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S u m m a r y .  The aim of this paper is to explain the importance of polytope and 
polyhedra in automatic parallelization. We show that the semantics of parallel 
programs is best described geometrically, as properties of sets of integral points 
in n-dimensional spaces, where n is related to the maximum nesting depth of DO 
loops. The needed properties translate nicely to properties of polyhedra, for which 
many algorithms have been designed for the needs of optimization and operation 
research. We show how these ideas apply to scheduling, placement and parallel code 
generation. 

1. The Geometry of Programs 

Since the 1990, great progress has been made toward au tomat ic  or semi-au- 
tomat ic  p rogramming  of supercomputers  through the use of the polytope 
model One may  wonder what polytopes have to do with programming.  The 
aim of this paper  is to answer this question, at least in relation to the field 
of parallel programs.  The polytope model may be used in many  different 
situations, such as for program checking, but these applications still await 
further developments.  

Generat ing a p rogram for a parallel computer  is a problem in translation, 
and, as is the case for all such problems, the bet ter  the understanding of the 
source text and the bet ter  the result. Assemblers do word for word translat ion 
while early compilers did only "phrase for phrase" translation. Each "part  of 
speech" in the input text  was looked up in a dictionary, and the associated 
translation was subst i tuted with minor modifications. A limited amount  of 
knowledge was then added to improve the final result, for instance in the 
form of a type system. 

In the case of a fully developed type system, like the one in ML [MTH90], 
knowledge about operators in the language is given to the compiler in 
the form of typing rules, which are essentially Horn clauses. A program 
is correct if, for each of its expressions, one can prove a theorem in the 
first-order theory generated by the typing rules. This is done quite easily 
with the help of unification and resolution. 

This is the basic scheme for all sophisticated program handling systems. 
The program, or at least the interesting features of the program, is t ranslated 
first in an easily manipulable  language, like an algebra or a logical theory. 
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Each time one needs non obvious information, one does a calculation or proves 
a theorem in the underlying system. 

Optimizing compilers need much information to decide whether a trans- 
formation is allowed or not. The relevant information is related to the flow 
of control - may a given point in the program be reached from another one 
- and also to the flow of data  - may" a given value which has been defined at 
some point in the program still be used at some other point? Sophisticated 
techniques have been designed to abstract that  kind of information from the 
program text. Let us note the following characteristics: 

- They can be applied to arbitrary programs. In fact, most of them were 
designed to work on program flowcharts. 

- They give static information only, i.e. time has become a universally quan- 
tified variable in their results. For instance, methods which generate prop- 
erties of variables gives results of the form "Each time the control reaches 
a given point, such and such variables stand in the following relation to 
each other .... ". 

In the case of a parallel program, the course of events in the calculation 
is of crucial importance. One has to decide, e.g. if two calculations have to 
be executed in sequence or can be safely overlapped. One may say, in fact, 
that  constructing a parallel program is equivalent to specifying its execution 
order, i.e. the "is executed before" relation between its operations. 

The operations of a program form a set, and its execution order is a binary~ 
transitive and asymmetric relation on the set of operations. For terminating 
programs, these sets are finite, but  in real-life cases, they are too large to be 
handled in extension, by listing all their members. They must be handled in 
intension, as the set of solutions of a given system of constraints. For a large 
proportion of computat ion intensive programs, the relevant sets are (unions 
of) 2~-polytopes, i.e. sets of integral solutions to systems of affine inequalities. 
Hence the importance of polytopes for modeling these programs. Fortunately, 
the theory of polyhedra, polytopes and Z-modules is well developed, as being 
the basis of linear programming. Practitioners of automatic parallelization 
have found a ready-made toolchest in Operation Research literature. 

In the following, we will first describe how geometrical objects like poly- 
topes may" be used to specify the semantics of a certain class of programs. As 
all powerful techniques, the polytope model has a limited domain of applica- 
tion. We outline in Section 2. the needed constraints on the control statements 
and the data  structures: basically, DO loops and linearly indexed arrays. We 
will then review the needed tools. Most of the optimizations we are inter- 
ested in may be presented as transformations of the original program. These 
transformations often are linear or affine or piecewise affine, and hence they 
transform polytopes into polytopes. Their effect on ~-polytopes is more com- 
plicated. Hence, sophisticated techniques have to be used, especially for code 
generation of the transformed program. 



Automatic Parallelization in the Polytope Model 81 

In the conclusion, we assess what has been achieved, and what still need to 
be improved in the polytope model. Beside that,  we try to indicate in which 
directions the model can be extended and which are the ul t imate obstacles 
to these extensions. 

2. G e o m e t r i c a l  S e m a n t i c s  

Our aim here is to delineate the kind of information a parallelizing compiler 
needs to do its job. We will show that  in cases which cover a large subset 
of high performance computations,  this information can be neatly packaged 
into ~-polytopes. Most questions the compiler needs answers to relate simply 
to questions about  25-polytopes, the most important  one being the emptiness 
question. 

2.1 P r o g r a m s  as O r d e r s  

The usual method for defining the semantics of a sequential program is to 
associate with each elementary construct a function which specifies the trans- 
formation of the store which occurs when the construct is executed. For in- 
stance, when an assignment is executed, the right hand side is computed in 
the context of the old store. A new store is then constructed, which is identi- 
cal to the old one at all locations except the one associated to the left hand 
side. Transformations associated with more complex constructs are obtained 
by combining simpler transformations. For instance, the sequence is asso- 
ciated with function composition, and the whi le  loop is associated with a 
fixpoint calculation. The whole technique is called functional or denotational 
semantics. 

Applying this method to parallel programs is not possible, since functional 
semantics considers as equivalent programs whose behaviour is quite different 
in a multiprocessing context, x := x+l ;  x :=  x+2 is equivalent to x := x+3 
in denotational semantics. As processes in a parallel program, the second one 
may be atomic while the first one is not. 

We see that  the program representation has to be in term of atomic events 
or operations, an operation being the execution of one instruction. For most 
situations, working with high-level statements (e.g., Fortran assigmnents) is 
sufficient as a first approach of the problem. We will thus suppose that  we 
are given a set E of operations. As we are interested only in programs which 
terminate, this set will be supposed finite, albeit much too large to be handled 
explicitly in practical cases. 

