
Some efficient solutions to the affine scheduling

problem

Part II

Multidimensional time

Paul Feautrier∗

Laboratoire PRiSM,
Université de Versailles St-Quentin

45 Avenue des Etats-Unis
78035 VERSAILLES CEDEX FRANCE

February 17, 2009

Abstract

This paper extends the algorithms which were developed in Part I to
cases in which there is no affine schedule, i.e. to problems whose parallel
complexity is polynomial but not linear. The natural generalization is to
multidimensional schedules with lexicographic ordering as temporal suc-
cession. Multidimensional affine schedules, are, in a sense, equivalent to
polynomial schedules, and are much easier to handle automatically. Fur-
thermore, there is a strong connection between multidimensional schedules
and loop nests, which allows one to prove that a static control program
always has a multidimensional schedule. Roughly, a larger dimension in-
dicates less parallelism. In the algorithm which is presented here, this
dimension is computed dynamically, and is just sufficient for scheduling
the source program. The algorithm lends itself to a “divide and conquer”
strategy. The paper gives some experimental evidence for the applicability,
performances and limitations of the algorithm.

Résumé

Dans cet article, les algorithmes qui ont été proposés dans la première
partie sont étendus au cas où le programme source n’a pas de base de
temps affine, c’est-à-dire à des algorithmes dont la complexité parallèle
est polynomiale mais non linéaire. La solution naturelle est l’emploi de
bases de temps à plusieurs dimensions, l’ordre de succession temporelle
étant l’ordre lexicographique. Les bases de temps multidimensionnelles
sont, en un certain sens, équivalentes à des bases de temps polynomiales,
et sont beaucoup plus faciles à manipuler algorithmiquement. De plus,
il y a une connexion forte entre bases de temps multidimensionnelles et
nids de boucles, ce qui permet de démontrer qu’un programme à contrôle
statique a toujours une base de temps multidimensionnelle. En gros, plus

∗e-mail : Paul.Feautrier@prism.uvsq.fr

1



2

do i = 0,n
do j = 0,i

1 s = s + a(i,j)
end do

end do

Figure 1: A simple program with no linear schedule

grande est la dimension et moins il y a de parallélisme. Dans l’algorithme
ici présenté, cette dimension est déterminée dynamiquement; elle est juste
suffisante pour permettre l’ordonnancement du programme source. Enfin,
cet algorithme se prête à l’application de la stratégie “diviser pour régner”.
On présente en conclusion quelques résultats expérimentaux permettant
de juger du domaine d’application, des performances et des limitations de
l’algorithme.

1 Introduction

In the first part of this paper [1], I have presented a new algorithm for computing
affine and piecewise affine schedules for Generalized Dependence Graphs and
affine systems of recurrence equations. The algorithm is simple and efficient.
However, there are programs and systems which do not have such a schedule.
This is equivalent to the observation that there are programs which cannot be
executed in linear time on a paracomputer, and should not come as a surprise.

An example of such a program is given in Fig. 1. Application of the methods
of Part I shows that this program – hereafter referred to as program 1 – has no
affine schedule. It is possible to prove that its free schedule is :

θ1(i, j) =
i(i+ 1)

2
+ j, (1)

which has a mean degree of parallelism of 1. Hence, the original program is
totally sequential1.

However, the automatic construction of polynomials schedules seems to be
beyond present day techniques. Examination of program 1 and other similar
examples suggests another solution: the use of multidimensional time. This
is nothing out of the way: a clock with two hands define a two dimensional
time, each hand being associated with one dimension. The order on such a
time is lexicographic ordering. Program 1, for instance, has the following two-
dimensional schedule:

θ2(i, j) =

(
i
j

)
, (2)

1For definiteness, I will suppose that + in this program stands for some operator with no
special algebraic properties. As a consequence, the computation must be executed as written;
there is no possibility of sharing the work between processors by taking advantage, e.g. of
associativity. This remark will stand for all examples in this paper. Computing schedules for
operators with nontrivial algebraic properties is a largely open problem.



3

which will be seen later to be equivalent to schedule (1).
For usual clocks, the minor components of time are always uniformly bounded.

As a consequence, their time may be linearized if necessary. This restriction is
not enforced for multidimensional schedules, as the preceding example shows.

This paper is devoted to the design of algorithms for the construction of
multidimensional schedules. In section 2, I will discuss the notion and state the
appropriate version of the causality condition. It is possible to prove that the
DFG of a sequential program always has a multidimensional affine schedule.
In section 3, I will give the basic algorithm for finding such schedules. This
algorithm has a very high complexity; in section 4, I will discuss a much simpler
version, which is correct but no longer complete. It is, however, still possible to
prove termination in the case of DFG of sequential programs. I will then show
how to combine this algorithm with the dualization method of I.3.3.32.

In many cases, it is possible to split the scheduling problem into several sub-
problems according to the strongly connected components (scc) of the depen-
dence graph. This technique is presented in section 5. The algorithm obtained
by coupling multidimensional scheduling and scc decomposition may be seen as
a generalization of Allen and Kennedy’s codegen algorithm [2].

Section 6 discusses an implementation of the above algorithm, with respect
to the shape of the resulting schedules, completeness and performance. I then
discuss some drawbacks of the above methods and give some directions for
possible improvements.

2 Multidimensional schedules

2.1 The causality condition

The first step in the construction of a multidimensional schedule is to find the
correct generalization of the causality condition:

u, v ∈ E, uΓv ⇒ θ(u) < θ(v). (3)

An obvious possibility is:

u, v ∈ E, uΓv ⇒ θ(u)� θ(v). (4)

This is in a sense sufficient, as shown by

Theorem 1 To any d-dimensional schedule θ one may associate a one-dimensional
schedule τ , namely:

τ(u) = Card {θ(x) | θ(x)�θ(u) ∧ x ∈ E}.

The order relations associated to θ and τ are the same, and τ satisfies condition
(3) iff θ satisfies condition (4).

2References of the form I.3 or (I.12) will designate section or formulas in the first part of
this paper.



4

Proof Let Pu be the set {θ(x) | θ(x)�θ(u) ∧ x ∈ E}. It is easy
to see that Pu depends only on θ(u), and is a strictly increasing
function of θ(u):

θ(u)� θ(v)⇒ Pu ⊂ Pv.

In fact, we have Pu ⊆ Pv by transitivity, θ(v) ∈ Pv by definition,
and supposing θ(v) ∈ Pu would entail a contradiction.

The order relation associated to θ is:

u ≺θ v ≡ θ(u)� θ(v).

Similarly:
u ≺τ v ≡ τ(u) < τ(v).

Now, obviously:

u ≺θ v ⇒ θ(u)� θ(v)⇒ Pu ⊂ Pv ⇒ Card Pu < Card Pv ⇒ τ(u) < τ(v).

As a consequence, if θ is causal, uΓv implies θ(u) � θ(v), which
implies in turn τ(u) < τ(v). Conversely, suppose τ(u) < τ(v),
which implies Card Pu < Card Pv. Since � is a total order, we
have either θ(u) � θ(v), θ(u) = θ(v) or θ(u) � θ(v). This gives
three possibilities: Pu ⊂ Pv, Pu = Pv and Pu ⊃ Pv, and the first is
the only one which does not lead to a contradiction.

