
Detection of Scans in the Polytope ModelXavier Redon� Paul FeautrieryMay 31, 1999AbstractMost automatic parallelizers are based on the detection of indepen-dent operations. Dependence analysis is mainly a syntactical process,in which the actual data transformations are ignored. There is anothersource of parallelism, which relies on semantical information, namelythe detection of reductions and scans. Scans and reductions are quitefrequent in scienti�c codes and are implemented e�ciently on mostparallel computers. We present here a new Scan detector which isbased on the normalization of systems of recurrence equations. Thisallows the detection of scans in loops nests of arbitrary depth andon multi-dimensional arrays, and gives a uniform treatment for scalarreductions, array reductions, and arrays of reductions.keywords: Automatic parallelization, reductions, scans, programs trans-formations, programs normalization.1 Introduction1.1 Motivation for Scan DetectionMost automatic parallelizers, whether industrial or academic, are based onthe detection of independent operations. Operations are independent if they�Laboratoire LIFL, Universit�e Lille I, 59655 Villeneuve d'Ascq Cedex, France. e-mail:Xavier.Redon@lifl.fryLaboratoire PRiSM, Universit�e de Versailles-St. Quentin, 45, Avenue des Etats-Unis,78035 Versailles, France. e-mail: Paul.Feautrier@prism.uvsq.fr1

do not share modi�ed data, or, in other words, if they have no memorycon
icts. Detection of memory con
icts is mainly a syntactical process, inwhich the actual data transformations are ignored. There is another source ofparallelism, which relies on semantical information, namely the detection ofreductions. A reduction is the application of an associative binary operator toa vector of values, the result being one scalar. Reductions are quite frequentin scienti�c codes and are implemented e�ciently on most parallel comput-ers. Scans are similar to reductions, but the intermediate results are kept,thus giving a vector. Since there is no single rule for detecting associativeoperators, scan detection must use pattern-matching, and pattern-matchingmust be preceded by a normalization phase. Our method is based on a rep-resentation of the program as a system of recurrence equations. This allowsthe detection of reductions in loops nests of arbitrary depth and on multi-dimensional arrays. Scans and reductions are represented in symbolic formwith the help of the Scan operator. When scans and reductions have been de-tected, one may use the results to construct more e�cient parallel programs.While partial solutions are known [20], the design of a universal method isbeyond the scope of this paper.1.2 The Data
ow GraphIn the area of automatic parallelization a very useful structure is the DataFlowGraph (DFG). This structure is more accurate than the classical DependenceGraph (DG) which describes the pairs of statements having memory con
icts.Some memory con
icts are due to memory reuse. They can be satis�ed ei-ther by enforcing sequential execution, or by expanding the data space ofthe program. In the DFG, all dependences which can be satis�ed by dataexpansion have been removed. Hence, the DFG has the potential to exposemore parallelism than the ordinary Dependence Graph.The DFG gives, for each reference to a scalar or array element in anoperation, the source operation, i.e. the operation that de�ned the value ofthe scalar or array element we are interested in.Consider, for example, the following code:DO i=1,ns(i)=a(i)*b(i) (i1)END DOs(0)=0 (i2) 2

DO i=1,ns(i)=s(i-1)+s(i) (i3)END DOIts Data
ow Graph as given by our automatic analysis tool, PAF, is:Source of s(i-1) in i3 ;* if [i-2>=0] then (i3,i-1)* if [i-1=0] then (i2)Source of s(i) in i3 ;* if [true] then (i1,i)Note that the source of s(i-1) in i3 is a conditional expression.Such expressions occur frequently in Data
ow Analysis and are calledquasts (Quasi-A�ne Selection Trees) in what follows.The results of Array Data
ow Analysis can be presented in many ways,all equivalent up to syntactical embellishments: source functions, a singleassignment code, or a system of a�ne recurrence equations or SARE. Thelater presentation is the one that �ts best with our aims in this paper; we willuse the Alpha notation to represent SAREs [13]. The important point hereis not notation, but the fact that an imperative program can be mechanicallyconverted to a SARE provided it meets the following constraints:� The only data structures are arrays.� The only control structures are DO loops.� The array subscripts are explicitly given a�ne functions of the loopcounters.The DFG of our example program can be expressed as the followingSARE:i1[i] = { 1<=i<=n } : a[i] * b[i] ;i3[i] = case{ i=0 } : 0 ;{ 1<=i<=n } : i3[i-1] + i1[i] ;esac 3

In this notation, conditions such as f 1<=i<=n g de�ne iterationsdomains, while the subscripts expressions like i-1 are shorthand no-tations for dependence functions, in this case �i:(i� 1).The reason for using SAREs as the basis of our work is that SAREs arereferentially transparent, which means that a variable can be freely replacedby its value as given by the right hand side of the equation that de�nes it.This is the main tool in our reduction detection method.Let us emphasize the fact that the DFG and SARE are equivalent rep-resentations. SAREs are more self-contained and are easier to handle in anautomatic system, while DFGs are susceptible of an intuitive graphical rep-resentation. In this paper, we will freely shift from one representation to theother according to the needs of the exposition.2 Overview of the Method2.1 What is a Reduction?A reduction { the name comes from the APL language [7] { is any operationwhich takes a set of values as argument and gives a single value in return1.Most often, a reduction is de�ned as the repeated application of a binaryfunction to the elements of the input set in some order:s = f(: : : f(a1; a2); : : : ; an): (1)Specially interesting is the case where f is an associative function. Commu-tativity and the existence of a unit are also useful. With the help of theseproperties, de�nition (1) can be rearranged in various ways in order to ex-hibit parallelism. As a rough estimate, reduction of n values on P processorstakes about nP +log2 P units of time, excluding communication delays if any.APL was the �rst language to introduce a speci�c notation for reduction.In contrast, many ordinary imperative languages, new and old, have no suchfeature. In Fortran, for instance, one has to write:Program reducs = a(1)1We acknowledge that this de�nition lacks in precision. It should be completed bycomplexity considerations: the \size" of the result should not increase, or, at least, increasemore slowly than the total size of the arguments.4

do i = 2,ns = f(s,a(i))end doendand the situation is similar for C or Pascal. With the advent of massivelyparallel computers, there is a strong incentive to extract the last ounce ofparallelism from sequential programs, hence the importance of detecting as-sociative reductions.The reader must be warned that some computer operators are only ap-proximately associative. For instance, addition of
oating point numbers isassociative up to rounding errors. While there is no reason to suppose thata parallel reduction is less precise than a sequential one [17], the user mustbe aware that a program to which reduction parallelization has been appliedmay not give exactly the same results as its sequential original. The extentof the di�erence depends on the numerical stability of the algorithm, andthis question is beyond the scope of this paper.2.2 Detecting a reductionThe question is thus to identify reductions when they are concealed in asequential program.It is not too di�cult to identify code such as:do i = ...s = f(s)end doThe question is then whether the assignment may be rewritten ass = g(s, e(i))with g an associative operation. This is a di�cult mathematical question.Usually, the associativity of a binary operation has to be proved, and sucha proof may be of arbitrary di�culty. Since it is not possible, at least withpresent technology, to include a theorem prover in a compiler, the obvioussolution is to use a catalog of prede�ned reductions and to match this knowl-edge base against the object program. This is done in many commercialparallelizers, which are able to recognize elementary reductions like sumsand dot products. 5

