
Array Expansion

Paul Feautrier

�

Laboratoire PRiSM,

Universit�e de Versailles St-Quentin

45 Avenue des Etats-Unis

78035 VERSAILLES CEDEX FRANCE

July 1988

Abstract

A common problem in restructuring programs for vector or parallel

execution is the suppression of false dependencies which originate in the

reuse of the same memory cell for unrelated values. The method is simple

and well understood in the case of scalars. This paper gives the general

solution for the case of arrays. The expansion is done in two steps: �rst,

modify all de�nitions of the o�ending array in order to obtain the single

assignment property. Then, reconstruct the original data 
ow by adapting

all uses of the array. This is done with the help of a new algorithm for

solving parametric integer programs. The technique is quite general and

may be used for other purposes, including program checking, collecting

array predicates, etc...

1 Introduction

1.1 Motivation

One of the most striking trends in today's computer architecture is the develop-

ment of special purpose machines for numerical computations. The idea behind

this e�ort is that by capitalizing on the peculiarities of scienti�c computing, one

may improve on the performance-to-price ratio of general purpose processors.

Scienti�c computation is characterized by its highly repetitive nature, as found

for instance in the use of vectors and arrays with regular adressing patterns.

Hence numerical super-computers are parallel or pipelined machines with many

processing elements among which the total workload is distributed.

�

e-mail : Paul.Feautrier@prism.uvsq.fr

1



The price to pay for the increased power is a more di�cult programming

task. When using sequential languages, parallel and vector operations must be

translated to lower-level constructions. To make e�cient use of a super-computer,

one must retrieve these features from the sequential program text or (worse !)

from one's sequential thinking.

Many attempts have been made to automate this process by constructing

optimizing and restructuring compilers; see [PW86] for an up-to-date review.

Broadly speaking, all such compilers start by detecting dependencies in the source

code. Two instructions are dependent if the �rst one compute a value which is

used by the other (Producer-Consumer or data dependency), or if the �rst one

use a variable which is modi�ed by the second (Consumer-Producer or anti-data

dependency), or if both modify the same variable (Producer-Producer or output

dependency). If two instructions are independent, one may execute them in

parallel; in the special case where these instructions are instance of the same

program text (as happens in a loop), one may pipeline them.

Most often, the dependence relation is summarized by a dependency graph.

There are several algorithms to extract a parallel or vector program from this

graph, the most comprehensive being probably the one of [AK84]. Whatever the

algorithm, it is clear that edges in the dependency graph are obstacles to paral-

lelization. Now, any algorithm is susceptible of many di�erent implementations;

it is natural to search for programs which, while giving the same ultimate results,

have more opportunities for parallel execution, i.e. less edges in their dependency

graph.

When looking for such edge cutting transformations, one sees at once that

PC edges are inherent to the structure of the algorithm, while the presence of

CP and PP edges indicate merely that a memory cell has be reused. If programs

where written in single assignment style, there would be no such edges. For

instance, if a scalar variable is modi�ed in a loop, this creates a PP edge which

precludes parallel execution. Replacing the scalar by an array whose index is the

loop counter will cut the PP edge and may (in favorable cases) allow parallel

execution. This is the well-known scalar expansion technique [Wol78]. The aim

of this paper is to extend it to the general case, in which one tries to cut a PP

edge on an array; hence the name Array Expansion.

1.2 Outline

Paragraph 2 will set the stage for the paper by describing the simple programming

language we will work with, and introducing necessary notations and de�nitions.

Paragraph 3 will describe, with the help of an exemple, the two-step expansion

process: �rst, rename or expand arrays de�nitions as necessary, then restore the

correct data 
ow by rewriting references to the modi�ed arrays. In paragraph 4,

we will return to the simpler problem of scalar expansion, and show that classical

techniques are particular cases of our general solution. In the conclusion, we will

2



review our results and point to some unsolved problems.

1.3 Related work

1.3.1 Scalar expansion

Scalar expansion (see [PW86] or [Wol78]), is mainly used by vectorizing compilers;

the transformation is restricted to innermost loops in which a scalar is assigned

to. The situation may be corrected by replacing the scalar by an array whose

index is the loop counter:

for i := 1 to n do

begin

...

x := ... ;

...

end;

=)

for i := 1 to n do

begin

...

xx[i] := ... ;

...

end;

In the loop body, references to x must be replaced by xx[i] if they occur

after the de�ning instruction, and xx[i-1] otherwise. One must also add an

initialisation instruction before the loop:

xx[0] := x;

and restore the contents of x after the loop:

x := xx[n];

There are various schemes (strip mining, use of vector registers, etc) to limit the

amount of memory space which is used up by the new array xx.