Note that this proof does not depends on any property of �
beside its being a strict total order.

As a corollary, we get the proper definition of the latency of a multidimen-
sional schedule:

L = Card θ(E). (5)

If we think of schedules as clocks, then the latency is the total number of
clock ticks, a very natural result. This definition of the latency has the advan-
tage of being insensitive to composition with a monotone increasing function,
like addition of a constant or multiplication by a positive factor. The schedule
which is constructed from Equ. (2) by the above method is precisely Equ. (1).
In this case, θ is the identity. This implies that Card θ(E) = Card E, which is
another way of saying that schedule (2) has no parallelism.

2.2 Existence theorems

A static control program [3] is built from simple statements by bounded itera-
tion and sequence. The flow of control in such a program may be described by
its sequencing predicate, ≺. If (R, x) ≺ (S, y), then operation (R, x) is executed
before (S, y). I have shown elsewhere [3] that the sequencing predicate has a
simple expression:

(R, x) ≺ (S, y) ≡ x[1..NRS ]� y[1..NRS ] ∨ (x[1..NRS ] = y[1..NRS ] ∧ TRS), (6)



5

where NRS is the number of loops surrounding both R and S, and where TRS
is true iff R precedes S in the program text.

If a GDG comes from a static control program, then its dependence relation
is coarser than ≺. Hence any schedule which satisfies:

u ≺ v ⇒ θ(u)� θ(v)

is causal in the sense of condition (4). Such a schedule always exists:

Theorem 2 Any static control program has a multidimensional affine schedule.

Proof Associate to each statement R an integer vector πR of
dimension NRR + 1, the placement vector of R, with the two prop-
erties:

πR[1..NRS ] = πS [1..NRS ], (7)
TRS ≡ πR[NRS + 1] < πS [NRS + 1]. (8)

Such a vector always exists. One may, for instance, start from a
Dewey Decimal Numbering of the program syntax tree. The num-
bers on a path from the root to statement R constitute a placement
vector for R. Consider the following schedule:

θ(R, x) = πR ‖ x, (9)

where ‖ is the shuffle operator. The shuffle of two vectors u and v
is defined by:

(u ‖ v)[2i− 1] = u[i],

(u ‖ v)[2i] = v[i].

This operation may be applied to vectors of unequal dimension by
extending the shorter one with zero’s.

Proving that schedule (9) reproduces the sequencing predicate
is easy. In fact, there are two cases. Suppose first that:

x[1..NRS ]� y[1..NRS ].

Let k ≤ NRS be the smallest index such that:

x[k] < y[k].

From property (7) and the definition of ‖, one deduces that:

θ(R, x)[1..2k − 1] = θ(S, x)[1..2k − 1],

θ(R, x)[2k] < θ(S, x)[2k],

and hence that:
θ(R, x)� θ(S, x).



6

program gosse
real a(100,100), x(100), s
integer i, j, k, n
real f
do i=1, n-1

do j=i+1, n
1 f=a(j,i)/a(i,i)

do k=i+1,n+1
2 a(j,k)=a(j,k)-f*a(i,k)

end do
end do

end do
do i=1,n

3 s = 0.
do j=n-i+2, n

4 s = s + a(n-i+1, j)*x(j)
end do

5 x(n-i+1) = (a(n-i+1, n+1) - s)/a(n-i+1,n-i+1)
end do
end

Figure 2: Gaussian elimination

If, on the contrary,

x[1..NRS ] = y[1..NRS ],

then the conclusion follows by property (8).
Note that schedule (9) is not the simplest one: by using an

argument similar to theorem 1, one may reduce its dimension from
2NSS + 1 to NSS + 1.

The converse of the above theorem is also true:

θ(R, x)� θ(S, y)⇒ (R, x) ≺ (S, y).

The proof is left to the reader.

The program of Fig. 2 is an implementation of a Gaussian linear equation
solver. Lines 1 and 2 implement the elimination phase, while lines 3 to 5
are the backward substitution phase. The subscripts in the latter phase
have been modified so as to avoid the use of a negative increment in the
second do i loop, which cannot be handled by the present version of the
scheduler.

The abstract syntax tree of program 2, with Dewey Decimal Numbers, is
depicted in Fig. 3.

Some examples of schedules for this program are:

θ(3, i) = 〈1, i, 0〉,



7

n
0

0

210

1

0

10

0

?

HH
HHHHj?

�
�
�

��+

?

J
J
J
Ĵ

�
�
�

��	

?

H
HHH

HHHHj

�
���

�����

4

5do j3

2

do k
1

do j

do ido i

Figure 3: The abstract syntax tree of program 2

θ(4, i, j) = 〈1, i, 1, j, 0〉,

θ(5, i) = 〈1, i, 2〉.

The reader may care to verify that these schedules do capture the sequen-
tial execution of program 2. They may be simplified in several ways, for
instance by removing useless components which arise from nodes with only
one successor.

From the schedule which has been constructed in the above theorem, one
may deduce a piecewise polynomial schedule by theorem 1. This schedule has
a mean degree of parallelism of 1. In the special case where all domains are
parallelepipeds with numerically given bounds, the schedule obtained in this
way is linear3. Finally, in view of the following trivial

Lemma 3 If two GDG G1 = 〈E1,Γ1〉 and G2 = 〈E2,Γ2〉 are such that E1 ⊆ E2

and Γ1 ⊆ Γ2, then the restriction of a causal schedule for G2 to E1 is a causal
schedule for G1.

and the fact that any program instance may be embedded in a program with
parallelepipeds as iteration domains, one gets Dowling’s theorem [4]:

Theorem 4 Any instance of a static control program has a linear schedule.
3Compare this statement to the familiar device which is used to linearize multidimensional

arrays whose dimensions are numerical constants.



8

The problem with the above result is that the schedule whose existence is
thus proved has no parallelism. One may interpret Dowling’s theorem as a
guarantee that various linear programs that we are about to build always have
a feasible solution. It still remains to find the optimum.

3 The basic algorithm

The following discussion is addressed to the case of DFG scheduling: other cases
may be handled with just an increase in the complexity of notations. Let θ be
the unknown d-dimensional schedule. We will suppose that all components of
θ are positive in DS ; this is not a restriction in the most interesting case where
the DS are bounded.

The delay associated with edge e is a vector:

∆e(y) = θ(δ(e), y)− θ(σ(e), he(y)) (10)

whose components are affine forms in the iteration vector and the structure
parameters. The schedule must satisfy the following constraints:

y ∈ DS ⇒ θ(S, y) ≥ 0, (11)

y ∈ Pe ⇒ ∆e(y)� 0. (12)

The last inequality imply:

y ∈ Pe ⇒ ∆e(y)[1] ≥ 0. (13)

The first components of inequalities (11) and (13) may be subjected to the
Farkas algorithm. The only unknown is the first component of schedule θ,
which is an affine combination4:

θ(S, y)[1] = µ
(1)
e0 +

pS∑
k=1

µ
(1)
ek (aSk.

(
y
n

)
+ bSk), (14)

where the µ(1)
ek have to satisfy a set of linear constraints:

G

(
µ(1)

λ(1)

)
≥ d, (15)

the λ(1) being auxiliary Farkas multipliers.
It may or may not be possible to select in this set a solution such that:

y ∈ Pe ⇒ ∆e(y)[1] > 0.