As any experienced programmer knows, knowledge of E is not enough to 
decide what the final result of the program will be. One needs to know the 
order in which the operations are to be executed. In a sequential program, this 
order is specified totally by the control statements. In that  case, E is a totally 
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ordered set. On a parallel computer ,  the order of execution of some operations 
may  not be specified, for instance because they are executed independently on 
asynchronous processors. The execution order is then partial.  An actual run 
of the parallel program is associated to some total  extension of this order. 
There may  be several such extensions, with different final results. Parallel 
programs may  not be determinate .  The problem of automat ic  parallelization 
thus boils down to the following scheme: 

- We are given a set of operations E and a strict total  order on it, -~. 
- Find a part ial  order ~ / /  on E such that  execution of E under it is deter- 

minate  and gives the same results as the original program. 

The simplest case of the parallelization problem is the two-operation program 
u; v. There is only one way of converting it to a parallel program, u II v. This 
program has the empty  order, which can be extended to a total  order in 
two ways: u -< v and v -4 u. The first order gives the sequential execution 
u; v (i.e., the original program),  and the second one gives v; u. If  the parallel 
program is to be determinate,  one must  have u; v = v; u, in words operations 
u and v must  commute .  If  they do not., they are said to be dependent,  which 
is written: u 5 v. 

This result can be generalized to the c o m m u t a t i o n / e m m a .  A program 
with a partial  order -</ / is  deterministic if all operations pairs which are non- 
comparable  by -< / / commute .  Suppose we are given a sequential program with 
order -<. We want to know if the partial  order -<// is valid for this program.  
As a corollary of the commuta t ion  l emma we find tha t  a sufficient condition 
is that  all pairs of dependent operations are ordered in the same way by -< 
and ~ / / :  

u -,: v A u ~ v  =~ u -</t v. (2.1) 

As a consequence, the coarsest valid order is: 

-~11 = (-~ n 6 )  +, 

where + is the strict transitive closure. The relation -~ N 6 is known as the 
detailed dependence graph of the source program. 

Notice tha t  this is only a sufficient condition for determinism: we have 
already sacrificed some parallelism for simplicity. Comput ing  (~ may  be of 
arbi trary complexity. However, a sufficient condition for commuta t ion  is eas- 
ily constructed [Bet66]: let R(u)  (resp. M ( u ) )  be the set of memory  cells 
which are read (resp modified) by u. u and v commute  if: 

M ( u )  n R(v)  = O, n = O, n M ( v )  = O. 

The three terms in that  formula appear  to be symetrical,  but  the symetry  
is broken as soon as we suppose that  u -,: v. Violation of the first condition 
is called a f tow dependence.  The other terms correspond to anti- and output  
dependences. 
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In the general case, when arbitrary address calculations are allowed, test- 
ing Bernstein's conditions may still be quite complicated. Suppose for in- 
stance that  a, b, c, n are positive integers with n > 2. Then the two opera- 
tions: 

X(a '~ + b '~) --- O, 

x(c  = 1, 

are independent if Fermat 's  Last Theorem holds. We cannot hope a compiler 
to be able to decide such cases. This has lead to the definition of static 
control programs, in which the complexity of address calculations is severely 
restricted. 

2.2 S t a t i c  C o n t r o l  P r o g r a m s  

The first condition is that  the set of operations must be known at compile 
time. Programs with finite operations sets are quite uninteresting, while po- 
tentially nonterminating programs are very difficult to analyse. The middle 
ground seems to be DO loop programs, where the loop bounds depend on 
symbolic constants (called here structure parameters). In that  case, the iter- 
ation domains are finite, but may have arbitrary size according to the value 
of the structure parameters.  In such a program, an operation is an iteration 
of a statement,  which can be specified by giving the values of the surround- 
ing loop counters. These will be ordered from outside inward and called the 
iteration vector. Iteration x of statement S is (S, :g). To be consistent, loops 
are also numbered from outside inward, which means that  component p of x 
is the counter of loop p. 

The iteration vector is constrained by the loop bounds, if we suppose 
that  these bounds are affine functions of the surrounding loop counters and 
structure parameters,  then the iteration domain of each statement is given by 
a set of linear inequalities, which have a special form. For a nest of N loops, 
there are 2N inequalities. Inequalities 2k - 1 and 2k depend only on the first 
k components of the iteration vector. As we will see later, it is interesting 
to generalize to iteration domains which are defined by any number of linear 
inequalities of whatever form. However, iteration domains should stay finite 1. 
Since loop counters are integers, iteration domains are sets of integer vectors 
inside polytopes, or Z-polytopes. The iteration domain of s tatement S will 
be written as: 

Oom(S) = {x  [ D s x  + d S > 0}, 

where D s and d s are the matr ix  and constant vector which define the itera- 
tion polytope, d s may  depend linearly on the structure parameters. 

The execution order of the operations in a static control program can be 
deduced from two facts: 

1 Infinite iteration domains are interesting for online applications and can be 
handled in special cases. 
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- The iterations of a loop nest are executed according to the lexicographic 
order (noted << here) of their iteration vectors. 

- All other things being equal, two operations are executed according to their 
order in the program text, noted as <1 here. 

Let us introduce the following notations: 

- a~[n..m] is the subvector of �9 built from components n to m. x[n] is an 
abbreviation for a~[n..n]. 

<% ~ --_ ~[1..p] = ~[1..v] A ~[p + 11 < ~[p + 11 

and << is given by: 
N - 1  

~<<Y--- V ~ < % y ,  (2.2) 
p=O 

where N is the common dimension of ~ and y. 
- NRS is the number of loops surrounding both R and S. Accordingly, the 

number of loop surrounding S should be written NSS. It will be abbreviated 
to N 8 here~ 

We have shown in [Fea91] that: 

(R, a~> -~ <s, y> - ~[1..Nas] << b[1..NRS] V (a~[1..Nas] = y[1. .gRs ] A R <~ S). 
(2.a) 

The predicate -~ is not convex, hence it cannot be represented as a poly- 
hedron. However, ~ can be split into NRS + 1 linear predicates -~p as in (2.2). 
Each term in the disjunction is then a polyhedron. 

We will now restrict da ta  structures to arrays with subscripts which are 
linear in the structure parameters and the outer loop counters. Furthermore,  
we will suppose that  there is no aliasing - two arrays with differing names refer 
to non-overlapping regions in memory - and that subscripts stay within the 
array dimensions. This implies that  array accesses stay within the allocated 
zone, and that  the accessed address is in one-to-one correspondence with the 
subscripts. 

