
Elementary transformation analysis for Array-OL
Ouassila Labbani and Paul Feautrier

École Normale Suṕerieure de Lyon
46 alĺee d’Italie 69364 Lyon, France

Email: first name.last name@ens-lyon.fr

Éric Lenormand and Michel Barreteau
THALES Research & Technology
RD 128 - 91767 Palaiseau, France

Email: first name.last name@thalesgroup.com

Abstract—Array-OL is a high-level specification language ded-
icated to the definition of multidimentional intensive signal pro-
cessing applications. It allows to specify both the task parallelism
and the data parallelism of these applications on focusing on
their complex multidimensional data access patterns. Several
tools exist for implementing an Array-OL specification as a data
parallel program. While Array-OL can be used directly, it is
often convenient to be able to deduce part of the specification
from a sequential version of the application. This paper proposes
such an analysis and examines its feasibility and its limits.

Index Terms—Data parallelism, multidimensional signal pro-
cessing, program analysis, Array-OL

I. I NTRODUCTION

Today embedded applications need increasing processing
power, as they move from synthesis (e.g. image drawing) to
analysis (e.g., face recognition). At the same time, and for
basic physics reasons, technology progress is slowing down.
Pending a breakthrough in non-standard technologies, the only
way out is increased use of parallelism, as shown by the advent
of multicore processors and Systems on Chips.

Parallel programming is admitedly difficult and error prone,
hence the invention of parallel programming frameworks,
where the programmer is limited to safe and easily compilable
features. Examples are parallel divide and conquer, data flow
(as in Kahn Process Networks) and data parallelism. Array-
OL is such a framework, a combination of dataflow and data
parallelism. In addition, since it was originally designed for
radar and sonar applications [DG98], it is specially optimized
for processing large multidimensional datasets.

Among the formalisms that target such multidimensional
signal processing applications, let us quote MDSDF (Multi-
Dimensional Synchronous Dataflow [ML02] and its follow-
up GMDSDF (Generalized MDSDF) [ML95] proposed by
Lee and Murthy. Thanks to their multidimensional structure,
these models allow the expression of computation intensive
signal applications. However, they do not offer effective means
to exploit data or computation parallelism, and can have
some constraints limiting the field of the studied applications,
such as the number of dimensions which can be taken into
account and mechanisms of access to the data (cyclic/acyclic,
etc) [Lab06].

Another possibility is to use general purpose array process-
ing languages, like Fortran 95 [ABM+97] or HPF [HPF94].
Parallelism in HPF is expressed by specifying the distribution
of data among the processors, and then applying the “owner
computes” rule. The main differences with Array-OL are,

first, that HPF is intended to compile a complete application,
while Array-OL tools consider the inner processing as a black
box. Second, the user specified distribution of data can be
quite arbitrary and complex. The generated code is difficult
to optimize. In contrast, Array-OL is more constrained, which
makes for more efficient implementations.

Despite the considerable research effort put presently on
automating the paralellization process, it is still difficult in
practice to find tools that manage automatically the entire de-
sign flow from high level source code down to executable code
on potentially heterogeneous parallel computing platforms.
Human involvement is still necessary, but it can (and must)
be limited to high level decisions on the way the application
should be partitioned and mapped on the architecture. A major
advantage of Array-OL is that it provides high level, concise
and human-manageable views of the data dependencies. This
makes it possible to create tools like SpearDE, which allow
experienced designers to control the implementation at a
coarse grain level, relying on appropriate automatic tools that
operate at lower level, where they are the most efficient. This
approach, which first has the advantage to be operational, is
efficient both in terms of productivity, as the entire final code
is generated error-free, and in terms of performance as the
designer can tune its mapping iteratively with rapid feed-backs
from the tool on each particular mapping strategy.

