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1 IntroductionThinking about parallel programs is a notoriously di�cult task. One of the mostsuccessful technique for dealing with this problem is scheduling , i.e. the constructionof a timetable for the operations of the program. Obviously, this method impliesthe existence of a global clock for the target computer. This is a natural assumptionfor tightly coupled architectures like SIMD machines and pipelined or superscalarprocessors. Another technique, data partitioning, is more adapted to the case ofasynchronous machines.Scheduling is a di�cult problem. Various special cases have been proved to beNP-hard or NP-complete. Most of the complexity of scheduling can be assigned tothe conjunction of two type of constraints:� dependence constraints, which express the fact that some computations mustbe executed in a speci�ed order if the meaning of the original program is tobe preserved; these constraints are usually expressed as a dependence graph(DG).� resource constraints, which express the fact that the number of simultaneousoperation at any given time is limited by the available resources in the targetcomputer.While any one of these constraints can be handled easily, it is their simultaneouspresence which is at the origin of the di�culty.Fortunately, in many cases of computer science interest, it is possible to handlethe resource constraints in an approximate way. It is customary in this context, todistinguish between coarse grain, medium grain, and �ne grain scheduling.In coarse grain scheduling { e.g., job shop scheduling or macro tasking { thetasks and the resources are few. The schedule is represented in tabular form, andthere are approximate techniques, like list scheduling, with precise bounds on theapproximation.In medium grain scheduling, there are many tasks { typically as many as thereare operations in an execution of the source programm { and many identical re-sources { the processors in a massively parallel computers. The schedule must beobtained in closed form. One may ignore the resource constraints in computing theschedule [Fea92a, Fea92b], and then fold the schedule on the available processors.One may prove [Fea89] that this solution is asymptotically e�cient, provided thatthe source program has enough intrinsic paralellism.The situation is di�erent for �ne grain scheduling. Here the number of tasks islarge. The resources are few and discrete. At the most, resources may be classi�edinto categories, each category having a small number of identical resources.Fine grain scheduling started some thirty years ago when the �rst computerswith multiple functional units { like the CDC 6600 { were put on the market. It isnow a very important technique, due to the advent of many computers with instruc-tion level parallelism, like pipelined computers, VLIW and superscalar processors,etc.In �ne grain scheduling, it is impossible to ignore the resource constraints. Sev-eral techniques have been proposed for solving the problem, at least in an approxi-mate way (see [RF93] for a comprehensive review of the subject). Trace scheduling[Fis84] applies list scheduling to basic blocks; it tries to detect critical paths inthe program control graph and to enlarge basic blocs by moving code around testinstructions.Software pipelining [RG81] applies to simple loops and aims at executing severalinstances of the loop body in a staggered way so as to maximize resource usage andminimize the total execution time. A solution to the software pipelining problem1.3



for a given loop is characterized by its initiation interval, i.e. the time span betweentwo successive iteration of the loop. It is easy to derive bounds for the initiationinterval: an upper bound is given by the sequential execution time of the loop body.A lower bound is deduced from an analysis of resource usage, see section 2.2, andanother one can be obtained by constructing an unconstrained schedule.In many algorithms for software pipelining, one assume the iteration intervalis given, and applies list scheduling, taking care that each resource allocation isfolded modulo the initiation interval when constructing the reservation table (seee.g. [Lam88]). The interval of admissible initiation intervals is explored by binarysearch until the optimal value is found.The algorithm of [GS92] applies only if there is only one resource class. Theprogram is �rst scheduled as if there were no resource constraints. Analysis of theresulting schedule allows one to delete some dependences, and the resulting DG iscycle free. The �nal schedule is obtained by applying list scheduling