An Exact Resource Constrained-Scheduler using Graph Coloring technique

Hadda Cherroun
Département d’informatique

A.T. University BP. 37G, 03000 Laghouat, Algeria

hadda_cherroun @mail.lagh-univ.dz

Abstract

Scheduling is an important technique in high-level
synthesis to match application computations and hard-
ware resources. Scheduling a whole program is not pos-
sible as too many constraints and objectives interact. We
decompose high-level scheduling in three steps. Step 1:
Coarse-grain scheduling tries to exploit parallelism and
locality of the whole program (in particular in loops,
possibly imperfectly nested) with a rough view of the
target architecture. This produces a sequence of logi-
cal steps, each of which contains a pool of macro-tasks
(with no loops). Step 2: Fine-grain scheduling refines
each logical step by scheduling all its macro-tasks. Be-
tween both steps a resource assignation is done by map-
ping each macro-task independently. We uniformly ex-
pressed the data dependences and resource constraints.
As most scheduling problems, scheduling tasks under
resources constraints to minimize the total duration is
NP-complete. Our goal here is to design strategy for
reaching optimal solutions in reasonable time. Our al-
gorithmic contribution is an exact branch-and-bound al-
gorithm, where each evaluation is accelerated by both
maximal and greedy clique computation. The effective-
ness and efficiency of the approach are good, which is
illustrated by means of some practical benchmarks.

1 Introduction

The challenge of embedded system design is twofold:
one must pack compute-intensive algorithms in small
platforms; furthermore, the design must be completed as
fast as possible, to meet the demands of a highly volatile
market. In the long run, this will be possible only if
computer-aided design tools are developed far beyond
their present status.

An artifact such as a cell phone or a digital TV set

Paul Feautrier
LIP, ENS-Lyon
46, Alle d’Italie, 69007 Lyon, France
Paul.feautrier@ens-lyon.fr

must behave according to given specifications; however,
its hardware parts can only be built from a structural de-
scription. The goal of high-level synthesis (HLS) is to
convert a behavioral specification — for the whole or a
part of the complete application, to be performed on a
dedicated circuit — into a structural description, while
optimizing several objective functions: performance,
size, power consumption among others.

One of the key tools in this transformation process
from a “program” to a “circuit” is scheduling. A sched-
ule is a timetable — sometimes expressed as a closed
form function — for the initiation of the many elementary
operations that compose an application. The importance
of scheduling stems from the fact that two tasks sched-
uled at the same time must be executed on different re-
sources. Hence, the “bill of material” of a design can
be deduced in a straightforward way from its schedule.
In other words, scheduling establishes a link between
performances and resources. However, scheduling is a
difficult problem; first, for HLS, defining the problem in
a formal way is just impossible due to the large number
of constraints, design choices, and objectives. But even
for simplified abstractions, most scheduling variants are
NP-complete, and some are undecidable.

To reduce the problem to manageable size, schedul-
ing is usually performed in several hierarchical levels,
going from time measured in logical steps to time mea-
sured in real clock cycles. The purpose of this hier-
archical decomposition is to avoid dealing with prob-
lems exceeding the capacity of scheduling tools and to
make heuristics or exact algorithms - sometimes based
on integer linear programming (ILP) - feasible. We cur-
rently explore a high-level scheduling strategy in which
going from a C-like specification to register-transfer
level (RTL) is done in two steps. Step 1: Coarse-grain
scheduling tries to exploit parallelism and locality of the
whole program (in particular in loops, possibly imper-
fectly nested) with a rough view of the target architec-

ture. This produces a sequence of logical steps, each of
which contains a pool of macro-tasks (with no loops).
Step 2: Fine-grain scheduling refines each logical step
by scheduling all its macro-tasks under resource con-
straints. Between both steps a resource assignation is
done by mapping each macro-task independently taking
into account all peculiarities of the target architecture.

We give a quick overview of this two-step strategy
in Section 2.1 to explain our general motivation, but the
rest of the paper focuses on the second scheduling prob-
lem only: how to schedule tasks whose resource usage
is fixed. Before, in Section 2.2, we present some related
work, for HLS scheduling in general.

