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R�esum�eL'analyse s�emantique des programmes (sp�ecialement des programmesnum�eriques utilisant des tableaux), conduit �a la r�esolution de probl�emesde programmation num�erique en nombres entiers. Ces probl�emes ont troisparticularit�es:� les points faisables ne sont pas class�es suivant une fonction �econo-mique lin�eaire, mais suivant l'ordre lexicographique;� le probl�eme d�epend de param�etres, eux aussi entiers;� seules les solutions exactes sont int�eressantes.En compensation, la taille des probl�emes �a traiter est faible; il estenvisageable de rechercher une solution compl�ete. Dans ce papier, nousmontrons:� que l'algorithme classique du simplexe s'adapte sans di�cult�e autraitement de l'ordre lexicographique;� qu'il est possible de l'ex�ecuter symboliquement pour obtenir la solu-tion de probl�emes param�etriques continus;� que cette technique s'�etend �a la r�esolution de probl�emes en nombresentiers.On prouve la convergence de l'algorithme ainsi obtenu et on donne uneid�ee de sa complexit�e.1 IntroductionWhen analyzing computer programs in which arrays are used, one often has tosolve parametric integer problems. Consider for instance the following (somewhatcontrived) piece of code:for i := 0 to m dofor j := 0 to n doa [2*i+j] := i+j;After execution of these for loops, for which values of k is a[k] de�ned? Ifso, what is its value? To answer these questions, note �rst that a[k] is assigneda value for all pairs (i; j) such that:0 � i � m0 � j � n;2i+ j = k:2



Furthermore, the de�nitive value of a[k] is given by the latest such access.Since the temporal sequence of accesses is given by the lexical ordering of (i; j),this imply that: a [k] = imax + jmax;where (imax; jmax) is the lexical maximum of the set:F(k;m; n) = f(i; j)j0 � i � m; 0 � j � n; 2i+ j = kg:Among other things, a[k] is unde�ned when F(k;m; n) is empty. While one seesimmediately that this occurs as soon as:k > 2m + n;�nding the proper value of imax and jmax is by no means easy.Generalizing from the above exemple and similar riddles, we are lead to astudy of the following problem:� We are given a �nite set of linear inequalities in a set of variables andparameters.� Both variables and parameters are restricted to positive integer values.� We are required to �nd the lexical minimum of the feasible set (the set ofvariable values which satis�es the given inequalities), as a function of theparameters.Since there are various devices for replacing equalities by inequalities, we maysuppose that the only constraints are inequalities of the � 0 type. The motivationof the change from lexical maximum to minimum lies in the fact that lexicalordering is well founded. Hence the lexical minimum of sets such as F abovealways exists, which is not true for the lexical maximum. In cases of programsemantics interest, there is always an upper bound in evidence for each variable,and the change, if necessary, is easily done.There are other di�erences with the problems one usually encounter in op-eration research. The problems are quite small. The unknown count is relatedto the maximum loop nesting, while the equation count is related to the arraydimension. Both these quantities are small integers. In operation research, theelements of the feasible set are ranked according to some linear economic func-tion. The lexicographic rule was introduced by Dantzig, Orden and Wolfe in1954 as a mean to prevent cycling in the case of degeneracy: see [Dan63]. Inthe model we are interested in, lexicographic ordering replaces the classical lin-ear economic function. It is a striking fact that the same algorithm (basicallyDantzig's Simplex) gives the solution in both cases.3



Another important di�erence is that we are not interested in approximatesolutions. The information we gather will be used for restructuring programs,and such transformations must be based on exact data in order not to introduceerrors.The balance of the paper is dedicated to the construction and proof of aparametric integer programming algorithm. In paragraph 2, we will review theclassical continuous non parametric simplex algorithm. Paragraph 3 will extendthis algorithm to the parametric case. The resulting technique is equivalent toan algorithm of [Gal79], albeit much simpler to understand and to implement. Inthis paragraph we will introduce the concept of a problem tree and use it to provethe convergence of the algorithm. Paragraph 4 will deal with the integer case.The termination proof will result from a new uniform bound on the length of thenonparametric algorithm by the same techniques as those of the continuous case.The conclusion will review our results and point to some unsolved problems.2 The dual simplex methodIn this paper, bold letters will denote vectors with integer or rational coe�cients.The notation x � 0, where x is n-dimensional, will mean:8i 2 [1; n] : xi � 0:Given an m � n matrix M and an m-dimensional vector v , our aim is tosolve the following problem:Let F be the set: F = fxjx � 0;Mx+ v � 0g: (1)Decide whether F is empty, and, if not, select one element of F according tosome preference criterium.F is the set of feasible solutions. In operation research, it is usual to use alinear preference function:x is preferable to y � c:x < c:y;where c is an n-dimensional vector and . denote the scalar product. This relation,however, is not an order. This lead to di�culties known in the litterature asdegeneracy problems. For reasons which have been given above, we will rank thepoints of F according to the lexicographic order, noted as � in the sequel. Therewould be no di�culty to extend our theory to the linear case on condition thatc � 0.The problem will be solved by a succession of changes of variables, until we�nd ourselves in a situation where the solution is \obvious". A linear change of4



