Embedded Systems Energy Characterization Using

Non-intrusive Measurements

Abstract

This paper presents a non intrusive methodology for building embedded systems
energy consumption models. The method is based on measurements on real hardware
in order to get a quantitative approach that takes into account the full architecture.
Based on these measurements, data are grouped into class of instructions and events.
These classes can then be reused in software simulators and in cost functions for high-
level source code transformation in optimizing compilers. The computed power model
is much simpler than previous ones while being accurate at the platform level. The
methodology is illustrated using experimental results obtained on an ARM Integrator

platform for which an accurate and complete system energy model is build.

1 Introduction

With present day technology, it is possible to build very small platforms with enormous

processing power. However, physical laws dictate that high processing power is linked to



high energy consumption. Since these platforms are mostly used in hand held appliances,
and since battery capacity does not increases at the same pace, their designers are faced
with the problem of minimizing power requirements under performance constraints.

The first approach is the devising of low-energy technologies, but this is outside the scope
of this paper. The second approach is to make the best possible use of the available energy
e.g. by adjusting the processing power to the instantaneous needs of the application, or by
shutting down unused parts of the device. These tasks can be delegated to the hardware;
however it is well known that the hardware only source of knowledge is the past of the
application; it is only software that can anticipate future needs. Energy can also be minimized
as a side effect of performance optimization. For instance, replacing a conventional Fourier
transform by an FFT greatly improves the energy budget; the same can be said of locality
optimization, which aims at replacing costly main memory accesses by low-power cache
accesses.

The ultimate judge in the matter of energy consumption is measurement of the finished
product. However, designers, compilers and operating systems need handier methods for
assessing the qualities of their designs and directing possible improvements. Hence the need
for simple analytical models, which must be expressed in term of software visible events
like instructions, cache hits and misses, peripheral activity and the like. There are several
ways of constructing such models. One possibility is electrical simulation of the design; this
method is too time-consuming for use on systems of realistic size. Another method is to
interpolate /extrapolate from measurements on a prototype. This is the method we have

applied in this work.



The paper is organized as follows. After reviewing state of the art techniques, we present
in Sect. 3 our experimental setup and our measurement methodology. Sect. 4 presents our
results for an ARM development platform, evaluates their accuracy and describes the model
which represents them. Sect. 5 validates this model on a more significant piece of code, the
thread switching service of a simple operating system. We then conclude and discuss future

work.

2 Related Work

Previous works on energy consumption modeling can be characterized using two main cri-
teria: their level of abstraction and their building method. For the first criterion, we can
group the models in three main categories, which are, by increasing level of abstraction,
transistor/gate level models, architectural level models and finally instruction level models.
There are three methods for building consumption models. The first method is analyti-
cal construction, the second one is simulation based, and the third is based on physical
measurements.

These two criteria of classification are not fully orthogonal, since all combination are not
possible or pertinent. Indeed, analytically built models targets low level units due to the
complexity of the building process. As far as simulation based model are concerned, they
are rarely used in the highest level of granularity since they are highly time consuming at
building time. Finally we do not find lower level model based on measurements since it
is complicated to extract low level informations from measures which are representing the

whole system consumption.



The basic model Before giving examples of models by architectural layer class, we present
here the basic power model of VLSI (Very Large Scale Integration) circuits. This model is
one of the lowest level power model, since it models the consumption of the most elementary
gate, the inverter (2 transistors). It is generalized to all gates.

The consumption of a gate can by divided into two main parts: static and dynamic
power. The first part, static power, does not depend on the gate input changes and hence
gate activity. However, the second part, dynamic power, is correlated to these input signal
changes and can be subdivided into short-cut power and output capacitance load power.

In present day technologies, static and short-cut power dissipations are negligible against
the amount of power that the third represents. The power consumption of the inverter
is then simplified to the output capacitance load described by equation (1). This formula
express the fact that the energy stored in the output capacitance is shorted to ground when

the input switches from 1 to 0.

p— %Cvd‘il (1)

where C' is the output capacitance of the gate. This model is generalized to full blocks or

chips by the extension given in equation (2).
1 2

where (', is the total output capacitance of the system, f is the operating clock frequency
and « is the proportion of gates switching from 0 to 1 in a clock cycle. The parameters «
and C,, are difficult to estimate but can be obtained by detailed simulation.

This latter model is widely used, even in other models, where it gives the shape of the
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power consumption of a system or block, but it is not adapted to the specificity of the logic

contained in the block.

Transistor/Gate-level models One of the most accurate methods to estimate power
consumption before a circuit is realized is doubtlessly transistor/gate level simulation. In
fact most of synthesis tools provide power consumption prediction, as for example PowerMill
[7] from Synopsys and QuickPower [6] from Mentor. These tools are low level (circuit or
HDL) simulators. Other simulators operate at circuit level, such as Spice-based simulators
(Star-Sim [9] for example). This kind of simulation gives accurate fine-grained results, but
are very time consuming. In fact the simulation time limits the number of events simulated.

A first improvement for this situation is gate level simulation. The elementary unit is not
the transistor anymore but the gate (an assembly of transistor). Mynoch [14]| for example,
runs 450 times faster than Spice based simulation.