In the Array-OL formalism, an application is a network
of processes which communicate through shared arrays. Each
process is a data-parallel program which acts repetitively on
its input arrays to generate its output. Several tools and en-
vironments exist for implementing an Array-OL specification
as a data parallel program such as SpearDE [LE03] (Signal
Processing Environments and ARchitectures) and Gaspard21.
In these environments, the Array-OL formalism must be used
directly. The programmer is responsible for constructing the el-
ementary transforms, identifying the input and output regions,
checking parallelism and specifying the regions parameters. To
implement these tasks, a thorough knowledge of the Array-
OL formalism is necessary. To avoid this problem, another
possibility is to infer the Array-OL specifications from a
sequential version of the program. This requires the solution
of three problems:

• Rewriting the sequential program in such a way that the
outer loops have no dependences.

1http://www.lifl.fr/west/gaspard

• Deducing the shape and size of the regions from an
analysis of the array subscript functions and loop bounds.

• Rewriting the sequential code by substituting region
accesses to the original array accesses.

This work is dedicated to a proposal for the solution of the
second and third problems. The assumption is that one is given
the sequential code, together with a list of input and output
arrays, and an indication of which loop(s) are to be considered
as the outer (repetition) loop(s).

II. A SKETCH OFARRAY-OL

For a detailed description of Array-OL, the reader is refered
to [Bou07] or [DLB+95]. As we have said earlier, Array-
OL combine task parallelism – an Array-OL application is
a process network – and data parallelism. In this paper, we
will concentrate on the second aspect.

Data-parallelism is specified as the repetitive application
of an elementary transformation to one or more input sub-
arrays (patterns), resulting in one or more output patterns. The
basic hypothesis is that all the repetitions of the elementary
transform are independent and hence can be scheduled in any
order, even in parallel.

At each repetition, the task reads the input pattern and
performs computation to produce the output pattern. For a
given input or output, all the pattern instances have the same
shape, are composed of regularly spaced elements and are
regularly placed in the array. Patterns are specified by the
following :

• F: a fitting matrix which maps array subscripts to pattern
entries

• o: the origin of the reference pattern (for the reference
repetition)

• P: a paving matrix which maps repetition counters to
array subscripts

For a better understanding of Array-OL concepts, consider
the following elementary transformation code:

ET(int in[][], int out[][]){
int i,j,k, S;
Loop1: for(i=0;i<7; i++){ // Repetition loop

Loop2 :for (k=0;k<11;k++){ // Pattern loop
S = 0;
Loop3: for(j=0;j<100;j++) // Pattern loop

S += in[0][j+11] * in[i+1][k+j];
out[i][k] = S;

}}}

Here, the elementary task reads a bidimensional arrayin
of unknown size to produce another bidimensional arrayout .
In this simple example, the iterations of the repetition loop
are independent, provided the scalarS is properly privatized.
These iterations can be executed in any order or in parallel.
The first loopLoop1 of the elementary task is the repetition
loop, while the other loops are pattern loops. At each iteration
of Loop1 , eleven elements of the output array,out[i][0]
to out[i][10] are written. The pattern is of size eleven

and the fitting matrix isF =
(

0
1

)
. The pattern moves one

unit in the first subscript direction at each iteration ofLoop1 ,

hence the paving matrix isP =
(

1
0

)
and the origin is(

0
0

)
.

Globally, some constraints on the number of rows and
columns of the fitting and paving matrices can be derived from
their use. The origin, the fitting matrix and the paving matrix
have a number of rows equal to the dimension of the array; the
fitting matrix has a number of columns equal to the dimension
of the pattern and the paving matrix has a number of columns
equal to the dimension of the repetition space.

III. E LEMENTARY TRANSFORMATION ANALYSIS

In the following sections, we explain how to infer pattern
shape, paving and fitting matrices from a sequential code.

A. Paving

Let A be an input or output array and let its occurences
in the sequential code be numbered from 1 toN . Let r be
the counter(s) of the repetition loop(s), and letjk be the
counter(s) of the inner loop(s) that surround occurencek of A.
Let ek(r, jk) be its subscript function.ek is a vector function
whose dimension is the rank ofA.

