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Construction of DO Loops from Systems of A�neConstraintsJean-Fran�cois CollardPaul FeautrierTanguy RissetMay 1993AbstractMost parallelization techniques for DO loop nests are based onreindexation. Reindexation yields a new iteration space, which isa convex integer polyhedron de�ned by a set of a�ne constraints.Parallel code generation needs thus to scan all the integer pointsof this convex, thereby requiring the construction of a new DOloop nest. We detail an algorithm for this purpose, which relieson a parametrized version of the Dual Simplex. We show howthe resulting loop nest and especially the loop bounds can bekept simple and streamlined, so as not to reduce the bene�ts ofparallelization.Keywords: automatic parallelization, convex integer polyhedron, codegeneration. R�esum�eLa plupart des techniques de parall�elisation des nids de bouclesDO sont bas�ees sur la reindexation. La reindexation g�en�ere unnouvel espace d'it�eration, qui est un poly�edre convexe entierd�e�ni par un syst�eme d'in�equations a�nes. La g�en�eration ducode parall�ele n�ecessite donc d'�enum�erer tous les points entiers dece convexe, ce qui s'obtiendra grâce �a un nouveau nid de boucles.Nous pr�esentons un algorithme construisant ces boucles, quirepose sur une version param�etr�ee du Simplexe Dual. Nousmontrons comment les boucles g�en�er�ees, et en particulier leursbornes, peuvent être gard�ees simples, de fa�con �a obtenir un codee�cace o�u les b�en�e�ces de la parall�elisation ne soient pas amoin-dris.Mots-cl�es: parall�elisation automatique, poly�edre convexe entier, g�en�era-tion de code.



Construction of DO Loops from Systems of A�neConstraintsJean-Fran�cois Collard, Tanguy Risset Paul FeautrierLIP MASI LaboratoryURA CNRS 1398, ENS Lyon Universit�e de Versailles46 All�ee d'Italie 45 Avenue des Etats-UnisF-69364 Lyon Cedex 07 F-78035 Versailles Cedexfjfcollar,rissetg@lip.ens-lyon.fr feautrier@masi.ibp.frMay 18, 19931 IntroductionParallel computing is one of the most promising way to increase the com-putational power available to scientists. Recent experiences on parallelmachines con�rm what has been foreseen: the dramatic need of automa-tion in parallelization [Lam74, Wol89, WL91, ZC90, HKT91, LHS90, SF91,DRR93].Most parallelization techniques for DO loop nests are based on reindex-ation, i.e. on a change of basis of the iteration space. Since the valuesof the new loop counters will be enumerated in a DO loop nest, innermostloop bounds have to be expressed as functions of the outermost ones. Thesecomputations must be exact, so as to preserve the semantics of the origi-nal program. Furthermore, they need to be as simple as possible: controloverhead should not reduce the bene�ts of parallelization.The problem of �nding loop bounds of a reindexed loop nest is tightlyconnected to various problems on integer convex polyhedra [AI91]. Few al-gorithms have been designed to solve this problem. The Fourier-Motzkinpairwise elimination method is relevant here, but this method generatesredundant constraints. An interesting alternative for this particular appli-cation is the Simplex method. A parametrized version of the Dual Simplexmethod has been developed by Feautrier and implemented in the PIP (Pa-rameter Integer Programming [Fea88]) software. Unfortunately, the resultsproduced by the PIP algorithm may sometimes be more intricate than nec-essary. In this paper, we show that the solution produced by PIP can besimpli�ed.After setting the notations and recalling general de�nitions in Section 2,Section 3 illustrates some program transformations we are dealing with inautomatic parallelization. The problem of scanning a polyhedron and theloop bounds computation algorithm are explained in Section 4. Section 51



presents the PIP algorithm and gives an extensive example of loop boundsdetermination, hinting at a simpli�cation possibility. Section 6 formally de-scribes and proves our simpli�cation proposal. The last section summarizesour results and indicates directions for future work.2 General De�nitionsThroughout this paper, arrowed lowercase letters denote \column" vectorswith integer or rational entries. The k-th entry of vector ~x = (x1; : : : ; xn)Tis denoted by ~x[k] or, if there is no ambiguity, xk; its subvector built fromcomponents k to l is written as: (xk; : : : ; xl)T ; if k > l, then this vector is byconvention the vector of dimension 0. Vector concatenation is denoted by �,thus for example ~x = (x1; : : : ; xk�1)T � (xk; : : : ; xn)T . The null vector withappropriate dimension is denoted ~0. Furthermore, we denote by � (resp.�) the lexicographic order (resp. the strict lexicographic order) on suchvectors. Finally, if A is a matrix, then Ai� represents the ith row of A, andA�j the jth column.De�nition 1 (Structure parameters) Structure parameters are integersymbolic constants, generally de�ning array sizes, iteration bounds, etc.Structure parameters may be de�ned once in the prologue of a program, andmay not be modi�ed elsewhere.Throughout this paper, the p structure parameters are merged into a p-vector ~z.De�nition 2 (Perfect loop nest) A perfect loop nest is a nest of DO state-ments where, for a given counter, lower and upper bounds are a�ne func-tions of enclosing loop counters and possibly of structure parameters.Perfect loop nests thus follow the scheme below:DO i1 = lb1(~z) , ub1(~z)DO i2 = lb2(i1; ~z) , ub2(i1; ~z)...DO in = lbn(i1; : : : ; in�1; ~z) , ubn(i1; : : : ; in�1; ~z)SENDDOENDDOENDDODe�nition 3 (Iteration vector) For a given statement S in a perfect loopnest, the iteration vector ~x is the vector of the surrounding loop counters.For instance, the iteration vector of statement S in the loop nest above is~x = (i1; : : : ; in)T . 2



