COMPILING FOR MASSIVELY PARALLEL ARCHITECTURES:
A PERSPECTIVE

Paul FEAUTRIER

Laboratoire PRiSM

Université de Versailles Saint-Quentin
45 Avenue des Ftats-Unis,

78035 VERSAILLES CEDEX FRANCE

Paul. Feautrier@prism.uvsq.fr

ABSTRACT: The problem of automatically generating programs for massively parallel
computers is a very complicated one, mainly because there are many architectures, each
of them seeming to pose its own particular compilation problem. The purpose of this
paper is to propose a framework in which to discuss the compilation process, and to show
that the features which affect it are few and generate a small number of combinations.
The paper is oriented toward fine-grained parallelization of static control programs, with
emphasis on dataflow analysis, scheduling and placement. When going from there to more
general programs and to coarser parallelism, one encounters new problems, some of which
are discussed in the conclusion.

KEYWORDS Massively Parallel Compilers, Automatic Parallelization.

QARTICLE{Feau:95,
AUTHOR = {Paul Feautrier},
TITLE ={Compiling for Massively Parallel Architectures: a
Perspective},
JOURNAL = {Microprogramming and Microprocessors},
YEAR = 1995,
NOTE = {to appear}
b



1 A FRAMEWORK FOR DISCUSSING MASSIVELY PARALLEL COMPI-
LATION

The problem of automatically generating programs for massively parallel computers is a
very complicated one, mainly because there are many architectures, each of them seeming
to pose its own particular compilation problem. The purpose of this paper is to propose a
framework in which to discuss the compilation process, and to show that the features which
affect it are few and generate a small number of combinations.

We will first introduce some notations for discussing parallel programs. We will then
restate in our framework several classical techniques: data expansion, scheduling, parti-
tioning, tiling and loop rewriting. It is then possible to explore the spectrum of parallel
architectures, and to show that each of them may be programmed by one of the above
techniques, or by a combination of them. In the conclusion, we will point to several short
range and long range unsolved problems.

1.1 Static Control Programs

An operation of a program is one execution of an instruction. While the number of instruc-
tions is roughly proportional to the size of the program text, the number of operations is
proportional to the running time of the program and may vary according to the size of the
data. What is to be taken as an instruction depends on the purpose of the analysis. In
the case of source-to-source parallelization, which is our main concern here, we will identify
instructions with simple statements in the source high level language. Other choices are
possible, e.g. in the case of Instruction Level Parallelization.

At present, parallelization techniques apply only to static control programs, i.e. programs
for which one may describe at compile time the set of operations which are going to be
executed in a program run. Static control programs are built from assignment statements
and DO loops. In such a program, the only mechanism which generates operations from
instructions is DO loop iteration. As a consequence, an operation may be named by a tuple
(S, %) where S is the name — or label — of the parent instruction, and where the components
of ¥ — the iteration vector — are the values of the surrounding loop counters, from outside

inward. The dimension of Z (i.e. the number of loops which surround .5'), will be denoted
Ns.

The only data structures are arrays of arbitrary dimension. For technical reasons, loop
bounds and array subscripts are restricted to affine forms in the loop counters and integral
structure parameters, which are assumed to be known at program loading. From each
of the surrounding DO statements, we may extract an upper and a lower bound for the
corresponding counter. Under the above hypotheses, these bounds may be collected as a
system of 2/Ng affine constraints:

Dgs¥ + JS > 0.

The integer solutions of these inequalities define the iteration domain Dg of §. Such a set
is known as a Z-polyhedron.

Generally, the result of a program depends on the order in which its operations are



executed. The fact that operation u is executed before operation v is written u < wv.
If several programs are under discussion, their execution orders will be distinguished by
subscripts. A sequential program is associated to a total execution order. A parallel
program is associated to a partial execution order. For the purpose of understanding what
is the result of a parallel program, one may assume that, for each run, target computer
selects in some way a total extension of this partial order and executes it sequentially. Since
in general a partial order has many total extensions, it follows that a parallel program has
many possible executions, with potentially many different results. The central question of
automatic parallelization is: when do all these executions give the same result?

Two operations u and v are independent if their order of execution can be reversed
without changing the global effect on the program store. Let R(u) and M(u) be the sets
of memory locations which are read and modified by operation . A sufficient condition for
independence of u and v is [Ber66]:

Mu)ynM(v) = 0, (1)
R(u) N M(v) = 0, (2)
Mu)NRw) = 0. (3)

If these conditions are not satisfied, the operations u and v are said to be dependent, written
wbwv.

Suppose that two programs have the same set F of operations. One of them is sequential,
with total execution order <. The other one has execution order </, presumably parallel.
One may show that a sufflicient condition for the equivalence of these two programs is:

Vu,v€ ErudvAu<v=u=<,u, (4)

in words, that if two operations are dependent, then they are executed in the same order
in the sequential and the parallel version.

Another equivalent formulation is that the execution order of any correct parallelization
must be a transitive extension of the relation < N, the Detailed Dependence Graph (DDG)
of the source program.

As a consequence, the parallel compilation process may be divided in two steps: firstly,
compute the DDG of the source program, then select any extension of the DDG which can
be executed efficiently on the target architecture.

With the exception of programs without loops — the basic blocs — this proposal cannot be
carried out litteraly, since the size of the DDG is enormous and may vary from run to run.
The concern of most parallelization methods is to construct a summary of the DDG, the
objective being to keep just enough information for the construction of a parallel program.

2 BASIC ANALYSIS TECHNIQUES

Recent research on automatic parallelization has concentrated on two topics: improving
the dependence calculation, and finding well-defined algorithms for the construction of
extensions of the DDG.



