
Processor Allocation and Loop Scheduling

on Multiprocessor Computers *

Nadia Tawbi Paul Feautrier

BULL Corporate Research Center IBP-MASI universit6 Paris VI

Rue Jean Jaur&s 4, place Jussieu

78340 Les Clayes sous Bois 75252 Paris Cedex 5

FRANCE FRANCE

Nadia.TawbiQfrcl. bull.fr feautrier@masi.ibp .fr

ABSTRACT

This paper is concerned with the automatic exploitation of the
parallelism detected in a sequential program, The target machine
is a shared memory multiprocessor.

The main goal is minimizing the completion time of the pro-
gram. To achieve thk one has first to distribute the code over
the processors, then to schedule the parts of the code in order
to minimize the execution time while preserving the semantics.
This problem is NP-complete.

Loop scheduling and processor allocation are the main prob-
lems. However we are also able to deal with so-called control
parallelism. Allocation and scheduling are performed at compile
time. For a given processor allocation, we use list scheduling al-
gorithm to compute the elapsed time, which is then optimized by
the Tabu heuristic.

The estimation of each component execution time is based
on knowledge of the average execution time of the operatom and
built-in functions and on the estimation of iteration space size.

Experimentations on the Encore-Multimax machine show
that on a representative set of scientific programs, the efficiency

we obtained is in almost all the cases greater than 80%, as soon
as the problem size is large enough.

1 INTRODUCTION

Automatic parallelization of Fortran programs is an active
research area. The reason is the need of a powerful parallel

programming environment for the efficient use of multipro-
cessor computers. Such an environment should allow the

programmer to abstract from the architecture details of the

machine, and would be especially useful for large scientific
programs. These programs are often written in Fortran.

Automatic detection of the parallelism in a program is

only the first issue in this direction. Actually, to efficiently
execute a program on a multiprocessor machine one has also

● This work is a part of the PAF automatic parallehzer project,

supported by DRET under contract 87/%30 and by PRC C3 of the
CNRS

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ita date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ICS ‘92-7 /92/D, C., USA

“o 1992 ACM 0-89791 -48!5-6/921000710063$1.50

to find a schedule that makes good use of this parallelism.

In this paper we address the second issue.
We suppose that the programs are well structured. They

do not involve goto statements nor while loops. The pro-

gram can only use: assignment statements, guarded assign-

ment statements and do loops. If necessary the restructura-
tion of the program should be done in a previous step. Even

though these assumptions are strong, the generalization of

our method would be possible if combined with profiling
techniques. This issue is not studied in this work.

Scheduling can either be done at run time (dynamic
scheduling) or at compile time (static scheduling). In the

former case the overhead can be considerable, while in the
latter case the major problem is the lack of knowledge of
the execution time of each component in the program. This

ignorance is mainly due to the presence of variables in the

loop bounds.

There are different ways to execute a parallel program

on a multiprocessor machine, depending on how we assign
and schedule the available processors. We have to find a

solution that gives the shortest completion time of the whole
program.

The target machine architecture can be any multipro-
cessor with shared memory. The shared memory parallel

processors model is actually very suitable for the grain of
parallelism we are intending to deal with. The low commu-

nication cost, compared with the distributed memory model,

determines our choice.

We assume that as a result of the dependence analysis,
the program is split into many components. Precedence con-

straints may hold between these components. Any execution
of the program must respect these constraints, otherwise the

semantics may be altered.

Assuming that the number of available processors is p,
our approach consists in allocating to each component of the
program some number n of processors, with n < p, estimat-
ing its execution time and const rutting a schedule. The gen-
erated program is a set of p processes. In each one, synchro-
nization primitives insure that the precedence constraints
are respected as well as the serial execution of sequential

loops. All the steps in this approach are performed at com-
pile time. In fact, since our approach is quite costly, it is

justified only if the added cost can be amortized on several
executions of the same program.

63

Processor allocation and scheduling are both NP-

complete problems. We have used heuristics to solve

them. To solve the processor allocation problem we tested
simulated annealing [Laar 87] and Tabu search method

[Glover 85] and found the latter to be more efficient. The
list schedule heuristic finds a good schedule of the com-

ponents when the processor allocation is given [Coffin 76],
[Thoma 74].

The main results of this approach are: first, we are able
to parallelize the whole program rather than be restricted
to deal with each loop nest separately. Second, we have the
possibility to deal with more general nested loops, at com-

r)ile time. than standard techniques. The Parallelism can be
exploited even if it is nested ~ithin sequential structures.

Another result is the estimation of the execution time of a
loop nest. This is based on the symbolic computation of the

loop iteration count of the nest.
The estimation of the execution time in a program in-

volving conditionals is beyond the scope of this work. The
presence of conditionals may decrease the efficiency of our

target program. The handling of procedure call is not ad-
dressed here. We can deal with procedure calls only if we
have alreadv an inter~rocedural data-dependence analvsis.. . . .
and if we have an estimation of the execution time of each

call.

