Detection of Recurrences in Sequential
Programs with Loops

Xavier Redon and Paul Feautrier

Laboratoire MASI,
Université de Versailles-St. Quentin,
45, Avenue des Etats-Unis,
78000 Versailles, France
e-mail : redon@masi.ibp.fr, feautrier@masi.ibp.fr

Abstract. To improve the performances of parallelizing compilers, one
must detect recurrences in scientific programs and subject them to spe-
cial parallelization methods. We present a method for detecting recur-
rences which is based on the analysis of Systems of Recurrence Equations.
This method identifies recurrences on arrays, recurrences of arbitrary or-
der and multi-equations recurrences. We explain how to associate a SRE
to a restricted class of imperative programs. We present a normalization
of such SRE that allows the detection of recurrences by simple inspec-
tion of equations. When detected, a recurrence may be replaced by a
symbolic expression of its solution. To iterate the process can lead to the
identification of multi-dimensional recurrences.

1 Introduction

One of the most important challenges in present day computer science is the
efficient compilation of programs for the newly emerging massively parallel ar-
chitectures. In contrast of the situation for the last generation of supercomputers,
which were mostly vector processors with a moderate degree of parallelism, now
every last ounce of parallelism must be extracted in order to feed several hundred
of vector microprocessors. It may be shown that potential parallelism exists as
soon as the execution order of some operations may change without any conse-
quence on the final result of the program. This kind of commutativity property
may have two origins. The first one depends only on the pattern of use of memory
cells. Tt is subsumed by Bernstein’s conditions ([2]), and has been extensively
exploited by present day parallelizing compilers. The second kind depends on
algebraic properties of the operators which appears in the computation. The
name “semantic parallelization” for the exploitation of these opportunities for
parallelism has been coined by P. Jouvelot.

Ezample 1. Consider for instance the computation of the sum) 7 | 2;, its usual

implementation is
5=0.

DO i=1,n
s=s+x(1i)
END DO

An ordinary parallelizing ! compiler will say that this loop is sequential, due to
a loop-carried dependence on s. As a consequence, the computation will take a
time of the order of n. However, since addition is associative and commutative
one may divide the summation into segments of length % (where p is the number
of processors) then add the partial sums in a time of the order of % + log, p. If
the number of processors is very large (of the order of n) one may compute s
in time O(log, n). Most programming languages lack a notation for expressing
computations like 2?21 x;. The main exception is APL, in which the name
reduction was introduced.

It is thus seen that extracting expressions like the above sum from loops
is a very important task for a parallelizing compiler. This is usually done in
two steps. The first one consists in recognizing recurrences from their sequential
expression. For instance the recurrence associated to the previous example is 3

SQIO
Vi e INy, s; = si—1+a;

This 18 a purely algebraic task; it becomes very difficult when the sequential
program gets complicated, and especially when arrays are involved. The second
step consists in examining the recurrences to see whether the operators have the
required properties. This is a pattern recognition step, whose performance will
depend mainly on the size of the pattern base. Hence the interest of reducing
this size by normalization of the recurrences.

The paper 1s organized as follows. The next section is a review of recent works
on the subject. In section 3, we describe the basis on which our solution will be
built, namely the translation of a sequential program into a System of Linear
Recurrence Equations. In section 4 we discuss the pattern-matching process and
describe a normal form for SLRE. Section 5 describes the normalization pro-
cess and give a necessary and sufficient condition for the existence of a normal
form. Section 6 describes the final step of our analysis, that is multi-dimensional
recurrences detection. The conclusion includes some informations on an imple-
mentation of the method. In the interest of conciseness, most proofs have been
omitted. They may be found in full in [10].

2 State of the Art

Some papers on reductions detection have already been published ([5] and [9]).
The first presents a method based on symbolic stores and the last a method
based on the dependence graph.

! some commercial compilers will recognize this form as an idiom and compile it
efficiently.

2 if one neglects rounding errors.

® Let IN} denote the set of natural integers {1,...,n}.

2.1 Method Based on Symbolic Stores

The first step of this method is the analysis, by symbolic evaluation, of the bodies
of the innermost loops of the program. A pattern matching step is then applied
to the symbolic stores to recognize the reductions. Loop nests can be processed
by propagation of the solutions of recurrences.

