
Automatic Generation of Data Parallel CodeJean-Fran�cois Collard� Paul FeautrieryAbstractThe literature on automatic parallelization generally focuses on data dependency anal-ysis but seldom on code generation. The generated code may be MIMD-like code withexplicit message passing, or a higher-level data-parallel one. This report describes ascheme to automatically generate the latter kind of codes, with a focus on data-parallelextensions of FORTRAN such as the High Performance Fortran (HPF) language.Keywords: automatic parallelization, code generation, data-parallel languages, HPFR�esum�eLa litt�erature sur la parall�elisation automatique est g�en�eralement centr�ee sur l'ana-lyse des d�ependances et l'ordonnancement, mais s'int�eresse rarement �a la g�en�erationde code. Le code g�en�er�e peut être du style MIMD avec transmission explicite desmessages, ou de plus haut niveau, par exemple data-parall�ele. Ce rapport pr�esente unsch�ema de production de ce dernier type de code, avec une attention particluli�ere pourles extensions data-parall�eles de FORTRAN telles que le langage High PerformanceFortran (HPF).
�LIP, ENS Lyon, 46 All�ee d'Italie, F-69364 LYON CEDEX 07. jfcollar@lip.ens-lyon.fryPRISM, Universit�e de Versailles, 45 Avenue des Etats-Unis, F-78035 VERSAILLES CEDEXPaul.Feautrier@prism.uvsq.fr 1

@INPROCEEDINGS{CF:93,AUTHOR = {J.-F. Collard and P. Feautrier},TITLE = {Automatic Generation of Data Parallel Code},BOOKTITLE = {Proceedings of the Fourth International Workshopon Compilers for Parallel Computers},ADDRESS = {Delft, The Netherlands},EDITOR = {H.J. Sips},MONTH = Dec,YEAR = 1993,PAGES = {321--332}} 2

1 IntroductionWhen Lamport invented the hyperplane method [Lam74], he introduced so fruitful anidea that current automatic parallelization research still heavily relies on it: operationsspanned by a loop body are clustered in waves (or \hyperplanes", or \fronts"), onewave being executed at a time. Time is here a logical schedule and sums up, in theory,the inherent sequentiality of the source program| or, rather, what the compiler thinksis the inherent sequentiality of the source program. This logical time may be implicit,as in the loop transformation framework, or explicit, as in methods inherited fromsystolic design.The PAF (Parall�eliseur Automatique pour Fortran) automatic parallelizer de-signed by Feautrier [RWFt91] uses explicit schedules. The �rst step is data
ow analysis[Fea91] from which one may deduce a single-assignment form of the source program.One then obtains an a�ne schedule which gives the execution date of every operation.This schedule may be one-dimensional [Fea92b], or possibly multi-dimensional [Fea92a].A space mapping is also computed, yielding a virtual geometry or \template" on whichoperations are to be executed [Fea93]. This space mapping is again an a�ne functionin the original loop counters. These elements compose a space-time mapping1.Once a space-time mapping is chosen, the corresponding parallel code has to begenerated; this is the central theme of this paper. A space-time mapping is in fact abasis change, where the new basis is chosen such that fronts are parallel to the spaceaxes. The generated code has to enumerate, in the new basis, every integer point of theiteration space [AI91]. One should note that space-time mappings have to be invertible.However, it is not always possible to get unimodular space-time mappings. Thus, thelogical space-time may have \holes", i.e. instants and places at which no useful workis done.In the target program, iteration domains are scanned along the spatial dimensionsusing a data-parallel statement or a new nest of parallel forall loops. This paralleliza-tion method is thus particularly well suited to SIMD or SPMD distributed-memorymachines. These forall loops are surrounded by one or more sequential do loopsscanning time coordinates. To conserve the semantics of the source program, all thereferences to arrays must be correctly reindexed.This paper does not deal with �nding a suitable basis change, but with the codegeneration phase of the parallelizer. An overview of the problem of scanning polyhedraafter non-unimodular transformations is presented in Section 2. Statement reindexationis presented in Section 3. Section 4 explains how loops are derived in a way that solvesthe problems above, along with examples of object code. Then we conclude in Section5, and sum up what remains to be done.2 Non-Unimodular TransformationsTo get an idea of the problems to be faced, consider the following depth-2 perfect loopnest, parametrized by n:for i= 0 , nfor j= 0 , n1Some functional language compilers towards distributed memory architectures follow exactly thesame approach, determining temporal and spatial parts of index domains [CCL91].3