Related workispresented in Section2. Section 3givesan

overview of the whole method. In Section 4, we investigate
a method to schedule a loorI nest and comrmte its execution

time on p processors. Sec;ion .5 presents-the Tabu heuris-
tic which is used to solve the processor allocation problem.

Section 6 briefly discusses the code generation. Section 7

presents the results of experiences on the Encore machine.
Conclusions are drawn in Section 8.

2 RELATED WORK

Related work address. twomaior issues: run-time schedulirw
and compile-time scheduling.

Self-Scheduling [Tang 86] is used for the execution of

parallel loops. This method consists in distributing the it-
erations of a doall loop to all the processors at run time.

The first iteration of the Darallel looD not vet executed is
1 . .

assigned to the first available processor. The problem with
this approach is the overhead at run time due to the syn-

chronization on the loop iteration variable. In GuidedSelf-

Scheduling [Polyc 87], Polychronopoulos tried to reduce this
overhead. When a rmocessor is available. more than one it-.
eration is assigned to it. More precisely this method assigns

to each free processor [:1 iterations, where R is the nnm-

berofloop iterations n~yet executed nor allocated, andp
is the total number of processors. The number of exclusive
accesses to the loop iteration variable is reduced but the
overhead still exists.

Compile time scheduling of loops on multiprocessor has
been studied in [Polyc 89]. The approach is based on al-

locating the processors to nested loops according to how
efficiently these processors would be used. The limitation
of this approach is that the bounds of the loops must be
constant and the loops perfectly nested.

Our approach, globally, is rather similar to [Sarka 86].
Sarkar proposed a method to partition and schedule paral-

lel programs. The main idea is to split the program into
sequential tasks. This technique is addressed to single as-

signment languages. Our approach is different in the way
we deal with nested parallelism, i.e. sequential loops that

embed parallelism.
In [Sarka 89], the estimation of average program execu-

tion time is studied. The proposed method is based on pro-

filing the program. This is especially useful when the source

code contains conditional statements and/or while loops.
A scheduling algorithm is presented in [Belkh 91]. The

program is presented as a directed task graph, where each

task can be executed on more than one processor. The prob-

lem consists in determining the processor allocation that
minimizes the completion time of the program under the
precedence constraints. It is solved as a linear optimization
problem where each variable represents the number of pro-

cessors allocated to a specific task. The authors assume that
the sequential execution time of each task is given as well as
the variation with the number of processors. On the other

hand the linear program is solved in the domain of reals,

and the result for each variable is the nearest integer value.

3 PRESENTATION OF THE METHOD

Given a graph representation of a sequential program as con-
structed by a parallelizing compiler and the number of pro-

cessors of a shared memory machine, our aim is to generate
the semantically equivalent parallel program. The execution

time of the parallel program must be as short as possible.

This section gives an overview of all the steps performed in
order to achieve this goal and how they are linked together.

The result of the dependence analysis is the dependence

graph DG where each node is a statement and each edge is

a precedence constraint that holds between two statements.
From this graph a directed acyclic graph (DAG) is then con-

structed. The nodes of this DAG are the strongly connected
components of the DG (the ~-blocks in Kuck’s terminology).

Each component is either a single statement, a sequential
loop or a doall loop. Each loop body has the same form as
the whole program and has its own DAG. The DAG represent-
ing the program is a set of components E = {cl, cz, Cn}
and a set of edges connecting the components. The edges
correspond to precedence constraints that must be respected

in order to preserve the semantics of the original program.

Since most components can be executed on more than

one processor, the problem of scheduling E on p processors

is different from the classical scheduling problem of a set
of sequential tasks with precedence constraints. However,

list scheduling can be used if we know how many processors

are assigned to each component and the resulting execution
time on the assigned processors.

Let S denote a possible allocation of processors to E: S
associates each c, with a number pi of processors, such that

1 < p, < p. We allocate and free all the p, processors to c,
at the same time.

Recall that, each component c, is either a loop or a single
statement. We will show how to estimate the execution time

of c, on p, processors. This time will depend on the syntactic
structure of c. (e. x. whether it is a sequential or uarallel

loop), on the loop \ounds and, ultimatel~, on the ex;cution
time of elementary operations and intrinsic functions (SQRT,

COS, SIN, etc), which is determined empirically. From this
we may dednce the cost function of the allocation: C(S) is
the execution time of the given program provided that the
processor allocation is S.

The enumeration of all possible solutions, in order to
find the best one, is not practical, since the total num-

ber of different allocations is pn. This number can be re-
duced if we eliminate all the allocations that keep idle one

64

or more processors. We will consider only allocations such

that p, < max(c,), where max(c;) is the maximum number

of processors that c, can use. The number of the acceptable

allocations remains very large. The use of a heuristic search

method is the only acceptable approach.