The principal advantage of these methods is that a normalization of the
program occurs during the computation of the symbolic stores. Thus a method
based on symbolic stores is somewhat indifferent to variations in the implemen-
tation of the algorithm. As against this the fact that values are considered as
symbolic items is a substantial disadvantage. Indeed such a method cannot fully
handle arrays (e.g. a(é) and a(¢ 4 1) are different symbols but may represent
the same array cell if i = ¢’ 4+ 1). Therefore some recurrences on arrays cannot
be detected. Moreover the imprecision due to the symbolic analysis can lead to
wrongly replace a piece of code by a recurrence computation. To avoid this prob-
lem one must use an heuristic method to select loop bodies on which it is safe
to apply the reduction detection. Consequently more recurrences will be missed.

2.2 Method Based on the Dependence Graph

For a detection of recurrences based on the Dependence Graph (DG) , one needs
to represent loops. [9] presents a way to build such a DG. First, loops must be
unrolled so as to reach normal form. A loop is in normal form when an iteration
of the new loop uses only arrays cells and scalars computed in the same iteration
or in the previous one. When the normal form is reached, a generic DG of the
loop body is build. Since the loop is in normal form, the union of the DG of
the initial iteration with the DG of an intermediate iteration and with the DG
of the final iteration gives a DG for the whole loop. Then a pattern-matching
step is applied to the loop DG, and for each sub-graph that involve recurrence
an appropriate algorithm is generated.

Such a method allows better detection (e.g. it detects some cross-recurrences).
A disadvantage is that this method does not include any normalization. This
normalization must be done by classical transformations (e.g. substitution of
temporaries, scalar expansion, loop interchange, etc.). Therefore this step can
hardly be done without human control. Moreover, since the pattern-matching
is applied to the whole graph, the time complexity increases quickly with the
program size. Another limitation is that normal form for a loop exists only for
the case of uniform dependences.

3 A New Method Based on SLRE Analysis

3.1 Motivation

The methods presented in the previous section all have some weak points. These
are due to the lack of precision of the program representation (symbolic stores)
or to the absence of normalization. An intermediate representation of programs

by a System of Linear Recurrence Equations (SLRE) seems to be well adapted
to the detection of recurrences. Indeed, a program written in an imperative
language (e.g. FORTRAN) can be translated into a SLRE under certain usual
assumptions (i.e. the Dataflow Graph of the program is computable, see below).
Moreover we are able to normalize SLRE with a powerful tool: the forward
substitution.

3.2 The Dataflow Graph

In order to translate the source program into SLRE, we use the algorithm de-
scribed in [4] for computing the Dataflow Graph (DFG) of the source program.
The DFG deals with operations. An operation is a pair build with an instruc-
tion and an occurrence of the iteration vector of the instruction. (7, v) being an
operation, the DFG gives, for each reference to a scalar or array element in this
operation, the source operation (that is the operation in which the scalar or the
array element is computed). When the DFG is build, it is easy to translate the
source program into a Single Assignment program by renaming and expansion
of variables.

Dataflow Analysis has been implemented, along the lines of [4] as part of the
PAF project %. The present software for reduction detection uses the result of this
analysis. It has the same range of application as the Dataflow Analysis module:
static control programs with linear subscripts (see [4] for more informations on
that point).

3.3 Representation for SLRE

Our detection is based on SLRE, thus we must give a precise definition of such
systems and find out a way to represent them. Some languages (e.g. the Al-
pha language [8]) have already been designed to describe such equations. Alpha
variables are spatial variables, i.e. triplets < D, ¢,V > where the function ¢
associates to each point of the convex domain D a value in V. However, the
Alpha notation has been designed more for automatic processing than for ease
of use. Thus we prefer to deal with equations in the usual mathematical way.
We will work with LRE equations of the form

z€ Dy, Us(z) = fu(Ui(1(2)), ., Un(In(2)))

assuming that (U;)ien: is the family of variables of the system. Moreover, we
assume that D; is a bounded convex. The I; are linear subscripts functions and
the functions f; are conditional functions such that

Expl(z) if 2 € D}
fi(z) = :
Eep(x)if x € D

(The Ea:pg are classical mathematical expressions and the Dg are bounded con-

vexes). We say that f; is an m clauses expression.

* PAF is a French acronym standing for Automatic Parallelization of FORTRAN.