A closely related technique is node splitting, in which a subexpression is

equated to a temporary, which is then expanded into an array. In this case,

neither initialisation nor restoration is necessary.

1.3.2 Use Def Chains

The computation of use-def chains, (see [ASU86], chapter 11), is a technique

which is used in optimizing compilers to summarize the 
ow of data in a program.

Before executing an optimizing transformation (such as code motion or dead code

elimination), the information is used to verify that the proposed transformation is

valid. To each use (rhs occurence) of a variable x is associated a list of de�nitions

of x which may be the source of the current value of x. Use-def chains are

computed by iteratively solving propagation equations.

3



The theory of use-def chains is both more and less comprehensive than the

present one. Its range of applicability is wider, since the source program may

contain conditionals and even goto's. However, it is a static theory (all executions

of an instruction in a loop are lumped as one), and, as such, apply only to scalars

(or to arrays considered as a whole). Whether a synthesis is possible will be the

subject of future research.

2 Notations and conventions

We will �rst describe, with the help of an incomplete BNF grammar, the syntax of

our source language. We will then discuss the restrictions we superimpose on this

grammar. In some cases, these restrictions may be lifted by more complicated

algorithms or by preprocessing. We will then introduce the sequencing predicate,

as a mean of �nding the execution order of instructions instances.

2.1 The source language

The source language may be seen either as a static PASCAL or a rationalized

FORTRAN. Data types will be restricted to integers, reals, and n-dimensional ar-

rays of integers and reals. Declarations, which are of interest to the compiler only,

will be omited. We will use without de�nition the categories of <identifiers>

and <simple expressions>; their syntax will be the classical Pascal one.

2.1.1 Speci�cation

The language will be a subset of Pascal. The only simple instructions we will

consider will be scalar and array assigment. The only control constructions will

be the sequence and the for loop. We will extend the language in order to

allow conditional expressions, which are necessary for the expression of index

calculations (see e.g. paragraph 3.2.3). The syntax will be:

<conditional expression> ::=

if <boolean expression> then <expression> else <expression>

Note the abscence of goto's, of conditional instructions, of while loops and

of procedures.

2.1.2 Restrictions

The programs we will consider in the sequel must conform to quite stringent

restrictions, beside those inherents in the above speci�cation.

Some restrictions are enforced merely to simplify the exposition. It is often

possible to implement preprocessors to eliminate the o�ending constructs. Other

4



features (e.g. while loops or non-linear indices) prohibit the use of the proposed

technique.

The central problem we try to solve here is the following: given an array

element, which of several instruction is the source of the value contained therein.

Most of the time, the de�ning instructions will be embedded in loops. The values

of indices as a function of the loop counter, and the iteration count of the loop

are evidently crucial knowledge for the solution. These informations are easy to

obtain for normal for loops and for a�ne indices. while loops, on the other

hand, are quite intractable and will be prohibited.

Normal loops For the reasons given above, we will only consider for loops.

Furthermore, in the interest of simplicity, the step will always be 1. It is quite

easy to implement a preprocessor to reduce all for loops to the above format. It

is also possible to eliminate goto's (see for instance [Bak77]), to detect induction

variables ([ASU86]) and to detect while loops which are for loops in disguise.

Linear indices All indices will be restricted to a�ne functions of the loops

inductions variables and of other integer variables. Similarly, all loops upper

bounds will be a�ne functions of the surrounding loops induction variables and

of other integer variables. These auxilliary variables will be treated as constants

throughout this paper. This restriction may sometime be lifted by semantic

analysis (see [CH78] or [Jou87]).

The source program is correct! We will use the fact that in a correct pro-

gram, array indices are always within the array bounds. Hence, two array refer-

ences address the same memory location if and only if they are references to the

same array and if their indices are equal.

Obviously, it is good programming practice to debug a sequential program

before attempting to restructure it for parallel or vector execution. Hence the

restriction is not too severe.

2.2 The sequencing predicate

Values in array elements are not produced by instructions, but by instructions

executions. Hence we need a notation to designate a speci�c execution of an

instruction.

Our �rst need is an unambiguous designation of an instruction in a program.