Under these hypotheses, to be dependent, two operations must access the 
same array, and one of them at least must modify it. Let X[f(x)] and X[g(a~)] 
be the conflicting array" accesses, af and g are the subscripting functions; 
they have the same number of components, namely the rank of array X. 
The operations in dependence at depth p are the members of the following 
dependence relation [PW93]: 

{(R, ~>, <s, ~> I q~s(~ ,  y)} 

where Q~ts is the following polytope: 

q~ts(X,y)=_ f(a~)=g(y)A(R,a~)-% (S,y) A m e : l ) R A Y 6 : D S  (2.4) 
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The union of all dependence relations is a symbolic description of the detailed 
dependence graph. With these notations, (2.1) translates to: 

Qf~S(*' Y) :::> <R, ~> -.<// <S, y>. (2.5) 

As we will see in the next section, these dependence relations can be 
handled directly in the polytope model. Various researchers have sought to 
find approximation to them, i.e. simpler polytopes which still enclose QRS' 
One possibility is to ignore the dependence on both �9 and y and to consider 
only dependence distances, i.e to project on the difference y - ~ [DV94]. 
This has meaning only when statements R and S have the same iteration 
space, i.e. belong to the same loop nest. The set. of dependence distances 
can be enclosed in a cone which can be represented by its extremal rays 
[IT87]. Another possibility is to note only the signs of the components of the 
extremal rays of the dependence cone, giving the dependence directions. The 
usual solution is to test each Qf~s for emptiness. If this set is not empty, one 
supposes that  all operations such that  (R, ~> -~v (S, y} are in dependence, and 
one says that  there is a depth p dependence from R to S. An important  result 
is that  in a perfect loop nest, if there is no dependence at depth p, then the 
loop numbered p + 1 is parallel. 

An important  special case is that of uniform dependences, in which the 
set of dependence distances is a singleton: 

Q~,S(~, y) = y = x + d. (2.6) 

Obviously, since two statements may have many array references and since 
there are several depths to be considered, there may be many dependence 
vectors such as d. It is easy to see that  all such vectors are lexicopositive. 

2.3 T h e  D a t a f l o w  C a l c u l a t i o n  

Another possibility for simpli~;ing the dependence relation is to remove re- 
dundant pairs. The basic technique is best explained on a scalar example: 

W1 : x =  ... 

, . . 

W2 : x =  ... 

R : u = ... x ,.. 

In this program skeleton, there are two flow dependences from W1 to R and 
from W2 to R, and an output  dependence from W1 to W2. It is clear that  
the first flow dependence is redundant,  both in the sense that  it can be 
reconstructed from the other two by transitivity, and also in the sense that  
the value written into x by Wl never reach g since it is killed by W2. The 
set of flow dependences which give rise to a real flow of data  constitutes the 
direct dependences [Bra88] or the value based dependences [PW93]. There 
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are several methods for computing this set: I will describe here the original 
solution of [Fea88a, Fea91]. 

Suppose that  in the dependence polytope (2.4), s tatement R writes into X 
and statement S reads it. Consider 0Rs as a •-polytope in x with parameters 
y. It is clear that  the value written by R which reaches (S, y} is the one which 
is written last according to -~, i.e. has as its iteration vector the lexicographic 
maximum: 

= i (2.7) 

Each statement which writes into X and each possible depth p give such a 
potential source. The real source is the latest., i.e. their maximum according 
to 4.  We will describe in the next section the tools which are needed for such 
calculations. 

3. Basic Tools for Handling Polyhedra and Z-Polyhedra 

The basic reference on linear inequalities in rationals or integers is the treatise 
[Sch86]. 

3.1 P o l y h e d r a  a n d  P o l y t o p e s  

There are two ways of defining a polyhedron. The simplest one is to give a 
set of linear inequalities: 

A ~ s + a  > 0. 

The polyhedron is the set of all x which satisfies these inequalities. A poly- 
hedron can be empty - the set of defining inequalities is said to be in['easible 
- or unbounded. A bounded polyhedron is called a polytope. 

The basic property of a polyhedron is convexity: if two points a and b 
belong to a polyhedron, then so do all convex combinations Aa + (1 -A)b ,  0 _< 
A < 1, Conversely, it can be shown that  any polyhedron can be generated 
by convex combinations of a finite set of points, some of which - rays - may 
be at infinity. Any polyhedron is generated by a minimal set of vertices and 
rays. 

There exist non-polynomial algorithms for going from a representation by 
inequalities to a representation by vertices and rays and vice-versa. Each rep- 
resentation has its merits: for instance, inequalities are better for constructing 
intersections, while vertices are better for convex unions 2. 

The basic algorithms for handling polyhedra are feasibility tests: the Fou- 
rier-Motzkin cross-elimination method [Fou90] and the Simplex [Dan63]. The 
interested reader is referred to the above quoted treatise of Schrijver for de- 
tails. Both algorithms prove that  the object polynomial is empty, or exhibit 

2 Notice that while the intersection of two polyhedra is a polyhedron, their union 
is not. 
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a point which belongs to it. For definiteness, this point is generally the lex- 
icographic minimum of the polyhedron. In the case of the Fourier-Motzkin 
algorithm, the construction of the exhibit point is a well separated phase 
which is omitted in most cases. 

In the Fourier-Motzkin algorithm, one selects a variable and scans all 
inequalities. If the variable has a positive coefficient, the inequality gives a 
lower bound for it. Conversely if the coefficient is negative, one gets an upper 
bound, while if the coefficient is zero, the inequality gives no information 
on the variable. The variable is eliminated by writing that  each of its lower 
bounds is not greater than each of its upper bounds. At the end of the 
elimination process, one gets numerical inequalities. If one of them is false, 
the original system was infeasible. Conversely, if all final inequalities are true, 
then by going backward into the elimination sequence one can construct a 
feasible solution. 

The asymptotic complexity of the Fourier-Motzkin method is super-ex- 
ponential. However, it is very easy to program, and experiments have shown 
that it is very fast for small problems, say of the order of 10 inequalities at 
most. 