Such recognition of reductions by pattern matching is more complicatedthan it looks: consider for example the problem of summing the componentsof a vector. It may be written in many di�erent ways, among which:program A program B program Cs = 0. s = a(1) 1 s = 0.do i = 1,n do i = 2,n do i = 1,ns = s + a(i) s = a(i) + s 2 t = s + a(i)end do end do 3 s = tend end end doendFurthermore, most of the time, the summation loop above will be encumberedby extraneous code, which may interfere { or not { with the summation.It would need a very large knowledge base to recognize all these forms asequivalent.The �rst idea is to go beyond \�rst order" pattern matching as is found,e.g., in parsers or in such languages as ML. For instance, the best way ofdeciding whether a statement s = f(s) is a summation is to compute (withthe help of a computer algebra system) the quantity f(s) � s and to testwhether the result is independent of s or not. Similarly, the best way tohandle extraneous code in the loop body is to analyze its dependence graph.We are thus lead to the use of \matching functions" of arbitrary complexity.The set of matching functions is the knowledge base of our reduction detec-tor. It needs not be �xed for all times and circumstances. Special application�elds may have their own type of reductions and associated matching func-tions. For all these reasons, it is impossible to combine the pattern matchingfunctions into one grand pattern, as in done, for instance, in LR(k) parsers.Application of the several matching functions must be sequential, hence ourinsistence in having as few of them as possible.As is well known, normalization of the object program is a powerful toolfor reducing the size of the knowledge base. Ideally, all equivalent programsshould transform into the same normal form and the reduction detectionshould be done on the normal form. This is clearly impossible, since itwould give an algorithm for testing the equivalence of two programs, whichis undecidable as soon as the programming language is powerful enough. Theway out is both to restrict the input language { to static control programsin our case { and to accept imperfect normal forms, in which some but notall equivalent programs have the same normalization.6

For instance, with the system which is described in this paper, pro-gram A and C normalize to the same form, but program B does not.This is as it should be, since program A and B are equivalent only ifn � 1. But even adding this information will not enable us to haveprogram A and B converge to the same normal form, unless we �nd away for doing formal computations on reductions, a subject for futureresearch.Many researchers have de�ned normal forms for use in reduction detec-tion and other program transformations. The best known one is obtainedby symbolic execution [8]. When the presence of a reduction in a loop issuspected, its body is submitted to an algebraic interpreter. Consider forinstance program C, and let s0i ; t0i be the values of s and t at the beginningof iteration i of the loop. Similarly, let ski ; tki be the values of these vari-ables after execution of statement k in iteration i. Symbolic interpretationof statement 2 and 3 gives successively:t2i = s0i + a(i)s3i = s0i + a(i)At this point, one starts the next iteration, meaning that s0i+1 = s3i . We havethus found the recurrence: s0i+1 = s0i + a(i):Programs A and B would lead to the same recurrence. Note that addingextraneous statements to the loop (e.g. resetting a(i) to zero after statement3) would not change the result of symbolic execution, thus showing that thismodi�cation does not a�ect the reduction.This method is quite powerful and can be extended to handle conditionalstatements in the loop body [9]. It needs a formal algebra system and itspower is directly proportional to the normalization power of this system.However, it cannot handle either reductions on arrays or arrays of reduction(i.e. systems of recurrence equations). The reason is that reference to arrayselements cannot considered as mathematical variables. It is not always truethat two occurrences of a[i] refer to the same value, or that an occurrenceof a[i] and an occurrence of a[j] refer to di�erent values.7

Callahan [2] has proposed a method which can handle systems of reduc-tions provided they are linear (i.e. their solution reduces to matrix prod-ucts). The basic idea is similar to symbolic execution, but the interpreterhandles only linear right hand sides. Variables which are the result of nonlinear calculations are treated as unde�ned, and the unde�ned value has tobe propagated across the symbolic calculation. At the end of the process,the linearly computed variables at the end of one iteration are expressed asfunctions of their values at the beginning of this iteration. Computing their�nal value is equivalent to the computation of a succession of matrix prod-ucts, which are associative. Most of the time, the iteration matrix is sparse:Callahan gives methods to exploit this fact in order to minimize the totalcomputation time.The method of [14] is quite di�erent. The aim here is to normalize thedependence graph of the loop. Since the size of the dependence graph of aloop which is iterated n times is at least O(n), this is impossible in general.The authors propose a limited unfolding of the loop body until periodicpatterns become apparent. The recognition of reductions is done on thisunfolded graph.Our aim here is to improve on the symbolic execution method in order tobe able to handle reductions on arrays as well. Ideally, the following programprogram Dreal a(0:100)s(0,k) = 0.0do i = 1,ns(i,k) = s(i-1,k) + a(i)end doshould have the same normal form as programs A and C.2.3 Normalization StrategyOur basic requirement is that the representation of a program must be a wellde�ned mathematical object, to be transformed by applying the usual alge-braic rules, the most important one being substitution of equals for equals.This requirement is satis�ed in a limited way by symbolic execution: in abasic bloc, the value of a scalar variable after the execution of a statementis a mathematical expression, which can be subjected to ordinary algebraic8

calculation. This is no longer true if one is interested in arrays and if onewants to handle several loops as a whole.In that case, one has to switch to a representation by a SARE in themanner of [15]. An object in such a system is the value of a variable at awell de�ned point in the execution of a program (a statement and a set ofcounters for the surrounding loops), or equivalently, a point in the domain ofone the variables. The system gives relations between these values. Solvingthe system is equivalent to running the program.The Data
ow Graph, however is not a su�ciently powerful normal formfor reduction recognition. For instance, while programs A and D have thesame DFG, this is not true for program C. In fact the DFG's of all simplereductions we want to recognize have a very simple form which is depictedin the following graph:
i i-d (with d integer constant)The only cycle in the graph is a loop and the dependence function is atranslation. If a DFG has cycles which are not loops, we may try to shrinkthem by eliminating variables by substitution. We will show later that thisis not always possible, and give a necessary and su�cient condition for thisstrategy to succeed. When a loop is found, one tries to identify a reduction bymatching the associated equation with a knowledge base. Pattern matchingwill be discussed in details in Sect. 4.A program may have a large number of reductions. Once one of them isfound, we must set it aside, as it where, and try to �nd other ones. This maybe done simply by introducing a new operator, Scan, which has the samerelation to reduction as the integral sign R has to integration: it allows oneto give a name to an object which is not always expressible in closed formwithin the underlying theory.In graphical terms, introducing a Scan operator allows one to delete theloop on the corresponding node. When this is done, one may continue elimi-nating variables until other loops are found. This is best done working frominside outward, as in this way the simplest reductions are detected �rst.The result of this analysis is a new version of the Data
ow Graph inwhich as many reductions as possible have been identi�ed. The result maystill be simpli�ed by combining reductions to build higher order reductions.Consider for instance, the program 9

program Es = 0.0do i = 1,ndo j = 1,is = s + a(i,j)end doend doAs a �rst step, we �nd that the j loop is a sum. The next step is to analyzethe i loop, thus �nding another summation which uses as data the resultsof the j loop summations. These results may be combined to give { we usehere the ordinary mathematical notation:s = nXi=1 iXj=1 aij:3 Program normalizationThe �rst step is always the construction of the DFG and transformation intoa SARE. The reader is referred to [6] for a detailed account of this process.3.1 Elimination of Variables Using SubstitutionsAs we have said, we want to keep the complexity of the pattern matchingphase as low as possible. Our choice is to consider only one variable re-ductions. The price we pay for that is our inability to detect \systems ofreductions", as Callahan does in the special case of linear recurrences. Now,computations often use temporary variables which lead to recurrences on sev-eral variables, therefore a system normalization must be provided to collapsemulti-variables recurrences onto single-variable ones if possible. A similarsituation occurs in the case of systems of �rst order di�erential equations:x0 = v; v0 = f(x);which can be transformed into one second order di�erential equation x00 =f(x). The recurrence de�ned by the system below is a two-variables one:10

