Automatic Distribution of Data and
Computations

Paul Feautrier *

March 27, 2000

I said it in Hebrew — I said it in Dutch —

I said it in German and Greek,

But I wholly forgot (and it vexes me much)
That English is what you speak.

Lewis Carrol.

Abstract

The most critical factor in the performance of a distributed mem-
ory computer is the access frequency to remote data. This frequency
may be reduced by a clever distribution of data and computations
among processors and their memories. In the context of data parallel
languages — as for instance, HPF — finding the proper distribution is
the responsibility of the programmer. This paper explores another
possibility, namely having the compiler determine the distribution us-
ing only information available in the source program. The paper shows
that, with the help of elementary linear algebra techniques, one may
find satisfactory placements provided the source program is limited to
DO loops and arrays with affine subscripts.

*This report is a litteral translation by the author of “Distribution Automatique des
Donnés et des Calculs”, TSI vol. 15, pages 529-557, 1996.

Résumé

Pour un multiprocesseur 4 mémoire distribuée, le facteur de per-
formance le plus critique est le taux d’acces a des informations
éloignées. Ce taux d’acces peut étre considérablement réduit si 'on
distribue habilement les données et les calculs parmi les processeurs
et leurs mémoires. Sil'on utilise un langage de programmation & par-
allélisme de données comme HPF, ce travail est de la responsabilité
de l'utilisateur. On explore ici une autre possibilité, celle d’une distri-
bution automatique a la compilation a partir des seules informations
disponibles dans le texte source. On montre qu’il est possible, en util-
isant des techniques peu complexes d’algebre linéaire, de trouver des
placements satisfaisants & condition que le programme source se lim-
ite & des boucles DO et a des tableaux indexés au moyen de fonctions
affines.

1 Introduction

Modern computer applications need processing power far beyond what can be
obtained from a commodity microprocessor. This is true in the field of High
Performance Computation but also for Data Base Management and Discrete
Event Simulation. One may try to implement High Performance Monopro-
cessors, but one is quickly limited by the performances of the then current
technology. Moore law says that microprocessor performance increases by a
factor of two each year and a half. There is no equivalent for mainframes
and supercomputers, whose design cycle is much longer.

The obvious solution is the construction of supercomputers from standard
parts. But this is by no means a simple task. Suppose that one needs, at
a given time, twice the power of the most powerful current multiprocessor.
One is tempted to build a biprocessor, but if this task takes more than 18
months, a better solution is to do nothing and wait for the next generation.
A multiprocessor is interesting only if its degree of parallelism is high and if
it can be implemented in a short time.

From that point of view, distributed memory computers have the advan-
tage. They can be easily constructed by interconnecting commodity elements
— for instance, ordinary workstations — using a communication network which
can also be off the shelf, for instance an Ethernet or an ATM based switch.

The operating system can also be a standard Unix, although special libraries
like PVM [BDG'91] have been specially designed for HPC applications. The
programming model for such computers is message passing. Message passing
occurs whenever a processor needs data which is located in the memory of
another processor. Such a communication always has a high cost — most
often, the equivalent of the execution time of several thousands of processor
instructions. Hence, to obtain reasonable performances, the program must
be designed in such a way that communications occurs very seldom.

Usually, parallel programs are classified according to their grain. Our
contention is that there are several types of grains, and that comparing them
allows a very crude evaluation of a parallel program performance.

The architecture grain, noted G in the following, is defined as the number
of instructions which could have been executed in the time taken by a typical
interaction between processors. To get a feeling for the importance of this
parameter, consider a program which runs parallel phases on each processor,
followed by a set of communication between all processors. Let N be the
total number of instructions which are executed by the parallel phases. If we
suppose that phases are perfectly balanced, the efficiency is easily seen to be:

1
‘T 1+ PG/N

This clearly shows that the efficiency of the program decreases with the num-
ber of processors, which must be small with respect to N/G. The quantity
N is is the grain of the parallel program. One can summarize these observa-
tions by saying that a good parallel program must have a grain which is much
larger thant the grain of the architecture. Reducing the hardware grain is
the task of the architect, while increasing the program grain is the problem
of the programmer or of the compiler.

On the hardware side, high performance networks have been designed
with a view of increasing throughput, and of reducing latency, and these
efforts have had spectacular results. However, since at the same time the
performance of processors has steadily increased, the hardware grain has
stayed almost constant. The overal architecture of such supercomputers has
not varied since the first Intel designs: the building block is an ordinary
processor and its memory. Processors are connected through a network whose
topology is chosen among a few basic possibilities: grids with dimension
1 to 3, hypercubes, multistage networks. The important point is that a

local memory access is faster by several order of magnitude than a message
exchange. The actual performance of a program is governed by the frequency
of inter-processors exchanges. Diminishing this frequency can be obtained
by two methods:

e One starts from an arbitrary distribuation, and tries to improve it as
the program is being executed, by migrating either programs or data.
Some distributed operating systems provide tools for program migra-
tion. Shared virtual memory systemes move data as near as possible
to the tasks which are using them.

e The other possibility is to build the program according to an optimal
data distribution. This can be the responsibility of the programmer or
of the compiler.

The first method has the advantage of simplicity: no preliminary analysis is
needed. Besides, it is a dynamic solution, and there is no reason to believe
that a unique solution can be optimal for the whole of a large program. The
second method must be applied to reasonably sized kernels, with redistri-
bution phases in between. This has the potential of giving better results,
because the programmer or the compiler has, at least in theory, a complete
view of the behaviour of the program, while the hardware or the operating
system knows only its past. Even with complete information, finding a good
distribution is a difficult optimization problem. The main goal of this paper
is to explore ways and means of having the compiler choose an optimal (or
nearly optimal) distribution.

1.1 An Elementary Example
Let us consider the following very simple example:

program A
X =y +z

To “distribute” this statement, we have to specify which processors hold x, y
and z, and which processor execute the addition. We can for instance affect
each variable to a different processor, and use a fourth processor for the
computation. This distribution obviously entails three message exchanges.
At the opposite, we can select a processor to hold all three variables and do

4

the calculation. In this case, no message passing is necessary. The second
solution probably is the most efficient. It has no parallelism, but, after all,
neither had the original program.

Consider now a similar example:

program B
doi=1,n

x(i) =
end do

y(i) + z(@{) {s?}

As a first try, one may consider that arrays x, y and z, and all iterations of
statement S are to be distributed as a whole. One obtain results similar to
those for program A, with either too many communications or not enough
parallelism. Another choice is to handle the arrays on a word per word basis,
and to consider each iteration of S independently. It is easy to see that if
x(1), y(i), z(1) and iteration i of S are assigned to the same processor, no
communication will be necessary. On the other hand, there is no constraint
on the placement of words or iterations associated to distinct values of 7.
Let P be the number of available processors. One may for instance divide
the interval [1,n] into P (almost) equal segments, the corresponding strip of
arrays x, y and z, and the corresponding iterations of S being attributed to
the same processor.