To be amenable to an Array-OL implementation, the sub-
script functionek must be affine inr and jk. A convenient
way of checking this property consists in computing the two
Jacobian matrices:

P k = (
∂ek

α

∂rβ
) Bk = (

∂ek
α

∂jk
β

),

checking that they do not depend onr or jk, and checking
the identity:

ek(r, jk) = P kr + Bkjk + ek(0, 0).

In Array-OL terminology,P k is the paving matrix, and
ek(0, 0) is the origin of the paving. The elements of these enti-
ties may be numbers, or they may depend on constants, which
must be given numerical values just before code generation.
References with different paving matrices may be separated
by arbitrary distance in the source or target array; it is not
possible to group them efficiently; they must be implemented
as separate channels.

In the preceding example, there are two references toin

with respective subscript functionse1(i, k, j) =
(

0
j + 11

)
and e2(i, k, j) =

(
i + 1
k + j

)
. The corresponding paving

matrices areP 1 =
(

0
0

)
and P 2 =

(
1
0

)
. Hence, the

two accesses must be handled separately.

B. Pattern and fitting

When discussing patterns, one has to consider three frames
of reference (see figure 1). The first one is the original (input
or output) array. Its dimension is the rank of the array, noted
|A|, and its coordinates are calledsubscripts. The shape of an
array is always a (hyper-) rectangle.

array

iteration
domain

pattern

footprint

local
subscript
function

fitting

modified subscript
function

Fig. 1. Data access in Array-OL

The second frame of reference is the iteration space of
the inner loops of the elementary transform. Its dimension
is the number of loops enclosing the reference, noteddk,
and its coordinates are calledloop counters. There may be
as many iteration domains as there are references, or several
references may share the same iteration domain. The shape of
an iteration domain is arbitrary. The only requirement in the
present context is to be able to construct its vertices, either
because the iteration domain is rectangular, or because it can
be expressed as a convex polyhedron with parameters in the
constant terms only. The iteration domain of referencek will
be denoted asDk in what follows.

The third frame of reference is the pattern. According
to [Bou07] the pattern is always of rectangular shape. The
pattern associated to referencek is denoted byT k and its di-
mension ispk. The associated fitting matrix,F k, connects the
pattern space to the array space and its dimension, accordingly,
is |A| × pk.

The relation of these objects are as follows. Firstly, the local
subscript functionfk(jk) = Bkjk+ek(0, 0) = ek(0, jk) gives
the coordinates of an array cell relative to the reference point
P k.r which moves according to the paving matrix.

Next, the imagefk(Dk) is the footprint of referencek. Its
shape is an arbitrary polyhedron. The images of the vertices
of Dk by fk form a superset of the vertices of the footprint. A
polyhedron can be represented either as the set of solutions of
a system of inequalities, or as the set of convex combinations
of a finite number of points. There exists an efficient algorithm,
the Chernikova algorithm [Sch86], for going from one of these
representations to the other and back. An implementation of
this algorithm is at the core of the Polylib2.

Lastly, the image of the pattern by the fitting matrix must
enclose the footprint, and it must be feasible to retrieve a
datum from the pattern instead of the original array. This
implies that there exists a functionφk from Dk to T k such
that for every iteration vectorjk ∈ Dk, fk(jk) = F kφk(jk).
In the text of the elementary transform,φk must be substituted
to ek in referencek to A.

As one may see from this discussion, while the iteration
domain and footprint are fixed once the sequential program is

2http://icps.u-strasbg.fr/polylib

given, the choice of the pattern and fitting matrix are somewhat
arbitrary. There are two obvious solutions: in the first one, the
pattern is the smallest rectangular box enclosing the footprint,
the fitting matrix is the identity, and the subscript function is
not changed. In the second solution, the pattern is isomorphic
to the iteration domain (provided it is a parallelepiped),Bk

is the fitting matrix, and the new subscript function is the
identity.