x[i] = case{ i | i = 1 } : 0 ;{ i | 2 <= i <= n } : y[i - 1] + a[i] ;esac ;y[i] = case{ i | i = 1 } : 0 ;{ i | 2 <= i <= n } : x[i - 1] + b[i] ;esac ;If our pattern matching is directly applied no scan can be detectedsince there is no self-referencing variable. Our solution is to eliminateeither x or y from the system. For example if we replace the referenceto y in x by its de�nition, the result is:x[i] = case{ i | i = 1 } : 0 ;{ i | i = 2 } : 0 ;{ i | 3 <= i <= n } : x[i - 2] + b[i - 1] + a[i] ;esac ;The variable x is now self-referencing (with stride 2) and a mere pat-tern matching can point out that x is to be computed by summingthe data b[i-1]+a[i]. Going from the �rst to the second system isnot a simple textual substitution, We had to compute the expressiony[i-1] from the de�nition of y in the initial system, then substituteit into the de�nition of x, then simplify the result by eliminating caseswith empty domains. See [19] for details.We also want our scan detector to handle scans on multi-dimensional ar-rays. In this context another problem arises: scans can be computed alongvery di�erent paths in these arrays. The problem of detecting scans along ar-bitrary paths seems intractable, hence we deal only with rectilinear ones. Anuni-directional scan gathers its data following one vector. An uni-directionalscan associated with a multi-dimensional array represents in fact a set ofscans:The following program computes a set of scans along the diagonals ofthe array a:DO i=1,n 11

DO j=1,na(i,j)=a(i-1,j-1)+a(i,j)END DOEND DOThe uni-directional scan underlying this code has direction � 11 �.Several detection schemes can be used according to the required precision.The simplest algorithm consists in considering the system of equations as awhole and eliminating as many variables as possible. At this point most ofthe recurrences are de�ned by only one variable and a pattern matching cantake place. The drawback of this method is that since, as we will see later,removing all cycles in a DFG is not always possible, unguided substitutionsmay lead into a blind alley, while a more sophisticated algorithm may havefound a solution.No scan can be extracted from the following system using this simplescheme:x[i,j] = case{ i, j | i=1, j=1 } : 0 ;{ i, j | 2<=i<=n, j=1 } : y[i-1,m] ;{ i, j | 1<=i<=n, 2<=j<=m }: x[i,j-1] + a[i,j] ;esac ;y[i,j] = case{ i, j | 1<=i<=n, j=1 } : x[i,m] ;{ i, j | 1<=i<=n, 2<=j<=m }: y[i,j-1] + b[i,j] ;esac ;But the third clause of x and the second of y compute sets of scans.In fact the elimination fails because the recurrences de�ned by thissystem are cross-referencing (cannot be computed in parallel).A more complex detection scheme can be designed using multistage elimi-nations. The principle is to consider only some references (i.e. equationsbetween our multi-dimensional variables). In a �rst stage only the referencesrelated to the innermost loops of the original program are taken into ac-count. This is equivalent to considering the innermost loops as stand-aloneprograms in which the external loop counters are considered as �xed param-eters. Pattern matching is then applied and closed forms are introduced for12

the detected scans. In the second stage we add to the graph the referencesrelative to the loops just surrounding the innermost ones. A normalizationand a pattern matching are performed again and so on. In this way theelimination is obviously more e�cient and we can detect more complex scans(see section 4.1). Since closed forms appear during the detection process,pattern matching may be applied on variables already de�ned by a scan. Inmost cases this denote a scan whose path is piecewise rectilinear, a multi-directional scan.Our previous example can be handled if the counter i relative tothe outermost loop is considered as a parameter. In this context noelimination is to be performed since the only remaining references arethe self-referencing ones in the last clauses of x and y. Let sum be thetextual equivalent of the P operator, closed forms can be introducedfor the scans:x[i,j] = case{ i, j | i=1, j=1 } : 0 ;{ i, j | 2<=i<=n, j=1 } : y[i-1,m] ;{ i, j | 1<=i<=n, 2<=j<=m }: x[i,1]+sum(j>=2,a(i,j)) ;esac ;y[i,j] = case{ i, j | 1<=i<=n, j=1 } : x[i, m] ;{ i, j | 1<=i<=n, 2<=j<=m }: y[i,1]+sum(j>=2,b(i,j)) ;esac ;It is very important to note that the closed forms are parametric withrespect to i.A technical issue for the multistage elimination scheme is the characteri-zation of the references to be taken into account. At the SARE level, thereis no longer information about the loop nests. We replace the missing infor-mation with the help of the concept of reference \pseudo-depth". Let thereference to an equation x in an equation for y be of the form:8i 2 D; x(i) = : : : y(d(i)) : : : .where d is the dependence function. The pseudo-depth is the greatest integerp such that : 8i 2 D; d(i)[1::p] = i[1::p].13

Since dependence functions are supposed to be a�ne, the pseudo-depth canbe obtained by formally computing the vector d(i)�i and counting its leadingzero coordinates.When normalizing loops strictly deeper than p, one has only to considerthe references of pseudo-depth greater or equal than p.Only circuits of references can cause the elimination process tofail. The references of pseudo-depth greater or equal to p whichare not references relative to the loops at level strictly greaterthan p cannot be included in a circuit.The following algorithm summarizes the steps of the multistage eliminationmethod:Algorithm 1 Scans Detection� Let S be a SARE.� For all pseudo-depths p from the maximum nesting level to 0:1. Construct the system graph of S restricted to references of pseudo-depth equal or greater than p.2. Compute the strongly connected components of this sub-graph.3. Try eliminating all variables but one in each component.4. Apply pattern matching if the total elimination succeeded and rewritethe detected scans in closed form.5. Remove inter-components references of pseudo-depth equal or greaterthan p using substitutions.3.2 Criterion for Total EliminationThe goal of our elimination phase is to collapse recurrences on several vari-ables into recurrences on only one variable. The tool we use to perform thetransformation is substitution. In this section we give a criterion for decidingif a SARE can be transformed into a single variable recurrence.To introduce our proof let us consider a system of ordinary equations.14

8>>>>>>>><>>>>>>>>: x1 = f1(xk11 ; : : : ; xk1m1)...xi = fi(xki1 ; : : : ; xkimi)...xn = fn(xkn1 ; : : : ; xknmn) . (2)We do not make any assumption on the functions (fi)i2IN nor on the variablesxi. In this context substitution is really the only operation we can use onthe system. Such a system can be represented using a graph. The verticesare the n variables and there is an edge from xi to xj if xi appears in thede�nition of xj. Let us consider the e�ect of the substitution of x0 into x1,x2, : : :, xq. The edges from x0 to the other vertices are removed and thepredecessors of x0 are added to the predecessors of the targets. Note thatthe new number of predecessors of, for instance, x1 is not exactly known, it isonly possible to say that this number k01 is between max(k1; k0) and k1 + k0:some of the predecessors of x0 may also be predecessors of x1, and are onlycounted once. Substitution for x0 eliminates it if the equation for x0 is notself recursive.
Substitution