2.1 Array Dataflow Analysis

Each edge in the dependence relation may be seen as a constraint on the final parallel
program. There is an obvious interest in removing as many edges as possible. Some
edges are related to memory reuse (the so-called output- and anti-dependences) and can be
removed by modifying the data structure of the program. The remaining edges represent
dataflow from a definition to a use of the same memory cell. However, a definition may be
killed before being used by another operation.

The aim of array dataflow analysis is to characterize in a compact way the set of proper
flow dependences of a program. Let us consider an operation u in which a memory cell ¢
is used. Let us write W(c) for the set of operations which write into c. The source of ¢ at
u is the latest write into ¢ which precedes u:

source(c, u) = mjx{v | v < u,veW(c)}.

When the linearity hypotheses of section 1.1 are taken into account, this problem trans-
lates into the calculation of the lexical maximum of a union of Z-polyhedra. To express the
result, we need the concept of quasi-affine form : a formula which is built from the variables
by the operations of addition, integer multiplication and integer division. One may show
[Fea88b] that the source above can be expressed as a piecewise combination of quasi-affine
forms in the coordinates of the iteration vector & of w. In many cases, integer division does
not occur, and each piece of the solution may be written:

source(c, (R, @) = (S, Lrs + (rs), (5)
where Lpg is a matrix and ZRS is a vector of suitable dimensions.

It may happen that some memory cell is not defined in the program fragment under study.
In that case, we use the special operation L which may be interpreted as the initial program
loading. To simplify the exposition, we will suppose here that all initializations have been
made explicit in the program text, and hence that L never occurs in sources. There
are practical algorithms for computing the source function, with the help, e.g., of linear
programming [Fea88a, Fea91] or by simplifying Pressburger formulas [PW93]. It happens
frequently that the source can be found directly without resorting to linear programming
techniques. See [MAL93] or [HT94] for a study of such cases.

Consider the following matrix multiplication code:

doi=1,n
do j =1,
1 a(i,j)
b(i,j)
end do

end do
doi=1,

n B

.0

ns o

c(i,j) + a(i,k)*b(k,j)



end do
end do
end do

Let us investigate the source of ¢(i,j) in operation (4,74, k). The candidates are
statement 3 and statement 4 itself. Let us consider an operation {(4,¢, 5/, k’)}. A candi-
date must write into the proper memory location, which implies i/ = ¢, j' = j, and be
executed earlier than (4,4, j, k), which, together with the preceding equalities, implies
k' < k. The latest possible source is thus (4,7, j,k — 1). This operation exists only if
k> 2. If k =1, a similar reasoning indicates that the source is (3,4, j). These results
may be put together as a conditional:

source(c(i,j), (4,4,4,k))=1f k > 2then (4,i,4,k — 1) else (3,4, j), (6)

The other sources are simpler:

source(a(i,k), (4,4, 7, k) = {(1,4,k), (7)
source(b(k,j), (4,4, 5, k) = (2,k,j). (8)

When the source function is known, a new version of the equivalence condition (4) can
be stated. Let R(u) be the set of memory cells which are used by operation u. One must
have:

Vu,VYec € R(u) : source(c,u) <,/ u, (9)

in words, that the source of a value in any operation is executed before that operation in
the parallel version of the program. The graph whose vertices are the operations, with an

edge from v to w iff v is the source of a value which is used by wu, is the Dataflow Graph
(DFG) of the program.

However, using any execution order which satisfies (9) for constructing a parallel program
will give an incorrect result, because output- and anti-dependences have not been taken into
account. One can get rid of these dependences by data expansion. We will suppose here, for
simplicity, that each operation returns only one result. Let us associate to each operation
u one distinct memory cell M[u]. Let us write the statement associated to u as:

a:= f(...,c,..0). (10)
Consider the program in which operation u execute the following statement:
Mlu] := f(..., M[source(c,u)],...). (11)

Since each operation u is executed only once, and since the result location M[u] is in one-
to-one correspondence with w, this program has the single assignment property. When
the program starts, all memory cells are undefined. The cell M[u] gets a value when w is
executed, and this value does not change until the end of the program. One may prove that
this single assignment program, executed according to any order <,, which satisfies (9) is
equivalent to the original sequential program, in the following sense:

Theorem 1 The value which is computed by operation u is the same in the original program
(10) and in the parallel version (11).



It 1s clear that the sequential execution order < is well founded. Hence, we may use
induction on this order to prove equivalence. Let u be an operation, and suppose that
equivalence has been proved for all v < u. Let ¢ be a memory cell in R(u). Tts value
has been generated by source(c, u) < u. By (9), source(c, u) has been executed before u
in the parallel program, and the resulting value, which is written into M[source(c, u)],
is, by the induction hypothesis, equal to the value generated by source(c,u) in the
sequential program. This value is never overwritten by the single assignment property.
As a consequence, the function f has the same arguments in (10) and in (11), and
hence, gives the same results, QED.

Single assignment programs have the property that their space complexity and time
complexity are the same. This is in contrast to the situation which prevails for most
scientific computing algorithms, where the space requirement is an order of magnitude less
than the time requirement. On the other hand, implementing an algorithm as a single
assignment program allows one to extract all the parallelism of which it is susceptible.
In many cases, this degree of parallelism may be attainable with less than total memory
expansion, and beside, this degree of parallelism may not be necessary, e.g. because the
target computer cannot make use of it. It would be nice in these cases to be able to adjust
the amount of memory expansion, but this is still an open research subject.

2.2  Scheduling

The problem is now to specify an execution order for the parallel program, i.e. an extension
of the DDG or of the DFG. The specification of an order on a large set is very complex.
Our aim here is to find simple representations, even if we have to sacrifice some parallelism
in order to achieve simplicity. The use of a schedule, i.e. of a function which maps the set of
operations to logical time (i.e. to any linearly ordered set) is such a simple representation.