Sendforendforand suppose that statement S is scheduled at �(i; j) = 2i + 4j + 1, due to depen-dences. S's execution dates will be 1,2,4, and so on... We say that S's schedule hasperiod 2. The scheduling vector is (2; 4)T , and is non primitive. So, the space-timetransformation cannot be unimodular. The temporal dimension to be scanned in thegenerated program will thus have holes. However, to get a \dense" spatial dimension,we may divide the scheduling vector by the gcd of its components. In our example,(2; 4)T= gcd(2; 4) 7! (1; 2)T . We then complete the scheduling vector to a unimodularmatrix, e.g. " 1 21 1 # :We of course go back to the real scheduling vector, getting a non-unimodular matrix" 2 41 1 #whose associated transformation maps convex polyhedra to domains having no holesalong the second dimension. The purpose of such a transformation is of course tohave step-1 foralls enumerating processor coordinates. However, this cannot be im-mediately extended to multi-dimensional schedules, since steps or periods along thesedimensions are not simply the gcd of their corresponding scheduling vector entries.Given the matrix of the transformation, the steps are in fact the diagonal coe�cientsof the Hermite form of this matrix [Dar93].We will here restrict ourselves to one-dimensional schedules but give multi-dimensionalgeneralizations when appropriate. Even though the bulk of our algorithms would notchange, taking multi-dimensional schedules into account needs more comprehensivelinear algebra techniques.3 Reindexation3.1 Problem De�nitionThe transformation which allows one to express statements in a new basis is well known[RWFt91, GMrQtS89, DR93] and is usually called reindexation . Note, however, thatwhen loop nests are imperfect, the reindexation we have to deal with is more complexthan the one in [LP92] or [Ban90].To see what reindexation consists in, let Sa and Sb be two statements in the originalprogram, nested in possibly di�erent loop nests.Sb : b[~{b] = :::Sa : a[~{a] = :::b[L(~{a)]:::The former statement initializes an array which is read by the latter. More precisely,for a given value of Sa's iteration vector ~{a, operation (Sa;~{a) reads the array elementb[L(~{a)]. ~{a of course belongs to Sa's iteration space, denoted by I(Sa). L is an index4

function which maps I(Sa) onto I(Sb). Let Ta and Tb be Sa's and Sb's space-timemappings, respectively: ~ca = Ta(~{a);~cb = Tb(~{b)Reindexation could be done in two di�erent ways.� Since space-time mappings are chosen invertible, the kth counter~{x[k] in statementSx is replaced by Tx�1(~cx)[k]. This yields:Sb : b[T�1b (~cb)] = :::Sa : a[Ta�1(~ca)] = :::b[L(Ta�1(~ca))]::Array subscripts may be quite complex, making physical mapping intricate andregular communication patterns di�cult to detect.� We aim at having left-hand side arrays subscripted by the new space-time com-ponents. Arrays a and b are replaced by two new arrays a' and b':Sb : b'[~cb] = :::Sa : a'[~ca] = :::b'[~c0b]::where ~c0b = Tb � L � Ta�1(~ca): (1)The �rst entries in vector ~c0b are exactly Sb's time components, and the othersare exactly virtual processor coordinates.The second solution has the following advantages. Suppose vector ~ca is equal tothe two-dimensional vector (t; ~pa)T , where t is the one-dimensional global time and~pa is the coordinate vector of the executing processor. Moreover, suppose that vectorTb � L � Ta�1(~ca) is equal to (t � d; ~p0) where d is a positive numerical constant. Theneach row in array b' can safely be deallocated, as far as statement Sa is concerned,d time steps after its de�nition. If all references to b' are of the above form, and ifD is the maximum of all d's, then only D + 1 rows of b' need be allocated along thetemporal dimension, provided the references are \wrapped" modulo D + 1. In somecases, a more elaborate analysis may reduce the factor of D + 1 to D, see [Cha93] fordetails. In this way, the main drawback of single-assignment form, memory expansion,is greatly reduced.Similarly, if the new access vector is of the form (t0; ~pa+~x) where ~x is a constant vec-tor, then communication between Sa's and Sb's processors is regular. Communicationpatterns can be deduced from the value of ~x in a straightforward way.3.2 An exampleLet us take the following example:Sb : b[i; j] = :::Sa : a[i0; j 0] = :::b[2j 0; 2i0+ j 0 + 1]:: 5