Neither the text of the instruction nor its position in the program syntax tree

will serve, since there may be several instructions with the same text, and since

the program may be modi�ed by a restructuring compiler. Hence we will use a

set of arbitrary instruction names, which will be denoted by letters such as r, s,

etc... In a practical application, a natural choice for these names may be pointers

5



to records containing the instruction descriptions. In the sequel, we will mostly

be interested in simple instructions. However, some discussions will be clearer if

all instructions, compound or simple, are named.

In our source language, the only repetitive construct is the for loop. Hence,

an instruction instance is uniquely de�ned by the name of the instruction and

the values of the surrounding loop induction variables (the iteration vector of

[Kuc78]). A pair whose components are an instruction name and an integer list

will be called an instruction coordinate. To denote an instruction instance, a

coordinate must verify two conditions:

� the length of the integer list must be equal to the number of loops sur-

rounding the instruction;

� all integers in the list must be within the corresponding loop limits.

In the following, integer lists will be denoted by bold letters. [] will denote the

empty list. a[i::j] will denote the sublist of a beginning at position i and ending

at j, while a[i] will be an abbreviation for a[i::i]. We will use freely extensions of

usual predicates to integer lists and functions whose values are integer lists. For

instance,

F(i) � 0

asserts that function F return a list whose elements are non negative integers.

To each looping instruction t we may associate a pair of inequalities:

lb

t

� a � ub

t

;

where a is the loop counter of t. If an instruction s is embedded in a loop

nest t

1

; t

2

; : : : ; t

N

, in that order, then the iteration vector of s, a, must satisfy:

8p : (1 � p � N) lb

t

p

� a[p] � ub

t

p

: (1)

According to 2.1.2, loop t

p

bounds are a�ne functions of the iteration counters

of loops t

j

with j < p. (1) may be summarized in matrix form:

L

s

a+ h

s

�> 0: (2)

where L

s

is a quasi-triangular matrix.

Obviously, in deciding whether coordinate (r;a) or (s;b) is the source of a

given value, we need to know which of (r;a) or (s;b) is executed �rst. The fact

that (r;a) is executed before (s;b) will be expressed by:

(r;a) � (s;b):

�, the sequencing predicate, is a strict total order on the set of coordinates. �

depends on the source program text. In fact, in applications in which we consider

6



several texts (e.g. an initial sequential text and a parallel one), there should be

several sequencing predicates, which must be distinguished by subscripting. Our

aim is to give a simple expression for �.

Suppose �rst that r and s are instructions in the outermost instruction list

of the program. a and b necessarily are the empty list []. (r; []) � (s; []) i� r

precedes s in the program text. Let T

rs

be a boolean such that T

rs

is true i� r

textually precedes s. In this case:

(r; []) � (s; []) = T

rs

:

Note that T

rr

= false and that if r 6= s, T

rs

= :T

sr

.

Suppose next that r and s are the same instruction. In this case, according

to the usual semantics of for loops, (r;a) � (r;b) i� a is lexicographically smaller

than b. Lexicographic ordering will be denoted by the symbol �.

In the general case, there is an innermost loop t whose body contains both

r and s. Let N

rs

be the depth of this loop. In the body of t, there are two

instructions r

0

and s

0

such that r is r

0

or is inside r

0

, and s is s

0

or is inside s

0

.

Obviously:

(r;a) � (s;b) � (r

0

;a[1::N

rs

]) � (s

0

;b[1::N

rs

]):

Now, if a[1::N

rs

] 6= b[1::N

rs

], (r

0

;a) and (s

0

;b) belong to distinct iterations of

loop t. In this case, their order is given by a lexical comparison of a[1::N

rs

] and

b[1::N

rs

]. Conversely, if a[1::N

rs

] = b[1::N

rs

], then (r

0

;a) and (s

0

;b) belong to

the same iteration of t, and their order is the textual order T

r

0

s

0

� T

rs

. Putting

all this together:

(r;a) � (s;b) = a[1::N

rs

]� b[1::N

rs

] _ (a[1::N

rs

] = b[1::N

rs

] ^ T

rs

): (3)

Knowledge of N

rs

(a set of integers) and T

rs

(a set of booleans) is all we need

to sequence all instructions in a program. The de�nition of the � predicate may

be extended to programs containing parallel constructions. In this case, � is no

longer a total order. Similarly, in the presence of well structured conditionals, �

may still be de�ned. Since instructions in opposite arms of an if have no temporal

relationship, � is a partial order in this case also. Extending the notation to

unstructured programs is apparently impossible, especially since there is no longer

a uniform method for specifying a particular instruction instance. This is the gist

of the classical arguments of [Dij68] against the use of goto's.

