
Array Data
ow AnalysisPaul Feautrier �February 8, 2006May 21, 1997 Abstra
tWhile mathemati
al reasoning is about �xed values, programs arewritten in term of memory
ells, whose
ontents are
hangeable values.To reason about programs, the �rst step is always to abstra
t from thememory
ells to the values they
ontains at a given point in the exe
utionof the program. This step, whi
h is known as Data
ow Analysis, may usedi�erent te
hniques a

ording to the required a

ura
y and the type ofprograms to be analyzed.This paper gives a review of the ad ho
 te
hniques whi
h have beendesigned for the analysis of Array Programs. An exa
t solution is possiblefor the tightly
onstrained stati

ontrol programs. The method
an beextended to more general programs, but the results are then approxima-tion to the real data
ow. Extensions to
omplex statements and to theinterpro
edural
ase are also presented.The results of Array Data
ow Analysis may be of use for program
he
king, program optimization and parallelization.1 Introdu
tionThere are many situations in whi
h one needs to thoroughly understand thebehavior of a program. The most obvious one is at program
he
king time.If we
ould extra
t a des
ription of a program as, e.g., a set of mathemati
alequations and
ompare it to a spe
i�
ation, also given in the same medium,debugging would be
ome a s
ien
e instead of an art. Reverse engineering isanother
ase in point. But the most important appli
ation of su
h analyses isto optimization. Ea
h optimization has to be proved valid in the sense thatit does not modi�es the program ultimate results. To a
hieve this, we haveto know, in a more or less pre
ise way, what these results are intended to be.Sin
e the most aggressive type of optimization a program
an be subje
ted tois parallelization, understanding a program before attempting to parallelize itis a very important step.Now, sin
e the time of Von Neuman, programs are written in term of \vari-ables" whi
h are in fa
t symboli
 names for memory
ells. Values are nevergiven1, or even named, but always alluded to as \the present
ontent of
ellx". On the other hand, in mathemati
s, the subje
t of dis
ourse is always a�e-mail : Paul.Feautrier�ens-lyon.fr1ex
ept in the
ase of
onstants. 1

value whi
h never
hange, albeit it
an be unknown or arbitrary. The value ina given memory
ell
an be modeled as a fun
tion of time (that fun
tion maybe
onstant).Obviously, \time" here is not physi
al time. Besides the fa
t that exhibitingsu
h a fun
tion would be nearly impossible, it would have the added in
onve-nien
e of not being portable among di�erent
omputers. We will use a logi
altime, to be de�ned later. The only requirement is that there must be a \timearrow": time must belong to an ordered set. Sin
e the state of a
omputer mem-ory does not
hange ex
ept at ea
h exe
ution of an assignment, logi
al time isnot
ontinuous but dis
rete. Ea
h time step is an operation of the
omputer,whi
h
orresponds, from the point of view of the programmer, to the exe
utionof an instru
tion. For program analysis purposes, there is some leeway in thede�nition of an operation. It may be the exe
ution of a ma
hine instru
tion, asin the
ase of Instru
tion Level Parallelization, or the exe
ution of an assignmentstatement, as in most of this paper, or the exe
ution of a
omplex statement,as in Se
t. 4.If we stipulate that the meaning of a program is given by expressing thevalue of variables as a fun
tion of (logi
al) time, then data
ow analysis is thepro
ess of extra
ting properties of these fun
tions from the program text. Theseproperties may be of widely varying pre
ision. In some
ases, one may exhibit a
losed formula for the fun
tion. In other
ases, one may only knows that it haspositive values. In the most frequent
ases, one has to be
ontent with relationsbetween values taken either at the same time (Floyd's assertions [Flo67℄) or atdi�erent times. As before, these relations may be more or less pre
ise. We willshow that, for a simple but useful
ategory of programs, the result of ArrayData
ow Analysis is a system of equations relating the values of variables atdistin
t time points.Data
ow analysis is based on the observation that the value one may retrievefrom a memory
ell is the one whi
h was written last. In the s
alar
ase, thisallows one to write data
ow equations, whi
h may be solved either by iterativemethods or by dire
t methods. In the
ase of array
ells, the problem is morediÆ
ult be
ause there is no simple method for de
iding if two referen
es to thesame array are referen
es to the same
ell or not: two o

urren
es of a[i℄ arereferen
es to the same
ell i� i has not been modi�ed in between. Conversely,it may happen that a[i℄ and a[j℄ refer to the same
ell if the values i and j2are equal.There is a general method for devising data
ow analyses [CC77℄. One startsfrom a semanti
al des
ription of the sour
e language, and then one abstra
tsthe features of interest by
onstru
ting a nonstandard semanti
s. The resultof exe
uting a given program a

ording to this semanti
s, if possible, is therequired property.Our main interest here is another type of analysis whi
h has been designedin an ad ho
 way for the use of automati
 parallelizers. The initial
on
eptwas that of dependen
es. There is a
ow dependen
e between statement S1and S2 i� a value produ
ed by S1 may be used later by S2. By restri
tingthe allowed expressions in subs
ripts and loop bounds to aÆne expressions, theproblem redu
es to the question of the feasibility in integers of a system of aÆne2We will adhere to the following
onvention: identi�ers will always be written in a Teletypefont. Their values at a given time will always be denoted by the same letter in an itali
 font.If ne
essary, the time will be indi
ated by various devi
es (a

ents, subs
ripts, arguments).2

inequalities. The problem is solved by standard Linear Integer Programmingalgorithms. It was soon realized [Fea88a℄ that the same te
hnology
ould givemu
h more pre
ise results. For programs abiding to the same restri
tions asabove, and for ea
h value in the program, one
an pinpoint its sour
e, i.e. thename of the write operation whi
h
reated it. This information is invaluable forprogram
he
king, program understanding (a.k.a. reverse engineering), programoptimization and parallelization.Program whose only
ontrol stru
ture is the do loop, whose only data stru
-ture is the array and in whi
h loop bounds and subs
ripts are aÆne fun
tionsare known as stati

ontrol programs. For su
h programs, one
an take itera-tion ve
tors (the ve
tors whose
omponents are the
urrent values of the loop
ounters) as logi
al time. It follows that, under the above hypotheses, arraysubs
ripts are
losed fun
tions of (logi
al) time. This is the
ru
ial propertywhi
h allows us to �nd relations between the other values in the program. Forprogram whi
h are outside the stati

ontrol model, devising an Array Data
owAnalysis is mu
h more diÆ
ult. A �rst possibility is to extend slightly the
on-trol model by adding
onditionals and while loops. If this is not possible, itmeans that the iteration
ount of the loop
annot be bounded at
ompile time.The
onsequen
e is that, if these iterations
an be the sour
e of a value, then we
annot �nd the last one. In that
ase, all we
an do is to report that the sour
ebelongs to a set of iterations. The result of our analysis is no longer sour
es,but sour
e sets, and our aim will be to �nd the smallest possible sour
e sets.The
orresponding te
hnique is known as Fuzzy Array Data
ow Analysis andis presented in Se
t. 3. It
an be extended to the
ase where some subs
riptsare no longer aÆne fun
tions [BCF97℄.We will next present some extensions of ADA. The �rst one is to statementswhi
h may return an unbounded number of results. Typi
al
ases are readstatements, ve
tor statements �a la Fortran 90 and forall statements �a la HPF(Se
t. 4). Pro
edures may return an unbounded number of results as soonas they have at least one array argument. Hen
e, they belong to the above
ategory and
an be treated in the same way as, e.g., ve
tor operations. Thesete
hniques are presented in Se
t. 4.3.In the
on
lusion, we sket
h some appli
ations of Array Data
ow Analysisand point to several unsolved problems.The work whi
h is reported here has taken many years of resear
h by manypeoples to evolve from the rough sket
h in [Fea88a℄ to the present state of a�airs.I would like to a
knowledge
ontributions by Denis Barthou and Jean-Fran�
oisCollard [BCF97℄, by Vin
ent Lefebvre [LF97℄ and by Arnauld Leservot [Les96℄.2 Exa
t Array Data
ow AnalysisExa
t Array Data
ow Analysis is possible only in the
ase of stati

ontrolprograms. We will �rst des
ribe this program model. The results of exa
tADA are sour
e fun
tions, whi
h give, for ea
h step in the exe
ution of thesour
e program and for ea
h memory
ell, the operation whi
h has generatedthe
urrent value of the memory
ell. We give an algorithm for
omputing sour
efun
tions and
ompare it to other proposals from the literature.3

2.1 NotationsThe obje
ts we have to handle in this paper are mainly ve
tors with integer
oordinates and set of su
h ve
tors. j~aj is the dimension of ~a. ~a[i::j℄ is thesubve
tor of ~a built from
omponents i to j. ~a[i℄ is a shorthand for ~a[i::i℄.Familiar operators and predi
ates like + and � will be ta
itly extended tove
tors. The sign� denote lexi
al ordering of ve
tors. The max operator, whena
ting on ve
tors or ve
tor sets, is always to be understood as the maximuma

ording to �. Large letters will usually denote sets; IN will be the set ofnonnegative integers and ZZ the set of signed integers.2.2 The Program ModelLet us �rst insist that the present work is not about any parti
ular language, butabout the stati
 subset of any programming language. To emphasize this fa
t,the examples will be written indi�erently in Fortran, Pas
al or C. Furthermore,the fa
t that a given program fragment belongs to this stati
 subset may be self-evident from the program text, or may be the result of elaborate prepro
essing(goto elimination, indu
tion variable dete
tion,
onstant propagation, do loopre
onstru
tion, to
ite a few). In this paper, we will always suppose that su
hprepro
essing has already been applied and that we are dealing with its results.For simpli
ity, data types will be restri
ted to integers, reals, and n-dimen-sional arrays of integers and reals. Adding other s
alar types (Boolean,
omplexnumbers) and even re
ord types is easy. The only statements we will
onsider inthis se
tion are s
alar and array assignments. The only
ontrol
onstru
ts willbe the sequen
e and the do loop. A do loop has the property that it possessesa
ounter, and that neither the
ounter nor its upper and lower bounds aremodi�ed by the loop body. In this paper, we will suppose that the loop step isalways one. If the step is a known numeri
al
onstant, the program
an alwaysbe transformed to have step one. If the step is an expression, the program willbe
onsidered to be beyond the stati

ontrol model.The Pas
al for loop has all of the above properties and thus
an be
onsidered equivalent to a Fortran do loop. The C for loop is a more
omplex obje
t sin
e the loop
ounter, lower and upper bounds are notre
ognized by the language, and sin
e these elements
an be modi�ed inthe loop body. However, it is possible to
he
k whether these restri
tionare adhered to, and thus to identify those C loops whi
h are equivalent toa Fortran loop.We will also suppose that
ompound statements are
attened, i.e. that
on-stru
tions su
h asbegin S1;begin S2; S3endendare repla
ed by the equivalent:begin S1; S2; S3 end 4

2.2.1 Restri
tionsThe above restri
tions are obviously intended to simplify the
al
ulation of thetotal number of iterations of all loops. This is, however, not suÆ
ient: we have tospe
ify the form and
ontent of the loop bounds. The simplest
ase is when limitsare known numeri
al values. This, however, is mu
h too restri
tive, sin
e manyprograms use variable limits (matrix and ve
tor dimensions, dis
retization size,et
.) and even non re
tangular loop nests:
onsider for instan
e the prevalen
ein numeri
al analysis of triangularization algorithms (like those of Gauss orCholesky). These observations motivate the following de�nition of the
lass ofstati

ontrol programs.To re
ognize a stati

ontrol program, one must �rst identify its stru
tureparameters: a set of integer variables whi
h are de�ned only on
e in the pro-gram, and whose value depends only on the outside world (through an inputstatement) or on other already de�ned stru
ture parameters. A program hasstati

ontrol if all its loops are do loops whose bounds depend only on stru
tureparameters, numeri
al
onstants and outer loops iteration
ounters. The analy-sis te
hnique whi
h is presented here is based on the theory of aÆne inequalities,and hen
e is appli
able only if all limits are aÆne fun
tions. For similar rea-sons, all subs
ripts are restri
ted to aÆne fun
tions of the loop
ounters andthe stru
ture parameters.We will use the fa
t that in a
orre
t program, array subs
ripts are alwayswithin the array bounds. Hen
e, two array referen
es address the same memorylo
ation if and only if they are referen
es to the same array and their subs
riptsare equal. This restri
tion is not too severe if we note, �rst, that it is goodprogramming pra
ti
e to debug a program before submitting it to an optimizingor restru
turing
ompiler, and also that the methods of this paper may be usedas a highly eÆ
ient array a