Sb's iteration vector is ~{b = (i; j)T . Suppose its schedule is:�b(i; j) = 2i+ 4j + 1:If i's and j's lower bounds are both 0, then the execution date set is f1,3,5,...g. Letthe space mapping be: �b(i; j) = i+ j:The space-time mapping is thus:Tb : " tpb # = " 2 41 1 # " ij #+ " 10 # :Let us now consider Sa, whose iteration vector is ~{a = (i0; j 0)T . Suppose Sa'sschedule is: �a(i0; j 0) = 3j 0:The execution date set for statement Sa is then f0,3,6,...g. Sa's and Sb's executionsthus follow the time diagram in Fig. 1.
0

1

2

3

4

5

6

7

8

9

Sa Sb

period

timeFigure 1: Time diagram for schedules 3j and 2i+ 4j + 1Suppose Sa's space mapping is:�a(i0; j 0) = (i0 + j 0):That is: Ta = " tpa # = " 0 31 1 # " i0j 0 #+ " 00 #Then, b's reindexation in Sa will be:" tbpb # = " 0 81=3 2 #" tapa #+ " 51 # :6

4 Nest Generation4.1 Time loop generationTwo problems appear when constructing the transformed loop nest:� Bounds of the resulting iteration space may depend on structure parameters(whose value may not be known at compile time). Thus, one needs precise sym-bolic bounds computation. Care must be taken so as not to \forget" points (i.e.,operations!) of the original iteration space, and not to create spurious ones. To�nd the loop bounds of a reindexed loop nest, we use a parametrized version ofthe Dual Simplex method, implemented by Feautrier in the PIP software (Param-eter Integer Programming [Fea88]). Much more details are given in [CFR93]. Asa by-product, this procedure yields bounds on the logical time, i.e. the latency ofthe algorithm, and on processors numbers, which give the size of the underlyinggeometry or template.� Since transformations may not be unimodular, some statements may not be ex-ecuted at each time step, possibly yielding a complicated activation pattern.As far as the last problem is concerned, let:�(~{) = nXj=k ak~{k + a0be the schedule of a given statement. Let $ be the the greatest common divisorof a1 : : :an. Obviously, the possible values of �(~{) � a0 are multiples of $, and theactivation pattern of the distinguished statement is periodic with a period of $. In thecase where the nest contains several statements with periods $a, $b, etc., it is easy tosee that the period of the activation pattern will be the least common multiple of $a,$b, etc.In our running example, schedules are 2i+4j+ 1 and 3j, thus periods are 2 and 3,and the period of the nest is 6.A �rst code generation scheme is to unroll the loop is such a way that the periodis in evidence. In the new loop body of our example, statement Sb would appear threetimes but Sa only twice. The program skeleton is now:for t = 0 to ::: step 6if min(�a) � t � max(�a) then Sa(t)if min(�b) � t + 1 � max(�b) then Sb(t+ 1)if min(�a) � t + 3 � max(�a) then Sa(t+ 3)if min(�b) � t + 3 � max(�b) then Sb(t+ 3)if min(�b) � t + 5 � max(�b) then Sb(t+ 5)endforSince this method would have created heavy overheads, we chose a di�erent imple-mentation. For every statement, the sets of possible schedule values (e.g. f1,3,5,..g andf0,3,6,..g for Sb and Sa respectively), are scanned by local time variables (say, ta and tbrespectively). These local times are initialized to their lower bounds, are independently7

