eSimu : a Fast and Accurate Energy Simulator for Software
Based Estimations

Nicolas Fournel
INRIA/Compsys
LIP/ENS de Lyon, France

nicolas.fournel@ens-
lyon.fr

ABSTRACT

This paper presents eSimu, a performance and energy con-
sumption simulator for deeply embedded hardware platforms
such as sensor network nodes. These tools are based on cycle
accurate simulation of complete hardware platforms execut-
ing the real application code. This allows designers to get
fast performance and consumption estimations without de-
ploying software on sensors, while being independent of any
compilation tools or software components such as applica-
tions, network protocols or operating systems. The eSimu
tools use a two steps approach. The first step consists in a
fast cycle accurate simulation generating an annotated ex-
ecution trace. The second step is an offline analysis that
generates energy consumption profiles from this trace. The
energy estimation is based on a platform-level energy model
based on micro-benchmarks calibration using non-intrusive
measurements on the real target hardware. Results pre-
sented in this paper show that an average error of 10% can
be achieved using this method on a complete hardware plat-
form based on a complex chip including an ARM9 processor.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Monitors; D.2.6 [Software Engineering]:
Programming Environments—Integrated environments

Keywords

Sensor networks, development framework, simulation, power
consumption.

1. INTRODUCTION

Sensor network nodes development trend is currently fol-
lowing very closely the micro-electronic technology advances.
This is particularly true for embedded micro-controllers and
processors that are used in network nodes. What was, only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

Antoine Fraboulet
INRIA/Compsys
CITI/INSA de Lyon, France

antoine.fraboulet@insa-
lyon.fr

Paul Feautrier
INRIA/Compsys
LIP/ENS de Lyon, France

paul.feautrier@ens-
lyon.fr

a few years ago, a state of the art 32 bits processor with
mid-range power consumption and packaging volume can be
now re-engineered and repackaged using newer technologies.
These changes have promoted this class of processors to ul-
tra low-power consumption and very small physical footprint
suitable for small devices such as sensors. Current state of
the art nodes are using high-end 16 bits micro-controllers
and chances are that current 32 bits embedded processors
will be the future targets of sensor networks architecture.

This shift in processing hardware coupled with the ever in-
creasing memory size available in embedded systems allows
loading more and more software code on systems to drive
physical sensors and peripherals. These shifts in complexity
and capabilities have an important impact on the software
stack that can be developed for wireless sensor networks.

Despite being ultra-low power, the hardware nodes con-
figurations are, and still will be for a long time, highly con-
strained by energy consumption and battery capacity. It
is now well known that energy consumption can be derived
from the activity of the platforms and that the software part
has a very important role in energy consumption of a full
system. Indeed, in current processors and in smarter de-
vices, power management policies are delegated to software
drivers and application. This power management includes
processors and peripherals standby modes that can range
from the classic on/off model to more elaborate dynamic
voltage scaling (DVS) techniques.

In such a context, much care must be invested not only
in the design of applications, communication protocols and
operating systems, but also in the code implementation and
the hardware platform that will be deployed.

We believe that the development process for this kind of
application must include early in the design stages not only
a performance evaluation close to the cycle accurate model
but also an energy and power consumption feedback. Using
this feedback the developer can make important choices and
tests while setting up the sensor application. This is partic-
ularly true in our current context where most of the sensor
networks are application specific and are deeply embedded
in the sense that no intervention is possible once the nodes
have been deployed.

In this paper we present a methodology to elaborate an
energy consumption model and use it in the traditional soft-

not made or distributed for profit or commercial advantage and that copies Ware development flow. Our energy model is built for a
bear this notice and the full citation on the first page. To copy otherwise, to full platform that includes the processing units, memories
republish, to post on servers or to redistribute to lists, requires prior specific and peripherals. The constructed model is geared toward

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

software development on the deployment platform once the

hardware design choices have been made. Energy models
are derived from real platform measurements using micro-
benchmarks. The combination of cycle accurate simulation
and energy consumption allows a fast and accurate feedback
that can help the designer during the process of performance
evaluation and software optimization of the target applica-
tion.

In the remainder of this paper, Section [2| presents the
usual embedded system development environment and the
detailed introduction of our power estimation tools in this
environment. Then we present in Section [3|an in-depth ex-
perimentation and evaluation of our approach using a com-
plex platform including an ARM9 processor running a full
operating system and multimedia benchmarks. Section [
presents related work on power estimation for embedded
platforms and we finally conclude and present our future
works in Section [Bl

2. FAST ENERGY AND PERFORMANCE
ESTIMATION TOOLS

In this section we present the embedded system software
development flow. We then present our proposal for precise
timing and power consumption estimations in the software
development process and finally, we present the integration
of this proposal within the standard tool suite.