ess
he
ker (see Se
t. 5 or, for a pre
ursor of ourwork, [SJ77℄).This hypothesis will allow us to ignore array de
larations. As a
onsequen
e,our te
hnique will be equally appli
able to languages whi
h enfor
e
onstantarray bounds { Fortran, Pas
al, C, ... { and to those whi
h do not { as forinstan
e Fortran 90.2.2.2 The Sequen
ing Predi
ateValues in array elements are produ
ed by exe
ution of statements. Hen
e weneed a notation to pinpoint a spe
i�
 exe
ution of a statement, or operation.Our �rst need is an unambiguous designation of a statement in a program. Oursolution is to use arbitrary names, whi
h will be denoted by letters su
h as R, S,T. When dis
ussing examples, we will use the fa
t that our preferred languagesallow the aÆxing of a numeri
al label to ea
h statement. By
onvention, thestatement labeled i will be named Si. In the balan
e of this paper, we willmostly be interested in simple statements. However, some dis
ussions will be
learer if all statements,
ompound or simple, are named.In our sour
e language fragments, the only repetitive
onstru
t is the doloop. Hen
e, an operation is uniquely de�ned by the name of the statementand the values of the surrounding loop
ounters (the iteration ve
tor [Ku
78℄).A pair su
h as hR;~ai whose
omponents are a statement name and an integerve
tor will be
alled an (operation)
oordinate. To denote a statement instan
e,5

a
oordinate must satisfy two
onditions:� the dimension of ~a must be equal to the number of loops surrounding R;� all
omponents of ~a must be within the
orresponding loop limits.With ea
h loop L we may asso
iate a pair of inequalities:lbL � a � ubL;where a is the loop
ounter of L. If a statement R is embedded in a loop nestL1; L2; : : : ; LN , in that order, then the iteration ve
tor ~a of R must satisfy:8p : (1 � p � N) lbLp � ~a[p℄ � ubLp : (1)(1) may be summarized in matrix form as:ER~a � ~nR: (2)where ER is a 2N �N matrix and ~nR is a ve
tor of dimension N in whi
h thestru
ture parameters may o

ur linearly.Formula (2) will be
alled the existen
e predi
ate of R. Noti
e that we do notsuppose that lbL � ubL. In a

ordan
e with the Pas
al
onvention (and withthe \modern" interpretation of Fortran do loops), a loop whose bounds violatethis inequality will not be exe
uted at all.Consider for example the program sket
h in �gure 1. Figure 2 des
ribesits iteration domains. The existen
e predi
ate of statement S2 may bewritten as: 0B� 1 0�1 0�1 10 �1 1CA� ij � +0B� �1n�1n 1CA � 0:The pre
eding dis
ussion leads to a spatial des
ription of loops. Su
h a pointof view goes ba
k to the work of Ku
k; see also Padua and Wolfe's review arti
le[PW86℄. Usually, loops are explained from a temporal point of view: iteration iis exe
uted just before iteration i+1, and so on. We must seek a way to re
on
ilethose two aspe
ts. This may be done by de�ning a sequen
ing predi
ate on theiteration domains. The sequen
ing predi
ate is a stri
t total order on the set ofoperation
oordinates; it is written:hR;~ai � hS;~bi:and expresses the fa
t that hR;~ai is exe
uted before hS;~bi. The sequen
ingpredi
ate depends only on the sour
e program text. We have given a simpleexpression for it in [Fea91℄. Let NRS be the number of loops whi
h en
loseboth statements R and S. Let <text be the textual order of the sour
e program:R <text S i� R o

urs before S in the program text. The exe
ution order is givenby:hR;~ai � hS;~bi � ~a[1::NRS ℄� ~b[1::NRS ℄ _ (~a[1::NRS ℄ = ~b[1::NRS ℄ ^ R <text S):(3)6

DO i =1,nDO j = 1,i-1S1END DODO j = i+1,nS2END DOEND Figure 1: A sample program

S1
S2

j

i�������
�������

�������

�������
�������

������

-

6

qqq
qqq
qqq

qq
qqq
qqq
q

qq
qqq
qqq
q

qqq
qqq
qqq

qqq
qq
qqq
q

qqq
qq
qqq
q

qqq
qqq
qqq

qqq
qqq
qq
q

qqq
qqq
qq
q

qqq
qqq
qqq

Figure 2: The iteration domain of program 1for k := 0 to 2*n do1 :
[k℄ := 0.;for i := 0 to n dofor j := 0 to n do2 :
[i+j℄ :=
[i+j℄ + a[i℄*b[j℄;Figure 3: The produ
t of two polynomials7

Knowledge of NRS (a matrix of integers) and <text (a stri
t total orderrelation) is all that is needed to sequen
e all operations in a program.When lexi
ographi
 order is repla
ed by its de�nition, the sequen
ing pred-i
ate be
omes a disjun
tion of NRS + 1 aÆne predi
ates whi
h will be writtenas �p:hR;~ai �p hS;~bi � (~a[1::p℄ = ~b[1::p℄ ^ ~a[p+ 1℄ <~b[p+ 1℄); 0 � p < NRS : (4)The version for p = NRS is :hR;~ai �p hS;~bi � ~a[1::NRS ℄ = ~b[1::NRS ℄ ^ R <text S: (5)One may noti
e that operations whi
h stand in the relation �p to ea
hother have exa
tly p identi
al
oordinates in their iteration ve
tors. In Allenand Kennedy's paper[AK87℄, if two su
h operations give rise to a dependen
e,one says that this dependen
e is at depth p+ 1, while if p = NRS , the depth issaid to be in�nite. With a slight displa
ement of the origin, we will say that �pis the sequen
ing predi
ate at depth p, depths ranging from 0 to NRS .2.2.3 Another Presentation of the Sequen
ing Predi
ateWe
an derive another expression for the sequen
ing predi
ate by
onsideringthe exe
ution tree of the program, whi
h is obtained by (
on
eptually) unrollingall its loops. The nodes of the exe
ution tree are either simple statements (theleaves) or
ompound statements (the interior nodes). A
ompound statement
omes either from a genuine
ompound statement in the sour
e program orfrom the unrolling of a loop. Let us number all edges issuing from a given node
onse
utively from left to right, starting from the lower bound of the loop inthe
ase of unrolling, and from 1 in the
ase of a
ompound statement. The
oordinates of the iteration ve
tor of a leaf are the numbers asso
iated to theunique path from the root to the leaf in top-down order. If we suppose thatthe program has been normalized, i.e. that the body of a loop is always a
ompound statement whatever the number of statements it
ontains, then the
oordinates of the iteration ve
tor alternate between positions in
ompoundstatements (
onstants) and loop
ounters (variables). By
onvention, the wholeprogram is a
ompound statement, hen
e the the �rst
omponent of all iterationve
tors is a
onstant. The point of this
onstru
tion is now that the sequen
ingpredi
ate is simply lexi
ographi
 order.Consider the program of Fig. 3. The iteration ve
tors of S1 and S2 arenow h1; k; 1i and h2; i; 1; j; 1i. From this we dedu
e, e.g. that all instan
esof S1 exe
ute before all instan
es of S2. Similarly, by simplifying thelexi
ographi
 order, one
an show that:hS2; i; ji � hS2; i0; j0i � h2; i; 1; j; 1i � h2; i0; 1; j0; 1i� i < i0 _ (i = i0 ^ j < j0):The notations we have de�ned in the pre
eding se
tion will be extended todeal with the new iteration ve
tors. For instan
e, the existen
e predi
ate of astatement S will still be written: ER~a � ~nR8

where the matrix ER and the ve
tor ~nR have new rows to deal with the
onstantvalues in the iteration ve
tor. Similarly, we will still use ~a �p ~b for the depth psequen
ing predi
ate, the meaning being that the above expression begins by pequalities on the variable
omponents of ~a and ~b.These new iteration ve
tors where introdu
ed in [Fea92b℄ for other purposes.A similar proposal, with a di�erent numbering s
heme has been made in [KP96℄.2.3 Data Flow Analysis2.3.1 Formal SolutionSuppose that we are given a program
onforming to the restri
tions of se
tion2.2.1. Let T be a statement in whi
h an array M is read. Statement T will be
alled the observation statement in what follows. Let ~b be the iteration ve
torof T; the subs
ripts of M are aÆne fun
tions of ~b. In ve
tor form, the referen
eto M may be written M[~g(~b)℄.Consider for instan
e the referen
e to v[i,k℄ in:for i := 1 to n dofor j := 1 to i-1 dofor k := i+1 to n do1 : v[j,k℄ := v[j,k℄-v[i,k℄*v[j,i℄/v[i,i℄;The iteration ve
tor of S1 is h1; i; 1; j; 1; k; 1i. The indexing fun
tion, ~g, isgiven by: ~g(~b) = � 0 1 0 0 0 0 00 0 0 0 0 1 0 �~b:We are interested in �nding the sour
e of the value of M[~g(~b)℄. Let S1; : : : ; Snbe the statements whi
h produ
e a value for M, and let ~a1; : : : ;~an be theiriteration ve
tors. Si is of the form:M[~fi(~ai)℄ := � � � :The sour
e is a fun
tion of ~b whi
h gives a
oordinate when evaluated, whi
hwill be
alled the sour
e fun
tion of M[~g(~b)℄.For ea
h Si, there is a set of operations whi
h write into M[~g(~b)℄. Let Qi(~b)be this set. The set of all
andidate sour
es is:Q(~b) = n[i=1Qi(~b):Let us state the
onditions whi
h apply to a generi
 member, ~a of Qi(~b):� Existen
e Predi
ate: ~a must be a legitimate iteration ve
tor for Si:ESi~a � ~nSi : (6)9

� Subs
ript Equations : the subs
ripts of M must be the same at the readand write operations: ~fi(~a) = ~g(~b):Note that this ve
tor equation subsumes r s
alar equations, where r is therank of M. In writing this equation, we have taken into a

ount the fa
tthat the subs
ripts of M are guaranteed to be within M bounds.� Sequen
ing Predi
ate ~a must be exe
uted earlier than ~b:~a� ~b:� Environment : The observation statement must be exe
uted:ET~b � ~nT:From this we dedu
e the de�nition of Qi:Qi(~b) = f~a j ESi~a � ~nSi ;~a� ~b; ~fi(~a) = ~g(~b)g: (7)The sets Qi may still be subdivided a

ording to the following observation.Under the restri
tions of Se
t. 2.2.1, the existen
e predi
ate and subs
riptequations generate a set of aÆne
onstraints. As we have seen earlier, thesequen
ing predi
ate is a disjun
tion of aÆne predi
ates �p. Hen
e, Qi is aunion of polyhedra, or, rather, sets of integer points
ontained in polyhedra:Qpi (~b) = f~a j ESi~a � nSi ;~a �p ~b; ~fi(~a) = ~g(~b)g; (8)Q(~b) = n[i=1NSiT[p=0 Qpi (~b): (9)Finally, the sour
e we are seeking is the lexi
ographi
 maximum of Q(~b):&(~b) = max n[i=1NSiT[p=0 Qpi (~b): (10)In this paper, we will make repeated use of the following:Property 1 max n[i=1Ei = nmaxi=1 (maxEi);where the Ei are arbitrary subsets of a totally ordered set E, and where max isthe maximum operator asso
iated to the order relation of E.The proof is trivial if none of the sets Ei is empty. If not, we have to introdu
ea spe
ial symbol, ?, representing the unde�ned value, to stand in pla
e of themaximum of an empty set. By
onvention, ? is less than any other value in anyof the sets Ei: 10

8x 2 E : ? � x: (11)Appli
ation of the above property to (10) lead to the
omputation of&pi (~b) = maxQpi (~b) (12)&(~b) = nmaxi=1 NSi;Tmaxp=0 &pi (~b): (13)The quantities &pi (~b) are known as dire
t dependen
es and were �rst de�nedby Brandes [Bra88℄.To avoid multiple indi
es, we will renumber all possible
andidates at alldepths with a new index j. L will stand for the
ardinal of the set of possiblesour
es. (13) will be rewritten as :&(~b) = maxf&j(~b) j j = 1; Lg: (14)Let us go ba
k to the example in Figure 3. Consider the problem of �ndingthe sour
e of
[i+j℄ in statement S2. There are two
andidates, S1 andS2 itself, and as a
onsequen
e, three fun
tions &01 , &02 and &12 . The ve
tor~b, in this
ase, has dimension 5: h2; i; 1; j; 1i. To simplify notations, onlyits variable
omponents, i and j, will be taken into a

ount.Consider for instan
e the set Q2(i; j). Its elements are �ve dimensionalinteger ve
tors h2; i0; 1; j0; 1i whi
h satisfy the following
onstraints:� the index equations, i0 + j0 = i+ j;� the sequen
ing
onstraint i0 < i _ (i0 = i ^ j0 < j). One sees thatthe se
ond term in the disjun
tion is in
ompatible with the indexequation. This implies that Q12 is empty and &12 = ?.� the limit
onstraints 0 � i0 � n; 0 � j0 � n.Examination of �gure 4 shows that Q2(i; j) is empty if i = 0 or j = n.If not empty, its lexi
al maximum is the ve
tor h2; i� 1; 1; j + 1; 1i. Thisimplies that to represent &02 , we will need a
onditional:&02 (i; j) = if (i � 1 ^ j < n) then h2; i � 1; 1; j + 1; 1i else ?: (15)The
ase of the other
andidate is simpler; we always have:&01 = h1; i+ j; 1i:Computing the lexi
ographi
 maximum of these values is now a straight-forward exer
ise in algebra. The result is:&(i; j) = if (i � 1^ j < n) then h2; i�1; 1; j+1; 1i else h1; i+ j; 1i: (16)To obtain this result, we have relied a lot on �gure 4 and geometri
alintuition. Now this works �ne on one- and two-dimensional problems, butis quite diÆ
ult and error prone in three dimensions, and is impossiblebeyond. Furthermore, a
omputer has no geometri
al intuition at all.Our aim now will be to solve the above problem in a general, systemati
fashion and to implement the
orresponding algorithm.11