with resourceconstraints to this graph. The resulting schedule is not optimal, but the authorsshow that the usual bound on the list scheduling approximation applies.This paper is an attempt to extend the scheduling techniques of [Fea92a], whichare based on linear programming, to �ne grain scheduling. The next section is areview of these techniques. The main theme of Section 3 is how to convert theresource constraints into bilinear constraints. This is done in two cases. In the�rst one, there is one unique resource of each type; in the second case, there maybe several copies of a resource. In the conclusion, I discuss the complexity of thealgorithm and point to some direction for future work.2 A Review of Scheduling TechniquesWe will consider here the problem of scheduling a single loop:do i = 1; : : :S1...Snend dowhere the Sk are scalar or array assignments. We have emphasized the fact that theupper bound of the loop is irrelevant for the present problem. The solution we seekmust be in the form of the repetition of a uniform pattern, the loop upper boundcontrolling only the repetition factor.The schedule we seek is de�ned by n functions from the iteration counter, i, toan integral time. We will suppose that an appropriate unit of time has been chosen{ e.g., the clock cycle { and that all delays and durations are integral multiple ofthis unit. We will look for schedules in the form:�(S; i) = bai+ bSc ; (1)where a and the bk are rational numbers. a is known as the initiation interval ofthe schedule. Our main objective is its minimization.There are several reasons for choosing such a form. Firstly, all known methodsfor computing schedules apply only to a�ne forms. It is true that a schedule whosevalues are not integral has no meaning, but it has been shown that the 
oor ofa causal schedule is also causal, and that if the iteration domain is large enough,schedules of the above form are nearly optimal [Qui87].Before embarking on the solution proper, let us observe that we have someleeway in the selection of bS in (1). a is necessarily a rational number { if it wherenot so, the schedule would not be periodic. We have in fact the following1.4



Lemma 1 Let a = A=D be the representation of the initiation interval in lowestterms. Any schedule of the form (1) is equivalent to a schedule of the form:�(i) = �Ai + BSD � (2)where the BS are integers.Proof Let i be any value of the iteration counter. We may write:Ai = kD + r; 0 � r < D;and bS = bbSc+ �S ; 0 � �S < 1;�(i) = k + bbSc+ br=D + �Sc :From the conditions on r and �S , we deduce that the last term is either0 or 1. Since A and D are relatively prime, r takes all integer valuesfrom 0 to D � 1. The value of �S determines the value r0 at which thelast term switches from 0 to 1:r0=D + �S < 1 ^ (r0 + 1)=D + �S � 1which gives: D �D�S � 1 � r0 < D �D�S :We conclude the schedule does not change if we replace �S by bD�Sc =D.giving BS = bDbSc.Recent research on medium-grain scheduling [MQRS90, Fea92a] favors schedulesin which each statement has its own initiation interval. In the case of �ne grainparallelism, such a schedule generates very complicated code 1 , hence the insistenceon the same initiation interval for all statements.All schedules must satis�es the so-called causality condition: let us write (Sk; i) ?(Sl; j) if (Sk; i) and (Sl; j) are in dependence, and (Sk; i) � (Sl ; j) if (Sk; i) is exe-cuted before (Sl; j) in the original program. Then the schedule must verify:(Sk; i) ? (Sl; j) ^ (Sk; i) � (Sl; j)) �(Sk; i) + @(Sk) � �(Sl ; j); (3)where @(Sk) is the duration of Sk.I have shown in [Fea92b] that in solving (3), one may partition the dependencegraph in strongly connected components (scc) and schedule each scc independently.In the case of software pipelining, this de
ation method should not be used. Thesize of the kernel one handles must be decided on other grounds, e.g. by attemptingto saturate the available resources. I will say more on this point in the conclusion.2.1 DependencesThe choice of the dependence relation in (3) is somewhat arbitrary. Ordinary depen-dences [ZC91], include both the e�ect of data 
ow from operation to operation andthe constraints generated by the pattern of memory usage in the object program.Value based dependences are much less constraining and are easily computed byArray Data
ow Analysis [Fea91]. There is a value-based dependence between (S; i)and (R; j) i� (S; i) writes into some memory cell a, if (R; j) reads a, (S; i) � (R; j),and there is no write to a between (S; i) and (R; j). The result of Array Data
ow1The size of the code grows as the least common multiple of the initiation intervals.1.5