To any function # mapping the set of operation to an ordered set, we may associate the
partial order:

w=<gv=0(u) < b(v).

Usually, the range of 8 is taken to be the integers. 8 is a valid schedule if the corresponding
order satisfies (4) or (9), i.e:

wdvAu<v=0(u) <f(v), (12)
Vu,Va € R(u) : §(source(a,u)) < 8(u). (13)

The latency of a schedule is the maximum value of the schedule over the set of operations.
It may be interpreted as the running time of the parallel program on a PRAM. It is clear
that the source relation is included in the DDG. Hence, (12) is a tighter constraint than
(13). As a consequence, the valid schedules according to (13) have a latency no larger than
that of schedules which satisfy (12). The price to pay is that if a schedule for (13) is used,
the data space has to be expanded in order to restore correctness.



In the case of our running example, the following functions:
0(1,i,5) =0, 0(2,4,j)=0, 0(3,4,j)=0, 6(4,4,j,k) =k

are valid schedules. Consider for instance the constraint associated to memory cell
c(1i,j) in statement 4. We have to check that:

(if k > 2then 0(4,7,7,k — 1) else (3,4, 7)) < 0(4,1, 7, k).

The test splits into two subproblems. If & > 2, we have k — 1 < k. If k < 1, then, from
the loop lower bound we deduce that ¥ = 1, and the condition to be verified is that
0 < 1. The reader may care to test the other conditions on 6.

To solve the scheduling inequalities, one starts by postulating a simple prototype for 6:
0(S,T) = hs.@ + ks,

where hg is known as the timing vector for 5. These prototypes for § are substituted
into (12) or (13). From the result one may deduce linear inequalities on the unknowns

components of hg and kg.

There are several methods for deducing these inequalities. One may give a set of cleverly
chosen values to Z (the vertices of the iteration domains [Qui87]) or apply Farkas lemma

[Fea92a).

Most of the time, these linear constraints have many solutions. One usually selects a
“best” one according to some figure of merit. One possibility is to optimize the latency
of the program [DR95]. Alternately, one may search for earliest start time or leftmost
schedules [Fea92a]. In both cases, the solution is obtained by solving linear programming
problems. The authors of [KP94] have attempted to optimize more complicated objective
functions by a search process.

It may happen that the set of affine constraints which is deduced from the dependence
conditions (12) or (13) has no solution. A possibility in that case is to construct multi-
dimensional schedules by the algorithm in [Fea92b] which has been proved optimal in the
case of uniform dependences in [DV94].

To any function #, one may associate the system of disjoint sets:

F(t) = {u]b(u) =1}. (14)
F(t) is the front at time ¢. If 6§ satisfies (12), it is clear that all operations inside a front
are independent, i.e. can be executed in parallel. If the schedule satisfies (13), then the
source and the sink of any value do not belong to the same front: there is no data exchange
inside a front. We may say that the set of operations has been partitioned into anti-chains
— sets of non comparable operations — which are executed sequentially. This is the SEQ
of PAR style of programming of [Bou93]. Two operations in different fronts are executed
in sequence, but are not necessarily in dependence: some parallelism has been lost in the
interest of a simple parallel program representation.



2.3 Distribution

Let Q be any partition of the set of operations of a given program. One may associate to
Q an execution order in the following way. Operations which belongs to the same part of
Q are executed according to the sequential execution order. Operations which belong to
different parts are ordered in the sequential order if and only if they are in dependence.
It is quite clear that the resulting order satisfies (4). Intuitively, each part corresponds to
a process. Ordering between operations in different parts necessitates a synchronization
operation. This is the PAR of SEQ style of programming of [Bou93].

In the same fashion, one may introduce an ordering between two operations in different
parts only if one is the source and the other a sink for a given value. In that case, the
ordering is obtained by transmitting a message from the source to the sink; the message
carries the shared value.

Theorem 2 The program obtained by partitioning and synchronization is correct, provided
that the workspace of the original program is replicated in all processors.

We have to prove that the value which is computed by an operation w is the same in the
sequential and in the distributed version. Here again, the proof is by induction on the
sequential execution order. Let us suppose that the theorem is true for all operation
v < u. Let ¢ be a memory cell in R(w); in the distributed version, this cell is replicated
in all processors. There are two cases:

e source(c, u) belongs to the same part as u. By construction, the source operation
has been executed before u in the distributed version, and has left the correct
value in ¢. Beside, this value has not been obliterated in the distributed version,
because this would contradict the definition of the source function.

e source(c, u) belongs to a different part. We have here to make some assumptions
about the communication mechanism. Suppose for simplicity that as soon as the
source operation terminates, it broadcasts a message holding its name and its
result. When u initiates, it waits for a message holding the name of the source
operation and gets the value contained therein. Since source(c, u) < u, the value
obtained in this way is the correct one by the induction hypothesis.

All in all, the arguments of u are the same in the sequential and in the distributed case,
hence its result is the same, QED.

The communication mechanism which is postulated here relies on a kind of tuple space
a la Linda [CG89]. There are other possibilities, see section 4.3.