De�nition 4 (Operation) The execution of S for a given iteration vector~x is called an operation, denoted by the pair (S; ~x).De�nition 5 (Iteration space) The iteration space of a given statementS in a given perfect loop nest is the set of the values taken by its iterationvector when executing the loop nest.Since the loop nests we are dealing with are \perfect", the iterationspaces are �nite convex polyhedra of Zn. Such polyhedra can always bede�ned by a set of inequalities such as:D = f~x j ~x 2Zn; C~x+ C 0~z +~b � ~0gwhere C and C0 are constraintmatrices of size m�n and m�p respectively,and ~b is a constant m-vector. This is equivalent to describing a polyhedronas the intersection of a set of half-spaces.3 Program TransformationCurrent parallelizing methods are inherited from automatic systolic designand transform programs through basis changes of iteration spaces. Thesebasis changes are a�ne or linear, and usually unimodular, transformations.In the case of unimodular linear transformation [BL92b, BL92a], vectorcoordinates (y1; : : : ; yn)T and (x1; : : : ; xn)T , respectively in the old and newbases, are related by: 0BBBB@ x1...xn 1CCCCA = U 0BBBB@ y1...yn 1CCCCA (1)where U is a n � n matrix such that det(U) = �1.The generated code will have to scan the new iteration space, and thiswill be done using a new DO-loop nest. To illustrate the point, consider thefollowing depth-3 perfect loop nest, parametrized by ~z = (m;n)T :DO i = 0 , mDO j = 0 , nDO k = 0 , i+jSENDDOENDDOENDDOThe iteration space D(m;n) is described by:D(m;n) = f(i; j; k)T j (i; j; k) 2Z3; 0 � i � m; 0 � j � n; 0 � k � i+ jgThis set is a convex polyhedron in Z3, which can be written as:3



D(m;n) = f~x j ~x 2Z3; C~x+ C 0~z +~b � ~0g (2)with:~x = 0B@ ijk 1CA C = 0BBBBBBB@ 1 0 00 1 00 0 1�1 0 00 �1 01 1 �1 1CCCCCCCA C0 = 0BBBBBBB@ 0 00 00 01 00 10 0 1CCCCCCCA ~b = 0BBBBBBB@ 000000 1CCCCCCCAWe give below two examples of such basis changes:Example 1 : Loop interchange. Assume data dependencies allow theloop nest above to be transformed using loop interchange while pre-serving its semantics. This transformation would rewrite the loop withcounters in the order k; j; i instead of i; j; k:DO k= lbk(m;n); ubk(m;n)DO j= lbj(m;n; k); ubj(m;n; k)DO i= lbi(m;n; k; j); ubi(m;n; k; j)SENDDOENDDOENDDOIn this case, the corresponding matrix U is:U = 0B@ 0 0 10 1 01 0 0 1CAExample 2 : the \systolic" point of view. The goal of the \systolic"method is to �nd a new iteration space basis in which the �rst coordi-nate(s) represent the execution time or schedule of the operations1 andthe remaining coordinate(s) represent the virtual processor address onwhich this operation is to be executed. In this new nest, the loopson time have to be executed sequentially, but not the loops on space.The loop above can for example be eventually expressed with respectto counters (t; x; y)T , where t is the schedule and (x; y) the coordinatesof virtual processors on a two-dimensional grid.The code generated by such a transformation will look like:1To see why this time may be multidimensional, see [Fea92b].4



DO t= lbt(m;n); ubt(m;n)DOALL (x= lbx(m;n; t) : ubx(m;n; t))DOALL (y= lby(m;n; t; x) : uby(m;n; t; x))SENDDOALLENDDOALLENDDOMethods of dependence analysis [Fea89, Fea91] and schedule compu-tation [Fea92a, Fea92b, QR89, Qui87] are now well understood andprovide an appropriate matrix U .In the transformation examples above, the parallelizer has to computenew loop bounds, and this is all but obvious. The rest of this paper concen-trates on the algorithm for this computation and on the application of thePIP algorithm to this purpose.4 The Polyhedron Scanning ProblemOur motivation is to show how loop bounds can be computed algorithmicallyfrom systems of a�ne constraints. The DO loop nest obtained will scan onceand only once all the integer points of the corresponding polyhedron.4.1 The InputThe input of our computation is a polyhedron D(~z) expressed in the originalbasis as a set of m inequations:D(~z) = f~x j C~x+ C 0~z +~b � ~0g (3)where C and C0 are constraintmatrices of size m�n and m�p respectively,and ~b is a constant m-vector.This expression of polyhedron D(~z) is obtained by parsing the programtext and writing two inequalities lbk � ik � ubk per loop. Observe that onemay still construct D(~z) if the lower (resp. upper) bound involves ceilingand maximum (resp. 
oor and minimum) operators. In that case there willbe more inequalities than in the simple case.4.2 The OutputThe result must be a loop nest L:DO x1 = a1; b1...DO xn = an; bnSENDDOENDDO 5



