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Models

To reason about the behaviour of a program, one needs a notation
for:

I its set of operations (instances, not statements)

I the execution order (a.k.a. the Happens Before Relation)

I a mapping from operations to memory cells

These sets are enormous: a 1 Gflops processor (big deal!) running
for 1 second generates 109 operations.
The only possibility is to take advantage of regularities and
represent these sets by symbolic constraints.

3 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Requirements

The necessary operations must have efficient implementations:

I emptyness test

I intersection, union, complement

I projection, image

I optimization

Beware: do not confuse “efficient implementation” with
decidability.
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The polyhedral Model

Sets are represented by Z-polyhedra: the set of integral solutions
of affine inequalities.
These sets are associated to regular loop nests.
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i <= n−1

j <= i−1

j>=0
i>=0

for(i=0;i<n;i++)

for(j=0;j<i;j++) ...
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Motivation

Tools

I Farkas lemma: construct an affine formula positive inside a
polyhedron

I Linear programming : to solve the resulting constraints,
emptiness test

I Fourier Motzkin elimination algorithm : emptiness test,
projection

Linear programming has very efficient implementations: glpk,
CPLEX, gurobi, and parametric extensions (PIP).
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Motivation

Evaluation

Most (large) programs do not fit into the polyhedral model. Some
approaches:

I Extract small polyhedral kernels (SCOPs), optimize
independently and plug the results back into the original
program. A SCOP running time must represents a significant
portion of the total running time (Amdhal law).

I Approximate: construct a polyhedral program with more
operations, more dependences and more memory than the
original. Optimizations valid for the approximations are valid
for the original but the approximation may have no parallelism.

I Invent Other models.
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Motivation

Other Models

The Tree model

I Represent sets by formal languages

I Regular languages for flat programs

I Context free languages for (recursive) procedures

I Many questions are undecidable by reduction to Post
correspondance problem.

The Polynomial Model

I Represent sets by semi-algebraic sets.

I Problem 1: no projection algorithm in integers

I Problem 2: Hilbert 10th problem.
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Motivation: Polynomials Everywhere, I

k =0;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

a[k++] = 0.;

→
for(i=0; i<N; i++)

for(j=0; j<N; j++)

a[N*i+j] =0.;

Are the loops parallel? Are there loop-carried dependences?

Can be solved by delinearization, or by the SMT solver Z3, or by
ISL using Bernstein polynomials. Other approaches?
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Motivation

Polynomials Everywhere: Scheduling

Find a schedule for:

s = 0.;

for(i=1; i<N; i++)

for(j=0; j<i; j++)

s += a[i][j];

Since the program runs in time O(N2) whatever the number of
processors, it has no affine schedule. It has a two-dimensional
schedule, which is equivalent to a quadratic schedule.

Can one find the quadratic schedule directly?
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Motivation

Polynomials Everywhere: Transitive Closure

What is the exact transive closure of:

(x ′ = x + y , y ′ = y , i ′ = i + 1)?

Answer:

(x ′ − i ′.y ′ = x − i .y , y ′ = y , i ′ ≥ i).

a polynomial relation.
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The Basic Problem

Given: a set K and a function f , is f positive in K :

∀x ∈ K : f (x) > 0?

Extension: f is a template depending on a vector of parameters µ.
Find µ such that:

∀x ∈ K : fµ(x) > 0.

Farkas lemma is the case where K is a polyhedron
K = {x | Ax + b ≥ 0} and f is affine. The solution is:

f (x) = λ0 + λ.(Ax + b) , λ ≥ 0
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Notations, I

A semi-algebraic set (sas):

K = {x | p1(x) ≥ 0, . . . , pn(x) ≥ 0}

where x is a set of unknowns x1, . . . , xp and the pi s are polynomials in x .
A polyhedron is an sas such that all the pi s are of first degree. One
usually include the trivial 1 ≥ 0 among the pi s.

Schweighofer products: for each ~e ∈ INn:

S~e(x) = pe1
1 (x) . . . pen

n (x) =
n∏

i=1

pei
i (x).