Analysis may be represented by a Data
ow Graph (DFG), whose vertices are associ-ated to statements and edges to dependences. Each edge e from S to R is decoratedwith a polyhedron Pe and a transformation he such that if i 2 Pe then there is avalue-based dependence from (S; he(i)) to (R; i). One may say that after ArrayData
ow Analysis, all values produced by the source code have been given distinctnames, and the program has been rewritten using these names. Array Data
owAnalysis may thus be seen as a compile time counterpart of Tomasulo Algorithm.The shape of the dependence is given by the function he. The simplest case isthat of uniform dependences where he is a translation:he(i) = i� dewhere de is known as the dependence distance. One may encounter more com-plicated cases, where he is an a�ne function, or even a sublinear function2. Thescheduling technique of [Fea92a] works whenever the dependence is a�ne and is notlimited to uniform dependences.Value based dependences will be used throughout this paper. In this context,the causality condition (3) simpli�es to:8e 2 DFG; 8i 2 Pe : �(R; i) � �(S; he(i)) + @(S): (4)This condition expresses the fact that since operation (R; i) uses a value which iscomputed by (S; he(i)), it cannot start before this operation has terminated.The solution method starts by substituting the form (1) into (4). In the case ofuniform dependences, one may prove that:Lemma 2 The causality condition (4) is equivalent to:ade + bR � bS � @(S): (5)Proof That (5) implies (4) is proved in [Fea92a] Theorem 6. To provethe reverse implication, choose for i a multiple of D. Notice that if n isan integer, we have the identity bn + xc = n+ bxc. (4) simpli�es to:bBR=Dc � b(BR � Ade)=Dc � @(S):Since the left hand side of this inequality is an integer, we have:bBR=Dc � (BR � Ade)=D � @(S):Now, obviously, x � bxc, hence:BR=D � bBR=Dc � (BR � Ade)=D � @(S);Q.E.D.By the above lemma, each uniform dependence may be translated to a linear con-straint on the a and b's coe�cients. For more complicated dependences, one hasto resort to the Farkas algorithm [Fea92a], but the result is still a set of linearconstraints. One then selects a particular solution according to some objectivefunction.Of particular interest for �ne grain scheduling are the minimum latency sched-ules, in which one minimizes �rst the initiation interval a, and then the bR.2A sublinear function contains integer divisions by constants.1.6



2.2 Resource constraintsIn operation research, a resource is an entity which may or may not be used bytasks or operations. To each resource is associated a constraint: namely, that theexecution intervals of two operations which use the same resource cannot overlap.One may have resource classes. In that case, at any given time, the number ofactive operations which use a given resource cannot exceed the number of resourcesin the class. We will suppose here that all operations which are instances of thesame instruction use the same resource class. For simplicity, we will assume thateach operation uses only one resource. This restriction can be easily lifted in caseof need. In fact, in this work resource classes will simply be sets of statements. If� is a resource class, S 2 � means that statement S uses a resource from class �.In the case of unique resources, the non overlap constraint may be translated tosimple inequalities on schedules. Suppose that S and T use the same resource. IfhS; ii is scheduled before hT; ji, then we must have:�(T; j) � �(S; i) + @(S);while in the opposite situation the constraint is:�(S; i) � �(T; j) + @(T ):Since the two situations are exclusive, we may write the resource constraint as:8i; j : �(T; j) � �(S; i) � @(S) _ �(S; i) � �(T; j) � @(T ): (6)Beside that, two operations which are instance of the same instruction necessarilyuse the same resource and cannot overlap:8i; j : i < j ) j�(S; i) � �(S; j)j � @(S): (7)This condition gives a very simple bound on a. Suppose a large number N ofiterations of the loop body are executed in time t. The total usage of resource �will be: t� � NXS2� @(S):Suppose there are P� copies of �. We have:t � Na � NXS2� @(S)=P�;from which we deduce the lower bound for a:a � max� XS2� @(S)=P�: (8)If the initiation interval satis�es the above constraint, (7) will be automaticallysatis�ed.In actual processors, resource utilization may be a much more complicated a�airthan the simpli�ed scheme above. Pipelined resources, for instance, do not appearto be busy for the whole duration of one operation. This is easily taken care of byreplacing @(S) in (6) by another timing characteristics, the stalling time of operationS, noted �(S). The resource constraint is now:8i; j : �(T; j) � �(S; i) � �(S) _ �(S; i) � �(T; j) � �(T ): (9)An ordinary functional unit will have @(S) = �(S), while a pipelined unit will have�(S) � @(S). 1.7