In signal processing applications, it is often the case that
several references to the same array have similar subscript
functions; constructing only one pattern for several references
is an interesting optimization. However, this should not be
obtained at the cost of a large overhead in the size of the
pattern. In other word, the number of useless elements in the
pattern must be minimized. Useless elements come from two
sources:

• A pattern whose shape is far from being rectangular
• A subscript matrix whose determinant is not of modulus

one: there will be holes (unused elements) in the foot-
print. The inverse of the determinant gives an asymptotic
evaluation of the ratio of useful elements.

The next section presents a method for computing a pattern
and a fitting matrix in the general case (many references).
This method can only be applied if all elements of the
matricesBk and the vectorsbk have known numerical values.
Section III-B2 presents fail-soft solutions for cases in which
these elements depend on unknown parameters.

1) The General Case:The basic observation is that a
conservative estimate of the footprint can be obtained by
computing the projection of each iteration domain by the
associated subscript function, then constructing a convenient
superset of the union of these projections. One practical
method consists in projecting the vertices of the iteration
domains. One then gathers all such projections, and constructs
their convex hull by familiar (e.g., Chernikova’s) algorithms.

To reduce the size overhead, one should notice that a useful
point for referencek also belongs to the lattice which is
generated by the column vectors ofBk. Hence,Bk, properly
simplified (see later) could be used as the fitting matrix.
However, in the case of several references, we have to combine
several lattices into one, since each pattern has only one fitting
matrix. As an illustration of this construction, consider the one-
dimensional case. A one-dimensional lattice is simply a set of
regularly spaced points. Combining two lattices generates a
lattice whose spacing is the greatest common divisor (gcd) of
the component spacings. The many-dimensional equivalent of
the gcd is the construction of the Hermite normal form of the
subscript matrices.

Let Λ(B, b) be the lattice generated byB with origin b, i.e.
the set of points{Bx + b | x ∈ INd}. Let L1 = Λ(B1, b1)
and L2 = Λ(B2, b2) be two such lattices. It is easy to see
that the union ofL1 and L2 is included in the latticeL =
Λ([B1B2(b2 − b1)], b1). This construction can be extended
to any number of component lattices. The resulting matrix
is [B1 . . . BN (b2 − b1) . . . (bN − b1)] and the origin isb1.
Furthermore,b1 can be moved to the origin of the paving and

hence taken as 0 when computing the fitting. However, this
matrix is highly redundant. It can be simplified by using the
well known fact that the Hermite normal form ofB generates
the same lattice asB [Sch86].

It is interesting to notice that this general solution reduces
to one of the approximate methods above in special cases.
If B is unitary, then its Hermite normal form is the unit
matrix. In that case, the pattern is the footprint, eventually
extended to a rectangular box and the fitting matrix is the
identity. Conversely, ifB is already in Hermite normal form,
the pattern is isomorphic to the iteration space, andB is the
fitting matrix.

2) The Parametric Case:Parameters occurs mostly in loop
bounds. They may also appear as strides and, more seldom,
in the coefficients of subscript functions.

In the Array-OL formalism, the repetition loops must be
square. Hence, their bounds may be extracted directly from the
program text. The extraction of the paving matrix is a simple
derivative computation, which is an easy task for a competent
computer algebra system. Similarly, theBk matrices are the
result of a derivation, and may contain parameters.

There are no restrictions on the inner loops. For the con-
struction of the pattern, one needs to know the vertices of the
inner iteration domain. There are three cases:

• The bounds are constant: they can be extracted even if
parametric.

• The bounds are affine expressions in outer loop coun-
ters and parameters: the vertices can be computed with
the help of Chernikova’s algorithm, as implemented for
instance in the Polylib.

• In other cases, there is no way of computing vertices, but
the user may supply a bounding box.

The computation of the Hermite normal form can be done
only if the matrix is known numerically, except in two cases:
the matrix is1× 1 (it is its own normal form) or2× 2.

If none of these circumstances applies, the solution of last
resort is to use one of the approximate schemes above. For
instance, if the vertices of the inner iteration domain are
available, it is possible, whatever theB matrix, to compute the
vertices of the footprints and to enclose them in a rectangular
box. The paving matrix is then the identity.