Our problem of resource constrained scheduling is
formulated in Section 3. Our algorithmic contribution,
described in Section 4, is an exact branch-and-bound al-
gorithm, where the evaluation of each potential solution
is accelerated thanks to variants of clique computation
algorithm (greedy and exact). Lastly, in Section 5, we
analyze the experimental results. In fact, no method for
a NP-hard problem is uniformly better we give some
guidelines for speeding up our algorithm for the current
context. We conclude in Section 6.

2 Context
2.1 Extracting Tasks

The scheduler we describe in this paper is part of the
SYNTOL tool we currently develop, whose aim is high-
level synthesis in the field of computationally intensive
embedded systems. The starting specification is a vari-
ant of C (including loops); the output is a hardware de-
scription at the register-transfer level (RTL). Schedul-
ing is the basic tool we use for hardware generation: a
schedule is a precise description of the operations to be
executed at each clock cycle; deducing the finite state
machine and the data path from a schedule is a well-
studied task.

A finite state machine with a data path (FSMD) is the
most popular model for the description of digital sys-
tems [10]. Earlier work starts by building the control
data flow graph (CDFG), which is simply the sequential
flow diagram of the input description (a sequential pro-
gram). The nodes of the CFG are the basic blocks of
the original program. Most synthesis tools exploit only
parallelism inside basic blocks; the FSMD is usually ob-
tained by scheduling the tasks of each basic block of the
CDFG independently. Some parallelism is exploited in
loops, but mostly through loop unrolling. Our approach
is quite different because we first construct a FSMD

from an equivalent parallel code that exhibits all the in-
herent parallelism in the input description and takes into
account the loops in the program. Afterwards, accord-
ing to the resource constraints, we exploit a part or all of
this parallelism.

To extract parallelism from the loops of the input de-
scription, we use a scheduling strategy previously used
for automatic loop parallelization [7, 8]. It assigns a
symbolic “date” to each high-level statement of the pro-
gram (i.e., each statement in the C program) and allows
us to rewrite the code into a form with explicit paral-
lelism. However, this symbolic scheduling technique
is quite complex and cannot take into account all the
micro-operations (and the architectural resources they
need) that are implied in the execution of one high-level
statement. To find a compromise between complexity
and precision of the model, we apply node splitting until
high-level statements are limited to a few memory ac-
cesses and arithmetic operations.

This is still too coarse a description for hardware gen-
eration; we must provide separate micro-operations for
subscript calculations, memory management, and func-
tional units use. Including all these operations at the
first scheduling level (extraction of parallelism in loops)
would greatly increase its complexity, and would not im-
prove the result significantly.

These considerations lead to the idea of a two-steps
approach to scheduling C programs with loops down to
RTL.

e Each statement of the program is split — if neces-
sary — until it fits the target data path in the number
of simultaneous operations, memory, and register
accesses. For example, a high-level statement that
reads three different memory locations while the
target architecture can only perform two reads si-
multaneously is decomposed into intermediate op-
erations. Then, symbolic loop scheduling is ap-
plied to the resulting program. The result of this
pass is the definition of a sequence of fronts, i.e., a
sequence of logical steps where each step (a front)
is a group of operations to be executed in this log-
ical step. Typically, a front is a pool of a few data-
independent (i.e., parallel) loop iterations, each it-
eration consisting of several statements (in general
parallel too, but not necessarily). Classical loop
parallelization algorithms [7, 4] generate maximal
parallelism expressed as parallel loops (i.e., large
parallel fronts with no resource constraints); our
algorithm is a variant that can generate (currently,
in a heuristic way) bounded fronts if limited paral-
lelism is desired (this is a form of symbolic loop

unrolling or tiling).

We call this first step coarse-grain scheduling.

e After coarse-grain scheduling, it remains to sched-
ule all statements (that we call macro-tasks) of
a given logical step on the target data path.
Each macro-task is a complex sequence of micro-
instructions. Into each macro-task, the micro-
instructions are not scheduled yet. Due to our par-
ticular construction, the macro-tasks in a front are
most of the time data independent but they may still
interfere in their use of resources. So, the front
(logical step) must then be split into as few elemen-
tary steps as necessary to satisfy detailed resource
constraints. We call this second step fine-grain
scheduling. In the general case of data-dependent
tasks, it is a scheduling problem for a directed
acyclic graph of tasks.