������I
8

4
5

0 0 4�������
������ �������

����� ����� �������

6

Q02(2; 1)
Q01(2; 4)
Q02(2; 1) n

n

s1
s2

k
j

i

6

-rr
rr
rr
rr
r

rr
rr
r

rr
rr
r

rr
rr
r

rr
rr
r

rr
rr
r

Figure 4: Computing the sour
e fun
tion for the program of Figure 3The problem is �nding the sour
e of
[3℄ at iteration (2; 1) and of
[6℄ atiteration (2; 4) (
ir
led points).Square boxes en
lose the
orresponding Q sets.
12

2.3.2 Evaluation Te
hniquesDire
t Dependen
es In this se
tion, we will fo
us �rst on one parti
ulardire
t dependen
e &pi at a given depth p. When the original program
onformsto the restri
tions of se
tion 2.2.1, all terms in formula (12) are linear equalitiesor inequalities. In fa
t sin
e indexing fun
tions are aÆne, the �rst term is alinear system whose dimension is the rank of array M. The last term is simplya set of linear inequalities. The se
ond term is given by (4) or (5). If the depthp is less than Nsit, then it is the
onjun
tion of p equalities and one inequality.For p = Nsit, it is made of equalities only and does not exist if Si <text T isfalse.As a
onsequen
e, Qpi (~b) is the set of integer ve
tors whi
h lie inside apolyhedron. Finding its lexi
al maximum is a Parametri
 Integer Program (aPIP)[Fea88b℄. A short des
ription of an algorithm for solving PIP problems isgiven in the appendix. The parameters are the
omponents of ~b and the stru
-ture parameters. Note that the
omponents of ~b are not arbitrary; they mustsatisfy various
onstraints, among whi
h is:ET~b � ~nTto whi
h may be added any available information on the stru
ture parameters.These inequalities form the
ontext of the parametri
 integer problem.To express the solution, we need the
on
ept of a quasi-aÆne form. Su
h aform is
onstru
ted from the parameters and integer
onstants by the operationsof addition, multipli
ation by an integer, and Eu
lidean division by an integer.The solution is then expressed as a multistage
onditional expression. Thepredi
ates are of the form f(~b) � 0, where f is quasi-aÆne. The leaves areve
tor of quasi-aÆne forms or the \unde�ned" sign, ?. Su
h an expression willbe
alled a quasi-aÆne sele
tion tree (quast for brevity).The result of this analysis is the dire
t dependen
e at depth p between thede�nition by Si and the use in T. The presen
e of a ? sign in a dire
t dependen
eindi
ates that, for some values of the loop
ounters, the referen
e in T is notde�ned by statement Si.Formula (15) is a quast in the above sense (noti
e that integer division isnot used here). Integer division appears when analyzing programs whi
ha

ess arrays with strides greater than one, as in:s = O.do i = 1, 2*n, 21 x(i) = 1end dodo k = 1, 2*n2 s = s + x(k)end doThe dire
t dependen
e from x[2*i-1℄ in S1 to x[k℄ in S2 is given by thefollowing quast:&01 (k) = h1; if 2((k + 1)� 2)� (k + 1) � 0 then (k + 1) � 2 else ?;1i:This formula expresses the fa
t that x[k℄ is not de�ned when k is even.13

Combining the dire
t dependen
es Consider now the problem of evalu-ating (14). This will be done in a sequential manner, by introdu
ing:�n = maxf&j j j = 1; : : : ; ng;�0 = ?:Obviously, &(~b) = �L and we have the re
urren
e:�n = max(�n�1; &n): (17)We are thus led to the evaluation of max(�; �) where �; � are arbitrary quasts.We will use the term extended quast for any formula
onstru
ted from ? andquasi-linear ve
tors by the operations of sele
tion (if ... then ... else...) and taking a maximum.Our problem is then to remove the maximum operator from an extendedquast. This is done with the help of the following rules (and of their symmetri
al
ounterparts, as the max operator is
ommutative).Rule 1 max(?; �) = �. (This is simply a restatement of (11).)Rule 2 If � = if C then �1 else �2, then:max(�; �) = if C then max(�1; �) else max(�2; �)Rule 3 If u and v are quasi linear ve
tors thenmax(u; v) = if u� v then v else u:The
ontext of a node in a quast, C, is the
onjun
tion of all the predi
ateswhi
h are asserted to be true as one follows the path from the root of the quastto the distinguished node. C is
onstru
ted by \anding" p if the leaf is in thetrue part of a
onditional if p then ::::, and by anding :p if it is in the falsepart.Rule 4 Let if p then � else � be a subtree of a quast, and let C be its
ontext.Then if C ^ p is not feasible, repla
e the subtree by � . Similarly, if C ^:p is notfeasible, repla
e the subtree by �.Rule 5 if C then � else � = �.Theorem 2 If Rules 1 to 5 are oriented from left to right and used as rewriterules, then their appli
ation to any extended quast always terminates.Proof Let us introdu
e the following metri
s:� The size of an extended quast, j�j is the number of nodes in thetree representation of �. It is given by the following re
ursivede�nition:1. j?j = juj = 1, where u is a quasi linear form.2. jif p then � else � j = 1 + j�j+ j� j.3. jmax(�; �)j = 1 + j�j+ j� j.14

� The height of a max operator is simply the sum of the sizes ofits arguments: h(max(�; �)) = j�j+ j� j:� j�jif is the number of if 's in an extended quast.Rules 1 to 3 have the property that the max operator on the left hasgreater height than the (eventual) max operators on the right. Inthe
ase of 2, for instan
e, we have:h(max(if C then �1 else �2; �)) = 1 + j�1j+ j�2j+ j� j;h(max(�1; �)) = j�1j+ j� j;h(max(�2; �)) = j�2j+ j� j;If there are further max operators inside � , for instan
e, their heightis left undisturbed by appli
ation of the rules. All other rules mayonly remove some max operators, without
hanging the height ofthose whi
h are left undisturbed.Finally, the e�e
t of rules 4 and 5 is to remove some if oper-ators. From these results we dedu
e that as the redu
tion of anextended quast pro
eeds, the maximum height of the max opera-tors stays bounded by the maximum height in the original quast,H . Let us asso
iate to ea
h quast � in the redu
tion a ve
tor �(�)of dimension H + 1, whose H �rst
omponents are the histogramof \max" heights in reverse order, the last
omponent being j�jif .The �rst
omponent of �(�) is the number of max's of maximumheight, H . From the above dis
ussion, we see that the e�e
t of rules1 to 3 is to de
rease by one some
omponent, i, of �(�). In the
aseof rule 2, two
omponents of index j; k > i are in
reased by one.Rules 4 and 5 may have the e�e
t of de
reasing some
omponentsof �(�) (if there are max operators in the dis
arded argument), andalso to de
reases by at least 1 the last
omponent. The
on
lusion isthat for all elementary redu
tion steps � ! � , we have �(�) � �(�)in lexi
ographi
 order. Sin
e lexi
ographi
 order on positive integerve
tors is well founded, the redu
tion pro
ess must eventually stops,QED. Furthermore, as long as there is a max operator in the redu
t,one of the rules 1 to 3
an be applied. Hen
e, when the redu
tionstops, there are no max operators in the result.In
ontrast to this result, it
an be shown by
ounterexample that our rewrit-ing system is not
on
uent, i.e. that the same extended quast
an be redu
edto several distin
t quasts. However, sin
e all rules are semanti
al equalities, itfollows that all su
h redu
ts are semanti
ally equal.In the
ase of (16), we have to
ompute:� = max(?;max((if i � 1 ^ j < nthen h2; i � 1; 1; j + 1; 1ielse ? ; h1; i+ j; 1i)):
15

We have su

essively:� = max((if i � 1 ^ j < nthen h2; i� 1; 1; j + 1; 1ielse ? ; h1; i + j; 1i))by rule 1, then� = (if i � 1 ^ j < nthen max(h2; i� 1; 1; j + 1; 1i; h1; i+ j; 1i)else max(?; h1; i+ j; 1i) :For the appli
ation of rule 3, we noti
e that h2; i�1; 1; j+1; 1i � h1; i+j; 1iis always false. Use of this property is an example of rule 4. In the otherarm of the
onditional, rule 1 is applied again, giving the �nal result:� = if (i � 1 ^ j < n) then h2; i � 1; 1; j + 1; 1i else h1; i+ j; 1i:2.4 Summary of the algorithmSuppose that a
ompiler or another program pro
essor has need to �nd thesour
e of a referen
e to an array or s
alar M in a statement S. The �rst step is to
onstru
t the
andidate list, whi
h
omprises all statements R whi
h modify Mat all depths 0 � p � NRS. If a standard dependen
e analysis is available, thislist
an be shortened by eliminating empty
andidate sets, whi
h
orrespond tonon existent dependen
es.The ordering of the
andidate set is a very important fa
tor for the
om-plexity of the method. Experien
e has shown that the best
ompromise is tolist the
andidates in order of de
reasing depth. For equal depth
andidates,it is best to follow the textual order ba
kward, starting from the distinguishedreferen
e, up to the beginning of the program, and then to loop ba
k to the endof the program.Similarly, if rule 4 is used too sparingly, the resulting quasts will have manydead bran
hes, thus in
reasing the
omplexity of the �nal result. Conversely,if used too often, it will result in many unsu

essful attempts at simpli�
ation,also in
reasing the
omplexity. A good
ompromise is the following:� When
omputing a step of the re
urren
e (17) we will always suppose thatrule 4 has been applied exhaustively to �n�1.� In the evaluation of �n, rule 2 should be applied by priority on the leftargument. As long as redu
tions are still possible on �n�1, there is no needto apply rule 4. All
ontexts that
an be
onstru
ted here are feasible,be
ause they either
ome from �n�1 or &n. The �rst quast has beensimpli�ed in the previous step, and the se
ond one
omes from PIP, whi
hdoes not generate dead bran
hes.� As soon as the appli
ation of rules 2 or 3 to &n starts, simpli�
ation byrule 4 should be attempted.As a last remark, one
an show (see Se
t. 3.3.3 of [Fea91℄) that the
ompleteknowledge of the iteration ve
tor is not needed when applying the max operatorto sour
es of di�ering depths. In this way, one
an predi
t beforehand whether adire
t dependen
e
an have in
uen
e on the sour
e or not, and avoid
omputingit in the latter
ase. 16