Here, any partition gives a correct parallel program. However, efficiency considerations
dictate that the set of residual synchronisation or communications be kept to a minimum,
subject to the condition that all processes execute about the same amount of work. The
problem has been widely studied [LC91, AL93, Fea94]. A plausible solution is the following.
One postulates a placement function I from the set of operations to the set of processes
(also called virtual processors). The virtual processors are understood to occupy the points
of a g-dimensional Z-polyhedron (the template of HPF, the geometry of the CM-2, and so
on). II(u) is a function from the set of operations to Z9 which gives the coordinates of the



virtual processor which executes u. For each value which is used by u, one may define a
communication distance:

d(a,u) = Il(source(a, u)) L II(u) (15)

and the equation d(a,u) = 0 expresses the fact that the source for cell a in operation u is
in the same process as u. If all such equations can be satisfied, all residual communications
will disappear.

Since an arbitrary placement function is useless for program restructuring purposes, one
makes the additional assumption that 1I is affine:

H(R, f) = Tp.Z + qR,

where Tr is an unknown vector and ¢gp an unknown alignment constant. Let us recall
formula (5):

source(c, (R, 7)) = (S, LrsT + (ps).

If we substitute this formula and the above prototype placement function into (15), then
identify, we get a system:
TsLrs = Tr,

Tslrs +qs = qr.
The first line expresses the fact that the communication distance is a constant (a very
desirable property), and the second line that this constant is null. Let us write 7 for a
vector in which all unknowns @ for all R are collected. Similarly, let § be the vector of all
alignment constants. The above system may be summarized as:

c7 = 0,
pl ™) = o,
q

where C' is known as the communication matrix of the program. The meaning of the first
line is that ¥ must belong to the null space of C' [BKK*94]. If, as is likely for real world
programs, (' is of full row rank, © = 0 is the only solution, and the calculation collapses on
processor 0. To obtain an interesting solution, one needs ¢ linearly independent placement
functions, where ¢ is the dimension of the processor grid. This means that one has to
select a submatrix of ' with a g-dimensional null space. The excluded rows corresponds to
residual communications. Heuristics may be used to select the excluded communications
among those with the lightest load [Fea94]. When 7 has been selected, one tries to satisfy
as many alignment conditions as possible, thus obtaining local communications.

In some cases, 1t is possible to solve the placement equations without any hypotheses
on the form of the placement functions. To the source functions (6-8) are associated
the following placement equations:

H(4,i,5, k) = (4,45 k—1), (16)
(4,i,5,1) = 1(3,i,7), (17)
(4,4, 5,k) = TII(1,i k), (18)
(4,45, k) = T2, k,j). (19)

From (16) we deduce that TI(4, 4,4, k) does not depend on k. Similarly, (18-19) im-
ply that this function does not depend on either j or i, and hence is a constant. It



is thus 1mpossible to build a distributed program for our example without residual
communications.

Suppose now we ignore (19). We may now take:
(4,45, k) =T(1,4,7) =T(3,4,5) = i.

Equations (16-18) are satisfied. We may choose TI(2,¢,j) arbitrarily. Let us take
M(2,4,5) = j. There are then two solutions. The first one is to program a communi-
cation from processor j to processor ¢ in which b(k,j) is sent. The second one is to
duplicate b on all processors. There is no residual communication in this case.

In writing (15), it has been supposed that the value which is generated by u is held in
the memory of processor II(u). This is the well known “owner computes rule”. Relaxing
this rule may give more efficient placements, see [DR94].

A linear placement function for a program whose iteration domain has characteristic
dimension n has a range of cardinality O(n), and hence, generates O(n) processes. This
may be too much for some architectures. In that case, one folds the placement function
by assigning several processes to one physical processor. Alternatively, O(n) may not be
enough for some architectures like the CM2 or Maspar. In that case one uses two or
more linearly independent placement functions. Such a g-dimensional placement function
generates O(n9) processes, g being limited only by the dimension of the iteration space.

One can compute a placement function without any reference to a schedule. However,
there are two reasons not to do that. The first one is that knowing the schedule allows one
to choose the dimensionality of the placement. If the iteration space has dimension d, and
if the schedule is one dimensional, then each front is included in a subspace of dimension
d L 1, and there is no need to use a processor grid of higher dimension. More generally,
for each statement the maximum dimension of the grid which allows full utilisation of the
processors is d 1 s where s is the dimension of the schedule. Secondly, the schedule and
placement function seen as a space-time transform has to be one-to-one, meaning that each
process executes at most one operation at any given time:

H(u) =1(v) A O(u) =0(v) = u=no. (20)

2.4 Supernode Partitioning

In this technique [IT88], one starts again with a partition S of the operation set. The
elements of § are called supernodes or tiles. This partition is subjected to the requirement
that the quotient of the dependence graph by § is acyclic:

Vo,r€ S, Au,veo, e, ycTu<a,y<v,udx,véy.

In the parallel version of the program, operations which belong to the same supernode are
executed sequentially according to <, while supernodes themselves are executed according
to the quotient order. Supernode partitioning is an important technique for improving the
performance of a parallel program, by adapting the “grain of parallelism” of the program
to the grain of the target computer. Most often, supernodes are defined as identical tiles
which have to cover the set of operations of the program. As a first approximation, the

10



computing time of a tile is of the order of its volume, while the necessary communications
or synchronization are of the order of its surface. Increasing the size of tiles improves the
computation to communication ratio, at the price of reducing the amount of parallelism.
The extreme is the case of only one tile, which generates no communication and no paral-
lelism. The problem of writing the actual parallel program after tiling is simply displaced
from the original dependence graph to the quotient graph, and the methods above still

apply.
Some loop nests contain fully permutable loops [WL91] i.e. loops which can be arbitrarily

reordered without change in the results of the nest. The problem of tiling is much simpler
in that case.

3 LOOP REWRITING

The aim of the methods that have been discussed in the preceding section is to expose the
parallelism in the source program. There is still the problem of rewriting the program in
such a way that this parallelism may be easily exploited by, e.g., the native compiler or
run-time system.