Of course, a globally-optimal solution can be missed
this way but this decoupling reduces the overall com-
plexity. In this paper, we explain how we address the
last scheduling step (fine-grain scheduling).

2.2 Some Related Work

HLS has been a subject for research for more than
two decades now [9]. We just mention a few related
work here and we refer to [19, 20] for a survey of HLS
scheduling techniques.

It is well-known that most variants of the scheduling
problem have a very high complexity, hence the popular-
ity of list-scheduling heuristics. For instance, it is used
in the SPARK tool of Gupta et al. [11] together with
loop transformations, speculative code motion, redun-
dant sub-expression detection, and dynamic renaming
for mixed control-flow designs. One of the conclusions
of this study is that any improvement of the schedule re-
sults in improved design. Donnet [5], in his user-guided
HLS tool UGH, introduces interactions between the tool
and the user. For using and sharing resources, the user
has to provide a draft data path (DDP), which is used to
guide a scheduler based on list scheduling. If the synthe-
sized cycle time does not respect all desired constraints
(latency, area), the user modifies the DDP and resumes
the process until an acceptable solution is found.

More sophisticated methods than list-scheduling
variants exist. For example, for modeling constraints for
HLS, Radivojevc et al. [16] present an exact conditional
resource sharing analysis using a symbolic formalism. A
more general formalism has been proposed by Kuchcin-
ski [13]. In this work, all kinds of constraints are mod-

eled uniformly by finite domain constraints, which are
solved using constraint satisfaction/propagation tech-
niques. When power consumption is to be taken into
account, the problem becomes a multiple criteria op-
timization and necessitates the use of Pareto diagrams
(Yang et al. [23]).

For exact solutions and approximations, integer lin-
ear programming techniques (ILP) are very popular for
resource constrained scheduling. Verhaegh et al. [18],
for high-throughput DSPs, use stepwise scheduling. In
their two-stages periodic scheduling, they start by as-
signing periods to the multidimensional periodic opera-
tions with the objective of minimizing storage costs. In
the second stage, they assign start times to the opera-
tions. In the two stages, they use integer linear program-
ming techniques.

One of our goals in this paper is to present a
new scheduling method in which ILP is replaced by
graph coloring as tools for a branch-and-bound meta-
algorithm.

3 Precedence and Resource Constraints
Formalism

3.1 Model: Tasks

In our model a task ¢ is an elementary operation. We
assume that this elementary operation is already mapped
on the available resource. A simple binding is used:
each functional operation is mapped to the first free re-
source, resources are allocated on a cyclic way.

We denote by T’ the set of tasks in a DFG (Data Flow
Graph), R the set of resources, t; the starting date of
the task ¢, the latency of each task is assumed be unit
(the unit is the clock cycle). However, in this formalism,
functional units may be single/multi-cycled or pipelined.
In fact when the latency of a task is mapped to a re-
source that is more than one cycle then supplementary
operation nop -fictitious operation - can be added to T'
and false data dependence are added to the DFG: for ex-
ample if a functional operation mult is mapped to a two
cycle multiplier then we add one nop to T" and add a data
dependence between mult and nop all successors of of
mult became successors of nop. The nop is bound to
the multiplier resource unless the multiplier is pipelined.

3.2 Formalism using dis-equations
Finding legal and optimal schedules for 7' entails

more precision into the way of expressing resource con-
straints and data dependence between its tasks. In the

following, we have expressed uniformly both kinds of
constraints, using dis-equations (i.e. negation of equa-
tion where the second member is null).

Let two tasks ¢ and j, with ¢; and ¢; their respective
starting dates. First, in a valid schedule, 7 and j can start
at any dates except those which put them into a resource
conflict or data dependence conflict. Indeed if a resource
r is used both by 7 and j, then ¢; and ¢; have to take
different values. Thus the intuitive idea is to express
resource constraint by the constraintt; —¢; # 0 .