If such a solution is found, the problem is solved and the original DFG has a one-
dimensional schedule. If not, suppose that we select in some way a particular

4The notations are those of section I.3.2



9

solution of problem (15). A possibility is that we partition the set of edges of
the DFG into U (1) such that:

e ∈ U (1) ⇒ ∆e(y)[1] ≥ 0,

and its complement where we have:

e 6∈ U (1) ⇒ ∆e(y)[1] > 0,

Since the problem is homogeneous, this condition may be rewritten:

e 6∈ U (1) ⇒ ∆e(y)[1] ≥ 1.

Such a partition is admissible if the resulting problem is found to have a solution
after application of the Farkas algorithm I.3.2. Let P(1)

e be the set:

P(1)
e = {y | ∆e(y)[1] = 0},

which may or may not be empty.
The next component of the schedule must satisfy:

y ∈ P(1)
e ⇒ ∆e(y)[2] ≥ 0, (16)

this condition being void when P(1)
e = ∅.

To characterize the set P(1)
e , recall that in the process of solving inequality

(13), ∆e(y)[1] has been expressed as:

∆e(y)[1] = λ
(1)
e0 +

pe∑
k=1

λ
(1)
ek (cek.

(
y
n

)
+ dek),

where all terms in the sum are nonnegative. One easily sees that:

1. if λ(1)
e0 > 0, then P(1)

e = ∅;

2. if all λ(1)
ek = 0, then P(1)

e = Pe.

3. finally, if λ(1)
e0 = 0 and X

(1)
e = {k | λ(1)

ek = 0}, then P(1)
e is a face of Pe:

P(1)
e = {y | cek.

(
y
n

)
+dek ≥ 0, k ∈ X(1)

e , cek.

(
y
n

)
+dek = 0, k ∈ [1, pe]−X(1)

e },

which may or may not be empty.

Since the sets P(1)
e again are polyhedra, the same method will apply. The

algorithm will proceed until either all P(d)
e are empty, in which case a d-

dimensional schedule has been found, or until P(i)
e = P(i+1)

e for all e, in which
case no solution exists.

It is quite obvious that this algorithm is correct and complete. All solutions
are causal multidimensional schedules, and if such a schedule exists, the algo-
rithm will find it. The price to pay is the highly non linear character of the
algorithm. The result of each step acts directly on the set of constraints to be
satisfied next. Hence the solution method is basically an enumeration.



10

Edge Source Destination Condition
1 (1, i, j − 1) (1, i, j) j ≥ 1
2 (1, i− 1, i− 1) (1, i, j) j < 1 ∧ i ≥ 1

Table 1: The DFG of program 1

Let us go back to program 1, whose DFG is given in Table 1. Each
iteration of statement 1 uses a value of s which has been produced by
the immediately preceding iteration, which is (1, i, j, k − 1) if k ≥ 1 and
(1, i− 1, i− 1) if not.

To construct an affine schedule, let us apply the procedure which has been
outlined above. The prototype schedule is:

θ(i, j) = µ0 + µ1i+ µ2(n− i) + µ3j + µ4(i− j).

Let ε1 (resp. ε2) be a zero-one variable which encodes the fact that edge
1 (resp. 2) is in U (1) or not. Edge 1 is a uniform dependence, which gives
simply:

µ3 − µ4 ≥ ε1. (17)

Edge 2 is nonuniform; Farkas lemma must be used. Note that the con-
straint i ≥ 0 is redundant in the presence of i ≥ 1. The result is:

µ0 + µ1i+ µ2(n− i) + µ3j + µ4(i− j)
− (µ0 + µ1(i− 1) + µ2(n− i+ 1) + µ3(i− 1))− ε2
≡ λ0 + λ1(i− 1) + λ2(n− i) + λ3j + λ4(i− j) + λ5(1− j).

This is equivalent to:

µ1 − µ2 + µ3 − ε2 = λ0 − λ1 + λ5, (18)
µ4 − µ3 = λ1 − λ2 + λ4, (19)
µ3 − µ4 = λ3 − λ4 − λ5, (20)

0 = λ2. (21)

If ε1 = 1, these conditions are clearly inconsistent. From Equ. (19) and
(21) one derives:

µ4 − µ3 = λ1 + λ4 ≥ 0,

which contradict Equ. (17). We must conclude that program 1 has no
affine schedule. This conclusion does not depend on the value of ε2. Hence,
the only possibility is setting ε1 = 0. The problem now has, among its
solutions:

µ0 = µ2 = µ3 = µ4 = 0, µ1 = 1,

i.e., θ(i, j)[1] = i. Now, the only condition for the next component is Equ.
(17). We may set ε1 = 1. A possible solution is then µ3 = 1, µ4 = 0, or:

θ(i, j)[2] = j.

These two results give schedule (2).



11

4 A greedy algorithm

4.1 Heuristics

The basic objective of the greedy algorithm is the minimization of the dimension
of the schedule. This is justified by the following estimation. Suppose that the
original program is processing an object of characteristic “size” n. Then, most
of the time, a schedule of dimension d will have a latency O(nd).

This will not always be true. An obvious counter-exemple is schedule (9).
Let N = maxS NSS . Schedule (9) is of dimension 2N+1, while its latency
is probably O(nN ). However, the relation will be true often enough that
it can be used as a heuristic principle.

Let us say that edge e of the DFG is satisfied by a given schedule if the
corresponding delay is strictly positive everywhere in Pe. The new algorithm is
greedy in so far as it will try to satisfy as much edges as possible at each stage of
the solution, and in that it will never go back on a previous decision. Namely,
suppose that at a given stage in the algorithm, U is the set of unsatisfied
edges. Our aim is the determination of the next component of the schedule in
such a way that as many edges of U as possible are satisfied. Since condition
(3) is homogeneous and since the latency as given by Equ. (5) is insensitive to
multiplication by a positive constant, if e ∈ U is satisfied, then one may suppose
that:

∆e(y) ≥ 1.

This suggests the introduction of a set of new variables εe, e ∈ U and the
resolution of a new problem:

σ = max
∑
e∈U

εe, (22)

0 ≤ εe ≤ 1,
∀e : y ∈ Pe ⇒ ∆e(y) ≥ εe.

The resolution process will start by applying the Farkas algorithm to the
last constraint. The result is a linear program with objective function σ,
the unknowns being the εe and the Farkas multipliers.

Lemma 5 The solution of linear program (22) is such that all εe are either 0
or 1.

Proof Let η = min{εe | εe > 0}. Suppose η < 1. Set θ′ = θ/η.
Since the delays are linear functions of the schedules, the new delay
∆′ satisfies:

y ∈ Pe ⇒ ∆′e(y) ≥ εe/η.

If εe = 0, set ε′e = 0. If not, since εe/η ≥ 1, set ε′e = 1. The pair
θ′S , ε

′
e is a solution of linear program (22) and σ has increased, a

contradiction.



12

Lemma 6 The solution of linear program (22) is unique.

