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Abstract

This article deals with automatic parallelization of static control programs. Dur-
ing the parallelization process the removal of memory related dependences is usually
realized by translating the original program into a single assignment form. This total
data expansion has a very high memory cost. We present a technique of partial data
expansion which leaves untouched the performances of the parallelization process, with
the help of algebra techniques given by the polytope model.
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1 Introduction

This article deals with the automatic parallelization technique based on the polytope model.
This method can be applied provided that source programs are static control programs, i.e.
are limited to do loops and assignment to array with affine subscripts. The first step is
the extraction of exact dependences by array data flow analysis. All memory related de-
pendences, which are due to reuse of data, are deleted by a total data expansion. The
transformed program has the single assignment property and residual dependences con-
stitute the data flow. The program is then parallelized by scheduling, a method which
automatically satisfies the sequential constraints inherent in the data flow.

The single assignment form translation has a very high memory cost: memory size is of
the same order as the iteration space (for example, matrix multiplication will take O(n?)
memory). This is clearly unacceptable, and can be ameliorated by producing multiple as-
signment parallel code. The aim of this paper is to present a new technique for partial data
expansion. We show that to any schedule we can associate a parallel program with minimal
memory expansion.

In section 2, we describe the polytope method with total data expansion. In Section 3,
we present our technique of partial data expansion. We show that this technique can now
replace the total expansion in the parallelization process of the polytope method.

2 The polytope method

All techniques and algorithmes described in this section are directly taken from the PAF
compiler developped at the university of Versailles by P. Feautrier and his team.



2.1 Framework
2.1.1 Z-polyhedra

A polyhedron is the set of all vectors & which satisfies a set of linear inequalities. A
bounded polyhedron is called a polytope. A Z-module is a set of integral points generated
by integer combination of basis vectors. A Z-polyhedron is the intersection of a Z-module
and a polyhedron.

The basic problem about Z-polyhedra is the question of their emptiness. It is a linear integer
programming question which can be solved by the Gomory cut method which is integrated
in the Parametric Integer Programming (PIP) tool. A straightforward application of PIP
computes the lexicographic maximum of a Z-polyhedron [5].

2.1.2 Static Control Programs

Static control programs are built from assignment statements and do loops. The only data
structures are arrays of arbitrary dimensions. Loop bounds and array subscripts must be
affine functions in the loop counters and integral structure parameters.

An operation may be named (R,Z) where R is a statement and Z the iteration vector
whose components are the values of the surrounding loop counters. The component p of
Z is the counter of loop p. The iteration vector is constrained by the loop bounds. The
iteration domain D(R) of a statement R, is the set of instances of R and can be described by
the conjunction of all inequalities from the surrounding loops. Loop counters are integers,
hence iterations domains are set of integer vectors inside polytopes. We will take as running
example the program matrix-vector:

program matrix-vector
real s, a(n,n), b(n), c(n)
integer i,j,n

do i=1,n
Si s = 0.
do j=1,n
S92 s = s + a(i,j)*b(j)
end do
S3 c(i) = s
end do
end

This program has three statements from S1 to 3. The operation (52,2,1) is an exe-
cution of statement S2 for ¢ = 2 and 7 = 1 where ¢ and j are counters of loops surrounding
S2. The symbolic constant n is a structure parameter. The iteration domain of S2 is
D(52) = {i,j|1<i<n1<j<n}.

2.1.3 Sequential Execution Order

The lexicographic order is noted <. The expression R <1 S indicates that statement R is
before statement S in the program text. Npg is the number of loops surrounding both R
and S. One has ¥ <, = Z[1..p] = y[l..p] A Z[p+ 1] < glp+ 1] and < is given by

|1
FT<y= \/ T<, ¥ (1)
p=0



The fact that operation (R, Z) is executed before the operation (S, 7) is written: (R, Z) <
(S, ). It is shown in [6] that:

Nrs
(R,7) < (S,) =& < §V (F[L..Nrs] = J[L.Nrs] AR< S) = \/ (R, &) <, (S, 5) (2)

p=0

where
. 0<p< Nps: £, ¥
<R,l‘> '<p <S’37>C>{ pINRS Zf[l..NRS]Ig[l..NRS]ARQS (3)

In our running example, we have: (S1,2) <o (52,3,1) and (52,2,3) <¢ (52,3,1)

2.2 Semantic Analysis
2.2.1 Dependences

One must ensure that the parallel program is determinate and gives the same results as
the sequential one. Hence one must take into account the dependences which exist between
the operations of the source program. To each operation v we associate two sets: R(v)
is the set of memory cells which are read by v; M(v) is the set of memory cells which
are modified by v. Berstein’s conditions distinguish three kinds of dependences between
v and w, where v < w. If M(v) N R(u) # 0, there is a flow dependence, written v u.
If R(v) N M(u) # 0, there is an anti-dependence, written vdu. If M(v) N M(u) # 0,
there is an output dependence, written v §° u. One may be more precise and associate a
dependence to a depth p. For instance, if two operations v and u are in flow dependence at
depth p, written vd, u, it means that: v <, u A M(v) N R(u) # 0.

2.2.2 Array Data Flow Analysis of Static Control Programs

It is well known that output dependences and anti-dependences are artificial, i.e. due to
reuse of memory. These kinds of dependences are called false dependences.