2.1 Standard embedded systems development

tool suite

The usual software development for embedded system fol-
lows the process depicted in Figure

Figure 1: Software development tool suite

The first step in this process is software implementation
to produce the source code. All software component choices
are made beforehand. For example, at this stage the choice
of using or not an operating system (OS) to increase code
re-usability must be made. The source code can be made of
application, operating system and/or ad-hoc drivers.

The following development phase is source code compila-
tion for the desired hardware target. Generally speaking,
it is a cross compilation, since host computer and platform
architectures are different. The development computer is
frequently based on the x86 architecture, whereas sensors
are often micro-controller or RISC architecture based plat-
forms (ARM or MIPS). The output of this phase is a binary
file ready to be deployed on the hardware.

The last stage in the development process is the debugging
and deployment of the software. This phase is one of the
most delicate phase in the software development process.

Two solutions are available to developers in this case. The
first one is the deployment and debugging directly on the
hardware. This solution makes the debugging task very
difficult for two main reasons. Firstly, debugging an em-
bedded system is usually made difficult due to the poor in-
put/output possibilities of the platform. Secondly, hardware
dedicated debugging tools like JTAGs are not necessarily
of a good assistance, for example when debugging a device
driver. Indeed, this kind of tool is intrusive: by activating
a debug mode, timings can be modified making peripherals
behave differently. The second solution consists in using a

simulator during all the debugging phase and deploying on
the real hardware only at the last moment. The simulation
in such a process must reproduce the full platform behavior
(including peripherals), helping the developer for the first
part of the debugging.

Only few simulators targeting complete platform emula-
tion can be found, we present some of them in section [4]
These rare simulators are mainly functional simulation ori-
ented, timing of hardware components are thus seldom re-
spected. In such conditions, deployment is the last debug-
ging and performance evaluation phase since the simulator
debugged software cannot be certified to work due to tim-
ings, for example in device drivers development. In case de-
velopers need to optimize their software for energy and/or
time performance, the preceding simulators are not of a good
help. Indeed, they give no real output on the time perfor-
mance of the software. As far as energy consumption is
concerned, the only source of information the developer can
have is the hardware itself. Optimization of time and energy
are thus made at the source level but can only be quanti-
fied and validated by the deployment phases which remain
highly time consuming.

2.2 Timing and Power Aware Simulators

To overcome the problem of picking out energy and per-
formance informations altogether, we propose in this paper
our eSimu energy instrumentation tool that augments the
simulation tools available during the software development
process. The simulation has to be more precise in terms of
timing and performance analysis than the functional simu-
lators can be, and it must simulate the platform with a full
knowledge of power states (or events influencing the power
state).

Before giving more details about the integration of this
proposition in the standard tools-suite described previously
we describe here the core of the energy estimation tool: the
energy consumption model.

Our model is build toward end-user usability. The energy
model must be simple enough to be used at the software
level but still provides accurate information. Our energy
model construction methodology has the following goals:

e The model must keep simulation runtime overhead as
low as possible by using only a few architectural pa-
rameters.

e The model must not require a full knowledge of the
hardware design that could lead to heavy modifications
in the simulator.

e Energy calibration must be made on full target plat-
form to represent the complete energy consumption.

e Measurements must be done using off-the-shelf mea-
surement instruments.

It also has to be accurate enough to allow developers to
take implementation and architectural decisions. Another
desired characteristic for this model is that it must be easy
to adapt to a new complete platform. This implies that the
model is designed by following rules, and then calibrated on
the target hardware.

Energy consumption model design

First, we propose a model abstraction level selection, which
means select the size of black-boxes in this model to rep-

resent hardware components. Indeed, this choice influences
the main trade-off in the model design between accuracy,
model complexity and computation time.

Energy consumption models are usually built using ab-
straction levels ranging from transistor-level to system-level.
At the lowest level, transistor level (or gate-level), every
transistor (or gate) consumptions are computed and merged
to give a component energy model. This requires the low-
level description of the circuit (VHDL or Verilog descrip-
tion), and has a long running time.

At the highest level of abstraction, system-level, the con-
sumption is computed using only very high level parameters.
For example, for a CPU characterization, only instructions
types are used to predict the consumption. Energy estima-
tions are less accurate.