variables is speci�ed by an n � n matrix P and an n-vector u; the old variablesx are given in term of the new ones, y, by:x = Py + u; (2)and the new feasible set is:F0 = fPy+ ujPy + u � 0;MPy +Mu+ v � 0g: (3)A common generalization of (1) and (3) is:F = fAy+ bjx = Ay+ b � 0; z = Cy+ d � 0;y � 0g: (4)Initially, A is a unit matrix, b is null, C is M and d is v. We may considerA and B as two blocks of an (m+ n)� n matrix S, b and c as an m+ n vectort and x and z as an m + n vector w. In the course of the resolution process,vector w will stay �xed. The unknown vector y initially is a subset of w (namelyx) and will stays so, but the selection will change as the solution progress. Inmathematical programming terminology, [St] is the problem tableau; the y's arethe basic variables; the variables of w which do not belong to y are non-basic.S�j (resp. Si�) will be the j-th column vector (resp. the i-th row vector) of S.The change of variable (2) is legitimate, �rst, if there is a value of y associatedto each value of x, i.e., if P is invertible. Second, y � 0 must be a consequenceof the fact that x belongs to F.What are the \obvious" cases? Suppose �rst that there is a row i of S suchthat Si� � 0 and ti < 0. Then, since x � 0, there is no possible way of havingSi�:x+ ti � 0:In this case, F is empty.Next, note that the initial S is such that all its column vectors are lexico-positive (they begin by a string of zero followed by a one). Suppose we are ableto maintain this property and that we reach a stage where b � 0. Then there isa member of F associated to x = 0, namely b. Any increase in the value of x willadd to b a lexico-positive vector; hence, b is the lexical minimum of F.This leads to the following technique for the construction of P . Select anindex i such that ti < 0, and a j such that Sij > 0. The corresponding row is:wi = S�i:y+ ti: (5)Eliminate yj in favor of wi This is obviously an invertible transformation, andwi � 0 is guaranteed. xj is given by:xj = wi=Sij �Xk 6=j(Sik=Sij)yk � ti=Sij : (6)5



After this transformation, the new tableau [S 0t0] will have as its column vec-tors: S0�j = (1=Sij)S�j; (7)S0�k = S�k � (Sik=Sij)S�j; k 6= j (8)t0 = t� (ti=Sij)S�j (9)Since Sij is positive, S 0�j will remain lexicopositive. For S0�k to remain lex-icopositive, j must be choosen by the familiar rule: select the lexico-minimalcaracteristic vector S�j=Sij from those with Sij positive. Element Sij is knownas the pivot, and formulas (7) to (9) de�ne a pivoting step. Note that since ti isnegative, t0 will increase in the process.In mathematical programming terminology, one says that variable wi entersthe basis and that yj leaves it. The whole process may be seen as the selectionof a submatrix T of S and the computation of its inverse. T is the product ofelementary matrices of the form:0BBBBBBBB@ 1 0 : : :0 1 : : :: : :Si1 : : : Sij : : :: : : : : : 0 1 1CCCCCCCCAwhose determinant is Sij. Hence D, the determinant of B is the product of thepivots. By Cramer's rule, we know that the elements of the transformed tableauwill be fractions whose denominator is D or one of its factors.It is obvious that either we are in one of the two immediate solution cases,or else a choice of i and j is possible. Hence the algorithm does not stop unlessthe problem is solved. But the algorithm is nothing more than the selection ofn rows from the (m+ n) rows of S. There are only Cnm+n di�erent choices, andsince cycling is impossible by (9), the algorithm must terminate eventually. Notethat the above bound does not depend on the particular value of S or t but onlyon the dimensions of the problem, m and n.In practical terms, all we need for an implementation of the above algorithmis to record the tableau of the problem, i.e. the matrix S and the vector t. If weare given a linear preference function with positive coe�cients, we just add it asthe �rst line of the tableau, whose column vectors remain lexico-positive. Thisis the familiar dual simplex algorithm. One may observe that initially n lines ofS constitute a unit matrix, and that the pivoting steps simply scatter these linesin the problem tableau. It is customary not to record the unit part of S, thusreducing the complexity of a pivoting step from O(n(m + n)) to O(mn). Whenworking with lexicographic ordering, this optimization will disturb the numberingof the unknowns and hence change the �nal solution. In the interest of legibility,6