The real dependences which define the inherent semantic of a program, are a subset of flow
dependences: the direct flow dependences. A direct flow dependence is a data flow
from a definition by an operation v to a use by an operation w of a same memory cell ¢
and provided there is no write on ¢ between the executions of v and w. It means that
the value read by w in ¢ is the one produced by v. The remaining flow dependences are
artificial dependences too and are called spurious flow dependences. The removal of
artificial dependences by data restructuring, is called data expansion. This technique will
be detailed in the next section.

Direct flow dependences are computed by data flow analysis [6]. It must determine for
each memory cell ¢ read by an operation w, the last operation in < which gives a value to
¢ before the execution of w. This operation is called the source of the read:

source(c,w) = mjx{v |vdw} (4)

The computation of the source can be done by PIP (Parametric Integer Programming)
algorithm (cf [6] for more details). The result of the analysis is a quasi-affine tree or quast,
i.e. a many-level conditionnal in which predicates are tests for the positiveness of affine forms
in the loop counters and structure parameters. The leaves are either operation names, or
1. The symbol L indicates that the array cell under study is not modified. Sources are
gathered in the Data Flow Graph (DFG).

Fig. 1 gives the DFG of the matrix-vector program.
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Figure 1: The DFG of the matrix-vector program

2.3 Program Transformations

The first step is to delete all false dependences and spurious flow dependences by a total
data expansion. It is realized by translating the source program into a single assignment
form. The residual dependences in a such program are the direct flow dependences of the
DFG.

The second step is to parallelize the single assignment form program by scheduling. The
aim is to change the operation execution order of the program, the set of operations and
the data flow being left untouched.

2.3.1 Total Data Expansion

Total data expansion gives to the program the single assignment property: each memory
cell allocated to data will only receive one value produced by one operation during all the
execution of the program. In this way, one associates a memory cell to an operation. One
can find the algorithm for translating a static control program into a single assignment
form in [6]. The first step is a complete renaming: for each statement R one associates a
specific data structure InsR, used to store all values produced by the operations instances of
R. Then one totally expands all data structures: InsR is indexed by the iteration vector

of R.

—

R: A[f(#)] = ... becomes R: InsR[Z] = ...

Finally one reconstitutes the data flow by replacing each rhs reference by its corre-
sponding source. If one translates the program matrix-vector into single assignment form,
one obtains the following code:

program matrix-vector
real a(n,n), b(n), InsS1(n), InsS2(n,n), InsS3(n)

do i=1,n
S1 InsS1(i) = 0.
do j=1,n
S2 InsS2(i,j) = (if (j-2 >= 0) then InsS2(i,j-1) else InsS1(i)) + a(i,j) * b(j)
end do
83 InsS3(i) = InsS2(i,n)
end do
end

Notice that the total data expansion has created an one-dimensionnal array InsS1 with

n elements and a two-dimensionnal array InsS2 with n? elements which replace the scalar
sin S1 and S2.

2.3.2 Parallelization by Scheduling

One computes a time function @ which gives the partial execution order of the parallel pro-
gram by taking into account the sequential constraints of the data flow. For any operation



u, if O(u) is its execution time, one must have:
Ve € R(u), 0(source(c, u)) < 0(u) (5)

It defines a set of linear constraints. For complexity reasons finding the exact solution of (5)
is not practicable. One limits oneself to affine one-dimensionnal and multi-dimensionnal [7]
schedules. In the case of our running example, one can have the following schedule function

9:

if (j — 2> 0) then 6(52,i,j — 1) < 0(52, 4, ) 6(51,i) =0
else 0(S1,1) < 6(52,1,5) =< 6(52,i,5) =j (6)
0(52,i,n) < 6(S3,9) 6(53,i)) =n+1

An operation front F(t) gathers all operations which have the same execution time. The
operations in a front can be executed in parallel. Note that an execution time f(v) = £ is
in fact a logical time on IN?, One can imagine that it corresponds to the execution of the
parallel program with an unbounded number of processors which execute one operation in
unit time. Let 7 be the set of all possible execution times (f € 7 = F(f) # 0) enumerated
in lexicographic order. The parallel program must enumerate each possible date ¢ € 7.
To build the parallel code one must apply affine transformations to the iteration space
of the program. When this is done, the operations in the original program are to be
executed according to the lexicographical order in the transformed iteration space. The
final lexicographical order is the one given by the schedule function. If one translates the
matrix-vector program scheduled with (6) in Fortran 90, one gets the following code:

program matrix-vector
real InsSi1(n), InsS2(n,n), InsS3(n), a(n,n), b(n)

do t=0,n+1
if (¢t .EQ. 0) then
S1 InsS1(1:n:1)=0.
end if
if (¢t .EQ. 1) then
S2 InsS2(1:n:1,t) = InsS1(1:n:1) + a(l:n:1,t)*b(t)
end if
if (¢t .GE. 2 .AND. t .LE. n) then
S2 InsS2(1:n:1,t) = InsS2(1:n:1,t-1) + a(l:n:1,t)*b(t)
end if
if (t .EQ. n+1) then
S3 InsS3(1:n:1) = InsS2(1:n:1,n)
end if
end do
end

Notice that total data expansion has induced the split of .52 in two different statements
in the parallel code.

3 Reduced Data Expansion in Parallelized Programs

Translating the source program into single assignment form has a very high memory cost.
It is clear in the case of our running example: from a scalar s and an array c(n), one gets
three arrays with a data size of O(n?).

Our aim is now to define a method of partial data expansion which reduces the mem-
ory expansion induced by parallelization and replaces the single assignment form
translation during the parallelization process. The constraint is that the schedule which
has been deduced from the DFG should remain valid in the presence of output and anti
dependences. An intuitive presentation of the method is given below.