Our implementation of the Simplex, PIP [Fea88b] is a geometrical method 
which can be explained in the following way. Let n be the number of unknowns 
and m be the number of inequalities in the problem to be solved. One obtains 
a vertex of a polyhedron by selecting n inequalities, transforming them into 
equations and solving. The solution point is a real vertex if it satisfies all other 
inequalities. Otherwise, it is a virtual or external vertex. In the Simplex, one 
goes from virtual vertices to virtual vertices in the direction of lexicographic 
increase, until a real one is obtained, or until evidence of unfeasibility has 
been found. The first real vertex to be found in this way is the lexicographic 
minimum of the polyhedron. Going fl'om one vertex to the next one is akin 
to one step of Gaussian elimination, with special rules for the selection of the 
pivot. The complexity of each step is O(nm), but there can be an exponential 
number of steps. However, it has been shown that  this number has a high 
probability of being O(n). All in all, the Simplex is faster than Fourier- 
Motzkin for large problems. 

3.2 Z - M o d u l e s  

Let v l , . . . ,  v. be a set of linearly independent vectors of Z ~* with integral 
components. The set: 

Z ( v l , . . . , v , )  = {~1vl + . . . +  ~ v ~  f ~i ~ Z} 

is the Z-module generated by v t , . . . ,  v,~. The set of all integral points in 
Z '~ is the Z-module generated by the canonical basis vectors (the canonical 
Z-module). 

Any Z-module can be characterized by the square matrix V of which 
(v~, . . . ,vn)  are the column vectors. We will use the notation g(V) for 
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s  . . . ,  vn). However, many different matrices may represent the same Z- 
module. A square matr ix  is said to be unimodular if it has integral coefficients 
and if its determinant  is =kl. Let U be a unimodular matrix. It is easy to prove 
that V and V U  generate the same lattice. 

Conversely, it can be shown that  any non-singular matr ix V can be writ- 
ten in the form V = H U  where U is unimodular and H has the following 
properties: 

- H is lower triangular, 
- All coefficients of H are positive, 
- The coefficients in the diagonal of H dominate coefficients in the same row. 

H is the Hermite normal form of V. Two matrices generate the same Z- 
module if they have the same Hermite normal form. The Hermite normal 
form of a unimodular matr ix  is the identity matrix, which generates the 
canonical Z-module. 

Computing the Hermite normal form of an n • n matr ix  is of complexity 
O(n3), provided that  the integers generated in the process are of such size 
that arithmetic operations can still be done in time 0(1) .  

3.3 Z - P o l y h e d r a  

A Z-polyhedron is the intersection of a Z-module and a polyhedron: 

F = { z I z e s  

If the context is clear, and if s  is the canonical Z-module (V = I), it may 
be omitted in the definition. 

The basic problem about Z-polyhedra is the question of their emptiness or 
not. For canonical Z-polyhedra, this is the linear integer programming ques- 
tion [Seh86, Min83]. I will briefly sketch two integer programming algorithm: 
the Omega test [Pug91a] which is an extension of Eourier-Motzkin, and the 
Gomory cut method, which is an extension of the Simplex [Gom63]. 

Recall that  in the Eourier-Motzkin method, we start  by extracting lower 
and upper bounds for the selected variable, and then write that  each lower 
bound is not greater than each upper bound. This condition is enough to 
ensure the existence of a rational value, but not of an integer value for the 
selected variable. In fact, if one of the bounds is an integer, the existence of 
an integer solution is guaranteed. This happens in two cases: the bound is an 
affine form with integer coefficients, or the bound is a number, which can be 
replaced by its floor or ceiling. In the remaining case, one can prove that  the 
possible values of the selected variable are of the form x = d y ~- r, 0 <_ r < d 
for some number d. The original problem splits into d problems, one for each 
value of r, in which x is eliminabted in favor of y. It. is possible to prove that  
in this way one can proceed to eliminate all variables using only exact integer 
elimination. In the original Omega test software~ various devices are used to 
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eliminate redundant inequalities, to make the most out of equations, and to 
order the eliminations in the most favorable way. The resulting test is very 
fast. 

In the case of the Simplex, one proceeds as in the rational case, until the 
opt imum is found. If the solution is integral, there is nothing more to do. 
If not, one constructs a Gomory cut, i.e. a new constraint which excludes 
the opt imum but no integer point in the Z-polyhedron. The Simplex is then 
restarted with one more constraint. It can be proved - see [Sch86] or [Fea88b] 
- that  either the algorithm fails because one of the extended set of constraints 
proves infeasible, or an integral opt imum is found after a finite number of cuts. 

Both the Omega test and the Gomory cut method are inherently non 
polynomial algorithms, since the integer programming problem is known to 
be NP-complete. 

3.4 P a r a m e t r i c  P r o b l e m s  

A linear programming problem is parametric if some of its elements - e.g. the 
coefficients of the constraint matr ix  or those of the economic function - de- 
pend on parameters.  In problems associated to parallelization, it so happens 
that constraints are often linear with respect to parameters..  In fact, most of 
the time we are given a polyhedron 7): 

A ( a ~  ) d - a > 0 y  

in which the variables have been partit ioned in two sets, the unknowns: a~, 
and the parameters: y. Setting the values of the parameters to p is equivalent 
to considering the intersection of )o with the hyperplane y = p, which is also 
a polyhedron. In a parametric problem, we have to find the lexicographic 
minimum of this intersection as a function of p. 

The Fourier-Motzkin method is "naturally" parametric in this sense. One 
only has to eliminate the unknowns from the last component of x to the 
first. When this is done, the remaining inequalities give the conditions that  
the parameters must satisfy for the intersection to be non empty. If this 
condition is verified, each unknown is set to its minimum possible value, i.e. 
to the maximum of all its lower bounds. Let Cy + c > 0 be the resulting 
inequalities after elimination of all unknowns. The parametric solution may 
be written: 

( lnax(f(p),...,g(p)) ) 
n-~n(P N {y = p}) = i f  Cp + c > 0 t h e n  -.- e lse  .L 

max(h(p),..., k(p)) 

where _1_ is the undefined value and the functions f , . . . ,  k are affine. 
In the case of the Simplex, the situation is more complicated. One may 

notice that  since the coefficients of the constraint matr ix  A are constant, once 
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the pivot is known, a step of Gaussian elimination can be done without diffi- 
culty. Similarly, when the pivot line is known, the choice of the pivot column 
depends only on the constraint matrix,  hence does not depend on parameters.  
The only difficulty lies in the choice of the pivot line, which is such that  its 
constant coefficient must be negative. Since this coefficient depends in gen- 
eral on the parameters, its sign cannot be ascertained; the problem must be 
split in two, with opposite hypotheses on this sign. These hypotheses are not 
independent; each one restricts the possible values of the parameters, until 
inconsistent hypotheses are encountered. At this point, the splitting process 
stops. By climbing back the problem tree, one may reconstruct the solution 
in the form of a multistage conditional. The advantage of the parametric 
Simplex over the Fourier-Motzkin algorithm is that  it can be extended to the 
Ml-integer case. Parametric  Gomory cuts can be constructed by introducing 
new parameters which represent in fact integer quotients. The reader is re- 
ferred to [Fea88b] for details of the Parametric Integer Programming (PIP) 
algorithm which implements these ideas. 