The quantity N =
∑n

i=1 ei is the order of the product, not to be confused
with its degree.
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Notation, II

Given a finite subset Z ⊂ INn the associated Schweighofer sum is:

SZ (x) =
∑
~e∈Z

λ~e .S~e(x), λ~e > 0.

Clearly, all Schweighofer sums are positive in K .
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Theorems

Theorem (Handelman, 1988)

If K is a compact polyhedron, then a polynomial p is strictly
positive in K if and only if it can be represented as a Schweighofer
sum for some finite Z ∈ INn.

Theorem (Schweighofer, 2002)

If K is the intersection of a compact polyhedron and a
semi-algebraic set, then a polynomial p is strictly positive in K if it
can be represented as a Schweighofer sum for some finite Z ∈ INn.
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Comparisons

Notice the similarity between the conclusion of the two theorems,
and the difference with Farkas lemma: since there is no useful
bound on the size of Z , it is usually impossible to obtain a
negative answer.
Another difference: those two theorems deals with strictly positive
inequalities, while Farkas deals with non-strict inequalities.
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Algorithm H

The aim of this algorithm is to collect a set C of constraints on the
unknowns λ and µ.

I C = ∅.
I Given: a set of Schweighofer products {S~e(x) | ~e ∈ Z ⊂ INn}

and a polynomial (template) pµ(x),
I Result: A system of constraints on the λ and µ.
I Completely expand the master equation:

E = pµ(x)−
∑
~e∈Z

λ~e .S~e(x).

I For each monomial x f1
1 . . . x

fp
p , collect its coefficient c and add

c = 0 to C. c is an affine form in the λ and µ.
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Comments

I Algorithm H works equally well in the Handelman or
Schweighofer case, provided one use a uniform representation
of polynomials, whatever their degree.

I The main difficulty is the selection of the products. One may
use an oracle(!), or all products of a given degree, or all
products of a given order.

I The resulting system of constraints may be used in many
ways: it may be solved by itself, or may be combined with
other constraints before solving.

I If a solution for the λ and µ is found, this solution can be
certified, independently of Handleman or Schweighofer, by
straightforward algebraic evaluation.
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Dependence Tests

A dependence set D is defined by a system of constraints:

I The iteration domains of its source and destination,

I A set of subscript equations,

I An order predicate.

Some or all of these constraints may involve polynomials. The
problem is to decide whether this set is empty or not.
A possible solution is to prove, using algorithm H, that -1 is a
positive combination of Schweighofer products of D!
Since -1 can never be positive, it follows that the constraints defining D

cannot all be satisfied at the same time, i.e. that D is empty. Compare

to the familiar Fourier-Motzkin algorithm.
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An Example

for(i=0; i<n; i++)

for(j=0; j<n; j++)

a[N*i+j] = 0.;

The dependence set:

0 ≤ i ≤ N − 1 , 0 ≤ i ′ ≤ N − 1

0 ≤ j ≤ N − 1 , 0 ≤ j ′ ≤ N − 1

Ni + j = Ni ′ + j ′

i + 1 ≤ i ′

Algorithm H finds the following solution:

−1 = (N − i − 1)(i ′ − i − 1) + i(i ′ − i − 1) + (i ′ − i − 1)

+ j ′ + (N − j − 1) + (Ni + j − Ni ′ − j ′)

Hence, the dependence set is empty.
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Scheduling

Notations

I R,S , . . . a set of instructions

I DR the iteration domain of R, usually a polyhedron,
sometimes an sas

I ∆RS ⊆ DR × DS , a dependence set from R to S .

Problem For each statement R find a function θR : DR → IN such
that:

x ∈ DR ⇒ θR(x) ≥ 0(
x
y

)
∈ ∆RS ⇒ θR(x) + 1 ≤ θS(y)
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Method

I For each statement R, build a template schedule θR by
applying the first part of algorithm H to DR

I For each dependence, build a master equation for the delay
θS(y)− θR(x)− 1 by applying algorithm H to ∆RS

I Collect the constraints and solve for the λ and µs using a
linear programming tool.
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Result

table((__node,S) = [[i,j],{(N >= i+1),(i >= j+1),(i >= 1),

(j >= 0)}],(__nodes) = [S],(__transition,T0) = [S,S,table(i = i’,j = j’),

{(i’ >= i+1)}],(__transition,T1) = [S,S,table(i = i’,j = j’),{(i = i’),

(j’ >= j+1)}],(__transitions) = [T0,T1])

(N * N)*mu_6+N*i*mu_11+N*i*mu_8+N*j*mu_15+N*mu_5+(i * i)*mu_12+

...