On the other hand, a data dependence constraint be-
tween ¢ and j can also be expressed via a dis-equation.
Indeed when the task j depends on the task 4 it implies
that the task 7 must be executed after the task ¢. This can
be expressed by the constraint ¢t; — ¢; > 1. Here again,
t; and t; have to take different values, thus yielding the
inequality ¢t; — ¢; > 1 ast; — t; # 0. It should be note
that solutions for ¢; — ¢; > 1 are included in the set of
solutions of ¢; — ¢; # 0. Thus, replacing t; — ¢t; > 1
inequality by the dis-equation ¢; — t; # O represents a
relaxation that we have to compensate when a solution is
found to garantuee that the computed schedule is valid.
We will return to this fact later.

It follows that, for the set 1" of tasks, 1) all the re-
source constraints can be expressed by defining for each
couple of tasks (4, j) the dis-equation expressing the re-
source constraint, if ¢ and j shared the same resource,
2) all the data dependences are expressed by defining
for each couple of tasks (i, j) the dis-equation express-
ing the data dependence if 7 and j are linked by a data
dependence.

Using this formalism, finding a schedule for 7" entails
solving the following system of dis-equations on integer
values:

{ti—t; #0

and choosing one solution, among the set of solu-
tions, which respects precedence constraints. Indeed the
previous relaxation, in which we have replaced ¢; —¢; >
1by t; —t; # 0 have to be verified.

Let mentioned that this system is usually feasible; it
has at least one solution, the solution corresponding to
the sequential order.

These dis-equations can be represented by an undi-
rected graph G(V, E'), where an edge between two tasks
1 and j means that ¢ and j can’t be scheduled at the same
time. G is obtained by merging both graphs G” and G¢
where G represents the interference graph; there is an
edge between i and j if they shared a resource and G
represents the graph obtained by performing a transitive
closure on the DFG and replacing all directed edges by
undirected ones. The transitive closure operation guar-

ihjeT D

antees that all data dependences, implicit and explicit
ones, will be expressed by an edge: indeed for any path
1 ~» 7 in the DFG (in which only explicit data depen-
dences are represented by edges), the data dependence
have to be expressed by a dis-equation t; — ¢; # 0.
Transforming all directed edges in G¢ by undirected
ones. Here also, it should be not that this last operation
is also a relaxation.

Let us mention that G can have cycles. As formal-
ized, it is easy to see, that finding a schedule for these
tasks entails properly coloring G then establishing an or-
der on colors which respect the precedence constraints.
In addition, for optimality, we have to minimize the
number of colors needed for properly coloring G i.e.
finding the chromatic number x(G). This problem is
well known as a NP-Complete problem [22].

Nevertheless, there are many methods for solving the
system defined in (1):

e one can be satisfied with a greedy coloring heuris-
tic;

o for optimality, i.e. finding a schedule with minimal
execution time (or latency) (max;(t;) — min; ¢;),
some solutions from operation research are avail-
able based on:

— coloring using a Branch-And-Bound meta-
method;

— Integer Linear Programming [17].

e we can also use finite domain constraint satisfac-
tion programming [1].

4 A Branch-and-Bound Based Graph
Coloring

As is well known, Branch-And-Bound is an implicit
enumerative meta-method which searches, into the solu-
tion space, a solution according to an objective function.
Its strategy of resolution depends strongly on the feature
of the objective function and the quality of the lower and
upper bounds used for pruning.

Let G(V, E) be the graph which formalize the sys-
tem (1) of dis-equations. Let n = |V/| be the number of
tasks and m = | E| the number of dis-equations.

In our context, let us recall that we consider only
valid colorings (schedulable ones) of G. A coloring is
valid if we can get an order on colors such that no prece-
dence constraints is violated. Indeed the precedence
constraints can be violated by the previous relaxations,
in which we have replaced t; —¢; > 1 by ¢; —¢; # 0

and replaced an arc by an edge in G?. In others words,
a coloring is valid if we can build a valid schedule from
this coloring.

Before explaining the strategy of our algorithm, first,
we explain how the branching is done and how the lower
bound is evaluated.