In this way, calculation of K~S in (2.7) is a straightforward application of 
PIP (with a little fiddling for computing a maximum}. The combination of 
the various sources for constructing the final solution is an exercise in formal 
simplification. 

4 .  P r o g r a m  T r a n s f o r m a t i o n s  

Since the 1980's, many reaserchers have designed dozens of program transfor- 
mations with the aim of finding more and more parallelism in static control 
programs. These transformations can be classified along the following lines: 

- Transformations which bring the source code nearer to the static control 
model, like GOT0s elimination, inductive variable detection and DO loop 
reconstruction. For more information, the reader is referred to any book 
on sequential compilation, as for instance [ASU86]. 

- Transformations which change the execution order of a program, the set of 
operations being left untouched. The polytope model offers an integrated 
way of choosing and applying these transformations, to which we will return 
later. 

- Transformations which change the data  structures of the source program, 
for instance by expanding scalars to arrays. The key to this transformation 
is dataflow analysis. 

- Transformations which rely on the mathematical  properties of the source 
algorithm. One may for instance use the associativity of some arithmetic 
operators like + and * to find parallelism in reductions. Another case is 
the replacement of iteration by chaotic iteration for some convergent algo- 
rithms. The problem with these transformations is that  they modify - for 
better or for worse - the sensitivity of the algorithm to rounding errors, 



Aur Parallelization in the Polytope Model 91 

and have to be used with caution. The study of tha t  kind of t ransformation 
is just  beginning; the interested reader is referred to [RF93]. 

4.1 R e o r d e r i n g  T r a n s f o r m a t i o n s  

4.1.1 I n t r o d u c t i o n .  One of the earliest discovery in the field was that  most  
"old style" reordering t ransformations were in fact linear or affine t ransforma-  
tions of i teration spaces. As a very simple exemple, consider the well known 
lool) inversion t ransformation:  

d o  i = . . .  do j = . . .  
d o  j = . . .  d o  i = . . .  

S ===> S 

end do end do 

end do end do 

If  we rename the target  loop counters j '  and i '  to avoid confusion, this is 
associated to the linear t ransformation:  

(J' : ,  

Many other t ransformations,  like loop splitting or loop skewing, can be rep- 
resented in this way [Pug91b, Lu91], but we can also represent more trans- 
formations which have never been named in the litterature. 

There are many  possible styles of t ransformations,  according to the com- 
plexity one tolerates in the source program and the number  of degrees of 
freedom one handles in the t ransformation.  On the one hand, one may  con- 
sider only perfect loop nests, where all s ta tements  in the loop body have the 
same iteration domain.  In that  case, it is cus tomary  to use essentially the 
same transformation for all s ta tements .  On the other hand, one m a y  have an 
arbi t rary static control program, and use a different affine t ransformation for 
each s ta tement  S: 

x' = T s �9 + t s. 

In order to simplify the notations,  we will use 7-(S, x) for T s x  + t S. 
Since the number  of  operations in the t ransformed space is to be the 

same as in the original space, all T ' s  have to be one to one. If  we suppose 
for simplicity that  each i teration domain is full dimensional - avoiding such 
oddities as: 

do i = l,n 

do j = i,i 

then the dimension of the t ransformed space must  be at least equal to the 
dimension of the original space. There is no objection, however, for it to be 
greater. If  needed, we may, for instance, pad m' with constant values. We 
may  thus suppose tha t  all images of i teration domains belong to the same 
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target space, and that  operations are to be executed - provisionally at least 
- in lexicographic order of their transformed coordinates. In the following, 
we will use N as the dimension of the target iteration space, with N _> N s 
for all statements S. 

4.1.2 L e g a l i t y  o f  a T r a n s f o r m a t i o n .  We thus see that a transformation 
defines an execution order: 

(R, ~> --<r (s, y) = T(~, x) << T(S, y). 

Such a transformation is legal if all operations in dependence are correctly 
ordered - see section 2.. Suppose that  there is a dependence at depth p from 
R to S. The legality condition is: 

y) T(R, x) << T(s, y). (4.1) 
This can easily be transformed into a legality test by reductio at absurdum: 
a transformation is illegal if the following system is feasible: 

q~S(X, y) A 7-(S, y)<<7-(R, x). (4.2) 

Here ~ is the "lexicographically less than or equal to" predicate. It can be 
split into the disjuction of N + 1 linear predicates - one more term than 
in (2.2). Hence, testing the legality of a transformation entails testing the 
emptiness of N + 1 polyhedra from each dependence, and this can be done 
by the methods of the preceeding section. 

This test can be simplified somewhat in the case of a perfect loop nest 
with constant dependence vectors dl, �9  din. In that  case, there is only one 
transformation matr ix  T. The legality condition is obtained by, combining 
(2.6) and (4.1), giving: 

Tdk >> O,k = l ,m .  

To be legal, T must transform all dependence vectors into lexicopositive vec- 
tors. 

After being transformed, the program may be seen as a single loop nest 
where the counters are the components of the transformed iteration vectors. 
When some of these components are constant, the corresponding loop may be 
unrolled, giving the equivalent of the familiar loop splitting transformation. 
Beside being legal, a program transformation must be useful, i.e. some of 
the loops in the target program must be parallel. In general, one knows 
beforehand which loops are parallel and which loops are sequential: this is a 
byproduct of the selection of 7-. If necessary, the following test can be used. 
Let It. and S be two statements in dependence at depth p. In the transformed 
program, the dependence is at depth q iff: 

Qf~s(~, y) =~ T(R, x)[1..q] = T(S, y)[1..q], 

As above, this can be tested by reductio at absurdum. 
Here again, the test simplifies if the dependences are uniform. The trans- 

formed dependence vector Tdk is at depth q if its first q components are 
zero. 
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4.1.3 S e l e c t i o n  o f  a T r a n s f o r m a t i o n .  The only case in which it has been 
possible to devise an algorithm for finding T in one step is the one of uniform 
perfect loop nests, see [WL91]. Another possibility is to search for a good 
transformation among a finite - albeit very large - set of possible candidates, 
see [KP94]. Other researchers use methods which find only parts of T.  The 
problem is then to extend T to a one-to-one transformation, or to fit the 
parts together. 