The method can be briefly described as follows:

1. Preprocessing step:

●

●

●

For each loop nest compute the size of the it-
eration space. This computation is performed

symbolically. However, the loop bounds are con-

strained to be linear functions on the surrounding

loop iteration variables and on some other param-

eters,

Get (from the user) the values of the variables

in the loop bounds that are not loop iteration
variables.

For each component c, compute max(ci). These.,
numbers are computed by simulating the execu-

tion on an unlimited number of processors. Ac-
tually they are used as a characterization of the
components inherent parallelism.

2. Repeat until a good enough solution is found (accord-

ing to the cost function).

(a)

(b)

(c)

select an allocation of processors S = {(cl, PI),

. . . . (en, pn)}. This selection is guided by the pro-

cessor allocation heuristic.

For each component c, compute the execution

time on the p, allocated processors specified by

s.
Schedule S on p processors using the list-schedule

algorithm

The way step (b) is performed deserves more explana-
tion: If c, represents a single statement then c, is executed
on one processor, and the computation of its execution time

is based on the average execution time of the operators and
functions that are involved in the statement. On the other

hand, if c, represents a nest of loops then the loop schedul-

ing method is applied; this method will be explained later

on. We just give here a brief presentation: we consider the

outermost perfectly nested loops and we decide how many

processors among the p, have to be allocated to the body,
and how many are going to be used by the iterations of the

parallel loops. Then the body is recursively scheduled and

its execution time is computed. The execution time of c,
can then be computed using the size of the iteration space.

The result of the above steps is a recursive data struc-

ture which associates each c, with a tuple (p;, t;, d,), where
p, is the number of processors computed by the allocation

heuristic, t, is the start execution time and d, is the esti-
mated execution time of c,, t, and d, are computed by the

list-schedule algorithm. These information are recursively
computed for all the bodies of the perfectly nested looPs,
represented by DAGs. These values are then used to generate
the high-level parallel code.

As an example of programs we can deal with, we give
an abstract parallel program. Which is generated after the

parallelism detection step from Cholesky triangularization
algorithm. (Here p-begin . . . p-end denotes a region in
which all the components can be executed simultaneously).

Example 3.1

program cholesky
integer i, -j , k
real x(100) , s(100, 100)
real a(100,1OO) ,

p-begin
c component Cl

doall i

x(i) =
end do

C component C2

doall i

doall
s(i,

end do
end do

p-end

c component C3

do i=l,
p-begin

P(loo)

=1, n
a(i, i)

=1, n

j=i+itn
j) = a(i, j)

n

c component C3-I
do k= i, i-l

x(i)=x(i) -a(i, k)**2
end do

c component C3-2

doall j = i+l, n
do k=l, i-1

s(i, j) = s(i, j) - a(j ,k)*a(i, k)

end do
end do

p-end

c component C3-3

p(i) = l.0/sqrt(x(i))
c component C3-4

doall j = i+l, n
a(j, i)=s(i, j)*p(i)

end do
end do

end

4 LOOP SCHEDULING

Since parallel loops represent the most profitable parallelism

a special attention has been paid to their execution. The

underlying idea of our method is to consider the outermost

perfectly nested loops. If the parallel loops are not contigu-

ous, a first transformation is applied; it consists in pushing

all the outer parallel loops at the level of the innermost par-

allel one. The iterations of all the parallel loops are then
distributed over the processors. Only one synchronization

primitive is invoked after an execution of the whole parallel
nest. The body of the loop nest is processed in the same

fashion as the whole program. Therefore, we have to find
out how many processors must be allocated to this body and
how many must be dedicated to the parallel iterations.

In order to estimate the execution time of the nest, itera-

tion count of the nest must be known as well as the execution
time of the body. The last value is recursively computed.

The problem of counting the number of loop iterations
has an obvious solution when the loop bounds are constant.
It is much more difficult when the expressions of the bounds
are linear functions on the surrounding loop iteration vari-

ables and in some other parameters. This issue is discussed
in the following section.

65

4.1 COUNTING LOOP ITERATIONS

Let L be a nest of loops, L = (L1, Lz,, , .jLn), let ii be the

loop iteration variable of loop L, and 1, (resp. u,) be the
lower (resp. the upper) bound of L,. Assume that the loop

bounds are constant, M, is the number of iterations of loop
L,, M, = u, – /, + 1 if u, – 1, ~ O otherwise M, is zero.

If the loop bounds are constant, then the total number

of different executions of the body B, of the nest L1, L,

is N, s ~~=1 Mi. Otherwise, if the following holds

then
u? u,

fvt=~... ~(l) (2)

1,=11 1,=1,

We can associate each loop nest with a bounded convex
polyhedron. An iteration of the loop nest corresponds to an

integer point of the polyhedron. The problem of counting
the number of integer points in a bounded convex polyhe-

dron is known to be of high complexity. We can find in

[Tawbi 91] the presentation and the proof of an algorithm

that computes an approximative value of this number. The
estimated value is exact when the bounds of loop iteration

variables are linear functions. When the expression of a

bound involves ceiltng or floor functions, the algorithm finds
a value which is very close to the exact one. This case occurs

after loop normalization or polyhedron splitting (cf the fol-

lowing). We give here a brief description of this algorithm.
To compute the value of loop nest iterations number, two

steps are performed. The first one splits the whole iteration
space of the loop nest in an equivalent set of nests, such

that in each nest condition (1) holds. The second algorithm
performs the computation of symbolic sums as in (2), The

result of this computation is a polynomial which is a function

of the parameters. Parameters are the variables involved in
the loop bounds that are not loop iteration variables.