3.4 Overview of the Method

Like every method for the detection of recurrences, our method consists of three
parts. The first part is the conversion of the source program into SLRE. The
second part is the normalization of the SLRE and the last part is the applica-
tion of a pattern-matching on the SLRE. We want the pattern-matching phase,
which is quite time consuming, to be as efficient as possible. Therefore, we apply
the pattern-matching only on one equation at a time. But we want an efficient
method too, thus the normalization part try to break multi-equations systems
into several systems with only one equation. Note that we are working with
multi-dimensional arrays and loops. We begin to detect the recurrences relative
to the highest dimension (i.e. the recurrences relative to the innermost loops).
A detected recurrence 1s replaced by its symbolic solution and the analysis is
applied to the next dimension. This allows the detection of multi-dimensional
recurrences, that is recurrences relative to several nested loops.

4 Validity of Detection by Pattern-Matching

We use pattern-matching for the detection of recurrences. This section shows on
which conditions this must be done to be valid. First we give some definitions
about equations systems and about systems graphs.

4.1 Definitions

In this paper, we use definitions and results from graph theory. Our reference is
[1]. First, we must precise the notion of equations system.

Definition1 equations system. An equations system S is a set of LRE equa-
tions ® such that

Y(e,e') € %, ve = v = D, = Do AVz € D, Exp.(z) = Expu(z) .

To point out the dependences between equations we build the system graph (this
graph is a sub-graph of the Dependence Graph of the original program).

Definition 2 system graph. Let S be an equations system, the graph of S
(denoted by Gg) is the graph whose vertices are the equations of S and whose
edges are the couples (e, €’) such that the variable v, appears in the expression
Fap..

We need to introduce the notion of depth into our graphs.

Definition 3 system p-graph. Let S be an equations system, the p-graph of
S (denoted by QZS)) is a sub-graph of Gg such that (e, e) is an edge of QZS) if and
only if there exists z € D, and 2/ € D such that v/ (z') is used in expression
Euxp.(z) and p is the largest integer verifying z[1..p] = 2'[1..p].

® We will assume that an LRE equation e has the form Vz € D, ve(z) = Expe(z).

4.2 Conditions of Validity

A naive method to detect recurrences in a SLRE is to scan all the clauses of the
equations and compare them with a general pattern. But this syntactic criterion
does not suffice to characterize a recurrence. We need two additional conditions.
First, the values needed for the computation of an element of the sequence must
belong to the clause, except for the initial values of the recurrence. Second,
the equation must not be part of a multi-equations recurrence. Indeed, in this
case, a reference to an other equation can hide an auto-reference. A sufficient
condition is that, if we are detecting recurrences in respect to dimension [, the
graph g’S‘l does not have any cycle (except loops) which include the equation.
This condition presents the advantage of being easily verified.

Now we can present a two level characterization of a recurrence. At the
equation level we must find the recurrent clauses:

Definition4 recurrent clause. Let S be an equations system, e an equation
of S and ¢ a clause of Exp.. The clause ¢ is recurrent with order o and step &
for the dimension p if and only if ¢ matches the following pattern

Fve(0p,1(2)), - -, velPp,0.1(2))

ifzeDi=Har <21 <byyooyam(z, oy zme1) < 2m <bm(z1, .o 2me1)}

where the vectors ¢, ;/(z) are of the form

Gp i (2) = (21, .0y 2p, 2p — K, J:lfl(z), ce x%_p(z))

and if and only if the images of D¢ by the ¢, 1/ auto-reference functions are
included in D¢ except for the initials values of the recurrence.

At the system level we must verify that equation level detection is valid:

Proposition 5 validity of pattern-matching. Let S be an ordered system, e
an equation of S and ¢ a clause of Exp,. If ¢ is a recurrent clause with order o,
step k and propagation function F'¢ for dimension | and if there is no cycle in
g’S—l with length greater than or equal to 2 then ¢ can be computed by a recurrence
with order o, step k and propagation function F°.

5 System Normalization

The aim of systems normalization is to allow pattern-matching to recognize a
maximum of recurrences. So, the condition of validity from the previous section
must be fulfilled by a maximum of clauses. Therefore, we want to transform each
system into a reduced one (i.e. a system whose graph does not have any cycle of
length greater than 1). To be sure that the transformed system is equivalent to
the original one we will use only forward substitution as a transformation tool.