Between these two levels of abstraction, we find a family
of models which can be regrouped in an architectural level
of abstraction. At this level, all gates are not simulated,
but grouped by architectural block. The granularity of the
blocks can vary and architectural block can even be consid-
ered recursive. For example, a CPU can be a block, but it
can be subdivided in core CPU, MMU, caches, ...

Our studies showed that the best trade-off we can achieve
to obtain a fast but accurate estimation of energy consump-
tion for a complete platform is with an architectural level
model. In the resulting model, processor, memories and
peripherals are considered as black-boxes connected by the
interconnect (a bus or a Network-on-Chip). The data and
control informations are kept for bus transactions, since they
give the access level in the bus hierarchy. The main com-
ponents are CPUs or micro-controllers, memory hierarchy
blocks (including caches if they exist) and peripherals. Fig-
ure[2] give examples of platform architectural blocks. Each of
these blocks has to be modeled using a set of power states
that represent the energy consumption of the block for a
given activity or configuration. In this paper we focus on
the simulation tool flow and the use of our energy model
but the interested reader can find all details about our en-
ergy architectural models in [?].

Figure 2: Platform architectural blocks examples.

The second design decision concerns the collection of data
needed to adjust the model to the hardware platform. We
want it to be simple enough to allow developer to adapt the
model easily to a new platform. For this reason, the model
is based on a measurement based data gathering instead
of complex models or manufacturer informations. The first
one needs far too complex informations on the platform, for
example low-level description that would probably not be
available to the developer at this stage. The second is not
precise enough, since manufacturers of each chip of the com-
plete platform gives consumption figures that do not take
into account the energy cost of the integration components.
On top of that, there is little chance that figures given by all
chip manufacturers are usable together, for example because
they are not given in the same usage condition.

The best situation is when the measurement are simple
enough to be made by the developers themselves. The setup
should need only rudimentary skills in electronics. To meet
this requirement, the model is based on measurements col-
lected at the power supply input of the platform. This also
allows measures to take into account the energy cost of inte-

gration components of chips and technological process vari-
ability, resulting in a better accuracy.

The last choice in the model design concerns the parame-
ters selection. The abstraction level dictates the granularity
of the possible parameters, but it is still necessary to se-
lect the relevant parameters for each type of platform. The
parameters selected in our model are behavioral and archi-
tectural informations on the hardware. In all cases these pa-
rameters are informations which can be gathered from the
hardware description manuals. The most important thing is
that it only needs informations available during the develop-
ment phase, and not low level description of the hardware.

The main parameters categories of this model are:

e CPU instruction classes: CPU instructions are the
CPU model parameters, they are regrouped into cate-
gories whose consumption per cycle is very close. For
example we can have arithmetic and logic instructions
in a category and load/store instructions in another.

e Memories and busses accesses: The energy consump-
tion of interconnects and memories may depend on
the different level of busses, or memory accessed, this
mainly depends on addresses.

e Other peripheral events and/or states: The cost of
other peripherals are mainly due to their running state
and the events in these peripherals, e.g.: an interrup-
tion request for the timer.

Each of the selected parameters has an energy cost and
can also induce a state change in one or more peripherals.
The cost of each event depends on factors such as its number
of cycle, the supply voltage. The global energy of the plat-
form is then computed by summing the event costs and the
peripherals consumption in the the current state. Formula
[summarizes the model.

Bapp = Y B xti+t x BYSe + 3 BpiT (1)

FEapp is the application energy consumption, Efff is en-
ergy cost by cycle of class i instructions. t; is the cycle count
accumulation of class 4 instructions execution. The Elfgie
term represents the per-cycle platform base consumption,
this cost is always consumed when the platform is powered
whatever happens in the software running on it, that is the
reason why it is only multiplied by the application duration
in cycle. Last term, FEp¢r; corresponds to the peripheral con-
sumption overhead, composed of the peripheral state cost
and state change cost. For example the UART idle state
has a specific cost, but changing to sending state induces
additional consumption. All energy terms E* are dependent
on extra factors such as their power supply voltage. These
factors allow the dynamic voltage scaling (DVS) capabilities
to be modeled. Details about this support are described in

(7).
Calibration measures

Once the model is built, it must be calibrated to the real
hardware platform. Our model is based on simple non in-
trusive measures. This kind of measure only allow to get
global informations on the complete platform. The difficulty
here is to extract a precise evaluation of a model parameter
cost among these global figures. The solution proposed is

to structure the model calibration phase with micro bench-
marks. These benchmarks are run on the platform to keep
it in a known state and trigger only a given amount of the
calibrated event. This procedure allows us to recompute
the platform consumption and get the cost of each event.
Benchmarks are built for each parameter or event: instruc-
tions, bus accesses, The complete benchmark structure
description is given in [?].