The first step is performed by splitting the convex poly-

hedron which is associated with the iteration space, into a

partition of convex polyhedrons. Each one represents a nest
of loops in which condition (1) holds. We have developed

and proved an algorithm that performs the splitting step.
The method is based on keeping for each variable only one

upper bound and one lower bound. If one can derive another
bound by variable elimination then splitting the polyhedron

would be necessary. More details about this algorithm can

be found in [Tawbi 91].

The computation of symbolic sums is based on the fol-
lowing formula [Spiegel 74]:

(3)
where k and n c IN; The power of n in the last term is either

1 or 2 depending on whether k is even or odd. If n = O, the
result wouId be O. The Bj are Bernoulli numbers [Knuth
73], [Spiegel 74], defined as follows:

The calculation is done step by step from inside outward.
At each step ons has to calculate a alum:

~ (“)Pa,

i=l

where P is a polynomial in i (and other variables) and 1

and u are linear in the other variables. P(i) is written as
a sum of powers of i; the contribution of each summand is

computed according to (3). The result is a polynomial in
the other variables, which must be reordered for the next

step.

Example 4.1

dol Oi=l, n

B1
doiOj=l, i

Bz

do iOk= j, m-2

B3
10 cent inue

N3 is the number of the different executions of B3. The

splitting step would put Ns in the following form:

(z:=,z:=,X:2(1) if m -22 n

the symbolic sum step yields :

N3 ==

\

–:-tm2+*–
llm—-++n+ls otherwise

The values of the parameters are not required to perform
the previous steps (including dependence analysis), however
they are required for the scheduling step. When the values

of parameters are known, the Ni will have constant values.
[Shrij 86] is a good reference for the theory of linear pro-

gramming and the manipulation of convex polyhedron.

4.2 SCHEDULING NESTED LOOPS

The method consists in considering the first perfectly nested
loops in the nest. If we know how many processors are as-

signed to the body of these loops, we can recursively sched-
ule it as we do for the whole program. If the body involves
loops whose bounds depend on the surrounding loop iter-
ation variables, the size of the nested iteration space is a

function on the surrounding loop variables. In this case, the
computation of the execution time is based on the average

number of iterations.
In example (3.1), the loop:

do k =1, i-i

66

which corresponds to component c3- 1 is within an imper-
fectly nested loop. Its average number of iterations, when

n= 100 is 50. This number is used to compute the body av-

erage execution time of do i = i, n (component C3).

If the body of the first perfectly nested loop is sequential

then all the processors are assigned to the iterations of these
loops. Otherwise, one has to decide how many processors
have to be assigned to the first loops and how many to the
body.

Let L be the loopnest, L = (Ll, .L2, L~) and B be
the body represented by a directed acyclic graph. We as-

sume that the completion times of two consecutive different
executions of B are approximatively the same.

4.2.1 SCHEDULING A NEST OF SEQUENTIAL LOOPS

If all the loops in the nest are sequential, the p assigned
processors are allocated to B. Scheduling B on p processors
is the same problem as scheduling the whole program and
it is solved recursively.

The execution time T(L, p) of the nest is T(L, p) = N. x
Z’(B, p), where Nn is the total number of iterations of the

nest and T(B, p) is the execution time of B on p processors.

4.2.2 SCHEDULING A NEST OF PARALLEL LOOPS

In this case, the nest of loops has the following form:

doall 100 il = 11, U1

. . .

doall 100 in = in, Un

B
100 cent inue

We assume in the following that the parallelism in the

body is not profitable. We study in the last subsection the
allocation of processors to the body.

The processors are assigned to the n doall loops. If all

the iterations of the nest are numbered from O to N. – 1
and the p processors are numbered from O to p – 1, then
our method consists in excuting iteration k on the processor

q = k mod p, A first sketch of the code for processor g is
the following:

k=o
Do 100 il = 11, U1

. . .
Do 100 in = In, u~

if kmodp=qthen B
end if

k=k+l
100 cent irme

barrier

The barrier instruction after the parallel loops is a sy-
nchronization primitive, the role of which is to wait until all p

processors have reached this point before proceeding to the
rest of the program.

The use of the if statement can be avoided. The above
program can be shown to be equivalent to the following more
efficient version.

ko=o

Do 100 i] = 11, u]
. . .