3) Degenerate cases:Degenerate cases occur in the follow-
ing situations:

• Access to scalars or constant subscripts
• No repetition loops
• No pattern loops

These cases have to be handled by specific code since the
underlying computer algebra system has difficulties under-
standing matrices with no rows or no columns. Let us consider
the case when there are no pattern loops. One can still compute
a fitting matrix for each access and group accesses according
to their paving matrix.

In a group, accesses may differ by the constant part of the
subscript function. In that case, one may still compute a fitting
matrix – via the Hermite normal form construction – and a

bounding box. If there is only one access, or if all accesses
have the same constant part, the pattern has only one element,
and, by convention, the fitting matrix is empty.

It is also possible that the studied application does not
respect the Array-OL model semantics in the following sit-
uations:

• Several references to the same input or output array with
different paving

• Several repetition loops at the same level
• Sequential loops with recurrence on a given variable
• Array used as subscript

In these cases, it is difficult, even impossible to compute the
Array-OL informations and predict the pattern shape.

As discussed in section III-A, if there are several references
to the same input or output array, our general algorithm
computes one paving matrix for each reference. This is not
allowed in the Array-OL model if the paving matrices are
different. In this model, the different accesses to the same
array must be handled separately. A possible solution is then
to implement the array accesses as separate channels.

Using different repetition loops at the same level is also not
allowed by the Array-OL model. In this model, each repetition
loop nest must be performed as a separate elementary trans-
form. To solve this problem, we can compute the pattern for
each repetition loop nest, and then join the different resulting
patterns.

If the studied application contains loops that can not be
executed in parallel, it is difficult to model it in the Array-OL
parallel model as explained by the example of section V. It is
also impossible to predict the pattern and Array-OL parallel
informations if the subscript function contains array since we
have no information on the content of this array as in the
following example:

int tab_inter[];
int IN1_D1,IN1_D2, IN1_D3, OUT1_D1;
void SP_Interleave(

int D_In[IN1_D1][IN1_D2][IN1_D3],
int D_Out[OUT1_D1]){

int bloc,symb,b;
int Ncbps, nb_sous_p_utiles;
int Dim1_bits_poinconnes;
Dim1_bits_poinconnes = OUT1_D1;
for(bloc=0;bloc<Dim1_bits_poinconnes;bloc++){

for(symb=0;symb<nb_sous_p_utiles;symb++) {
for(b=0;b<nb_bits_par_symb;b++) {

D_In[bloc][symb][b] =
D_Out[tab_inter[symb*nb_bits_par_symb+b]];

}
}

}
}

In the present implementation, and in order to simplify the
processing of the special cases which are not allowed by the
Array-OL model, we decided that the paving matrix is empty,
the fitting matrix is the identity and the pattern is the whole
array. A warning message is also displayed to inform the user.

IV. I MPLEMENTATION

A prototype tool has been implemented as an extension to
the Syntol scheduler [Fea06]. CRP, the input language of Syn-

Sequential code

(C code)
CRP code

Syntol
.o file

number of

repetition loops

SpearSyntol

Pattern

Fitting

Paving

...

Fig. 2. SpearSyntol implementation

tol, is a specification language for processes communicating
via shared arrays. The basic syntax of CRP is ANSI C. The
conversion of ordinary C code to CRP is straightforward and
completely automated.

The algorithms we have presented in the preceding sections
have been implemented as an additional pass in Syntol.
Syntol is responsible for syntax analysis and checking, loop
identification and array accesses extraction. As a side effect,
Syntol catches many errors and inconsistencies, like type and
subscript errors. The output of Syntol is submitted to the
SpearSyntol pass, which has been implemented within the
MuPAD3 computer algebra system. SpearSyntol needs another
information: the number of repetition loops, which cannot be
inferred from the program text.