whose iteration vector is ~x in the new basis, and which enumerates the inte-ger points in D(~z) in lexicographic order with respect to the new coordinatesystem. We have to decide whether D(~z) if empty and, if not, generate loopL. L is not a perfect loop nest as de�ned in Section 2: for a given counterxk, both lower and upper bounds follow the requirements below:R1 : Bounds may be a�ne functions of x1; : : : ; xk�1 and ~z,R2 : Bounds may be ceiling/
oor functions of R1 expressions,R3 : Bounds may be maxima/minima of R1 or R2 expressions.Thus, the output is a list of bounds: �rst, the bounds of the outermostcounter x1, then the bounds on x2 as a function of the structure parametersplus x1, and so on for all entries in ~x.4.3 The AlgorithmThe basic method has been presented in [Fea89]. The �rst question is toknow how one can exactly scan the integer points of D(~z), that is, to buildthe L loop nest. The method proceeds by constructing n polyhedra:Dk(x1 : : :xk; ~z) = f(xk+1 : : :xn)T j C~x+ C 0~z +~b � ~0gfor k = 0; n� 1. Obviously, D(~z) = D0(~z). Let:~lk(x1 : : :xk�1; ~z) = min� Dk�1(x1 : : : xk�1; ~z); (4)~uk(x1 : : : xk�1; ~z) = max� Dk�1(x1 : : : xk�1; ~z): (5)Note that we use PIP to compute these lexicographic extrema, but thealgorithm given here is independant of PIP.We assert that the bounds of the k-th loop are:ak = l~lk(x1 : : : xk�1; ~z)[1] m ;bk = b ~uk(x1 : : : xk�1; ~z)[1] c :Proof Let ~x be an integer point in D(~z). For all k, (xk : : : xn)Tis an element of Dk�1(x1 : : : xk�1; ~z). As a consequence,~lk(x1 : : :xk�1; ~z)�(xk : : : xn)T�~uk(x1 : : : xk�1; ~z);which implies:~lk(x1 : : :xk�1; ~z)[1] � xk � ~uk(x1 : : : xk�1; ~z)[1];which says in e�ect that xk is within the bounds of the k-th loop,by the properties of the 
oor and ceiling functions.Conversely, let ~x be an iteration vector of the loop nest.Dn�1(x1 : : :xn�1; ~z) is a one dimensional polyhedra. Obviously:~ln(x1 : : : xn�1; ~z) � xn � ~un(x1 : : : xn�1; ~z);6



which implies, by convexity, that xn 2 Dn�1(x1 : : : xn�1; ~z), whichis equivalent to saying that ~x 2 D(~z).As a consequence, we have proved that the loop nest L scans allinteger points of D(~z) and nothing but integer points of D(~z). �We may in fact prove a more precise result. The result above would stillbe true if we enlarged arbitrarily the bounds of all loops but the last one.The e�ect would be that most of the time, the bounds for the xn loop wouldbe unde�ned, the end result being that only the proper iterations would beexecuted. The scheme above does not su�er from this waste of processingpower:Let Pk(~z) be the projection of D(~z) on the space of the �rst k loopcounters: Pk(~z) = f(x1 : : : xk)T j 9xk+1 : : : xn : C~x+ C 0~z +~b � ~0g:It is well known that all Pk(~z) are convex polyhedra. Obviously, Pn(~z) =D(~z). We assert that the �rst k loops of L scan Pk(~z).Proof The proof that all points of Pk(~z) are visited by the loopnest is exactly the same as above. The proof of the reciprocalis by recurrence on k. The property is obvious for k = 1, sinceP1(~z) is one dimensional and convex. Suppose the property istrue up to k� 1. Let (x1 : : :xk)T be a valid iteration vector. Byde�nition of a loop nest, so is (x1 : : :xk�1)T . By the inductionhypothesis, (x1 : : : xk�1)T 2 Pk�1(~z):As a consequence, Dk�1(~z) is not empty and ~lk(x1 : : : xk�1; ~z) and~uk(x1 : : : xk�1; ~z) are well de�ned. Both(x1 : : :xk�1)T �~lk(x1 : : :xk�1)and (x1 : : : xk�1)T � ~uk(x1 : : : xk�1)belong to D(~z), and so does, by convexity, all~y(�) = �[(x1 : : : xk�1)T �~lk(x1 : : : xk�1)]+(1� �)[(x1 : : : xk�1)T � ~uk(x1 : : :xk�1)]for 0 � � � 1. Now, since:~lk(x1 : : :xk�1)[1] � xk � ~uk(x1 : : : xk�1)[1];there exists a value of � such that:~y(�)[k] = xk:Since ~y(�) 2 D(~z), we have proved that (x1 : : : xk)T 2 Pk(~z). �7