0k edges

0l edges 0l edgesx

0

1 q1qk edges k’ edges k’ edges

k edges

k edges

x

1x x 1x xq q

0 0The substitution process terminates when no more variable can be elim-inated. The process succeeds if, in the terminal system, all cycles are loops.Theorem 2 (Su�cient Condition for a Total Elimination) If the cir-cuits of a strongly connected system 2 have a common vertex then the elimi-nation process succeeds on the system.2A strongly connected system is a system whose graph is strongly connected. In thesame way a strongly connected component of a system is the set of variables from astrongly connected component of its graph 15

Without the edges going out of the common vertex the systemgraph is acyclic. Hence a topological sort can be performed onthis sub-graph. The result of this sort is a partition of the verticesinto sets S1; : : : ; Sp. At this point one can substitute the de�ni-tions of the variables in S1 into the de�nitions of the variables inS2. These variables are now de�ned only in terms of the commonvertex variable. Repeating the substitutions until Sp lead to afolding of all circuits into loops on the common vertex.Theorem 3 (Necessary Condition for a Total Elimination) The elim-ination process succeeds on a strongly connected system only if its circuitshave a common vertex.The sketch of the proof is as follows. Let G be a strongly con-nected graph such that for each vertex v of G there is a circuitwhich does not include v. We show that a graph G0 obtainedfrom G by applying some substitutions include a strong com-ponent with the same properties as G. Moreover such a strongcomponent has at least two vertices, hence it has a circuit oflength greater or equal to 2.Let us now detail the proof. The basic property of transfor-mation by substitutions is that if v� is a predecessor of v in G,either v� or its predecessors in G are predecessor(s) of v in G0.This implies a conservation property on paths. More precisely ifthere is a path p in G, then there is a sub-path of p in G whichstarts with the �rst or the second vertex of p and stop at the lastvertex of p. A special case arises when the path p is in fact a cir-cuit. In this case there is at least one circuit in G0 which includesonly vertices from p. From the conservation property on pathsand circuits, another conservation property can be deduced oninter-circuits paths. Let c1 and c2 be two circuits of G, for eachcircuit c02 built from c2 in G0, there is a path from a circuit builtfrom c1 in G0 to c02.Since each circuit of G0 built from a circuit of G has as prede-cessor (via a path) at least one of the circuits of G0 built from agiven circuit of G (remember that G is strongly connected), thereis in G0 a strong component including at least one of the circuitsof G0 build from each circuit of G. For each vertex v of this strong16

component there exists a circuit of the component which does notinclude v. Indeed since v is not included in at least one circuit cof G, it is not included in the circuits of G0 build from c (one ofthese is necessary in the strong component).These results apply only to strongly connected systems but they can beadapted for other systems. It su�ces to compute the strong componentsof the system and verify that each component ful�lls the requirement. Ourelimination criterion formalizes an intuitive thought: it is not always possibleto solve a system of equations using only substitutions. The criterion ismostly interesting when nothing is known about the functions (fi)i2IN of thesystem (2). In other cases methods using more powerful operations thansubstitution are generally used to solve the system.In the context of linear equations, systems such as (2) can always besolved. This is due to the fact that the Gaussian elimination algorithmuse substitutions and also linear simpli�cation. Linear simpli�cationis a powerful tool since it can remove loops from the system graph.For example in the graph of the system below there is a loop on thevertex x1: (x1 = 4:x1 + x2x2 = 2:x1 .After simpli�cation of the �rst equation (x1 = �13x2) there is no longera loop on x1.The criterion is also valid for a SARE. Its graph is more complex sincesome edges are de�ned only in a sub-domain of the variable de�nition domain.This has an in
uence on the elimination process. After a substitution, newedges domains are computed by intersection of the old domains. If thisintersection is void, the edge does not really exist. Hence the criterion isalways su�cient but no longer necessary. One may also say that the criterionis su�cient and necessary if no simpli�cation of the clause domains occurs.3.3 Algorithms for Variables EliminationAll algorithms for variable elimination on strongly connected componentshave the same pattern: �nd the common vertex of the system graph cir-cuits and use a topological sort to schedule the substitutions (as describedin theorem (2)). Hence the di�cult point is to �nd the common vertex.17

There is a full range of algorithms to perform this operation. Let us beginwith a heuristic method, which is not very e�cient but very fast. We usethe fact that a graph without cycles is also without circuits. Hence to �nda vertex included in each circuit of a graph G, it su�ces to consider eachvertex v of G, to remove its outgoing edges and verify that the remaininggraph Gv is acyclic. This veri�cation can be done using the cyclomaticnumber �(Gv) = m0 � n0 + p0, with m0 the number of edges of Gv, n0 thenumber of vertices of Gv (the same as the number n of vertices of G) and p0the number of connected components (i.e. 1 since Gv is a connected graph).The number of edges m0 of Gv is the number of edges m of G minus thenumber mv of v successors. Hence one has to check for each vertex v if theexpression m�mv � n+1 is zero. The test complexity is about O(n) but itis only a heuristic since it does not discriminate between cycles and circuits.This heuristic can be transformed into an exact method. It su�ces toreplace the computation of the cyclomatic number by a depth-�rst-search toinsure that there is no circuit in the graph. This method complexity is of theorder of O(n:m).A more e�cient way for elimination is to use basic substitutions. Basicsubstitutions are substitutions for variables which have only one successor.
1k’ edges

x0

0

x0

0

1x11x

k edges k edges

k edges

Basic substitutionIf a basic substitution is applied to a strongly connected graph, there isno circuit including x0 and the resulting graph restricted to all vertices butx0 is also strongly connected.The vertex x0 has no longer successors, so no circuit can in-clude this vertex. Moreover if a path exists between two vertices(di�erent from x0) before the substitution, it also exists also after(even if the former includes x0, since it goes through x1 after thesubstitution). 18

When no basic substitution can be applied to a graph, either its strongcomponent is reduced to a vertex and, in the initial graph, every circuitinclude this vertex, or the strong component includes several vertices and atotal elimination cannot be performed on the initial graph.If the strong component is a single vertex, the elimination cri-terion implies that in the initial graph the circuits have a commonvertex. Moreover the conservative property on circuits enforcesthat this vertex is the one in the strong component.Let G0 be a graph obtained from a strongly connected graphG using a basic substitution. Due to the properties of basic sub-stitutions, if the strong component of G0 is such that for each ofits vertices v there exists a circuit not including v, then G hasthe same property. Now consider the �nal component includingseveral vertices. No more basic substitution can be applied, henceeach vertex has at least two successors. If a vertex v is removed,the others have still at least one successor, so there exists a circuitwhich does not include v.This prove that the sequential application of basic substitutions is aspowerful as the application of multiple substitutions in the context of ourvariable elimination process. An e�cient algorithm can be extracted fromthe method provided that, for each vertex v, a sorted list of its predecessorspred(v) is available.Algorithm 4 Finding a Common Vertex1. For each vertex v, compute its number of successors ns(v) and storeone of these in succ(v).2. Initialize the stack s with the vertices having a unique successor.3. Stop if s is empty or if there is only one vertex in the component.4. Unstack v from s. Let v+ be the successor in succ(v).5. Perform a sorting merge on pred(v) and pred(v+), for each v� be-longing to both lists subtract one to its number of successors ns(v�).When this number is equal to one stack v� on s.19

