C k = g-1 o f . k is a rational transduction by Elgot and Mezei theorem
[2]. Hence, the pair (x, y) belongs to the intersection of the two transductions h
and k Deciding whether h M k is empty is clearly equivalent to deciding whether
e M = is empty where = is the equality relation and l = k-1 o h.

Deciding whether the intersection of two transductions is empty is a well
known undecidable problem [1]. It is possible however to solve it by a semi-
algori thm, wich is best presented as a (one person) game. A position in the
game is a triple (u, v, p) where u and v are words and p is a state of g. The initial
s ta te is (e, c, p0), where P0 is the initial state ofg. A position is a win if u = v = e
and i fp is terminal. A move in the game consists in selecting a transit ion from p
to q in ~ with label (x, y}. The outcome is a new position (u', v', q) where u' and
v ~ are obtained from u.x and v.y by deleting their common prefix. A position is
a loss if u and v begin by distinct letters: in such a case, no amount of postfixing
can complete u and v to equal strings. There remains positions in which either
u or v or both are e. Suppose u = c. Then, for success, v must be the prefix of
a string in the domain of g when start ing from p. This can be tested easily, and,
if the check fails, then the position again is a loss. The situation is symmetr ica l
i f v = c .

This game may have three outcomes: if a win can be reached, then by restor-
ing the deleted common prefixes, one reconstructs a word u such tha t (u~ u} E g,
hence a solution to the dependence problem. If all possible moves have been
explored without reaching a win, then the problem has no solution. Lastly, the
game can continue for ever. One possibility is to put an upper bound to the
number of moves. If this bound is reached, one decides that , in the absence of a
proof to the contrary, a dependence exists.

The following algorithm explores the game tree in breadth-first fashion.

Algorithm D.

1. Set D = 0 and L = {(c, c,p0)] where P0 is the initial node of l.
2. If L = ~, stop. There is no dependence.
3. Extract the leftmost element of L, (u, v, p).
4. If (u,v,p) E D, restart at step 2.

477

5. If u = v = e and if p is terminal, stop. There is a dependence.
6. If both u r ~ and v r r the position is a loss. Restart at step 2.
7. If u = c and if v is not a prefix of a word in the domain of l(p;), restart at

step 2.
8. If v = ~ and if u is not a prefix of a word in the range of g(p;), restart at

step 2.
9. Add (u, v,p) to D. Construct all the positions which can be reached in one

move fl'om (u, v,p) and add them on the right of L. Restart at step 2.

Since the exploration is breadth-first, it is easy to prove tha t if there is a
dependence, then the algorithm will find it.

This algorithm has been implemented as a stand alone program in Objective
Caml. The user has to supply the results of the analysis of the input program,
including the control automaton, the address transductions, and the list of state-
ments with their accesses. The program then computes the SDG. All examples
in this paper have been processed by this pilot implementat ion. As far as my
experience goes, the case where algorithm D does not terminate has never been
encountered.

2.3 sum R e v i s i t e d

Consider the problem of parallelizing the body of sum. There are already control
dependences from sta tement 1 to 2, 3, and 4. The crucial point is to prove tha t
there are no dependences from 2 to 3. One has to test one output dependence
from v a l u e [I] to itself, two flow dependences f rom v a l u e [I] to v a l u e [I . 1]
and v a l u e [I . 2], and two symmetrical anti-dependences.

Let us consider for instance the problem of the flow dependence f rom v a l u e [I]
to v a l u e [I . 1]. The s transduction begins in the following way:

t = ((2 , 2) + (3 , 3)) * . (3 , 2)

Algori thm D finds tha t there is no way of crossing the (3, 2) edge without gen-
erating distinct strings. Hence, there is no dependence.

On the other hand, algorithm D readily finds a dependence from 2 to 4. All in
all, the SDG of sum is given by Fig. 4, to which corresponds the parallel p rogram
in Fig. 5 - - a typical case of parallel divide-and-conquer.

3 C o n c l u s i o n a n d F u t u r e W o r k

I have presented here a new framework in which to analyze recursive tree pro-
grams. The main differences between the present method and the more usual
pointer alias analysis are:

- Data structures are restricted to trees, while in alias analysis, one has to
determine the shape of the structures. This is a weakness of the present
approach.

478

•• void sum(address I)
{

I : if(! leaf[I]) {
{-

2 : sum(I, i) ;

3 : s u m (1 . 2)
"};

4 : v a l u e [I] =

value [I . 1] + value [I . 2] ;
}

Fig. 4. The SDG of sum Fig. 5. The parallel version of sum

- In 7- , the operations on addresses are limited to postfixing, which, translated
in the language of pointers, correspond to the usual pointer chasing.