There may be links between resources, as for instance when one cannot use afunctional unit unless there is a free data path to it. That kind of constraint mustbe handled heuristically.The problem is more complicated if some resource class has more than oneelement. A resource is in use at time t if some statement S which uses it has beeninitiated less than �(S) time units before t. If we identify a resource class with theset of statements which use it, we may write the constraint for resource � as:Card f(S; i) j S 2 � ^ t� �(S) < �(S; i) � tg � P�: (10)3 Two Scheduling AlgorithmsBasically, the scheduling method of [Fea92a] works by replacing (4), which repre-sents a potentially in�nite system of a�ne inequalities, by a �nite set of constraintson the coe�cients a and bR. Our �rst problem is to �nd a similar reduction for(9). We will see that, due to the non-convexity of (9), the result is non linear.Hence, we cannot directly use linear programming to solve the problem. However,the problem lends itself to a simple and e�cient solution by searching the space ofpossible values for a.3.1 The singular resource caseFor schedules of the form (2), we may ignore the 
oor function in the expression of(6). We have in fact the:Theorem 3 Let � (S; i) = Ai+BSD and �(S; i) = b� (S; i)c. Then the two conditions:8i; j : �(T; j) � �(S; i) � �(S) _ �(S; i) � �(T; j) � �(T ): (11)and 8i; j : � (T; j) � � (S; i) � �(S) _ � (S; i) � � (T; j) � �(T ): (12)are equivalent.Proof Suppose �rst that (12) is true. Let us be given two arbitraryintegers i and j. We may suppose, without loss of generality, that� (S; i)� � (T; j) > 0. We have, successively:b� (T; j)c � � (T; j);b� (T; j)c + �(T ) � � (T; j) + �(T ) � � (S; i);and, since the left hand side is an integer,b� (T; j)c + �(T ) � b� (S; i)c ;Q.E.D.Conversely, suppose that (12) is false for some values of i and j. Setx = i� j. We have both:Ax+BS � BT � �(T )and BT � BS � Ax � �(S):1.8



Set B = BT � BS for short. We may suppose that Ax � B > 0. Theother case is handled in a symmetrical fashion. We have, for all j:� (S; j + x) � � (T; j) = Ax� BD � �(T ):Since A and D are relatively prime, we may select j in such a way that� (S; j + x) is an integer. We then have:b� (S; j + x)c = � (S; j + x) � � (T; j) + �(T );b� (S; j + x)c � b� (T; j)c + �(T );(11) is also false, Q.E.D.From this result, we deduce the resource constraint above may be written in theform: 8x 2 ZAx�BD � �(T ) _ B �AxD � �(S):Now Ax�BD is an a�ne function of x whose zero is x0 = B=A. For all values ofx > x0, the second inequality is certainly not veri�ed. Hence, the �rst one must betrue, and a necessary and su�cient condition is that:A(bB=Ac + 1) �B � D�(T ):The other case is handled similarly and gives:B �A bB=Ac � D�(S):These conditions may even be simpli�ed by observing that, if they are true, thenthere exists a unique integer q such that:A(q + 1)�B � D�(T ) ^B � Aq � D�(S): (13)We conclude that the resource constraints in the singular case are given by thefollowing rule:For all statements S and T which use the same resource:� Create a new integer variable qST ,� Write the two constraints:A(qST + 1)� BT +BS � D�(T ); (14)BT � BS � AqST � D�(S):These constraints are to be added to the dependence constraints and solved for Aand the BS , A being the objective function to be minimized. Now the constraintsgenerated by (14) are clearly non linear. However, they become linear if we aregiven the value of A. Remember that we have one upper bound for a = A=Dwhich is simply the sum of the duration of all statements in the loop body { thesequential upper bound { and two lower bounds. One of them, the resource usagebound, is given by (8), and the other, the free bound, is obtained simply by solvingthe scheduling problem with no resource constraints. The maximum of these twobounds gives the parallel lower bound. The problem is that, since a is a rationalnumber, exploring its possible range of values is not a �nite process. As has beenobserved many times, the schedule (2) has period D. D iterations of the loop bodyare scheduled in A clock cycles, giving a mean activation interval of A=D. Whengenerating code from such a schedule, the loop body has to be replicated D times,1.9