Scheduling. Since the pioneering papers of [KMW67] and [Lam74], there have 
been a large number of papers on scheduling, mainly from the "systolic" 
community. The basic observation is that  for any function ~ from the set of 
operations to any totally ordered set, the following relation: 

-<e v - ~(u) < e(v) 

is a partial order whose non-comparable pairs are such that  O(u) = ~(v). It 
should be clear that  not all partial orders can be represented in this way, 
since -<e has a transitive non-comparabili ty relation, which is not the case in 
general. 

If -<e is to be a correct parallel order for a given program, then it must 
satisfy the following adaptation of (2.5): 

o(<R, < o(<s, (4.3) 

This set of functional inequalities can be interpreted in several ways. We 
have seen one, in which a special representation for -<// has been selected. 
Notice that  since this is not the most general one, we have sacrificed some 
parallelism in the interest of simplicity. 

Since the set of operations in a DO loop program is finite, it is always 
possible to suppose that  the range of 8 is IN or 1N d, the corresponding total 
order being either the familiar integer ordering or lexicographic ordering. Let 
us consider the first case for simplicity. Since O has integer values, (4.3) can 
be rewritten as: 

e(<R, 1 < e(<s, (4.4) 

In this form, one may consider that  ~((R,x)) gives the execution t ime of 
operation (R,x) on a computer  with an unbounded number of processors 
which execute all operations in unit time. ~ is a schedule for the source 
program. 

One may replace the 1 in (4.4) by the actual execution time of the corre- 
sponding operation. This refinement is of no great importance in the case 
of massively parallel programming. It has, however, great impact in the 
case of Instruction Level Parallelism. 

The last interpretation of (4.3) is that  we are constructing a transformation, 
giving its first d components. To apply the above theory, # must be affine. We 
may then complete it by adding N -  d lines in such a way that the resulting T 
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transformation is one-to-one. It is easy to see that  (4.4) will then entail (4.1). 
What  is the shape of the resulting parallel program? We may suppose that  if 
a d dimensional fl has been used, it is because a smaller dimensional schedule 
would not have met condition (4.4), or, equivalently, that in the transformed 
program there are dependences from depth 0 to d. This means that  the d 
outer loops of the transformed program are sequential, as befit loop counters 
which represent time. We may always suppose that  the constant term in 0 
has been adjusted in such a way that its minimum value is 0. Supposing for 
simplicity that  d = 1, and that  the transformed iteration vector is (t,z) "r, 
then the parallel program shape is: 

program S 

d o t = O , L  
doall z 6 ~( t )  

T -1(t, z) T 

T being invertible, T - l ( t , z )  is the unique operation u such that  T(u) = 
(t, z). Jc(t) is the set: 

s(~) = {u I~(u) = t}, 

and is known in the li t terature as the front at time t. Finally, L is the max- 
imum value of 0, i.e. the latency of the parallel program. One should notice 
that  this program sketch, which consists of one or more sequential loops 
enclosing parallel loops, is in the best possible shape for vector computers. 

The main question, however, is how to solve (4.4). The starting point is 
the assumption that  schedules are affine functions of the loop counters. There 
is no justification for this assumption beside expediency. Even in very simple 
cases, it can be shown that  schedules can be very complicated functions. 
The assumption acts rather as a filtering device. Experience shows that  most 
static control programs have a large number of schedules, from which we 
select those which are affine. Furthermore, it can be shown that  for programs 
with uniform dependences, affine schedules are asymptotically optimal, i.e. 
they give latency of the same order as the best possible or free schedule 
[KMW67, DKR91, d'A95]. 

Let us set: 
O(S, x) = rs .~ + cs, 

where r s is an unknown timing vector and c s is an unknown offset. If such 
a prototype is inserted into (4.4), we get: 

Q~s(x ,  y) =~ TR.~ + c R + 1 _< TS.~ + c s. (4.5) 

One way of using this formula is to select arbitrarily numerical values for 
x E OR and y E 7)S. Either these values are such that  Q ~ s ( ~ , y )  is true, in 
which case we get a linear inequality involving the unknowns VR, CR, r S and 
cs, or else Q~s(X, y) is false, in which case we get nothing. In this way, we 
can get a very large (if the iteration domains are finite) or even an infinite set 
of linear constraints, to be solved for the unknowns. This is evidently not a 
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practical procedure. A solution is possible, however, because the fact tha t  all 
domains and constraints are linear allows one to construct a finite s u m m a r y  
for this potential ly infinite problem. 

One way of obtaining a s um m ary  is to notice that  (4.5) is true everywhere 
iff it is true at the vertices of Q~s  [Qui87]. We obtain in this way as many  

linear constraints as the QRs's  have vertices. Another solution is to use the 
affine version of Farkas l emma  [Sch86, Fea92a]: the general solution of 

(Ax + b >_ O) ::r (a.~ +/? >_ O) 

is: 
a . ~  + 3 = A0 + ,k.(A~ + b), 

where )~0 ~ 0 and X ~ 0. 
This last equality is to be considered as an identity, in which coefficients 

of like components  of x can be equated, to give linear relations between the 
a ' s  and fl and the new positive unknowns ~0, A- 

Whatever  the method,  one gets a system of linear inequalities to be solved 
for the coefficients in the schedule. This system may  be infeasible; in which 
case one must  resort to mult idimensional  scheduling - the reader is referred 
to [Fea92b] for details. If  feasible, the system generally has many  solutions. 
There are several ways of choosing the "best" one. For instance, since the 
latency can be expressed as a linear form in the coefficients of the schedule, 
one can set up a linear program for finding min imum latency schedules. Other  
possibilities are leftmost linear schedules and bounded delays schedules. 