To the system of fronts (14), we may associate the following program:

dot=0,L
doall F(1)
end do

However, in this program, the doall is purely a notational convention. If this code
is to be submitted to a real compiler, we have to find a parametric representation of
F(t) in term of t and of a set of new variables, and to construct a set of loops for the
enumeration of F(t). We know in advance that these loops will be parallel.

In full generality, the problem may be expressed in the following terms [KP92]. We are
given a one-to-one mapping 7 from the set of operation to NY:

T(u)=T(v)=>u=no. (21)
The execution order <7 which is associated to 7 is the lexicographic order on 7 (u):
uw=<7v="T(u) < T(v).

The selection of 7 is the important step in the parallelization process. As we will see in
the next section, it is strongly influenced by the target architecture. In particular, by a
clever choice of 7, it will happen that some of the components of 7 (u) may be interpreted
as processor numbers, the corresponding loops being parallel. Other components may be
interpreted as logical time, giving sequential loops. However, the loop rewriting process is
completely independent of these considerations.

The 7 transformation is not arbitrary. In fact, as we will see later, it is made up by
combining in various ways affine schedules and affine placement functions. The consequence

11



is that the restriction of 7 to any statement S is an affine transform from the iteration
domain of S to N%:

T(S, f) =TsZ + s, (22)

where T's is a d X Ng matrix. For the condition (21) to be satisfied, T's has to be of rank
Ng.

Loop rewriting in general is a very complicated process. It is helpful to start by solving
several simpler subproblems. The basic problem is, a Z-polyhedron being given as a set of
inequalities:

D ={Z|Di+d>0},

to construct a loop nest which scans D in lexicographic order. The first solution has
been given in [Iri87] (see also [AI91]), using an extension of the Fourier-Motzkin pairwise
elimination method.

Basically, let z; be the counter of the innermost loop. One rewrites a row of D in
which z; has a positive coefficient as a lower bound on z4. Similarly, a row where the
coefficient is negative gives a lower bound. The lower bound of z; is the maximum of all
the lower bounds found in this way. An upper bound is found in a similar fashion. One
then eliminates x4, and the process is repeated for all counters from inside outward.

Other solutions use parametric linear programming [CFR94] or the Chernikova algorithm
for constructing the vertices of a polyhedron [VWD94].

The next problem is the one in which the loop nest is subjected to a transformation
associated to a unimodular matrix 7. Let 7~! be its integral inverse. In that case, the
iteration domain after the transformation is still a Z-polyhedron, which is given by the
inequalities:

DT 'j+d>0.
The new loop bounds are found by one of the above methods.

If T is not unimodular, the image of the iteration domain is no longer a Z-polyhedron.
The first step is to compute the left Hermite normal form of 7" [Min83]:

T=HQ,

where () is unimodular. Since T is of rank Ng, H is lower triangular with positive elements.
Let us introduce an auxiliary integral vector Z such that:

7= Q%

y=HZ
The special form of H implies that ¢ is a monotone increasing function of Z. Since )
is unimodular, we may find a loop nest wich scans the Z-polyhedron ()Dg by the above
method. This loop nest is then rewritten in term of ¢ by applying the matrix H. In

particular, the diagonal elements of H give the steps of the new loop nest [Dar93, Ris94,
Xue94].

12



The most complicated case is the one in which we have to rewrite several statements with
different transformations. Fach transformation has the same target space and is supposed
to have full rank. However, it is not necessary to suppose that the whole transformation is
one to one. If two operations (or more) coming from different statements are scheduled at
the same time and place, it is a simple matter to have them executed in an arbitrary order.

We have to scan the union of the various images of iteration domains. However, it is well
known that the union of several polyhedra is not necessarily a polyhedron. One possibility
is to scan the convex hull of this union, inserting guards to avoid executing non-existant
operations. The compiler should be careful to detect trivial guards in order to reduce
overhead. The other possibility is to dissect the union of iteration domains into an union
of disjoint polyhedra, and to write a loop nest for each subset. The drawback of this
method is code duplication. The reader is referred to the original publications for details

[Col94, AALLY3, KP92].

After rewriting the loop nests, one still has to modify the statements themselves. This
can be done in two ways. The simplest solution is to express the old variables # in term of
the new one § by inverting (22), which is always possible by (20). The values of & are then
substituted into the array subscripts of 5.

When working with the single assignment form (11), there is a more interesting possi-
bility, called reindexing. Let us introduce a new data space, N, which is indexed by the
transformed coordinates v = 7 (u):

N[v] = M]|
N[T(w)] = M]
N[v] = M[T'(v)].

(11) is reindexed into:

N[v] = f(..., N[T(source(c,7 ' (v))],...) (23)

M[al,
MTu],

As we shall see later, when 7 is constructed from a schedule and/or a placement, this form
has specially interesting properties.

4 ADAPTING THE COMPILER TO THE ARCHITECTURE
4.1 Classifying Architectures and Languages

It is a truism that each programming language defines — sometime explicitly, most of the
time implicitly — an underlying virtual architecture. In many cases, the user of a massively
parallel computer only sees the virtual architecture provided by his favorite programming
language. This leads to the distinction between the programming model and the execution
model [Bou93]. In this discussion, we will mostly stay at the level of the programming
model. Forinstance, any computer which runs Fortran 90 will be deemed a vector processor.

Obviously, when constructing programs for massively parallel computers, one has to take
the target architecture into account. My contention is that only broad characteristics of
the target computer are important for the compiling process. Detailed parameters, like
e.g. message latencies or cache size, are to be taken into account only when fine tuning the

13



resulting program, as for instance when one has to decide the size of supernodes.