incremented by their periods each time the corresponding statement is executed, andthen set to an illegal value (e.g. �1) when execution must end. The code for ourrunning example has thus the following skeleton. (Note that b''s reindexing in Sa hasbeen found in Section 3.2.)lbb = �0bs lower boundubb = �0bs upper boundtb = lbblba = �0as lower bounduba = �0as upper boundta = lbafor t = ::: step 1if t == tb thenforall p 2 b's topologyb'[t; p] = :::endforalltb = tb +$bif tb > ubb then tb = �1endifif t == ta thenforall p 2 a's topologya'[t; p] =::b'[8� p+ 5; 1=3� t+ 2� p+ 1]::endforallta = ta +$aif ta > uba then ta = �1endifendforThe �rst advantage of this scheme is that control overhead, compared to the se-quential case, is reduced to the equality tests between global and local times. Moreover,this scheme obviously avoids code duplication. However, spurious array allocation isstill a problem (e.g. even entries of array b' are uselessly allocated). To circumventthis di�culty, we note that, for every statement Sx:8~{; 9� : t = �x(~{) = � �$x + lxwhere lx = min~{(�x(~{)) 2.Thus, � is a non-negative integer whose initial value is 0, and is incremented everytime S 0b's body is entered. Indexing b' by � implies that there is a one-to-one corre-spondence between b' cells and S 0b body executions. For this reason, we call � a \minortime". Using minor times as subscripts has the added advantage of avoiding divisionin the transformed subscript expression.The generated code for our example is then:�b = 0�a = 0/* Other initializations do not change */for t = ::: step 1if t == tb thenforall p 2 b's topology2Note that this can be immediately extended to multi-dimensional schedules, when the $x are givenby the transformation's Hermite matrix. 8

b'[�b; p] = :::endforalltb = tb +$b�b = �b + 1if tb > ubb then tb = �1 endifendifif t == ta thenforall p 2 a's topologya'[�a; p] =::b'[4� p+ 2; �a + 2� p+ 1]::endforallta = ta +$a�a = �a + 1if ta > uba then ta = �1 endifendifendfor4.2 Memory allocationIn Section 3.1, we noted that arrays, when accessed in a right hand side by timetranslations such as (t� d; ~pa + ~x)T ;could be slimmed to d + 1 rows along the time dimension. What happens if we useminor times?Firstly, note that a necessary condition for the time component to be a translationis that Sa's and Sb's schedules have the same period $. Then, we can write8t; 9�b : t � d = �a$ + la � d = �b$ + lb, d0 = �a � �b = lb � la + d$:Thus lb� la + d is a multiple of $. Moreover, since d0 may be negative, the number ofallocated rows becomes j d0 j +1.4.3 Generating FortranDue to the single-assignment form, some expressions in right-hand sides may be con-ditionals. Typically, such expressions appear in statement such as:if t == t1 thenforall p 2 b's topology boundsb[�1; p] =if C(t; p) then y else zendforallt1 = t1 +$1�1 = �1 + 1if t1 > ub1 then t1 = �1 endifendifSince conditional expressions are not included in Fortran, they must be discarded. Theonly way to do this is to split such statements in two pieces. One piece will be executedwhen C(t; p) holds, and the other when C(t; p) does not hold. These two statement9