3.1 Optimized Storage Management in Parallelized Programs: an intu-
itive Approach

One must precise some conventions and notations. Let V(v) be the value produced by an
operation v. Let C(v) be the memory cell in which V(v) is stored. Let ¢/ (v) be the set which
gathers all operations u such that there is a direct data flow from v to u. U(v) is the set of
all operations which will be executed after v and will read V(v):

U(v) = {u|Tec e R(u), source(c,u) = v} (7)

U(v) is the utilization set of v [10].
Let £(v) be the execution time of the last read of V(v) in the parallel program. Let L(v)
be the subset of operations in ¢ (v) which execute this last read:

L(v) = 0(L(v)) = maxb(u), v € U(v) (8)

Consider a memory cell C(v) during execution of a parallel program in single assignment
form. One can distinguish three periods (see Fig. 2):

1. Period (I): the memory cell stays empty until the execution of v to which it is
associated.
In our running example, InsS2[i,j] (InsS2[i,j] = C(52,¢,J)) stays "empty” until
the execution of (S2,14,7) at 6(S2,7,j)=7,if 1 <j<mn L]l

2. Period (II): the execution of v stores V(v) in C(v). The operations of ¢ (v) read V(v)
until £(v). During this time, V(v) is useful.
One has U(52,1,7) = {(52,¢, 7+ 1)}. V(52,¢,7) is read by (S2,4,7+ 1) at (52,4, 5+
1) = j+ 1. This time is the last read of V(52,4,7): £(52,4,j)=j+1

3. Period (III): the memory cell is not read anymore after £(v), nevertheless V(v) is
still in C(v) until the end of the execution of the parallel program. V(v) becomes
useless.

V(52,1,j) becomes useless after 6(52,¢,j+ 1) = 7+ 1 and stays in InsS2[i,j] until
the end of the program at 6(53,¢) =n+ 1

Execution order in the parallel program
execution of v last read of v

. time - directdataflow

@ read of the value produced by v

0] an (D)

Figure 2: Use of V(v) in C(v) in the single assignment parallel program

It is clear that during periods (I) and (IlI), C(v) can store others values. If one stores
others values in C(v), output dependences appear in the parallel program. The problem is
to define an automatic method for partial data expansion which ensures that the parallel
program obtained is valid.

3.2 Related Work

Many papers are devoted to the problem of eliminating false dependences. Some of them try
to eliminate these dependences with a reduced memory cost. One can find many techniques



which come from the automatic parallelization community ([1], [2], [9], [12]) or the systolic
community ([13], [3]). It is interesting to notice that these techniques are close to data-
localization methods ([4], [14]).

Most papers from the automatic parallelization community deal with array privatization.
Privatization is a technique that allows each thread to allocate a variable in its private
storage. Hence if a loop is transformed into a parallel loop, privatization replaces all original
reference to an array a by an access to a local array. One can prove that privatization is
similar to scalar or array expansion. But privatization may require less space than expansion
because it creates one copy per processor and the number of processors cooperating in the
execution of the parallel loop is less than the number of iterations [12]. Lam [1], Padua and
Tu [12] propose to optimize array privatization with the help of the DFG. If one adapts
their method to partial expansion, it consists in maintaining output dependences which
duplicate flow dependences.

Another solution has been proposed by the systolic community ([3], [13]). Programs that
are taken into account are given in single assignment form. They try to create output
dependences which don’t invalidate the data flow by estimating the lifetime of each variable.
Darte and al. [2] build upon results of Padua who introduced two graph transformations to
eliminate false dependences [11]. They give an unified framework for such transformation
and prove that the problem of determining a minimal renaming is NP-complete.

3.3 Utility Span of a Value

Our method of partial data expansion is based on the notion of utility span of a value. It
is clear that the utility span corresponds to the period (1) (see Fig. 2): V(v) must reside in
memory during ¢ € [#(v), £(v)]. The utility span of a value is a subsegment of [0, E] where
L is the latency i.e. the execution time of the last front executed in the parallel program.

Definition 1 The utility span of V(v) is the time span between production of V(v) and its
last read in the parallel program.

te0(v), L(v)] = V(v) € C(v) (9)

One can estimate the utility span of V(52,4, j) in our running example. If 1 <7 <n A 1<
j <mn L1, then V(52,14,5) must reside in C(v) for £ € [0(52,4,5),0(S2,i,5+ 1)] =[4,7+ 1].
Before and after this utility span, C(v) can store others values without changing the data
flow from v to operations in U(v): one can reintroduce output dependences between v and
some others operations.

The atomic entity in our study is not the memory cell C(v) like in most previous meth-
ods, but the value V(v). The main advantage over the notion of variable lifetime is that it
can be applied to programs which are not necessarily in single assignment form.

The next subsection show which are the conditions that an output dependence must ver-
ify to be harmless in the parallel program. Such output dependences are called neutral
dependences.

3.4 Neutral Dependences

Consider two operations v and w. Rule (9) imposes that:
1. V(v) € C(v) for t € [8(v), L(v)]
2. V(w) € C(w) for t € [#(w), L(w)]



In the case of a program in single assignment form, one has systematically C(v) # C(w)
because there is no output dependence. Optimizing storage means that one introduces
memory reuse in the parallel program, i.e. we want to have some operations v and w for
which C(v) = C(w). It is clear that this is possible iff the basic rule (9) is still verified for
v and w in spite of this output dependence. Hence an output dependence is valid in the
parallel program if the subsegments which are the utily spans of v and w are separate. Such
an output dependence is called neutral output dependence.