If these rules are followed, the results of array data
ow analysis are sur-prisingly simple. A limited statisti
al analysis in [Fea91℄ shows that the meannumber of leaves per sour
e is about two. The probable reason is that good pro-grammers do a kind of data
ow analysis \in their head" to
onvin
e themselvesthat their program is
orre
t. If the result is too
ompli
ated, they de
ide thatthe program is not well written and start again.2.5 Related WorkAnother approa
h to Array Data
ow Analysis has been proposed by Pugh andhis asso
iates (see e.g. [PW93, Won95℄). The approa
h
onsists in reverting tothe basi
 de�nition of the maximum of a set. u is the maximum of a totallyordered set Q i�: u 2 Q ^ :9v 2 Q : u � v:Let us
onsider the de�nition (12) of a set of
andidate sour
es. A

ording tothe above de�nition, its maximum, &i(~b) is de�ned by:&i(~b) 2 Qi(~b) ^ :9~
 : &i(~b) � ~
 � ~b ^ ~
 2 Qi(~b): (18)In words, &i(~b) is the dire
t dependen
e from Si to ~b i� &i(~b) is in
owdependen
e to ~b and if there is no other operation in
ow dependen
e to ~bwhi
h is exe
uted between &i(~b) and ~b.The formula (18) is written in a subset of Presburger logi
 (that part of�rst order logi
 whi
h deals with the theory of addition of positive numbers),whi
h is known to be de
idable. Pugh has devised an algorithm, the Omegatest [Pug91℄ whi
h is able to simplify formulas su
h as (18). The result is arelation between the sour
e &i(~b) and ~b. It has been
he
ked that this relationis equivalent to the quast whi
h is found by our method.Some authors [MAL93, HT94℄ have devised fast methods for handling parti
-ular
ases of the sour
e
omputation. The idea is to solve the set of equations inthe de�nition of Qpi (~b) by any integer linear solver (e.g. by
onstru
ting the Her-mite normal form of the equation matrix). Suppose that this system uniquelydetermines ~a as a fun
tion of ~b: ~a = f(~b). It remains only to substitute f(~b)for ~a in the inequalities. The result is the existen
e
ondition for the solution,whi
h is f(~b) if this
ondition is satis�ed, and ? if not. One must revert tothe general algorithm if there are not enough equations to �x the value of themaximum.3 Approximate Array Data
ow AnalysisTo go beyond the stati

ontrol model, one has to handle while loops, arbitrarysubs
ripts and tests, and, most important, modular programming (subroutinesand fun
tion
alls). Let us �rst introdu
e the following
onvention. Constru
tso

urring in the
ontrol statement of a program (do loop bounds, while loopsand tests predi
ates, subs
ripts) will be
lassi�ed as tra
table and intra
tablea

ording to their
omplexity. AÆne
onstru
ts are always tra
table, while thede�nition of intra
table
onstru
ts is somewhat subje
tive and may depends onthe analysis tools whi
h are available at any given time. Tra
table predi
atesin tests
an always be repla
ed by restri
tions on the iteration domain of the17

surrounding loop nest. Similarly, a tra
table predi
ate in a while loop indi
atesthat the loop
an be transformed into a do loop. We will suppose that su
hsimpli�
ations have been applied before the approximate analysis starts.In this se
tion we will be interested in while loops and tests. Non linear sub-s
ripts
an be handled in the same framework, but they need rather
ompli
atednotations. The reader is referred to [BCF97℄ for this extension.As a matter of
onvenien
e, we will suppose here that while loops have anexpli
it loop
ounter, a

ording to the PL/I
onvention:do
 = 1 while p(...)The while loop
ounter may even be used in array subs
ripts.When
onstru
ting iteration ve
tors, tests bran
hes are to be
onsidered asnew nodes being numbered 1 and 2. In a

ordan
e with our
onventions forstati

ontrol programs, these nodes always are
ompound statements, what-ever the number of their
omponents. For instan
e, in example E3 below, theiteration ve
tor of Statement S2 is h1; x; 1; 2; 1i. The �rst 1 is the index of thedo loop in the whole program, and the se
ond one is the index of the test in thedo loop body. The 2 indi
ates that the subje
t statement is in the false part ofthe test.With these
onventions, we
an transpose to this new program model mostof the notations we introdu
ed for stati

ontrol programs. Iteration ve
torsmay in
lude while loop
ounters and the de�nition of the sequen
ing predi
atedoes not
hange.3.1 From ADA to FADAAs soon as we extend our program model to in
lude
onditionals, while loops,and do loops with intra
table bounds, the set Qpi of (8) is no longer tra
table at
ompile time. The reason is that
ondition (6) may
ontain intra
table terms.One possibility is to ignore them. In this way, (6) is repla
ed by:E0Si~a � ~n0Si ; (19)where E0 and ~n0 are similar to E and ~n in (6) with the intra
table parts omitted.We may obtain approximate sets of
andidate sour
es:bQpi (~b) = f~a j E0Si~a � ~n0Si ;~a �p ~b; ~fi(~a) = ~g(~b)g: (20)However, we
an no longer say that the dire
t dependen
e is given by thelexi
ographi
 maximum of this set, sin
e the result may pre
isely be one of the
andidates whi
h is ex
luded by the nonlinear part of of the iteration domain ofS. One solution is to take all of bQi(~b) as an approximation to the dire
t depen-den
e. If we do that, and with the ex
eption of very spe
ial
ases,
omputingthe maximum of approximate dire
t dependen
es has no meaning, and the bestwe
an do is to use their union as an approximation. Can we do better thanthat? Let us
onsider some examples.program E1do x = 1 while ...1 s = ...end do 18

2 s = ...3 ... = ... s ...endWhat is the sour
e of s in Statement S3? There are two possibilities, StatementsS1 and S2. In the
ase of S2, everything is linear, and the sour
e is exa
tly h2i.Things are more
ompli
ated for S1, sin
e we have no idea of the iteration
ountof the while loop. We may, however, give a name to this
ount, say N , andwrite the set of
andidates as:Q01 = fh1; x; 1i j 1 � x � Ng:We may then
ompute the maximum of this set, whi
h is&01 = if N > 0 then h1; N; 1i else ?:The last step is to take the lexi
ographi
 maximum of this result and h2i, whi
his simply h2i. This is mu
h more pre
ise than the union of all possible sour
es.The tri
k here has been to give a name to an unknown quantity, N , and to solvethe problem with N as a parameter. It so happens here that N disappears inthe solution, giving an exa
t result.Consider now:program E2do x = 1 while ...1 s(x) = ...end dodo k = 1,n2 ... = ... s(k) ...end doendWith the same notations as above, the set of
andidates for the sour
e of s(k)in S3 is: Q01(k) = fh1; x; 1i j 1 � x � N; x = kg:The dire
t dependen
e is to be
omputed in the environment 1 � k � n whi
hgives: if k � N then h1; k; 1i else ?. Here, the unknown parameter N has notdisappeared. The best we
an do is to say that we have a sour
e set, or a fuzzysour
e, whi
h is obtained by taking the union of the two arms of the
onditional:&(k) 2 fh1; k; 1i;?g:Equivalently, by introdu
ing a new notation �(~b) for the sour
e set at iteration~b, this
an be written: �(k) = fh1; k; 1i;?g:The fa
t that in the presen
e of of intra
table
onstru
ts, the results are nolonger sour
es but sets of possible sour
es justi�es the name Fuzzy ADA whi
hhas been given to the method. FADA gives exa
t results (and reverts to ADA)when the sour
e sets are singletons.Our last example is slightly more
ompli
ated: we assume that n � 1,19

program E3;begin1 : for x := 1 to n do2 : begin3 : if ... then4 : begin5 : s := ...endelse6 : begin7 : s := ...endend;8 : ... := sendWhat is the sour
e of s in Statement S8? We may build an approximate
an-didate set from S5 and another one from S7. Sin
e both are approximate, we
annot do anything beside taking their union, and the result is highly ina

urate.Another possibility is to partition the set of
andidates a

ording to thevalue x of the loop
ounter. Let us introdu
e a new Boolean fun
tion b(x)whi
h represents the out
ome of the test at iteration x. The x-th
andidatemay be written3:�(x) = if b(x) then h1; x; 1; 1; 1i else h1; x; 1; 2; 1i:We then have to
ompute the maximum of all these
andidates (this is anappli
ation of Property 1). It is an easy matter to prove that:x < x0) �(x) � �(x0):Hen
e the sour
e is �(n). Sin
e we have no idea of the value of b(n), we are leadagain to the introdu
tion of a fuzzy sour
e:� = fh1; 1; n; 1; 1i; h1; 1; n; 2; 1ig: (21)Here again, noti
e the far greater pre
ision we have been able to a
hieve. How-ever, the te
hnique we have used here is not easily generalized. Another way ofobtaining the same result is the following. Let L = fx j 1 � x � ng. Observethat the
andidate set from S1 (resp. S2)
an be written fhf1; x; 1; 1; 1i j x 2D1 \ Lg (resp. fh1; x; 1; 2; 1i j x 2 D2 \ Lg) whereD1 = fx j b(x) = true g and D2 = fx j b(x) = falseg:Obviously, D1 \D2 = ;; (22)and D1 [D2 = ZZ: (23)3Observe that the ordinals in the following formula do not
orrespond to the statementlabels in the sour
e program. These labels have been introdu
ed for later use (see Se
t. 3.3).20

We have to
ompute � = max(maxD1 \ L;maxD2 \ L):Using property 1 in reverse, (23) implies:� = maxL: (24)By (22) we know that � belongs either to D1 or D2 whi
h gives again the result(21).To summarize these observations, our method will be to give new names (orparameters) to the result of maxima
al
ulations in the presen
e of nonlinearterms. These parameters are not arbitrary. The sets they belong to { theparameters domains { are in relation to ea
h others, as for instan
e (22-23).These relations
an be found simply by examination of the synta
ti
 stru
ture ofthe program, or by more sophisti
ated te
hniques. From these relations betweenthe parameter domains follow relations between the parameters, like (24), whi
h
an then be used to simplify the resulting fuzzy sour
es. In some
ases, theserelations may be so pre
ise as to redu
e the fuzzy sour
e to a singleton, thusgiving an exa
t result.3.2 Introdu
ing ParametersIn the general
ase, any statement in the program is surrounded by tests andloops, some of whi
h are tra
table and some are not. Tra
table tests and loopsgive the linear part of the existen
e predi
ate, de�nition (19) above. To the nontra
table parts we may asso
iate a set di su
h that operation ~a exists i�:E0Si~a � ~n0Si ^ ~a 2 di: (25)The observation whi
h allows us to in
rease the pre
ision of FADA is thatin many
ases di has the following property:~a[1::pi℄ = ~b[1::pi℄) (~a 2 di � ~b 2 di) (26)for a pi whi
h is less than the depth of Si. This is due to the fa
t that loopsand tests predi
ates
annot take into a

ount variables whi
h are not de�ned atthe point they are evaluated, as is the
ase for inner loop
ounters. Usually, piis the number of (while and do) loops surrounding the innermost non tra
table
onstru
tion around Si. This depth may be less than this number, in
asethe intra
table predi
ate does not depend on some variables, but this
an bere
ognized only by a semanti
s analysis whi
h is beyond the s
ope of this paper.A
ylinder is a set C of integer ve
tors su
h that there exists an integer p {the depth { with the property:~a 2 C ^ ~a[1::p℄ = ~b[1::p℄) ~b 2 C: (27)The depth of
ylinder C will be written Æ(C).The above dis
ussion shows that to ea
h di we may asso
iate a
ylinder Ciby the de�nition: ~a 2 Ci � 9~b 2 di : ~a[1::pi℄ = ~b[1::pi℄;21

with the property:E0Si~a � ~n0Si ^ ~a 2 di � E0Si~a � ~n0Si ^ ~a 2 Ci:The depth of Ci is bounded upward by the number of loops surrounding Si; amore pre
ise analysis may show that it has a lower value.With these
onvention, the set of
andidate sour
es be
omes:Qpi (~b) = f~a j E0Si~a � n0Si ;~a 2 Ci;~a �p ~b; ~fi(~a) = ~g(~b)g: (28)Let us introdu
e the following sets:bQpi (~b; ~�) = f~a j E0Si~a � n0Si ;~a[1::pi℄ = ~�;~a �p ~b; ~fi(~a) = ~g(~b)g: (29)bQpi (~b; ~�) is the interse
tion of bQpi (~b) with the hyperplane ~a[1::pi℄ = ~�. (28)
anbe rewritten: Qpi (~b) = [�2Ci bQpi (~b; ~�): (30)Another use of property 1 gives:&pi (~b) = maxQpi (~b) = max~�2Ci(max bQpi (~b; ~�)) (31)Now bQpi (~b; ~�) is a polyhedron, as is evident from (29). Hen
e its lexi
ographi
maximum, b&pi (~b; ~�) = max bQpi (~b; ~�) (32)
an be
omputed by just another appli
ation of PIP. In fa
t, the presen
e of theadditional inequalities ~a[1::pi℄ = ~� may simplify this
al
ulation. We then have:&pi (~b) = max~�2Di b&pi (~b; ~�): (33)The maximum in the above formula is rea
hed at some point of Ci. This pointis a fun
tion of i; p and~b, written as ~�pi (~b) and is known as one of the parametersof the maximum of the program. The dire
t dependen
e is now given by:&pi (~b) = b&pi (~b; ~�pi (~b)): (34)At this point, we
an go on as we did in the
ase of exa
t analysis:� Compute all parametri
 dire
t dependen
es by (32).� Combine the dire
t dependen
es by rules 1 to 5.� In the end result, quantify over all possible values of the parameters, soas to get sour
e sets.This pro
edure does not give pre
ise results, sin
e we lose all information aboutrelations between parameters of the maximum. Our aim now is to explain howto �nd these relations and how to use them to narrow the �nal result.
22