which means that D cannot be too large. In the singular resource case, the resourceusage bound is an integer. The free bound may be rational, but the actual value ofits denominator is no indication, because simpli�cationmay occur depending on thevalues of the statement durations. A better guess may be obtained by observing thatwhen computing the free schedule, one has to solve a linear programming problemby a process analogous to Gaussian elimination. By the familiar Cramer rule, thedenominator of the solution is the determinant of a matrix which is extracted fromthe problem tableau, the basis matrix. The value of this determinant is easilyextractable from the linear programming code, and is a good candidate for theunrolling factor.We have found in practice that the following heuristic gives satisfactory results :1. Compute the free bound, the resource usage bound and the parallel lowerbound, l, which is their maximum.2. D is set equal to the determinant of the basis matrix or to 1, dependingwhether the parallel lower bound is the larger bound or not.3. Set A = dDle.4. Solve the complete scheduling problem for A and D.5. If the problem has no solution, increase A by 1 and start again at step 4.Let us consider �rst a very simple example:program Ado i = 1,n1 r1 = a(i)-b(i)2 c(i) = c(i-2) + r1end doSuppose that all operations are executed in unit time. Let �(1; i) = ai + b1and �(2; i) = ai+ b2 be the prototype schedules. There are two dependences:� The �rst one is from h1; ii to h2; ii and gives the constraint:b2 � b1 � 1:� The second one is from h2; i � 2i to h2; ii and gives:2a � 1:It is easy to see that the minimum latency solution is:�(1; i) = i=2; �(2; i) = i=2 + 1:Suppose now that both statements of the example are executed on the sameresource. This gives the following additional constraints:a(q + 1)� b1 + b2 � 1; b1 � b2 � aq � 1:Since there are two statements in the loop and only one resource, we musthave a � 2. An attempt to solve the remaining constraints with A = 2;D = 1succeeds and gives: �(1; i) = 2i; �(2; i) = 2i + 1:Since we have an upper and a lower bound for A, it may seem that a binarysearch for the right value might be a good idea. However, experiment showsthat the solution is always near the lower bound. In that case, a simple linearsearch is su�cient. Let us consider the following example:1.10



program Bdo i = 1,n1 r0 = a(i-2)/2.02 r1 = r0+a(i-3)3 r2 = r0+a(i-4)4 a(i) = r1*r2end doSuppose that the available resources are an adder, a multiplier and a divider,and that addition takes one cycle, multiplication and division taking two cy-cles. Analysis of resource usage shows that the minimum initiation interval istwo cycles. Dependence analysis shows that statement 1 has to be executed�rst, that 2 and 3 can be executed in parallel, and that 4 is to be executedlast. However, since the cycle is closed by a dependence from 4 at iteration ito 1 at iteration i+2, this gives a minimum rate of 5=2, and this is the parallellower bound. Hence, we set D = 2. The �rst value of A to be tested is 5, andour integer programming algorithm �nds that there is no solution. A is thusincreased to 6, and there is a solution. It is easy to see a posteriori that thissolution is optimal. In fact, since there is only one adder, statements 1 and2 must be executed sequentially. Hence each iteration of the loop takes 6 cy-cles. The resulting initiation interval is 6=2 = 3, indicating that no unrollingis necessary.Suppose now that the multiplication time is reduced to 1 cycle. The free bounddecreases to 2, but the determinant of the basis matrix is still 2. Hence, weset D = 2 and A = 4. The �rst solution is found at the second iteration whenA = 5, giving an initiation interval of 5=2 with an unrolling factor of two. Theschedule is: �(1; i) = 5=2i; �(2; i) = 5=2i + 2;�(i; 3) = 5=2i + 3; �(4; i) = 5=2i + 4:To solve this problem, three calls to the integer programming algorithm PIPwhere needed, which took 0.43 seconds on a low end workstation.3.2 The many resource caseIn the many resource case, the resource constraint is given by (10). In the singularcase, we have seen that we have to guess the value ofD and to search for the value ofA. The many resource case is apparently more complicated. Hence, we will supposethat the algorithm structure is the same, and that our problem is to test whether,A and D being given, there is a possible assignment for the BS which meets all theconstraints of the problem.Here again, the �rst step is to get rid of the 
oor function. Suppose t is given,and that we are trying to count how many instances of S are active at time t. Theiteration counter of the active instances is a positive integer such that:t� �(S) < �Ai + BSD � � t: (15)All terms in these inequalities are integers. Hence, we may rewrite it as:t � �(S) + 1 � �Ai + BSD � < t+ 1:Now t � �(S) + 1 � �Ai+BSD � and t � �(S) + 1 � Ai+BSD are equivalent. In onedirection, this is because bxc � x, and in the other, it results from the monotony ofthe 