One should be aware that  one has a wide range of possibilities for the 
choice of a schedule. Program S above has to be executed on a limited number  
of processors, say P,  by a run-t ime scheduler. Let Tp be the execution t ime 
on P processors. T1 is the sequential time, and Too is the latency on an 
unlimited number  of processors, i.e. the L in program S. If the run-t ime 
scheduler is greedy - i.e. if no processor stays idle if there is work to do - and 
if we neglect problems of interference and communicat ion between processors, 
then, by Brent 's  lemma: 

Tp <_Too + T1/ P, 

which implies that  the efficiency T_Z.t_ is near one when 7r = T1/Too is large. PTp 
~- is the mean parallelism in the program.  For most  algorithms in numerical 
analysis, ~r grows without limit for any reasonable schedule when the size of 
the problem grows. For instance, for Gaussian elimination on a system of n 
equations with n unknowns, T1 = O(n 3) and Too = O(n) hence 7r = O(n2). 
In such cases, the choice of a schedule is not too critical. 

Placement. While constructing a t ransformat ion from a schedule gives good 
results on a synchronous computer ,  where, conceptually, each front can be 
executed at each tick of the global clock, a finer analysis is needed in the case 
of a distr ibuted mem ory  computer .  The main problem here is to avoid com- 
munications between processors through the interconnection network, which 
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is always orders of magni tude slower than local memory  accesses. In the case 
of systolic arrays, no a t t empt  is made at minimizing the amount  of communi-  
cation, the rationale probably being that  since the array is custom designed, 
one can always provide the necessary channels. In a distributed memory  pro- 
cessor, one cannot enlarge the network at will, hence the numerous a t t empts  
at t ransforming the program in such a way tha t  most  communicat ions are 
made local. 

This result can be obtained only if the concept of a t ransformation is 
extended to include the da ta  space of a program. In the same way that  T 
maps  an operation to an abstract  space, some coordinates of which were later 
interpreted as time, we will suppose that  the same t ransformation maps  an 
array cell A[i] - where the components  of i are subscripts - to an abstract  
space some coordinate of which are interpreted as - virtual - processor names. 

In placement,  we are only interested in the part  of 7" which relates to 
processors. T(S,  x) is now supposed to be the name of the processor which 
executes (S, a~); similarly, A being an array, T(A, i) is the name of the processor 
whose memory  holds A[i]. If  operation (S, x) contains a reference to A[f(a~)], 
there will be a remote da ta  reference unless these two entities are in the same 
processor: 

r ( s ,  x) : T(A, f(x)) .  (4.6) 

These equations are solved in the same fashion as the scheduling equations 
(4.4). We assume that  T is affine, replace it by a prototype: 

T(U, x) = rtu.~ + wU, (4.7) 

where U is either a s ta tement  or an array. The problem is then to find relations 
between the unknwns rr and w which are equivalent to (4.6). This is similar 
to the method we used to solve the scheduling inequalities (4.5). There are, 
however, some impor tan t  differences: 

- Since (4.6) is an equation, it suffices that  it holds for x = 0 and for NSS 
other linearly independent values of a~ to hold everywhere. Hence, as soon 
as the iteration domain of S is large enough, (4.6) is true everywhere. By 
replacing a~ successively by 0 and by the unit vectors, we get the required 
relations between the unkowns rr and w. identity. 

- The result is a system of homogeneous linear equations. It  always has 
at least the trivial solution, whose meaning is that  we can suppress all 
communicat ions by using only processor 0. Let rr be a vector in which all 
coefficients of 7" are concatenated. The resulting system may  be written: 

C~r = 0; 

C is the communication matrix of the source program. 
- Equation (4.6) has a different meaning than, for instance, (4.4). This last 

equation is a constraint: if not satisfied, the resulting parallel program is 
invalid. (4.6) is more in the nature of an economic function: for each value 
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of �9 for which it is false, one has to program a remote da ta  access. The 
real constraint  here is that  all operations and all da ta  of the program do 
not collapse on the same processor. 

We see tha t  a" is a vector in the kernel of C. If  we want the target  system to 
be a grid of processors, then the range of 7- must  have as many  dimensions 
as the grid. This is obtained by selecting enough linearly independent vectors 
in ker(C),  if possible. 

Most of the time, however, C is of full rank and its kernel is trivial. 

In the case of uniform dependences, the dependence vectors directly give 
the column vectors of C. It is a well known fact that there is no placement 

- or no outermost parallelization - of a unform program if the dependence 
vectors span the whole iteration space. 

The solution in tha t  case is to satisfy only a subset of equations (4.6). Equa- 
tions which do not belong to the chosen subset correspond to residual com- 
munications. There are various heuristics for choosing the residual commu-  
nications, for which the reader is referred to [Fea94, DR95]. 

Discussion. Comput ing  a schedule, as in the preceding paragraph,  or com- 
puting a placement,  as above, are two independent ways of finding parallelism 
in a program. Each method aims at t ransforming the dependence graph in 
such a way tha t  the resulting program has a simple shape. In the case of 
scheduling, one adds edges to the dependence graph. Two operations u and v 
may  be such tha t  O(u) < O(v) and yet be independent. The target  dependence 
graph is in the form of a one level series-parallel graph. Since the resulting 
program is more constrained than the original, it is ipso facto correct, but 
we may  have lost some parallelism. 

On the contrary, when comput ing a placement we ignore some edges, 
namely those which correspond to residual communications.  The a im is to 
part i t ion the dependence graph into independent subsets which are then ex- 
ecuted sequentially. Since edges have been ignored, the program is invalid 
unless one reintroduces them as communications.  The result is a system of 
cooperating sequential processes. There may  be more processes than proces- 
sors. In general, the task of multiplexing several processes on one processor 
is left to the underlying operat ing system. Virtual processors are processes 
whose p rogramming  interface has been modeled on the underlying physical 
processor. 

In some cases, one needs both a placement,  because the machine has dis- 
tr ibuted memory,  and a schedule, either because the machine is synchronous, 
or just  for convenience. In these cases, we have to build two t ransformations 
as above and fit them as best we can. At the t ime of writing, there is no 
integrated theory of space-time transforms. 
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4.2 Storage  M a n a g e m e n t  

The question is how to integrate in the above framework transformations 
which act on the data structures of the program. One knows from previous 
research that some dependences are due to memory reuse while others, the di- 
rect flow dependences, are inherent to the algorithm. If memory is not reused, 
then the first type of dependence disappears, thus giving a less constrained 
parallel program. 

The simplest situation is when there is enough space on a distributed 
memory computer to duplicate the whole data space. This expansion remove 
all dependences except direct flow dependences. Of these, some have been 
taken into account when constructing the placement, thus giving local data 
accesses. The residual dependences give rise to communications, which can 
be constructed with the help of dataflow analysis. The resulting code may 
then be optimized by deallocating unused memory. 