Definition 2 An output dependence is neutral for a schedule function 8 iff it doesn’t change
the data flow in the parallel program built with the help of 6.

One can precisely gives the characteristics of a neutral output dependence v46° w in
the parallel program (see Fig. 3):

e v must be executed before w: §(v) < 0(w).
e there is an access conflict: C(v) = C(w)

e the utility spans are separate: L(v) < §(w)

v lastreadof v w last read of w time direct dataflow
Qi/o _ _ _= neutral output dependence
S : /4: A
utility span of v utility span of w

Figure 3: a neutral output dependence v ° w in the parallel program

By extension an output dependence between v and w can be considered as neutral if w is
the single operation which constitutes L(v). Here the utility spans of V(v) and V(w) are
not separate because £(v) = #(w). Nevertheless these two operations can share the same
memory cell because w must read V(v) before computing V(w). It means that the write of
V(w) occurs after the read of V(v) by w.

e An output dependence between (S2,¢,7) and (S2,¢4 1,7 + 1) would be not neutral,
because (S2,i+ 1,7 + 1) is executed after (52,1, j) and before the end of its utility
span. Hence one must have C(52,¢,7) # C(52,i4+ 1,j + 1) in the parallel program.

e (S2,4,j42) is executed after the utility span of (52,1, 7), hence an output dependence
between (52,1, 7) and (52,1, 7+ 2) would be neutral in the parallel program. Hence
one can have C(52,4,7)=C(52,¢,j+ 2).

e An output dependence between (52,7, j) and (52,4, + 1) would be neutral because
one has (52,4,j+ 1) = L(S2,4,j). The utility spans of V(52,¢,7) and V(52,¢,57+ 1)
are not separate, but the two operations can be stored in the same memory cell: we
are sure that (52, ¢, 7+ 1) must read V(52,1,j) before writing V(52,7,j+ 1). Hence
one can have C(52,4,7) =C(52,¢,j+ 1).

Notice that if two operations v and w belong to the same operations front, an
output dependence v4° w would be non neutral in the parallel program. Hence one must
use data expansion to ensure that they are stored in two different memory cells. In fact,



the memory requirement of a parallel program is strongly linked to the parallelism degree
(size of operations fronts) given by the schedule function. As we have seen in our running
example, the utility span of V(52,4,;) for j < n is between { = j and { = j+1 . An
output dependence between (52,1, ) and (52,7 + 1, ;) would not be neutral because the
two operations belong to the same front F () = j.

To decide if an output dependence is neutral in a parallel program, one must have a
precise estimation of the utility span of each value V(v). This estimation can help us to
reconstruct the data space of the program by adjusting data size to utility spans. The final
purpose is to build a program with direct flow dependences and neutral output dependences.
Our first approach has consisted to maintain neutral output dependences from the original
program in its parallel version [8]. But this method is directly dependent on the original
data space and can’t be used to reduce data size of programs in single assignment form. We
have decided to improve our technique to become independent from the original data: with
the new method presented in this article, the output dependences existing in the program
after partial expansion are not necessarily present in the original version.

3.5 Determinating The Utility Span
Consider an operation (R,Z). One wants to determine the subsegment of [0, E] which
corresponds to the utility span of this operation: [(R, ), L(R, Z)]. The lower bound of this
subsegment is directly given by 6. The problem is to compute the upper bound L(R, ).
We recall that it is the last execution time in the parallel program of an operation of the
utilization set U (R, 7).

Determining this time uses techniques from data flow analysis. The main difference is that
the lexicographic maximum computation is not on the sequential execution order <, but
on the execution order given by the schedule function 6.

Consider two statements R and S:

R: alf(#) = ...
S o= alh(i)] ..

The operation Lg(R,Z) is the last read of V(R,Z) in the parallel program among the
operations instances of S which belong to (R, Z). The set of candidates is (S, Brs(Z))
which is built by scanning the DFG. Consider the quast which gives all the operations
sources of the read reference on a in instances of 5. One takes into account each leaf
(R, 1)) concerning an instance of R and P(7) the conjunction of all the predicates which
lead to this leaf in the quast. A candidate in (S, Brs(Z)), which has this leaf as source of

—

the read a[h(7)] has the following characteristics:
e it corresponds to an existing instance of S : 7 € D(S)
o (S, is in U(R, F): source(a[h(D)], (S, D) = (R, (7)) < (i) = T if P(7) is verified.

Let Bgz’l(g»(f) be this candidate,

All its terms are linear equalities or inequalities, hence Bgz’l(g»(f) is a Z-polyhedra.

(9, Brs(Z)) is the union of all candidates which can be built with the quast source of
a[h(7)] in instances of S. Hence the set (S, Brs(%)) is a disjunction of Z-polyhedra. It



is clear that the last operation which reads V(R, Z) between instances of S is the last one
executed according to 6:
Ls (R, ¥) = (5, max Brs (%)) (10)
8

All statements which may read the data a must be taken into account. The real last read
is their maximum according to 6:

L(R, %) = max Lg(R, %) (11)
<¢

Like the source function, L(R,Z) is a quast. To determine L(R,Z) one just applies the
function 6 to each leaf of L(R, ) except for leaves which are the symbol L which are left
untouched. The different utility spans are gathered in the Utility Span Graph (USG) which
gives to each operations v the utility span of V(v) and the operation executing the last read
of V(v). The symbol L indicates that V(v) is either useless or an output value. Fig. 4 gives
the USG of the matrix-vector program.