oor function. 1.11



For the other inequality, Ai+BSD < t+ 1 clearly imply �Ai+BSD � < t+ 1. In thereverse direction, �Ai+BSD � � t implies Ai+BSD < t + 1 by de�nition.As a consequence, the iterations of S which are active at time t are solutions of:Dt �D�(S) +D � Ai +BS < Dt +D:Our problem is to count the solutions of these inequalities with i as the unknownas a function of t.Introducing an \excess" variable x, the constraints may be transformed into anequation: Ai + BS = Dt +D � 1� x; (16)provided that x satis�es 0 � x < D�(S). If NS(t; x) is the count of solutions of(16) for given t and x, then the number of active iterations at time t is:NS(t) = D�(S)�1Xx=0 NS(t; x):The �rst observation is that equation (16) has at most one solution, which is givenby: i = Dt+D � 1� x�BSA :To be a legitimate iteration number, this solution has to be a positive integer. i isobviously positive for large enough t. If we ignore the positivity condition, the e�ectwill be to overestimate the resource usage for the prologue of the loop nest. It iscustomary in the �eld to ignore this factor by considering only very long loops, andthis is the best we can do at compile time, since, for most loops, the iteration countis a variable. It may be possible to do better under user guidance: for instance,to inhibit software pipelining when the user knows that the iteration count will besmall.The integrity condition is simply:Dt+D � 1� x� BS � 0 (mod A): (17)This has to be evaluated for all values of t. It is clear, however, that the conditiondepends only on t mod A. It thus has to be tested for t 2 [0; A�1]. Another point isthat the correspondance from t toDt mod A is bijective, since A andD are relativelyprime. As a consequence, we introduce a new variable t0 = Dt mod A; 0 � t0 � A�1.The number of solutions of (16) may be written:NS (t; x) = �((t0 +D � 1� x�BS ) mod A);where � is a variant of the Kronecker symbol:�(0) = 1; �(i) = 0; i 6= 0:The total number of solutions is now:NS(t) = D�(S)�1Xx=0 �((t0 +D � 1� x�BS ) mod A):All in all, (10) translates to:XS2� D�(S)�1Xx=0 �((t0 +D � 1� x� BS) mod A) � N�: (18)1.12



The next step is to \linearize" the Kronecker symbol. This is possible by rewritingBS as: BS = ACS + A�1Xk=0 kyS;k; (19)where the yS;k are integral variables such that:0 � yS;k � 1; (20)A�1Xk=0 yS;k = 1 (21)In fact, we may take CS = BS �A. If we then set yS;r = 1, all others yS;k being 0,where r = BS mod A, we have the required equality.It is now easy to prove by enumerating cases that:�((t0 +D � 1� x�BS ) mod A) = yS;(t0+D�1�x)modA;and that, as a consequence, the resource constraint (18) takes the form:8t0 2 [0; A� 1] :XS2� D�(S)�1Xx=0 yS;(t0+D�1�x)modA � N�: (22)This is the required linearization. The solution process may be summarized asfollows:1. Select a value for D, in a manner that will be discussed presently.2. Set A = Dl, where l is the lower bound for the iteration interval.3. For each statement S in the loop nest, create A + 1 new unknowns CS andyS;k; k = 0; A� 1, write the equality (19) and the constraints (20) and (21).4. For each resource in the system, write the constraint (22).5. Express the causality constraint in term of the new unknowns, applying theFarkas algorithm if necessary [Fea92a].6. If the resulting system is feasible, the problem has been solved. If not, addone to A and start again at step 3.The unrolling factor D has to be choosen, as above, by heuristic arguments.Since the resource lower bound is no longer an integer, we have two denominatorsto choose from. Possible suggestions are to take the largest one, or their leastcommon multiple, or the denominator of the largest bound.Consider the following loop, which is taken from [GS92].program Gdo i = 0,n1 a(i) = a(i)+d(i-2)2 b(i) = a(i)/e(i-2)3 c(i) = a(i)*e(i-2)4 d(i) = c(i)+b(i-1)5 e(i) = e(i)+b(i)end do 1.13