3.3 Taking Properties of Parameters into A

ountThe sets Ci, Cj for i 6= j may be interrelated, depending on the position ofstatements Si, Sj in the abstra
t syntax tree. An example of this situation hasbeen observed for statements S5 and S7 of program E3. These relations indu
erelations between the
orresponding parameters, whi
h have to be taken intoa

ount when
ombining dire
t dependen
es. The relations on the Ci sets mayhave several origins. The most obvious ones are asso
iated to the stru
tureof the sour
e program, as in the
ase of E3. It may be that other relationsare valid, due for instan
e to the equality of two expressions. Here again, thissituation
an be dete
ted only by semanti
s analysis and is outside the s
ope ofthis paper.The stru
tural relations among the Ci
an be found by the following algo-rithm:� The outermost
onstru
tion of the sour
e program (by our
onvention,a
ompound statement), is asso
iated to the unique zero-depth
ylinder,whi
h in
ludes all integer ve
tors of any length, and
an be written as ZZ�.� If C0 is asso
iated to:begin S1; Sn endthen Ci = C0.� If C0 is asso
iated to:if p then S1 else S2where p is intra
table, then the
ylinders asso
iated to S1, C1 and S2, C2have the same depth as C0 and are su
h that:C1 \ C2 = ;; C1 [C2 = C0:If p is tra
table, C0 = C1 = C2.� If C0 is asso
iated to a for:for do S1or to a while:do ... while ... S1and if these loops are intra
table, then the
ylinder C1 asso
iated to S1has depth Æ(C0) + 1 and is su
h that:C1 � C0:Otherwise, C1 = C0. 23

The relation between ADA and FADA In the
ase where all en
losingstatements of an assignment Si are tra
table, it is easy to prove that Ci = ZZ�.The
ondition ~a 2 Ci is trivially satis�ed in (28). Hen
e, in that
ase, FADAdefaults to ADA. Provided this
ase is dete
ted soon enough, one and the samealgorithm
an be used for all programs, and the pre
ision of the results willdepends on the presen
e or absen
e of intra
table
ontrol
onstru
ts.Chara
terization of the Parameters of the Maximum The main obser-vation is that ea
h parameters is itself a maximum. Note �rst that from (29)follows: ~�pi (~b) = b&pi (~b; ~�pi (~b))[1::pi℄:Suppose now that Q is an arbitrary set of ve
tors all of whi
h have dimensionat least equal to p. Let us set:Q jp = fx[1::p℄ j x 2 Qg:The properties of the lexi
ographi
 order insure that:(maxQ)[1::p℄ = maxQ jp :In our
ase, this gives:~�pi (~b) = b&pi (~b; ~�pi (~b))[1::pi℄= (max bQpi (~b; ~�pi (~b)))[1::pi℄= max bQpi (~b; ~�pi (~b)) jpi= max(Ci \ bQpi (~b) jpi) (35)where bQpi (~b) is the \polyhedral envelope" of all possible sour
es at depth p (see(20)). This formula fully
hara
terizes the parameters of the maximum and willbe used repeatedly to obtain relations between them.Another set of relations is given by depth
onsiderations. Note that from(29) follows: b&pi (~b; ~�pi (~b))[1::pi℄ = ~�pi (~b);and b&pi (~b; ~�pi (~b))[1::p℄ = ~b[1::p℄;provided the set b&pi (~b; ~�pi (~b)) is not empty. Now, in (35), we
an ex
lude the
ase where bQpi (~b) is empty, sin
e this
an be de
ided a priori by integer linearprogramming. If su
h is the
ase, statement Si is simply ex
luded from the listof
andidates at depth p. Hen
e, either Ci is empty, in whi
h
ase, by (35), weset ~�pi (~b) = ?, or else the above relations apply. Let us set mi = min(p; pi). Weobtain: ~�pi (~b)[1::mi℄ = ~b[1::mi℄ _ ~�pi (~b) = ?: (36)Exa
t Cases of FADA Among the Ci there is the set
orresponding tothe observation statement, C!. Sin
e our
onvention is that the observationstatement is exe
uted, we have ~b 2 C!, hen
e C! is not empty. It may happen24

that the results of stru
tural analysis imply that Ci = C!. Suppose that p �pi = p!. From (36) we dedu
e: ~�pi = ~b[1::pi℄:This allows us to remove the nonlinear
ondition ~a 2 Ci from (28) before
om-puting its maximum.In the
ase where the innermost intra
table statement is a while or a doloop, we
an go a step further sin
e Ci now has the property:x 2 Ci ^ (~a[1::pi � 1℄ = ~b[1::pi � 1℄ ^ ~a[pi℄ <~b[pi℄)) ~b 2 Ci:This means that the exa
tness
ondition is in that
ase:p � pi � 1:This enable us to solve exa
tly su
h problems as the sour
e of s in:do
 = 1 while ...1 s = s +end doHere the
andidate and observation statements are both S1. p1 = 1 and p = 0.The exa
tness
ondition is satis�ed, and the sour
e is:&01 (
) = maxfh1;
0; 1i j 1 �
0;
0 <
g= if
 > 1 then h1;
� 1; 1i else ?:From Parameter Domains to Parameters of the Maximum It remainsto study the
ase where the stru
tural analysis algorithm has given non triv-ial relations between parameters domains. The asso
iated relations betweenparameters
an be dedu
ed from (35) by Prop. 1 and the following trivial prop-erties:Property 3 If C \D = ;, then:(maxC = ? ^maxD = ?) _maxC 6= maxD:Property 4 If C � D then: maxC�maxD:As a
onsequen
e, sin
e C \D � C, we havemax(C \D)�maxC; (37)and the symmetri
al relation.
25

Example E3 revisited The observation statement is S8. It is en
losed in noloops. Hen
e, the ~b ve
tor is of zero length, and will be omitted in the sequel.There are two
andidate sour
es, S5 and S7, whose iteration ve
tors are of lengthone and will be denoted as x. It that
ase, lexi
ographi
 order defaults to thestandard order among integers.The parametri
 sour
es are:b&05 (�) = maxfx j 1 � x � n; x = �g = if 1 � � � n then h1; �; 1; 1; 1i else ?:b&07 (�) = maxfx j 1 � x � n; x = �g = if 1 � � � n then h1; �; 1; 2; 1i else ?:The stru
tural analysis algorithm gives the following relations:C1 = C0 ; C8 = C0C2 = C1 ; C3 = C2C4 [C6 = C3C4 \ C6 = ;C5 = C4 ; C7 = C6:Here, only C5 and C7 are interesting. Remembering that C0 = ZZ�, all othersets
an be eliminated, giving:C5 [C7 = ZZ�; C5 \ C7 = ;:The depths p5 and p7 are both equal to 1. From Equ. (35) we dedu
e:~�05 = max(C5 \ bQ05) = max(C5 \ [1; n℄):Similarly, ~�07 = max(C5 \ [1; n℄):From the above relations, we dedu
e:(C5 \ [1; n℄) \ (C7 \ [1; n℄) = ;and (C5 \ [1; n℄) [(C7 \ [1; n℄) = ZZ� \ [1; n℄ = [1; n℄:This equality
an be interpreted as two in
lusions from left to right, giving byProp. 4: ~�05 � n; ~�07 � n;or as an in
lusion from right to left, giving:n � max(~�05 ; ~�07):Lastly, we dedu
e from the �rst relation that:(~�05 = ~�07 = ?) _ ~�05 6= ~�07 :Suppose now that the maximum of ~�05 and ~�07 is ~�05 . It is easily seen that thisimplies: ~�05 = n; ~�07 < n:26

In the reverse situation, the
on
lusion is:~�07 = n; ~�05 < n:Hen
e, the �nal sour
e is given by:& = 8<: if ~�05 = n ^ ~�07 < nthen max(b&05 (~�05); b&05 (~�05))=f~�05 = n; ~�07 < ngelse max(b&05 (~�05); b&05 (~�05))=f~�07 = n; ~�05 < ngwhere the notation q=fCg indi
ates that the quast q is to be evaluated by rules1 to 5 in the
ontext C. We leave it to the reader to verify that the result is:& = if ~�05 = n ^ ~�07 < n then h1; n; 1; 1; 1i else h1; n; 1; 2; 1i:3.4 Eliminating ParametersThe result of the above
omputation
an be
onsidered as a parametri
 repre-sentation of the fuzzy sour
e: as the parameters take all possible values, theresult visits all possible sour
es. In some
ases, this is exa
tly what is neededfor further analysis. In most
ase, however, more
ompa
t representations areenough. This
an be obtained by the following pro
ess.Let �(~�) be a leaf of the fuzzy sour
e, where ~� symbolizes all parameterso

urring in the leaf. Parameter elimination uses the two rules:Rule 6 A leaf �(~�) in
ontext C is repla
ed by the set:f�(~�) j ~� 2 Cg:Note that after appli
ation of this rule, the variables of ~� be
ome bound vari-ables and do no longer o

ur in the result.Rule 7 A
onditional if p(~�) then A else B where A and B are sets whi
h donot depend on ~� is repla
ed by A [B.Appli
ation of these rules to the result of the analysis of E3 gives the fuzzysour
e: � = fh1; n; 1; 1; 1i; h1; n; 1; 2; 1ig:Observe that rules 6 and 7 are
onsistent with rule 4. If the
ontext of aleaf is unfeasible, the leaf
an be removed by rule 4. It
an also be transformedinto the empty set by rule 6, and it will then disappear at the next appli
ationof rule 7.3.5 Related Work3.5.1 Pugh and Wonna
ott's MethodPugh and Wonna
ott [Won95℄ have extended the Omega
al
ulator for han-dling uninterpreted fun
tions in logi
al formulas. This allows them to formulateproblems of data
ow analysis in the presen
e of intra
table
onstru
ts. Theysimply introdu
e a fun
tion to represent the value of the
onstru
t as a fun
tionof the surrounding loop
ounters. These fun
tions may be used to represent the27

number of iteration of a while loop (see N in the analysis of example E1 inSe
t. 3.1) or the out
ome of a test (see b for example E3 in the same se
tion).When we say that a
onstru
t has depth pi, it means that the
orrespondingfun
tion has as arguments the pi outermost loop
ounters.The problem with this approa
h is that adding one uninterpreted fun
tionto Presburger logi
 renders it unde
idable. Hen
e, Pugh and Wonna
ott have toenfor
e restri
tions to stays within the limits of de
idability. They have
hosento partition the variables in a logi
al formula into input and output variables,and to use only uninterpreted fun
tions whi
h depends either on the input oroutput variables but not both. Applying a fun
tion to anything else (e.g. abound variable inside an inner quanti�er) is forbidden and is repla
ed by theuninterpreted symbol unknown. This restri
tion is rather ad ho
 and it isdiÆ
ult to assert its e�e
t on the power of Pugh and Wonna
ott's system. Infa
t, we know of several examples whi
h they
annot handle but whi
h
an besolved by FADA: E3 is a
ase in point. In the
ase of FADA, D. Barthou et. al.have proved in [BCF97℄ that their system of relations between parameters ofthe maximum are
orre
t and
omplete, i.e. that no potential sour
e is missed,and that ea
h element of a sour
e set
an be a sour
e for some realization of theintra
table predi
ates.On the other hand, Pugh and Wonna
ott have in
luded some semanti
alknowledge in their system. When assigning fun
tions to intra
table
onstru
ts,they identify
ases in whi
h two
onstru
ts are equal and assign them the samefun
tion. This is easily done by �rst
onverting the sour
e program in Stati
Single Assignment (SSA) form. In SSA form, synta
ti
ally identi
al expressionsare semanti
ally equal. The dete
tion of equal expression is limited to one basi
blo
. This method allows them to handle examples su
h as:program E4;beginfor i := 1 to n dobeginif p(i) >= 0 then1 : s := ...;if p(i) < 0 then2 : s := ...;end;... := s ...;endin whi
h the key to the solution is re
ognizing that p(i) has the same value inthe two tests. We
ould have introdu
ed a similar devi
e in FADA; the result ofthe analysis
ould have been translated in term of the Ci sets (here, we wouldhave got the same relations as in the
ase of E3) and the analysis would havethen pro
eeded as above. We have
hosen to handle �rst the semanti
al part ofFADA. Re
ognizing equal and related expressions is left for future work, and weintend to do it with more powerful devi
es than SSA
onversion (see [BCF97℄).3.5.2 Abstra
t InterpretationAs is well known, in denotational semanti
s, the aim is to build the input/outputfun
tion of a program, whi
h gives the �nal state of the
omputer memory in28

term of its initial state. This fun
tion is built in term of simpler fun
tions, whi
hgive the e�e
t of ea
h statement and the value of ea
h expression. These fun
-tions in turn are obtained by applying
ompilation fun
tions to abstra
tions ofthe program text. The de�nitions of the
ompilation fun
tions are
onstru
tiveenough to enable a suitable interpreter to exe
ute them. As many resear
hershave observed, these fun
tion de�nitions are quite similar to ML programs.The basi
 idea of abstra
t interpretation [CC77℄ is to de�ne other, non stan-dard semanti
al fun
tions. Obviously, this is interesting only if a nonstandardsemanti
s
an be
onsidered in some sense as an approximation of standard se-manti
s. This is formalized using the
on
ept of Galois
onne
tion between thedomains of the abstra
t and standard semanti
s.An example of the use of these ideas for analysis of array a

