
Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

New Architectures, New Compilation Problems

Paul Feautrier

ENS de Lyon
Paul.Feautrier@ens-lyon.fr

April 20, 2010

1 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Introduction

I Due to technology problems, computer architectures are
evolving rapidly

I Consequence: new compilation and optimization problems
I Three areas:

I Power management
I Reconfigurable architectures (mainly, FPGA)
I Multicores and manycores

2 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Technology Problems

I The feature size is approaching atomic dimensions (32 nm ≈
320 atomic diameters (optimistic evaluation))

I Consequence I: Doubling the density (or dividing the feature
size by

√
2) now takes 3 years instead of 18 months

I Consequence II: quantum effects are becoming significant, and
generate random errors

I Consequence III: electric current leaks throught thin insulation
layers, and creates a static power consumption: the circuit
uses power even when doing nothing.
This is still negligible at 65 nm, but is becoming more important for

smaller feature sizes.

3 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Inpact on Architectures and Compilers

I Compilers must become power aware

I The hardware in ordinary processors is not always used in full.
Reconfigurable structures (FPGA) may be more economical

I Excessive power consumption precludes increasing the clock
frequency: processing power increase can be found only in
parallelism.

4 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Where goes the power?

VCC

in out

C

I When connected to the power
supply, the capacitor accumulate
an energy of the order of 1/2CV 2

I When switched to the ground, this
energy is dissipated in the wiring
and comes out as heat

I This happens f times per second
(f : the clock frequency), for a
proportion 0 < α < 1 of the gates,
for a total dissipation of
1/2αCV 2f , where C is the total
equivalent capacitance of the chip.

5 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Supply Voltage Reduction

Since power increases like the square of the supply voltage, reduce
the voltage, BUT:

I There are physical reasons not to go much below 1 Volt
v

time

100%

80%

propagation

delay

V

V/2

I Reducing the supply voltage increases the propagation delay,
and hence reduces the frequency.

Frequency must be roughly proportional to voltage.

6 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Problems and Solutions

I The power consumption of a fast processor is of the order of
100 W (more than a modern TV set) from a chip size of a
few square centimeters

I Large server farms need the output of a small power station
I It is said that serving all Google queries consume a few

percents of the Earth energy budget
I For battery powered appliances, reduced power translates into

longer battery life.

Reducing power How To:

I Low power technologies
I Parallelism
I Dynamic Power Control
I Improved Algorithms.

7 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Parallelism Reduces Power

I Consider a computation which needs N clock cycles and must
be done in time T (e.g. decoding a TV frame)

I The frequency is N/T , the chip equivalent capacity is C , the
supply voltage is V , and the energy dissipation is 1/2NCV 2

I Suppose that the computation can be split in two threads
which execute independently on two identical processors

I Each processor execute N/2 operations, for a frequency of
N/2T

I The supply voltage may be halved, the capacity is doubled,
and the dissipation 1/2(N/2)2C (V /2)2 is divided by 4.

Unfortunately, this kind of perfect parallelism is not frequent.
Compilers – especially autoparallelizers – can help.

8 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Dynamic Voltage and Frequency Control

Many chips (including processors) can control their power supply
and clock frequency, either step by step or all-or-nothing.
The control may be coarse grain (e.g. per processor in a dual core)
or fine grain (ALU, FPU, cache, I/O units ...)

I The compiler can analyze the needs of each phase of a
computation, and insert instructions to shut off un-needed
components

I Moving like operations around – if possible – increases the
effectiveness of this approach

I If given a latency constraint, the compiler may estimate the
needed number of cycles, and insert instructions to adjust the
clock frequency and supply voltage to their lowest admissible
values

I In more complex cases – systems on chip – the frequency of
each building block may be adjusted individually. 9 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Ordinary Optimizations

Ordinary Optimizations reduce power consumption.

I Locality enhancement, because a cache access uses much less
power than a memory access

I Energy is proportional to the number of cycles.
I constant propagation
I Instruction level paralellism
I Algorithm changes

10 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Field Programmable Gate Arrays (FPGA)

An FPGA is a chip containing a grid of Basic Elements, wires,
input/output pins, and a clock network.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

basic

element

signals

switches

BE BE BE

BE BE

Each basic element can be connected to some wires by switches
controlled by a configuration layer (memory).

11 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

FPGA, II

Each basic element can do arbitrary boolean operations using a
look-up table, has some memory, and input and output
connections.

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

look

up

table

input
output

register

Modern FPGAs may have predefined blocks: arithmetic units,
memory, and even a complete embedded processor.

12 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Why FPGA?

I They can be reprogrammed simply by changing the position of
the switches and the content of the look-up table (unlike
Application Specific Integrated Circuits (ASIC) whose
operation is fixed at the foundry)

I They are much cheaper than ASIC, at least in term of Design
Cost

I In term of performance and power / performance ratio, they
are intermediate between ASIC (best) and processors (worst)

13 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Where to use FPGAs?