pieces will have di�ering date sets, whose extrema are computed by adding C(t; p)(resp. :C(t; p)) to the inequalities which de�ne the iteration domain.Moreover, note that these pieces are writes to the same array (the array initiallywritten by the split statement). To preserve single-assignment, minor times must beshared among the statement pieces, even if their local times are di�erent. Thus, theinitial statement is rewritten as:/* t11 and t12 are initialized to their lower *//* bounds, ie lb11 and lb12 respectively. */
ag = falseif t == t11 thenforall p 2 b's topology, s.t. C(t; p) holdsb[�1; p] = yendforallt11 = t11 +$1
ag = trueif t11 > ub11 then t11 = �1 endifendifif t == t12 thenforall p 2 b's topology, s.t. :C(t; p) holdsb[�1; p] = zendforallt12 = t12 +$1
ag = trueif t12 > ub12 then t12 = �1 endifendif/* if one of the two pieces has beenexecuted, increment minor time �1 */if
ag == true then�1 = �1 + 1endif
ag = false4.4 Implementation & ExampleThis scheme has been implemented so as to generate C or Fortran code augmentedwith forall, a data-parallel extension of for. New variables are of six kinds: localtimes (t), lower and upper schedule bounds (lb and ub respectively), schedule periods(per), minor times (m) and execution
ags (exe). Variable names are pre�xed by theircorresponding statement names, and su�xed by time dimensions.As a real-life example, take the Gaussian elimination written as:program gaussreal a(n,n), x(n)real s, finteger i, j, k, ndo i=1, n-1do j=i+1, n1 f=a(j,i)/a(i,i)do k=i+1,n2 a(j,k)=a(j,k)-f*a(i,k)enddoenddo 10

enddodo i = 1, n3 s = 0.do j = 1, i-14 s = s + a(n-i+1, n-j+1)*x(n-j+1)enddo5 x(n-i+1) = (a(n-i+1, n+1) - s)& /a(n-i+1, n-i+1)enddoendA Schedule for this example has been computed in [Fea92a] and appears in thethird column of Table 1. Statement Counters ScheduleS1 i; j 2i� 2S2 i; j; k 2i� 1S3 i 0S4 i; j 2j + 2n� 2S5 i 2i+ 2n � 3Table 1: A schedule for gaussStatement MappingS1 n+ 1� j; n� 1S2 n + 1� j; k+ n � 1S3 i; 2nS4 i; 2nS5 0; 2nTable 2: A space mappingOn the other hand, a two dimensional space mapping is given in Table 2. Whenreindexation has been done, we notice that all arrays S1; ::; S5 are accessed with constantdelays 1,2,1,2 and 1, respectively. For instance, Statement S1 is wrapped modulo 1,i.e. only one row is needed along its �rst dimension instead of n� 2 without wrappingand 2n� 4 without using minor times.The following MasPar Fortran code is generated3. Note that predicates such asC(t; p) do not appear explicitly in the �nal code, but are taken into account whencomputing the bounds on local times and processor coordinates.PROGRAM gaussreal S_1(0:0 , 1:n-1 , n-1:n-1)real S_2(0:1 , 1:n-1 , n+1:2*n-1)real S_3(0:0 , 1:n , 2*n:2*n)C ...3Variables are named according to the following convention: variables belonging to part number aof Statement Sb are labeled with S bna. For space reason, the generated code has been truncated afterS3. 11

C .. mapping directives for the MP-1:CMPF MAP S_1 (MEMORY,XBITS,YBITS)CMPF MAP S_2 (MEMORY,XBITS,YBITS)CMPF MAP S_3 (MEMORY,XBITS,YBITS)C ...C .. declarations ..S_1n0per0=2S_1n0lb0=2S_1n0ub0=2*n-4S_1n0t0=S_1n0lb0S_1n1per0=2S_1n1lb0=0S_1n1ub0=0S_1n1t0=S_1n1lb0S_1m0=0S_1exe=0S_2n0per0=2S_2n0lb0=3S_2n0ub0=2*n-3S_2n0t0=S_2n0lb0S_2n1per0=2S_2n1lb0=1S_2n1ub0=1S_2n1t0=S_2n1lb0S_2m0=0S_2exe=0S_3n0per0=0S_3n0lb0=0S_3n0ub0=0S_3n0t0=S_3n0lb0S_3m0=0S_3exe=0DO time0 = 0,max((4*n-3),(2*n)),1C The first statement is split in two pieces...IF (S_1n0t0.EQ.time0) THENFORALL (p0 = 1:n-(S_1m0+1))- S_1(0,p0,n-1)=- S_2(mod((S_1m0-1),2), p0, n+S_1m0)- /S_2(mod((S_1m0-1),2), n-S_1m0, n+S_1m0)S_1exe=1S_1n0t0=S_1n0t0+S_1n0per0IF (S_1n0t0.GT.S_1n0ub0) THENS_1n0t0=-1END IFEND IFIF (S_1n1t0.EQ.time0) THENFORALL (p0 = 1:n-1)- S_1(0,p0,n-1) = 12