4.1 Branching rule

The branching rule used here is inspired from the idea
of Béla Bollobas [3] for coloring any graph!. The idea is
based on coloring a graph G by reducing the problem to
coloring two other graphs derived from G. Let v and v
be nonadjacent vertices of a graph G. Let G’ be obtained
from G by joining u and v, and let G”’ be obtained from
G by identifying (merging) u and v. Thus in G there is
a new vertex (uv) instead of u and v which is joined to
vertices adjacent to at least one of u and v (see Fig. 1).

These operations are even more natural if we start
with G’: then G is obtained by cutting the edge (u,v),
and G is obtained from G” by exploding the vertex (uv).

uv

Figure 1. The graphs G, G’ and G”.

Let us note that colorings of G’ and colorings of G”
are disjoint sets, because colorings of G’ give u and v
different colors and colorings of G”’ give them the same
color. In addition, the colorings of G in which u and
v get distinct colors are 1-to-1 correspondence with the
colorings of G'. Indeed if ¢ : V — {1,2,...,k}is
a coloring of G with ¢(u) # ¢(v) iff ¢ is a coloring of
G’. Similarly the colorings of G in which u and v get
the same color are 1-to-1 correspondence with the col-
orings of G”. This separation guarantees that we are not
losing any solution. Consequently x(G), the chromatic
number of GG, can be defined as:

x(G) = min{x(G"), x(G")} 2)

!Originally designed to get some informations about the number of
colorings of a graph with a given set of colors.

4.2 Evaluation -Bounding- procedure

Many upper and lower bounds for the chromatic
number are proposed in the literature. First let see the
upper bounds. Most upper bounds come from algo-
rithms that produce colorings. For example, a greedy
coloring relative to a vertex ordering vy, ...,v, of V
is obtained by coloring vertices in the order vy, ..., vy,
assigning to v; the smallest-indexed color not already
used on its lower-indexed neighbors. Each vertex has
at most A(G) neighbors, so the greedy coloring can-
not be forced to use more than A(G) + 1, this is the
worst upper bound that a greedy coloring could produce
(x(G) < A(G) + 1). Although optimal for complete
graphs.

Welsh-Powell [21] proposed another va greedy col-
oring, in which they apply the previous greedy color-
ing to the vertices in non increasing order of degree
dy > ... > d,. When we color the ith vertex v;, it has
at most min{d;, i — 1} earlier neighbors, so at most this
many colors appear on its neighbors, Hence the color we
assign to v; is at most 1 + min{d;, 4 — 1}. This holds
for each vertex, so we obtain a upper bound; so we max-
imize over i to obtain the upper bound on the maximum
color used: x(G) <1+ max; min{d;,7 — 1}.

For our algorithm, see below, the most important
bounds for the chromatic number used are the lower
ones. Let us quote that for every graph G:

e x(G) > w(G), where w(G) is the clique number:
the size of the largest set of pairwise adjacent ver-
tices in G (maximal clique).

e x(G) > n/a(G), where a(G) is the independence
number: the cardinal of the largest set of vertices in
V' so that no two vertices are adjacent (mmaximal set
independant).

The first bound holds because vertices of a clique re-
quire distinct colors. The second bound holds because
in a proper coloring the set of vertices of each color is
an independent set and thus has at most a(G) vertices.
Both upper bounds are tight when G is a complete graph.

In general, for any graph, both maximal clique prob-
lem and set independant problem are NP-Hard [22]. Al-
though good approximation algorithms can be found
in [12].