First, we define the notions of substitution and transformation. Then we
present the conditions on which a system can be transformed into a reduced
one.

5.1 Definitions

Let us formalize the usual process of substitution in equations systems. Let e
and (e;)ien+ be LRE equations. We denote by e © {e1,...,e,} the equation e
in which all references to the variables (ve, ;e are simultaneously replaced by
their respective expressions (i.e. the (Fxpe,)iens).

Our elementary transformation i1s the action of replacing one or more equa-
tions in a system S by new equations of the form e ® S’ where e is the original
equation and S’ is a sub-system of S.

5.2 Criterion for System Reduction

The aim of this sub-section 1s to find the conditions on which a system is reducible
(i.e. there exists a sequence of transformations such that the resulting system is
a reduced system).

Proposition 6 reduction of a strongly connected system. Let S be a
strongly connected system ©. Then S is reducible if and only if the cycles of Gs
have a common vertex.

In fact, when detecting recurrences with respect to the dimension [, the fulfill-
ment of the validity condition only requires the reduction of the ([— 1)-graph
of the system. Therefore we just need to verify that the cycles of g’S‘l have a
common vertex. This criterion stands only for strongly connected systems. In
the case of an arbitrary equations system one must try to reduce the system
strong components. If each component is reducible then the system is reducible.

5.3 An Algorithm for Normalization
This section presents an efficient algorithm to reduce a system.

Algorithm 7 algorithm A. let S be a strongly connected system.
Inetialization:
So=Ch =S5
Propagation:
If there exists, In set Cy, an e} only referenced by e;
Then /* Replace e; by e; @ e} and remove e from C; */
Sit1 = (Si —{ei}) U{ei ©ef}
Civ1 = (Ci —{es, ei}) U{e; ©ef}
Flse /* End of normalization */
Sit1 =5
Ciy1 = Cj
Endlf.
We denote by iana the smallest @ such as S;11 = S;. It is of no use to compute
the sequence ((S;, Cy)) beyond ignal.

6 A strongly connected system is a system whose graph is strongly connected. In the
same way a strong component of a system is the vertex set of a strong component
of the system graph.

For each strongly connected system S, this algorithm builds a system S, ... If
S is reducible, S, | is a reduced system. Moreover the complexity of A is linear
in relation to the number of vertices of S. All these affirmations are proved in

[10].

6 Symbolic Solutions for Recurrences

The major difficulty when detecting recurrences in a SLRE system is to deal
with multi-dimensional sequences. We must detect recurrences relative to all di-
mensions. Moreover some recurrences can be relative to two or more dimensions.
The first step to solve these problems i1s to detect recurrences from inside out-
ward. The second step is to replace the clauses which represent a recurrence by
its symbolic solution.

We can draw an analogy with differential equations: an equation dy = f(z)dx
may not have an algebraic solution but we always can say that y is equal to
y = [f(z)dz. The equation is not solved but we can work with y, for instance
replace it by the integral in an expression. The symbol used to write a symbolic
solution of a recurrence (i.e. the counterpart of the integral symbol) is called the
recurrence operator.

We can summarize the algorithm of reduction detection by the following.

Algorithm8. Let S be a SLRE system extracted from an imperative program
and let D be the mazimal dimension of equation domains.
For p=D — 1 Downto 0 Do

p-reduce the system S.
Recognize recurrences relative to the dimension p+ 1 and replace

them by a symbolic solution.
Done

In the final system, compose recurrence operators to obtain multi-
dimensional recurrences.

6.1 Recurrence Operator

Definition9 recurrence operator. An expression build with the recurrence
operator is of the following form.

Recur((o, k), {({, My .. .i1—1.0, My ... i-1.8) }, (1)
/\i1 . .ill‘l . .l‘o.f, (/\21 . ~il~gs)se[1,o]) .

Let us give the meaning of the different terms: o is the recurrence order, £ is
the recurrence step (see section 4.2). The recurrence is relative to dimension /|
must iterate between the lower bound « and the upper bound 3, its propagation
function is f and the initial values are the (gs)semns.

It is easy to rewrite a recurrent clause with the recurrence operator.