Operation v L(v) L(v) Utility span of V(v) = [6(v), L(v)]
51,9 (52,0, 1) 1 [0, 1]
ifj<n-1 ifj<n-1 ifj<n-1
(52,4, 5) then (52,i,j+ 1) then j + 1 then [j,j + 1]
else (53, 4) elsen +1 else [j,n+ 1]
(53, 1) — — [n+1,-]

Figure 4: The USG of the matrix-vector program

3.6 Partial Data Expansion

The first step is a partial array and scalar expansion process that decides the shape
and the index function of each statement left hand side. The second step consists in a
partial renaming process and decides which are the statements that can share the same
data structure in their left hand side.

3.6.1 Partial Array Expansion
The aims of partial array expansion for each statement R are the following:

e We want to build a structure lhsR which is specifically associated to the statement
R. It will give the shape (number of dimensions and size of each dimension) and
the index function which are the data in the left hand side of R in the restructured

program.

e The specifications used to build 1hsRis that if 1hsR provides memory reuse, i.e. output
dependences between some operations instances of R, these output dependences have
to be neutral in the parallel program. For instance in our running example, if Fsy is
the index function of 1hsS2:

— One may have lhsS2[ﬁ52(i,j)] = lhsS2[ﬁ52(i,j—|—2)] < C(52,4,7) =C(52,4,j+
2). The output dependence beteween (52,1, ) and (52,1, j+2) would be neutral.

— One must have lhsS2[ﬁ52(i,j)] * lhsS2[ﬁ52(i—|— 1,7)1 < C(S52,4,7) #C(52,i+
1,7). An output dependence between the two operations would be not neutral
in the parallel program.

10



e The elaboration of 1hsR must be independent from the original data structure in the

lhs of R.

The problem is now to build 1hsR. One recalls that a neutral output dependence can’t
kill a value V(R, #) during its utility span. To respect this rule for any instance of R, one
must take into account the maximum duration that the utility span of V(R, ) can have in
the parallel program. For an operation (R, Z) this duration is obtained by subtracting the
lower bound of its utility span from the upper bound. One writes d(R, %) this parameter:

d(R,7) = L(R,T) — (R, ¥) (12)

One considers that L L (R, %) = L. Each leaf of d(R, ) is a multi-dimensionnal linear

expression in term of loop counters and structure parameters.
The maximum duration D(R) that the utility span of instances of R can have, is the
maximum value of d(R, Z) on the iteration domain of R:

VZ € D(R),d(R, Z)<D(R) (13)

D(R) is a multidimensionnal linear expression in term of structure parameters or the
symbol L. Notice that one considers that if d(R, ) # L, then L < d(R, ). The maximum
utility span durations in the matrix-vector program are given in Fig. 5. (9) implies that

Statement R | Utility span duration of an instance of R | Maximum utility span duration on R
S1 d(S1,i) =1 D(S1) =1
ifj<n-1
S2 d(S2,i,j) = < then 1 D(S2) =1
else 1
S3 d(S3,i) = — D(S3) = —

Figure 5: The maximum duration of utility spans in the matrix-vector program

V(R, ) must be in C(R, Z) between 0(R, ) and L(R, %) = 0(R,Z)+d(R, ¥). If one wants to
protect each instance of R during its utility span, one must build 1hsR in such a way that
(9) is verified for the greatest utility span that an instance of R can have. Hence we have

chosen to impose that no value V(R, %) can be killed between (R, ¥) and (R, ¥) + D(R):
V(R, %) € 1shR for i in [(R, F),0(R, T) + D(R)] where §(R, %) + d(R, ¥)<0(R, ¥) + D(R)
The algorithm that builds the data structure 1hsR can be summarized like this:

e One starts with a scalar 1hsR.

e The elaboration of 1hsR is iterative, the number of iterations is equal to Ngr (number
of loops surrounding R). Each iteration is called partial expansion of R at depth
p where p is the depth of the loop considered (p € [0, Nrr L 1]).

e A partial expansion of R at depth p consists in

1. Computing the expansion degree of R at depth p: E%. It gives the number
of elements of a new dimension that one adds to 1hsR.

2. Indexing this new dimension of 1hsR:

lth[ﬁ’(f)] becomes lshR[ﬁ’(i"), ip41 mod EY 4 1]

where ﬁ’(f) is the index function built by previous iterations on p; 4,41 is the
counter of loop (p+1) (from the outer one surrounding R); "mod” is the modulo
operator and F7, is the expansion degree computed in the previous step.
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e At the end of the process, 1hsR only provides neutral output dependences on R,Vp €
NgRr.