The models (and simulators based on these models) presented here requires detailed
information on the hardware modeled, HDL source or equivalent information. At software
development phase, it is almost impossible to get these information from the manufacturers.
Besides this kind of models do not meet our needs for simplicity. Moreover measurement
based model does not exist and are probably impossible to build at such a low level of

granularity.

Architectural-level models The main specificity of architectural level models is that
they divide the targeted system into functional units, and that each unit can have its own

energy model. Kim et al. [8] even make their architectural model recursive, which means



that each unit can be divided in turn in sub-units.

The ability of using different models for blocks allows Chen et al., in [5], to use bit-
dependent or bit-independent models for blocks depending if the block’s consumption varies
when input is changing. In Wattch [2| the different models are chosen according to the
structure of the units.

Parameters of these models are mainly based on behavioral (cache misses, ...) and
architectural (cache geometry, ...) informations ([8]). The main advantage of these models is
that they are flexible, their main aim is the reuse of part of the model between different target
system. Indeed, there is no need to recreate an entirely new model for a new architecture,
but to add, remove or modify existing functional blocks.

Some of the models presented in this family are easily adaptable to our objectives of
modelling the full platform, since they can be augmented to take into account the full system
(CPU plus peripherals, memories, ...). Unfortunately most of the models of this category

are not measurement based.

Instruction-level models Instruction level models are centered on CPU consumption.
The main task in these models is to list all instructions consumptions ([18], [10], [15]). A
first enhancement of this approach is given by Tiwari et al. in [18], it consists in characteriz-
ing the inter-instructions power consumption, which represents the logic switching between
two different instructions. Others works also take into account the logic switching due to
data parameters [16]. Measurement-based methods are widely used at this level of abstrac-
tion, some of the building methods proposed here have the characteristics we want for our

methodology: simplicity and minimum architectural information.



The solutions proposed for measurement setups have a wide range of complexity. Tt
ranges from a simple ammeter in [17] to complex cycle accurate setups in [4], via current
mirrors in [12]. The most relevant proposition in our case is the one in [15]. The data
acquisition solution use a digital oscilloscope connected to a resistor placed in series with
the power supply. For this kind of measurement, they use a high performance oscilloscope
(LeCroy LC534) which has a high sample rate. This setup is augmented with a trigger signal,
which gives the beginning and the end of the measurement period.

To conclude, simulation and analytical model building methods are generally oriented
for early stage of VLSI design, before hardware production. Conversely measurement based
method needs less information on the underlying architecture. These last points drive us
to propose a measurement based methodology, since at software development phase, all
information needed for simulation based method will not necessarily be available.

Finally, all instruction level models proposed before are centered on a CPU, and do not
take into account peripherals. The whole system is then not taken into account with these
models. Some exceptions are present in the architectural level models. For example, Li et
al. [11] propose a model in which CPU, memory and busses are different units. Our model

will be closer to system-level modeling than the instruction-level ones.



3 Architectural Level Energy Consumption Model

3.1 Measurement setup

The choice of measurement point is very important. In fact, this choice will have an influence
on many other choices in the following steps. The most important thing is that it is tightly
coupled with the informations we can/want to extract from the measures.

The point here is that we want our model to be built and used by people who do not
have necessarily the skills to build a complex electronic measurement setup. To meet this
constraint we made the decision to use measures collected at the power supply input of the
system. This is the best way to make non-intrusive simple measures.

This point of measure is where the battery is connected, hence all measured values will
represent exactly what is consumed on it. By this we mean the consumption of the main

chips (System-On-Chip, ...) and their integration components (capacitors, ... ).

3.2 Model Parameters Selection

From section 2, we can draw the conclusion that the resulting model should be an extension
of an architectural level model. In that condition, the model parameter selection is composed
of two main steps made by the model builder, i.e. the software developer.

The first step is the components identification. By architectural exploration, it should be
possible to build an exhaustive list. Main components are generally memories, peripherals,
interconnects and CPU.

The second step consists in defining all possible parameters for these components. Due



to the limited literature available, the developers would not necessarily know the behavior of
intra-blocks logic. The parameters for the blocks are then limited to behavioral parameters
(cache misses, ...) and their hardware configuration such as operating mode.

Finally since the main interest of software developers is the software application, we can
assume that the model will be used in a cycle accurate simulation framework. The resulting
model may work as follows. A base operating energy consumption will be added for each
time slot (probably CPU cycle) and penalties will be accounted on top of this base cost
for special behavioral events (cache misses, bus accesses, ...) or configuration modification
(peripheral state modification). This type of energy accounting model is more adapted to the
data we are gathering, since no details are available on the distribution of the consumption
when measures are made, more particularly on base consumption.

On top of the different architectural units of the overall system our model should also
take into account special features of the hardware target which are changing the energy
consumption. Indeed, frequency scaling and dynamic voltage scaling should be taken as
parameters. This kind of parameters could influence the length and the energy cost of the

events which were previously selected as parameters.