2.3 Simulation structure

In this section we present the details on the integration of
our eSimu tool in the standard tool suite.

We decided to replace the simulation phase described in
Figure[I]by a two step simulation in which eSimu, the second
step, implements the preceding model.

Figure 3: eSimu tool flow including energy consump-
tion estimation

The extended tool suite is transformed as depicted in Fig-
ure 3] The first step simulator takes the same place as the
functional simulation in Figure Its aim is to help de-
velopers to debug their application but also to produce an
instrumented cycle accurate execution trace. The second
step is then in charge of generating the performance and
energy profiling data of the software.

Execution trace generation

The first simulation step aims at replacing the functional
simulation to allow developer to make standard debugging
in terms of software and hardware behavior. The hardware
simulator is modified to be cycle accurate by using instruc-
tion timing as reference. This implies that all hardware be-
haviors are described more accurately in terms of timings.
The main aim of this first simulation in our simulation flow,
is to produce the cycle accurate trace of the software execu-
tion on the complete platform. The platform simulator must
take as input the target binary code, for instance the ELF
file, in order to not imply any extra work for the developer
like code rewriting for simulation.

The output of the simulation is the cycle accurate trace.
It is human readable file which allows first timing checking.
This file describes the behavior of the platform during the
software execution by reporting all instructions executed on
the CPU, memory accesses, but also peripherals activities
like UART sending a byte. All these informations will be
used in the energy simulation, for time and energy perfor-
mance profiling.

The trace is a linear description of the platform activity
in discrete time. The time reference of this trace is the in-
struction executed on the CPU. Each instruction length is
reported in CPU cycles. The reasons of this choice are that
on one hand the CPU clock frequency of the platform is gen-
erally the fastest, and thus the more accurate time reference.
On the other hand, the only interactions between hardware
peripherals and the CPU are the interrupt requests. These
exceptions, among which we can find interruption requests,
are taken into account at the end (or beginning) of an in-
struction execution.

This simulation phase gives developers the mean for func-
tional debugging of its software in a cycle accurate manner
before beginning the profiling phase. To perform this sec-

ond phase, they have an instrumented execution trace. A
standard functional simulator can be used in this step, but it
has to be upgraded for cycle accurate simulation of CPU and
peripherals. It must also be able to produce the execution
trace for the second step simulator.

Energy estimation

The second simulation phase, handled by eSimu, is in charge
of the energy profiling of the software.

The cycle accurate execution trace generated by the previ-
ous step is one of the input of the energy simulator. Calibra-
tion data gathered as described in section [2.2] are grouped
in a file, the second input of eSimu. The implementation of
the model in eSimu can then remain platform independent.

eSimu implements the model presented in section[2:2] whose
calibration is given by the second input file. The last step
in the model usage is the estimation of parameters to be fed
in the model to generate the energy estimations. To achieve
this task, it computes the parameters value from the execu-
tion trace.We decided to base eSimu on a realistic execution
of the software on the hardware platform since it gives more
accurate results than offline stochastic estimations of occur-
rence number for events like cache misses, TLB (Translation
Look-aside Buffer) misses.

This simulation gives two kinds of results. The first is the
global energy consumption of a software ’run’. The second
one is composed of the profiling informations of the software.

These profiling informations are formatted as a call tree.
eSimu is then responsible of aggregating the linear time
based execution trace into this software call tree. This out-
put formatting allows better optimization decisions, since
developers can concentrate their efforts on the most power
hungry functions in the software. eSimu gives its energy es-
timations, in this format, but it also keeps and reformats
the performance informations too. The developer has the
possibility to perform energy and/or performance optimiza-
tions. We must underline the fact that in case an operating
system is used, its energy and performance profiles are also
generated, at least for its used part.

The file format chosen for these outputs is an emerging
file format used in open-sourced projects like CallGrind a
skin (plugin) of Valgrind [?]. Some profiles visualization
tools are also available like KCacheGrind [7].

Two step simulation advantages and drawbacks

This simulation architecture has two main advantages.

The first advantage is that we benefit from a fast debug-
ger in the first step simulation since the energy estimation,
which needs much processing, is not necessary at this time.
The developer will begin energy and or performance profil-
ing and optimization only when the software is functionally
correct.