4.4 The example, revisitedThis section illustrates the use of the Parametric Integer Programming Al-gorithm (PIP) to get new loop bounds after loop transformation. In theexample (Section 3), the �rst step consists in �nding the lexical extrema of:D0((m;n)) = f(k; j; i)T ji � m; j � n; k � i+ jg;where m and n are structure parameters. For this �rst problem, structureparameters are supposed to be non-negative. PIP has to be called twice(once for upper bounds and once for lower bounds, in any order). Theresult is: 0B@ 000 1CA�0B@ kji 1CA�0B@ m+ nnm 1CA : (6)From the de�nition of lexical ordering, we know that this entails:0 � k � m+ n:We cannot, however, deduce anything about i or j from the above result.The second problem is:D1(k; (m;n)) = f(j; i)T ji � m; j � n; k � i+ jg:This yields the following bounds on j:if k �m� 1 � 0then if k �m� n � 1 � 0 then ?else k �melse 0 9>>>>>=>>>>>; � j (7)and: j � (if (k �m� n� 1 � 0) then ? else n): (8)The bound of j in (7) is called a quast (for quasi a�ne solution tree).These expressions are very intricate because, as we have said earlier, theyinclude information both on the j loop and on the k loop. They can besimpli�ed by noticing that k � m+n implies that k�m�n�1 � 0 is nevertrue. PIP has a mechanism for doing that. The context is a set of constraintson the parameters, which are used to simplify (if possible) expressions suchas (7) above. If we have k � m+ n as context, the new result is:(if (m� k � 0) then 0 else k �m) � j � n: (9)The last problem is:D2(j; k; (m;n)) = fiji � m; j � n; k � i+ jg:8



We may use k � m+ n and j � n as context, but we cannot use the lowerbound of j in (9) since it is not in the format of a linear constraint. Thesolution for i is then:if j � k � 0then 0else if m� k + j � 0 then k � jelse ?) 9>>>>>=>>>>>; � i � 8><>: if m� k + j � 0then melse ? (10)Had our program been smarter, it could have noticed that (7) is equiv-alent to: max(0; k�m) � j (11)which implies j � 0 and j � k �m. Using these two constraints as contextwould have given: if j � k � 0then 0else k � j 9>=>; � i � m (12)There again, the lower bound is max(0; k � j). Is this a general property?From the run-time point of view, one may say that the computation of themax in (11) is no easier than computation of the if in (7). That is true, butthe point is not computation time but useless bound intricacy, such as for iin (10).However, the validity of such a transformation is by no means obvious.In (7), the two inequations were:j � 0 ; j � k �m (13)These inequations were valid on very speci�c domains (respectively m �k � 0 and m � k < 0). Extension to the entire space remains to bejusti�ed. The intuition is that this extension is valid for convex domains;according to this intuition, a convex polyhedron is de�ned by a system ofinequalities which is satis�ed by every point included in it. Thus, every point(k; j) is such that j � 0^j � k�m, which implies that j � max(0 ; k�m)(see Fig. 1 where the two equations of (13) are drawn).However, one should note how error-prone this intuition may be. Sup-pose the lower bound on j had been de�ned by (see Fig.2):j � 8>>>>><>>>>>: if (m� k � 0)then if (k �m � 0) then 1� kelse k �melse 0 (14)This is equivalent to the following three equations, with their respectivedomains: 9
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mFigure 1: One can take the maximum of the two equations...8><>: m� k � 0 ^ k �m � 0 : j = 1� km� k � 0 ^ k �m < 0 : j = k �mm� k < 0 : j = 0Although this quast is perfectly correct since it describes the same lowerbound as (7), the �rst equation on j (j = 1�k) implies that the lower boundcan't be simpli�ed as max(0; k � m; 1� k). In fact, this third equation isunsuitable because the corresponding line cuts through the polyhedron. Inthe terminology of [Sch86], the hyperplane fjjj = 1�kg is not a supportingplane of the polyhedron. The key remark is that the solutions given by PIPwill never cut the polyhedron.5 Parametric Integer ProgrammingOur problem is now to compute the lexicographical minimum in (4) or maxi-mum in (5). The problems are easily seen to be linear programming problemswith two di�erences:� the cost function is the lexicographic order;� parameter values are generally unknown.PIP handles these two requirements2. We will brie
y describe the PIPalgorithm, but the interested reader will �nd a more complete descriptionin [Fea88].2PIP furthermore handles integer problems, thanks to the Gomory algorithm [Gom63].This part of the algorithm is not described here.10
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j = 1−kFigure 2: ...but not the maximum of these three.Suppose that we want the lexicographic minimum3 of D(~z) . ~z is thevector of structure parameters, submited to the context conditions. D(~z) isa convex polyhedron whose points are non negative, which can be describedas: D(~z) = f~x j C~x+ C 0~z + ~c � ~0; ~x � ~0g (15)5.1 PIP AlgorithmIn the Dual Simplex algorithm, the problem is solved by a succession ofvariable changes until we reach a stopping condition (to be speci�ed later).Each iteration l changes ~xl into ~xl+1 by an a�ne invertible transformation4.Since this transformation is invertible, we will express ~xl as a function of~xl+1 so as to be able to replace ~xl by ~xl+1 in (15). Furthermore, since thistransformation itself will change from iteration to iteration, it should alsobe subscripted with l. We can sum this up with the following relation:~xl = Al~xl+1 + A0l~z + ~al (16)where Al and A0l are j ~x j � j ~x j- and j ~x j � j~z j-matrices respectively,and ~al is an j~xj-vector. Initially, A0 and A00 are respectively the unit- andzero-matrices, ~a0 is ~0 and ~x0 = ~x. Moreover one should note that this basischange is such that:3Maximum problems can be transformed into minimum ones by a simple trick whichis described in [Fea88].4Superscripts such as ~xl always denote the lth element of a sequence. This conventiondoes not interfere with the power function since the latter is never used in this paper.11