This example shows the importance of another grain, the analysis grain,
which characterize the smallest analyzable part of the source program as
seen by the compiler. In this case, we have compared the results of a coarse
grain and of a fine grain analysis, with an obvious advantage for the second
solution. It is important to note that the parallel program grain is much
larger (by a factor of n/P) than the grain of the analysis. There is a natural
tendency to match the grain of analysis to the grain of the target architecture.
Perhaps paradoxically, our example shows that it is better to run the analysis
at the smallest possible grain and to leave it to the compiler to construct
bigger chunks of operations by a process of aggregation. However, there is
a level at which one gains nothing by further dissection of the operations.
Experience shows that one execution of one high-level language statement
(e.g. an assignment in Fortran or Pascal or C) is precise enough for automatic
parallelisation. A finer grain might be needed for other optimizations, like
ILP or register assignment or locality enhancement.

1.2 Related Work

Data distribution is the core problem in data-parallel programming languages
[Bou93], and these languages have been recognized as the preferred method
for programming distributed memory architectures. In the best known data-
parallel language, [For94|, the user has the responsibility of specifying the
data distribution, and the compiler applies the “owner computes rule” to
distribute the computations. The underlying hypothesis is that the user
knows the data flow in his program, since this is to be an analogue of actual
flows in the modeled system. The awkward consequence is that the compiler
has to be able to translate any specification, whatever its efficiency or lack
thereof. The reason is that the compiler has no control on the decisions of
the programmer, and that human beings, while very good at finding effi-
cient distributions when they exist, perform poorly when the problem is to
find a compromise between necessary evils. This has lead to the search for
automatic distribution algorithms.

Early work (see [JC90] for a typical example) used the constraint satis-
faction paradigm. An analysis of the source program allows one to detect
relations between array placement for an efficient execution. The result is
the affinity graph, which is usually inconsistent. Various heuristics are used
to satisfy as much constraints as possible. The placements which are found
in this way are usually more limited than those which are dealt with in this
paper.

The affine placement paradigm, which used here, was introduced by Ra-
manujam and Sadayappan in [RS91]. These authors did not give a universal
method for solving the placement equations. In paper [Fea94], we introduced
the technique of incremental Gaussian elimination, which will be described in
Section 3.2.1. The authors of [BKK"94] linked the solution of the placement
problem to the dimension of the kernel of a matrix known as the communica-
tion matrix of the program. However, their criterion is valid in the case of a
perfectly nested loop only; more complicated tests are needed in the general
case.

In a sequence of papers ([DR94a, DR93, DR94b]) Y. Robert et. al. attack
the placement problem by techniques from linear algebra and matrix calcu-
lus. An important contribution of these papers is that several subproblems
connected to placement are proved to be NP-hard. This is the justification
for the use of heuristics in the solution. Papers [DR94a, DR93] are restricted

to the case where the subscript functions are translations in a perfect loop
nest. More recently, paper [DR94b] handles arbitrary loop nests and arbi-
trary affine subscripts. The authors build an access graph, which is similar
to the communication graph. The direction of each edge depends on whether
the associated subscript function can be inverted or not. Finding a maximum
weight branching for this graph gives the order in which placement function
are to be computed. The edges which do not belong to the selected branching
correspond to residual communications.

2 Formal Solution

Our objective is now to construct an efficient placement of data and compu-
tation at compile time. In this work, we will limit ourselves to the analysis
of one procedure only. Finding a placement for several procedures is a very
difficult problem, whether the placement is found automatically or “manu-
ally”. In this section we will set up the problem and analyze its properties.
The construction of a solution method is dealt with in the next section.

2.1 Notations and conventions

In the present state of the theory, there is no hope of finding a placement
for an arbitrary program. In fact, even in the simplest languages — Fortran
for instance — one can specifies dynamic access patterns, as for instance with
subscript arrays:

program C
doi=1,n

a(b(i)) = ...
end do

In this example, one cannot characterize at compile time the relation between
operations (one iteration of the loop body) and the array cells which it mod-
ifies, since one has to know the contents of array b. The only possibility is
to restrict the allowed access patterns to a few simple constructions.
Firstly, one must be able to identify and to give a name to each operation
of the program. An operation is the execution of one machine instruction
or of one statement in a high level language, depending on the granularity

7

of the analysis. In ordinary programs, statements are repeated many times;
each repetition has to be named. This is easy in the case of well structured
programs with DO loops and conditionals. In this case, a repetition of a state-
ment is named by giving the values of the surrounding loop counters. It is
convenient to write these values, from the outermost loop to the innermost
one, as a vector, the iteration vector of the statement. The name of the
operation is a couple (S, Z) where S is the name of the statement and where
Z is the iteration vector. For each statement, the dimension of the iteration
vector is fixed: it is equal to the number of surrounding loops. Each coor-
dinate of the iteration vector cannot take arbitrary values: it is constrained
by the bounds of the corresponding loop. The set of integer vector which
satisfies the loop bounds is the iteration domain of the given statement. The
iteration domain of S is Dg . D is the set of all operations of the program,
i.e. the disjoint union of all iteration domains.

If statement S is controlled by one or more tests, its iteration domain
may be a subset of the iteration domain of the surrounding loops. In this
case, a precise determination of its iteration domain may be impossible at
compile time if the tests predicates are complex or depend on the input data
of the programs. In this case, one has to resort to approximations [CBF95].
On the contrary, there is no difficulty at all if the conditional tests the sign
of an affine form in the loop counters: we will suppose this is the case in all
programs to be considered in this paper.

Consider:
program D
doi=1,n
do j =1,i-1
a(j,i) = a(i,j) {s}
end do
end do

The iteration domain of S is the set of integer points belonging to the
triangle:
1<i<n, 1<j<i—1.

The objective of the compiler is, roughly, to distribute each operation to
the processor which holds the maximum number of its operands. It thus has

to deduce from the program text the set of memory cells which are accessed
by each operation. This is very complicated in general. The only simple case
is that in which data structures are arrays or scalar. Furthermore, one has
to restrict subscripts to affine functions of the surrounding loop counters. To
simplify notations, the subscripts of an array are gathered into a subscript
vector. With this convention, for each array access, there exist an affine
transformation which associate a subscript vector to each iteration vector.
Scalars are handled as 0-subscript vectors.

Consider again example D. The transformation associated to the ref-
erence to a in the right hand side of S is:

. T 0 1 .
f(x)=(xj>=(10>x,

where 7 is the iteration vector. In its last version, this formula shows

that f is associated to the matrix: ((1) (1))

The placement problem for data and computations can now be formalized
in the following way. The computation placement function II associates to
each operation (S, Z) a processor number I1(S, Z). Without loss of generality,
one may suppose that processors are numbered, and hence that the value of
IT is an integer (we will see later that it is sometime useful to have integer
vectors as processor numbers).

In the same way, TI(A, Z) is the number of the processor which holds the
memory cell whose subscripts are i in array A. II is the placement function
of the program.