FEzample 2. For instance, the symbolic solution of the Fibonacci sequence

Uozl
U1:1
VieIN —{0,1}, u; = ui—1 + uj—n

18
Uozl

U1:1

Vie IN — {0,1}, uy; = Recur((2,1),{(1,2,00)}, dizy.z + y, (Ai.1, Ai.1))(4)

FEzample 3. Let us process the following program to show how our method handle
uni-dimensional recurrences.

x(0)=0 (Insi)
DO i=1,2%n
save(i)=x(2*n-i+1) (Ins2)
x(i)=x(i-1)+save(i) (Ins3)
END DO

The corresponding system is

. * o Ton—i+1 1f221/\2§7l
Vi € oy, Ins2; = {In532n_i+1 ifi>n+1Ai<2n

Ins2, ifi=1

Vi€ N, Inssi = {Ins3i_1 +1Ins2; if i > 2 A4 < 2n

(note that replacing the array reference save(i) by a scalar reference to save in
instructions Ins2 and Ins3 would lead to the same system). The 0-graph of this
system 1s not reduced, so the system must be normalized. Let us assume that
the algorithm A choose to replace Ins2 by its value in Ins3 expression. The new
system (Ins2 become useless and is removed) is

Vi e NS, Ins3; = < Ins3;_1 + @opn_jy1 fi>2A1< 2n
Ins3;_1 4+ Ins3ap 41 ifi >n+1A7<2n

The final system (after recurrence detection) is

Recur((1,1),{(1,1,n)},

A Y.y + Ton—iy+1, (A41.0))(7)
ifi>1Ai<n
Recur((1,1),{(1,n+1,2n)},

Ai1y.y 4+ Ins3opn i, 41, (Ai1.Ins3;, —1))(%)
ifi>n+1Ai<2n

Vi € IN;,,, Ins3; =

Applying some algebraic transformations on the final system give us the follow-

ing result:
n

Ins3,, = Z(n — i+ 2)xoan—it1 -

i=1

Hence the original program may be useful to compute a discrete random variable
expectation. Moreover this sequential program is efficient since no multiplication
is used. Note that classical methods do not handle this example. Indeed, the
dependence i — 2n — i + 1 prevent loop normalization as presented in [9] and
cannot be exploited by symbolic analysis.

The recurrence operator is designed to allow substitutions, but some precau-
tions must be respected. We distinguish two kinds of substitution in presence of
recurrence operators.

The first kind is substitution by a recurrence operator. Since an expression
build with such an operator is independent of the domain of its clause, this
expression can be moved anywhere. Thus substitution by a recurrence operator
is always valid. But since detection of recurrences is done in order to reduce
computation time, we must not duplicate the symbolic solution of a recurrence.
Therefore this kind of substitution will be allowed only if the symbolic solution is
referenced once. As a result we will not be able to reduce some reducible systems
since some substitutions are forbidden.

The second kind of substitution is substitution into a recurrence operator.
In an expression of the form Recur(a,b, c,d) the only terms in which doing
substitutions make sense are ¢ and d. A substitution in term ¢ may lead to
break the expression into severals symbolic solutions. There is no advantage
in doing that, because we must re-compute the initial terms and because the
new expressions must be computed sequentially, therefore the time complexity
increases. But substitutions in term d are valid and useful. They do not involve
modification in the other terms and they are necessary for multi-dimensional
recurrences detection.

6.2 Multi-Dimensional Recurrences

As shown in algorithm (8) multi-dimensional recurrences are build in a final
stage of recurrence operators composition. We first extend the definition of the
recurrence operator to deal with multi-dimensional recurrence. Then we prove
that, on certain conditions, two interlocked recurrence operators are equivalent
to a recurrence operator with higher dimension.

Definition10 extension of the recurrence operator. An expression build
with a recurrence operator can also have the following form (the sequence of
natural numbers (I;)sen: is a strictly increasing one):

Recur((1,1), (2)
{ (ll,Ail . .ill_l.al,/\il . ~ill—1~61)a ceey
(ln, /\i1 . .iln_l.an, /\i1 . .iln_l.ﬁn)},
/\i1 . .ilnl‘.f, (/\21 . .iln.g)) .

All the remarks of the previous sub-section about the incidence of the recur-
rence operator on equations substitution remain true with this new definition.
Now we give the rule of composition for recurrence operators.