- The analysis is operation oriented, meaning that addresses are associated to
operations, not to statements. This allows to get more precise results when
computing dependences.

Pointer alias analysis can be transcribed in the present formalism in the following
way. Observe that, in the notations of Sect. 2.2, the iteration word x belongs
to Domain(h), which is a regular language, hence w belongs to f (Domain (h)) ,
which is also regular. This is the region associated to Sk. Similarly, w is in
the region g(Range(h)) . If the intersection of these two regions is empty, there
is no dependence. When compared to the present approach, the advantage of
alias analysis is that the regions can be computed or approximated without
restrictions on the source program.

It is easy to prove that when f (Domain(h)) A g(Range(h)) -- 0 then e is
empty. It is a simple matter to test whether this is the case. The present imple-
mentat ion reports the number of cases which can be decided by testing for the
emptiness of ~, and the number of cases where Algorithm D has to be used.

In a T implementation of the merge sort Mgorithm, there were 208 depen-
dence tests. Of these, 24 were found to be actual dependences, 34 where solved
by region intersection, and 150 required the use of algorithm D. While extrapo-
lating from this example alone would be jumping at conclusions, it gives at least
an indication of the relative power of the region intersection and of algori thm
D. Incidentaly, the SDG of merge sort was found to be of the same shape as the
SDG of sum, thus leading to another example of divide-and-conquer parallelism.

The 7- language as it stands clearly needs a sequential compiler, and a tool for
the automatic construction of address relations. Some of the pet ty restrictions
of Sect. 1.5 can probably be removed without endangering dependence analysis.
For instance, having trees of structures or structure of trees poses no difficulty.
Allowing trees and subtrees as arguments to functions would pose the usual

479

aliasing problems. A most useful extension would be to allow trees of arrays, as
found for instance in some versions of the adaptive multigrid method.

How is T to be used? Is it to be another programming language, or is it bet-
ter used as an intermediate representation when parallezing pointer programs as
in C or ML or Java? The latter choice would raise the question of t ranslat ing
C (or a subset of C) to T , i.e. translating pointer operations to address opera-
tions. Another problem is that 7" is static with respect to the underlying set of
locations. I t is not possible, for instance, to insert a cell in a list, or to graft a
subtree to a tree. Is there a way of allowing tha t kind of operations?

Lastly, trees are only a subset of the da ta structures one encounter in practice.
I envision two ways of dealing, e.g., with DAGs and cyclic graphs. Adding new
address operators, for instance a prefix operator:

7r(al a,~) = (al an-a)

allows one to handle doubly linked lists and trees with an upward pointer. The
other possibility is to use other mathemat ica l structures as a substrate. Finitely
presented monoids or groups come immediately to mind, but there might be
others.

R e f e r e n c e s

1. Jean Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart, 1979.
2. C.C. Elgot and J.E. Mezei. On relations defined by generalized finite automata.

IBM J. of Research and Development, 47-68, 1965.
3. Paul Feautrier. Automatic parallelization in the polytope model. In Guy-Ren~

Perrin and Alain Darte, editors, The Data-Parallel Programming Model, pages 79-
103, Springer, 1996.

4. Rakesh Ghiya and Laurie J. Hendren. ls it a tree, a dag or a cyclic graph? In
PoPL'96, pages 1-15, ACM, 1996.

5. Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. A general dependence
test for dynamic, pointer based data structures. In PLDI'94, pages 218-229, ACM
Sigplan, 1994.

6. Laurie J. Hendren, Xinan Tang, Yingchun Zhu, Shereen Ghobrial, Guang R. Gao,
Xun Xue, Haiying Cai, and Pierre Ouellet. Compiling C for the EARTH mul-
tithreaded architecture. Int. J. of Parallel Programming, 25(4):305-338, August
1997.

7. Christian Lengauer. Loop parallelization in the polytope model. In Eike Best,
editor, CONCUR'93, LNCS 715, pages 398-416, Springer-Verlag, 1993.

8. James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure ac-
cesses. In PLDI'88, pages 31-34, ACM Sigplan, 1988.

9. R~mi Triolet, Frangois Irigoin, and Paul Feautrier. Automatic parallefization of
FORTRAN programs in the presence of procedure calls. In Bernard Robinet and
R. Wilhelm, editors, ESOP 1986, LNCS 213, Springer-Verlag, 1986.