6. Store the result of the merging in pred(v+) and for each v� reset itspeculiar successor succ(v�) to v+.7. Goto step 3.The complexity of this algorithm is about O(n:d�) with n the number ofvertices in the graph and d� the maximum size of the pred lists. So it mayeven be linear if, for instance, the graph is a mere circuit.One may remark that �nding the common vertex of the system graphcircuits is the instance k = 1 of the problem of �nding the minimum cutsetof size less or equal to k. Hence any one of the algorithms for �nding minimalcutsets which �nd every cutset of size 1 are suitable for variable elimination.That excludes algorithm D of Shamir, but the one described in [11] is perfect.In fact, it works for cutsets of size 1 and it �nds minimal cutsets for anumber of graph classes. This last property is important since even a partialelimination is useful: one obtains a system with less variables, which can beanalyzed faster by the later phases of the automatic parallelization process(e.g. scheduling).Note that a better variable elimination can be achieved using a moreprecise system graph: the clause graph (whose vertices are clauses and notvariables).The system associated to the program belowDO i=1,2*na(i)=a(2*n-i+1)END DOisx[i] = case{ i | 1<=i<=n } : a[2*n-i+1] ;{ i | n+1<=i<=2*n } : x[2*n-i+1] ;esac ;We name the clauses using the name of the variable and their rankin the variable de�nition. For instance the �rst clause of x is x.0.If x is included in a strong component, an elimination process mayfail because of the loop in the variable graph. In contrast the clausegraph does not have this loop, and so the elimination process may gofurther: 20

x

Equations graph Clauses graph

x.0 x.14 Identi�cation of ScansIdenti�cation of scans takes place after each phase of normalization: we thusneed a way of memorizing the results before starting the next phase. We will�rst explain our notation for representing scans. Observe that this notationis not to be considered as a kind of function call or language statement. Itsconversion to executable code is quite another problem. We will then explainhow to extract scans from one-variable recurrences.4.1 An Operator to Denote ScansThere exists some languages (mostly languages in the area of systolic arraysdesign) which include primitives for scan denotation. We can cite Alphaand Crystal (cf. [12]). Other formalisms like Lacs [16] or Pei [21] can alsodescribe scans in an elegant way. Some imperative languages have primitivesfor scans. A recent language with scan ability is HPF. It includes reductionprimitives �a la Fortran 90 such as sum.The sum of the elements of a vector x can be computed by merely writingsum(x(1:n)). Our Scan operator is more general, and hence more complex:Scan({ i | 0 <= i <= n }, ([1]), +, x, 0)Let us explain the meaning of this notation. The binary operation to beapplied (here, addition) is given as a parameter. The �rst two parameters(the accumulation domain and the direction) state that the reduction appliesto the elements of x from subscript 1 to n with a step of 1. Subscript 0 isused for storing the initial value (the last parameter). Moreover the Scanoperator computes the whole set of partial results. To extract the last valueof the resulting vector, we use subscripting:Scan({ i | 0 <= i <= n }, ([1]), +, x, 0) [n]The HPF reduction primitives can use very complex patterns which aredescribed by indirection arrays. This power of expression is interesting but21

the use of indirection arrays is not very convenient, since they have to beinitialized beforehand. We favor a more synthetic information even if we losesome expressive power (for example, HPF allows the computation of reduc-tions along circles, but that is not used very often in scienti�c programs).Our solution is to use a single vector to describe the reduction path. Twopoints in the scan domain are in the same path (and contribute to the sameresult) if one of them can be reached from the other by iterated translationalong the direction vector. Points which cannot be reached in this way fromother points in the domain are given initial values.Returning to the sum example, we easily see that there is only onepath which include all points in the domain. Furthermore, point 0cannot be reached by translation from other points, hence it is giventhe initial value, 0. The value of any other point, says i � 1, isobtained by applying + to the value of its predecessor, i � 1 and tothe local value, xi.In opposition to the reduction primitive, HPF is more restrictive con-cerning the scan primitives because it doesn't allow the use of indirectionarrays; a scan is only possible along one dimension of the original array.Since our �rst transformation for program normalization uses the expansionof variables, we must deal with full scans, so we need more than a reductionoperator. Hence we consider that the Scan operator compute an array of fullscans; its result is of the same shape as the accumulation domain minus theinitial values domain. To obtain a reduction one must reference the adequateelement in the result array.Our Scan operator has been enhanced in two aspects. Firstly, while weconsider only single variable recurrences, these may have to be converted tovector or matrix scans in order to show associativity and hence parallelism.An example will be given later in Sect. 4.2.2. As a consequence, the data ofa scan may be a complex object, and its operator a complex operator.Secondly, in order to deal with scans computed along a piecewise recti-linear path, we have to introduce multi-directional scans in Sect. 5.4.2 Scan RecognitionSuppose now that the result of the program normalization step is one (ormore) self referencing equations: 22

i 2 D : xi = Exp(xd(i); : : :) (3)where the ellipsis denotes occurrences of other variables and Exp is an arbi-trary expression, which may contains several several occurrences of x withdistinct dependence functions. Equation (3) is tractable if all references to xare of the form xi�� where � is a unique integral vector. If this condition isful�lled, � is the direction of the scan. The domain of the scan is the domainof i, and the initial data is found from other, non recursive clauses in thesystem. It remains to �nd the operator of the scan and its data. This processwill be presented here for the case � = 1. The generalization is just a matterof notations.All expressions which are handled by a compiler are terms on a system ofoperators
, and a system of basic termsA. Here the basic terms are xi�1, theother variables, and the constants of our language | integers, reals, truthvalues, and so on. To each operator ! is associated an arity: an integerdenoted as @(!). The rules for constructing legal terms are three:1. A basic term is a term.2. If t1; : : : ; tn are terms, and if ! is an operator with @(!) = n, then!(t1; : : : ; tn) is a term. ! is the head of this new term, and t1; : : : ; tnare its arguments.3. There are no other terms.It is not even necessary that
 and A be �nite. All we need are well de-�ned procedures for recognizing a basic term, recognizing an operator, andcomputing its arity.The set of operators depends on the underlying programming language.It may include arithmetic operators (+;�; �; =; : : :), Boolean operators, el-ementary functions (sin; cos; log; exp; : : :), comparison operators, and so on.Legal terms must also conform to type rules. We will suppose that theserules have been checked by a �rst pass of the compiler. It is an easy matterto verify that the system of recurrence equations associated to a well typedprogram is well typed, and stays well typed if subjected to substitution.4.2.1 Simple pattern matchingLet t be the term which is associated to Exp in (3). The simplest possibilityis to analyze the head of t, and its arguments. Two trivial cases must be23

detected �rst. t may simply be xi�1. In that case, the recurrence is a valuepropagation, and its solution is xi = x0. Similarly, if xi does not occur in t,the solution is xi = t. In both these situations, the recurrence has a trivialparallelization.In other cases, we must check that the head of t is binary, and that, ofits arguments, one is xi�1 and there is no occurrence of xi�1 in the otherone. The head of t must belong to a list of tractable operators. This is thesimplest form of pattern matching.The disadvantage of simple pattern matching is that it fails as soon ast becomes too complicated. For instance, it cannot do anything with t =(1 + xi�1) + ai. On the other hand, adding new operators is easy. If wedevise the proper data structures, it can even be done without recompilingthe detector program, simply by reading a \rule �le".4.2.2 Partial NormalizationThe solution for �nding the Scan operator in the recurrencexi = (1 + xi�1) + aiis simply to rearrange t as xi�1+ (1+ ai) by using associativity and commu-tativity of +. Properties like associativity, commutativity, and many otherscan be expressed as equational axioms as in:x+ (y + z) = (x+ y) + z:Such axioms, when completed by the usual properties of equality give the setof terms the structure of an equational theory. Such a theory has a normalform if there exists a function N from terms to terms such that:x = N (x)and x = y) N (x) � N (y);where � denotes structural identity (two terms are structurally identical ifthey are constructed in the same way from the same basic terms). Sinceidentity can always be checked mechanically, an equational theory which hasa normal form is decidable provided that N is computable. Since we knowthat there are undecidable equational theories, we deduce that some axiomsystems admit no computable normal forms.24