Proposition11l composition of recurrence operators. Let R be a valid ex-
pression which have the following form

R = Recur((1,1),{(l1, 01, 51)},
Niyoin e Ajy . gw Recur((1,1), {(ly, a9, B2), - . ., (Iny @nsy Bn)
fr Ny ok, @ (k. k)

)ir .. in, B(in, .y, g1, dw),
(Niy i MG (R i)

where @ is a map from N o N'"~1r qnd &' a map from IN'* to IN¥. If
the expression f does not contain any symbol x and if the following condition is

fulfilled

VIEN" I, =(as ly...I;,_1)— 1
@(Il . ~Ill—1(Ill — 1),@/(1)) = maxl2(11, . ..,Ill_l,fll — 1,Ill+1, . ..,Iln) s

where max'r is defined by recurrence: Yz € IN'* Vil €]N7w

(z), = {ﬁl maxz' (), ...max" (2),_, ifl € {lr, ..., 1}
=

maz')
Z otherwise

then R 1s equivalent to

Ay .4 - Recur(1, 1), {(l, a1, 1)y -+, (o, i, Bn) b,
L)) i iy @i, i) -

Erample 4. To illustrate the detection of multi-dimensional recurrences let us process
the following program

=0 (Insl)
DO i=1,n
DO j=1,m
s=s+a(i,j) (Ins2)
END DO
END DO

First we compute the system of the program

Ins2; ;-1 +as; ifj>1
V(e,j) € Ny x INy,, Ins2;;, =< Ins2 1+ ai; if j=1A0>1
0+ a; fy=1Ai=1

The 1-graph of the system is reduced, that allows us to detect recurrences relative to
the second dimension. The system becomes:

V(z,5) € INj x INy |

Recur((1,1),{(2,2,m)}, Adnrioz.c + aiy iy, (Atri2.Ins2;, 5,)) (4, 5)
if j >1

Ins2i_1m +a;;if j=1A0>1

0+a;; fy=1Ai=1

Ins2; ; =

Then, we replace s;, i, by its value in the first clause. Thus the system is now:

V(z,5) € IN;, x IN7,,

Recur((1,1),{(2,1, m)}, Airtoz.x + @iy iy, (At1i2.Ins2, —1,0m)) (4, 5)
ify>1A1>1

Recur((1,1),{(2,1, m)}, Adtrtaz.c + @iy iy, (A2182.0))(3, 5)
fi>1ni=1

Ins2; ; =

Since the 0-graph of this new system is reduced, we can detect recurrences relative to
the first dimension:

Y(z,7) € IN;, x INy,,
Recur((1,1),{(1,1,n)},
Aj1y.Aj2.Recur((1,1),{(2,1,m)},
A1 02T.T + @4y iq,

(Airiz.y(m))) (51, 52),

Ins2; ; =
(Aj172.0)) (4 5)
ify>1A1>1
In such a system the composition of recurrence operators is valid. The final system is:

Recur((1,1),{(1,2,n), (2,1, m)},
A1 02T.T + @4y iq,

(Ai1.0))(z, 1)

ify>1Ae>1

V(i,7) € IN;, x INy,, Ins2;; =

6.3 Comparison to Other Recurrence Operators

Some other recurrence operators already exist, namely the reduction operator in
the Alpha language (see [6]) and the scan primitives also known as parallel prefix
operations (see [3]). However we have introduced our own recurrence operator
for the following motives. The Alpha operator is an operator on un-ordered set
of values, which is thus restricted to reduction by associative and commutative
operators. It only gives the final result of the reduction, while we need the partial
results since they can be used in the original program.

FEzample 5. For instance the following expression build with the Alpha operator
red(+, (i,j ->), {i,j | 1<=i<=n; 1<=j<=m} : a)

which computes the sum ., Z;n:l a; j can be rewritten with the recurrence
operator:

Recur((1,1), {(1,1,n),(2,1,m)}, Aije.z + a; ;, (A5.0))(n, m)
But the set of values
(Recur((1,1),{(1,1,n),(2,1,m)}, Aije.az+ a; ;, (/\ij~0))(i,j))(i,j)em;xn\l;

cannot be expressed with the red operator.

The scan primitives are more adapted since they use ordered sets and compute all
the terms of the recurrence. Indeed the one-dimensional form of our recurrence
operator and the scan primitives are very similar.