If ¢ is some processor number, then:
Dy = {u|u € D,1(u) = q} (1)

is the set of operations which are executed by ¢q. One can define in the
same way the subarray of A which is resident in ¢ memory. Placement
functions must be such that these sets can be described in simple
terms. Besides, the sets D, must be of roughly the same size for load
balancing.

A more general formulation can be obtained if II is supposed to be a
relation rather than a function. This convention allows the represen-
tation of redundancy, both for data and computations. This aspect of
the placement problem is not well understood at present, and will be
the subject of future research. A special case of the problem is solved
in [BKK"94]: the duplication of read-only data.

2.2 Cutting Conditions

In this framework, it is easy to write the conditions that are to be satisfied
by IT if one wants to remove all communications. Let S be a statement, 7 its
iteration vector, A[f(Z)] a reference to A in S. Operation (S,) is executed
by processor TI(S,Z). Memory cell A[f(Z)] is in the memory of processor
II(A, f(¥)). No communication is necessary if these two processors are the
same:

I1(S, &) = T1(A, f (7). (2)

These equations are called cutting conditions, since they have to be satisfied
for communications between cell A[f(Z)] and operation (S, Z) to be “cut”.
The placement problem is thus seen to be equivalent to finding a function
IT which satisfies all of the cutting conditions, for all statements in the pro-
gram and all references therein. If such a solution does not exists, the set of
residual communications due to reference A[f(Z)] in statement S as the set:

Rsa = {7 |7 € Dg, 11(S,7) # 11(A, f (7))} (3)

and the problem is to minimize the sum of the sizes of all these sets'

An important point is that if we do not add constraints, the problem
has a trivial solution, in which all data and all computations are assigned
to one and only one processor. When constructing a distributed program,
this collapse must be avoided at all costs. We have already encountered
the necessary constraint: it is in fact the load balancing constraint, i.e. the
stipulation that all sets D, (see Equ. 1) have the same size.

Tt is clear that our formalization is approximative. We are ignoring phenomena such
as the reuse of the same value by several operations, or the possibility of moving a value
from processor to processor as the computation proceeds.

10

2.3 Formal solution

In the above form, the problem has a simple solution. Let us consider the
following bipartite graph. The vertices are operations and array cells. There
is an edge between an operation and an array cell if the operation access the
cell, whether as a read or as a write. This un-oriented graph is the communi-
cation graph of the program. Finding a placement is equivalent to associating
a processor number to each vertex, and the cutting conditions express the
fact that neighbours must reside on the same processor . By transitivity, this
implies that all vertices on a path are on the same processor, and finally that
all vertices in one connected component are the same processor.

One may thus find the principal solution of the placement problem by
computing the connected components of the communication graph and as-
signing one processor to each component. If w is the principal solution, all
other solutions are found by composition of an arbitrary function:

[I=¢(ow. (4)

When a placement is given, as above, by the composition of two func-
tions, it is usual to say that function w gives a virtual processor num-
ber, and that £ specifies the distribution of virtual processors on real
ones. This convention has been introduced by the designers of the
Connexion Machine and is found, with a slightly different terminol-
ogy in the HPF language.

A consequence of these observations is that the maximum degree of
communication-free parallelism is an intrinsic characteristics of a program.
In fact, the use of a folding function & is a way of reducing this degree (by
assigning several connected components to the same processor) but it cannot
be used to increase it. In fact most programs have a connected communi-
cation graph, hence no communication-free parallelism. Our aim is now to
understand why, and to find ways of improving the situation.

11

2.4 Some elementary examples

Let us consider first the following transposition code:

program E
doi=1,n
do j =1,i-1
r =t(i,j) {s1}
t(i,5) = t(j,1) {s2}
t(j,i) =r {33}
end do
end do

The connected component of r obviously includes all operations from S; and
all operations from S3. It then follows from the text of S that this component
include also all t(i,j), for j < ¢, then, according to S3, all t(i,j) for j > i.
Lastly, all operations from S, are in the connected component of r. Hence,
the communication graph of this program is connected, and the only way of
obtaining a communication-free object program is to use only one processor.
One sees clearly that this situation is due to the use of a unique scalar s.
There is a well known remedy: one must expand r to, e.g., a two dimensional
array :

program EE
doi=1,n
do j =1,i-1
r(i,j) = t(i,j) {s1}
t(i,j) = t(j,1) {s2}
t(j,1) = r(i,j) {83}
end do
end do

This transformation can be done mechanically by using the results of the ar-
ray dataflow analysis of the original program [Fea88, Feadl, MAL93, PW93|.
In the communication graph of program EE, from the vertex representing cell
r(i,j) for 7 <1, one may reach cells t(i,j) et t(j,1i), and also operations
(S1,i,7),(Sa,1,7) and (S3,1, 7). On the other hand, an operation whose vec-
tor is (i, j) accesses only array cells whose subscript are (i, j) or (j,4). There

12

can be a communication between iterations (i, j) and (i’, j') only in the case
i = j', 5 =" which is excluded by the loop bounds?.
All in all, the principal solution for program EE can be written:

W(Slaiaj) - W(Sg,i,j) :w(siiaiaj) = W(t,i,j) = w(r,i,j) -

= ifizjthen<;.>else(g>

One may observe that in this case, connected components have vector names.
The corresponding program is communication-free and can be executed in
constant time on O(n?) processors. This number can be reduced throught
the use of a well choosen folding function.

Let us now consider a single assignment version of the matrix product
code:

program F
doi=1,n
do j =1,n
c(i,j,0) =0 {S1}
do k = 1,n
c(i,j,k) = c(i,j,k-1) + a(i,k)*b(k,j) {S2}
end do
end do
end do

The cutting conditions are:

H(Slaiaj) - HC,i,j,O)

ot

((5)

[1(S5,1,7,k) = 1(c, 4,5, k) (6)
= T(c,i,j,k—1) (7)

= I(ai,k) 8)

= (b, £, j) 9)

2Remark that this reasoning depends on the hypothesis that two accesses to the same
array with differing subscripts are accesses to differing memory cells, or, equivalently,
that subscripts are always within the array dimensions. Almost all research in automatic
parallelization implicitly accepts this hypothesis, which belongs to the garbage in, garbage
out category.

13

One easily sees that (8) et (9), entails that I1(Ss, 4, j, k) does not depend on
either ¢ or j by using the rule: “if ¢(z) = ¢ (y) where z et y are distinct
independent variables then ¢ and v are constant functions”. For the same
reason, (6) et (7) entails that II(c, 1,7, k) does not depend on k. All in all,
these result imply that all IT functions are constant, that the communication
graph is connected, and consequently that there is no communication-free
parallel version of program F. Furthermore, since the object program was in
single assignment form, the situation cannot be improved by expansion. It is
clear, however, that many communications are linked to the use of read only
variables, namely a and b. If one ignore the cutting conditions (8) and (9),
one finds the principal solution :

(S0, §) = @ (Ss, i, j, k) = (;) ,

This solution can only be used if all or parts of a et b are replicated before-
hand. This coupling by constant sharing occurs quite frequently and can be
solved by data replication.