The main characteristics of a parallel architecture are the following;:

e Is there a central clock which synchronizes all processors?

o [s there a global address space which can be accessed in a uniform manner by all
processors?

These two parameters are largely independent, and thus gives rise to four architectural
classes.

4.2 Global Memory Synchronous Architectures

Under this category fall static control superscalar and VLIW processors, and also a few
designs like Opsila (a global memory SIMD machine [ABD90]). Parallelism is obtained
by executing a large number of operations simultaneously at each clock cycle. One may
argue that pipeline processors belong to this class, if one stays at the level of the vector
instructions, and one ignores the detailed programming of the pipelines.

For a synchronous computer, each operation has a well defined date, which is obtained
simply by counting clock cycles from the beginning of the program. This gives a natu-
ral schedule. Conversely, to a given schedule, one may associate the following abstract
synchronous program:

dot=0,L
doall F(t)
end do

where L is the latency of the schedule. The body of the loop may be understood as a
very large instruction, each processor taking charge of one of its elementary operations.
This program cannot in general be executed directly. Firstly, in a synchronous computer,
all operations in a front are to be instances of the same instruction. Secondly, the size
of the front is limited by the number of identical processors. One has to split the front
into subfronts Fg according to the statement S which is executed. One also has to adjust
the schedule in such a way that no front has more operations than the available number
of processors. This can be integrated into the scheduling process, or done a posteriori by
variants of the well-known strip mining technique, or left to the run-time system.

The code generation process for this case may be explained simply in term of loop rewrit-
ing. Let us suppose first that the schedule for statement .5, fg is one dimensional and is
defined by a primitive timing vector! hs. One extends hg to a unimodular matrix by con-
structing its Hermite normal form [Dar93]. A more complicated process is needed when the
timing vector is not primitive or when the schedule is multidimensional, see [Col94].

If the schedule has been computed from the dataflow graph, one has to do some form of
data expansion to obtain a correct program. Single assignment conversion is usually too

! A vector is primitive iff its coordinates are mutually prime integers.

14



much expansion. The problem of finding the minimum expansion which still gives a correct
parallel program is a very important one, see [MAL93, Cha93]. A partial solution may be
obtained by reindexing. If the first row of 7 is given by a schedule, the shape of (23) is:

Nlt,..]=f(...,N[t Ld,..],...),

where t is logical time and d is a positive delay by (13). If the delays for the various
statements have an upper bound D, then the first subscript of N may be folded modulo D+1
without introducing unwanted dependence. This process usually reduces data expansion to
more manageable proportions.

4.3 Distributed Memory Asynchronous Architectures

This is a class of computers with a very large population, from workstation networks to
hypercube based architectures. Each processor works in asynchrony and has its own inde-
pendent memory. A message exchange is necessary if one processor needs a value which
has been computed elsewhere, and, since message passing is always much slower than com-
putation, such exchanges must be kept to a minimum.

These computers are best programmed from a partition as in Section 2.3. To a first
approximation, the data space of the original program can be replicated in each memory,
thus insuring the needed data expansion. Each processor runs a copy of the source program,
each instruction being guarded to insure that it is only executed if it has been assigned to
that processor. The overall effect is SPMD programming.

Let us suppose that distribution is specified by a placement function 1I, and let ¢ be the
current processor number. Operation u is replaced by the following code [ZBGR8S]:

Va € R(u): if Il(u) # ¢ A ll(source(a, u)) = ¢ then Send(a) to II(u)
if (u) = g A l(source(a, u)) # ¢
then Receive(a) from Il(source(a,u))

if II(u) = ¢ then ¢ = f(R(u))

One may prove that there is a one-to-one correspondence between Sends and Receives,
that values are sent in the order in which they are received, and that Send-Receive pairs
implement the needed synchronization between operations in different processors.

The efficiency of the above scheme can be improved in several ways. Firstly, as many
guards as possible should be pushed up into the surrounding loop bounds. This can be done
only for simple forms of the placement function. Secondly, proper choice of the placement
function should minimize the number of residual communications. Sends and Receives
should be grouped in order to have longer messages, perhaps by supernode partitioning.

Nevertheless, any partition function leads to a correct if perhaps inefficient object pro-
gram. This is the reason why it is feasible to have the distribution specified by the pro-
grammer, as in the HPF language.

15



4.4 SIMD Architectures

SIMD architectures, as for instance the CM-2 or Maspar computers, or systolic arrays,
have synchronous processors and a distributed memory. Hence, for generating a parallel
program, one needs both a schedule and a placement function which together have to
satisfy constraint (20). Once these functions have been found, they are put together as the
first rows of the space-time transformation 7. If the template is of small dimension (for
instance, because the target computer is a linear array) it may be necessary to complete
the transformation by adding extra loops, which are to be executed sequentially by the
processing elements. Most of the time, the resulting transformation will not be unimodular,
and the more complicated algorithms of section 3 have to be used.

Data expansion poses the same problem here as in the global memory case. In addition,
one has to construct communications statements for residual communications. Here again,
reindexing is the key to the solution. The components of 7 (source(c,7 ~*(v)) which corre-
sponds to processor numbers give the routing transformation for operation v. A specially
efficient case is that in which the routing depends only on the processor numbers. If the
routing is one to one, it has to be implemented as a bulk communication. If the routing is
defined by a translation, this communication is a neighbor to neighbor shift. If the routing
is not one to one, it may be implemented as a broadcast [RWF91].

The question of satisfying (20) is very difficult. Experience shows that actual solutions
of the placement and scheduling constraints usually have the right property. Whether this
is a coincidence or a feature of our algorithms is unknown at present.