esses is foundin [CI96℄. In this work, the results of the analysis are regions, i.e. subsets ofarrays as de�ned by
onstraints on their subs
ripts [TIF86℄. Several types ofregions are de�ned. For instan
e, the write region of a statement is the setof array
ells whi
h may be modi�ed when the statement is exe
uted. The inregion is the set of array
ells whose
ontents are used in a
al
ulation.When designing su
h an analysis, one has to sele
t a �nite representation forregions. In the quoted work, regions are
onvex polyhedra in the subs
ript spa
e.Less pre
ise representations have been suggested, see for instan
e [GLL95℄ forthe
on
ept of regular se
tions. In the same way as the standard semanti
shas operators to a
t on arrays, the nonstandard semanti
s must have operatorsto a
t on regions. These operators are interse
tion, union, subtra
tion andproje
tion (whi
h is used for
omputing the e�e
t of loops). Depending onthe representation
hosen, these operators may be
losed or not. For instan
e,interse
tions of polyhedra are polyhedra, but unions are not. In
ase of un
losedoperators, one has to de�ned a
losed approximation: for the union of polyhedra,one takes usually the
onvex hull of the real union.One sees that there are two sour
es of approximation in region analysis. One
omes from the
hoi
e of region representation. For instan
e,
onvex polyhedraare more pre
ise than regular se
tions, but are not pre
ise enough to representfrequently o

urring patterns, like:do i = 1,nm(2*i-1) = 0.end doThe
orresponding write region, in [CI96℄ notation, is hm(�); 1 � � � 2n � 1i,whi
h is only an approximation of the exa
t region, ha(�); � = 2 � 1; 1 � �ni. The se
ond sour
e of approximation is the same as the one in FADA: thesour
e program may
ontain intra
table
onstru
ts. Approximate regions are
onstru
ted by ignoring the intra
table terms, in the spirit of (20).ADA and FADA represent their results not as
onvex polyhedra but as �-nite unions of Z-polyhedra (the interse
tion of a polyhedron and a Z-module, seethe appendix). This representation is inherently more pre
ise and has enoughpower to represent exa
tly all regions o

urring in the analysis of stati

ontrolprograms. An interesting open problem is the following: is it possible to refor-mulate the method of [CI96℄ in term of unions of Z-polyhedra, and, if so, wouldthe results be more or less pre
ise than FADA?29

4 Analysis of Complex Statements4.1 What is a Complex StatementAll the pre
eding analyses are predi
ated on the hypothesis that ea
h operationmodi�es at most one memory
ell. It is not diÆ
ult to see that it
an beeasily extended to
ases where an operation modi�es a stati
ally bounded setof memory
ells.The situation is more
ompli
ated when the language allows the modi�
ationof an unbounded set of memory
ells by one statement. A
ase in point is theread statement in Fortran:program Rdo i = 1,nread (*,*) (a(i,j), j = 1,n)end doAnother example is parallel array assignments in languages like Fortran 90, thePerfe
t Club Fortran (PCF) or HPF. The simplest
ase is that of the indepen-dent do loop:program Z program ZVdoall (i = 1:n)a(i) = 0.0 a(1:n) = 0.0end doallProgram Z is in PCF notation, while ZV is in Fortan 90 ve
tor notation.How are we to handle su
h idioms in Array Data
ow Analysis? Let us re
allthe de�nition (7) of the set of
andidate sour
es:Qi(~b) = f~a j ESi~a � ~nSi ;~a� ~b; ~fi(~a) = ~g(~b)g:The �rst problem for a
omplex statement is that ~a does no longer
hara
terizethe values whi
h are
reated when exe
uting operation ~a. We have to introdu
eauxiliary or inner variables to identify ea
h value. In the
ase of program R,for instan
e, this new variable is in eviden
e: it is simply the \impli
it do loop
ounter", j. The same is true for program Z. In the
ase of program ZV, a new
ounter has to be introdu
ed, let us
all it �.We next have to de
ide what
onstraints must be satis�ed by these innervariables. For the three examples above, these are in eviden
e from the programtext: 1 � j � nfor R, and: 1 � � � nfor ZV. Obje
ts like: hM[�℄; 1 � � � ni;
omposed of an array and a subset of the index spa
e of the array, are theregions of [CI96℄. We will use here generalized regions, of the form:hM[~f(~a; ~�)℄; A~a+B~�+ ~m � 0i;30

where ~f is aÆne, A and B are
onstant matri
es, ~m is a
onstant ve
tor, and ~ais the ve
tor of the outer variables.As to the sequen
ing predi
ate in (7), it stays the same whatever the typeof the
andidate statement, sin
e we are supposing here that the
orrespond-ing operation is exe
uted in one step. There is, however, a problem with the
omputation of the latest sour
e, i.e. with the maximum of the
andidate set,whose new form is:Qi(~b) = f~a; ~� j ESi~a � ~nSi ; Ai~a+Bi~�+ ~m � 0;~a� ~b; ~fi(~a; ~�) = ~g(~b)g:We know that sour
es belonging to di�erent iterations are exe
uted a

ordingto lexi
ographi
 order, but what of sour
es belonging to the same iteration?There are several possible situations here.In the simplest
ase, that of examples Z and ZT, the rules of the languageinsure that there
annot be an output dependen
e in the doall loop or in theve
tor assignment. This means that ~� is uniquely determined by the subs
riptequations whenever ~a and ~b are known. Hen
e, there will never be a
omparisonbetween sour
es at the same iteration; we
an use any
onvenient order on the
omponents of ~�, lexi
ographi
 order for instan
e.In the
ase of example R there is no su
h
ondition on the impli
it do loops.But, fortunately, the language de�nition stipulates that these loops are exe
utedin the ordinary way, i.e. in order of lexi
ographi
ally in
reasing ~�, as above.4.2 ADA in the Presen
e of Complex StatementsTo summarize the pre
eding dis
ussion, in the presen
e of
omplex statements,the �rst step is the determination of read and modi�ed regions. The usefulnessof modi�ed regions is obvious. Read regions delimit the set of memory
ells forwhi
h sour
es are to be
al
ulated; their inner variables are simply added asnew parameters to the
oordinates of the observation statement. In the simple
ases we have already examined, the regions
an be extra
ted from a synta
ti
alanalysis of the program text. See the next se
tion for a more
ompli
ated
ase.The analysis then pro
eeds as in the
ase of simple statements, the inner vari-ables ~� being
onsidered as \virtual" loop
ounters (whi
h they are in examplesR and Z). The
orresponding
omponents are then eliminated or kept, dependingon the appli
ation, and the dire
t dependen
es are
ombined as above.4.3 Pro
edure Calls as Complex StatementsA pro
edure or fun
tion
all is a
omplex statement, as soon as one of itsarguments is an array, provided the pro
edure or fun
tion
an modify it. Thisis always possible in Fortran or C. In Pas
al, the array argument has to be
alled by referen
e. In
ontrast with the previous examples, one does not knowbeforehand whi
h parts of whi
h arguments are going to be modi�ed. Thisinformation
an only be obtained by an analysis of the pro
edure body itself.4.3.1 Computing the Input and Output Regions of a Pro
edureThe
ase of the output region is the simplest. A
ell is modi�ed as soon asthere is a an assignment to it in the
ode. Consider the following assignmentstatement: 31

for ~a := � � �M[~f(~a)℄ := � � �The asso
iated region is simply:hM[~f(~�)℄; E~� � ~ni:The
onstraints of the region are given by the bounds of the surrounding loops.We have to
olle
t all su
h subregions for a given argument. The resultmay have redundan
ies whenever a memory
ell is written into several times.This redundan
y is harmless, sin
e the write order is not signi�
ant outsidethe pro
edure. It may however be a sour
e of ineÆ
ien
y. It
an be removedeither by polyhedra handling methods or by the following systemati
 pro
edure.Suppose we add at the end of the pro
edure a �
titious observation operationfor ea
h
ell of ea
h argument4, and that we
ompute the
orresponding sour
e.The result is a quast whi
h depends on the subs
ripts of the array
ell, ~�. Forea
h leaf whose value is not ?, we may
onstru
t a subregion:hM[~�℄; C(~�)i;where C is the
ontext of the distinguished leaf. The result will have no redun-dan
y.The
omputation of the input region is more diÆ
ult. Noti
e �rst that it isnot the same thing as the read region, as shown by the elementary example:1 : x := ...;2 : ... := x;x is read but is not in the input region, sin
e its entry value is killed by S1.Computing the output region as a

urately as possible is important, sin
e asour
e is to be
omputed for ea
h of its
ells in the
alling routine. Redundan
ieswill indu
e useless
omputation; ina

ura
ies generate spurious dependen
es andlessen parallelism. The solution is to
ompute the earliest a

ess to ea
h
ell ofea
h argument of the pro
edure. One
olle
t all a

esses to a
ell in the bodyof the pro
edure, whether reads or writes. This gives a set of
andidates, ofwhi
h one
omputes the lexi
ographi
 minimum using the same te
hnology asin the sour
e
omputation5. The resulting quast gives the earliest a

ess to ea
hargument
ell as a fun
tion of its subs
ripts. If the a

ess is a read, the
ell isin the input region. If it is a write, it is not. Lastly, if the leaf is ?, then the
ell is not used in the pro
edure. Subregions of the input are asso
iated to readleaves in the quast, and are
onstru
ted in the same way as in the
ase of theoutput region.If the pro
edure is not a stati

ontrol program, we have to use te
hniquesfrom FADA when
omputing the input and output regions. Fuzziness in theinput region is not important. It simply means the loss of some parallelism.Fuzziness in the output region is more
riti
al, and may pre
lude Data
ow4e.g., a print statement.5Note that there is a subtle point in the use of rule 3 for this problem. We may haveto
ompare an operation to itself, if it in
ludes both a read and a write to the same
ell.Obviously, the read always o

urs before the write. In the line:s := s + 1;the read of s o

urs before the write, hen
e s is in the input region.32

Analysis of the
alling routine, for reasons whi
h have been explained above(see Se
t. 3.1).This analysis gives the input and output regions of a pro
edure, but they areexpressed in term of the pro
edure formal arguments. To pro
eed to the data
owanalysis of the
alling routine, we have to translate these regions in term of the
aller variables, i.e. in term of the a
tual arguments of the pro
edure. Thistranslation is easy in Pas
al, sin
e a
tual and formal parameters must haveexa
tly the same type: one has simply to
hange the name of formal arraysto a
tual arrays in ea
h subregion. In the
ase of Fortran or C, where thetyping is less stri
t, one has to exhibit the addressing fun
tion (or linearizationfun
tion) of the formal and a
tual arrays. The relation between a
tual andformal subs
ripts is obtained by writing that the two array a

esses are to thesame memory
ell, and that the subs
ripts are within the array bounds. Insimple
ases, one may �nd
losed formulas expressing one of the subs
ript set interm of the other. If the bounds are expli
itly given numbers, the problem
anbe solved by ILP. There remains the
ase of symboli
 array bounds, in whi
hone has to resort to ad ho
 methods whi
h are not guaranteed to su

eed [CI96℄.4.3.2 Organizing the AnalysisIn Fortran, pro
edures
annot be re
ursive. Hen
e, one may draw a
all tree.The interpro
edural data
ow analysis
an be done bottom up. Leaves
all nopro
edure, hen
e their regions
an be
al
ulated without diÆ
ulty. If the inputand output regions of all
alled pro
edures are known, then the input and inputregions of the
aller
an be
omputed. When all input and output regionsare known, then array data
ow analysis
an be exe
uted independently for allpro
edures.Input and output regions
an be stored in a library, along with other infor-mation about the pro
edure, su
h as its type and the type of its arguments.Care should be taken, however, that the region information is not intrinsi
 tothe pro
edure and has to be
omputed again whenever the pro
edure or one ofthe pro
edures it
alls (dire
tly or indire
tly) is modi�ed.Input and Output regions
al
ulation for re
ursive pro
edures is an openproblem. It is probably possible to set it up as a �xpoint
al
ulation, but allte
hni
al details (monotony,
onvergen
e,
omplexity, ...) are yet to be designed.[CI96℄ gives another method for
omputing input and output regions. Re-gions are approximated by
onvex polyhedra, and data
ow equations are usedto propagate regions through the program stru
ture. The overall organizationof the
omputations is the same as the one given here.5 Appli
ations of ADA and FADAAll appli
ations of ADA and FADA derives from two fa
ts:� The method is stati
: it
an be used at
ompile time, without any knowl-edge besides the program text.� The result is a
losed representation of a dynami
 phenomenon: the
re-ation and use of values as the exe
ution of the program pro
eeds.33