As a last example, consider the following Gaussian elimination code:

program G
do i=1,n
do j = i+l,n
do k = i+1,n
a(j,k) = a(j,k) - a(j,i)*a(i,k)/a(i,i) {S}
end do
end do
end do

The cutting conditions are:
I1(S,i, 7, k) = (a, j, k) = (a, j,i) = l(a, i, k) =T(a,i,1), (10)

and this also implies that II is a constant: G has a connected communica-
tion graph. Here, it is neither a problem of scalar expansion nor of constant
sharing, but an intrinsic property of the Gaussian algorithm. Finding a non
trivial placement for G — and for a lot of similar programs - entails ignoring
some of the cutting conditions, and this will generates residual communica-
tions. In the next section, I will present and discuss an algorithm for the

14

selection of residual communications and for the calculation of associated
placement functions.

3 Solving the placement problem

In the simple examples above, the cutting conditions could be solved without
recourse to any hypothesis on the shape of the placement functions. In the
general case, the cutting conditions are very complex. Beside, the objective
of this work is to find a placement algorithm; a collection of special techniques
is not an adequate solution. There is small hope of reaching this goal unless
we restrict the input programs, especially in the matter of the subscript
functions. We will suppose here that all subscript functions are affine.

f(#) = Fi+h. (11)

If |S| is the number of loops surrounding statement S, and if |A| is the rank
of array A, then in the above formula F is a matrix of dimension |A| x |S|
and h is a vector of dimension |A|.

This hypothesis is frequently made by automatic parallelizers. Programs with
only DO loops and affine subscripts were named static control programs in [Fea88].
There are reasons to believe, firstly that this is the only class of programs which
have a well defined compilation algorithm toward parallel computers. Less con-
strained programs can be handled either by approximate methods [CBF95], or by
run-time parallelization methods.

Secondly, the authors of [SLY89] have shown that a large proportion of nu-
merical programs — about 80% — belongs to the static control class. An important
research domain deals with methods for converting some subclasses of non static
control programs to static control. Relevant methods include elimination of GOTO
[Amm92], identification of inductive variables [ASU86], identification of DO loops
and others.

But this hypothesis is not enough for solving the placement problem. One
must also suppose that the unknown functions II also are affine:

I(S,Z) = Psi+{qs, (12)
II(A, %) = PpZ+qp. (13)

Within this framework, the unknown are now the matrices Ps, Pj and the vectors
¢s and ¢j.

15

It is clear that this hypothesis is rather ad hoc. One may observe that a
placement is uninteresting if it cannot be used as the blueprint for a parallel
program. The present state of the art applies only to affine (or piecewise affine)
placements [AI91, CFR95, Xue94, KP94].

It is clear nevertheless that one may build very simple examples with very
complicated placements:

program H
doi=1,n

a(i) = a(2*i)
end do

The cutting condition for this program is:
II(a,i) = I(a, 2i).

All iterations whose counter is of the form (2p + 1).2¥ clearly are in the same
connected component. The principal solution of the placement problem is thus
the function which associates to ¢ its largest odd factor. This function is neither
affine nor piecewise affine.

In formula (12), the dimensions of matrix Pg are g x |S|. g is the dimension of
the placement. The choice of the value of ¢ depends both on the structure of the
interconnection network and on the degree of parallelism of the program.

Most interconnection networks have a regular structure, since this allows the
use of identical processors everywhere. Among the most frequently used regular
networks are the grids: the processors have coordinates in IN?, and each processor
is connected to its 2d nearest neighbors. d is the dimension of the grid. Usual
values are 1 (linear arrays), 2 and 3. On a d dimensional grid, the natural choice
for processor names are d dimensional vectors, and the natural choice for g is d.
One looks for a placement with the same dimension as the processor grid.

However, there is another point to consider. The interconnection network
may not be a grid, or be a grid with adjustable dimension, as is the case for the
hypercube. Let us suppose that in the source program, a loop generates about n
iterations. An affine form on the loop counters will also have about n different
values, whatever the number of independent variables. If one uses a ¢ dimensional
placement, the number of virtual processors will be of the order of n9. This value
must be compared on one side to the number of physical processors on the target
architecture, and on the other side to the maximum degree of parallelism of the
source code.

16

Let us consider the case of the inversion of a matrix of dimension
n = 1000 on a distributed memory machine with about 100 processors.
A one dimensional placement generates 1000 virtual processors, or a
vp-ratio of 10.

Suppose now that the computer is somewhat like a CM-1, with 64k
small processors. One has to switch to a two dimensional placement
if the vp-ratio is to stay large enough. Lastly, if the dimension of
the matrix is only 100, it is useless to generate a three dimensional
placement, since the mean degree of parallelism of matrix inversion is
only n2.

Our conclusion is thus that the choice of the placement dimension is a complex
problem, in which one has to take into account both the source program and the
target computer. We feel that in most case, experimental evidence is the only way
of selecting the best dimension. All we can do here is accept the value of g as a
parameter of the placement problem; our algorithm has to be general enough not
to depend on its precise value.

3.1 The Communication Matrix: the Unidimensional
Case

In order to simplify the notations, we will first present the case of a one dimensional
placement (¢ = 1). Such a placement is adapted to a linear or ring network.
Matrices Ps and P of (12,13) becomes vectors ps ans py. Similarly, vectors ¢s
and g becomes scalars. The cutting condition (2) becomes:

Ps-@ +qs = pa.(FZ +h) + qp.

This equation summarizes as many constraints as there are points in the iteration
domain of S. In fact, most of these constraints are redundant. It is easy to see
that it is enough to have them satisfied at d 4+ 1 points Ty, ...,Z4 to have them
satisfied at all points of the affine subspace generated by these points. Most of
the time, there are enough points in the iteration domain of S to generate the |S]|
dimensional space itself. Among others, this space has for elements the origin and
the vectors of a canonical basis. If we write the cutting condition at those points,
we obtain:

Ps = PaF, (14)
as = Pp-h+ay (15)

17

It may happen that the iteration domain of some statement is not of
full dimension. An example is:

doi=1,n

do j=1,n
if(i.eq.j) then
a(i,j) = 1. {s}
else
a(i,j) = 0.
end if
end do
end do

It is always possible to handle this problem by constructing the sup-
porting subspace of the iteration domain, then rewriting the loop in
this subspace by a simple change of basis.

One builds the set of conditions for a communication-free placement by collecting
all equations (14,15) for all references in the program. In the resulting system,
the unknowns are the (components of) the vectors ps, pj and the scalars gg et
gp- The other terms, the F' matrices and the h vectors, can be extracted from the
program text, by syntactic analysis in simple cases, or by a more complex analysis,
inductive variable detection for instance. The important point is that from the
present point of view, each reference generates a linear homogeneous system of
equations.
The two equations (14,15) are in fact quite different. The quantity:

d(S,A, %) =T1(S, %) — II(4, f (X))

is the “distance” from the processor executing iteration (S,Z) to the processor
holding A[f(Z)]. This distance may have a physical interpretation — in the case of
a grid — or not. However, it always gives a indication on the transmission delay.
In the case of an affine placement, we get:

d(S,A, %) = (s — PoF).Z + qs — Pa.h — qp.