we will suppose in the sequel that we always work with the complete tableau; ina practical implementation, a more sophisticated programming technique mustbe used.3 Continuous parametric programmingThe next step in the solution is to suppose that the constant terms in (1) are nolonger numbers but depend linearly on p parameters. As a matter of convenience,we will suppose that these parameters (which are noted as a p-dimensional vectorz), are positive integers. The current version of (4) is then:Let F(z) be the set:F(z) = fAx+A0z+bjAx+A0z+b � 0; Cx+C 0z+d � 0;x � 0g: (10)Decide for which values of z, F(z) is empty. For other values of z,express the lexico-minimal element of F(z) as a function of z.The idea of the solution method is to execute the dual simplex algorithm in asymbolic way, as one would do if working with pen and paper. For the algorithmto become a program, one needs to know the algebraic nature of each datum inthe process. From an inspection of (10), it is clear that initially the elementsof S are numbers, while the elements of vector t are linear forms. Furthermore,inspection of (7) to (9) shows that this property remains true after a pivotingstep, i.e. that the parameters remain con�ned in the constant terms. From (9),for instance, we deduce that the formula for a component of t0 is:t0k = tk � ti(Skj=Sij):Here tk and ti are both linear forms, while Skj=Sij is a number.However, before a pivoting step, one must choose the pivot. Here again, assoon as i is known, the choice of j depends solely on S, and hence is independentof the value of z. The choice of i, on the other hand, is controlled by the rulethat ti should be negative. This clearly depend on z, and the only possibility isto split the problem in two subproblems according to the sign of ti. When thisis done, the value of z is no longer arbitrary: in one subproblem it is constrainedby ti(z) � 0, and by the opposite inequality in the other one. When the nextchoice must be made, according to the sign of tk (for instance), tk(z) � 0 mayor may not be compatible with ti(z) � 0. If compatible, the value of z will befurther constrained both by ti(z) � 0 and tk(z) � 0.We are thus driven to introduce a further element in problem (10) : a set oflinear constraints on the parameters,Kz+ h � 0:7



These inequalities on z will be called the context of the problem. Restrictingz to positive integer values will simplify the handling of these constraints. Wewill suppose that the initial context of the problem is not unfeasible.The algorithm will proceed by building a problem tree, i.e. a tree whosenodes are labelled by a problem tableau hS; t;K;hi. In such a problem, the signof component ti of t may be positive, negative or unknown. It is unknown if bothti(z) � 0 and ti(z) < 0 are compatible with the context. The sign is known ifonly one of these inequalities is compatible with the context. Lastly, it will neverbe the case that none is compatible with the context: that would imply that thecontext is empty.If all ti are positive, then the node is a success leaf. If there is at least onenegative ti, then we attempt a pivoting step according to (7-9), which may leadto failure or to success. In the �rst case, the node is a failure leaf. Its contextdelimits a region of the parameter space where F(z) is empty. In case of success,the original node will have an only son whose problem will be the result of thepivoting step.In the remaining case, select a ti whose sign is unknown. The original nodewill have two sons with the same problem tableau. In one of them, the contextwill be augmented by ti(z) � 0, and in the other one by ti(z) < 0.It remains to say how the compatibility of a set of linear inequalities is tobe tested. We have supposed that all numbers that enter in our algorithms arerationals. As a consequence, the context may be stored as a set of forms withinteger coe�cients. It is easy to bring ti(z) to this form by multiplication by asuitable number; ti(z) < 0 is brought to the canonical form f(z) � 0 by changingall signs and subtracting one from the constant term. One is then left with theproblem of deciding the feasability of a system of linear inequalities in integers.This is a nonparametric programming problem, which may be solved by wellknown techniques ([Gre71]); see also the following paragraph.The resulting algorithm may be summarized in the following terms:Algorithm QTo solve the parametric continuous problem with tableau hS; t(z)i inthe context Kz+ h � 0 :1. Determine the signs of the components of t(z) in the contextKz+ h � 0;2. If all ti(z) are positive, the solution is given by the �rst jxjcomponents of t(z);3. If there is a negative ti(z), then either:(a) All elements of S�i are negative, and the solution may bewritten as 1, indicating that it does not exist;8



(b) There is at least a positive Sij; a pivoting step is executed,giving a new problem hS 0; t0(z)i. The solution of the initialproblem is the same as that of the problem hS0; t0(z)i in thecontext Kz+ h � 0;4. In the remaining case, select a ti(z) whose sign is unknown;let x+ and x� be respectively the solutions of hS; t(z)i in thecontexts: fKz+ h � 0; ti(z) � 0g;fKz+ h � 0; ti(z) < 0g:The solution of the initial problem is:if ti(z) � 0 then x+ else x�:3.1 The correctness proofThat the above algorithm is partially correct is obvious, since it does nothing butreproduce in a symbolic way the moves of the dual simplex algorithm. Does italways terminate?Note �rst that the problem tree is �nitely branching. A node has at most twosons (in case (4) above). Hence, by K�onig lemma, if the tree is in�nite it has anin�nite branch. Second, the number of splitting steps between two pivoting stepsis bounded by m, since there are only m + n components of t(z) and since n ofthose are always null. Last, note that by construction, all contexts are non void.Select a node on the in�nite branch whose distance to the root is greaterthan mCnm+n, and a value of z which belongs to its context. Executing the dualsimplex algorithm for this value of z will lead to the choosen node in more thanCnm+n pivoting steps, in contradiction to a previously obtained bound.3.2 An exampleTo bring the initial problem in the canonical form (10), one has to introduce newunknowns: i0 = m� i;j0 = n� j;and to replace one equation by two opposite inequalities. The result is:9