Proof Suppose, a contrario, that we are given two distinct so-
lutions θ(1), ε(1) and θ(2), ε(2), obviously with the same value σ of
the objective function. The pair θ′ = θ(1)+θ(2)

2 , ε′ = ε(1)+ε(2)

2 is also
a solution of program (22). The ε′ may be adjusted to be 0 or 1
by the same process as in lemma 5. The set of satisfied edges of
the new schedule is the union of the corresponding sets of the initial
schedules. If those are distinct, this increases σ, a contradiction.

As a consequence of lemma 5, the value of σ is the number of newly satisfied
edges. If σ = 0 the algorithm fails. If σ = Card U, the algorithm succeeds. For
all other values, we start again with a new:

U ′ = {e ∈ U | εe = 0}.

In case of success, that the resulting multidimensional schedule is a solution of
condition (3) is obvious. If the source DFG has a one dimensional schedule,
the algorithm will terminate in one step. However, the greedy algorithm is not
a variant of the basic algorithm. In fact, the greedy algorithm proceeds as if
they were only two possibilities, case 1 and 2 above; case 3 is lumped with case
2. We may say that the greedy algorithm is correct but no longer complete.
Nevertheless, theorem 2 is still true.

4.2 Termination proof

The proof makes use of a few definitions and observations on the DFG’s of
static control programs. Firstly, G being a directed graph, the relation between
vertices u and v: “u = v or there is a cycle of G which goes through u and v” is
an equivalence relation. The corresponding equivalence classes are the strongly
connected components (scc) of G, and the quotient graph of G is acyclic.

To each edge e of G let us associate:

• an integer Ne = Nσ(e)δ(e), the number of loops which contain both the
source and destination of e;

• a boolean Te = Tσ(e)δ(e) which is true iff e “goes forward” in the program
text.

Examination of the procedure which is used for computing the DFG [3]
shows that to each edge e may be associated an integer de – the depth of e –
such that:

1. if de < Ne, then:

he(y)[1..de] = y[1..de],
he(y)[de + 1] < y[de + 1].



13

2. if de = Ne, then Te is true and:

he(y)[1..de] = y[1..de],

and there is no other possibility.
The next observation is that in a structured language, two loop bodies are

either disjoint, or one of them includes the other. As a particular case, if two
loops at the same level of nesting have one statement in common, they are
the same loop. Another consequence is that if A and B are the bodies of two
distinct loops at the same level, and if there exists statements R ∈ A, S ∈ B
such that TRS is true, then all statements of A are before any statement of B
in the program text. Hence, the notion of textual order may be extended to
loop bodies at the same nesting level. The fact that all statements of A occurs
before all statements of B in the program text is recorded by stipulating that
the boolean TAB is true. As a particular consequence, it is impossible to find a
cycle in the loop order: there is no Bi, i = 0, n such that TBi−1Bi , i = 0, . . . , n
and TBnB0 are all true.

There is a strong connection between cycles in the DFG and loops in the
source program:

Lemma 7 Let G be a set of statements, and let Gd be the subgraph of the DFG
whose set of vertices is G and whose edges are at depth d or higher. To any
cycle C of Gd one may associate d+1 nested loops in the source program whose
bodies include all statements of C.

Proof Let R0, R1, . . . , Rn = R0 be the statements in C, and let
ei be the edge from Ri−1 to Ri. Obviously, Nei ≥ d. Hence, there
are at least d loops whose bodies contain Ri−1 and Ri, and also d
loops which contain Ri and Ri+1. From an observation above, these
d loops are identical since they share a statement. Continuing in
this way around C, we conclude that there are at least d loops which
contain all statements in C.

Suppose that at level d + 1 these statements belong to several
distinct loops B1, . . . Bm. Suppose that these loops are enumerated
in textual order. Since C is a cycle, there necessarily is a “backward
edge” e from R ∈ Bi to S ∈ Bj , i > j. By definition, de ≤ d, but
since Bi and Bj are distinct loops at nesting level d+1, de ≤ Ne = d.
Hence de = Ne, and we are in case 2 of the definition of the depth
of e. As a consequence, Te is true, which contradict the fact that e
is a backward edge.

Suppose now that we have found k components of a multidimensional sched-
ule, and that the set of unsatisfied edges is U (k). The greedy algorithm will
terminate if we can prove that, whatever U (k), the solution of linear program
(22) satisfies at least one edge of U (k). It is easy to see that the subscript k only
enters the problem through the definition of U (k). To simplify the notation, the
next theorem omits k and is stated as if we were computing a one dimensional
schedule.



14

Theorem 8 Let U be an arbitrary subset of the edges in the DFG of a static
control program. Then solving program (22) for U always satisfies at least one
edge of U .

Proof I will prove that linear program (22) always has a feasible
solution wich satisfies at least one edge of U . This is true a fortiori
for the optimal solution.

Let G be the set of statements incident to U , and let d be the
minimum depth of edges in U . Let us form the graph Gd, which
contains all edges of U . Let H1, . . . ,Hn be the scc’s of Gd, and let
Γ be its quotient graph. There are two cases:

• There exists in U at least one edge e which connects two dis-
tinct scc’s. Affix to each scc Hi an integer Λi in such a way
that:

〈Hi, Hj〉 ∈ Γ⇒ Λi < Λj .

Such integers always exist since Γ is acyclic, and may be easily
found by the topological sort algorithm. Now set:

∀R ∈ Hi : θ(R, x) = Λi.

It is clear that for all edges which lie inside one scc, the delay
is 0, while if there is an edge from R in Hi to S in Hj , then
〈Hi, Hj〉 ∈ Γ and:

θ(S, y)− θ(R, x) = Λj − Λi > 0.

• All edges are internal to some scc. Let us take:

θ(R, x) = x[d+ 1].

This is a legitimate choice, since in this case all statements
belong to at least d + 1 loops. Let e be an edge of U whose
source and destination are R and S. By lemma 7, Ne ≥ d+ 1.
If de > d, then the associated delay is zero. If de = d, we are
in the first case of the definition of de:

∆ = x[de + 1]− he(x)[de + 1] > 0,

and e is satisfied. Since, by the definition of d, there is at least
an edge such that de = d, it follows that there is at least one
satisfied edge.

It is now an easy corollary to theorem 8 that for a static control program,
the greedy algorithm always succeeds.



15

4.3 The dual version of the greedy algorithm

In the first part of this paper, we have found that among all schedules which
satisfy the causality constraint, we may select the best one by dualization. In
the present context, this seems to mean a two-step process: determine first the
set of satisfied edges, as above, then find the best concave schedule. Our aim
now is to find a way to solve this problem with just one linear program.

In order to simplify the notations, let µ be a vector whose elements are the
unknowns in the problem, i.e. the εe, the µSk and some of the λek. Let u be a
vector with ones in positions corresponding to the εe:∑

e

εe = u.µ.

Similarly, let φS(x) be a vector such that the schedule for statement S is given
by:

θ(S, x) = φS(x).µ.

Lastly, let
Gµ ≥ d

be the set of constraints which are deduced from the causality condition by
Farkas algorithm, including the constraints εe ≤ 1. The first problem is simply
a restatement of program (22):

σ = maxu.µ, (23)
µ ≥ 0,
Gµ ≥ d.