In the balance of the paper, we will use the following example:

for k := 0 to m+n do

{r} c[k] = 0. ;

for i := 0 to m do {A}

for j := 0 to n do

{s} c[i+j] := c[i+j] + a[i] * b[j];

7



which compute the product of two polynomials a and b of respective degrees

m and n. There are two elementary instructions to which we have given the

names r and s. A coordinate for r is of the form (r; [x]), where x must satisfy

0 � x � m+ n. Similarly, a coordinate for s is (s; [y; z]), where:

0 � y � m; (4)

0 � z � n:

It is quite clear that N

rs

= 0 and T

rs

is true; this is another expression of the

obvious fact that all instances of r are executed before any instance of s. On the

other hand, N

ss

= 2 and T

ss

is false; hence:

(s; [y; z]) � (s; [y

0

; z

0

]) � y < y

0

_ y = y

0

^ z < z

0

: (5)

Observe that the elements of the coordinate list act as bound variables. We

will feel free to rename them (as we have done in (5)) in order to avoid collisions.

3 The expansion process

There is a very strong relation between PP and CP edges. In fact, one may prove

that in a correctly written program, if there is a CP dependency on x from s to

t, there exists another instruction r with a PP dependency from r to t.

In a correct program, each variable must be set before being used. Since s

uses (consumes) x, there is another instruction r, which is executed before

s and sets x. Now, \before" is transitive; s is executed before t, and s and

t are in PP dependency.

From this we deduce that if all PP dependencies on x are deleted, then, as a

by-product, CP dependencies will also disappear.

Array expansion is a two step process. First, one selects an array production

and rewrites it in such a way that no memory word is written more than once.

Next, all uses of the array must be examined to �nd whether the reference is to

the new array or the old; in the �rst case, new values of the indexing function

must be determined.

3.1 Renaming and expanding

Suppose our aim is to cut a PP edge s ! t of the dependency graph. In our

source language, this implies that s and t are both assignment to the same array

or scalar A. To suppress the dependency, we must insure that, in the modi�ed

version of the program, s and t assign values to di�erent memory locations. There

are two ways of insuring this property. If s and t are di�erent instructions, simply

8



create a new array A' similar to A, and replace in one instruction (say t) the left

hand side reference to A by A' (Array Renaming). Obviously, this technique does

not work if s and t are the same instruction.

Consider the case of an instruction r with coordinate (r;a):

A[f(a)] := : : : ; (6)

There is a PP dependancy on r i� the following system:

L

r

a+ h

r

� 0;

L

r

a

0

+ h

r

� 0;

f(a) = f(a

0

);

(r;a) � (r;a

0

);

has solutions. Now it is clear that if f is the identity function: f(a) = a, there is

no solution since (r;a) � (r;a

0

) is always false. Hence, to suppress the PP edge,

rewrite r as :

A'[a] := : : :

Clearly, the new array A' has more entries that A, hence the name Array

Expansion.

In real cases, the renaming policy may be more complicated. For instance, if

the target machine is a pipeline processor, we are interested only in suppressing

dependencies in the innermost loop; hence, it is su�cient to expand the lhs of r:

A'[a[N

rr

]] := : : :

The study of this and other strategies is left for future research.

In the case of example fAg, there are two PP dependencies, which are due to

the fact that both r and s rewrite several times the same cell of A. It so happens

that, by replacing c in s by a new two-dimensional array cc, both dependencies

are cut. The original program becomes:

for k := 0 to m+n do

{r} c[k] = 0.;

for i := 0 to m do {B}

for j := 0 to n do

{s} cc[i,j] := ? + a[i] * b[j] ;

The problem lies in the rewriting of the rhs of s.

9



3.2 Reconstructing the data 
ow

3.2.1 Some notations

Suppose that we are given a program conforming to the restrictions of paragraph

2. Let t be an instruction in which an array A is used. Let b be the iteration

vector of t; the indices of A are a�ne functions of b. In vector form, the reference

to A may be written A[g(b)].