This formula shows that if (14) is satisfied, the communication distance does not
depend on #. On most interconnection networks, this kind of constant distance
communication or shift is much faster than an arbitrary point to point communi-
cation. The ratio has been measured to be more than 30 on the CM-5 [Pla95]. If
the equations (14) are satisfied, then one may try to satisfy (15). If this is possible,

18

all communications are eliminated. Nevertheless, this is not our primary objective:
one may still have some constant distance communications without doing much
harm to the program performance. Furthermore, the problems of satisfying (14)
and (15) are separated here only for expository purposes; in our implementation,
their handling is similar.

One can get a clearer appreciation of the problem to be solved by collecting
all unknowns in a unique vector in which all ps and p) are concatenated. The
placement vector obtained in this way is of dimension:

N =315+ IA
S A

The order in which statements and arrays are enumerated is arbitrary. We will
write, for instance: S < T to indicate that statement or array S comes before
statement or array T in this enumeration.

With these definitions, equation (14) becomes:

ﬁCSA = 07
where Cg) is the following bloc matrix:

Z
I
Csp=| 22
-F
Z3

I is the unit matrix of dimension |S|x |S| and F is the subscript matrix of (11). The
Z; are null matrices with appropriate dimensions. For instance, Z; is of dimension

Ni x |S|, where:
Ny = > |R|
R<S

Matrix Cgp is the elementary communication matrix for the reference to A in
statement S. One then collect all such equations in the form:

5C = 0. (16)

Matrix C' is obtained by concatenating matrices Cqp? and is the communication
matrix of the whole program. When formulated in this way, the solution is obvious.

30ur formulation is predicated on the hypothesis that each statement has at most one
reference per array. The general case just requires more complicated notations.

19

The placement vector p can be chosen arbitrarily in the kernel of C. An eventual
collapse on one processor occurs when C' is of full row rank, and its kernel is the
trivial subspace {0}, which corresponds to a one processor placement.

There is no collapse for example D above. The problem is to place
statement S and array a, whose domains are two-dimensional. Hence,
p has dimension 4. There are two subscript matrices:

0 1 1 0
Fl_(l 0>’F2_<0 1)'

Substituting these matrices into (14) and concatenating, one obtains
the following communication matrix:

1 0 1 0
0 1 0 1
0 -1 -1 0
-1 0 0 -1

C =

The reader will readily find that the kernel of C' is generated by the
vector (1,1,1,1).

3.2 A Greedy Algorithm

When the communication matrix has a null kernel, we cannot find communica-
tion free-parallelism. Either the program stays sequential, or we have to accept
residual communications, which is equivalent to ignoring some of the elementary
communication matrices. One obtain in this way a partial communication matrix
(', and it seems plausible that if one ignore enough references, C’ will have a non
trivial kernel. As an extreme solution, if all references are ignored, C’ becomes
empty, its kernel is the whole space, and the placement can be chosen arbitrarily.
It might seem that the correct approach would be to compute the communi-
cation volume according to (3) and to find its minimum. But this is a useless
refinement. In fact, the set of all iterations giving rise to a communication is:

RSA =Dg — {f | Ze Ds,d(S,A,f) = 0}

If the communication distance is null, then Rgp is empty. Otherwise, let n be
the order of magnitude of the size of loops. The size of Dg is O(nl%)). On the
other hand, since the equation d = 0 define an hyperplane, the size of the second
term is O(n/°I='), which is negligible when n is large. The outcome of these

20

estimates is that our reasoning can be “all or nothing” : either the elementary
communication matrix Cgy is part of C’, and the corresponding communications
are eliminated? or Cgp is not taken into account, and this generates a volume of
communication which has to be estimated, but which is nearly independent of the
chosen placement. A technique for estimating this volume is given in section 3.2.2.

Let us summarize our findings. Our problem is to select which elementary
communication matrices are going to be part of C’, the constraint being that C’
kernel is non trivial and the objective being that the volume of residual communi-
cations is minimal. This suggests the use of a greedy algorithm, which is described
below. In the body of the algorithm, we suppose that all references in the program
have been numbered from 1 to L, that the elementary communication matrix cor-
responding to reference number k is Cy, and that reference are listed by order of
decreasing communication volume.

Algorithm E
1. Initially, C' is the empty matrix.
2. Fork=1,L:

(a) Construct C" = (C' Cy)
(b) If ker(C") # {0}, then C" = C".
3. Any vector in ker(C’) can be used as a placement vector.

The test in step 2b, which decide whether ker(C’) has a non zero
vector, will be called the triviality test in the following.

As for any greedy algorithm, there is no guarantee that the solution will be an
optimum. Algorithm E can readily be transformed into a branch and bound one
in the following way. We suppose that to each reference is associated a weight wy,
which is a measure (in some sense) of the volume of communication generated by
the corresponding reference. The algorithm build a solution tree in which decision
are taken sequentially. To each node of the problem tree are associated the sets
A (of accepted references) and D (of discarded references). References are here
identified to their communication matrices. In a node of depth k, all references
from 1 to k£ have been classified:

AUD =[1,k], AnD =.

4or, in the worst case, transformed into shifts.

21

The value of the node is), p w;, i.e. the volume of the residual communications.
In the course of the algorithm, one computes the best current solution, of value
Ww.

Algorithm B

1. If the communiction matrix of the current node has a trivial kernel, this
node is a failure.

2. If the current node has height L, this node is a success. Adjust the best
value W accordingly.

3. If the value of the current node is larger than W, it is a failure.

4. Otherwise, let £ be the height of the current node. One constructs its left
son by adding Cy,1 to A, and its right son by adding it to D.

Limited experience with this algorithm has shown that results are not signif-
icantly better than those of the greedy algorithm. The greedy algorithm itself is
just the first part of algorithm B (the search for the first feasible solution, provided
one explore the solution tree depth first, the left son being developed first).

These algorithms are just skeletons. To flesh them up, one has to explain how
to efficiently construct the kernel of C, how to order the references by decreasing
communication volume, and, lastly, how to select the offset constants when the
placement vector is known.

3.2.1 Computing Kernels

From the point of view of efficiency, the important point in the computation of
kernels is to make use of the fact that communication matrices are constructed
incrementally. The best solution is to reformulate the problem as the solution of
a system of linear and homogeneous equations [Fea94]. One introduces variable
names to represent the components of p, let us say p1, ..., py. The current solution
can be represented as a substitution o which replaces some of the p; by linear
forms in the other unknowns. In what follows, symbol C represents the system of
equations:

(p1,-..,pN)C =0

associated to the matrix C'. At any given step of the algorithm, let ¢ be the
solution associated to the current communication matrix. A base for its kernel
is obtained simply by applying o to the vector (p1,...,pn) and separating the

22

coefficients of the remaining unknowns. Hence, the dimension of the kernel is the
number of independent unknowns in o.