When the parallel program is to be constructed via a schedule, the first 
idea that come to mind is to ignore non flow dependences. Ince non-flow de- 
pendences are generated by memory reuse, they can be eliminated by scalar 
and array expansion. One may observe that data expansion remove not only 
non flow dependences, but also spurious flow dependences, which are elim- 
inated by array dataflow analysis. This justifies ignoring all but direct flow 
dependences when computing a schedule. I have proposed to restore the cor- 
rectness of the parallel program by converting it to Single Assignment form 
[Feagl]. Recent developments show that it is possible to achieve the same 
result at a much lower cost in memory, by ignoring the dependences which 
are already satisfied by the selected schedule. 

5. L o o p  R e w r i t i n g  a n d  C o d e  G e n e r a t i o n  

The essence of the polytope model is to apply affine transformations to the 
iteration spaces of a program. When this is done, the operation in the orig- 
inal program are to be executed according to the lexicographic order in the 
transformed iteration space. The problem of code generation is thus the prob- 
lem of writing a loop nest which scans the image of a polytope by an affine 
transform. When a whole program has been reordered, one has to scan the 
union of the images of several polytopes. 

5.1 The  Case of a Perfec t  Loop Nest  

In the case of a perfect loop nest, there is essentially one statement and one 
transformation, T. The points to be scanned are defined by: 
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where Dx + d > 0 is the system of constraints which define the iteration 
domain in the source program. This shows that y belongs to the lattice gen- 
erated by T. In s T is invertible. Hence, the set T(/)) may be rewritten: 

T(7)) = {y I Y E s  + d > 0} 

which define a Z-polyhedron. 

Unimodular transformations. If T is unimodular, s is the canonical Z- 
module, i.e. the set of vectors with integer coordinates. There are several 
ways of computing the bounds of a loop nest which scans/:(T). For instance, 
we may use the Fourier-Motzkin algorithm in the following way [Iri87, AI91]: 

- Compute the lower and upper bounds IN and UN of the last component 
of y. Since these bounds may be rational while YN is an integer, we have 
to apply ceiling and floor functions to compute the actual bounds. The 
results looks like: 

do = [ZN1, 

- Eliminate YN and start again for the next component of y. 

Since the Fourier-Motzkin algorithm has a tendency to generate redundant 
inequalities, this method may result in more complicated bounds than is 
necessary, unless one programs a redundancy eliminator. Another solution is 
to use PIP for computing maxima and minima, in which case redundancy is 
automatically eliminated [CBF95]. 

Non-unimodular transformations. In case T is not unimodular, the solution 
is to build its Hermite normal form T = HU [Dar93, Xue94]. One builds, 
according to the above method, a loop nest which scans U(:D). Since, due to 
the special form of H, the transformation y = H z  is monotonic with respect 
to lexicographic ordering, it is enough to apply H to the loop counters of the 
new loop nest in order to generate the correct code. Alternatively, one may 
apply H directly to the new loop nest. It is easy to see that the diagonal 
elements of H give the loop steps, while the off diagonal elements generate 
initial offsets. 

5.2 The  Case of  a Comple te  P r o g r a m  

Here, each source statement generates one image, and the target code has to 
scan the union of these images. The nave solution consists in constructing a 
convex polytope which includes all these images. One may use the convex hull 
or the rectangular hull of the union of all iteration domains. This polytope 
is then scanned as above. All statements are then inserted in the innermost 
loop body, with guards that ensure they are executed only at the proper time. 
The resulting code is inefficient, since overhead operations (the guards) are 
inserted at the innermost level. There are various devices for improving the 
results. One may move invariant calculations up through the loop hierarchy, 
split loops according to the value of a guard, peel loops, and so on [AALL93]. 
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5.3 C o m m u n i c a t i o n  Code 

If the parallel program is to run on a distributed memory machine, one has to 
insert code for the residual communications. This depends in a complicated 
way on the architecture of the target computer. In the case of an asynchronous 
computer, the simplest solution is to duplicate the sequential code and its 
data structures in each processor. One then adds guards to avoid duplicating 
the calculations and communications. 

Let us suppose that distribution is specified by a placement function T, 
and let q be the current processor number. Operation u is replaced by the 
following code [ZBG88]: 

Va ~ R(u) : i f  T(u)  # q A T(a )  = q then Send(a) to T(u)  
i f  T(u) = q A 7-(a) # q 
then Receive(a) from T(a) 

if T(u) = q then ~ =/(R(u)) 

This code is highly inefficient, due to the numerous guards. In the case of 
static control programs, most guards can be resolved at compile time and 
"pushed up" into the surrounding loop bounds. Similarly, each processor 
uses only a fraction of its data space. The remnants can be deallocated, at 
the price of more complicated subscripts. 

6. C o n c l u s i o n :  T h e  L i m i t s  o f  t h e  P o l y t o p e  M o d e l  

There are still some fine points that are not completely solved in the poly- 
tope model. Among them are the construction of more general placement 
functions, the choice of the best style of transformation for a given architec- 
ture, minimum data expansion, code generation for arbitrary programs, and 
communication code construction. These problems are the subjects of active 
research, and there is hope they will be solved in the near future. 

The main question is quite different: what is the range of the polytope 
raodel? Are real life programs in the model or not? The answer is more 
ambiguous than we would like. It seems that most real programs do not 
have static control, with the exception of toy examples and small library 
subroutines. However, it is possible to isolate static control kernels in large 
programs and have them parallelized by the above methods [Les96]. If it so 
happens that these kernels represent a large fraction of the total running 
time, our job is done. 

Some programs have irregular control and/or irregular data accesses. It is 
still possible to extend dataflow analysis and scheduling to these situations, 
by the use of approximation methods. The only way of extracting parallelism 
from them, however, seems to be by the use of speculative execution. In some 
cases, what appear to be irregular are in fact regular accesses to other data 
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structures (e.g. trees) which have been implemented as arrays. The equivalent 
of the polytope model for these situations is still to be built. 

Lastly, in many cases, irregular programs are really regular programs 
which have been optimized for special situations. This is the case, e.g., for 
sparse codes, in which familiar algorithms like the matrix-vector product  have 
been modified to avoid doing multiplications by zero. A solution in that  case 
is to use run-t ime paraUelization. Another one is to parallelize the original 
code, then do the optimization for sparsity on the parallel version. 
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