The second advantage of this architecture is that eSimu
is more generic. All platform dependant informations are
given to eSimu by its input. All platform dependent code
must be developed in the first step simulation at the execu-
tion trace generation by reporting the event classes. As far
as the first step simulation is concerned, such a structure
encourages the reuse of existing simulation projects. The
execution trace generation extension of such simulator can
be made quickly as we demonstrate in the next section.

The main drawback of this structure is the size of the
execution trace. If developers target a long software run, the

trace size will rapidly increase. This can be easily overcome
by compressing the trace or even using operating system
pipes between simulation process.

3. EXPERIMENTS

We present in this section an example of the tool suite
usage and show the energy and performance accuracy of the
simulation tool flow. These two experiments are driven on a
next generation sensor platform based on an ARM9 proces-
sor. We will first give a short description of its architecture
and then more details about the experiments and tools.

3.1 Experimental Setup

The sensor platform used during our experiments is an
ARMDY based platform. Its processing power and the current
evolution in processor size and energy consumption make it
a rather good representative for next generation sensor net-
work nodes. The decrease of processor size implies a reduc-
tion of energy consumption and an increase of their target
applications. For example, the ARM7 processors used to be
considered as processors, and are now considered as 32 bits
micro-controllers. Nowadays we can find ARM7 CPUs in
nearly all bluetooth devices, and in some full featured IEEE
802.11abg wireless devices. On top of that, current sensor
network data, like temperature, require only few processing
on the nodes, but we can state that next generation sensors
will capture sound or even image which will need more pro-
cessing on the nodes. This will induce the use of processors
with the computing power of the same class of architecture
as an ARM9 core based CPU.

Figure 4: ARM Integrator CM922T-XA10 front
side

The global architecture of our platform is depicted in Fig-
ure] This platform is based on an ARM922T processor,
more precisely on an Altera Excalibur EPXA10 which is a
FPGA including an ARM CPU and some peripherals in the
same chip.

Figure 5: ARM Integrator CM922T-XA10 architec-
ture

This chip contains a two level AMBA bus to allow the
processor to access to all peripherals. Memories are orga-
nized in a three level hierarchy, from nearest to farthest of

the processor: caches, SRAM memories and main memory
(SDRAM). Finally, all ordinary peripherals are integrated
in the Excalibur chip, like UART or Timers.

We choose this platform as it represents a reasonable node
of the next generation thanks to its huge computing power
and because most of the peripherals are integrated within
the same physical chip as the processor. Only the lower level
of the memory hierarchy (SDRAM) and peripheral physical
interfaces are external. This makes this kind of architecture
a good representative of system on chip devices with reduced
number of components on the printed circuit board.

The architecture simulator we use is derived from the open
source skyeye [?] simulator. Skyeye is a functionnal simula-
tor targeted to ARM based embedded systems. Several full
platforms are available for simulation like full featured PDA.
This simulator is augmented in our case for our CM922T-
XA10 platform support and we also added instruction cycle
accuracy timing and peripheral activity reporting. This sim-
ulator is responsible for generating the linear execution trace
that is later used by eSimu.

The cross compiler we use is the standard GCC C compiler
targeted to ARM processors.

Energy consumption calibration of the platform has been
done by running several micro-benchmarks on the real hard-
ware platform. These calibration data are collected as de-
scribed in section[2:2] Our measurement setup is very simple
since it consists in a digitalizing oscilloscope (Tektronix TDS
7054A), and current and voltage probes. These probes are
placed at the power supply input to sample the power con-
sumption of the system at a sampling rate chosen so that
we meet Shannon’s Law. This setup is completed with a
trigger signal controlled by the platform processor, allowing
us to collect only the desired data. Finally, the benchmarks
were developed on top of the lightweight operating systems
Mutek, because it allows us to control what is running on
the platform more tightly than an Unix like OS would. An
example of calibration measurement, is given by Figure @
It represents the power of the platform while the UART is
sending bytes.

Figure 6: UART calibration: Measurement allowing
to calculate the byte sending cost.

3.2 Tools Suite Usage Example

We present in the section the process used to produce
the JPEG test applications used in the following part to
estimate the simulation results accuracy. This process is
the usage of tools described in the section 2| We give details
about the steps of this process.

The implementation of the JPEG application is the stan-
dard Linux 1libjpeg library. This implementation effectively
uses operating system services and standard libc functions.
We decided here to replace Linux and the standard libc by
the Mutek [?] lightweight operating system which also in-
cludes a libc implementation.