� ~xl 2 D(~z)) ~xl+1 � ~0;� ~xl and ~xl+1 di�er in only one entry, because each Parametric DualSimplex Algorithm iteration step changes one and only one basis vari-able.Thus D(~z) is:D(~z) = fAl~xl+1 + A0l~z + ~al ����� Al~xl+1 +A0l~z + ~al � ~0Cl~xl+1 + C 0l~z + ~cl � ~0 ) (17)where Cl and C0l are the m� j~xj- and m� j~zj-matrices derived from C andC0 at iteration l. We may consider the m+ j~xj-vector:~tl(~z) =  A0lC 0l ! ~z +  ~al~cl ! (18)and Al and C l as two blocks of an (m+ j~xj)� j~xj matrix S l:S l =  AlCl ! (19)[S l;~tl(~z)] is the problem tableau in the sense of the simplex method. Astep of PIP's algorithm is described as follows.1. Determine the signs of the components of ~tl(~z).2. If all components are positive, then the solution is found.3. If there is a negative component ~tl(~z)[i], then two cases may occur.� If all entries in the i-th row of S l are negative, then the solutiondoes not exist.� If there is at least a positive entry S lij, then it gives rise to apivoting step and thus to iteration l+1. The new problem tableauis [S l+1;~tl+1(~z)] where:Sl+1�j = (1=S lij)S l�jSl+1�k = Sl�k � (S lik=Sij)S l�j, k 6= j~tl+1(~z) = ~tl(~z)� (tli(~z)=S lij)S�j4. In the remaining case, select a ~tl(~z)[i] whose sign is unknown. Thisyields two new subproblems, according to the signs. Both yield an(l+ 1)-th iteration.This separation has a crucial consequence: there won't be one and onlyone solution, but a binary tree whose nodes are predicates with respect to theparameters and whose leaves are either an a�ne function if a solution exists,or, if not, the unde�ned solution written as ?. Since each node producestwo subproblems, one has to remember the path taken and take account of12



the corresponding predicates. This is called the problem context. For l = 0,this context is a set of inequalities on the parameters; when point 4 of thestep algorithm above is reached, the �rst subproblem must be computed inthe previous context augmented with:~tl(~z)[i] � ~0Symmetrically, the second context is the parent's one plus:~tl(~z)[i] < ~0In the end, each path in the tree is exactly what the actual simplex algorithmwould have done, but here the solution Sol(~z) is expressed as a function ofthe parameters. The entire binary tree is called a quasi-a�ne solution treeor quast, whose leaves are thus associated with a domain Domi de�ned bythe conjunction of the predicates in the corresponding path. These domainsbuild up a partition of the problem space, since no point can belong to twodi�erent domains (this would imply that one predicate in the quast is bothtrue and false), and since every predicate cuts the problem space in twodisjoint half-spaces. Moreover, since the quast leaves are a�ne functions inthe variables, they de�ne hyperplanes in the Zp space for a given parametervector ~z. A quast can thus be regarded as a multiguard:Sol(~z) = 8>><>>: (~z) 2 Dom1 : ~f1(~z)...(~z) 2 Domq : ~f q(~z)In our particular case, we are only interested in the �rst component ofthe solution, since it gives us the bound of our loop counter. Thus, weobtain: 0BB@ (~z) 2 Dom1 : ~f1(~z)[1]...(~z) 2 Domq : ~f q(~z)[1] 1CCA � x15.2 Understanding PIP's behaviorThe aim of this section is to show how the solution (7) in the example ofsection 4.4 is found and thus to get an intuition of where PIP's solutioncomes from. We will start at the D1 problem : i; j; a; b; and c are thevariables associated to D1's inequations:i � 0j � 0a = m� i � 0b = n� j � 0c = i+ j � k � 013



The initial Simplex tableau is Table 1, where rows are labeled with theirrespective variables. j i 1 k m nj 1 0 0 0 0 0i 0 1 0 0 0 0a = m� i 0 -1 0 0 1 0b = n� j -1 0 0 0 0 1c = i+ j � k 1 1 0 -1 0 0Table 1: First tableauAccording to the notations in (18) and (19), we have:A0 =  1 00 1 !C0 = 0B@ 0 �1�1 01 1 1CA C00 = 0B@ 0 1 00 0 1�1 0 0 1CASince the bounds on k are known, the solution of D1 has to be computedin context (6). All rows have non-negative constant terms excepted the crow, whose constant term (~t(~z))[c] is �1 � k. A pivoting step is necessarywith entry (c; i) as the pivot. Variable c enters the basis and i leaves it,giving Table 2 as the new problem tableau.Now, all rows have non negative constant terms excepted the a row,whose constant term (~t(~z))[a] is �1�k+1�m = m�k. If m�k � 0, thenthe optimum is reached. The basis variables are j and c, whose values are 0as it can be read in Table 2 in their respective rows. Moreover,c = 0 ^ j = 0) i = kand the tentative result is: i = k ; j = 0If m� k < 0, then another pivoting step is necessary. Entry (a; j) is thenew pivot, and variable a enters the basis and j leaves it. The new tableauis the one in Table 3. j c 1 k m nj 1 0 0 0 0 0i -1 1 0 1 0 0a 1 -1 0 -1 1 0b -1 0 0 0 0 1c 0 1 0 0 0 0Table 2: Second tableau14