We are interested in �nding the origin of the value of A[g(b)]. Let s

1

; s

2

; : : : ; s

n

be the instructions wich produce a value for A, a

1

;a

2

; : : : ;a

n

their iteration vec-

tors. s

i

is of the form:

A[f

i

(a

i

)] = : : :

3.2.2 Formal solution

Any instruction s

i

may be the source of the value used by t; let us denote by

(s

i

;K

i

(b)) a possible source for t. The real source is the latest such instruction;

it is (s

i

;K

i

(b)) i�:

8j 6= i; (s

j

;K

j

(b)) � (s

i

;K

i

(b)): (7)

The correct value of imay depend on b. In particular,K

i

(b) may be unde�ned

for some value of b. We will suppose that an unde�ned iteration vector (written

as 1) comes earlier than any other coordinate:

8s; t;b : (s;1) � (t;b): (8)

The conditions on K

i

(b) are:

� Firstly, (s

i

;K

i

(b)) must produce a value for A[g(b)]:

f

i

(K

i

(b)) = g(b) (9)

� Secondly, (s

i

;K

i

(b)) must be the latest such coordinate:

f

i

(u) = g(b)) u�K

i

(b) (10)

� Thirdly, (s

i

;K

i

(b)) must precede (t;b) :

(s

i

;K

i

(b)) � (t;b); (11)

� Lastly, K

i

(b) must be a legitimate coordinate:

L

s

i

K

i

(b) + h

s

i

� 0: (12)

10



In summary, if� max denote the lexicographic maximum of a set of integer lists:

K

i

(b) =� maxQ

i

(b) (13)

where Q

i

(b) is the set:

Q

i

(b) = fu j f

i

(u) = g(b); (14)

(s

i

;u) � (t;b);

L

s

i

u + h

s

i

� 0g

with the convention that the lexical maximum of the empty set is unde�ned.

One should note the similarity of the above problem with the dependency

computation. In fact, there is a dependency between s

i

and t precisely when there

exists a value of b such that Q

i

(b) is not empty. Hence, the search for K

i

may

be limited to those instructions s

i

such that there actually exists a dependency

from s

i

to t.

3.2.3 Evaluation techniques

In this paragraph, we will focus on one particular s

i

(i.e. we will dispense with

the index i). When the source program conforms to the restrictions of paragraph

2, all terms in formula (14) are linear equalities or inequalities. In fact since

indexing functions are a�ne, the �rst term is a linear system whose dimension is

that of array A. The last term is simply a set of linear inequalities. The second

term may be computed with the help of (3). According to the de�nition of the

lexicographic order, it is a disjunction of N

st

+ 1 terms. The term at depth p

(according to [AK84] de�nition of depth) is:

u[1::p] = b[1::p] ^ u[p+ 1] < b[p+ 1];

while the last one is:

u[1::N

st

] = b[1::N

st

]:

This term must be omitted if T

st

is false.

This means that the set Q(b) splits into N

st

+1 sets Q

p

(b). There is a maxi-

mum for each non empty such set; we are interested in the latest one. However,

no comparison is necessary since:

p < q ) Q

p

(b)� Q

q

(b):

The solution lies in the non empty Q

p

(b) with the highest index p. Now, since

all constraints in the de�nition of Q

p

(b):

11



Q

p

(b) = fu j f(u) = g(b); (15)

L

s

u+ h

s

� 0;

u[1::p] = b[1::p];u[p+ 1] < b[p+ 1]g;

are linear equalities and inequalities, Q

p

(b) is the integer hull of a polyhedron.

Finding its lexical maximum is a parametric integer problem, for which the author

has devised an e�cient algorithm in [Fea88b]. The parameters are the compo-

nents of b and other integer variables (e.g. the variables which occurs in the

array bounds). In the sequel, in the interest of legibility, we will not note explic-

itly these supplementary variables. Note also that the components of b are not

arbitrary; they must satisfy various constraints, among which is:

L

t

b+ h

t

� 0:

In [Fea88b] terminology, these inequalities form the context of the parametric

integer problem.

To express the solution, we need the concept of a quasi-linear form. A quasi-

linear form is constructed from the parameters and integer constants by the

operations of addition, multiplication by an integer, and euclidean division by an

integer. The name "quasi-linear" stems from the fact that is is possible to replace

the integer quotients by extra parameters; the form is linear in the extended set

of parameters, and the quotients may be de�ned by two supplementary linear

constraints.

The solution is then expressed as a multistage conditional expression. The

predicates are of the form f(b) � 0, where f is quasi-linear. The values are

quasi-linear forms or the "unde�ned" sign, 1. The lexical maximum of Q

p

(b)

will be noted k

p

(b). From the k

p

's the construction of K is done by the following

algorithm:

Algorithm (K)

1. let p = N

rs

� 1 and K = k

N

rs

;

2. if there are no occurences of 1 in K, stop;

3. otherwise, replace all occurences of 1 by k

p

;

4. if p = 0 stop;

5. otherwise decrease p by 1 and go back to step (2).