Let Ci be the system associated to elementary communication matrix Cj, and
let C be the current communication matrix with solution o. The first step is to
apply o to C; and to eliminate trivial rows (0 = 0) and redundant rows. The
remaining rows are a system of linear homogeneous equations in the remaining
unknowns, which is solved by Gaussian elimination. One obtain a new substitution,
7, and one build ¢/ = oo7. The kernel of the new communication matrix is trivial
if and only if ¢’ assign the value 0 to all variables.

Let us return to program D. Here the two references have the same
communication volume and can be solved in any order. The system
which is associated to reference 1 is:

P1— D4 0
p2—p3 = 0
and its solution is o1 = [p1 < p4,p2 < p3]. Since there are two

residual unknowns, the corresponding kernel is of dimension 2.

The next system is:

pP1 — D3
p2—ps = 0

If one applies o1 to it, one obtain the equation py — p3 = 0 repeated
twice. to which corresponds 7 = [p3 < p4], then o9 = [p1 p4,p2
Pa,p3 < pa]. This gives the following placement vector: p4(1,1,1,1),
which is equivalent to the kernel we found earlier.

3.2.2 Ordering References

To apply algorithm E, the references in the program have to be ordered by de-
creasing communication volume. Here, we need some information on the target
architecture. The simplest case is that of a NUMA machine (Non Uniform Memory
Access): each processor can read and write in the memory of of other processors,
but a remote memory access takes much longer than a local memory access. In
the object code, there is no difference between between local and remote accesses.
The communication volume of a reference is thus equal to the number of iterations
of this reference, i.e. to the volume of® Dg.

5Here, the volume of a subset of IN? is taken to be the number of points with integer
coordinates which belong to this subset.

23

In fact, most NUMA machines have coherent caches. When a memory cell is
accessed, a copy is stored in the cache, and successive accesses are local. If another
processor modify the distinguished memory cell, the coherence mechanism insure
that the local copy is invalidated, which implies that the next access will be distant.
The behavior of a message passing architecture is similar. When a memory cell
has been accessed by a processor, it can be kept in local memory as long as it is not
modified by another processor. When this happens, a new message exchange is
necessary. One may summarize this analysis by saying that what must be counted
is not the number of memory cells but the number of values.

Let us evaluate the communications volumes associated to the ref-
erences in program G. A detailed study of the program shows, for
instance, that the value in a(i,i) does not change while the loops
on j and k are executed. This is a consequence of the values of the
lower bounds of these loops. On the other hand, the value of a(i,1i)
changes at each iteration of the i loop; the corresponding communi-
cation volume is thus n.

On the contrary, it is easy to see that each read access to a(j,k)
returns a new value, hence the traffic is O(n3). One may also observe
that, since we cannot have any information on the coefficients of the
matrix, one has to suppose that the values written into a are distinct.
Hence, the communication volume of the left hand side reference in any
statement is always taken to be equal to the volume of Dg. We leave
it to the reader to deduce that the communication volume associated
to the two remaining references is O(n?).

The important point is that this analysis is not a direct syntactic outcome of
the source program. It would be a gross error to say that since reference a(j,k)
depends on two subscripts whose range is [1,n], the generated traffic is O(n?).
What is needed here is a dataflow analysis in the spirit of [Fea91], in which the
interested reader will find a complete study of program G. This analysis gives,
for each read, the name of the operation which produced the corresponding value,
as a function of the name of the read operation. In the present framework, this
function is affine or piecewise affine.

In all cases, one is left with the problem of counting the points in a subset of
IN?. This is feasible since the loop bounds are affine, and hence since the relevant
subsets are included in polyhedra [Taw91]. However, the counting algorithm is
quite complex, the result is a polynomial on the loop bounds, and may be difficult
to interpret. Lastly, it is not evident that such precision is really necessary. Ex-
perience has shown that evaluating the order of magnitude of the communication

24

volume is quite sufficient. This order of magnitude is directly related to the dimen-
sion of the polyhedron which bounds the communication points. In the case where
this polyhedron is Dg, this dimension is |S| with the exception of some patholog-
ical cases. If the communication volume is bounded by a set of the form f(Dg),
where f is the source function as given by dataflow analysis, the computation of its
dimension is more complex since one has to decide whether f is one-to-one or not.
But since, by hypothesis, f is an affine function, this is another case of Gaussian
elimination. One finds that one obtains good results if, for the use of algorithm E,

one order references by decreasing dimension®..

3.2.3 Computing Shift Constants

The same reasoning as above can be applied to the resolution of [15]. This is a
non homogeneous linear system which may or may not be overdeterminate, as in
the following case:

program K
do i=2,n

a(i) = a(i-1)
end do

Here again, the method is to sort the references in order of decreasing traffic, and
then to solve this system incrementally, with backtracking when an impossibility
is found. This sub-algorithm can easily be integrated into algorithm E: one only
has to order equations in the proper way.

3.3 The “Owner Computes” Rule and the Single As-
signment Form

The “owner computes” rule edicts that a computation is always done on the pro-
cessor which holds the results. In our formalism, this rule translate to the rule that
left hand side references must always be included in the communication matrix.

We have seen earlier a justification for this rule: in all cases, the
communication volume for the left hand side reference is at least equal
to the volume of any other reference in the same statement. The other
justification is that if one complies with the “owner computes” rule,

6Note added by the translator: Nowadays, I would probably amend this discussion to
take into account the revival of Ehrhardt polynomials due to Philippe Clauss.

25

the target program is simplified since one does not have to implement
a remote write protocol.

The "owner computes” rule can always be enforced, provided there is no con-
flict with the desired placement dimension. For instance, there is no non-trivial
placement for:

doi=1,n
s = ...
end do

if the "owner computes” rule is enforced. This is never a problem if the program
arrays have been extended up to a single assignment form, which can always be
done as a by-product of array dataflow analysis. In this case, all assignment are
of the form:

do # € Dg
Ag[Z] =---
end do

and each write is to a distinct array cell. The cutting condition for the left hand
side reference is:

T1(S, 7) = TI(Ag, 7).

Enforcing the "owner computes” rule is equivalent to using this equation to elim-
inate either II(S,.) or II(Ag,.).

Nevertheless, the "owner computes” rule is one more constraint on the place-
ment, and, as all additional constraints, it may lower the quality of the result. The
reader will find an example of this phenomenon in [DR93].

3.4 Multidimensional Placement

One has already seen that in some cases, using a scalar placement function may
not result in enough parallelism for the target architecture. The obvious solution
(which is suggested by the structure of grid networks) is to use multidimensional
placement functions; let g be the dimension of the placement. All findings of
the preceding section are still valid. In placement prototypes [12,13], one replace
vectors pg, pp by matrices Pg, Py. One may consider a global placement matrix P
of dimension N x g, which must satisfies the analogue of [16]:

PC =0.