Find the lexical minimum of:F0(k;m; n) = f(i0; j0) j 0 � i0 � m;0 � j 0 � n;�2i0 � j0 � k + 2m+ n � 0;2i0 + j0 + k � 2m � n � 0g:The initial tableau is:A i0 j0 1 k m n Signi0 1 0 0 0 0 0 0j 0 0 1 0 0 0 0 0a -1 0 0 0 1 0 +b 0 -1 0 0 0 1 +c -2 -1 0 -1 2 1 ?d 2 1 0 1 -2 -1 ?The �rst four rows are null or positive, while the last two rows sign is unknown.We must split the program in two subprograms according to the sign of (�k +2m+ n).Suppose �rst this linear form is non-negative. This clearly implies that thelast row cannot be positive. (This fact is easily proved by showing that thecorresponding program is unfeasible; we omit the details for brevity sake). Apivoting step is indicated; the variable d will enter the basis in place of variablej0. The resulting tableau is:B i0 d 1 k m n Signi0 1 0 0 0 0 0 0j0 -2 1 0 -1 2 1 +a -1 0 0 0 1 0 +b 2 -1 0 1 -2 0 ?c 0 -1 0 0 0 0 0d 0 1 0 0 0 0 0Context: �k + 2m+ n � 0Here, all rows have non negative constant terms with the exception of the brow. There are two cases according to the sign of k � 2m.If k�2m � 0, all constant terms are non negative and the solution is apparent:i0 = 0;j0 = �k + 2m+ n:If not, another pivoting step is necessary: b enters the basis in place of i0.10



C b d 1 k m n Signi0 1/2 1/2 0 -1/2 1 0 +j0 -1 0 0 0 0 1 +a -1/2 -1/2 0 1/2 0 0 +b 1 0 0 0 0 0 0c 0 -1 0 0 0 0 0d 0 1 0 0 0 0 0Context : k � 2m � 0�k + 2m+ n � 0Here, all constant terms are non negative, and the solution is:i0 = �k=2 +m;j0 = n:The remaining case is �k + 2m+ n < 0. Going back to the �rst tableau, wesee that all coe�cients in the c row are negative and hence that the program isunfeasible.We may splice all the above results and express the resulting formula in termof the original unknowns i and j: ij ! = if (�k + 2m + n � 0)then if (k � 2m � 0)then  mk � 2m !else  k=20 !else 1:Since the problem is two dimensional, the result could have been obtained byinspection of �gure 1. The interest of our method is that it can be used whateverthe dimensionality of the problem.4 The Integer CaseWe must now take into account the restriction of x to integer values. Thereare several techniques, for which the reader is referred to [Gre71], [Tah75] or[Min83]. In the present context, we must select an algorithm whose moves may becarried out even if the constant terms depend linearly on integer parameters, andwhose complexity is uniformly bounded with respect to the constant terms. Thecutting plane algorithm of [Gom63] answers to these requirements. Paragraph4.1 describes it; the convergence proof is given in paragraph 4.2. In the nextparagraph we will devise its symbolic version; the termination proof will followin a straightforward way. 11
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-Figure 1: A simple parametric programming problem
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4.1 An integer programming algorithmThe problem to be solved may be expressed in the following way:Let F be the set:F = fxjx � 0;Mx + v � 0;x 2 Ng (11)where N is the set of positive integers. Decide whether F is emptyand, if not, select its lexical minimum.We will suppose, with no loss of generality, that M and v have integer coe�-cients, which implies that Mx+v is an integer vector. The solution will proceed,as in 2, by a succession of variable changes according to (5) and (6). As wehave seen, the new independant variable, yj, is either one of the x or one of theconstraints. Hence yj will also be constrained to integer values. However, as (6)shows, not all integer values of yj will result in integral values for x. Hence an in-tegrity constraint for x must be introduced explicitly. The correct generalizationboth of (4) and (11) is:F = fAx+ bjAx+ b 2 N; Cx+ d 2 N;x 2 Ng: (12)The dual simplex algorithm as given by (7) to (9) will eventually terminate,with non negative vectors b and d. There is no guarantee that these vectors areintegers; it follows that the solution is not necessarily given by x = 0. The onlyinformation we have is that the solution u is in F, that the column vectors of Aare lexico-positives and that, since x � 0,b� u:The principle of the cutting plane method [Gom63] is to add a new constraintto (12) in such a way as to exclude the continuous optimum while keeping allfeasible integer points. The new constraint or cut must be a consequence of:Ax+ b 2 N;x 2 N:To derive a cut, select the �rst row i of A such that bi is not an integer. Ifthere is no such row, the current b is integral and the program is solved. Let Dbe the common denominator of the Aij and of bi. If:Xj Sijxj + ti 2 N;then Xj (DSij)xj + (Dti) � 0 (mod D): (13)13