All sources, JPEG application and Mutek operating sys-
tem, were compiled by using the standard GCC cross com-
pilation toolchain for ARM.

The execution trace presented in Figure [7] is taken from
the JPEG execution trace. The trace contains for each in-
struction executed on the processor (’@’ed lines), the total
number of CPU cycles spend since the beginning of the sim-

|

107651 {2} 0x003098a8 3 0x0a000016 J

107784 {1} 0x00309908 1 0xe24bd0ic IC [0x00309908]
5 4 W [0x005029bc<1>]

28 4 W [0x005029c4<1>]

28 4 W [0x005029c8<1>]

71 4 R [0x00309900<8>]

107795 {3} 0x0030990c 11 0xe89da8f0

107796 {1} 0x00301bb4 1 0xe1a00006

107857 {2} 0x00301bb8 3 0xeb002033 IC [0x00301bc0] C
58 4 R [0x00301bc0<8>]

107906 {1} 0x00309c8c 1 0xe1a0c00d IC [0x00309c8c]
48 4 R [0x00309c80<8>]

107914 {3} 0x00309c90 8 0xe92dd8f0

107915 {1} 0x00309c94 1 0xe3a02054

107964 {3} 0x00309c98 1 0xe5906004 IC [0x00309ca0]
48 4 R [0x00309ca0<8>]

107965 {1} 0x00309c9c 1 0xe24cb004

107966 {1} 0x00309ca0 1 0xe3a01001

107967 {1} 0x00309cad 1 0xe1a04000

107968 {1} 0x00309ca8 1 0Oxelale00f

107973 {3} 0x00309cac 5 0xe596£000

107974 {1} 0x0030fc4c 1 0Oxela0c00d

107985 {3} 0x0030fc50 11 0xe92ddff0

107986 {1} 0x0030fc54 1 0xe24cb004

107987 {1} 0x0030£fc58 1 0xe24dd004

107988 {3} 0x0030fc5c 1 0xe59f31ad

107989 {1} 0x0030£fc60 1 0xela04001

|

mMoO PP oo OOOO®O+ OO+ +0++ + + 06 m

Figure 7: Execution trace example, output from the
cycle accurate simulator with instruction timing an-
notation (first field after @), class of instructions be-
tween brackets, address and memory hierarchy ac-
cesses (lines starting with +).

ulation, the instruction class, the instruction address, length
in CPU cycle and the instruction itself (used only for debug-
ing purpose). The trace also contains instruction or data
cache line fills in case of misses. The bus accesses are re-
ported on lines starting with '+’, with their duration in CPU
cycles, level of access, address and size of burst.

In this example, we can underline that a call occurred at
the tenth and eleventh lines. The called function is named
jinit_inverse_dct and is placed at address 0x00309c8c.

The second step simulation is performed by the eSimu
with the calibration data collected beforehand. A profile ex-
ample is presented in Figure|8] This example gives the pro-
file informations of the function jinit_inverse_dct. This
profile is given per C line for the following metrics: instruc-
tion fetches, CPU cycles, energy consumption and instruc-
tion and data cache misses. We can see from this example
that this function calls the memset libc function and that it
costed about 32474760 nJ (for all 34 calls).

In terms of simulation performance, the execution time
of the JPEG test application is about 30 ms on the real
platform. The first step simulation takes 25 s, with approx-
imately a 10 s overhead due to execution trace generation,
and the second step 20 s.

The profiling informations generated by eSimu are finally
visualized with KCacheGrind [?] as shown on Figure[9] This
tool allows a fast overview of the repartitions on the software
of each of the metrics placed in the final profiling result, for
example, energy consumption or execution time in cycles or
even data or instruction cache misses as proposed by perfor-
mance evaluation tools such as Valgrind. eSimu allows to
add an energy annotation to the usual performance coun-
ters used in the visualization tool. The energy per func-
tion and per C line is made available along with the pe-
ripherals energy consumption (not taken into account in the

f1=./jpeg/jpeg-6b/jddctmgr.c
[...]

fn=jinit_inverse_dct
248 2 57 872 1 0

+3 11500

-3 11700

+3 2 80 1202 1 0
cfi=../../../src/libc/string/memset.c
cfn=memset

calls=1030 34

* 216688 2149452 32474760 1 0

+2 2 24 363 0 0

-8 7 195 2954 1 0

+56 2 50 7563 1 0
-5111500
+5 111500
-5111500
+5 2 6 100 0 O
+6 1117 00
-2149 738 0 1
+2 149 736 1 0
-21117 00
-11117 00
+3 446200
+3 6 86 1304 1 0

1

1

Figure 8: Profile file example: functions (fn fields)
and C line performance counters for several metrics
includind energy consumption.