26

The communication matrix C' is the same as in the one-dimensional case. It is
clear that the row vectors of P are solutions to [16], hence belong to the kernel
of C. The solution of the problem is then obvious: to construct a g-dimensional
placement, one selects g linearly independent vectors in ker(C).

But this condition, while necessary, is not sufficient. If the chosen solution
is such that the row vectors of one of the Pg matrices are linearly dependent,
statement S will be executed only by a subset of the available processors, and this
entails a loss of processing power. We have to use a stronger triviality test in the
greedy algorithm. The C’ matrix is satisfactory for step 2b of algorithm E if its
kernel is spanned by at least g vectors whose projection in each of the iteration
spaces of the program statements are linearly independent. Note however that this
is impossible if the iteration space has dimension less than g. The first conclusion
is that it is useless to chose a g which is larger than the maximum nesting level of
the program. But, even in cases where this constraint is satisfied, it may happen
that some statement has nesting level less than g. One must accept a performance
loss in this case. If the kernels are computed by the incremental Gauss algorithm
we have defined above (see section 3.2.1), this extended triviality test is quite
simple. It is enough to check that the placement vector of each statement depends
at least on ¢g independent variables.

It is clear that the triviality test will grow more stringent when g increases. It
follows from this remark that the amount of residual communication increases with
g. Whether this effect is compensated by increased communication bandwidth and
increased parallelism can only be judged experimentally.

3.5 Example

Let us select a placement for example G. There is one statement at depth 3, and
one array of rank 2, hence 5 unknown coefficients p; to ps. On the other hand,
there are 5 array references, but two of them are the same, hence there are only
four cutting conditions. We can in that case give the explicit counterpart of [16]:

p1 =0, P2 = P4, P3=D5
P1 = DPs, p2 =ps, p3 =20
D1 = D4, p2=0, p3=nps

pP1=ps+ps, p2=0, p3=0

The communication volumes associated to each reference have been computed
in section 3.2.2. One finds that the left hand side and the first right hand side
reference generates a communication volume of order n?, the next two reference
a volume of the order of n?, and the last reference a volume of order n. As a

27

consequence, it is natural to follow the owner compute rule. Applying Gaussian
elimination to the first three equations gives the solution:

o1 = [p1 < 0,p2 < p4,p3 < ps).

There are still two free variables. Hence, we can construct a placement of
dimension 2. If the above solution is applied to the next equation one find:

0:])5, 0:0, p5:0.
whence the new solution:

oy = [p1 < 0,p2 < p4,p3 < 0,p5 < 0].

There is only one free variable left. Hence, the placement is only one-dimensional.
The reader will easily show that, if one attempts to satisfy the remaining equations,
the placement becomes trivial. The computation of shift constants is left to the
reader: they are found to be 0 in all cases.

We conclude that example G, has, first of all, a two dimensional placement:

H(Salajak) = (i >)

which generates two residual communications of volume n? and a communication
of volume n, and a one-dimensional placement: TI(S,4,7,k) = j, which generates
only one communication of volume n? and one communication of volume n. If
the elimination order is changed, one may also find the symmetric placement:
I(S,i,5,k) = k.

3.6 Distribution

The number of points in the range of the placement function is equal to the number
of virtual processors that is needed for running the target program. There is no
reason for this number to be equal the number of physical processors in the target
machine. One has to use a folding function which can be quite arbitrary. The
choice of a folding function corresponds to the selection of a distribution in data
parallel languages. One uses simple distributions, like block distributions:

&(x) =z + B,

cyclic distributions:
&(xz) =z mod P,

28

or block cyclic distribution:
&(z) = (z + B) mod P.

One criterion is the study of residual communications. If those are uniform, the
use of a block distribution allows an additional reduction of the communication
volume. On the other hand, block distributions have no particular advantages in
the case of general distributions. One should select cyclic distribution for better
load balance.

One may suggest the following rules:

e If most of the residual communications have no particular patterns, use a
cyclic distribution.

e If the residual communications are uniform, select a bloc cyclic distribution.
The size of each bloc must be larger than the length of the communication
vectors.

3.7 Code Generation

The problem of generating the parallel code for a given placement is beyond the
scope of this paper. There are in fact many active researchers in the field.

One of the simplest methods [ZBG88] consists in having each processor execute
a copy of the original program, each statement S being guarded:

if TI(S, %) = gthen S

where ¢ is the name of the current processor. Similarly, to each reference is asso-
ciated a conditional which decides if the reference is local, or if it must be sent to
or received from another processor. In both these cases, one must write a message
passing routine. This task might be simplified by calling a message passing library
like [BDG91]. The resulting program is usually very inefficient, but it can be
optimized by polyhedra scanning techniques [AI91, CFR95, Xue94, KP94].

4 Conclusion

The proposals in this paper can be summarized as follows:

e Have the program submitted to a preprocessing phase, not formalized here,
in which arrray accesses are normalized, the granularity of parallelism and
the loop size is determined, the dataflow is computed, and arrays and scalars
are expanded if necessary.

29

e Chose the dimension of the placement functions, taking into account both
the parameters of the target architecture (number of processors, network
topology), and the characteristics of the source program.

e Apply algorithm E to find a placement with minimal residual communica-
tions.

e Chose a distribution function according to Section 3.6 and generate the
target program according to Section 3.7.

There has been several implementations of this method for various target archi-
tectures and target languages. One of them starts from Fortran and generate data
parallel code like CM-Fortran or CRAFT for the Cray T3D. Compilation times
are acceptable and the performances of object programs are good, giving in some
cases better results than the T3D library. There is obviously a lot of work to do
for transforming these pilot implementations into useful compilers.

The above technique can be explained in the context of recent research on
automatic parallelization, [Fea92c, Fea95], in which a parallel program is repre-
sented as a partial order on its operations. Scheduling techniques [Fea92a, Fea92b]
look for sets of unordered operations (anti-chains of the parallel order), and are
well adapted to synchronous architectures. Placement, on the contrary, looks for
chains (sets of totally ordered operations), and corresponds to distributed archi-
tectures. Both methods are full-fledged compilation techniques. Their behaviors
are exactly opposite: scheduling adds edges to the given partial order until it can
be represented as a sequence of parallel constructs. This is the SEQ of PAR form
of [Bou93]. Conversely, the placement method remove edges until the execution
order takes the form of a parallel composition of sequential processes — the PAR
of SEQ form. Since edges have been removed, they must be reinserted as residual
communications.

There is no a priori reason for preferring one or the other method. Some
orders are brought to the SEQ of PAR form by adding very few edges, others
become PAR of SEQ by suppressing very few edges. On the other hand, each
parallel architecture has a prefered form, and in some cases — SIMD machines and
systolic arrays - one needs both a schedule and a placement for the generation of
the parallel program. The reader is referred to [Fea95] for a discussion of these
cases.