The problem is now to compute Fp. The partial expansion of R at depth p avoids non
neutral output dependences between two operations (R, #) and (R, 9;’> if © <, 2’. For an
operation (R, Z), we build the set of candidates gathering all the operations (R, 9;’> which

—

can’t share the same memory cell than (R, 7)
e the operations exist: ¥ € D(R) and 2/ € D(R)
e the sequential execution order is: (R, 7) <, (R, /)
e the utility spans are not separate:
[0(R,7),0(R, &)+ D(R)]N[6(R,2"),0(R,2') + D(R)] # 0
Let be C% (&) the set of candidates, it can be decomposed in unions of Z-polyhedra. Let

C . . . .
e be its lexicographic maximum:

" = maxChp (@)
P

One can’t have output dependences between operations (R, #) and (R, 9;’> with:
(R, T) <p (R, l?/> =p (R, Te) = 610%71)
From this follows the inequalities on the iteration vectors:

Fp+1]l<ap+1] < Zfp+1]

If one expands 1hsR at depth p with E?R 5= T[p+ 1] L Z[p+ 1]+ 1, we are sure that no
non neutral output dependence at depth p can appear for (R, Z). But it must be verified

for each instance of R, hence the expension degree E7, is the maximum value that E?R 2
can have for ¥ € D(R):

P _ P
Br = max Eirs) (14)
Fig. 6 indicates the expansion degree and the structures lhs that must be set in the
matrix-vector program. There can’t be output dependences on S1 and S2 at depth
| Statements | Expansion degrees | Final data structure | Final lhs |
S1 EY =n 1hsS1[n] 1hsS1[i] =
S2 Egz =n
El,=0 1hsS2[n] lhss2[i] =
S3 Els=n 1hsS3[n] 1hss3[i] =

Figure 6: The final results of the partial array expansion for the matrix-vector program

0, hence 1hsS1 is fully expanded and 1hsS2 becomes an one-dimensionnal array with n
elements. But all output dependences on 52 at depth 1 will be neutral in the parallel
program, hence there is no expansion at depth 1 for S2. Notice that for the last statement
one leaves untouched the shape of the array in the lhs of S3 even if its values are never read.
It is due to the fact that it stores the final results of the program. In fact if D(R) = L then
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the shape of 1hsR must be at least the same that the original data structure in the lhs of
R, i.e. the elaboration of 1hsR starts in this specific case with the original datum. Finally
1hsR must be partially expanded in such a way that all the instances of R which belong
to a same front must be stored in different memory cells, i.e. the partial expansion is here
totally dependent from the parallelism degree.

3.6.2 Partial Renaming

The partial renaming process must decide if two different statements can share the same
data structure. Consider two statements R and T'. Partial expansion builds two structures
1hsR and 1hsT which can have different shapes. If at the end of the renaming process R and
T are authorized to share the same array, this one would have to be the rectangular hull
of 1hsR and 1hsT: 1hsR-T. It is clear that these two statements can share the same data
iff this sharing does not generate non neutral dependence between R and T with 1hsR-T in
the left hand side of the two statements. Let ﬁR_T be the index function of 1hsR-T. One
must verify for each operation (R, %) and (T, 2) that would be in output dependence (i.e.
FR_T(f) = FR_T(Z)) that:

1. V(R, %) can’t be killed by (7', 2) before the end of its utility span:

O(R,Z)<0(T,Z)<f (R, ¥) + D(R)

2. V(T 2) can’t be killed before by (R, %) before the end of its utility span:

0T, 2)<l(R, 2)<(T,Z) + D(T)

As in the case of partial expansion, one can decompose candidates sets in disjunctions of
Z-polyhedra. All these Z-polyhedra must be empty for this transformation to be legal. If
there are no integral solutions, R and T can share the same data structure else they can’t.
Finding the minimal number of renaming is a NP-complete problem (see [2]). Our method
consists in building a graph similar to an interference graph as used in code genaration
process of a classical compiler to optimize registers allocation. In this graph, each vertex
represents a statement of the program. There is an edge between two vertices R and T iff
it has been shown that they can’t share the same data structure in their left hand side:
there is at least one non neutral output dependence R, T. Then one applies on this graph
a greedy coloring algorithm. Finally it is clear that vertices that have the same colour can
have the same data structure in their lhs.

In the matrix-vector program there is no edge in the interference graph. It means
that S1, .52 and 53 can have the same array in their lhs. This one must be the rectangular
hull of 1hsS1, 1hsS2 and 1hsS3, i.e. an one-dimensionnal array with n elements. In the
transformed program we try to reuse the original variables as soon as possible, especially for
variables which store output values like the array ¢. Hence this one is maintained because
it exactly corresponds to the storage requirement of the parallel program. One just has to
reconstrut the data flow. One replaces all rhs references by its corresponding source:

e replace a leaf of a quast of the form (R, (7)) by ALFr(I(#))] where A is the data
structure in the lhs of R built by partial array expansion and partial renaming;

e replace a void leaf L by the original source reference

For the matrix vector program one gets:
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program matrix-vector
real a(n,n), b(n,n), c(n)
integer i,j,n

do i=1,n
Si c(i) = 0.
do j=1,n
S2 c(i) = c(i) + a(i,j)*v(j)
end do
S3 c(i) = c(i)
end do
end

It is clear that the statement 53 has become useless after the fusion of ¢ and s and can
be removed in the parallel program. If one builds the parallel program with (6) as schedule
function without the statement $3, we find in Fortran 90:

program matrix-vector
real a(n,n), b(n), c(n)
integer i,j,n

do t=0,n
if (¢t .EQ. 0) then
S1 c(il:n:1) = 0.
end if

if (¢t .GE. 1 .AND. t .LE. n) then
S2 c(1:n:1) c(1:n:1) + a(l:n:1,t)*b(t)
end if
end do

end

Our first aim has been reached, our method can effectively reduce the memory cost in
the data expansion process of static control programs (see Fig. 7). You can see in this
example that the data size is less in the parallel program than the original data size. The
simplification of memory access can in some cases reduce the complexity of the parallel
code. The primitive latency L=n+1 given by (6) is now reduced to L = n with the
removal of §3. Moreover partial data expansion may avoid the split of some statements like
the case of S2 in the Fortran 90 code in single assignment form.