Do 10 in = ln+(q–ko)modp, u., p

B

10 continue
if (u. -l. +l>O)k0=k0+u. -ln+l

100 cent inue

barrier

The execution time of this nest is:

T(L>P) = [:1 x T(B, 1) + N.-l x T.. + T,b

where N, is the number of the different executions of the
body of the nest (L], Lz, Li), T(B, 1) is the sequential

execution time of B, T$c is the cost of incrementing k. and
T,& is the cost of the barrier.

Experiences show that T(l?, 1) is approximatively the
same for two consecutive iterations. Hence, the distribution

of the loop iterations in our method is nearly optimal.
As an example let us consider the following nest:

doall 1 i = 1, n, 1

doall 1 j = i+l, n
s(i, j) = a(i, j)* b(i, j)

i cent inue

If we suppose that n = 100 and the number of the pro-

cessors allocated to this nest is 7 the processor number 3
would execute the following code:

k.O = O
Do 200 i = 1,100,1

Do 100 j = l+i+ mod(3-kO

s(i, j)= a(i, j)*b(i, j

100 cent inue

if (100-1 > O) kO = kO +

200 continue
barrier

7) ,100,7

100-i

Assuming that the execution time of the statement

s(i, j) = a(i, j)*b(i, j) is 4u, the cost of incrementing k.
is 3u, and the cost of calling the barrier is 15u then the

execution time T(L, 7) = (708 x 4 + 100 x 3 + 15)u = 3147u

4.2.3 SCHEDULING A NEST OF MIXED LOOPS

In this case the parallel loops are pushed inside the sequen-
tial ones at the level of the innermost parallel loop. In this
way, we get a contiguous parallel loop nest and use all the
parallel loops instead of assigning the processors to one of

them. It has been shown in [Allen 84] that this transfor-
mation preserves the semantics of the program. Thus, the

most general case is that of m sequential loops surrounding
n — m parallel loops. The body of the parallel loops may be
a nest of sequential ones.

67

Do 100 il = 11, ‘UI
Do 100 22 = 12, uz

. . .

Do 100 i~ = i~, ‘Um

//Do 100 im+I = lm+I , U~+I
.,.

//Do 100 Zn = k, Un
B

100 cent inue

If we assume that the parallelism in the body B is not

profitable then the processors are used by the parallel loops
and B is executed sequentially. The code executed by the

processor qis the following:

Do 1000 il = /1,111

,,,
Do 1000 i~ = ~~,u~

ko =()

Do 100 i~+] = lm+l, um+l

. . .

look to the expression T(L, p) we see that the speed up de-
N

pends mainly on ~: the bigger NP and the closer to 1 is

the efficiency. Tog& an idea, suppose for instance that fVP
is 200 and p is 11. The above ratio is 1.04 which garantees a

speed up not less than 9570 x p. Thus if NP is big enough it
is not worth the cost to allocate more than one processor to

the body. Since the number of processors is not very large, if

NP ~ p one can enumerate all the factors of p and select the

best one to be assigned to the body. Hence, we will have pi
processors for the parallel loop iterations and pz processors

to be allocated to B with ~ = pl x p2.

The processors will be organised in PI groups, each of P2

processors, and each group is responsible for the execution

of one iteration of the parallel loop nest.

5 PROCESSOR ALLOCATION

We are given a program P represented by a set E of com-

ponents E = {cl, CZ, c~} connected by precedence con-

straints. and ~ mocessors to execute them. Each c, reme-
Do 10 in = L+(q-ko)rnodp, u., p

. .
sents a part of code that can be executed on more than one

B processor.
cent irme Let S = {SI, SZ } be the set of all possible pro-
if (u~ — in + 1 > O) ko = ko + tin — ~n + &essor allocations to E. A specific allocation S, asso-

barrier

1000 cent inue

Let NP be

Clearly NP represents the number of parallel loop iterations;

this number is a function on the surrounding loop iteration

variables. N, is the number of iterations of the loop nest

(.LI,. . . . L,). If we do not take into account the overhead

due to the barrier and to the counter IGO then the execution

time of the loop nest L is:

~(~,p) = Nm X uN
= x T(B, l)
P

where T(B, 1) is the execution time of B. Notice that if B

is a nest of sequential loops, the execution time of B may

depend on the surrounding loop iteration variables. In this
case the average execution time is taken into account.

If Np > p and if T(B, 1) is approximately the same

for two consecutive iteration of the nest, then this method

gives nearly optimal results. Actually [*1 would be very

close to ~ and thus the speed up would be very close to

p. Otherwise, one has to select the level into which to push
the parallel loops. Since we deal with a relatively small
number of processors and with scientific programs the above
conditions are met in allmost all the cases.