K may sometime be simpli�ed by detecting non-compatible predicates in the

path from the root to a leaf. A set of quasi-linear predicates is non-compatible

if the corresponding set of linear inequalities is not feasible. This is easily tested

12



by the methods of [Fea88b]. If a non-compatible path is detected, simply delete

the leaf and the last test.

We now put together all partial results to obtain the correct expression for

A[g(b)]. We �rst build the following predicates:

P

i

=

^

j>i

(s

j

;K

j

(b)) � (s

i

;K

i

(b)); (16)

P

n

= true :

The conjunction:

:P

1

^ : : ::P

i

express the fact that s

i

is the latest source for A[g(b)]. If instruction s

i

has not

been modi�ed by the renaming process, let:

e

i

= A[f

i

(K

i

(b))] = A[g(b)] (17)

by (9). If instruction s

i

has been subjected to Array Expansion, let:

e

i

= A'[K

i

(b)]: (18)

Lastly, if s

i

has been modi�ed by Array Renaming, let:

e

i

= A'[g(b)] (19)

Replace A[g(b)] by:

e = if P

1

then e

1

(20)

else if P

2

then e

2

� � � (21)

else e

n

: (22)

In building e, one should take into account as much simpli�cations as possible.

Let us go back, for instance, to example fAg as rewritten into fBg.

There are two possible sources for c in the rhs of s, r and s itself. In the case

of r, we must evaluate the function:

K

r

(i; j) =� maxQ

r

(i; j)

where:

Q

r

(i; j) = fxji+ j = x; (r; x) � (s; i; j); 0 � x � n+mg

in the context 0 � i � m; 0 � j � n.

In this case, there is no need to use a complicated mathematical programming

algorithm. (r; x) � (s; i; j) is always true as we have already noted. The value

13



x = i + j is the only solution of the �rst constraint, and it satis�es the second

constraint as a consequence of the context. Hence the solution is

K

r

(i; j) = i+ j;

always de�ned.

In the case of s:

K

s

(i; j) =� maxQ

s

(i; j)

Q

s

(i; j) = fx; yji+ j = x+ y; 0 � x � m; 0 � y � n; i > x _ (i = x ^ j > y)g

The subset Q

s1

(i; j) is empty, since the system:

i+ j = x+ y

i = x

j < y

has no solution. Q

s0

is the set:

Q

s0

(i; j) = fy; zji+ j = y + z; 0 � y � m; 0 � z � n; y < ig

in the context 0 � i � m; 0 � j � n.

In order to apply [Fea88a] algorithm, we must �rst convert all constraints

to the form f � 0, and transform the problem to a search for a lexicographic

minimum. This is done by the following change of variables:

0 � y

0

= m� y � n +m

0 � z

0

= n� z � n:

The problem is cast in the form of a tableau:

y

0

= y

0

� 0;

z

0

= z

0

� 0;

a = �y

0

�z

0

�i �j +m +n � 0;

b = y

0

+z

0

+i +j �m �n � 0;

c = �y

0

+m � 0;

d = �z

0

+n � 0;

e = y

0

�1 +i �m � 0:

When the context is taken into account, the algorithm is able to prove that

the \parametric term" in row b (i.e. the part of row b which depends only on the

parameters), is never positive. Hence b must becomes an independent variable in

place of z

0

. The result is:

14



y

0

= y

0

;

z

0

= �y

0

+b �i �j +m +n;

a = �b ;

b = b ;

c = �y

0

+m;

d = y

0

�b +i +j �m;

e = y

0

�1 +i m:

Here again, the context shows that �1 + i�m < 0; y

0

must be eliminated in

favour of e:

y

0

= e +1 �i +m;

z

0

= �e +b �1 �j +n;

a = �b;

b = b;

c = �e �1 +i;

d = e �b +1 +j;

e = e :

In this case, the context does not determine the sign of n � j � 1. We must

distinguish two cases. Similarly, i� 1 may or may not be positive. If both linear

forms are non-negative, all parametric terms are non negative integers, and the

solution is found by zeroing the independent variables:

y

0

= m� i+ 1; z

0

= n� j � 1;

or

y = i� 1;

z = j + 1:

(In more complicated cases, the parametric terms may be fractional; one may

have to introduce cuts to restore integrity, see [Fea88b] for details).