Each schedule is given by the solution of another problem: extending the nota-
tions of Part I, let G(ε) be the set of affine schedules which satisfies:

∀e : y ∈ Pe ⇒ ∆e(y) ≥ εe.

The best concave schedule is given by:

θ(S, x) = min
t∈G(ε)

t(S, x). (24)

which may be translated to:

θ(S, x) = minφS(x).µ, (25)
µ ≥ 0,
u.µ = σ,

Gµ ≥ d.

Since the solution of linear program (23) is unique, the effect of the second
constraint in program (25) is to pin the values of the εe to their optimum
values. Let us set up a third problem, in which m is a new positive parameter:

τ = maxmu.µ− φS(x).µ, (26)
µ ≥ 0,
Gµ ≥ d.



16

Intuitively, we are interested in what happens when m grows very large. Let Y1

(resp. Y2) be the solution of program (23) (resp. program (26)). Each vector
is a feasible point for the other problem. Hence:

u.Y2 ≤ u.Y1, (27)
mu.Y1 − φS(x).Y1 ≤ mu.Y2 − φS(x).Y2. (28)

As a consequence:

m(u.Y1 − u.Y2) ≤ φS(x).Y1 − φS(x).Y2 ≤ φS(x).Y1.

The last bound results from the fact that both φS(x) and Y2 have positive
components. Since the last bound is independent ofm, this inequality is possible
for a large enough value of m iff u.Y2 = u.Y1 = σ. For a large enough m, solving
program (26) will thus be equivalent to solving program (25).

The solution of linear program (26) is found by applying the PIP algorithm
to its dual:

τ = min ν.d, (29)
ν ≥ 0,
νG ≤ mu− φS(x).

The solution for τ is a quast on the parameters m and x. To obtain the
limit when m→∞, one simply has to take the true branch on all tests in which
m occurs with a positive coefficient and conversely. As has been explained
elsewhere [3], these simplifications can be done “on the fly”, so as to keep the
extra work to a minimum. The coefficient of m in the solution gives the value of
σ, and the independent term is −θ. The values of the εe may be recovered at no
extra cost by using complementary slackness [5, Chap. 5]: if some component
of ν is nonzero, the solution of the primal problem satisfies the corresponding
constraint as an equality. Now, among the constraints of linear program (26)
are

εe ≤ 1.

If the corresponding dual solution is nonzero, εe = 1 and edge e is satisfied. By
comparing the number of satisfied edges with σ, it is a simple matter to check
that all satisfied edges are found in this way.

5 Decomposition in strongly connected components

I wish now to investigate the application of the “Divide and Conquer” design
rule to the above algorithms. If one considers the causality rule as a set of
constraints on causal schedules, one sees that the GDG (or the DFG), when
shorn of its ancillary information – like domains and dependence polyhedra –
gives a pictorial representation of the relationships between the unknowns of
the problem: there is an edge from R to S iff θ(R, x) occurs in a constraint for
θ(S, y).



17

Let the statements to be scheduled be divided in two subsets V1 and V2, in
such a way that there may be edges of the DFG from elements of V1 to V2, but
none from V2 to V1. Let F1 be the set of edges whose source and sink belong
to V1 (the internal edges of V1), let F2 be the internal edges of V2, and let F12

be the edges from V1 to V2. We will suppose that all the iteration domains of
the program are bounded.

Let us first consider the solution of linear problem (22) for V1 and F1, for V2

and F2, and for the whole program. Let σ(1), θ(1), ε(1), σ(2), θ(2), ε(2), and σ, θ, ε,
be the respective solutions. It is clear that:

∀e ∈ F12 : εe = 1.

If it where not so, we could build a better schedule:

S ∈ V1 ⇒ θ′(S, x) = θ(S, x),

S ∈ V2 ⇒ θ′(S, x) = θ(S, x) + 1,

a contradiction.
The restriction of θ, ε to V1 and F1, or to V2 and F2, is a solution of the

associated linear program (22). Hence:∑
e∈F1

εe ≤ σ(1), (30)

∑
e∈F2

εe ≤ σ(2).

Conversely, from the solutions in V1 and V2, we may build a solution for the
whole program:

S ∈ V1 ⇒ θ′(S, x) = θ(1)(S, x),
S ∈ V2 ⇒ θ′(S, x) = θ(2)(S, x) + L(1)(n) + 1,

where L(1) is the latency of V1 as a function of the structure parameters, which
exists by lemma I.8. For this solution,

e ∈ F1 ⇒ ε′e = ε(1)
e ,

e ∈ F2 ⇒ ε′e = ε(2)
e ,

e ∈ F12 ⇒ ε′e = 1.

From this we deduce that:

σ(1) + σ(2) + Card F12 ≤ σ,

which implies:
σ(1) + σ(2) ≤

∑
e∈F1

εe +
∑
e∈F2

εe,



18

and, in conjunction with inequality (30), gives:∑
e∈F1

εe = σ(1), (31)

∑
e∈F2

εe = σ(2).

As consequence, in the matter of deciding which edges are cut, we may solve
the problems in V1 and V2 independently.

For the present, the causality condition will be understood as:

∀e : y ∈ Pe ⇒ ∆e(y) ≥ εe

for the εe which have been computed in the preceding step. θ and θ(1) will now
be the best concave schedule which are found by solving linear program (24) or
the equivalent program (25) over the whole program and V1 respectively.

Let us first consider the case of a statement S ∈ V1. Since, by an argument
similar to the preceding one, any causal affine schedule for the whole program
may be restricted to a causal affine schedule for V1, and a causal affine schedule
for V1 may be extended to a causal affine schedule for the whole program, we
deduce that θ(1)(S, x) = θ(S, x).

The situation is quite different in V2. Here, we want to modify the set of
schedules over which the minimum is taken to schedules which are causal, affine
in V2, and which verify:

y ∈ Pe ⇒ t(S, y)− θ(1)(R, he(y)) ≥ 1 (32)

for all edges e from R ∈ V1 to S ∈ V2. Let θ(2) be the solution of this modi-
fied problem. Consider a schedule t which is causal and affine over the whole
program. Since θ(1) is less than the restriction of t to V1, t satisfies inequality
(32). Hence:

θ(2)(S, y) ≤ θ(S, y).

We cannot, however, prove the reverse inequality. The causal affine schedule t
for which the minimum is obtained can be extended to a schedule for the whole
program by “gluing” θ(1) in V1. However, the result is not affine in general. We
conclude that the solution of the modified problem in V2 is in general better
than the solution for the whole program. Equality can be proved in the special
case where θ(1) is affine.

The conclusion is that step by step scheduling can be used since it will
give results at least as good as global scheduling. This result holds neither for
minimum latency schedules nor for bounded delay schedules. For minimum
latency schedules, a counter-exemple is given by Darte et. al. [6, Fig. 7].
For bounded delay schedules, observe that the program in Fig I.2 has no such
schedule, while each of its statements has one.

5.1 A Recursive Scheduling Algorithm

These results may be generalized in the following way. Let {H1, . . . ,Hn} be the
strongly connected components of the GDG, their enumeration being compat-
ible with the reduced graph. A simple induction will show that the scheduling



19

problem may be solved step-by-step, starting with H1, each solution θ(i) being
used if necessary in setting up the constraints for θ(j), j > i. Since θ(i) may be
piecewise affine, one may have to apply Farkas Lemma independently to each
piece, a straightforward extension of algorithms in part I.