However a clique computation, as a lower bound to a
clique number, can be obtained by several methods:

e one can be satisfied with a greedy clique heuris-
tic. In this heuristic, we build a clique C' progres-
sively as follows: we start with the vertex which

has the maximal degree, then we add, as long as
there is, the vertex with a maximal degree and
which is adjacent to all vertices in C. Thus we ob-
tain in a polynomial time a lower bound such that:

X(G) =z w(G) = [C].

e for optimality, one can use integer linear program
formulation. Indeed knowing that computing the
clique number entails computing the independence
number for GG, the complementary graph, since the
maximal clique problem is complementary to the
independent set problem. This fact allows us to use
the following natural integer programming formu-
lation of the independant set problem (IS):

max > i B
IP2: subjectto xz; +x; <1 Vedge (¢,7)inG
0<z: <1 (i=1,...,n)

where z; are binary variables, x; = 0 if the vertex ¢
belongs to the maximal independant set. This last for-
mulation is known as binary integer program IP2? or 2-
SAT? which have some power properties than a general
IP problem. Indeed, it turns out that solutions of this
IP2 problem always have denominators not great then 2,
which guarantees that in the process of an integer reso-
lution no number explosion will be occur. In addition,
this property guarantees that all basic solutions of linear
relaxation of this 2-SAT are integer multiple of 1/2.

This property follows from the following statement:
the determinants of all nonseparable submatrices of the
2-SAT linear programing problem have absolute value at
most 2. A matrix is nonseparable if there is no partition
of the columns and rows to two subsets (or more) C1,
C5 and R;, R, such that all nonzero entries in every
row and column appear only in the submatrices defined
by sets C1 X Ry, Co X Rs.

Proof. Let A denote the constraint matrix of this 2-SAT
integer program. Thus A has at most non-zero entries
in every row . Let do it by induction on the size of the
submatrix. Since the entries of A are from {—1,0,1},
the claim holds for 1.X'1 submatrices. Assume that it
holds for any (m — 1)(m — 1) submatrix and we show
that the claim holds for any mXm submatrix. Let A;;
denote the submatrix obtained by deleting the 7’th row
and the j’th column from A. Without loss of generality,
we assume that the two non-zero elements in row ¢ of
A are in columns 4 and i 4+ 1 (modulo m). Due to the

2Integer Programming with two variables per inequality.

32—satisﬁability boolean formula on variables z1,...,x, where
the objective is to find an assignment satisfying all clauses such that
>o7 @y is maximized.

nonseparability of the matrix, this can be achieved by
appropriate row and column interchanges, thus

det(A) = A[1,1].det(A1y) — (—1)™ Afm, 1].det(A1)

The absolute values of the determinants of A;; and
A1 are equal to 1, since both are triangular matrices
with nonzero diagonal elements. Therefore, the abso-
lute value of the determinant of A is at most 2. O

4.3 Algorithm

The BAB algorithm designed progressively builds a
tree of subproblems as follows:

o At the root, we start with the original graph G;

e At each node N of the tree structure, we get two
nonadjacent vertices and we branch using the pre-
vious branching rule.

e During the resolution process, we maintain the la-
tency of the best schedule computed so far which
corresponds to the number of colors needed by a
valid coloring of GG. At the beginning, we can set
Liest to the A(G) + 1.

e At each node N, we treat GV, the graph obtained
by the branch operation. Except for the leaves, we
compute the clique number Ljocy of GN. As see
above Ljoca is a lower bound of x(G*) and so of
G. If Ligcat > Lpest the subtree below N is not
constructed as it will not lead to a better complete
solution.

e A leaf is reached if there is no nonadjacent vertices
in the obtained graph G', which means that the
graph is complete. It is well known that for such
complete graph we have x(G!) = A(G!) +1 =
w(G') = n. So now we have an actual solution.
We check if this coloring is valid; so no precedence
constraints is violated, then if its is better than Ly
then Ly 1s updated.

o The algorithm stops when all the branches are ex-
plored. The whole space of solutions has been ex-
plored and Ly, is returned as the optimum solution
which satisfied the objective function.