- a((n+1)-p0,S_1m0+1)- / a(S_1m0+1,S_1m0+1)S_1exe=1S_1n1t0=S_1n1t0+S_1n1per0IF (S_1n1t0.GT.S_1n1ub0) THENS_1n1t0=-1END IFEND IFC Has one of them been executed?...IF (S_1exe.EQ.1) THENS_1m0=S_1m0+1END IFS_1exe=0IF (S_2n0t0.EQ.time0) THENFORALL (p0 = 1:n-(S_2m0+1),- p1 = n+S_2m0+1:2*n-1)- S_2(mod(S_2m0,2),p0,p1)=- S_2(mod((S_2m0-1),2),p0,p1)- - S_1(0,p0,n-1)- * S_2(mod((S_2m0-1),2),n-S_2m0,p1)S_2exe=1S_2n0t0=S_2n0t0+S_2n0per0IF (S_2n0t0.GT.S_2n0ub0) THENS_2n0t0=-1END IFEND IFIF (S_2n1t0.EQ.time0) THENFORALL(p0 = 1:n-1, p1 = n+1:2*n-1)- S_2(mod(S_2m0,2),p0,p1) =- a((n+1)-p0,(p1+1)-n)- - S_1(0,p0,n-1)- * a(S_2m0+1,(p1+1)-n)S_2exe=1S_2n1t0=S_2n1t0+S_2n1per0IF (S_2n1t0.GT.S_2n1ub0) THENS_2n1t0=-1END IFEND IFIF (S_2exe.EQ.1) THENS_2m0=S_2m0+1END IFS_2exe=0C Statement S3 is not split:IF (S_3n0t0.EQ.time0) THENFORALL (p0 = 1:n) S_3(0,p0,2*n)=0.S_3m0=S_3m0+1S_3n0t0=S_3n0t0+S_3n0per0IF (S_3n0t0.GT.S_3n0ub0) THENS_3n0t0=-1 13

END IFEND IFC ... the other statements...END DOENDMore details are given in [Col94].4.5 Expressing Parallelism using FORALLsFORALLs seem to be perfectly adequate to express the parallelism extracted by PAF.However, their current implementation su�er from various restrictions which complicatethe code generation process. Many common patterns, appearing in the transformedcode, are not accepted by current commercial compilers. We list below the mainproblems.FORALL indices. They should appear inside the statement in the same order asin the FORALL header. Moreover, every FORALL header index should appearexactly once in the array references. For instance, the lineFORALL(j=1:N,i=1:N) A(j,i)=B(j)is rejected because \array reference does not contain all FORALL indices". Notethat this syntax is explicitly accepted in the HPF proposal [For93, Lov93], andthis phenomenon occurs in many statements in our gauss example.Non-conformable arrays. Suppose a one-dimensional array is to be copied in everycolumn of a two-dimensional one. Consider the following code:REAL A(N,N), B(N)FORALL (j=1:N) A(:,j) = BThe MasPar-Fortran compiler warns that the statement will be executed seriallyand complains that \functions of FORALL indices [are] not allowed". Explicitingall the indices does not help, since we would go back to the previous error. Theonly way we are aware of to implement such a speci�cation in MPF is to usearray sections and the SPREAD function.Scalar reference to an array. The compiler complains thatFORALL(I=1:N) B(I) = PIV(J)is a \front-end array reference with FORALL subscript(s)". Adding the directiveCMPF ONDPU PIV to put the array on the DPU does help, though. Since I doesnot index PIV, this is then an \array reference without FORALL indices", justa special case of the �rst error. In conclusion, this kind of scalar di�usion isforbidden in current FORALL implementations. We would have to store PIV(J)in a temporary scalar. Since scalars are stored on the front-end, this would yield aso-called scalar \slosh" (i.e. a data movement from the front-end to the processorarray, or conversely), but would avoid the pitfalls above.14