For each Hi, one will attempt the solution of a linear program like (29).
There is one set of constraints per edge incident to vertices in Hi. These edges
may be classified into:

• internal edges, whose source lies in Hi,

• external edges, whose source lies in Hk, k < i.

As we have seen earlier, external edges are always satisfied. If there are
unsatisfied internal edges, one must solve the same problem for the restriction
of the GDG to unsatisfied edges. This subgraph which is not necessarily strongly
connected, must be decomposed again. The outcome of these observation is the
following algorithm:

• Schedule(U, p):

• U is a set of edges in the GDG and p is an integer. Initially, p = 1 and
U is the set of all edges in the GDG.

1. Compute the strongly connected components of U , {H1, . . . ,Hn},
ranking them according to the reduced graph of U .

2. For each i = 1, . . . , n, solve linear program (29).

(a) If the solution is such that σ = 0, the algorithm fails. This
never happens if the GDG comes from a sequential program.

(b) If not, the schedules obtained at step 2 are the components
of index p of the multidimensional schedule.

(c) Build the set U ′ of unsatisfied edges, and, if U ′ 6= ∅, call
recursively Schedule(U ′, p+ 1).

The similarity of this algorithm with the codegen algorithm of Allen and
Kennedy [2] is striking. In fact, one may conjecture that codegen is a simplified
version of Schedule in which program (29), instead of being solved exactly, is
solved approximately along the lines of theorem 8.

6 Experimental results

I wish now to explore the scheduling algorithms of this paper from a more prac-
tical point of view. Part I of the present paper presents two basic algorithms,
the bounded delay scheduler of section I.3.3.2 and the dual algorithm of sec-
tion I.3.3.3. In part II, I have shown how to extend the dual algorithm to the



20

multidimensional case. The bounded delay version may be similarly extended,
notwithstanding the fact that the definition of a delay for multidimensional time
is somewhat unclear. Lastly, I have presented a partitioning technique, which is
guaranteed to do at least as well as a global solution for the dual algorithm but
not for the bounded delay case. All these algorithms have been implemented in
such a way as to allow complete freedom in their combination. This software
has been applied to a collection of kernels from numerical analysis and signal
processing. The following is an assessment of the results of these experiments.

6.1 Implementation

The existing software computes schedules for affine Dataflow Graphs only; ex-
tension to the case of Generalized Dependence graphs is contemplated. The
architecture of the software closely follows algorithm Schedule above. The
first step is the acquisition of the DFG. Optionally, one may ask for the elim-
ination of redundant inequalities in the definition of domains. Schedule is
then applied to the whole program. The scc decomposition may be activated
or inhibited at will. Lastly, when solving the scheduling problem, one may ask
either for the best concave solution or for the bounded delay solution. In the
last case, the delay condition is imposed only to internal edges of each scc.

Application of Farkas Lemma implies the handling of sparse linear and bi-
linear forms; this is best implemented in a symbolic programming language like
Lisp. The code has been structured in two layers: the outermost one imple-
ments the scheduling algorithm, the inner layer being a rudimentary algebraic
calculator. The result is a parametric linear program, which is sent to the PIP
software. PIP is written in C and has been described elsewhere [7, 8].

6.2 Some examples

Consider again program 2. Table 2 is a list of the statements in the program,
with a description of each iteration domain. Table 3 is a description of the
associated Dataflow Graph. Edges are numbered arbitrarily by the software.

An attempt to build a one-dimensional schedule for this program fails. In
fact, one may observe that the basic structure of the back-substitution part is
the same as that of program 1. Execution of algorithm Schedule, however, is
successful. The DFG may be divided into three scc’s: {3}, {1, 2} and {4, 5}.
Statement {3} has no predecessor, hence its schedule is zero, which means that
it can be executed at the beginning of the program. Statements 1 and 2 have
an affine schedule, which is given in table 2. When scheduling statements 4
and 5, one finds that edge 109 cannot be satisfied. Algorithm Schedule is
called recursively. The unsatisfied edge is a loop from statement 4 to itself.
The recursive call builds a second component for the schedule of 4. The result
of algorithm Schedule is displayed in table 2. An important information is
the delay of each edge: it may be found in table 3; the reader may care to
verify that all delays are lexicographically positive. In the case of edge 113, for
instance, the property

2i+ 2j − 3− 2n > 0



21

Statement Loop counters Schedule Domain
1 i, j 2i− 2 n− 1− i ≥ 0,

i− 1 ≥ 0,
n− j ≥ 0,
j − 1− i ≥ 0

2 i, j, k 2i− 1 n− 1− i ≥ 0,
i− 1 ≥ 0,
n− j ≥ 0,

j − 1− i ≥ 0,
1 + n− k ≥ 0,
k − 1− i ≥ 0

3 i 0 n− i ≥ 0,
i− 1 ≥ 0

4 i, j

(
2i+ 2n− 4
i+ j − 2− n

)
n− i ≥ 0,

i− 1 ≥ 0,
n− j ≥ 0,

i+ j − 2− n ≥ 0
5 i 2i+ 2n− 3 n− i ≥ 0,

i− 1 ≥ 0

Table 2: The iteration domains of the gosse program

Edge Source Destination Delay Predicate

101 〈1, i, j〉 〈2, i, j, k〉 1

102 〈2, i− 1, j, i〉 〈1, i, j〉 1 i− 2 ≥ 0

103 〈2, i− 1, i, i〉 〈1, i, j〉 1 i− 2 ≥ 0

104 〈2, i− 1, j, k〉 〈2, i, j, k〉 2 i− 2 ≥ 0

105 〈2, i− 1, i, k〉 〈2, i, j, k〉 2 i− 2 ≥ 0

106 〈2, n− i, 1 + n− i, j〉 〈4, i, j〉 4i− 3 n− 1− i ≥ 0

107 〈2, n− i, 1 + n− i, 1 + n〉 〈5, i〉 4i− 2 n− 1− i ≥ 0

108 〈2, n− i, 1 + n− i, 1 + n− i〉 〈5, i〉 4i− 2 n− 1− i ≥ 0

109 〈4, i, j − 1〉 〈4, i, j〉
(

0
1

)
i + j − 3− n ≥ 0

110 〈3, i〉 〈4, i, j〉 2i + 2n− 4 2 + n− i− j ≥ 0

111 〈4, i, n〉 〈5, i〉 1 i− 2 ≥ 0

112 〈3, i〉 〈5, i〉 2i + 2n− 3 1− i ≥ 0

113 〈5, 1 + n− j〉 〈4, i, j〉 2i + 2j − 3− 2n

Table 3: The DFG of the gosse program



22

Setup PIP Total
scc 4.2 1.5 5.7

no scc 11 15 26

Table 4: The time taken for computing the schedules in Fig. 2

is a consequence of the last inequality in the domain of statement 4:

i+ j − 2− n ≥ 0.