It is easy to prove that this algorithm terminates. In-
deed when we branch two situations are possible: we
merge two vertices so we decrease the number of ver-
tices of the graph thus not than n— joinings are possible

Test nbT Optimum Branch-and-bound

Maximal Clique (IP2-Pip) [Greedy Clique

Time | Nb calls | Time T Nb calls
cssl 15 5 354s 343 1.19s 2200
cssll 15 4 0.40s 42 0.02s 88
css12 17 10 S.s 5870 1.14s 1505
css5 9 4 5.39s 233 0.2s 49
css6 12 4 Is 13 0.07 s 35
wss3 11 5 1.32s 104 0.05s 360
wss32 11 4 1.63 s 235 0.07 s 482
wocl 13 5 0.08 s 8 0.01's 73
woc2 9 4 0.03 s 4 0.01's 44
rasml 9 5 0.90 s 19 0.01's 22
rasm?2 7 4 0.15s 2 0.01's 6
jacl 19 6 1"08s 1025 1.98s 1678

Table 1. Scheduling results for the various tests on the Branch-And-Bound with both maximal

and greedy clique bounds algorithms.

for a given GG. In the second, we connect two vertices,
at most k = n(n — 1)/2 — m additions are allowed,
where k is the number of pairs of vertices non connected.
k < mn(n —1)/2 k represents the number of edges to be
added to G for being a complete graph. Thus the algo-
rithm well finishes.

In the this variant of the algorithm, we wait until a
solution is found (reaching a leaf) for testing if it is a
valid coloring. Another possibility can be considered.
Indeed this test can be dynamically performed. Indeed a
coloring can’t be valid if a contraction of two nonadja-
cent vertices (tasks), ¢ and j causes a creation of a cycle
in the original DFG (which express the precedence con-
straints). For this reason, we can guard a contraction
by a test in which we check if no path in the DFG join
between ¢ and j (both ¢ ~» j and j ~~ 7). This fact en-
tails maintaining a Roy-Warshall matrix* after each con-
traction done. This solution can improve considerably
the time of pruning but as maintaining a Roy-Warshall
matrix which requires ¢ where ¢ is the cardinal of the
graph defined at each level of the BAB tree.

Let us notice that the depth of the BAB tree is at most
in (n? — m) which defines the number of edges needed
to get a complete graph by the joining operation.

5 Experimental Results and Discussion

We have implemented the algorithm presented pre-
viously, in our framework. The experiments are per-
formed on pieces of real-life applications. They consist
of 12 tests from the PerfectClub [2] and HLSynth95 [15]
benchmarks. The PerfectClub benchmarks represent ap-
plications in a number of areas of engineering and sci-

4a boolean matrix which reports the accessibility relation; an entry
(4, 4) = True in this matrix if there is a path from ¢ to j in G

entific computing and the HLSynth95 benchmarks, more
specific, represent a repository of applications in embed-
ded systems. The runtime is computed in user seconds
on a 1.8Ghz Intel Pentium IV running Linux. Results are
reported in Table 4.3.

We have implemented the BAB algorithm with both
variants of clique computation (maximal clique and
greedy clique). The maximal clique is computed using
the PIP’ [6] a special integer programming Parametric
Integer Programming solver.

The first two columns of Table 4.3, we report the
name of the test and the number of included tasks. The
third column represent the chromatic number; the opti-
mal schedule. For each variant of the evaluation proce-
dure we report the runtime of the BABalgorithm and the
number of calls to the corresponding procedure (col-
umn Nb calls) which corresponds also to the number of
nodes actually constructed by the BAB algorithm.

Experimental results show that, in effect, our exact
branch-and-bound approach has an acceptable runtime
despite its theoretical complexity. However the results
show that the version of the BAB using the greedy clique
algorithm to compute the lower bound is more faster
than the version using a maximal clique computation.
This is due to the ILP solver calls.

6 Conclusion

This paper presents a formalism, for high-level syn-
thesis, to accurately and uniformly express both resource
constraints and data dependences. Resource constraints
and data dependences are modeled by dis-equations and
finding an optimal schedule entails resolving a system
of dis-equations.

Sfor Parametric Integer Programming

Results show that the version of the BAB using the
greedy clique algorithm is faster than the version using
a maximal clique computation. These results lead us to
take more attention about this designed algorithm for
coloring a graph, in this context instrumented to com-
pute a schedule. Indeed the coloring graph algorithms
are a very used in the literature.

Branch-and-Bound algorithm is just a meta-
algorithm, which can be declined in many different
directions. The one we have chosen here is the most
obvious. One may consider variants, in which the
lower bound is not computed for all the nodes, or in
which the order of elaboration of the nodes is best-first
instead of depth-first. On the other hand one can speed
up the runtime by many others tricks: getting the
most adequate two nonadjacent vertices to perform the
branching or speeding up the greedy clique algorithm.
This is left for future work.