It is interesting to reduce this congruence to lowest terms by replacing allintegers by their remainder when divided by D. Let us use the sign % (in the Cfashion) for the remaindering operator:If a = bq + r where 0 � r < b, then a%b = r.(13) is equivalent to:Xj ((DSij)%D)xj � (�Dti)%D (mod D); (14)or Xj ((DSij )%D)xj = (�Dti)%D + kD: (15)Since the left hand side is positive, while (�Dti)%D is positive and less thanD, we see that k is non negative and hence that:Xj ((DSij)%D)xj � (�Dti)%D � 0: (16)Note also that: Xj (DSij)%DD xj � (�Dti)%DD = k; (17)a positive integer. Hence we may add as a cut:Xj (DSij)%DD xj � (�Dti)%DD 2 N; (18)and the format of the problem will not be changed.The new row will have a negative constant term; to restore feasibility, one ormore pivoting steps must be executed. The algorithm will proceed until eitherthe feasible set is proved to be empty or a feasible integer solution is found. Sincecuts are consequence of the program constraints, adding a cut does not eliminateany integer solution; if the feasible set is found to be empty, this prove that theinitial program had no integer solution. On the contrary, if a solution is found,an argument similar to the one given in 2 will show that it is the lexico-minimalone.4.2 The convergence proofThe classical convergence proof (see e.g. [Gre71] or [Sch86]) is based on theobservation that the constant term b in program (12) lexicographically increaseat each step of the algorithm, but is bounded by an eventual solution. Since weare equally interested in cases where there is no solution, our �rst step will be toconstruct an enlarged program whose solution always exists and is simply relatedto the solution, if any, of the original program. The convergence proof will thenfollow along classical lines. Finally, with the help of a theorem of Cook et al.[WHAE86], we will give a uniform bound on the maximum number of cuts.14



4.2.1 The enlarged problemStarting from program (11), let x0 be a new unknown; let F+ be the program:F+ = fx0;xjx0;x 2 N;x0 +Mx+ v 2 Ng:It is quite clear that F+ is not empty; takex0 = max(0;�vi)and x = 0:Next, if F is not empty and has lexical minimum u, then h0;ui is the lexicalminimum of F+. Conversely, if hu0;ui is the lexical minimum of F+, then eitheru0 = 0, and u is the minimum of F, or u0 > 0, and F has no solution.In the course of the resolution of F+, as long as the new variable x0 remainsin the basis, all columns of the tableau except the �rst will start with at least onezero. Hence, the �rst column will never be choosen as the pivot column unlessit is the only candidate, wich means that x0 leaves the basis, that its optimumvalue will be non zero and that F is unfeasible. In other words, at any given stepin the resolution of F, the tableau is obtained from the corresponding tableaufor F+ by deleting the �rst column and the �rst row. It is easily seen that thisproperty is also true when cuts are added, since source rows are the same andso is D. We conclude, then, that the complexity of F+ is an upper bound onthe complexity of F. Hence it is su�cient to give a convergence proof in the casewhere an integral solution exits.4.2.2 The convergence proof againLet F = fxjMx+ v 2 N;x 2 Ng (19)be a program with solution u. Let Fn be the transformed program just after then-th cut: Fn = fA(n)y+ b(n)jA(n)y+ b(n) 2 N ;C(n)y+ d(n) 2 Ngand let F0n (with similar notations) be the program just after the pivoting step onthe n-th cut. Let �(n) be the source row for the n-th cut. By (18) the constantterm in the n-th cut is: �(�D(n)b(n)�(n))%D(n)D(n)while the pivot is: (D(n)A(n)�(n)j)%D(n)D(n) :15