a c 1 k m nj 1 1 0 1 -1 0i -1 0 0 0 1 0a 1 0 0 0 0 0b -1 -1 0 -1 1 1c 0 1 0 0 0 0Table 3: Third tableauIn the a row, the term m� k is necessarily positive. Basis variables area and c, and their values are both 0:a = 0 ^ c = 0) i = m ^ j = k �m;The �nal lower bound on j is thus:(if (m� k � 0) then 0 else k �m) � j (20)We thus have an illustration of how the Parametric Dual Simplex Algorithmalgorithm �nds a solution: through a sequence of basis changes, it tests asequence of trial solution in ascending lexicographic order, until a feasiblepoint is found. The next section will try and explain how this can be usedfor our purposes.6 Simpli�cation of the resultAs we have stated in section 4.4, we would like to replace the solution givenby PIP (a quast) by a maximum upon the quast's leaves. In this section,we prove that this can be done safely.6.1 An exampleConsider the following example:8><>: in context fz � 0gget the lexicographic minimum ofD = fi j i� z � 0gThe hatched zone in �gure 3 represents the domain as a convex polyhedronof space (~z;~i). Suppose that, for some reason, one step of the algorithm hasto solve the following problem:8><>: in context fz � 0; z � 1 � 0;�z + 1 � 0g /* thus z = 1 */get the lexicographic minimum ofD = fi j i� z � 0g /* line d on Figure 3 */We can see that the following solution is correct:( in context fz = 1gthe lexicographic minimum of D = fi j i� z � 0g is i = 1 (21)15
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1Figure 3: Domain D of the example, z is a parameter, i a variable.But this solution cannot be extended to the complete parameter space. In-deed, we do not have i � 1 for all points of the hatched zone of �gure 3.This situation appears when the convex is not full dimensional (in this casewe do not have a unique minimal representation for domain D [Sch86]). Asit is hard to a�rm that such domains will never appear, we will prove thatwhen they appear, the solution given is not (21) because inequalities suchas i � 1 do not de�ne domain D.In order to obtain this solution, we have taken the system of inequalities:8><>: z � 1 � 0�z + 1 � 0i� z � 0and we have solved (in i) an extracted system of equalities (fz = 1 ; i =zg for example). That is what PIP would do: choose n good inequalitiesand solve the corresponding system of equalities. But PIP wouldn't givesolution (21), but the following solution:( in context fz = 1gthe minimum lexicographic of D = fi j i� z � 0g is i = zwhich can be extended to the complete parameter space.The basic intuitive idea is simple. The Dual simplex algorithm chooses ninequations fromm until it reaches a problem P (~z) such that the solution isobvious (~x = ~0). During these transformations, no additional constraint ap-pears (except in the parameter space), but the algorithm is doing two thingssimultaneously: �nding which constraints de�ne the optimum (i.e. �ndingthe basis for which the solution is ~x = ~0), and solving the corresponding16



system of n equalities (because the solution is directly given by the constantterm of S~x + ~t(~z)). As PIP will choose its inequalities from the domainconstraints (and not from the context constraints), and as the solution ofthe equality system will correspond to a positive combination of these equal-ities (at least for the �rst variable), this solution will be extensible to theinequalities system. That is what we prove in the next section.6.2 Setting the problemPIP's algorithm �nds the lexicographic minimum ofD0(~z) = f~x 2Zn j C~x+ C 0~z + ~c � ~0; ~x � ~0gas a function of ~z in the domain f~z j K~z + ~h � ~0g called the context. Thus,the general form of a parametrized problem solved by PIP is:P 0(~z) = ( in context: ~z 2 fK~z + ~h � ~0gget the lexicographic minimum of the domain: D0(~z) (22)� n is the dimension of ~x, m is the number of inequations of the systemC~x+ C 0~z + ~c � ~0, p is the number of parameters.� C is a m� n matrix, C 0 is a m� p matrix.The solution Sol(~z) given by PIP in the context is in the form of amultiguard Sol(~z) = 8>><>>: ~z 2 Dom1 : ~f1(~z)...~z 2 Domq : ~f q(~z) (23)� (Dom1; : : : ; Domq) being a partition of the context� ~f i(~z) being an a�ne function from Zp to Zn.We now prove the following proposition:Proposition 1 Given a parametrized problem P 0(~z) (22), the solutionSol(~z) (23) given by PIP is such that, for each solution ~f i(~z), the inequation~x[1]� ~f i(~z)[1] � 0 (24)is a positive linear combination of n inequations of D0(~z).ProofIn the following, we will deal with basis changes. Thus it isimportant to know in which basis the coordinates of ~x are ex-pressed. For the sake of clarity, we introduce the following no-tations: 17