Some authors have proposed that scheduling and placement be coupled in some way. One
possibility is to select a placement first, then to take the data transfer time into account
when computing a schedule. One rewrites (13) in the form:

Vu,Va € R(u) : §(source(a, u))+ 1+ 7(u, source(a, u)) < 0(u). (24)

7(u,source(a, u)) is the transfer time from processor Il(source(a,u)) to processor II(u). It
is zero if the source and sink operations are executed by the same processor, and depends in
a complicated way on the network topology and possibly on simultaneous communications
(through contention phenomena) if not.

The only situation in which an analogous problem has an easy solution is that of systolic
arrays. In that case, the communications are “pushed up” among the computations
by a transformation known as uniformization [QD89]. The transformed algorithm is
then scheduled in the usual way. Since the communication network is custom built
according to the structure of the transformed algorithm, no contention is ever possible.
Attempts to transpose this paradigm to SIMD architectures did not give satisfactory
results, perhaps because general purpose communication networks are quite different
from systolic array networks.

4.5 Asynchronous Shared Memory Architectures

An asynchronous multiprocessor with a global address space is apparently the easiest par-
allel architecture to program. In fact, there are two ways of tackling the job. Firstly, it is

16



easy to emulate a synchronous architecture — one needs only a fast barrier primitive —and
still easier to emulate a distributed memory machine: one has only to partition the address
space and to restrict access of each processor to the associated memory segment. This is
the policy most operating systems implement for data security reasons. The memory access
limitation is raised for the time it takes to execute communication primitives.

However, one should be aware that today global memories are build on top of message
passing architectures, either as a Shared Virtual Memory, or with the help of distributed
caches. In both cases, the performance of the computer is sensitive to the placement of
the data and calculations. The most important parameter is the coherence protocol, which
insures that no obsolete data is returned to a read request.

Strong coherence protocols [CF78] work by invalidating extra copies of data before al-
lowing a modification. In that case, the main concern is to avoid coherence induced cache
misses. This is done, not by distributing the data, but by distributing the operations, two
operations sharing the same datum being preferably located on the same processor.

Weak coherence protocols delimit sections of the code where it is safe to waive the
coherence check because there are no concurrent writes to the same memory cell. Observe
that a front is such a section, because all operations inside it have the single assignment
property. Coherence is restored as a side effect of the barrier operation. It is clear that
fronts are exactly what is needed to construct weakly coherent sections of the code, and
that a schedule is the natural tool for constructing fronts.

5 CONCLUSION

This paper has attempted to give guidelines for the central part of massively parallel pro-
gram synthesis in the case of static control programs. This has to be preceded by an analysis
phase and followed by a loop rewriting phase. The construction of the DFG and scheduling
are well understood processes. Distribution and placement is a fuzzier subject since there
is no real constraint on the placement function, the problem being one of trading off load
balancing against communications. Some work is still needed in that direction.

The basic tools for code generation are well understood. There are, however complex
interactions between code generation, memory usage optimization and communication im-
plementation, which are still largely unexplored. The problem is complicated by the fact
that the choice of an optimal solution is strongly dependent of the structure of the run
time system (see e.g. [RWF'95] for a discussion of the influence of the so-called vp-looping
scheme on the performances of the CM-2).

The next step is to go beyond static control programs, exploring while loops and irregular
data structures. There is still some hope of improving analysis and synthesis techniques in
this direction [CBF95]. However, we are nearing the point at which the information content
of the program text is nearly exploited to the full. After this stage, the only possibilities are
either run-time parallelization methods or the definition of new programming languages,
where more information is available for parallelization.

17



ACKNOWLEDGMENT

Many thanks to Luc Bougé, who carefully criticized a first version of this paper.

References

[AALL93] Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and Amy W.
Lim. An overview of a compiler for scalable parallel machines. In Sizth Annual
Workshop on Languages and Compilers for Parallel Computing, pages 253-272.

Springer Verlag, LNCS 768, August 1993.

[ABD90] Michel Auguin, Fernand Boéri, and Jean-Paul Dalban. Synthése et évaluation

du projet OPSILA. TS1, 9:79-98, 1990.

[AI91] Corinne Ancourt and Francois Irigoin. Scanning polyhedra with DO loops. In
Proc. third SIGPLAN Symp. on Principles and Practice of Parallel Program-

ming, pages 39-50. ACM Press, April 1991.

[AL93] Jennifer M. Anderson and Monica S. Lam. Global optimization for parallelism
and locality on scalable parallel machines. ACM Sigplan Notices, 28:112-125,

June 1993.

[Ber66] A. J. Bernstein. Analysis of programs for parallel processing. IFEFE Trans. on

El. Computers, EC-15, 1966.

avid Bau, Indupras Kodukula, Vladimir Kotlyar, Keshav Pingali, and Pau
BKK'94] David B Ind Kodukula, Vladimir Kotl Keshav Pingali d Paul
Stodghill. Solving alignment using elementary linear algebra. In Seventh Annual
Workshop on Languages and Compilers for Parallel Computing, pages 46-60.

Springer-Verlag, LNCS 892, August 1994.

[Bou93]  Luc Bougé. Le modele de programmation & parallélisme de donnés :
spective sémantique. T.5.1., 12(5):541-562, 1993.

[CBF95] Jean-Frangois Collard, Denis Barthou, and Paul Feautrier. Fuzzy array dataflow
analysis. In ACM SIGPLAN Symp. on Principles and Practice of Parallel Pro-

gramming. ACM, July 1995.

[CFT8] Lucien M. Censier and Paul A. Feautrier. A new solution to coherence problems
in multicache systems. IEEFF Trans. on Computers, C-27:1112-1118, December

1978.