Non-rectangular iteration domains. The following syntax is accepted by HPF:FORALL(I=1:N,J=1:N,I>J)& A(I,J) = 0.The mask is here a scalar expression. But in MPF, the masking expression mustbe conformable with the masked array, e.g. with A in the statement above. Thus,we have to create an auxiliary boolean array to that purpose:REAL A(N,N)LOGICAL B(N,N)FORALL(I=1:N,J=1:N)& B(I,J) = J.GT.IFORALL(I=1:N,J=1:N,B(I,J))& A(I,J) = 0.4.6 Physical Mapping DirectivesTo achieve the best speed, programs should use at all time as many physical processorsas possible. Using the mapping directives to tune processor allocation is thus vital.In our case, we obviously want the arrays' �rst dimensions to be stored in the sameprocessor memories. The remaining dimensions have to be spread across the physicaltopology.For instance, the MasPar MP-1 is a two-dimensional grid. A one-dimensional arrayis supposed to be mapped in a so-called \raster-scan" way, i.e. by linearizing the gridand then storing the array elements on it, with a possible wrap-around if the arraysize exceeds the number of processors. This method guarantees that all the processorsare used with good load balancing. To enforce this mapping, we generate the ALLBITSdirective for a 2-D array's second dimension. The last two dimensions of a three-dimensional array are laid across the processors using two kinds of directives:� XBITS and YBITS, successively, if both dimensions extents depend on size param-eters;� If a dimension extent is known at compile time, and if this extent is lower thanthe order of the physical grid (32 in our MP-1), then this dimension should,according to our �rst experiments, get the MEMORY directive. Otherwise, thisdimension would use one grid dimension without �lling it. The other dimensionshould then be laid across all the processors using ALLBITS.4.7 PerformanceTiming studies have been done on a MasPar MP-1, equipped with 32� 32 processors,each having 16 Kbytes of local memory. This machine's peak performance in register-to-register
oating point computations has been measured to be 80M
op/s.The �rst test compared an automatically parallelized F77 matrix addition programand its F90 counterpart (whose main statement just takes one line: A = B + C.) Thisexperiment allows us to have an idea of the cost of generated code control overhead.Results are shown in Fig.2. The generated code is slightly slower than the hand-coded15

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500 550

M
f
l
o
p
/
s

Matrix Size

Generated Code
Hand-coded

Figure 2: Performance achieved by automatically generated matrix-addition code andits hand-coded counterpart.one, mainly because of the added statements. Its M
op/s performance is only 10%lower than the hand-coded program's one on 512� 512 matrices.A second test has been done on a matrix-vector multiplication (Y = AX) F77 code.Its automatically parallelized version competed with the hand-written equivalent below.real a(n,n), x(n), y(n), t(n,n)t = SPREAD(x, dim=1, ncopies=n)t = a * ty = SUM(t,dim=2)Using a temporary array t exhausted PE memory for n = 576 and above. The perfor-mances are compared in Fig.3.5 ConclusionThis software has been written in Le Lisp, and amounts to about 1500 lines of code. Wepropose a code generation scheme where control overhead is kept small, where commu-nication patterns can easily be mapped to multi-dimensional grids, and which can beexpressed in actual data-parallel languages. Moreover, we have seen that two phenom-ena imply memory over-allocation: non-unimodular schedules and single-assignment.We showed how both can be dealt with thanks to so-called \minor times" and wrappingmodulo constant delays, respectively. These features are essential when target machinenodes have little memory.6 AcknowledgmentsThe �rst author is partly supported by the french CNRS Coordinated Research Pro-gram on Concurrency, Communication and Cooperation C3, PRC/MRE contract Para-Digme and DRET contract 91/1180. The second author has been partially supportedby project LHPC-C3. 16