� ~x0 = (x01; : : : ; x0n) is the original (canonical) coordinates sys-tem of Zn. We will note B0 the corresponding canonicalbasis.� ~xl = (xl1; : : : ; xln) is another coordinate system of Zn. Wewill note Bl the corresponding basis.� We will use the problem tableau notation:D0(~z) = f~x0 j S~x0 + ~t(~z) � ~0g(here, S =  IC ! ~t(~z) =  0C0 ! ~z +  ~0~c ! ).� The ith row of S~x0+ ~t(~z) represents an expression denotedby ineqi(~x0; ~z):ineqi(~x0; ~z) = (S~x0 + ~t(~z))[i] = Si�~x0 + ti(~z)We have seen in section 5 that, when solving (22), PIP's algo-rithm executes a succession of steps, each step having to solve aproblem P l(~z) whose form is:P l(~z) = 8>>><>>>: in context: ~z 2 fK~z + ~h � ~0; K l~z + ~hl � ~0gget the lexicographic minimum of the domain:Dl(~z) = fAl~xl +A0l~z + ~al ����� Al~xl + A0l~z + ~al � ~0;Cl~xl + C0l~z + ~cl � ~0 g(25)Remind that we denote:Sl =  AlC l ! ~tl(~z) =  A0lC0l !~z +  ~al~cl !We will show that at each step, P l(~z) has the following proper-ties:1. Dl(~z) represents exactly the points of D0(~z), ~xl being ex-pressed in a basis Bl such that the expressions of ~xl in termsof ~x0 are given by the left parts of n inequalities de�ningD0(~z). This can be expressed by: 9�l : [1; n]! [1; m] injec-tive, such that:8i 2 [1; n], xli = ineq�l(i)(~x0; ~z):2. Each line of Sl~xl + ~tl(~z) � ~0 is the expression in the newbasis of the corresponding inequality of D0(~z). i.e:8i 2 [1; m], Sli�~xl + tli(~z) = ineqi(~x0; ~z):3. The coe�cients of the �rst row of Sl are non negative.18



As one could argue that PIP's algorithm is not exactly the Dualsimplex method (due to the lexicographical cost function), wegive a technical demonstration of these intuitive properties, basedon the implemented algorithm itself. We will show these prop-erties by recurrence on the steps of the algorithm.The three properties are true for the �rst problem P 0(~z) (22).Indeed, we have x0i = ineqi(~x0; ~z), thus � is the identity. Prop-erty 2 is veri�ed by de�nition of ineqi(~x; ~z) and, as the �rst lineof S0 is (1; 0; : : : ; 0) it has all its coe�cients non negative thusproperty 3 holds too.Consider now a problem P l(~z) generated by PIP from P0(~z):P l(~z) = 8><>: in context: ~z 2 fK~z + ~h � ~0; K l~z + ~hl � ~0gget the lexicographic minimum of the domain:Dl(~z) = fAl~xl +A0l~z + ~al j S l~xl + ~tl(~z) � ~0 gand suppose that the three properties are true for this problem.We will study the di�erent subproblems that can be generatedby PIP in one step and see that the three properties hold foreach of these subproblems.A step of PIP's algorithm is divided into four possible cases:� if each component of ~tl(~z) is non negative, then the solutionis reached (it is given by the �rst n components of ~tl(~z)).No subproblem is generated.� if no component of ~tl(~z) is known as negative and if thereis a tli(~z) whose sign is unknown, then the two subproblemsgenerated are:P l+11 (~z) = 8>>>>><>>>>>: in context: ~z 2 8><>:~z j K~z + ~h � ~0K l~z + ~hl � ~0tli(~z) � 0 9>=>;get the lexicographic minimumof the domain Dl(~z)andP l+12 (~z) = 8>>>>><>>>>>: in context: ~z 2 8><>:~z j K~z + ~h � ~0K l~z + ~hl � ~0tli(~z) < 0 9>=>;get the lexicographic minimumof the domain Dl(~z)P l+11 (~z) and P l+12 (~z) have obviously the three propertiesrequested (these properties do not take the context intoaccount).� if there is a negative tli(~z) such that all the elements ofSi� are negative, then there is no solution in this leaf, nosubproblem is generated. 19



� in the remaining case a pivoting step is performed. Thereis an i0 such that tli0(~z) is negative and some elements Si0jare positive. Among all the possible j, we choose j0 suchthat it minimizes (lexicographically speaking) the vectorS�j0=Si0j0 . Then we consider a new basis Bl+1 of Zn suchthat: xl+1i = xli for i 6= j0xl+1j0 = S li0�~xl + tli0(~z) (26)(We say that xlj0 leaves the basis and xl+1j0 enters it). Thisbasis change is valid because Si0j0 6= 0. If we note:Pi0j0 = 0BBBBBBBBB@ 1 0 : : : 00 1 0 : : : 0... . . . ...Si01 Si02 : : : Si0j0 : : : Si0n... . . . ...0 : : : 0 1 1CCCCCCCCCA , ~Ci0j0 = 0BBBBBBB@ 0...ti0(~z)...0 1CCCCCCCAthen we have:~xl+1 = Pi0j0~xl + ~Ci0j0 ) ~xl = P�1i0j0(~xl+1 � ~Ci0j0):If we want to express the problem tableau in the new basis,we obtain:Sl~xl + ~tl(~z) = S lP�1i0j0(~xl+1 � ~Ci0j0) + ~tl(~z)The problem P l(~z) expressed in basis Bl+1 is:P l(~z) = 8>>><>>>: in context: ~z 2 fK~z + ~h � ~0; K l~z + ~hl � ~0gget the lexicographic minimum of the domain:Dl(~z) = fAlP�1i0j0(~xl+1 � Ci0j0) +A0l~z + ~alj S l+1~xl+1 + ~tl+1(~z) � ~0 gwith the relations:S l+1�j0 = (1=S li0j0)S l�j0S l+1�k = S l�k � (S li0k=Si0j0)Sl�j0 , k 6= j0~tl+1(~z) = ~tl(~z)� (tli0(~z)=S li0j0)S�j0And this is exactly the subproblem generated by PIP asP l+1(~z). This implies several things:{ P l(~z) and P l+1(~z) are the same problems expressed indi�erent bases; thus they have the same solution (in-deed, PIP takes the solution of P l+1(~z) as the solutionof P l(~z)). 20