[CFR94] Jean-Francois Collard, Paul Feautrier, and Tanguy Risset. Construction of do
loops from systems of affine constraints. Parallel Processing Letters, to appear,

1994.

[CGRI] Nicholas Carriero and David Gelernter. How to write parallel programs: a guide

to the perplexed. ACM Computing Surveys, 21(3), September 1989.

Cha93 Zbigniew Chamski. Environnement logiciel de programmation d’un accélérateur
[ g g prog

de calcul paralléle. PhD thesis, [FSIC, Rennes I, February 1993.

18



[Col94]

[Dar93]

[DR94]

[DR95]

[DV94]

[Fea88a)]

[Fea88b]

[Feadl]

[Fea92a)

[Fea92b]

[Fea94]

[HT94]

[1ri87]

[IT8S8]

[KP92]

Jean-Francois Collard. Code generation in automatic parallelizers. In Claude
Girault, editor, Proc. Int. Conf. on Application in Parallel and Distributed Com-
puting, IFIP WG 10.3, pages 185-194. North Holland, April 1994.

A. Darte. Techniques de parallélisation automatique de nids de boucles. PhD
thesis, ENS Lyon, April 1993.

Alain Darte and Yves Robert. Mapping uniform loop nests onto distributed
memory architectures. Parallel Computing, 20:679-710, 1994.

Alain Darte and Yves Robert. Affine-by-statement scheduling of uniform and
affine loop nests over parametric domains. J. Parallel and Distributed Comput-
ing, 1995. to appear.

Alain Darte and Frédéric Vivien. Automatic parallelization based on multidi-
mensional scheduling. Technical Report RR 94-24, LIP, 1994.

Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing, pages
429-441, 1988.

Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243-268, September 1988.

Paul Feautrier. Dataflow analysis of scalar and array references. Int. J. of
Parallel Programming, 20(1):23-53, February 1991.

Paul Feautrier. Some efficient solutions to the affine scheduling problem, I,
one dimensional time. Int. J. of Parallel Programming, 21(5):313-348, October
1992.

Paul Feautrier. Some efficient solutions to the affine scheduling problem, II, mul-
tidimensional time. Int. J. of Parallel Programming, 21(6):389-420, December
1992.

Paul Feautrier. Toward automatic distribution. Parallel Processing Letters,
4(3):233-244, 1994.

C. Heckler and L. Thiele. Computing linear data dependencies in nested loop
programs. Parallel Processing Letters, 4(3):193-204, 1994.

Francois Irigoin.  Partitionnement de boucles imbriquées, une technique
d’optimisation pour les programmes scientifiques. PhD thesis, Université P.
et M. Curie, Paris, June 1987.

Francois Irigoin and Rémi Triolet. Supernode partitioning. In Proc. 15th POPL,
pages 319-328, San Diego, Cal., January 1988.

Wayne Kelly and William Pugh. Generating schedules and code within a unified
reordering transformation framework. Technical Report TR-92-126, Univ. of
Maryland, November 1992.

19



[KP94]

[LCY1]

[MAL93]

[Min83]

[PW93]

[QDRI]

[Quis7]

[Ris94]

[RWF91]

[RWF95]

[VWDO4]

[WLO1]

[Xue94]

[ZBGSS]

Wayne Kelly and William Pugh. Selecting affine mappings based on performance
estimations. Parallel Processing Letters, 4(3):205-220, September 1994.

Jingke i and Marina Chen. The data alignment phase in compiling programs for
distributed memory machines. Journal of Parallel and Distributed Computing,
13:213-221, 1991.

Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array dataflow
analysis and its use in array privatization. In Proc. of ACM Conf. on Principles
of Programming Languages, pages 2—15, January 1993.

Michel Minoux. Programmation Mathématique, théorie et algorithmes. Dunod,
Paris, 1983.

William Pugh and David Wonnacott. An evaluation of exact methods for anal-
ysis of value-based array data dependences. In Sizth Annual Workshop on Pro-
gramming Languages and Compilers for Parallel Computing, pages 546-566.
Springer-Verlag LNCS 768, August 1993.

P. Quinton and V. Van Dongen. The mapping of linear recurrence equations on
regular arrays. The Journal of VLSI Signal Processing, 1:95-113, 1989.

Patrice Quinton. The systematic design of systolic arrays. In F. Fogelman,
Y. Robert, and M. Tschuente, editors, Automata networks in Computer Science,
pages 229-260. Manchester University Press, December 1987.

Tanguy Risset. Parallélisation Automatique: du modéle systolique au a la com-
pilation des nids de boucles. PhD thesis, ENS Lyon, February 1994.

Mourad Raji-Werth and P. Feautrier. On parallel program generation for mas-
sively parallel architectures. In M. Durand and F. El Dabaghi, editors, High
Performance Computing II. North-Holland, October 1991.

Mourad Raji-Werth and Paul Feautrier. On factors limiting the generation of ef-
ficient compiler-parallelized programs. In Marc Moonen and Francky Catthoor,
editors, Algorithms and Parallel VLST Architectures, I, pages 331-340, Ams-
terdam, 1995. Elsevier.

Hervé Le Verge, Doran K. Wilde, and Vincent Van Dongen. La synthese de nids
de boucles avec la bibliotheque polyédrique. In Luc Bougé, editor, RenPar’6.
ENS Lyon, June 1994.

M. Wolf and Monica S. Lam. A loop transformation theory and an algorithm
to maximize parallelism. IEFFE Trans. on Parallel and Distributed Systems,
2(4):452-471, October 1991.

J. Xue. Automatic non-unimodular transformations of loop nests. Parallel
Computing, 20(5):711-728, May 1994.

H. P. Zima, H. J. Bast, and M. Gerndt. SUPERB : A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.

20