I As stand alone parts (ASIC replacements) in small markets
(radio modems, network processors, routers)

I As accelerators for PC (scientific computing, signal
processing, molecular biology)

bridge

processor

memory

L2

bottleneck

FPGA

PCI bus

One may imagine that, in a few years, every PC will include an
FPGA chip, perhaps with direct access to the main memory. This
will happen only if programming an FPGA is as easy as compiling
a program. 14 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

How to Design an Accelerator

I Identify and extract kernels in the application code
I regular code
I high processing to memory ratio

I Convert the kernel into a “bit image” for the FPGA: this is
High Level Synthesis

I Write the communication code, from the processor to the
accelerator and back (the difficult part)

15 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

High Level Synthesis

register file

Control

FSM

datapath

One process

I Convert a behaviour (succession of
events in time) ...

I into a structure (set of
interconnected components

I Infer the control (Finite State
Machine) from the control
constructs of the program

I Infer the datapath from the
operating statements

I Registers? One register per
variable of the program is not the
best solution.

16 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Asynchronous Parallelism, I

Build the accelerator as a network of asynchronous communicating
processes.

I Parallelism increases performance

I Parallelism decreases power

I Simplify the design of the clock network

Goal: minimize the amount of communications and attempt to
implement the “channels” as FirstInFirstOut queues.

I Split the program by statements: 1 statement = 1 process,

I Or try to find outer parallel loops

I No good solution yet.

17 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Why Multicores?

I While power dissipation in silicon can be controlled, power
dissipation in the clock tree (metallic strips) cannot, and
already accounts for 30 % of the power budget.

I Clock frequency is therefore limited to about 3GHz

I Hidden parallelism (ILP) has found its limits (mainly due to
the prevalence of branches in ordinary code)

I Explicit parallelism is necessary, and one of the possibility is to
implement several processors on the same chip

I The other solution, VLIW processors (Itanium) seems to have
failed.

18 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Facts and Fictions

Dreams

I We soon will have chips with thousands of cores

I The number of cores is doubling every eighteen months.

Facts

I Dual-cores are common, quad-cores exist (server applications),
six-cores are just coming out (Intel)

I IBM and AMD might be a step ahead

I The Larrabee (80 cores) has been discontinued

I The Cell has only 7 + 1 cores.

Why?

19 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

The Memory Wall, I

I Each core needs of the order of one word per cycle

I Including the effect of registers and caches, this translates,
today, to 20% to 30% of the bandwidth of the memory
subsystem

1 core

1 chip

memory

banks

interconnect

I Multisockets: as many memory
interfaces as there are sockets, as
many memory banks as wanted

I Problem, I: access conflicts to
memory banks, hot spots

I Problem II: design of the
interconnect.

20 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

The Memory Wall, II

1 chip

many cores

1 memory

interface
bottleneck

memory

I Multicore: the bottleneck is the
unique memory interface

I Going beyond around 10 cores
needs a revolution in memory
architecture

21 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

The Memory Wall: Solutions

I Increase the size of on-chip memory faster than the core count
I More memory interfaces per chip (IBM has announced a chip

with three interfaces)
I The pin wall
I Serial memory interfaces ?

I Ask for help from the compiler

22 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

What Can the Compiler Do?

Classical Optimizations
I Array shrinking

I Replace a large array by a smaller one,
I or even by a scalar,
I which can be allocated to a register

I Enhance locality
I Group together in time accesses to the same variable
I Group together in space related variables (array layouts)

I Program shrinking
I Remove dead code
I Propagate constants

23 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

Non-Standard Approaches

Consider the on-chip memory as a local memory or scratchpad
instead of a cache.

I Most Unix software was designed for very small memories –
PDP 11: 64 kbytes, the first PC: 640 kbytes – and fits easilly
in the on-chip memory of modern processors

I Some examples (libraries and dynamic data excluded) gcc :
200k, latex: 590k, Open Office 500 k

I Apply the same techniques that are used now for the main
memory: bulk loading (not word by word loading) and paging

I May necessitate hardware modifications

24 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

What to do for more demanding Applications

High Performance Computing, linear programming and
optimization, database search, ...

I Include the on-chip memory management into the application
(with help from the Operating System) – a nice application
for aspect oriented or feature oriented programming

I Have the compiler generate the memory management code

25 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

A Word about GPUs

GPUs are manycores, each core being a vector processor, plus
specialized units for graphic processing (sines and cosines for
rotations, texture ...)
How is the memory wall problem solved?

I GPUs use streaming memories, which have much lower
latencies than ordinary memories, provided successive accesses
are at consecutive addresses

I Streaming memories were created for fast refresh of a display,
and are well adapted for vector processing

I It seems likely that part of the GPU technology will percolate
into general purpose processors.

26 / 27

Introduction
Power Management

Reconfigurable Architectures
Multicores / Manycores

A Word in Conclusion

As always, computer architecture is changing faster than compilers
can follow.

Compilers are enabling technologies for some recents evolutions:

I Autoparallelization for multicores

I High Level Synthesis for FPGAs

I Power management for battery driven appliances

27 / 27

	Introduction
	Power Management
	Reconfigurable Architectures
	Multicores / Manycores