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800

M
f
l
o
p
/
s

Matrix Size

Generated Code
Hand-coded

Figure 3: Performance achieved by automatically generated matrix-vector multiplica-tion code and its hand-coded counterpart.References[AI91] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proc.ACM SIGPLAN '91, pages 39{50, June 1991.[Ban90] U. Banerjee. Unimodular transformations of double loops. TechnicalReport CSRD Rpt. No. 1036, University of Illinois, August 1990.[CCL91] M. Chen, Y. Choo, and J. Li. Crystal: Theory and pragmatics of generat-ing e�cient parallel code. In B. K. Szymanski, editor, Parallel FunctionalLanguages and Compilers. ACM Press Frontier Series, 1991.[CFR93] J.-F. Collard, P. Feautrier, and T. Risset. Construction of DO loops fromsystems of a�ne constraints. Technical Report 93-15, LIP, ENS Lyon,France, 1993.[Cha93] Z. Chamski. Environnement logiciel de programmation d'un acc�el�erateurde calcul parall�ele. PhD thesis, Univ. Rennes I, Rennes, February 1993.[Col94] J.-F. Collard. Code generation in automatic parallelizers. In Proc. of theInt. Conf. on Applications in Parallel and Distributed Computing, IFIPW.G 10.3, Caracas, Venezuela, April 1994. North Holland. To appear.[Dar93] A. Darte. Techniques de parall�elisation automatique de nids de boucles.PhD thesis, LIP, ENS Lyon, France, 1993.[DR93] A. Darte and Y. Robert. Mapping uniform loop nests onto distributedmemory architectures. Technical Report 93-03, LIP, ENS Lyon, France,January 1993. ftp: lip.ens-lyon.fr.17

[Fea88] P. Feautrier. Parametric integer programming. RAIRO Recherche Op�era-tionnelle, 22:243{268, September 1988.[Fea91] P. Feautrier. Data
ow analysis of scalar and array references. Int. Journalof Parallel Programming, 20(1):23{53, February 1991.[Fea92a] P. Feautrier. Some e�cient solution to the a�ne scheduling problem,part II, multidimensional time. Int. J. of Parallel Programming, 21(6),December 1992.[Fea92b] P. Feautrier. Some e�cient solutions to the a�ne scheduling problem,part I, one dimensional time. Int. J. of Parallel Programming, 21(5):313{348, October 1992.[Fea93] P. Feautrier. Toward automatic partitioning of arrays on distributedmemory computers. In ACM ICS'93, Tokyo, July 1993. also availableas IBP/report 92.95.[For93] High Performance Fortran Forum. High performance fortran languagespeci�cation. Technical report, January 1993. Version 1.0 Draft.[GMrQtS89] P. Gachet, Ch. Mauras, P. Quinton, and Y. Saouter. A language for thedesign of regular parallel algorithms. In F. Andre and J.P. Verjus, editors,First European Workshop on Hypercube and Distributed Computers, pages189{202, Rennes, France, October 1989. North-Holland.[Lam74] L. Lamport. The parallel execution of do loops. CACM, 17:83{93, Febru-ary 1974.[Lov93] D. B. Loveman. High performance fortran. IEEE Parallel & DistributedTechnology, pages 25{42, February 1993.[LP92] W. Li and K. Pingali. A singular loop transformation framework basedon non-singular matrices. In Fifth Annual Workshop on Language andCompilers for Parallelism, New Haven, August, 1992.[RWFt91] M. Raji-Werth and P. Feautrier. On parallel program generation formassively parallel architectures. In M. Durand and F. El Dabaghi, editors,High Performance Computing II. North-Holland, October 1991.Reference [CFR93] can be found on anonymous ftp lip.ens-lyon.fr.
18