4.2.4 SCHEDULING LOOPS WITH PARALLEL BODY

The body B of the perfectly nested loop L contains paral-
lelism and L involves parallel loops. Let NP be the average

number of the parallel loop iterations and p be the number

of the processors assigned to L . If NP >> p then the p pro-

cessors are allocated to parallel loops. More precisely, if we

ciates each component c~ with a number of processors p,,

1 s p, < maz(c,) and p, < p. Thus, we eliminate all the
allocations that keep idle one or more processors. A cost

function C associates a solution S with the execution time,
which is computed by the list-scheduling algorithm applied

to E. When the allocation is S and if we know the execu-
tion time 77(c,, p,) of each component c, on the p, allocated

processors, C(S) can be determined.
Our aim is to perform an exploration of S in order to find

an relocation S* that gives a schedule for E which is very
close to the shortest one, i.e. C(S*) is close to the global

minimum of C. Actually, it is very hard to find the best
allocation because it has been proved that this problem is

NP-complete [Coffin 76].
One can imagine an iterative descent method to explore

S. This approach should define a neighborhood N(S) for

each solution S. The procedure would start, then, from
an initial solution So. One move consists in finding a new
solution S’ in the neighborhood N(S) of the current solution

S, with C(S’) < C(S). The procedure stops if such an S’
cannot be found in N(S). Obviously, this method leads to
a local minimum. Besides, it depends on the definition of
N(S).

The aim of any heuristic, that intend to find better so-
lutions than the descent method, is to do the exploration of

S while avoiding to be trapped in local minima. To achieve
this goal two heuristics have been studied: the simulated

annealing and Tabu. Since we have found that Tabu is con-
sistently better and faster than simulated annealing, only

the latter method is presented here.

5.1 TABU METHOD

Tabu method is a heuristic used to solve hard optimization

problems. It was first introduced by Glover [Glover 85] and
then used to solve many optimization problems [Glover 89],

[deWer 89]. Tabu consists in the exploration of the solutions
set, starting with an initial solution SO. A move from S to

S’ is allowed eveu if C’(S’) z C(S). If we are at a solution
S, a subset of N(S) is generated, and the best S’ in this

68

subset is then selected. Cycling may of course occur. In

order to prevent that, we are not allowed to go back to a

solution which has been visited in the last k iterations, A

list T, called the Tabu list, of the last k solutions is updated

aft er each move. Thus, a move to S’ is allowed only if S’ is
not in the Tabu list.

Tabu results depend on the choice of certain parameters:
the neighborhood function, the enumerated subset in the
neighborhood of a solution, the length ITI of the tabu list,

the initial solution and the stop criterion.

In our implementation ITI is fixed to 7, and the search
stops if in the last 7 iterations we did not improve the best

solution yet encountered. The neighborhood of an alloca-

tion S is the set of all allocations that associate the same

processors to the c, as S does, except for one component,

say c~. In this neighborhood we enumerate at most n solu-

tions, (n = Ill]); each solution S; (j = 1, n) is associated
with specific Cj c E, it keeps the same allocations as S, ex-

cept for Cj, to which a random number of processors P; is

associated, p; # pj, where pj is the number of processors
allocated by S. We denote this subset V(S). The choice of

these parameters was made empirically.
At each iteration, C(S~) is the result of the list schedule

algorithm, performed after the computation of the execution
times of the components.

The implemented algorithm is the following:

1. start with k = O and the allocation SO that associates

to each c, the maximum allowable number of proces-
sors, T= {SO}; S* = So; n = O.

2. while n <= 7:

(a)

(b)

(c)

(d)

(e)

k=k+l

generate V(Sk-1)

move to Sk which gives the minimum cost C(S~)

among the elements of V(S~_l) – T.

if C(S~) < C(S*) then S* = Sk; n = O else n =

n+l;

put Sk at the head of the list T. If ITI >7 remove

the last element of T.

3. the result is S*

For instance, the allocation on 6 processors for the code
of example (3,1) is:

C1:6, C2:6, C3:6, C3-1:1, C3-2:5, C3-3:1,
C3-4:6.

It was computed by Tabu in 14 seconds on a DPX-1OOO
station (which is as fast as a SUN3/60).

Tabu method has been successfully used to solve hard
optimization problem: job shop scheduling, graph coloring,

the traveling salesman problem, . . . Our experience does

not contradict these results. However, there is no formal
convergence proof.

6 CODE GENERATION

The generated parallel code for a program is a set of p pro-

cesses, where p is the number of processors on which the
program will be executed. The code is generated for an
Encore Multimax machine with 8 processors and a shared
memory.

The serial character of sequential loops execution and

the precedence constraints between components must be re-

spect ed. For this, we use user mode synchronisation primi-
tives in the process code.

The components of the program are sorted according to
t,which is the start execution time. If we assign one pro-

cessor to each component then the code generation will be
a greedy algorithm that places the code of a component in
the first available processor (in the code of the corresponding
process). After this code, an event-post is issued and the

corresponding event-wait is placed before the code of all of

its successors in the DAG represent at ion.