KCacheGrind tool).

3.3 Simulation Accuracy

We show the results of the accuracy verification of the
simulation results, i.e. energy and execution time estima-
tions.

Test applications

For the software part of our experiments, our platform and
simulator can run several operating systems such as Linux,
uClinux and Mutek [?, ?]. We choose to run on top of
these systems a range of 3 multimedia applications : a JPEG
image decompressor, a JPEG2000 image decompressor and
a MPEG 2 video application.

The three test applications were developed by following
the process described before. We used the Mutek to ful-
fil the operating system and libc tasks, but we could also
have used Linux. The choice of Mutek is only a question of
measurement duration. Indeed our oscilloscope allows us to
capture a 100 ms measure. With Linux (or even uClinux)
used as operating system, this time window would have been
to short to complete test applications with reasonable image
sizes. This is mainly due to the hardware abstraction layers
of Linux that makes interruption requests processing much
longer.

An example of a test application consumption measure on
real hardware is given on Figure [[0] The figure shows the
power consumed during the test application execution. The
power is recomputed from voltage and current samples and
is represented by the upper curve. The second curve repre-
sents the trigger signal, a LED voltage. The execution of the
MPEG?2 test is done when the trigger signal is low. We can
observe different phases in the MPEG2 consumption profile.
These phases correspond to the image slices decompression.

The test applications were run on the hardware platform
and measured with the same measurement setup as the one
used for energy model calibration phase. These measure-
ments give us global consumption of the test application,

Measured values Simulated values Error
Bench-name | code lines cycles energy (J) cycles energy (J) || cycles (%) | energy (%)
jpeg 25819 6916836 | 1.142440e-01 6607531 | 1.037940e-01 -4.4 -9.1
jpeg2k 4686 7492173 | 1.268535e-01 7663016 | 1.200488e-01 + 2.2 -5.3
mpeg2 24657 || 13990961 | 2.335522e¢-01 || 14387358 | 2.208065e-01 + 2.8 -54

Table 1: Simulators results: the results obtained for execution time and energy consumption by real hardware
measurement are shown in second and third columns, the simulation ones in fourth and fifth columns. The
last two columns give the error percentile of the simulation.

1p] - Keachegrind

AlCallers

- HE*T

25 GLOBAL(veid)
et (_decompress_pir cinfo)

18442520 18442510
12335 249 50588
10080543 2793
10078150 10460
10029509 1623
3774146 3774145
s0213 4023
e amem
26287 2207
140081 20585
93404 12000
a7 176
80548 12503
0743 6295
0216 2o
s0536 5053
I 19182
3707 1792
3081 01

W 253674

g Cotegriap || coGrash | Caless | AlCalies | Asseler |

(enerayorind out [1] - Total Eneray Cost. 103793 645

Figure 9: Performance/energy repartition visualiza-
tion using KCachegrind tool

which can be then compared to the global informations given
by the simulation tools, skyeye + eSimu.

Results of these two different runs of each test applica-
tion are presented in table The second columns gives
the code length in lines, these figures report only the appli-
cation and library code length. The Mutek operation sys-
tem source code length is not included. Third and fourth
columns presents the results of the measurements series in
terms of cycles for execution time and in Joules for energy
consumption. Indeed, due to variability in the measure-
ment process the value presented are mean values of twenty
repetitions of the test application measurements. Standard
deviation of measures is about 0.1% of the measured val-
ues (for time and energy). Fifth and sixth columns give
the same figures for the simulators results. Finally, the last
two columns give the relative errors made by the simulators
against real (measured) values.

These results show that the first step simulation gives ap-
proximations of the execution time accurate within a 5%
error. The platform modeled here is a very complex system.
To keep a fast execution trace generation and functional
simulation using our architectural level of abstraction, some
simplification of the timing model were made, which has a
cost in term of accuracy. For example, the memory con-
troller is one of the more complex part (CPU excepted) of
the plaform and is not included in our platform description.
Its model would have been too complex and time consuming
to be fully implemented with regard to the estimation error
we can acheive by bypassing it.