In the case of addition, for example, we can obtain a normal form bysorting addends according to an arbitrary order in which constant terms comelast. The normal form is obtained from the sorted expression by reducingthe constants according to the rules of arithmetics.When submitted to pattern matching, equal terms should give \equiva-lent" results. One way of guaranteeing this property is to normalize the giventerm before applying pattern matching. If we are clever enough, we can evende�ne the normal form in such a way that pattern matching is simpli�ed.For instance, in the additive example, we can select the ordering in such away that variable xi�1 comes �rst.Unfortunately, most interesting theories do not have a normalization algo-rithm. A heuristic solution is to use partial normalization, i.e. normalizationwhich takes into account only a subset of the operators and axioms of thetheory.Let O �
 and let t be a term. The O-skeleton of t is a construction of tin which only operators from O are used, and in which basic terms are termsfrom A or terms whose head does not come from O. Partial normalizationcan handle only terms in whose skeleton the elementary terms either are xi�1or do not include xi�1. Let us suppose that O has a normalization procedure.We can then normalize the skeleton of t, handling its elementary terms asbaggage, and perform pattern matching on the resulting normal form.Let us suppose that
 is the set of operators in Fortran, and thatxi is a logical variable. Let us take the set of Boolean operatorsf^;_;:g as O. Viewing a Boolean expression as a tree, its O-skeletonis the \upper part" of the tree, from the root to the �rst occurencesof a variable or of a comparison operator. Furthermore, since Fortranhas no conditional expression and since the 0/1 convention of C doesnot hold, it is unlikely that a Boolean variable may occur beyond acomparaison operator (one would have to use a user de�ned function).Hence, Boolean expression have a high probability of being tractable.Boolean algebra has, in fact, several normal forms. Conjunctive nor-mal forms (CNF) can be used for detecting and-reductions, and dis-junctive normal forms (DNF) for or-reductions.Let us consider the following somewhat contrived recurrence:xi = (xi�1 _ (�i � �i))^ (xi�1 _ (�i < �i)):25

The Boolean skeleton of the right hand side is:t = (xi�1 _ ai) ^ (xi�1 _ bi);where ai = �i � �i and bi = �i < �i. The heads of these terms arenot Boolean operators. t is in DNF, and xi�1 occurs twice, hence ourrecurrence is not an and-reduction. The CNF of t ist = xi�1 _ (ai ^ bi);which is an or-reduction. With a more powerfull normalization sys-tem, we would have noticed that ai ^ bi = false, and hence that therecurrence has the closed form solution xi = false away from i = 0.Such a normalization system must have the same power as linear pro-gramming; its construction is probably very di�cult.4.2.3 Marshalling Associative OperatorsWe still have to construct a list of associative operators. Some of them arewell known: +, �, max, min, ^, _, etc. Is there a more systematic procedure?Let us put the basic equation (3) into the form:xi = fi(xi�1): (4)This can be rewritten [4] as: g0 = �y:y; (5)gi = fi � gi�1; (6)xi = gi(x0): (7)Since � is associative, we may hope to compute the gi's by a scan, and thento compute all xi's in parallel. But this is a mere formal manipulation,without any practical interest, unless the complexity of gi stays bounded asthe computation proceeds. In practical terms, this means that the functionsfi must belong to a family which can be described by a few parameters, andthat this family must be closed under function composition.As an exemple, consider the case where fi is a polynomial in xi. Sincethe composition of a polynomial of degree m with a polynomial of degree nis of degree mn, the family is closed only for the case n � 1;m � 1.26

Let us take as O the set f+;�; �g with the usual properties: associa-tivity and commutativity of + and �, the rule of signs, distributivityof � with respect to +, and the familiar rules of arithmetic (2 + 2= 4 and so on). If t is tractable for this set of operators, its normalform is a polynomial in xi�1 whose coe�cients are combinations of itselementary terms. We conclude that a recurrence xi = P (xi�1), is ascan only if polynomial P is of �rst degree:xi = aixi�1 + bi: (8)There are two simple cases : ai = 1, which gives a sum, and bi = 0,which gives a product. In the general case, there are many ways ofextracting ai and bi. Since practical normalization procedures are notalways up to their mathematical speci�cation, we may have to resortto \mathematical pattern matching". For instance, in the linear case,we can set bi = t[xi�1 0], where e[x f] is the substitution of ffor x in e, and ai = t[xi�1 1]�bi. The normalization system is thenused to prove that t � aixi�1 � bi � 0, a much simpler proposition.Once we know ai and bi, recurrence (8) can be written in matrix form: xi1 ! = ai bi0 1 ! xi�11 ! ;and hence is equivalent to the computation of matrix products, whichare associative.Another example is the family of homographic functions:Homabcd(x) = ax+ bcx+ dwhich is closed under function composition, It so happens, in fact, that if weassociate to Homabcd the matrix a bc d ! then function composition for theHom family is associated to the matrix product. A mathematical patternmatching routine can be devised for Hom provided our underlying computeralgebra system is able to normalize rational fractions. It would be interestingto systematically explore closed families of functions, since each one is thebasis of an e�cient parallel algorithm. The study of [1] may be a step in thatdirection. 27

4.2.4 Recurrences on �nite domainsLet us suppose that the variable xi in (4) has a �nite domain. It is clear thatfunctions from a �nite set to the same �nite set are closed under composition.As a consequence, a recurrence on a �nite domain is always a scan.A function f on a �nite domain fa1; : : : ; ang can be de�ned by a tableof values ff(a1); : : : ; f(an)g. Computing f � g simply consists in the com-putation of ff(g(a1)); : : : f(g(an))g. This can be done from the tables of fand g, and is necessarily an associative operation, as it is a representation offunction composition. Hence the algorithm for computing a scan (4) whenxi has a �nite domain is:1. Compute the tables associated to each fi.2. Combine these tables by any reduction scheme, obtaining the tablesfor the functions gi of (6).3. Compute the results of the scan in parallel by:xi = gi(x0):It is interesting to compare the parallel and sequential scheme for com-plexity. Let us suppose that the domain of the variables (xi) has n elements,that the recurrence has m steps, and that our parallel computer has P pro-cessors. Let us take the time for a table access as the unit. Let us supposethat the functions fi are initially given as tables. In that case the sequen-tial time is simply m. The elementary step of the scan is an algorithm forcomputing the composition of two tables f1 and f2 giving f3:do i = 1,nf3(i) = f2(f1(i))end dowhich takes 3n table accesses. The total time for the reduction is thus 3n(mP +log2 P). The last step takes mP times unit, for a total of 3n(mP + log2 P) + mP .Supposing that m is large enough that we can neglect additional terms,we have to compare m to (3n+1)mP . The conclusion is that the method isadvantageous provided that the size of the �nite domain is small comparedto the number of processors. 28