By (9), b0(n)�(n) = b(n)�(n) + (�D(n)b(n)�(n))%D(n)D(n) D(n)(D(n)A(n)�(n)j)%D(n)A(n)�(n)j;where b(n)�(n) and A(n)�(n)j are both positive. We note the upper bound:(D(n)A(n)�(n)j)%D(n) � D(n)A(n)�(n)j;from which follows: b0(n)�(n) � D(n)b(n)�(n) + (�D(n)b(n)�(n))%D(n)D(n) : (20)Let b(n)�(n) = q(n)� r(n)D(n) (21)where q(n) and r(n) are both integers with:0 � r(n) < D(n):From the above follows: b0(n)�(n) � q(n) > b(n)�(n): (22)The last inequality is strict since, for the row �(n) to be choosen as the sourcerow, b(n)�(n) must be fractional. The algorithm is such that b is lexicographicallyincreasing, which implies that b1 is non decreasing in the usual sense. We havejust proved that each time the �rst row is used as the source row, there is anotherinteger (namely fb(n)1 g) between b(n)1 and b0(n)1 .Consider now a cut whose source row is not row 1, which implies that b1 isintegral. Let j be the pivot column of the next step. Then either S1j = 0, and b1does not change, or S1j > 0, and b1 increases. If the resulting value is integral,then b1 has increased by at least 1; if not, the next cut will use row 1, and b1will increase beyond fb1g.Let us say that a cut is a 1-cut if either row 1 is the source row, or S1j > 0where j is the index of the pivot column in the next step. From the abovediscussion, we see that if the n-th cut is a 1-cut, then there is an integer in[b(n)1 ;b(n+1)1 ], and these integers form a strictly increasing sequence. If Kn is thenumber of 1-cuts between steps 1 and n, then:b(n)1 � b(0)1 � Kn � 1: (23)We know that F has a lexical minimum u, that u belongs to Fn at each stepof the process, and hence that there exists values of y such that:16



u = A(n)y + b(n); y � 0: (24)From this we deduce, since A(n) columns are lexico-positive, that:b(n) � uand speci�cally that: b(n)1 � u1:This in turn implies that the total number of 1-cuts is bounded. There is astep N1 such that b(n)1 = b(N1)1 for n � N1; b(N1)1 is integral. By the de�nition ofan 1-cut, after step N1, pivoting is con�ned to those columns whose �rst elementis null. In any row i, let J+i (resp. J0i , J�i ) be the set of column indices j suchthat Sij > 0 (resp. Sij = 0, Sij < 0). From (24) we deduce the bounds:8j 2 J+1 : 0 � yj � u1 � b(n)1A(n)1j (25)which stays valid for the rest of the procedure, since the �rst row of the tableaudoes not change anymore. In row 2, any A(n)2j with j in J01 will be non negative,to insure that the corresponding column is lexico-positive. In other words:J�2 � J+1 ; (26)from which follows the bound:b(n)2 = u2 �Xj A(n)2j yj � u2 + Xj2J�2 (�A(n)2j )u1 � b(n)1A(n)j : (27)From this we deduce, by the same argument as above, that the number ofcuts on the second row is bounded. The same argument may be repeated for allrows of the tableau. It follows that, after a �nite number of steps, all coordinatesof b will be integral, and the algorithm will terminate.In the sequel, we will say that row i has settled after step Ni if b(n)i = b(Ni)ifor all n � Ni. We have just proved that b(N1)1 = a1 and that after step N1, forj 2 J+1 , yj = 0. This is tantamount to saying that, as soon as row 1 has settled,the remaining unknowns are found by solving a de
ated program, whose tableauis constructed from the current S by deleting the �rst row and all columns in J+1 .4.2.3 A uniform boundFrom (23) we deduce that the total number of 1-cuts is less than:K = fu1 � b(0)1 + 1g; (28)17



where b(0) is the continuous optimum. This number may be uniformly boundedby a technique adapted from a result of Cook, Gerards, Schrijver and Tardos[WHAE86] (see also [Sch86, Theorem 17.2]).u and b(0) are both in the original feasible set F:Mu + v � 0;u � 0;Mb(0) + v � 0;b(0) � 0:These constraints may be summarized as:Su+ t � 0;Sb(0) + t � 0;where S is the matrix  IM ! and t is the vector  0v !. Distribute the rows ofS in two matrices S+ and S� with the properties that:S+u > S+b(0);S�u � S�b(0):Let t be distributed accordingly into vectors t+ and t�. Consider the coneC = fxjS+x � 0;S�x � 0g: (29)It is clear that u � b(0) 2 C. C is generated by a set of linearly independentinteger vectors fa1; :::;atg whose coordinates are no larger than D, where D isthe largest n � n subdeterminant from S. Hence:u� b(0) =Xk �kak; �k � 0;and by Caratheodory's theorem, there are at most n non-zero terms in the abovesum.It is easy to prove that all u0 of the form:u0 = b(0) +Xk �0kak;where 0 � �0k � �k, are in F. From this we deduce that for all k, b(0)+�kak is inF. Since b(0) is the lexicographic minimum of F, this implies that either �k = 0(in which case ak may be ignored in the sequel), or 0� ak.We claim that �k � 1. If this were not true, we could construct u0 = u� ak;u0 is in F since 0 � �0k = �k � 1 � �k, and u0 is integral. Furthermore, u0 � u,which contradict the de�nition of u. 18