In the rare cases where the original program is already in the PAR of SEQ
form, the algorithm should find directly all independent chains. As example D
shows, this is not really the case. A straightforward analysis gives a piecewise
bidimensional placement analogous to the one in example EE, giving O(n?) chains.

30

The proposed method gives only one placement vector, giving only O(n) chains.
It would be interesting to extend the present method to more general placement
functions. Example H shows that simple problems may have very complicated
placements functions, thus limiting progress in this direction.

Another constraint results from the fact that placements and distributions are
only intermediates for the ultimate construction of the parallel code. With present
knowledge, this is possible only for affine and piecewise affine placements. Example
H shows that very simple subscript functions generate complex placements, which
cannot be converted into parallel programs in a simple and regular way. It thus
seems hopeless to handle complex subscripts. A compromise solution is to ignore
complex subscripts when selecting the placement, and to have them reappear as
residual communications. One can only hope that they will not result in too much
performance loss.

It may be possible to construct a placement from an approximate analysis of
the source program [CBF95], but this is a fully unexplored avenue.

Some distributed architectures have been optimized for handling efficiently
some types of communications. This is often the case for uniform communications,
but there are also broadcasts (a communication from one to many processors), and
reductions (a communication from many to one processor). Recent studies [Pla9g5]
have shown that taking these peculiarities into account results in greatly increased
performance.

Lastly, it seems clear that when the number of statements in the program
increases, the number of constraints increases faster than the number of free pa-
rameters. Hence, the quality of the placement decreases. It thus seems interesting
to dissect a program into phases which are processed independently, with redistri-
bution phases in between if necessary. Redistribution operations are provided in
data parallel languages like HPL. If the basic technology is simple (one just has to
rename arrays), the choice of cut points is difficult and is a worthwhile subject for
further research.

References

[AT91] Corinne Ancourt and Frangois Irigoin. Scanning polyhedra with DO
loops. In Proc. third SIGPLAN Symp. on Principles and Practice of
Parallel Programming, pages 39-50. ACM Press, April 1991.

[Amm92] Zahira Ammarguellat. A control-flow normalization algorithm and its
complexity. IEEE Transactions on Software Engineering, 18(3):237—
251, March 1992.

31

[ASUS6]

[BDG191]

[BKK94]

[Bou93]

[CBF95]

[CFRY5]

[DR93]

[DR94a]

[DR94b]

[Fea88]

[Fea91]

[Fea92a]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, Reading, Mass, 1986.

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam.
A user guide to pvm: Parallel virtual machine. Technical Report
ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.

David Bau, Indupras Kodukula, Vladimir Kotlyar, Keshav Pingali, and
Paul Stodghill. Solving alignment using elementary linear algebra. In
Seventh Annual Workshop on Languages and Compilers for Parallel
Computing, pages 46—60. Springer-Verlag, LNCS 892, August 1994.

Luc Bougé. Le modeéle de programmation & parallélisme de donnés :
une perspective sémantique. T.S.I., 12(5):541-562, 1993.

Jean-Francois Collard, Denis Barthou, and Paul Feautrier. Fuzzy ar-
ray dataflow analysis. In ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming. ACM, July 1995.

Jean-Francois Collard, Paul Feautrier, and Tanguy Risset. Construc-
tion of do loops from systems of affine constraints. Parallel Processing
Letters, 5(3):421-436, 1995.

Alain Darte and Yves Robert. A graph-theoretic approach to the align-
ment problem. Technical Report 93-20, LIP-IMAG, July 1993.

Alain Darte and Yves Robert. Mapping uniform loop nests onto dis-
tributed memory architectures. Parallel Computing, 20:679-710, 1994.

Michele Dion and Yves Robert. Mapping affine loop nests: New results.
Technical Report 94-30, LIP, 1994.

Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomput-
ing, pages 429-441, 1988.

Paul Feautrier. Dataflow analysis of scalar and array references. Int.
J. of Parallel Programming, 20(1):23-53, February 1991.

Paul Feautrier. Some efficient solutions to the affine scheduling
problem, I, one dimensional time. Int. J. of Parallel Programming,
21(5):313-348, October 1992.

32

[Fea92b]

[Fea92c]

[Fea94]

[Fea95]

[For94]

[JC90]

[KP94]

[MAL93]

[Plags]

[PW93]

[RS91]

Paul Feautrier. Some efficient solutions to the affine scheduling prob-
lem, II, multidimensional time. Int. J. of Parallel Programming,
21(6):389-420, December 1992.

Paul Feautrier. Techniques de parallélisation. In M. Cosnard, M. Ni-
vat, and Y. Robert, editors, Algorithmique Paralléle, pages 243-257.
Masson, May 1992.

Paul Feautrier. Toward automatic distribution. Parallel Processing
Letters, 4(3):233-244, 1994.

Paul Feautrier. Compiling for massively parallel architectures: a per-
spective. Microprogramming and microprocessing, 1995. & paraitre.

High Performance Fortran Forum. High performance fortran language
specification, version 1.1. Technical report, Rice University, November
1994.

Li Jinke and Marina Chen. Index domain alignment: Minimizing cost
of cross-referencing between distributed arrays. In Proc. Third Symp.
on the Frontiers of Massively Parallel Computation, pages 424-433.
IEEE, October 90.

Wayne Kelly and William Pugh. Selecting affine mappings based on
performance estimations. Parallel Processing Letters, 4(3):205-220,
September 1994.

Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array
dataflow analysis and its use in array privatization. In Proc. of ACM
Conf. on Principles of Programming Languages, pages 2—15, January
1993.

Alexis Platonoff. Contribution d la distribution automatique des
données pour machines massivement paralléles. PhD thesis, Univer-
sité P. et M. Curie, March 1995.

William Pugh and David Wonnacott. An evaluation of exact meth-
ods for analysis of value-based array data dependences. In Sizth An-
nual Workshop on Programming Languages and Compilers for Parallel
Computing, pages 546-566. Springer-Verlag LNCS 768, August 1993.

J. Ramanujan and P. Sadayappan. Compile-time techniques for data
distribution in distributed memory machines. IEEFE Trans. on Paralell
and Distributed Systems, 2:472-482, October 1991.

33

[SLYS9]

[Taw91]

[Xue94]

[ZBG8S)

Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An empirical study on
array subscripts and data dependencies. In 1989 Int. Conf. on Parallel
Processing, pages II 145-152, 1989.

Nadia Tawbi. Parallélisation Automatique : FEstimation des Durées
d’Ezécution et Allocation Statique de Processeurs. PhD thesis, Univer-
sité P. et M. Curie, Paris, 1991. 19 Avril 1991.

J. Xue. Automating non-unimodular loop transformations for massive
parallelism. Parallel Computing, 20(5):711-728, May 1994.

H. P. Zima, H. J. Bast, and M. Gerndt. SUPERB : A tool for semi-
automatic MIMD/SIMD parallelization. Parallel Computing, 6:1-18,
1988.

34