If the component c, has to be executed on p, > 1 pro-
cessors then its code is distributed over the first p, available

processors and a barrier synchronization is invoked after
each part of the code to insure that all p, processors will be

freed at he same time. One of the p, processors has to invoke
an event-post just after the barrier call. The event-wait

is called in every process executing a part of a component
which is a successor of c,.

7 RESULTS

In this section we present the results of the experimenta-

tions on some numerical programs. We did not study the

optimization in a multi-user environment. We think that dy-
namic methods would be more suitable in that case. Hence,

all our tests are executed under the gang-scheduling mech-

anism which allows the possibility to assign a number of

processors to a specific application. At least one processor
should be left out of the gang to deal with interruptions and

emergencies. That is the reason why we do not give results
for more than 7 processors.

We give first a brief description of the programs, and the
difference between the estimated and the observed time of

the sequential and parallel execution. We then discuss the
variation of the efficiency as a function of the problem size

and of the number of processors.

7.1 SOURCE PROGRAMS

The programs we parallelize are representative of a class of

numerical analysis programs. They do not involve condi-
tional constructions. The data structures they deal with are
arrays.

We will give the results of the experimentations on the

following programs:

●

●

●

●

●

●

Matrix product (Prod).

Gaussian elimination and backward substitution

phases (Gauss)

Cholesky matrix triangularization (Choles)

Lanczos projection phase (a component of an eigen-
value method [Chate 88]) (Lanczos)

Prr is another projection method [Emad 91] (Prr)

Arnoldi iterative method [Saad 80] (Arnoldi)

All the sequential programs have the following form:

69

Sequential Program

Read data

tl = clock-time

Process the data

t2 = clock-time

print (t2 - tl)

write the results

The parallel programs have the following form:

Parallel Program
Read data

fork p processes
i is the process number
tl = clock-time

call process i body

join

t2 = clock-time

print (t2 -tl)

write the results

Input and output time are not taken into account. The

reasonis that our scheduling method only optimizes thecpu

time.

7.2 ESTIMATED AND ACTUAL EXECUTION TIME

The execution time estimation is based on the average exe-

cution time of the operators and the estimation of the loop

iteration number.

Since the parallelizing process translates the sequential

source program into a parallel source program, the execution

time estimation does not take into account the optimizations

that the compiler would perform.

In the following table we give El and EG values where

El = 100 x abs(~), dl is the actual sequential execution

time and dj is the estimated sequential time. Ee = 100 x

~~s(~) where d6 is the actual parallel execution time on

6 processors and dj is the estimated parallel execution time

on 6 processors.

One can observe that the error is rather small, except
for Prr and Gauss programs. This is mainly due to compiler
optimizations. Actually in the text of these two programs
there are many obvious optimizations that the compiler can

perform.
Based on these results, we can extend our observations

beyond the range of our target machine. We can estimate
for instance the parallel execution time on more than 8 pro-
cessors and rely on the results.

7.3 THE EFFICIENCY AN DTHE SIZE OF DATA

The efficiency of a parallel computation is defined as R =
100 x %, where dl is the sequential execution time and

dP is the parallel execution time on p processors. For the

following experimentations we used 6 processors. The size
of data is represented by the dimension of the matrix which
is given in the first row. A number in a specific box repre-

sents the efficiency of the parallel program when run on 6
processors on a matrix of the given dimension.

500 400 300 200 100 50
Lanczos 94 93 92 93 87 66

Prr 96 96 96 97 96 86

Arnoldi 91 91 92 91 88 78

Choles 94 93 92 90 78 58

Gauss 96 95 95 93 88 80

Prod 100 100 100 102 100 99

The efficiency increases with the size of the matrix and

is nearly always greater than 80~o. In the case of the ma-
trix product, we obtain anomalous values. The probable
explanation is the following. When comparing execution

time on one and six processors, we are not really measur-
ing the same algorithm, since the six processors execution

has a much larger cache space than the one processor ex-

ecution. Usually, this effect is masked by the incidence of
synchronize ation and by coherence problems. For the matrix

product, there are very few synchronization and no coher-

ence problem. The program may thus make full use of the
increased cache space, hence the anomalous values.

7.4 THE EFFICIENCY AND THE NUMBER OF PRO-
CESSORS

The efficiency is studied here according to the number of
processors. All the programs have been run on a 200 x 200

mat rix.

The number of processors is given in the first row. The

number in a specific box is the efficiency of the program
when run on the indicated processors.

1 2 3 4 5 6 7

Lanczos 100 97 98 96 93 93 90
Prr 100 97 97 97 97 97 96

Arnoldi 100 96 93 93 93 91 91

Choles 100 98 96 94 92 90 89

Gauss 100 97 95 94 94 93 92

Prod 100 103 102 102 102 102 101

The efficiency decreases with the number of processors.

The results are good, almost all are over 90%. The same

remark as in the last section can be made concerning the
Prod program.

8 CONCLUSION

The main result of our approach is that we are able to paral-
lelize the whole program rather than individual nests. Par-
allelism is exploited at different nesting levels. The experi-
ences show that we get good performances.