From this we deduce: K � nD: (30)If the original problem is not integer feasible, K is bounded by the number ofcuts for program F+, which is easily seen to be less than (n+1)nD (since a sub-determinant for S+ may be written as an alternate sum of (n+1) subdeterminantsfrom S).The above bound is the uniform bound we require for the termination proofof the parametric version of Gomory's algorithm. It is known that the bound:ju� b(0)j1 � nDis strict. Whether the above bound share the same property is unknown and isleft for future research.4.3 The parametric version of the Gomory algorithmWe already know how to parametrize the dual simplex; it remains only to showhow to parametrize the construction of a cut. Refer back to formula (18). The�rst point is the determination of D. We noted in 2 that D is a factor of thedeterminant of the basis, which is equal to the product of the pivots. It is a simplematter to keep track of this product. The construction of the cut is equally validif the determinant is used in lieu of the common denominator.Next, the Sij are known numbers; there is no di�culty in computing (DSij)%D.The problem lies in the evaluation of (�Dti(z))%D, a non linear function of z.Let us introduce a new notation. If t is a linear form and f is a numerical func-tion, (ft) will stand for the form whose coe�cients are obtained from those of tby componentwise application of f . One has, for instance:(�t)(z) = �t(z);but this commutativity property is not always true, as for instance in:(t%D)(z) � t(z)(modD):To obtain the required cut, introduce a new parameterq = ((�Dti)%D)(z)�D: (31)q is a positive integer, since both the components of z and the coe�cients of((�Dti)%D) are non negative. q is completely de�ned by two linear constraints:0 � ((�Dti)%D)� qD � D � 1; (32)19



which must be added to the context. Obviously, a q such that (32) is true alwaysexists. Hence adding (32) to the context does not restrict the possible values ofz; it merely gives a linear de�nition of q.The analogue of (15) is:Xj ((DSij)%D)xj = ((�Dti)%D)(z) � qD + kD: (33)A cut follows in the usual fashion. The complete parametric integer program-ming algorithm is analogous to algorithm (Q) with the following changes:Algorithm N� In step (3b), keep track of D, the product of the pivots.� Step (2) is replaced by the following. If all ti(z) are positive, se-lect the earliest row i such that (DSij)%D and (Dti(z))%D arenot identically 0. If no such row exists (in particular if D = 1),the solution has been found; it is given by the �rst jxj compo-nents of t(z).If such a row exists, add (32) to the context. Add to the tableauthe new row:Xj (DSij)%DD xj �Xk TikD zk � Ti0D + q � 0; (34)where the Tik are the coe�cients of ((�Dti)%D). Start again atstep (1).The convergence proof is a straightforward consequence of the uniform boundof paragraph 4.2.3. If the solution tree is in�nite it has an in�nite branch. Sincethere are exactly n candidate rows for a cut, on the in�nite branch there is arow which does not settle, and a node � such that no row settles beyond �.The remainder of the branch address the solution of a de
ated program whichis constructed as indicated in 4.2.3. Let r be the de
ated unknown count, andlet D be the largest of all r � r subdeterminant in the de
ated tableau. Selecta node � which lies more than r(r + 1)D 1-cuts away from �, and a value of zwhich belongs to the context of �. It is clear that solving the de
ated problemfor this value of z will contradict (30).4.4 The introductory exemple againThe beginning of the computation is the same as 4.3. The solution associated totableau (B) clearly is integral; hence, (B) is a success node. In the case of (C),the solution is fractional and the determinant D is 2. The source congruence is:20



b+ d� k + 2m � 0 (mod 2):In the notation of (32), ti is �k + 2m, and ((�Dti)%D) is simply k. Toconstruct a cut, we introduce the new parameterq = k � 2;and the cut is: e = b=2 + d=2 � k=2 + q � 0:Two inequalities are added to the context:0 � k � 2q � 1:After a pivoting step on e and b, one gets:D e d 1 k m n q Signi0 1 0 0 0 1 0 -1 +j 0 -2 1 0 -1 0 1 2 ?a -1 0 0 0 0 0 1 +b 2 -1 0 1 0 0 -2 +c 0 -1 0 0 0 0 0 0d 0 1 0 0 0 0 0 0e 1 0 0 0 0 0 0 0Context : �1� k + 2m � 0�k + 2m+ n � 0k � 2q � 01 � k + 2q � 0The new determinant is 2 � 1=2 = 1. The sign of the j0 row is unknown. Incase �k + n+ 2q � 0, the solution is:i0 = m� q;j0 = �k + n+ 2q:In the opposite case, we �rst execute a pivoting step on j 0 and d, giving:E e j0 1 k m n q Signi0 1 0 0 0 1 0 -1 +j 0 0 1 0 0 0 0 0 0a -1 0 0 0 0 0 0 +b 0 -1 0 0 0 1 0 +c -2 -1 0 -1 0 1 2 �d 2 1 0 1 0 -1 -2 +e 1 0 0 0 0 0 0 021