(j * j)*mu_16-j*mu_15-j*mu_16-j*mu_17-j*mu_7-mu_10-mu_5-mu_7

dependence polyhedron [(N >= i+1),(N >= i’+1),(i’ >= i+1),(i >= j+1),

(i >= 1),(i’ >= j’+1),(i’ >= 1),(j >= 0),(j’ >= 0)]

dependence polyhedron [(N >= i+1),(N >= i’+1),(i = i’),(i >= j+1),(i >= 1),

(i’ >= j’+1),(i’ >= 1),(j’ >= j+1),(j >= 0),(j’ >= 0)]

table(mu = 0,mu_10 = 1/2,mu_11 = 0,mu_12 = 0,mu_13 = 1/2,mu_14 = 1,mu_15 = 0,

mu_16 = 0,mu_17 = 0,mu_18 = 0,mu_5 = 0,mu_6 = 0,mu_7 = 0,mu_8 = 0,mu_9 = 0

)

theta[S] = [1/2*(i * i)+j-1/2*i] == (j) + 1/2 . (i-1)*(i-1) + 1/2 . (i-1)

delay [T0] = 1/2*i+1/2*(i’ * i’)+j’-1/2*(i * i)-1/2*i’-j-1

=== (j’) + 1/2 . (i’-i-1)*(i’-1) + 1/2 . (i’-i-1)*(i-1) + (i-j-1) + (i’-i-1)
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Related Work

I Early work by B. Pugh et. al. using uninterpreted functions,
and by van Engelen et. al. using interval analysis

I Polynomial minimization using a Bernstein expansion,
implemented in ISL, can be applied to dependence testing

I Armin Größlinger: using Cylindrical Algebraic Decomposition.

I Work in progress by A. Maréchal and M. Périn (Verimag) on
linearization (i.e. getting rid of polynomials) using Handelman
theorem and an oracle to control complexity.
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Code Generation

Given a polynomial schedule θ(~i), and an iteration domain: D,
generate the corresponding code. Equivalent to the construction of
fronts:

F (t) = {~i ∈ D | θ(~i) = t}

Needs a projection algorithm, for instance CAD. Can one do
better?
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Projection

Given a semi algebraic set, construct a Schweighofer sum, expand,
and equate to zero the coefficients of all monomials containing the
variable(s) to be projected out. Solve in positive unknowns.
Problems

I Needs a polytope enclosing box.

I The result (if any) is an over approximation of the projection.
Except in the affine case, it is impossible to prove equality.

An example Eliminate y from the definition of the unit disk
1− x2 − y2 ≥ 0. The result shoud be 1− x2 ≥ 0, but it cannot be
obtained as a Schweighofer sum, unless one add y2 ≥ 0 to the
definition of the disk.
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Other uses for schedules

Proving the absence of deadlock.
But:

I Sequential programs do not have deadlocks. Applies only to
parallel programs (e.g. OpenStream) or process networks (e.g.
KPN) with infinite loops.

I Deadlocks are caused by cycles in the channel structure.

The construction of a realistic example is difficult.
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Conclusion and Future Work, I

I The method works well and give interesting results in
acceptable time, at least for small problems.

I Other applications: transitive closure, program termination,
(perhaps) invariant construction, ressource allocation, ...

I Complexity, very high, exponential in the order of
Schweighofer products. However, well within the capability of
glpk or CPLEX.

I Can one use an oracle to guess which products are useful?
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Conclusion and Future Work, II

We are still far from a polynomial model.
Other polynomial tools: CAD, Berntein, combine?
Very preliminary implementation using glpk and Z3.
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THE END – QUESTIONS
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