Suppose now that i � 1 is negative. Inspection of the c row shows that the

coe�cients of the independent variables are null or negative. Hence bringing the

row to a non-negative value is impossible, and the problem has no solution. After

one more change of variable, a similar result is obtained in the case n� j�1 < 0:

The �nal result is:

k

0

(i; j) = if (n� j � 1 > 0) ^ (i� 1 > 0) then

 

i� 1

j + 1

!

else 1:

Since k

1

(i; j) =1, by algorithm (K), K

s

(i; j) = k

0

(i; j). There are only two

selection predicates, P

r

and P

s

= true .

15



P

r

= (r; [i+ j]) � (s; [y; z])

where

y = if (n� j � 1 > 0) ^ (i� 1 > 0) then i� 1 else 1;

and

z = if (n� j � 1 > 0) ^ (i� 1 > 0) then j + 1 else 1:

We know that (r; [x]) � (s; [y; z]) is always true unless [y; z] is unde�ned.

Hence:

P

r

= (n� j � 1 < 0) _ (i� 1 < 0);

e

r

= c[i+ j];

e

s

= cc[i� 1; j + 1]:

We have simpli�ed the expression of e

s

, since it is used only in case K

s

(i; j)

is de�ned. Putting all this together, we obtain the �nal form of s:

cc[i,j] = (if (n-j-1 < 0) or (i-1 < 0)

then c [i+j]

else cc [i-1, j+1])

+ a [i]*b [j];

One may further replace c[i+j] by 0, but this is another type of program

transformation. Note also that since this expression has no occurence of 1, we

have just proved that the original program is correct in so far as no element of c

is used before being de�ned.

4 Scalar expansion revisited

In the case where the variable which carries the PP dependency is a scalar, the

problem is much simpler. In the de�nition of Q

i

(b), (see (14)), the �rst constraint

is void, since a scalar has no indices. We are left with:

Q

i

(b) = fuj(s

i

;u) � (t;b);L

s

i

u + h

s

i

� 0g; (23)

in the context L

t

b + h

t

� 0.

There are n = N

s

i

t

loops which surround both s

i

and t and N = N

s

i

s

i

loops

which surround s

i

alone.. Hence part of the constraint L

s

i

u + h

s

i

� 0 and part

of the context are of the form:

lb

p

� u[p] � ub

p

; 1 � p � n; (24)

16



lb

p

� b[p] � ub

p

; 1 � p � N: (25)

We will suppose in the sequel that each loop is executed at least once, i.e.

that:

lb

p

� ub

p

; 1 � p � n: (26)

It is left to the reader to add the necessary conditional pre�xes in case these

conditions cannot be proved from the program text.

There are two cases: either T

s

i

t

is true or not. In the �rst case, the last term

in the sequencing predicate is:

u[1::N

s

i

t

] = b[1::n]; (27)

and we claim that the solution is:

K

s

i

(b) = [b[1::n]; ub

n+1

; : : : ; ub

N

]: (28)

This obviously verify (27); (24) is veri�ed as a consequence of (25). Further-

more, there are no other possible values for the n �rst components of K

s

i

, and

the next components are as large as possible.

For readability sake, (28) has been written as if the upper bounds were con-

stants; it is left to the reader to see that if the bounds are a�ne forms, they may

be evaluated from left to right in term of b[1::n].

Suppose now that T

s

i

t

is false; the sequencing predicate at depth p is:

u[1::p] = b[1::p];u[p+ 1] < b[p+ 1]: (29)

A possible solution is:

K

p

(b) = [b[1::p];b[p+ 1]� 1; ub

p+2

; : : : ; ub

N

]: (30)

This is feasible if and only if b[p+1]� 1 � lb

p+1

, which is not guaranteed by

the context. Execution of algorith (K) gives the �nal solution:

K

s

i

(b) = if b[n] � lb

n

(31)

then [b[1::n� 1];b[n]� 1; ub

n+1

; : : :]

else if b[n� 1] � lb

n�1

then [b[1::n� 2];b[n� 1]� 1; ub

n

; : : :]

else : : :

else 1: (32)

From (28) and (31) a complete solution may be developped. In the special

case where we are interested only in one loop and one scalar, it is easy to see that

application of (28) and (31) is equivalent to the rules of 1.3.1. But our methods

are much more powerfull. Take for example the case of the matrix product:

17



for i := 1 to n do

for j := 1 to n do

begin

{r} v := 0;

for k := 1 to n do

{s} v := v + a[i,k] * b[k,j]; {C}

c[i,j] := v;

end;

Suppose we decide to promote v to a two dimensional array vv with indices i

and j both in r and s. A straightforward application of (28) and (31), plus some

simpli�cations, gives the following result:

for i := 1 to n do

for j := 1 to n do

begin

{r} vv[i,j] := 0; {D}

for k := 1 to n do

{s} vv[i,j] := vv[i,j] + a[i,k] * b[k,j];

c[i,j] := vv[i,j];

end;

It would be possible to extend the rules in 1.3.1 to cover such cases, but the

result would be very ungainly; application of our technique is probably much

simpler.