{ As P l(~z) has property 2, from (26) we have:S li0�~xl + tli0(~z) = ineqi0(~x0; ~z)) xl+1j0 = ineqi0(~x0; ~z)P l(~z) has also property 1, thus:8i 2 [1; n], i 6= j0 ) xl+1i = ineq�l(i)(~x0; ~z)If we note �l+1(i) = �l(i) for i 6= j0 and �l+1(j0) = i0,we have property 1 for P l+1(~z) with �l+1. We just haveto check that �l+1 is injective. This is enforced by thefact that Bl+1 is a basis. If �l+1 was not injective, twocomponents of ~xl+1 would always be equal (we couldalso note that, if line i0 had already been chosen, thecorresponding line of S l(~z)+~tl(~z) � ~0 would be: xlj � 0for some j, thus tli0(~z) wouldn't be negative). Finally:we have property 1 for P l+1(~z).{ Property 2 becomes obvious too:8i 2 [1; m], S l+1i� ~xl+1+tl+1i (~z) = S li�~xl+tli(~z) = ineqi(~x0; ~z){ The coe�cients of the �rst line of Sl+1 are still non neg-ative because j0 has been chosen in such a way that the�rst component of the column that will be subtracted toall columns is minimum. (If S l1k � (S li0k=Si0j0)S l1j0 < 0,k would have been chosen instead of j0.) Thus prop-erty 3 holds for P l+1(~z).We have the partial result:� Properties 1, 2 and 3 hold for any subproblem generated byPIPConsider now a subproblem P l(~z) for which a solution is found(i.e all the components of ~tl(~z) are positive). We have seen thatthe solution to P l(~z) (thus to P 0(~z) with the additional contextfK l~z + ~hl � ~0g) is given by the �rst n components of ~tl(~z):~f(~z) = (tl1(~z); : : : ; tln(~z))T . From property 2 we know thatSl1�~xl + tl1(~z) = ineq1(~x0; ~z) = x01 (27)From Property 1, we know how to express each components of~xl in terms of ~x0's components:xli = ineq�l(i)(~x0; ~z) (28)Thus, from (27) and (28), we get:S l11ineq�l(1)(~x0; ~z) + : : :+ S l1nineq�l(n)(~x0; ~z) = x01 � tl1(~z) (29)21



Finally, consider the positive linear combination of the n inequa-tions numbered by �l(1); : : : ; �l(n) as indicated in equation (29)(remember that, from property 3, each element of S1� is nonnegative). We get:8><>: ineq�l(1)(~x0; ~z) � 0...ineq�l(n)(~x0; ~z) � 0 ) x01 � tl1(~z) � 0Thus we have proposition 1. �We are now able to prove our result which is stated in Proposition 2:Proposition 2 Given a parametrized problem P 0(~z) (22), the solutionSol(~z) (23) given by PIP is such that the relation:8i 2 [1; q]; (~z 2 Domi, ~x 2 D0(~z))) ~x[1] � ~f i(~z)[1]can be replaced by: ~x 2 D0(~z)) ~x[1] � maxi=1;q(~f i(~z)[1])Proof Directly from proposition 1:The inequation ~x[1] � ~f i(~z)[1]is implied by the inequations de�ning D0(~z). Thus, the relation(~z 2 Domi, ~x 2 D0(~z))) ~x[1] � ~f i(~z)[1]can be extended to:~x 2 D0(~z)) ~x[1] � ~f i(~z)[1]�7 ConclusionIn this paper, we have presented a method to solve the loop rewriting prob-lem. This problem is present in most automatic parallelization techniques.Generalizations of the simplex algorithm, like PIP, are particularly well-suited for this problem, except that the output of the PIP algorithm couldnot be directly transformed into a loop nest conforming to the de�nitiongiven in Section 4.2. We have shown that, if the parameters ~z are such thatthe polyhedron D(~z) is not empty, the result can be rewritten as the maxi-mum of a �nite number of a�ne forms in ~z. A symmetrical result holds forthe upper bound. 22



In some languages (notably Fortran), expressing loop bounds as maximaor minima is simpler than using conditional expressions, which must beconverted to conditional instructions by the introduction of temporaries.When rewriting a single loop nest, after a transformation like loop in-terchange, we have shown (see Section 4.3) that the values of the outer loopbounds are such that the range of inner loop is never empty. Hence, we maydirectly use the results of PIP in the form of maxima and minima.In the systolic approach, however, we may have to construct the unionof two or more iteration domains, and the above property will no longer betrue. In that case, each inner loop must be guarded by a test. For example,take an instruction whose iteration space is the one below:
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where a; :::; f are a�ne forms in z. The �rst application of PIP yields:� � z � �and the second one gives:max(e; d) � x � min(a; b):If the statement is to be executed alone, we may write:DO z = �; �DO x = max(e; d);min(a; b)SENDDOENDDOSuppose however that we are forced to enlarge the z loop, possibly becauseit represents logical time over the whole program. Since zones 1 and 2 mustnot be scanned, we must write:DO z = 0; LIF � � z � �DO x = max(e; d);min(a; b)SENDDO23
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