| Statements | Original data | After total expansion | After partial expansion

S1 s InsS1[n] c[n]
S92 InsS2[n,n]
S3 c[nl] InsS3[n]

Figure 7: The data structures generated by total and partial data expansion

3.7 A second Example: Cholesky Factorization

In this subsection, we present the results we obtain with the Cholesky factorization algo-
rithm. The sequential version that we start from is:

program choles

integer i, j, k
real x
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real a(n,n), p(n)

do i=1,n
S1 x = a(i,i)
do k =1, i-1
S2 x = x — a(i,k)**2
end do
S3 p(i) = 1.0/sqrt(x)
do j = i+1, n
S4 x = a(i,j)
do k=1,i-1
S5 x = x - a(j,k) * a(i,k)
end do
S6 a(j,i) = x * p(i)
end do
end do
end

The original data storage are a scalar x, one-dimensionnal array p and a two-dimensionnal

array a respectively with n and n? elements. Fig, 8 gives the DFG of the choles program.
If one translates this program into a single assignment form by total data expansion

memory cell referenced | in operation source operation
a(i, i) (51, 4) —
if k—2>0
x (52,4, k) then (52,¢k—1)
else (S1,4)
a(i, k) (52,4, k) (56, k, )
if i—2>0
x (53,4 then (52,i,i—1)
else (S1,1)
Cl(l,_]) <S4ala.7> —
if k—2>0
x (55,4, 5, k) then (S5,4,j,k—1)
else (S4,4,5)
G h) S5,1,7,F) (56, k)
a(i, k) (55,4, 5, k) (56, k, )
if i—2>0
z (56,1, 5) then (55,i,7,i—1)
else (S4,4,5)
o) S6.0.7) (53,1)

Figure 8: The DFG of the choles program

one gets:

PROGRAM choles
real a(n,n)
real InsSi(n)
real Ins$2(n,n-1)
real InsS3(n)
real InsS4(n,n-1)
real InsS5(n,n-1,n-1)
real InsS6(n,n-1)
integer n,i,j.k
DO i=1,n,1

S1 InsS1(i) = a(i,i)
DOk = 1,i-1,1
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S2 InsS2(i,k) = (if (k-2 >= 0) then InsS2(i,k-1) else InsS1(i)) - InsS6(k,i) **x 2
END DO
S3 InsS3(i) = 1./sqrt(if (k-2 >= 0) then InsS2(i,j-1) else InsS1(i))
DO j = i+l,n,n
s4 InsS4(i,j) = a(i,j)
DOk =1,i-1,1
S5 InsS5(i,j,k) = (if (k-2 >=0) then InsS5(i,j,k-1) else InsS4(i,j)) - InsS6(k,j) * InsS6(k,i)
END DO
S6 InsS6(i,j) = (if (i-2 >= 0) then InsS5(i,j,j-1) else InsS4(i,j)) * InsS3(i)
END DO
END DO

END

You can see that total data expansion has created six arrays and the data size is of
O(n?) instead of O(n?) in the original version.
The schedule function computed by the PAF compiler is given by (15).

S1,i) =0
S2,i k) = 3k
S3,i) = 3i — 2
S4,i,5) =0
S5,i,j, k) = 3k

o(
o(
o(
o(
o(
0(56,4,7) = 3i — 1

(15)

With the help of the DFG and the schedule function (15), we have applied our technique
of partial data expansion. The first step is the estimation of the utility span of each value
and the construction of the USG (see Fig. 9)

Operation v L(v) L(v) Utility span of V(v) = [0(v), L(v)]
(S1,4) (52,4,1) 3 [0, 3]
ifk<i—2 ifk<i—2 ifk<i—2
(52,4, k) { then (S2.i k+ 1) { then 3% + 3 then [3k, 3k + 3]
else (53,4) else 3k + 1 else [3k, 3k + 1]
(53,1) (56,4, ) 31 Bi— 2,3 — 1]
(54,14, 5) (S5,4,7,1) 3 [0,3]
ifk<i—2 ifk<i—2 ifk<i—2
(55,4, 5, k) { then (S5.4,j,k+ 1) { then 3% + 3 then [3k, 3k + 3]
else (56,1, j) else 3k + 2 else [3k, 3k + 2]
(56,1, 5) U(S6,1,j) 3i [3i-1,3i]

Figure 9: The USG of the choles program

From the USG, one computes the maximum duration that an utility span of a value can

have (see Fig. 10).

Finally the process of data restructuring by a partial data expansion

gives the structures lhs of Fig. 11 and the Interference Graph of Fig. 12. After a partial
renaming, one finally finds that on one hand S1 and 52 and on the other hand S4 and S5
can share the same data structure in their lhs. One finally gets the following code:

PROGRAM choles
integer i,j,k,n

real x(n)

real a(n,n)

real p(n)

real Vari(n,n-1)
DO i=1,n,1
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Statement R | Utility span duration of an instance of R | Maximum utility span duration on R

S1 d(S1,i) =3 D(S1) =3
ifk<i-—2

S2 d(S2,i,k) =< then 3 D(S2) =3
else 1

S3 d(S3,i) =1 D(S3) =1

S4 d(S4,i,j) = 3 D(S4) =3
ifk<i—2

S5 d(S5,i,4,k) =< then3 D(S5) =3
else 2

S6 d(S6,i,j) =1 D(S6) =1

Figure 10: The maximum duration of each utility span in the choles program

| Statements | Expansion degrees | Final data structure | Final lhs |
S1 EY =n 1hsS1[n] 1hsSi[i] = ...
S2 Ely=n
Ezy =0 1hsS2[n] lhss2[i] =
S3 Els=n 1hsS3[n] lhssS3[i] =
S4 AEg4:: n
Fi,=n—1 1hsS4[n,n-1] lhss4li,j] =
Sh Els=n
Figs=n—1
Ei, =0 1hsS5[n,n] lhss5[i,j] =
S6 Els=n
Fig=n—1 1hsS6[n,n-1] lhss6[i,jl = ...