As far as the second step simulation is concerned, the es-

MPEG2

1.04 TPW
—— led

-0. —
0000 0.001

T T

T T T T T T T T
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Figure 10: MPEG2 application power consumption
measurement on real hardware (upper figure) and
measurement trigger (lower figure).

timation accuracy is below the 10% error rate. One part
of this error can be explained by the fact that energy esti-
mations inherit of the time prediction errors. Indeed, the
error in the first step simulation is mainly due to pipeline
stall length miss-predictions. If the first step simulation de-
clares less pipeline stall cycles than the real hardware effec-
tively made, the second step simulation will underestimate
the instruction cost. The second part of the error is due to
intrinsic model errors.

Despite these limitations our energy model and simulation
environment allow us to achieve an overall error on power
consumption between 5 and 10% for our applications which
we consider to be a very good result at this level of abstrac-
tion.

4. RELATED WORKS

The main contribution of our proposition is the energy
consumption estimation calibrated with simple non-intrusive
measures. Many works in the literature focus on energy
modeling, their model use abstraction layers which range
from transistor or gate level to system level. At the lowest
level it is impossible to model a complete platform as the
method does not scale very well. Intermediate level, also
called architectural and RTL level, for example Brooks et
al. [?], are mainly oriented for hardware design. It is possi-
ble to model a complete platform, but not to run software
on it, more precisely not for fast energy optimization. As
far as the highest level is concerned, only a few works are
interested in modeling a full platform. Indeed, some works
call system the combination of a CPU and the main mem-

ory, for example [?]. In sensor networks, some higher energy
consumption are proposed, like number of sent packets on
wireless medium. These approximations do not take into
account the consumption of remaining part of the sensor
or even sending device behavior. Our model is based on
the principles proposed for these system level models, as
Tiwari’s one [?], coupled to principles proposed for architec-
tural models by Kim et al. [?], to extend the model to the
complete platform. As far as measures are concerned, we
used a methodology close to the one presented by Russell
and Jacome in [?].

In the past years, simulators of ARM based embedded
systems were proposed, JouleTrack [?] and EMSIM [?].
The first one only models the energy consumption of the
ARM processor. By measuring the energy consumption of
a StrongARM SA1100, which implements the ARMv4T In-
struction set, they observed the same phenomenon than us,
there are two main class of instruction consumption. Our
ARMO922T also implements the ARMv4T instruction set.
EMSIM is a full platform simulation relying on Simunic
et al’s model [?] for the consumption estimation of the
SA1100, which allows to model dynamic and voltage scaling
capabilities of the StrongARM. Unfortunately, the periph-
erals consumption models are poor, which would have not
be precise enough in our case.

The closest project in the literature, AEON, was proposed
by Landsiedel et al. [?]. This work proposes to model the en-
ergy consumption in sensor networks based on the consump-
tion profile of the executed code. AEON was implemented
in the Avrora [?] Mica2 node simulator as an internal energy
counter. Avrora models a Mica2 sensor platform based on
an AVR micro-controller from ATMEL and includes some
peripherals such as the wireless interface. Their energy con-
sumption model is also instruction based and the overall
reported power estimation precision is 5%. Our simulator
is built on a hardware abstraction that allows to have much
more complex hardware architecture while being indepen-
dent of the hardware simulator internals. The obtained re-
sults from eSimu for our ARM9 based platform are of the
same order of magnitude than AEON in accuracy.

5. CONCLUSION

We present in this paper eSimu, a fast and accurate energy
and time estimation simulation tool suite. These simulators
are proposed to overcome the traditional embedded software
development suite lack of information for precise time and
energy consumption performance. These two performances
data are important in deeply embedded systems such as sen-
sor network nodes, since developers needs to optimize their
code to meet time constraints, in network protocol for ex-
ample, and to improve the sensor node life time.

This proposition is based on a complete platform energy
consumption model calibrated thanks to micro-benchmarks
based measurement on the target hardware. This makes the
model easy to adapt to sensor platforms. The eSimu tool
suite is structured in a two step simulation flow. The first
is a functional simulation adaptation to cycle accurate com-
plete platform simulation and execution trace generation.
The second phase is a highly parameterizable and generic
implementation of the consumption model, which produces
time and energy profile informations of target software.

This tool suite was tested on a complex architecture plat-
form and achieved an accuracy of 10% in terms of energy

estimation, which is almost as better as previous proposi-
tions in sensor nodes energy estimation, generally based on
micro-controllers (less complex architecture). The tool al-
lows to have a feedback from the simulation at the function
and C level using standard code profiling tools. Our future
work is to include a data visualization tool that can take
into account peripherals energy consumption reported by
our execution trace.