The experimentation with the allocation processor

heuristics shows that the solution S~ that assigns to each

component the maximum number of processors it can use is
always nearly optimal. This observation leads us to concen-

trate the research of the optimal solution in the neighborh-
ood of S& and thus to be much faster.

Some steps of our method can be performed without
knowledge of the parameters values, which represent the
data size. The processor allocation which uses the list
scheduling algorithm needs this information. One can imag-
ine a solution that associates all the processors to the par-
allel loops. The use of a sophisticated allocation method

70

is obviously needed when the number of the processors is

of the same magnitude as the number of parallel iterations,

We can use this result in order to completly parametrize the

method.

Another important result is that when we increase the
number of processors, the search time does not increase.

The computation of the iteration space volume of a

nested loop can be used in other contexts: the estimation of
the volume of transfered data in a hierarchical or distributed

memory architecture. Another use can be the complexity

analysis of programs. The limitation is the over-estimation

of execution time for the components which contain con-

ditionals. Another limitation is that we do not deal with

procedure calls. For this, the side effect information are

not sufficient. The estimation of the execution time of the

procedure call on a specific site is needed.

REFERENCES

[Allen 84]

[Belkh 91]

[Chate 88]

[Coffin 76]

[deWer 89]

[Emad 91]

[Glover 85]

[Glover 89]

[Knuth 73]

[Laarh 87]

[polyc 87]

[polyc 89]

Allen J. R., Kennedy K. Automatic loop inter-

chcmge Proceedings of Sigplan 84, Symposium
on compiler construction, Montreal Canada

June 17-22, 1984

Belkhale K. P., Banerjee P., A Scheduling Algo-

rithm for Parcdlelizable Dependent Tasks, Pro-

ceedings of the 5th International Parallel Pro-
cessing Symposium, April 1991.

Chatelin I?., Valews propres de matrices, Mas-

son 1988.

Co ffman E. G. Computer and Job-sop schedzd-
ing Theory John Wiley and sons, 1987

de Werra D., Hertz A. Tabu Search Z’ech-
niqzbes: a tutorial and an application to ne24-
ral networks. Ecole Polytechnique F6d&ale de

Lausanne, ORWP 89/02, January 1989.

Emad N., A new Iterative Projection Method

for Large Symmetric Eigenproblem Yale Tech-

nical Repport YALEU/DCS/RR-872, 1991.

Glover F. Future paths for integer integer pro-

gramming and links to artificial intelligence.
CAAI Report 85-8. University of Colorado.

Boulder CO (1985).

Glover F. Tabti Search, Part 1. ORSA Journal

of Computing, Vol. 1, N~ 3, 1989.

Knuth D. E. The Art of Programming. Vol. 1,
Addison Wesley 1973.

Laarhoven P. J. M. Van, Aaarts E. H. L.
Simulated Annealing Theory and applications

Kluwer Academic publishers, 1987.

Polychronopoulos C. D. Guided self scheduling

A practical scheduling scheme for parallel su-
percomputers IEEE Transactions on Comput-
ers, vol C-36, N~ 12, December 1987

Polychronopoulos C. D., Kuck D. J., Padua

A. P. Utilizing Multidimensional Loop Paral-
lelism on Large-Scale Parallel Processor Sys-

tems IEEE Transactions on Computers, vol 38,

N~ 9, September 1989

[Saad 80]

[Sarka 86]

[Sarka 89]

[Schri 86]

[Spiegel 74]

[Tang 86]

[Tawbi 91]

[Thoma 74]

Saad Y., Variations on Arnoldi’s method for

computing Eigenelements of Large Unsymmet-

ric matrices, Lin. Alg. Appl., vol. 34, pp. 269-

295, 1980.

Sarkar V., Hennessy J. Compile-time parti-
tioning and scheduling of parallel programs
ACM Sigplan Notices, vol 21, Ng 7, July 1986

Sarkar V., Determining Average Program Ez-
ecution Times and their Variance Proceed-

ings of the ACM Sigplan Conference PLDI 89,

Portland.

Schrijver A. Theory of linear and integer pro-

gramming. Wiley, NY, 1986.

Spiegel M. R. Formules et tab2es de Mathi-

matigues. Mc Graw Hill Paris, S6rie Schaum,

1974.

Tang P., Chung Yew P. Processor Self schedzd-

ing for multipie nested parallel loops Proceed-
ings of the 1986 International Conference on

parallel processing 19-22 August 1986

Tawbi N., Parall&ation Automatique: Esti-

mation des Durdes d ‘Exkcution et Allocation
Statique de Processeurs, Ph. D. Thesis of Uni-
versity Pierre et Marie Curie, April, 1991.

Thomas L. Adam, Chandy K. M., Dikson J.
R. A comparison of list schedules for parallel

processing systems Communications of ACM,
vol 17, No 12, December 1974

71