The schedule of table 2 should be compared to the schedule which is given
by theorem 2. The first observation is that while theorem 2 gives many
dimensional schedules for statement 1 and 2, the result here is one dimen-
sional. This fact indicates that the elimination phase has parallelism. The
scheduler notices also that statement 3 is an initialization step which can
be executed outright. Both methods are in agreement that statements 4
and 5 need multidimensional schedules, and that they cannot be executed
before the last elimination step. In the construction of theorem 2, this is
obtained by giving differing constant values to the first component of the
schedule. Our scheduler is able to compute the date of the last elimination
step: 2n−3, and to add it as an offset to the schedules for 4 and 5. Notice
also that instead of using a third component with constant values 0 and
1, statement 4 and 5 are scheduled respectively at even and odd values of
the first component of time. This is a consequence of the tendency of the
greedy algorithm to construct schedules with minimal dimension.

Scheduling program 2 may also be done without resorting to the scc decom-
position of section 5. The results are exactly the same; however, the running
time is quite different, as shown by table 4.

Times were measured on a Sparc station with the standard operating system
tools and are given in seconds. The “setup” column gives the time it takes to
construct the linear program (29) (this is the Lisp part of the software), while
the “PIP” column gives the time for its solution by the parametric programming
code, which is written in C. The scc decomposition is responsible for a fourfold
reduction in the running time, which is mostly assignable to the reduction in
the linear program size.

It is clear from table 3, that the resulting schedule has unbounded delays –
the largest delay is of the order of 4n. An attempt to build a bounded delay
schedule fails.

The fact that one of the schedules in table 2 is two dimensional means that
the latency is O(n2). This may be understood as a measure of the running time
on a computer with a large enough number of processors, each operation of the
program being executed in unit time. A more realistic interpretation is that one
will need O(n2) synchronization operations if no parallelism is to be lost. This
is an unsatisfactory situation, which can be remedied by a well known device.
Observe that lines 3 and 4 of the above program compute a sum:

s =
n∑

j=n−i+2

an−i+1,jxj .



23

program gosser
real a(100,100), x(100), s
integer i, j, k, n
real f
do i=1, n-1
do j=i+1, n

1 f=a(j,i)/a(i,i)
do k=i+1,n+1

2 a(j,k)=a(j,k)-f*a(i,k)
end do

end do
end do
do i = 1, n

3 s = 0.
do j = 1, i-1

4 s = s + a(n-i+1, n-j+1)*x(n-j+1)
end do

5 x(n-i+1) = (a(n-i+1, n+1) - s)/a(n-i+1, n-i+1)
end do

end

Figure 4: Another version of a Gaussian elimination program

Now, if one forgets about rounding errors, this sum may be computed in any
order, for instance:

s =
n−i+2∑
j=n

an−i+1,jxj =
i−1∑
j′=1

an−i+1,n−j′+1xn−j′+1.

After some rearrangements, one gets the program in Fig. 4, which has a one
dimensional schedule: see table 5.

The new schedule has an O(n) latency, which indicates that we have indeed
found parallelism in the back substitution phase. Observe that this has been
done in two steps. The first one goes from gosse to gosser by rearranging a

Statement Loop counters Schedule
1 i, j 2i− 2
2 i, j, k 2i− 1
3 i 0
4 i, j 2j + 2n− 2
5 i 2i+ 2n− 3

Table 5: The schedules for program gosser



24

Statement Loop counters Schedule

1 i, j

(
0

2i− 2

)

2 i, j, k

(
0

2i− 1

)
3 i 0

4 i, j

(
1

2j − 1

)

5 i

(
1

2ip− 2

)

Table 6: Scheduling gosser, no scc decomposition

Setup PIP Total
best schedule, scc 4 1.5 5.5

best schedule, no scc 10.6 18 28.6
bounded delay, scc 4.6 1 5.6

bounded delay, no scc 13.2 10 23.2

Table 7: The time taken for scheduling gosser

summation. This transformation lies outside the scope of the present method.
The second step finds a schedule, which may then be used to build a parallel
program. Since the schedule for statement 3 is affine in i, while the one for 4
is affine in j, this results in a kind of loop inversion in an imperfect loop nest.
This is beyond Allen and Kennedy’s algorithm, and also beyond all algorithms
which can be applied only to perfectly nested loops.

The delays of the schedule in table 5 are still not bounded. Trying to com-
pute a bounded delay schedule while still using the scc decomposition gives the
same result as table 5. This is a consequence of the fact that the bounded
delay condition is not enforced on “external” edges. With the scc decompo-
sition off, a two dimensional schedule results (see table 6). One sees that the
first component of each schedule is either 0 or 1, thus reconstructing the scc
decomposition, and that the other component is the same, up to a translation,
as the solution in table 5. The conclusion is that program gosser in fact has
no bounded delay schedule. However, it may be decomposed in two bounded
delay phases, with an unbounded delay between them. The elapsed times for
solving these problems are given in table 7.

Obtaining multidimensional schedules does not always indicate that the
source program has no parallelism. Consider example 5. Its schedule is given in
table 8. Its sequential running time is O(n3). Statement 1 has a two dimensional
schedule, which gives a parallel running time O(n2), and as a consequence, a



25

do k = 1,n
do i = 1,k

do j = 1,k
1 s(i,j,k) = s(i,j,k-1) +

s(i-1,j,k)/x(i-1) + s(i,j-1,k)/x(j-1)
end do

end do
2 x(k) = s(k,k,k)

end do

Figure 5: A program with limited parallelism

Statement Loop counters Schedule Domain

1 k, i, j

(
2k − 2
i+ j − 2

)


n− k
k − 1
k − i
i− 1
k − j
j − 1


≥ 0

2 k 2k − 1

(
n− k
k − 1

)
≥ 0

Table 8: The schedule of program 5

mean degree of parallelism O(n). This program would have been left invariant
by Allen and Kennedy’s algorithm.

As a last exemple, consider the programm in Fig. 6 – an extract from the
Argonne test suite. The bounded delay schedule for this program is:

t(1, i) = 1, (33)
t(2, i) = 0,

while the best concave schedule is:

τ(1, i) = if i− 4 ≥ 0 then 1 else i− 2,
τ(2, i) = 0.

The bounded delay schedule is very simple. It indicates that both state-
ments can be executed as separate parallel loops, provided that their order be
reversed. The best schedule is slightly more complicated: the dual algorithm
has noticed that the flow dependence from b(i) in statement 2 to b(i-1) in
the next iteration of statement 1 does not exists for i = 2. Hence, the first
iteration of statement 1 can be executed at time 0 rather than 1.

On the basis of these observations, we may conclude that the computation
of best concave schedules is the safest solution for a restructuring compiler.



26

program s211
c
c statement reordering
c statement reordering allows vectorization
c

integer n
real a(100),b(100),c(100)
do 270 i = 2,n-1

1 a(i) = b(i-1) + c(i)
2 b(i) = b(i+1) - 2.
270 continue

c return
end

Figure 6: An exemple from the Argonne test suite

Such schedules always exist and are unique; their only drawback is that they
may be more complicated than bounded delay schedules, and that the added
complication may no be worthwhile in term of performance – see the last ex-
emple. One may contemplate a two step approach, in which one tries first for a
bounded delay schedule and then, in case of failure, for a best concave schedule.
Evaluation of such tactics must wait for more practical experience.