In this paper we have used PIP our special ILP solver
to compute the maximal clique, in the future we will use
the Cplex [14], a well known industrial ILP solver.

References

[1] F. Benhamou and A. Colmerauer. Constraint Logic Pro-
gramming, Selected Research. MIT Press, 1993.

[2] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang,
L. Pointer, R. Roloff, A. Sameh, E. Clementi, S. Chin,
D. Scheider, G. Fox, P. Messina, D. Walker, C. Hsiung,
J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. John-
son, R. Goodrum, and J. Martin. The PERFECT club
benchmarks: Effective performance evaluation of su-
percomputers. Inter. J. of Supercomputer Applications,
3(3):5-40, 1989.

[3] B. Bollobas. Modern Graph Theory. Springer, 1998.

[4] A. Darte, Y. Robert, and F. Vivien. Scheduling and Au-
tomatic Parallelization. Birkhauser Boston, 2000.

[5] F. Donnet. Synthese de haut niveau contrdlée par
lutilisateur. PhD thesis, Université Paris VI, Jan. 2004.

[6] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243-268, 1988.

[7] P. Feautrier. Some efficient solutions to the affine
scheduling problem. part II: Multi-dimensional time. In-
ter. J. of Parallel Programming, 21(6):389-420, 1992.

[8] P.Feautrier. Scalable and modular scheduling. In S. Ver-
lag, editor, Vassiliadis, Simulation, volume 3133 volume
LNCS 3133, pages 433-442, July 2004.

[9] D.D. Gajski. Principle of Digital Design. Prentice Hall
international edition, 1997.

[10] D. D. Gajski and L. Ramachandran. Introduction to
high-level synthesis. IEEE Design and Test of Comput-
ers, 11(4):44-54, 1994.

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A
high-level synthesis framework for applying paralleliz-
ing compiler transformations. In Proceedings of the 16th

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
(20]

(21]

(22]

(23]

Inter. Conf. on VLSI Design (VLSI'03), page 461. IEEE
Computer Society, 2003.

D. S. Hochbaum, editor. Approximation algorithms for
NP-hard problems. PWS Publishing Co., Boston, MA,
USA, 1997.

K. Kuchcinski. Constraints-driven scheduling and re-
source assignment. ACM Trans. Des. Autom. Electron.
Syst., 8(3):355-383, 2003.

C. Optimization. Using the CPLEX callable library,
1995.

P. R. Panda and N. D. Dutt. 1995 high level synthe-
sis design repository. In ISSS '95: Proceedings of the
8th international symposium on System synthesis, pages
170-174, New York, NY, USA, 1995. ACM Press.

I. Radivojevic and F. Brewer. A new symbolic tech-
nique for control-dependent scheduling. IEEE Trans. on
CAD of Integrated Circuits and Systems, 15(1):45-57,
Jan. 1996.

A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley & Sons, Inc., 1986.

W. G. J. Verhaegh, E. H. L. Aarts, P. C. N. V. Gorp, and
P.E.R. Lippens. A two-stage solution approach to multi-
dimensional periodic scheduling. IEEE Transactions on
Computer-Aided Design, 20(10):1185-1199, Oct. 2001.
J. Silc. Scheduling strategies in high-level synthesis. In-
formatica (Slovenia), 18(1), 1994.

R. A. Walker and S. Chaudhuri. Introduction to the
scheduling problem. /EEE Des. Test, 12(2):60-69, 1995.
D. Welsh and M. . Powell. An upper bound for the
chromatic number of a graph and its applications to
timetabling problems. Comput. J., 10:85-86, 1967.

D. B. West. Introduction to Graph Theory. Prentice Hall,
1996.

P. Yang and F. Catthoor. Pareto-optimization-based run-
time task scheduling for embedded systems. In Conf.
on Hardware/Software Codesign and System Synthesis
(1S55°03), pages 120-125. ACM Press, 2003.