Context : �1� k + 2m � 0�k + 2m+ n � 0k � 2q � 01 � k + 2q � 0�1 + k � n � 2q � 0Here, all rows are positive with the exception of c, whose constant term is-k + n + 2q. But �k + n + 2q < 0 is in the context of (E), and hence row c isnegative. Since both coe�cients (�2 and �1) are negative, (E) is a failure node.The algorithm has terminated.We may write the �nal solution as: ij ! = if (�k + 2m+ n � 0)then if (k � 2m � 0)then  mk � 2m !else if (�k + n+ 2(k � 2)) � 0)then  k � 2k � 2(k � 2) !else 1else 1: (35)From this the value of a[k] may be easily computed. An interesting fact isthat we have detected another case in which a[k] is not de�ned : n� (k� 2(k�2)) < 0. This occurs only for odd values of k if n = 0; it would be very easy tooverlook this error.5 ConclusionThe algorithm we have given has been implemented and has been found to bereliable for small problems as are found in the semantic analysis of computerprograms. Its theoretical complexity is quite high; in practice, we have found itto share the well known property of the simplex, which while exponential in theworst case, has a high probability of being polynomial. In fact, we have foundthe complexity of the algorithm to be commensurate to the complexity of thesolution, and one cannot ask for less.The running timemay be reduced by various devices. We note that part of theproblem tableau is a unit matrix, which does not carry usefull information. Thecorresponding rows may be deleted, thus reducing the computational burden bya factor of m=(n+m). This is the so-called revised form of the simplex algorithm.In our case, we must keep track of the deleted rows in order not to disturb thelexicographic ordering. 22



Experience shows that most of the running time is spent in testing the fea-sibility of auxilliary systems in step (1) of the algorithm. A large speed-up isobtained if we detect cases in which the sign of ti(z) is \obvious"; this include:� after a pivoting step, the constant term in the pivot row is null;� the constant term of the new cut is always negative;� if all coe�cients of ti(z) are of one and the same sign, then since z � 0,ti(z) is of this sign;� in a pivoting step, we add to ti(z) a positive multiple of the pivot column.If both addends are of the same sign, the sign of the result is not changed.Since the termination of the algorithm depends on distinguishing betweenintegers and non-integers, care must be taken to avoid rounding errors. It ispossible to use in�nite precision rational arithmetic as is available on some pro-gramming environments (e.g. bc in the Unix system or the rational arithmeticpackage of some versions of Lisp). This is, however, unduly wastefull. Note thatat each steps DSij and Dti(z) (where D is the determinant of the basis, i.e. theproduct of the pivots) are integral. The problem tableau may be representedby the triple hD;DS;Dt(z)i, in which all elements are integers. The algorithmmay be entirely reformulated in this new representation (in fact, the analogueof (7)-(9) are slightly simpli�ed). Rounding errors disappear, to be replaced bypotential over
ows, a much simpler proposition.While the algorithm is guaranteed to terminate with a correct solution, thissolution is by no means unique. In step (2) and (3), and also in a cut construction,there are degrees of freedom, which may be exploited to speed up the algorithm(e.g. by selecting the \best" pivoting row or the \deepest" cut).In our case, there is one more choice: the choice of the splitting row in step(4). For instance, if the c and d rows of our exemple are interchanged, the solution
23



is: ij ! = if (k � 2m� n � 0)then if (�k + 2m+ n � 0)then  00 ! else 1else if (k � 2m � 0)then  mk � 2m !else if (�k + n+ 2(k � 2)) � 0)then  k � 2k � 2(k � 2) !else 1else 1: (36)This is equivalent to but slightly more complex than (35). We would beinterested in using this degree of freedom to obtain the \simplest" solution. Thishowever is a very di�cult problem, which is left for future research.References[Dan63] G. B. Dantzig. Linear Programming and extensions. Princeton Uni-versity Press, Princeton, NJ, 1963.[Gal79] T. Gal. Postoptimal Analysis, Parametric programming and relatedtopics. Mac Graw Hill, 1979.[Gom63] R. E. Gomory. An algorithm for integer solutions to linear programs.In R. L. Graves and P. Wolfe, editors, Recent Advances in Math.Programming, chapter 34, pages 269{302. Mac-Graw Hill, New York,1963.[Gre71] H. Greenberg. Integer programming. Academic Press, 1971.[Min83] Michel Minoux. Programmation Math�ematique, th�eorie et algo-rithmes. Dunod, Paris, 1983.[Sch86] A. Schrijver. Theory of linear and integer programming. Wiley,NewYork, 1986.[Tah75] H. Taha. Integer Programming. Academic Press, 1975.24
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