The first step in this analyser is the detection of the
repetition loops and the pattern loops. Thereafter, the analyzer
computes for each input and output array the pattern shape,
the origin reference and the paving and fitting matrices.

The results of this analysis can be given in several forms: a
simple output log or an XML file or as additions to an Eclipse
Ecore model. A gateway from SpearSyntol to SpearDE has
also been developped. Figure 2 is a flow diagram of the the
SpearSyntol analyzer.

V. CASE STUDY

As a case study, we have used a prototype implementation
of a full 802-16 modem transmit and receive processing chain
as implemented at Thales on SpearDE from a hand-made
description of the elementary transformations (ETs). A random
sequence of bits is encoded, interleaved, and converted to a
sequence of signal samples that are passed through a radio
channel simulator. The output of this simulator is submitted
to the inverse processing chain, and the decoded sequence is
compared to the source. The corresponding 23 ETs represent
about 1200 lines of C (see Figure 3). An example of ET code
is given below:

void SP_Collapse_depunc(
double D_In[SP_Collapse_depunc_IN1_D1]

[SP_Collapse_depunc_IN1_D2],
double D_Out[SP_Collapse_depunc_OUT1_D1]){

int Dim1_In, Dim2_In;
int ofsM, bdM, b,ofs;
Dim1_In = SP_Collapse_depunc_IN1_D1;
Dim2_In = SP_Collapse_depunc_IN1_D2;
ofsM = Dim1_In;
bdM = Dim2_In;
for(ofs=0;ofs<ofsM; ofs++)

for(b=0;b<bdM; b++)

3http://www.mupad.de

D_Out[b+ ofs*bdM] = D_In[b][ofs];
SP_Collapse_depunc_OUT1_D1 = bdM*ofsM;

}

Arrays appear in the ET’s declaration with their dimension
(1 or 2 here), and the type of their data (int, double, ..). Their
extent in each dimension is given as a parameter which is
reused within the ET, in particular to derive the loop bounds.
In the above example, the main loop onofs is declared
elsewhere as being the repetition loop, i.e. the associated
Jacobian will be used to create the paving matrices (stride
of 1 on the first dimensions of both input and output). The
internal loop on b is analysed to find a fitting of 1 on the
second dimension of the input array and a pattern length equal
to parameterbdM.

The next example illustrates the case where an array is
referenced several times:

int poincon;
int SP_Puncture_IN1_D1, SP_Puncture_OUT1_D1;
void SP_Puncture(

int D_bits_codes[SP_Puncture_IN1_D1] ,
int D_bits_poinconnes[SP_Puncture_OUT1_D1]){

int i;
int Dim1_bits_codes = SP_Puncture_IN1_D1;
Dim1_bits_codes = SP_Puncture_IN1_D1;
for (i=1; i<=(Dim1_bits_codes/4); i++){

D_bits_poinconnes[(i-1)*3 + 0] =
D_bits_codes[(i-1)*4 + 0];

D_bits_poinconnes[(i-1)*3 + 1] =
D_bits_codes[(i-1)*4 + 1];

D_bits_poinconnes[(i-1)*3 + 2] =
D_bits_codes[(i-1)*4 + 3];

}
SP_Puncture_OUT1_D1 = 3*Dim1_bits_codes/4;

}

In that case, the analyser computes for each array a rect-
angular approximation of the pattern; namely of length 4 for
the input and 3 for the output. Most elementary transforms in
this experiment were correctly analyzed by our tools. Some
of the difficulties came from genuine algorithmics problems.
For instance, in the bit decoding routine, one find a loop:

current = 0;
for(i=0; i<n; i++){

current = In[current][n-i];
Out[n-i] = etat & mask;

}

This loop cannot be executed in parallel, since there is
a recurrence oncurrent . Furthermore, since this variable
takes its values from the arrayIn , which is an input to the
routine, it is impossible to predict its value as a function of
the iteration variable. Hence, the indexing pattern ofIn is
unknown at compile time. The only possibility is to decide

Fig. 3. Elementary transformations in the modem example

that In has no paving, and that its fitting is the identity, the
pattern being the whole array.