4.2.5 TacticsAs the reader may have noticed, the methods we have presented are over-lapping. The same Scan operator may be recognized by elementary patternmatching, or only after normalization, or as a computation on a �nite domain.For example, a boolean recurrence can be recognized by pattern matching ifits operator is ^ or _, or as a recurrence over a �nite domain if not. Ourproposal is �rst to distinguish cases according to the type of xi. To each typeis associated one special purpose normalisation system. Pattern matching isthen applied to the result of the normalization. If this fails, and if it can beproved that xi has a �nite domain, then the general method of Sect. 4.2.4,which is less e�cient, can be applied.Consider the recurrence: xi = (xi�1 + 1)=3:Suppose �rst that xi is a so-called real (i.e., belongs to a subset ofthe rationals). Then, up to rounding errors, division distributes intoaddition, and the recurrence can be normalized, with the permissionof the user, into: xi = 0:333 : : :xi�1 + 0:333 : : : ;which is linear, hence, a scan. If xi is integral, then the above normal-ization is no longer valid, and the original recurrence is not a scan.Lastly, if the recurrence is slightly modi�ed into:xi = [(xi�1 + 1)=3] mod N;where N is a constant integer, then xi belongs to the �nite set [0; N�1]and the recurrence is again a scan. This observation is usefull only ifN is much smaller than the number of processors.Note that scan detection can bene�t from information obtained by a staticanalysis of the program. For instance, an expression which is apparently asecond degree polynomial may be proved linear by a constant propagationwhich shows that the second degree coe�cient is zero. A variable which isdeclared an integer may be found to have a �nite domain by interval analysis.Conversely, the result of a scan detection may enable the computation of theDFG of an hitherto intractable part of a program, by exhibiting inductivevariables or giving in closed form the values of the entries in an array whichis used as a subscript. The organization of such iterative analyses is a verydi�cult problem. 29

5 Multi-directional ScansA multi-directional scan has more than one direction vectors, other parame-ters being the same: Scan(D; (e1; : : : ; ek); b; d; g) . (9)The direction vectors e1; : : : ; ek span a linear subspace H and de�ne a familyof a�ne subspaces H + � for an arbitrary translation vector �. Formula (9)de�nes as many scans as there are a�ne subspaces whose intersection with Dis not empty. b is the scan operator, and the scan order is lexicographic orderon the coordinates of each point relative to its a�ne subspace. Points whichcannot be reached from other points ofD by a positive integral combination ofdirection vectors are given the initial values as de�ned by g. The reader maynotice that this de�nition defaults back to the de�nition of a uni-directionalscan when k = 1.Our �rst observation is that multi-directional scans are more e�cient thanmultiple uni-directional scans.Take the example of the sum of the elements of a n� n matrix. Withonly uni-directional scans, one must compute n sequential scans op-erating on n data. With P processors, the run-time is of the orderof n(nP + log2(P)). With a multi-directional scan, a run-time of theorder of n2P + log2(P) is expected. In the best case (when n = P) thespeed-up is about 1 + log2(P).In our system, multi-directional scans cannot be detected directly. Theycan be found using multistage elimination. When working at pseudo-depthp, a direction may be added to a scan if its initial values reference the clausec in which it lays and if the scan operator is the clause c itself. The secondcondition is that a new direction e0 can be extracted from the de�nitionsof the scan initial values. A new direction cannot be an arbitrary vector:some checks must be done on the de�nition of each initial value v0 of theformer Scan which are not initial values of the enhanced Scan. Namely,such a de�nition must be the application of the Scan operator to the datacorresponding to v0 and the data corresponding to the predecessor of v0according to the directions e0 to ek.Practically, the problem of extracting a new direction may be solved usingthe PIP software [5], since testing the validity constraint is equivalent to thecomputation of a lexicographic maximum.30

Let us consider again the summation of the elements of a matrix. Thecorresponding system is:x[i,j] =case{ i,j | i=1, j=1 } : a[i,j] ;{ i,j | 2<=i<=n, j=1 } : x[i-1,n] + a[i,j] ;{ i,j | 1<=i<=n, 2<=j<=n }: x[i,j-1] + a[i,j] ;esac ;Pattern matching is applied for the detection of scans at pseudo-depth1. A closed form is introduced for the clause x.2:x[i,j] =case{ i,j | i=1, j=1 } : a[i,j] ;{ i,j | 2<=i<=n, j=1 } : x[i-1,n] + a[i,j] ;{ i,j | 1<=i<=n, 2<=j<=n }: Scan({i',j' | 1<=i'<=n, 1<=j'<=n},([0 1]), +, a[i',j'], x[i',j']);esac ;Removing inter-components references leads to the inclusion of theclauses x.0 and x.1 into the initial value of the Scan operator.x[i,j] =case{ i,j | 1<=i<=n, 2<=j<=n }:Scan({i',j' | 1<=i'<=n, 1<=j'<=n}, ([0 1]), +, a[i',j'],case{ k,l | k=1, l=1 } : a[1,1] ;{ k,l | 2<=k<=n, l=1 } : x[k-1,n] + a[k,l] ;esac ;)esac ;Since this system is already normalized for pseudo-depth 0, a pattern-matching can be applied. No new uni-directional scan can be detected.But we can try to add a direction to the previously detected scan.Two necessary conditions for scan enhancement are ful�lled: the scanis the clause expression, and the second clause of the initial value is31

referencing x.0 at pseudo-depth 0 using the scan binary operation(here an addition).Now, a new direction e0 must be extracted. The direction must verifythat for k in f2; : : : ; ng the point � k1 � has for predecessor in scanorder de�ned by e0 and e1 the point � k � 1n �. A solution is theinteger vector � 10 �.The scan enhancement is successful, we obtain a two-directional scan:x[i,j] =case{ i,j | 1<=i<=n, 2<=j<=n }:Scan({i',j' | 1<=i'<=n, 1<=j'<=n}, ([1 0] [0 1]), +,a[i',j'], a[1,1]) ;esac ;6 Conclusion6.1 ImplementationOur scans detector prototype is written in C and Lisp. The most heavilyused tools are written in C and can be accessed via an ASCII interface usinga Lisp-like syntax. This interpreter combine the following tools:� the PIP software for solving integer programming problems,� the convex calculator from IRISA [22],� a set of operations on systems of equations (mainly substitution).There are two main modules in our current prototype, a module of systemnormalization at a given pseudo-depth and a module for detecting scans ata given pseudo-depth. The canonical way of using these modules is to applynormalization at the greater pseudo-depth and then to apply the detectionmodule at the same pseudo-depth. If no scan is found the process maybe iterated with a lower pseudo-depth and so on. Most of the operationsare executed by the C interpreter, the only major part coded in Lisp isthe extraction of the binary operation and the associated data from thepropagation function of recurrences. In the present version of the software,32

rules for detecting multi-directional scans have not been implemented yet;their implementation will lead to the creation of a third module.Consider the following extract from a real world program:DO i=1,nb(i)=a(i)a(i-1)=a(i-1)+b(i)a(i)=a(i)+b(i)a(i+1)=a(i+1)+b(i)END DOprint *,(a(i),i=1,n)The system found after the application of the normalization and de-tection module at pseudo-depth 0 is:x[i] =case{ i | i=1 } : a[1]+a[2] ;{ i | i>=2 } :Scan({ i' | 0<=i'<=n }, ([1]),+, a[i'+1], a[1]) [i] ;esac ;printcase{ i | i=1 } : a[1] + a[1] + x[1] ;{ i | 2<=i<=n-1 } : x[i-1] + x[i-1] + x[i] ;{ i | i=n } : x[n-1] + x[n-1] ;esac ;A scan hidden by some manipulations on the elements of the arraya is detected. The results for some other examples (mostly from theArgonne benchmarks [3]) can be found in [19]. All of the 18 loopswhich are classi�ed as reductions in the Argonne benchmarks can besolved by our software with one exception (the DFG analysis cannotbe done because of the presence of a goto in the main loop).33