One may in fa
t
onsider that the data
ow of a program is one possible repre-sentation of its semanti
s. If this is stipulated, then ADA is a way of extra
tinga semanti
s from a program text. FADA gives the same information, but withlesser pre
ision. Hen
e, ADA and FADA are useful as soon as one needs togo beyond the \word for word" or \senten
e for senten
e" translation that isdone by most ordinary
ompilers. Case in points are program understandingand debugging, all kinds of optimization in
luding parallelization, and spe
iallyarray expansion and privatization.5.1 Program Comprehension and DebuggingA very simple appli
ation of ADA and FADA is the dete
tion of uninitializedvariables. Ea
h o

urren
e of a? in a sour
e indi
ates that a memory
ell is readbut that there is no write to this
ell before the read. If we are given a
ompleteprogram, this
learly suggests a programming error. The program has to be
omplete: it should in
lude all statements whi
h
an set the value of a variable,in
luding read statements, initializations, and even hidden initialization by, e.g.,the underlying operating system. Note that the presen
e of a ? in a sour
e isnot absolute proof of an error. For instan
e, in:x := y * z;y may be uninitialized if one is sure that z is zero. In the
ase of ADA, thea

ess to an uninitialized variable may be
onditional on the values of stru
tureparameters. An example is:do i = 1,n1 s = ...end do2 x = sThe sour
e of s in S2 is if n � 1 then h1; n; 1i else ?. There is an error ifn < 1. This situation may be expli
itly forbidden by the program de�nition,or, better, by a test on n just after its de�ning statement. One may use anynumber of te
hniques to propagate the test information through the program(see e.g. [JF90℄) and use it to improve the analysis.The situation is more
ompli
ated for FADA. The presen
e of a ? in asour
e indi
ates that, for some
hoi
e of the intra
table predi
ates, an a

essto an uninitialized variable may o

ur. But this situation may be forbiddenby fa
ts about the intra
table predi
ates that we know nothing about, or thatwe are not
lever enough to dedu
e from the program text. In this situation,one should either shift to more pre
ise analyses (for instan
e use semanti
alknowledge), or just
he
k the program by hand to show that the error nevero

urs.The same te
hnology whi
h is used for ADA
an be reused for
he
king the
orre
tness of array a

esses. The results take the form of
onditions on thestru
ture parameters for the subs
ripts to be within bounds. These
onditions
an be tested on
e and for all as soon as the values of stru
ture parameters areknown, giving a far more eÆ
ient pro
edure than the run-time tests whi
h aregenerated by some Pas
al
ompilers. 34

The knowledge of exa
t sour
es allows the translation of a program into asystem of re
urren
e equations (SRE):~a 2 Di : vi[~a℄ = E(: : : ; vk[fik(~a)℄; : : :); i = 1; n; (38)where Di is the domain of the equation (a set of integer ve
tors), vi and vkare \variables" (fun
tions from integer ve
tors to an unspe
i�ed set of values),and the fik are dependen
e fun
tions. E is an arbitrary expression, most ofthe time a
onditional. Systems of re
urren
e equations where introdu
ed in[KMW67℄. Con
rete representations of su
h systems are used as the startingpoint of systoli
 array synthesis (see for instan
e [LMQ91℄).To transform a stati

ontrol program into an SRE, �rst assign a distin
tvariable to ea
h assignment statement. The domain of vi asso
iated to State-ment Si is the iteration domain of Si, and the left hand side of the
orrespondingequation is simply vi[~a℄ where ~a s
ans Di. The expression E is the right handside of the assignment, where ea
h memory
ell is repla
ed bu its sour
e. Ifsome of the sour
es in
lude ?'s, the original arrays of the sour
e program areto be kept as non mutable variables and ea
h ? is to be
onverted ba
k to theoriginal referen
e (see [Fea91℄ for details).As an example of semanti
s extra
tion,
onsider the program pie
e:for i := 1 to n do m[i℄ := m[i+1℄The sour
e of m[i+1℄ is ?. The equivalent SER is:v[i℄ = m[i+ 1℄; i = 1; n:In the
ase of:fo i := 1 to n do m[i℄ := m[i-1℄the sour
e of m[i-1℄ is if i > 1 then h1; i�1; ii else ?. The equivalent SER is:v[i℄ = if i > 1 then v[i� 1℄ else m[i� 1℄:The �rst re
urren
e
learly represents a \left shift" while the se
ond one is arightward propagation of v[0℄.An SER is is a mathemati
al obje
t whi
h
an be submitted to ordinaryreasoning and transformations. One
an say that an SER
onveys the semanti
sof the sour
e program, and ADA is this sense is a semanti
s extra
tor. Thepro
ess
an be pursued one step further by re
ognizing s
ans and redu
tions[RF93℄.One
an also think of an SER as a (Dynami
) Single Assignment program.Most of the time, the memory needs of a DSA program are prohibitive. It isbest to think of a DSA program (or of the asso
iated SER) as an intermediatestep in the
ompilation pro
ess.The results of FADA are to be thought of as an approximate semanti
s. It ismu
h more diÆ
ult to
onvert them into something approa
hing a well de�nedmathemati
al obje
t. One has to resort to dynami
ally gathered information tosele
t the real sour
e among the elements of a sour
e set. The reader is referredto [GC95℄ for details. 35

5.2 ParallelizationThe main use of sour
e information is in the
onstru
tion of parallel programs.Two operation in a program are in (data) dependen
e if they share a memory
ell and one of them at least modi�es it. Dependent operations must be exe
utedsequentially. Other operations
an be exe
uted
on
urrently. Dependen
es are
lassi�ed as
ow dependen
es, in whi
h a value is stored for later use, and anti-and output dependen
es, whi
h are related to the sharing of a memory
ell bytwo unrelated values. The later type of dependen
e
an be removed by dataexpansion, while
ow dependen
es are inherent to the underlying algorithm. Itfollows that maximum parallelism is obtained by taking into a

ount the sour
erelation only: an operation must always be exe
uted after all its sour
es.These indi
ations
an be formalized by
omputing a s
hedule, i.e. a fun
tionwhi
h gives the exe
ution date of ea
h operation in the program. All operationswhi
h are s
heduled at the same time
an be exe
uted in parallel. For reasonswhi
h are too
ompli
ated to explain here (see [Fea89℄), one does not have to usethe exa
t exe
ution time of ea
h operation when
omputing a s
hedule, providedthe amount of parallelism is large. One may suppose that all operations takeunit time. The s
hedule � must then satisfy:�(u) � �(&(u)) + 1; (39)for all operations u in the
ase of ADA, and8v 2 �(u) : �(u) � �(v) + 1; (40)in the
ase of FADA. These systems of fun
tional inequalities have in generalmany solutions. For reasons of expedien
y, one usually sele
ts a parti
ular typeof solution (in fa
t, the solutions whi
h are aÆne fun
tions of the loop
ounters)and solve either (39) or (40) by linear programming. The reader is referred to[Fea92a, Fea92b℄ for details of the solution method.Some programs do not have aÆne s
hedules { i.e. the asso
iated linearprogramming problem proves unfeasible. In that
ase, one must resort to mul-tidimensional s
hedules, in whi
h the value of � is a d dimensional ve
tor. Theexe
ution order is taken to be lexi
ographi
 order. Suppose we are dealing witha N -deep loop nest. Having a d dimensional s
hedule means that the parallelprogram will have d sequential loops en
losing N � d parallel loops. Using su
hs
hedules may be ne
essary be
ause the sour
e program has a limited amountof parallelism, or be
ause we are using overestimates of the dependen
es fromFADA, or simply be
ause we want to adapt a s
hedule to a parallel pro
essorby arti�
ially redu
ing the amount of parallelism.5.3 Array Expansion and Array PrivatizationIt is easy to see that the degree of parallelism of a program is
losely relatedto the size of its working memory (the part of its memory spa
e the program
an write into), sin
e independent operations must write into distin
t memory
ells. Consider a loop nest that we hope to exe
ute on P pro
essors. This isonly possible if the nest uses at least P
ells of working memory. Parallelizationmay thus be prevented by too small a memory spa
e, sin
e programmers havea natural tenden
y to optimize memory. A
ontrario, a parallelizer may haveto enlarge the working memory to obtain an eÆ
ient parallel program.36

This
an be done in two ways. Consider for instan
e the kernel of a matrix-ve
tor
ode:for i := 1 to n dobegin1 : s := 0;for j := 1 to n do2 : s := s + a[i,j℄*x[j℄endThe working memory is s of size one, hen
e the program is sequential. The �rstpossibility is to privatize s, i.e. to provide one
opy of s per pro
essor. Howdo we know that this transformation is allowed? Observe that our obje
tivehere is to �nd parallel loops. If the i loop, for instan
e, is parallelized, distin
titerations may be exe
uted by distin
t pro
essors. Sin
e ea
h pro
essor has its
opy of s, this means there must not be any ex
hange of information through sbetween iterations of the i loop. The same is true for the j loop if we de
ide toparallelize it. Now
onsider the sour
e of s in statement 2. It is easily
omputedto give: &(1; i; 2; j; 1) = if j > 1 then h1; i; 2; j � 1; 1i else h1; i; 1i:It is
lear that there is no information
ow from iteration i to i0; i 6= i0. Thereis, on the
ontrary, a data
ow from iteration j � 1 to iteration j. This showboth that the i loop is parallel and that s must be privatized, giving:forall i := 1 to n dobegins : private real;1 : s := 0;for j := 1 to n do2 : s := s + a[i,j℄*x[j℄endThis method generalizes to array privatization. For another approa
h, see[TP94℄.There is however another method, whi
h is to resort to array expansioninstead of array privatization. The �rst idea that
omes to mind is to usethe Dynami
 Single Assignment version of the program, thus insuring that alloutput dependen
es are satis�ed. The result in the above
ase is:forall i := 1 to n dobegin1 : s1[i℄ := 0;for j := 1 to n do2 : s2[i,j℄ := (if j > 1then s2[i,j-1℄else s1[i℄) + a[i,j℄*x[j℄endNoti
e however that while the original memory size was O(1), it is now O(n2),the amount of parallelism being only O(n). The degree of expansion is
learly37

too large. It is possible, by analyzing the life span of ea
h value in the program,to �nd the minimum expansion for a given s
hedule [LF97℄. In the present
ase,one �nds:forall i := 1 to n dobegin1 : s[i℄ := 0;for j := 1 to n do2 : s[i℄ := s[i℄ + a[i,j℄*x[j℄endSuppose we are using P pro
essors. This may still be too mu
h if n is mu
h largerthan P , as it should for eÆ
ien
y sake. The solution is to adjust the s
hedulefor the right amount of parallelism. The optimal s
hedule is �(1; i; 2; j; 1) = jwhi
h should be repla
ed by the two dimensional version:�(1; i; 2; j; 1) = � ji mod P � :The resulting program is6:forall ii := 1 to P dofor k := ii to n by P dobegin1 : s[ii℄ := 0;for j := 1 to n do2 : s[ii℄ := s[ii℄ + a[k,j℄*x[j℄endThe amount of expansion is now exa
tly equal to the amount of parallelism.6 Con
lusionsLet us take a look at was has been a
hieved so far. We have presented a te
h-nique for extra
ting semanti
s information from sequential imperative programsat
ompile time. The information we get is exa
t and, in fa
t, exhaustive inthe
ase of stati

ontrol programs. In the
ase of less regular programs, we getapproximate results, the degree of approximation being in exa
t proportion ofthe irregularity of the sour
e
ode.Array Data
ow information has many uses, some of whi
h have been pre-sented here, in program analysis and
he
king, program optimization and pro-gram parallelization. There are other appli
ations, some of whi
h have not beenreported here due to la
k of spa
e [RF93℄, while others are still awaiting furtherdevelopments:
onsider for instan
e the problem of improving the lo
ality ofsequential and parallel
odes.There are still many problems in the design of Array Data
ow Analyses. Forinstan
e, what is the relation between FADA and methods based on Abstra
tInterpretation? What is the best way of taking advantage of semanti
al infor-mation about the sour
e program? Can we extend Data
ow Analysis to otherdata stru
tures, e.g. trees? All these questions will be the subje
t of futureresear
h.6For simpli
ity, we have supposed that P divide n.38