Figure 11: The results of the partial array expansion for the choles program

S1 x(i) = a(i,i)
DOk = 1,i-1,1
S2 x(1) = x(1) - a(k,i) **x 2
END DO
S3 p(i) = 1./sqrt(x(i))
DO j = i+1,n,1
S4 Var1(i,j) = a(i,j)
DOk = 1,i-1,1
S5 Var1(i,j) = Vari(i,j) - a(k,j) * a(k,1i)
END DO
Sé a(i,j)= Vari(i,j) * p(i)
END DO
END DO
END

One can see that the expansion is limited to the scalar x which gets one more dimension
with n elements, and to create a two-dimensionnal array Varl with n x (n L 1) elements.
With total expansion the data space is of O(n?), with partial expansion it is only of O(n?).
Moreover partial data expansion has generated no conditionnal expression. Fig. 13 gives a
comparaison of results obtained by applying different existing methods of reduced memory
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Sland S2 can sharethe samedata ~ S4 and S5 can share the same data

Figure 12: The interference graph of the choles program

expansion. The first column is the statements list. The others columns give the shape of
different data structures that one finds in the lhs of statements: in the source program
(1), in the single assignment form program (2), in the version restructured by Rajopadhye
method applied on the single assignment form version (3) (cf [13]) and by our technique

(4)-

Statements (1) (2) (3) (4)
S1 x InsS1[n] InsS1[n] x[n]
S2 InsS2[n,n-1] InsS2[n]
S4 InsS4[n,n-1] InsS4[n,n-1] | Vari[n,n-1]
SH InsS5[n,n-1,n-1] | InsS5[n,n-1]
S3 plnl InsS3[n] InsS3[n] pln]
S6 al[n,n] InsS6[n,n-1] InsS6[n,n-1] aln,n]

Figure 13: Comparaison with others methods

4 Conclusion

In the PAF compiler, our method can now replace the translation into a single assignment
form. The parallelization process is now applied in this order:

1. Array data flow analysis

2. Scheduling for the real flow dependences.
3. Partial memory expansion

4. Construction of the parallel program

Our aim has been reached, our method can effectively reduce the memory cost in the data
expansion process of static control programs. Morover we have obtained two important
results:

1. Our performances are strongly linked to the parallelism degree given by the schedule
function. The better the parallelism, the higher the memory cost and conversely. This
can be explained simply in the following way. The mean degree of parallelism F is
simply the mean size of the fronts. There must be no output dependence in a front,
hence all operations must write in a different location. Hence we may control the
memory expansion and improve our results by adjusting the schedule to the architec-
ture. We recall that we have considered that the parallel program will be executed on
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a target architecture with an unbounded number of processors. This program cannot
in general be executed directly: the size of the fronts is in fact limited by the real
parallelism provided by the target architecture. suppose that the target architecture
is a pipeline Cray processor. In this case, all operations of a front are to be instances
of the same statement. Moreover the size of the front is limited to the size of vector
registers, 64 for instance. One can adjust the schedule in such a way that:

e There is only one parallel loop by loop nest.

e No front has more operations than 64 (this a variant of the strip mining tech-
nique).

In the case of the matrix-vector program, it imposes the following multidimensionnal
schedule function:

With this schedule, we find with our method of partial expansion that the expansion
degrees at depth 0 for S1 and S2 are E%, = F2, = 64. The array in the lhs of S1
and 52 has then one dimension with only 64 elements instead of n. In this case, the
Fortran 90 code generated is:

program matrix-vector

real a(n,n), b(n), c(n), s(64)
integer i,j,n

do t0 = 0,n-1,64

do t1=0,n+1
if (t1 .EQ. 0) then
S1 s(1:min(64,n-t0):1) = 0.
end if
if (¢t1 .GE. 1 .AND. t1 .LE. n) then
S2 s(1:min(64,n-t0):1) = s(1:min(64,n-t0):1) + a(t0+1:t0+min(64,n-t0):1,t1)*b(t1)
end if
if (t1 .EQ. n+1) then
S3 c(t0+1:t0+min(64,n-t0):1) = s(1:min(64,n-t0):1)
end if
end do
end do
end

Notice that the statement 53 has not been removed because an array of n elements
is still needed in the lhs of S3. This approach like array privatization technique takes
into account the fact that the real parallelism provided by the target architecture is
less than the number of iterations.

. Our method can be used to reduce data space of parallel programs directly provided
in single assignment form. Consider for instance that the original version of the
matrix-vector program is given in single assignment form. With the schedule func-
tion (6), one reduces the original data to an one-dimensionnal array with n elements
like in Fig. 7. It means that our method can reduce the original data size of the
program if the memory requirement necessary for the schedule function is less than
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the original data size. This property is due to the fact that except for data storing
output values, our partial data expansion is completly independent from the orginal
program.
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