6.2 Future WorkThe present version of our software ful�ll one of the aims we set ourselveswhen we began this research: to build a much more powerful scan detectorthan what is found in current parallelizers and vectorizers. We detect muchmore scans than do others, and this is done with a very small knowledgebase. Our detector is almost insensitive to variations in the syntax of theoriginal loop nest. Last but not least, we are able to recognize scan on arraysand arrays of scans. We believe our software is the �rst one to implementthis facility.This work is obviously just the beginning on the road toward e�cient im-plementations of scans and reductions. The �rst problem that suggests itselfis how to use the results of our analyzer.These results are not an imperativeprogram, but a set of recurrence equations embellished with Scan opera-tors. We still have to convert them back to our object language, e.g. somesort of parallel or data-parallel Fortran. We gave preliminary solutions andexperimental results in [20] but much more work is needed in that direction.There are, however, other applications of scan detection besides paral-lelization. One of them is program checking (or reverse engineering). Afterscan detection | and possibly some pretty printing | a program is broughtin a form which is much nearer to mathematical notations than the original.It should be easier to detect errors | e.g. a summation which is short oneterm | on the mathematical representation than on the imperative version.There is another, possibly much more interesting application, algorithmrecognition. Toward this aim, we need a complete set of operators on scans,and some way of organizing them in a semblance of a normalization algo-rithm, it being understood that a full normalization algorithm is probablyimpossible. We could then compare the result to a base of normal forms forstandard algorithms, e.g. all those for which we have an e�cient implemen-tation in our library. We could then replace part of the original program bya call of the corresponding routine. If the user care to supply directives, wecould even select a version which is well adapted to the task at hand, as forinstance a vector or parallel version, or even a sparse version.This proposal is not as farfetched as it seems. Consider, for example, thefollowing code for matrix multiplication:34

do 1 i=1,ndo 1 j=1,ns=0.do 2 k=1,n2 s = s + a(i,k) * b(k,j)1 c(i,j) = sOur present scan detector translates this program into one recurrence equa-tion:c[i,j] = Scan({ i',j',k' | 1<=i'<=n, 1<=j'<=n, 0<=k'<=n },([0 0 1]), +, a[i',k'] * b[k',j'], 0)[i,j,n] ;Besides, it seems probable | but it has to be investigated | that mostvariants of this code (e.g. all those obtained by permuting the loops) willnormalize to the same or to very similar equations. It thus seems that we areat the threshold of being able of recognizing simple algorithms from linearalgebra.To achieve this \semantic parallelization", a whole algebra must be buildaround the Scan operator; and we must �nd a way to translate its rules intoa normalization algorithm. This will be the subject of future work.References[1] J. Aczel. Lectures on Functional Equations and their Applications. Aca-demic Press, 1966.[2] D. Callahan. Recognizing and parallelizing bounded recurrences. InU. Banerjee et al. (Eds.), editor, Proc. of the Fourth International Work-shop on Languages and Compilers for Parallel Computing, Santa Clara,CA, pages 266{282. Springer-Verlag, August 1991. LNCS 589.[3] J. Dongarra D. Callahan and D. Levine. Vectorizing compilers : Atest suite and results. Proceedings of the �rst IEEE Supercomputing'88,pages 98{105, November 1988.[4] Paul Feautrier. Projet VESTA : Outil de calcul symbolique. In 6th IntColl on Programming, 1984. LNCS 167.[5] Paul Feautrier. Parametric integer programming. RAIRO RechercheOp�erationnelle, 22:243{268, September 1988.35

[6] Paul Feautrier. Data
ow Analysis of Scalar and Array References. Int.J. of Parallel Programming, 20(1):23{53, February 1991.[7] Kenneth A. Iverson. A Programming Language. John Wiley & Sons,New York, 1962.[8] N. D. Jones and S. S. Muchnick. Program Flow Analysis, Theory andApplications. Prentice Hall, 1981.[9] Pierre Jouvelot and Babak Dehbonei. A uni�ed semantic approach forthe vectorization and parallelization of generalized reductions. In Procs.of the 3rd Int. Conf. on Supercomputing, pages 186{194. ACM Press,1989.[10] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the ef-�cient solution of a general class of recurrence equations. IEEE Trans.on Computers, 1973.[11] Hanoch Levy and David W. Low. A contraction algorithm for �ndingsmall cycle cutsets. Journal of Algorithms, 9:470{493, 1988.[12] Y.-I. Choo M. Chen and J. Li. Crystal: From functional description toe�cient parallel code. In G. Fox, editor, Proc. of the Third Conferenceon Hypercube Concurrent Computers and Applications, pages 417{433.ACM, New York, USA, 1988.[13] Christophe Mauras. Alpha : un langage �equationnel pour la conceptionet la programmation d'architectures parall�eles synchrones. PhD thesis,Universit�e de Rennes I, December 1989.[14] R. Pinter and S. Pinter. Program optimization and parallelization usingidioms. In ACM PoPL, 1991.[15] Patrice Quinton. The systematic design of systolic arrays. In F. Fo-gelman, Y. Robert, and M. Tschuente, editors, Automata networks inComputer Science, pages 229{260. Manchester University Press, Decem-ber 1987.[16] S. Rajopadhye and M. Muddarangegowda. Parallel assignment, reduc-tion and communication. In SIAM Conference on Parallel Processingfor Scienti�c Computing, Norfolk, 1993.36

[17] Mich�ele Raphalen and Bernard Philippe. Pr�ecision num�erique dans lecumul d'un nombre de termes. Technical Report Publication interne 253,Institut de recherche en informatique et systemes aleatoires (IRISA),April 1985.[18] X. Redon and P. Feautrier. Detection of scans in se-quential programs. Technical Report AS-175, Laboratoired'Informatique Fondamentale de Lille, May 1997. URL:ftp://ftp.lifl.fr/pub/reports/AS-publi/an97/as-175.ps.gz.[19] Xavier Redon. D�etection et exploitation des r�ecurrences dans les pro-grammes num�eriques en vue de leur parall�elisation. PhD thesis, Univer-sit�e P. et M. Curie, January 1995.[20] Xavier Redon and Paul Feautrier. Scheduling reductions. In ACM Int.Conf. on Supercomputing, Manchester, July 1994.[21] Eric Violard and Guy-Ren�e Perrin. Reduction in PEI. In COMPAR'94,LNCS 854. Springer Verlag, 1994.[22] D. Wilde. A library for doing polyhedral operations. Technical Re-port Internal Publication 785, IRISA, Rennes, France, Dec 1993. Alsopublished as INRIA Research Report 2157.[23] David G. Wonnacott. Constraint-Based Array Dependence Analysis.PhD thesis, University of Maryland, 1995.
37