The target computer has three identical processors on which each statementtakes unit time, with the exception of 2 which takes two cycles. In our nota-tions, for statements 1, 3, 4 and 5 @(S) = �(S) = 1, while �(2) = 2. As hasbeen observed by Gasperoni et. al., the free schedule is:�(1; i) = 3=2i; �(2; i) = 3=2i + 1;�(3; i) = 3=2i + 1 �(4; i) = 3=2i + 2;�(5; i) = 3=2i + 2:with an initiation interval of 3=2. This means, in fact, that three iterationscan be initiated any two clock cycles. Since each iteration needs 6 cycles, andthere are three processors, full utilization of the resources is obtained for aninitiation interval of 2. The proposed algorithm succeeds immediately and�nd the following schedule:�(1; i) = 2i; �(2; i) = 2i + 1;�(3; i) = 2i + 1 �(4; i) = 2i + 2;�(5; i) = 2i+ 3:Two calls to PIP are needed, taking less than 2 seconds on a low end Sparc-station. The present solution is optimal; this is to be compared to the solutionobtained by Gasperoni et. al., whose initiation interval is 3.4 Conclusion and Future WorkIn this paper, I have shown how to translate resource constraints into systems ofbilinear inequalities. For a given initiation interval, the inequalities become linear.When added to the dependence constraints, they can be tested for feasibility byany integer programming algorithm, in our case, an implementation of the Gomoryalgorithm. One then has to search for increasing values of the initiation intervaluntil a solution is found.Extracting the object code from the schedule is a well known problem, whichis best explained by an example. Let us consider program G. The �rst stepis to invert the schedule, i.e. to decide who is doing what at any given time.Since the initiation interval is 2, we have to distinguish between even and oddtime. Let us suppose that t is even. The solution of 2i = t is i = t=2. Hence,we know that some processor will be executing iteration t=2 of statement 1 attime t. Similarly, 2i + 3 = t has no solution, but 2i + 3 = t+ 1 has. Hence,we know that some processor will be executing iteration t�22 of statement 5at time t+1. Proceeding in this way, we obtain the following diagramt h1; t=2i h4; t�22 it+ 1 h3; t=2i h2; t�12 i h5; t�22 iThe construction of the actual code is now strongly dependent on the machinearchitecture. On a VLIW processor, for instance, the above diagram directlygives the statements to be packed in two successive instruction words. Theproblem may be more complicated on a superscalar architecture.The method has been implemented by extending the scheduler of [Fea92b]. Allexemples in this paper have been solved on this implementation. There are manypossible improvements on this solution, some of which have already been tested. Forinstance, in the case of mixed problems, with single resources and resource classes,it is possible to combine the two algorithms, using (13) for single resources and (22)for resource classes. 1.14



The following code has been adapted from [DGN92] by randomly replacingadditions by multiplications.program Vdo i = 0,n1 q(i) = x(i-1)+a(i)2 r(i) = q(i)*q(i-1)3 s(i) = r(i)+r(i-1)4 t(i) = s(i)+s(i-1)5 u(i) = t(i-1)*t(i-2)6 v(i) = u(i-1)*u(i-2)7 w(i) = v(i)+b(i)8 x(i) = w(i)+c(i)9 y(i) = t(i)+z(i-1)10 z(i) = y(i)*d(i)end doLet us suppose that all operations have unit duration, and that there are twoadders and one multiplier. The free schedule has initiation interval 8=3. Theresource bound is 4, since there are 4 multiplications and only one multiplier.Therefore, we try scheduling with A = 4 and D = 1. For each add statement,we have to introduce 4 \y" unknowns and one \C" unknown, for a totalof 40 unknowns. On the other hand, the four multiplications give rise to 6constraint pairs like (13) in which one has to introduce 6 \q" unknowns. Thealgorithm immediately succeeds, giving:�(1; i) = 4i ; �(2; i) = 4i + 1;�(3; i) = 4i + 2 ; �(4; i) = 4i + 3;�(5; i) = 4i + 2 ; �(6; i) = 4i;�(7; i) = 4i + 1 ; �(8; i) = 4i + 2;�(9; i) = 4i + 4 ; �(10; i) = 4i+ 7:There are two calls to PIP, totalling about 9.3 seconds. This solution isoptimal, since its initiation interval is equal to the above computed lowerbound.One may notice, however, that the dependence graph of program V has twostrongly connected components, f1; 2; 3; 4; 5; 6; 7; 8g and f9; 10g. One may tryto schedule these conponents independently. This results in two schedules, oneof interval 3 and the other of interval 2, giving an equivalent initiation intervalof 5, or 25% more than global scheduling. An interesting observation is thatthe running time for 4 calls to PIP now drops down to about 1.6 seconds.The controlling factors for the complexity of the algorithm are the size of theinitiation interval,A, and the number of statements in the loop body. The algorithmis not sensitive to the number of resources in a class. For instance, the followingtable gives the initiation interval and the solution time in seconds for program G,for 1 to 4 CPU's, at which time the free schedule is obtained:CPU Interval Time1 6 1.582 3 23 2 1.864 3/2 0.71Obviously, the space and time requirements of the algorithms may become pro-hibitive for very large exemples. The question now is: is there a better way of1.15
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