5 Conclusion

We have given a general technique which allows an automatic restructuring com-

piler to expand or rename an array de�nition in order to avoid output depen-

dencies. This technique involves solving small parametric integer problems. The

algorithm of [Fea88b] has been implemented and found to work reliably on exam-

ples such as programs fAg and fCg. The method will work under any expansion

strategy: one simply has to modify accordingly rules (17) to (19).

The overall complexity of the method depends on several size parameters. On

the one hand, the amount of work is proportional to the number of references to

be rewritten, i.e. to the number of data dependencies originating in the expanded

instruction, t.

On the other hand, at each reference s one must solve N

ss

Parametric Integer

Problems whose size depends on:

� the number of unknowns, n, which is N

ss

;

18



� the number of parameters, p, which is N

tt

plus the number of auxilliary

parameters (loop limits, etc.);

� the number of constraints, m: there is one equality per dimension of the

expanded array, plus 2N

ss

loop limit constraints, plus d + 1 sequencing

constraints where d is the depth.

In real-life programs, all these values are small integers: for instance, arrays

seldom have more than 3 indices. The algorithm proceeds mainly by pivoting

steps in the manner of the Gauss-Jordan algorithm, each step having an operation

count proportional to (n + p)m. In theory, the step count may be quite large:

the simplex is not polynomial. However, it is well known that for most data,

the simplex is polynomial with a pivoting count proportional to the number of

unknowns. Preliminary experience sustains the conjecture that the Parametric

Integer algorithm shares this property.

There are several points which deserve further study. Before real size applica-

tion is contemplated, systematic techniques for simplifying formulas such as (20)

should be devised. Similarly, techniques for avoiding useless computations (e.g.,

distinguishing between live and dead de�nitions), would be very useful. It would

also be very interesting to lift some of the restrictions we imposed in 2.1 (e.g., to

allow conditionals instructions).

There are many degrees of freedom in the choice of rewriting or expansion

beyond the simple rules of 3.1. How does one judge a priori the interest of such

a transformation? Are there situations in which the data 
ow reconstruction is

simpli�ed? In the case of fCg, this is probably because all use of the o�ending

variable where rewritten in the same way. Is this always possible?

We believe the techniques we have introduced in this paper to be susceptible

of many applications beyond array expansion. We have noted that they give a

method for testing that no array element is used before being de�ned. Similarly,

the method may be used to build assertions on arrays, in the manner of [Jou87].

It may even be possible in some cases to solve recurrence equations on array, as

for instance to transform:

x[0] := 0;

for i := 1 to n do

x[i] := x[i-1];

into

for i := 0 to n do

x[i] := 0;

with the attendant increase in parallelism. Finally, let us note that our method

would give very interesting information to an optimizing compiler.

19



References

[AK84] J.R. Allen and Ken Kennedy. Automatic loop interchange. In Proc. of

the 1984 ACM SIGPLAN Compiler Conference, pages 233{246, June

1984.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-

niques and Tools. Addison-Wesley, Reading, Mass, 1986.

[Bak77] Brenda S. Baker. An algorithm for structuring programs. Journal of

the ACM, 24:98{120, 1977.

[CH78] Patrick Cousot and N. Halbwach. Automatic discovery of linear re-

straints among variables of a program. In ACM POPL, 1978.

[Dij68] Edger W. Dijkstra. Goto statements considered harmfull. Communica-

tions of the ACM, 11:147{148, 1968.

[Fea88a] Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomput-

ing, St Malo, 1988.

[Fea88b] Paul Feautrier. Parametric integer programming. RAIRO Recherche

Op�erationnelle, 22:243{268, September 1988.

[Jou87] Pierre Jouvelot. Semantic parallelization, a practical exercise in abstract

interpretation. In ACM POPL, 1987.

[Kuc78] David J. Kuck. The Structure of Computers and Computations. J.

Wiley and sons, New York, 1978.

[PW86] D. A. Padua and Michael J. Wolfe. Advanced compiler optimization for

supercomputers. CACM, 29:1184{1201, December 1986.

[Wol78] Michael J. Wolfe. Techniques for improving the inherent parallelism in

programs. Master's thesis, Univ. of Illinois at Urbana-Champlain, 1978.

20