A Appendix : Mathemati
al ToolsThe basi
 referen
e on linear inequalities in rationals or integers is the treatise[S
h86℄.A.1 Polyhedra and PolytopesThere are two ways of de�ning a polyhedron. The simplest one is to give a setof linear inequalities: A~x+ ~a � 0:The polyhedron is the set of all ~x whi
h satis�es these inequalities. A polyhedron
an be empty { the set of de�ning inequalities is said to be unfeasible { orunbounded. A bounded polyhedron is
alled a polytope.The basi
 property of a polyhedron is
onvexity : if two points ~a and~b belongto a polyhedron, then so do all
onvex
ombinations �~a + (1 � �)~b; 0 � � � 1.Conversely, it
an be shown that any polyhedron
an be generated by
onvex
ombinations of a �nite set of points, some of whi
h { rays { may be at in�nity.Any polyhedron is generated by a minimal set of verti
es and rays.There exist non-polynomial algorithms for going from a representation byinequalities to a representation by verti
es and rays and vi
e-versa. Ea
h rep-resentation has its merits: for instan
e, inequalities are better for
onstru
tinginterse
tions, while verti
es are better for
onvex unions7.The basi
 algorithms for handling polyhedra are feasibility tests: the Fou-rier-Motzkin
ross-elimination method [Fou90℄ and the Simplex [Dan63℄. Theinterested reader is referred to the above quoted treatise of S
hrijver for details.Both algorithms prove that the obje
t polyhedron is empty, or exhibit a pointwhi
h belongs to it. For de�niteness, this point is generally the lexi
ographi
minimum of the polyhedron. In the
ase of the Fourier-Motzkin algorithm, the
onstru
tion of the exhibit point is a well separated phase whi
h is omitted inmost
ases.Both the Fourier-Motzkin and the Simplex are variants of the Gaussianelimination s
heme, with di�erent rules for sele
ting the pivot row and
olumn.Theoreti
al results and experien
e have shown that the Fourier-Motzkin algo-rithm is faster for small problems (less than about 10 inequalities), while theSimplex is better for larger problems.A.2 Z-modulesLet v1; : : : ; vn be a set of linearly independent ve
tors of ZZn with integral
om-ponents. The set:L(v1; : : : ; vn) = f�1v1 + : : :+ �nvn j �i 2 ZZgis the Z-module generated by v1; : : : ; vn. The set of all integral points in ZZn isthe Z-module generated by the
anoni
al basis ve
tors (the
anoni
al Z-module).Any Z-module
an be
hara
terized by the square matrix V of whi
h v1; : : : ; vnare the
olumn ve
tors. We will use the notation L(V) for L(v1; : : : ; vn). How-ever, many di�erent matri
es may represent the same Z-module. A square7Noti
e that while the interse
tion of two polyhedra is a polyhedron, their union is not.39

matrix is said to be unimodular if it has integral
oeÆ
ients and if its determi-nant is �1. Let U be a unimodular matrix. It is easy to prove that V and V Ugenerate the same latti
e.Conversely, it
an be shown that any non-singular matrix V
an be writtenin the form V = HU where U is unimodular and H has the following properties:� H is lower triangular,� All
oeÆ
ients of H are positive,� The
oeÆ
ients in the diagonal of H dominate
oeÆ
ients in the samerow.H is the Hermite normal form of V . Two matri
es generate the same Z-moduleif they have the same Hermite normal form. The Hermite normal form of aunimodular matrix is the identity matrix, whi
h generates the
anoni
al Z-module.Computing the Hermite normal form of an n � n matrix is of
omplexityO(n3), provided that the integers generated in the pro
ess are of su
h size thatarithmeti
 operations
an still be done in time O(1).A.3 Z-polyhedraA Z-polyhedron is the interse
tion of a Z-module and a polyhedron:F = f~z j ~z 2 L(V); A~z + ~a � 0g:If the
ontext is
lear, and if L(V) is the
anoni
al Z-module (V = I), it maybe omitted in the de�nition.The basi
 problem about Z-polyhedra is the question of their emptiness ornot. For
anoni
al Z-polyhedra, this is the linear integer programming question[S
h86, Min83℄. Studies in stati
 program analysis use either the Omega test[Pug91℄ whi
h is an extension of Fourier-Motzkin, or the Gomory
ut method,whi
h is an extension of the Simplex [Gom63℄.Both the Omega test and the Gomory
ut method are inherently non poly-nomial algorithms, sin
e the integer programming problem is known to be NP-
omplete.A.4 Parametri
 ProblemsA linear programming problem is parametri
 if some of its elements { e.g. the
oeÆ
ients of the
onstraint matrix or those of the e
onomi
 fun
tion { dependon parameters. In problems asso
iated to parallelization, it so happens that
onstraints are often linear with respe
t to parameters. In fa
t, most of thetime we are given a polyhedron P :A� ~x~y �+ ~a � 0in whi
h the variables have been partitioned in two sets, the unknowns: ~x, andthe parameters: ~y. Setting the values of the parameters to ~p is equivalent to40

onsidering the interse
tion of P with the hyperplane ~y = ~p, whi
h is also a poly-hedron. In a parametri
 problem, we have to �nd the lexi
ographi
 minimumof this interse
tion as a fun
tion of ~p.The Fourier-Motzkin method is \naturally" parametri
 in this sense. Oneonly has to eliminate the unknowns from the last
omponent of ~x to the �rst.When this is done, the remaining inequalities give the
onditions that the pa-rameters must satisfy for the interse
tion to be non empty. If this
ondition isveri�ed, ea
h unknown is set to its minimum possible value, i.e. to the maxi-mum of all its lower bounds. Let C~y + ~
 � 0 be the resulting inequalities afterelimination of all unknowns. The parametri
 solution may be written:min� (P \ f~y = ~pg) = if C~p+ ~
 � 0 then 0� max(f(~p); : : : ; g(~p))� � �max(h(~p); : : : ; k(~p)) 1A else ?where ? is the unde�ned value and the fun
tions f; : : : ; k are aÆne.The simplex also relies on linear
ombinations of the
onstraint matrix rows,whi
h
an be applied without diÆ
ulty in the parametri

ase. The only diÆ-
ulty lies in the
hoi
e of the pivot row, whi
h is su
h that its
onstant
oeÆ
ientmust be negative. Sin
e this
oeÆ
ient depends in general on the parameters,its sign
annot be as
ertained; the problem must be split in two, with oppositehypotheses on this sign. These hypotheses are not independent; ea
h one re-stri
ts the possible values of the parameters, until in
onsistent hypotheses areen
ountered. At this point, the splitting pro
ess stops. By
limbing ba
k theproblem tree, one may re
onstru
t the solution in the form of a multistage
on-ditional. The advantage of the parametri
 Simplex over the Fourier-Motzkinalgorithm is that it
an be extended to the all-integer
ase. Parametri
 Gomory
uts
an be
onstru
ted by introdu
ing new parameters whi
h represent integerquotients. The reader is referred to [Fea88b℄ for an implementation of theseideas in the Parametri
 Integer Programming (PIP) algorithm.Referen
es[AK87℄ J. R. Allen and Ken Kennedy. Automati
 translation of fortran pro-grams to ve
tor form. ACM TOPLAS, 9(4):491{542, O
tober 1987.[ASU86℄ A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin
iples,Te
hniques and Tools. Addison-Wesley, Reading, Mass, 1986.[BCF97℄ Denis Barthou, Jean-Fran�
ois Collard, and Paul Feautrier. Fuzzyarray data
ow analysis. Journal of Parallel and Distributed Com-puting, 40:210{226, 1997.[Bra88℄ Thomas Brandes. The importan
e of dire
t dependen
es for auto-mati
 parallelization. In ACM Int. Conf. on Super
omputing, StMalo, Fran
e, July 1988.[CC77℄ Patri
k Cousot and Radhia Cousot. Abstra
t interpretation: a uni-�ed latti
e model for stati
 analysis of programs by
onstru
tion orapproximation of �xpoints. In Symp. on Prin
iple and Pra
ti
e ofProgramming Languages, pages 238{252. ACM, 1977.41

[CI96℄ B�eatri
e Creusillet and Fran�
ois Irigoin. Interpro
edural array re-gions analyses. Int. J. of Parallel Programming, 24(6):513{546, 1996.[Dan63℄ G. B. Dantzig. Linear Programming and Extensions. Prin
eton Uni-versity Press, 1963.[Fea88a℄ Paul Feautrier. Array expansion. In ACM Int. Conf. on Super
om-puting, pages 429{441, 1988.[Fea88b℄ Paul Feautrier. Parametri
 integer programming. RAIRO Re
her
heOp�erationnelle, 22:243{268, September 1988.[Fea89℄ Paul Feautrier. Asymptoti
ally eÆ
ent algorithms for parallel ar-
hite
tures. In M. Cosnard and C. Girault, editors, De
entralizedSystem, pages 273{284. IFIP WG 10.3, North-Holland, De
ember1989.[Fea91℄ Paul Feautrier. Data
ow analysis of s
alar and array referen
es. Int.J. of Parallel Programming, 20(1):23{53, February 1991.[Fea92a℄ Paul Feautrier. Some eÆ
ient solutions to the aÆne s
hedulingproblem, I, one dimensional time. Int. J. of Parallel Programming,21(5):313{348, O
tober 1992.[Fea92b℄ Paul Feautrier. Some eÆ
ient solutions to the aÆne s
heduling prob-lem, II, multidimensional time. Int. J. of Parallel Programming,21(6):389{420, De
ember 1992.[Flo67℄ Robert J. Floyd. Assigning meaning to programs. In Mathemati
alAspe
ts of Computer S
ien
e. AMS, 1967.[Fou90℄ J. B. J. Fourier. Oeuvres de Fourier, Tome II. Gauthier-Villard,Paris, 1890.[GC95℄ M. Griebl and J.-F. Collard. Generation of syn
hronous
ode forautomati
 parallelization of while loops. In Euro-Par95, Sto
kholm,Sweden, Aug 1995.[GLL95℄ Jungie Gu, Zhiyuan Li, and Gyungho Lee. Symboli
 array data
owanalysis for array privatization and program parallelization. In Su-per
omputing, De
ember 1995.[Gom63℄ R. E. Gomory. An algorithm for integer solutions to linear programs.In R. L. Graves and P. Wolfe, editors, Re
ent Advan
es in Math.Programming,
hapter 34, pages 269{302. Ma
-Graw Hill, New York,1963.[HT94℄ C. He
kler and L. Thiele. Computing linear data dependen
ies innested loop programs. Parallel Pro
essing Letters, 4(3):193{204,1994.[JF90℄ Pierre Jouvelot and Paul Feautrier. Parall�elisation S�emantique. In-formatique th�eorique et Appli
ations, 24:131{159, 1990.42

[KMW67℄ R. M. Karp, R. E. Miller, and S. Winograd. The organization of
omputations for uniform re
urren
e equations. Journal of the ACM,14:563{590, 1967.[KP96℄ Induprakas Kodokula and Keshav Pingali. Transformations for im-perfe
t nested loops. In Super
omputing, 1996.[Ku
78℄ David J. Ku
k. The Stru
ture of Computers and Computations. J.Wiley and sons, New York, 1978.[Les96℄ Arnauld Leservot. Analyse Interpro
�edurale du
ot des donn�ees. PhDthesis, Universit�e Paris VI, Mar
h 1996.[LF97℄ Vin
ent Lefebvre and Paul Feautrier. Storage management in parallelprograms. In IEEE Computer So
iety, editor, 5th Euromi
ro Work-shop on Parallel and Distributed Pro
essing, pages 181{188, Londres(England), January 1997.[LMQ91℄ Herv�e Leverge, Christophe Mauras, and Patri
e Quinton. The alphalanguage and its use for the design of systoli
 arrays. Journal of VLSISignal Pro
essing, 3:173{182, 1991.[MAL93℄ Dror E. Maydan, Saman P. Amarasinghe, and Moni
a S. Lam. Arraydata
ow analysis and its use in array privatization. In Pro
. of ACMConf. on Prin
iples of Programming Languages, pages 2{15, January1993.[Min83℄ Mi
hel Minoux. Programmation Math�ematique, th�eorie et algo-rithmes. Dunod, Paris, 1983.[Pug91℄ William Pugh. The Omega test: A fast and pra
ti
al integer pro-gramming algorithm for dependen
e analysis. In Super
omputing,1991.[PW86℄ D. A. Padua and Mi
hael J. Wolfe. Advan
ed
ompiler optimizationfor super
omputers. CACM, 29:1184{1201, De
ember 1986.[PW93℄ William Pugh and David Wonna
ott. An evaluation of exa
t methodsfor analysis of value-based array data dependen
es. In Sixth AnnualWorkshop on Programming Languages and Compilers for ParallelComputing, pages 546{566. Springer-Verlag LNCS 768, August 1993.[RF93℄ Xavier Redon and Paul Feautrier. Dete
tion of redu
tions in sequen-tial programs with loops. In Arndt Bode, Mike Reeve, and GottfriedWolf, editors, Pro
s. of the 5th Int. Parallel Ar
hite
tures and Lan-guages Europe, pages 132{145. LNCS 694, June 1993.[S
h86℄ A. S
hrijver. Theory of linear and integer programming. Wiley,NewYork, 1986.[SJ77℄ N. Suzuki and D. Je�erson. Veri�
ation de
idability of Pressburgerarray programs. In Pro
s. of a
onf. on TCS, Waterloo, 1977.43

[TIF86℄ R�emi Triolet, Fran�
ois Irigoin, and Paul Feautrier. Automati
 paral-lelization of FORTRAN programs in the presen
e of pro
edure
alls.In Bernard Robinet and R. Wilhelm, editors, ESOP 1986, LNCS213. Springer-Verlag, 1986.[TP94℄ Peng Tu and David Padua. Array privatization for shared and dis-tributed memory ma
hines. In Pro
. of the 7th Workshop on Lan-guages and Compilers for Parallel Computers, LNCS 892, 1994.[Won95℄ David G. Wonna
ott. Constraint-Based Array Dependen
e Analysis.PhD thesis, U. of Maryland, 1995.

44