6.3 The limits of the algorithm

In its present implementation, there are two limiting factors to the applicability
of the algorithm beyond the standard restriction to static control programs with
linear subscripts. Both are related to the “size” of linear program (29). One
limitation is in term of the number of constraints and unknowns. The largest
program that was ever scheduled had 24 assignment statements and a maximum
nesting level of 4. This led to the solution of several linear programs, the largest
of which had 980 constraints and 581 unknowns. The elapsed time was about
two hours. The second limitation is in term of an upper bound b on the modulus
of the elements of matrix G in program (29). In the worst case, finding the exact
solution of this problem entails the handling of integers of the order of bm where
m is the number of unknowns. Since the present implementation of PIP uses
ordinary 32 bits arithmetic, this will soon induce overflows unless b is 1 or 2 at
most. As an irritating consequence, the scheduler may fail for programs with
large numerical upper bounds. This happens very seldom. The remedy is to
replace these large bounds by new parameters, then to plug back the numerical
values in the resulting schedule.

The scc decomposition has the effect of partitioning the program into phases
no larger than the loop nests in the original program. This has a limiting effect
on the problem size. However, there are programs which surpass the possibilities
of our implementation. A possible solution in that case is to implement an



27

do i = n,1,-1
x(i) = x(2*i) + x(2*i+1)

end do

Figure 7: A calculation on a tree

approximate scheduler along the lines of theorem 8. The approximate schedule
will satisfy some edges of the DFG. Algorithm Schedule may then be applied
to a deflated problem.

Another point to note is that the method has a tendency to pack scc’s as
tightly as the dependences allow. This leads to difficulties in the code generation
phase. The resulting code is not suitable to most present day parallel computers,
which do not exploit “control parallelism” efficiently. It may be that executing
the scc’s sequentially is the best solution.

7 Conclusion

This concludes the discussion of a set of general methods for computing linear
and piecewise linear, multidimensional schedules for static control programs and
systems of recurrence equations. Let us emphasize the fact that the method
is not limited to the case of uniform dependences, while being able to exploit
such to simplify the solution process.

The reasoning which underlies the method is in two parts. Firstly, one has to
characterize the set of acceptable schedules, in the form of a polyhedron in the
space of the coefficients of all positive linear functions. This may be done either
by the vertex method or with the help of Farkas lemma. It is probable that both
these methods give logically equivalent results; it would be very interesting to
do a detailed performance comparison.

The second step is the selection of a “best” – or at least, of a “good” –
schedule from the above set. Here the dual method shows itself as superior to
the minimum latency method and the bounded delay method, both from the
point of view of determinacy – the best concave schedule is unique while there
are many minimum latency and minimum delay schedules – and from the fact
that it lends itself to a divide and conquer strategy, which is not true for the
other methods.

However, there are still many unsolved problems with these scheduling al-
gorithms. The greedy algorithm of section 4 is engineered for the construction
of low dimensional schedules; does it achieve the minimum possible dimension,
and is low dimension equivalent to low latency? In many cases, one may verify
a posteriori that the resulting schedules are in fact free schedules, simply by
testing that each operation has at least one unit delay incoming edge. If this
criterion is not met, we may be near the free schedule, as is the case of example
6, or far from it, as is the case of example I.6, or of the tree summing example
7 whose best concave schedule is simply:

θ(i) = n− i,



28

while its free schedule is:

τ(i) = blog2 n− log2 ic .

While example I.6 can be solved quite easily by dissection of the iteration
domain, what are we to do for example 7?

The usual method for constructing a parallel equivalent to a sequential pro-
gram consists in the application of a list of transformations – loop distribution,
loop skewing, loop collapsing, loop interchange – to the original program until
the parallel loops are in evidence. Most often, parallelism is obtained only if
memory use is also modified by transformations such as array and scalar ex-
pansion and privatization. Such an approach suffers from the drawback that
the interactions between transformations are very complex, and that there is no
clear figure of merit to support a hill climbing paradigm. Hence the attempts
to construct integrated frameworks in which the result of applying a given set
of transformations is obtained directly. An example of such a framework is
Allen and Kennedy’s algorithm, which gives directly the result of applying loop
distribution and reordering to the original program. Another example is Wolfe
and Lam method [9], which, when applied to a perfect loop nest, integrates all
transformations expressible as a unimodular change of basis. The present work
is another such framework, with the difference that the parallel program is not
obtained directly. The schedule may be likened to a blueprint of the parallel
program, which can be recovered by polyhedra scanning techniques [10].

The present method integrates all transformations which can be expressed
as affine mappings of the iteration space. This set includes all transformations
quoted above, the wavefront method, and many new combinations of these.
Array expansion transformations are also included provided one starts from a
dataflow graph rather than from an ordinary dependence graph. There are
many others transformations, like iteration space tiling or communication vec-
torization, whose primary aim is to handle limited resources, and which are
beyond the scope of this paper.

While the algorithm obviates the need for a state space search, its present
complexity is not really satisfactory. What is needed here is a combination of
problem reduction methods, approximation techniques and schedule combina-
tion rules for tackling, at least in an approximate way, life size problems.

8 Acknowledgments

This work has been partially supported by the French Ministry of Defense
under contract DRET 87/280. Many ideas have been evolved in discussions
with Patrice Quinton, Hervé Leverge, Alain Darte, and all my friends of the
“Techniques de Parallélisation” operation of PRC C3.

References

[1] Paul Feautrier. Some efficient solutions to the affine scheduling problem,
I, one dimensional time. Int. J. of Parallel Programming, 21(5):313–348,



29

October 1992.

[2] J. R. Allen and Ken Kennedy. Automatic translation of fortran programs
to vector form. ACM TOPLAS, 9(4):491–542, October 1987.

[3] Paul Feautrier. Dataflow analysis of scalar and array references. Int. J. of
Parallel Programming, 20(1):23–53, February 1991.

[4] Michael L. Dowling. Optimal code parallelization using unimodular trans-
formations. Parallel Computing, 16:157–171, 1990.

[5] A. Schrijver. Theory of linear and integer programming. Wiley, NewYork,
1986.

[6] Alain Darte and Yves Robert. Affine-by-statement scheduling of uniform
loop nests over parametric domains. Technical Report 92-16, LIP-IMAG,
April 1992.

[7] Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243–268, September 1988.

[8] Paul Feautrier and Nadia Tawbi. Résolution de systèmes d’inéquations
linéaires ; mode d’emploi du logiciel PIP. Technical Report 90.2, IBP-
MASI, January 1990.

[9] M. Wolf and Monica S. Lam. A loop transformation theory and an algo-
rithm to maximize parallelism. IEEE Trans. on Parallel and Distributed
Systems, 2(4):452–471, October 1991.

[10] Corinne Ancourt and François Irigoin. Scanning polyhedra with DO loops.
In Proc. third SIGPLAN Symp. on Principles and Practice of Parallel Pro-
gramming, pages 39–50. ACM Press, April 1991.

@Article{Feau:92bb,
author = "Paul Feautrier",
title = "Some Efficient Solutions to the Affine Scheduling

Problem, {II}, Multidimensional Time",
volume = "21",
number = "6",
journal = "Int. J. of Parallel Programming",
month = Dec,
pages = "389--420",
year = "1992"

}