Other difficulties come from the coding practices of the
writers of elementary transforms. In many cases, array are
not declared as such, but accessed through descriptors. Loop
bounds are computed from information in these descriptors.
Since many array dimensions are not given, it may be nec-
essary to infer them from the loop bounds, by a process
akin to symbolic execution. In the exemple above, there is
no information in the program text about the first dimension
of In ; it must be supplied by the user.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have explained how to analyse elementary
transformation to infer Array-OL specifications. The objective
of this work is to facilitate the use of Array-OL formalism and
to allow the re-use of legacy code in a parallel context. The
Array-OL system is dedicated to the specification of intensive
signal processing applications, and its main characteristic is
that it allows the exploitation of the full parallelism in these
applications.

In the future, we will study more general cases, in particular
the possibility of manipulating skewed patterns. It is also
possible to benefit from Syntol results for a better analysis
of the parallel application. Since the Syntol tool computes
dependences, it is thus possible to check that the repetition
loops are actually parallel. One must take care that Syntol will
find dependences if temporary scalars are used in the code of
the elementary transforms. These scalars must be expanded or
privatized at code generation time.

Overlap between patterns (or, rather, between footprints) is
another concern. For input arrays, overlap is just a cause of
inefficiency, since some arrays cells will be copied several
times to processors. Overlap for output arrays are more

dangerous since they may induce non-determinism. The ex-
istence of overlap may be tested provided one stays inside the
polytope model (affine loop bounds and indexing functions,
with numerical coefficients and linear parameters).

REFERENCES

[ABM+97] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Jerrold L.
Wagener and Brian T. Smith.Fortran 95 Handbook: Complete ISO/ANSI
Reference. MIT Press, Cambridge, 1997.

[Bou07] Pierre Boulet.Array-ol revisited, multidemensional intensive signal
processing specification. Research Report RR-6113, INRIA, February
2007.

[DG98] Alain Demeure and Yannick Del Gallo.An Array Approach for
Signal Processing Design. In Sophia-Antipolis conference on Micro-
Electronics (SAME 98), France, October 1998.

[DLB+95] Alain Demeure, Anne Lafarge, Emmanuel Boutillon, Didier
Rozzonelli, Jean-Claude Dufourd, and Jean-Louis Marro.Array-OL:
Proposition d’un formalisme tableau pour le traitement de signal multi-
dimensionnel. In Gretsi (Groupe d’Etudes du Traitement du Signal et des
Images), pages 1029-1032, France, 1995.

[Fea06] Paul Feautrier.Scalable and Structured Scheduling. International
Journal of Parallel Programming, 34(5), pages 459-487, Norwell, MA,
USA, 2006.

[HPF94] CORPORATE High Performance Fortran Forum. High performance
Fortran language specification (part III). SIGPLAN Fortran Forum, 13(3),
pages 22-55, ACM, New York, NY, USA, 1994.

[Lab06] Ouassila Labbani.Modélisation à haut niveau du contrôle dans
des applications de traitement systématiqueà parallélisme massif. PhD
thesis, LIFL, Universit́e des Sciences et Technologies de Lille, November
2006.

[LE03] Eric Lenormand and Gilbert Edelin.An Industrial Perspective: A
pragmatic high-end signal processing environment at Thales. In SAMOS:
3rd international workshop on synthesis, architectures, modeling and
simulation, pages 52-57, 2003.

[ML95] Praveen K. Murthy and Edward A. Lee.A generalization of
multidimensional synchronous dataflow to arbitrary sampling lattices.
Proceedings of the ICASSP’96, Atlanta GA, May 1996.

[ML02] Praveen K. Murthy and Edward A. Lee.Multidimensional syn-
chronous dataflow. IEEE Transactions on Signal Processing, 50(8):2064-
2079, august 2002.

[Sch86] Alexander Schrijver. Theory of linear and integer programming.
John Wiley & Sons, NewYork, June 1998.