FEzample 6. The expressions
Vi € IN;,, Recur((1,1),{(1,1,n)}, Aiz.x + a;, (Ai.0))(%)

and
scan(+, a1, ..., an))

compute the same vector [s1,...,s,] with s; = >, _; ag.

But scan primitives are designed to describe one-dimensional recurrences. It is
possible, by a change of variables, to transform any multi-dimensional recurrence
into a one-dimensional one. However, when doing this, the subscripts functions
become non-linear and the difficulty of system analysis increases.

7 Conclusion

In summary, our method of recurrences detection, when compared with other
methods, presents the following advantages: our method is based on the DFG
structure which allows us to fully handle arrays. Moreover, the representation of
programs as equations systems give us a way to perform a strong normalization.
As a consequence the detection is not sensitive to the algorithm implementation.
Lastly the introduction of the recurrence operator allows us to detect multi-
dimensional recurrences.

Note that conditionals can be easily handled by our method: the structural
ones (i.e. conditionals whose predicate is a positive form, linear in the loop
counters and parameters of the program) are inserted in the DFG structure.
The non structural conditionals are transformed into guarded instructions.

We have realized an implementation of this method in Lisp (the size of this
implementation is about 5000 lines). The program is mostly a symbolic manipu-
lation of conditionals equations. These equations are defined on convex domains.
As a consequence the forward substitutions leads us to deal with convex intersec-
tions and convex simplifications. The easiest way to simplify a convex is to use
an algorithm for computing its vertices, like Chernikova’s algorithm. We would
like to thank H. Le Verge and D. Wilde for allowing us to use the particular
implementation they developed at TRISA ([7]).

Due to the effectiveness of this algorithm the final systems (after recurrences
detection) have a reasonable size (less than ten clauses per equations for small
examples). Moreover the final systems are simplified by the elimination of use-
less equations. The execution time is function of the initial system complexity.
Thus sample programs with classic uni-dimensional recurrences are processed
quickly (a few seconds on a low end workstation). When composition of sym-
bolic solutions of recurrences is necessary the execution time increases. Therefore
a program computing a double sum needs 30s to be analyzed and we need 60s

to process a triple sum program. The decomposition of the system into strong
components allows us to deal with medium sized programs. But a real size pro-
gram should be first analyzed by a front end program that finds out the portions
of code where recurrences have to be detected.

The directions for future work are the following: since special recurrences can
be implemented more efficiently than others in present day super-computers (i.e.
reductions), we must point them out. Thus a dedicated pattern-matching phase
must be developed. Moreover, in order to use the detected recurrences for parallel
program construction, we plan to compute a schedule for the generated system
(where recurrences are detected). Some adaptations to existing schedulers are
needed since our symbolic solutions of recurrences may use unbounded fan-in
operations.

References

1. C. Berge. Graphes. Gauthier-Villars, 1987.

2. A.J. Bernstein. Analysis of programs for parallel processing. IFEF Trans. on Fl
Computers, EC-15, 1966.

3. G.E. Blelloch. Scans as primitive parallel operations. IEFE Trans. on Computers,
38(11):1526-1539, 1989.

4. Paul Feautrier. Dataflow analysis of scalar and array references. Int. Journal of
Parallel Programming, 20(1):23-53, February 1991.

5. Pierre Jouvelot and Babak Dehbonei. A unified semantic approach for the vec-
torization and parallelization of generalized reductions. In Procs. of the 3rd Int.
Conf. on Supercomputing, pages 186—194. ACM Press, 1989.

6. H. Leverge. Reduction operators in alpha. In D. Etiemble and J.-C. Syre, editors,
Lecture notes in Computer Science No 605, pages 397-411, 1992.

7. Hervé Leverge. A note on chernikova’s algorithm. Technical Report 1992, INRIA,
May 1992. Référence a vérifier.

8. Christophe Mauras. Alpha : un langage équationnel pour la conception et la
programmation d’architectures paralléles synchrones. PhD thesis, Université de
Rennes I, December 1989.

9. Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization
using idioms. In POPL’91, 1991. to appear.

10. X. Redon. Détection des réductions. Technical Report MASI 92-52, Institut Blaise
Pascal, September 1992.

This article was processed using the INTpX macro package with LLNCS style