3.3 Benchmark Structure

The next step in the model construction is the parameters cost measurement. As our pa-
rameters would probably range from instructions to operating system services, it is attended
that the attainable time accuracy of the setup will fall below the necessary time resolution.

To solve this problem, we built micro-benchmark for each of the event selected as a



possible model parameter. The benchmark is built as a repetition of the event in a loop.
In the case where the system has caches, the loop body size is chosen by minimizing the
influence of cache misses for cache loading of the loop and loop overhead.

The benchmark changes the state of the trigger signal before entering in the loop and
after exiting it. These actions allows us to measure the consumption of an exact number of
repetition of the targeted event.

The last characteristic of these benchmarks is that they are built over a lightweight
operation system (OS), Mutek [13]. Only the hardware initialization part of the OS is used,
OS initialization is replaced by the benchmark body. The use of this lightweight OS allows

us to have a full control on what is running on the system during the measures.

4 Experimentation on an ARM Integrator Platform

This methodology was applied to an ARM Integrator platform. This platform is a develop-
ment board based on an ARM922T. The architectural exploration reveals that it has a two
levels bus architecture and three distinct levels of memory. The third level is main mem-
ory, the second level is scratch pad memory and finally the first level is cache memory. All
peripherals are accessible through the two levels of bus. The measurement setup used for
these experiments is close to the one depicted in [15]. We used a digitalizing oscilloscope,
the shunt resistor is replaced by a current probe, and we also used a voltage probe.

The power signal measured at the power supply input of the board is varying with a
frequency of about 500 kHz. This frequency is the operating frequency of the onboard

voltage stabilizers. This confirms the fact that we could not have enough accuracy to directly
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measure instructions events.
The selected parameters for our model are the CPU instructions, the bus accesses, the

scratch pad memory accesses, the memory accesses and the peripheral operating modes.

4.1 Benchmarks

Here is a short list of benchmarks that were used, and their target event:

e insn-cmp: This benchmark is comparing different instructions executed in the CPU (add,
mul, mov, ...). It is only executing the instruction in a loop.

e I-and-D-cache: With this benchmark we can get the load/store instruction cost. When
the accessed information and the instructions are in cache.

e AHB-reg-write: This one gives the bus access (level 1 and 2) overhead. We write in
a peripheral register a value that has no effect on the peripheral. The register must be
accessible through the first level of bus.

e [-cache-D-mem: To get data memory access overhead with this benchmark, we deactivate
the D-cache. All load or store instructions access the main memory.

e I-cache-D-spm: The aim of this benchmark is to get the scratch pad memory overhead.
The D-cache is deactivated. Every memory access is then made on the SP-SRAM.

e timer-test: As an example of peripherals energy characterization, this benchmark allows
us to get running/stopped timer consumption. It is subdivided into two benchmarks, one
in which the timer is stopped and the second in which the timer is running. The structure
of the loop is the same as the insn-cmp benchmark with a nop instruction, since it is the

instruction generating the less activity.
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e loop-calibration: Finally, this benchmark is the one which gives loop skeleton overhead.
By running an empty loop benchmark, we can estimate the loop overhead.

On top of these various benchmarks, which correspond to most of the parameters events,
the benchmarks are all configurable to allow us to estimate the remaining parameters of
the model. All benchmarks can be run at different frequencies. As we mentioned before,
frequency and voltage scaling are potential parameters of the model, and our tested platform
only allows us to modify frequency. However, we can extrapolate our results to a platform
with Dynamic Voltage Scaling (DVS) by assuming that the supply voltage can be scaled
down in proportion to the clock frequency, which is a reasonable approximation if far away

from the threshold voltage.

4.2 Results

bench name length | energy (nJ) | error (pJ)
loop-calibration 4 61.026 48.594
insn-cmp_ nop 1 15.005 6.7025
AHBI1-reg-write 7 105.93 159.22
AHB2-reg-write 12 180.37 232.35
[-and-D-cache Idr 1 16.853 9.9561
[-cache-D-mem 1dr 40 682.69 251.21
[-cache-D-spm_ldr 8 117.62 63.055

Table 1: Results of benchmarks

The results presented in table 1 summarizes the full measurements available in [1]. The
measures allow us to conclude that we have four classes of instructions. The first contains
the intra-CPU instruction. This category is represented by insn-cmp benchmark in table
1. Class 2 represents load/store instructions from the cache (I-and-D-cache_1dr). In the
class 3 we put all load /store accessing the busses (AHB1-reg-write, AHB2-reg-write). The
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I-cache-D-spm can also be considered as a bus access, since scratch pad consumption seems
to be negligible against the bus consumption. Finally, class 4 instructions are memory

accesses (I-cache-D-mem).

4.3 Frequency Scaling

As we stated before, the Integrator/CM has no dynamic voltage scaling (DVS) capabilities,
hence when we reduce the frequency we cannot decrease energy consumption.

When repeating five benchmarks at different frequencies, we obtain the curves in figure
1. This figure represents the per event energy values for the five benchmarks as a function
of the clock divisor, 7y = fLJfﬁ where f,.; is the nominal frequency (198 MHz in our case).

We must underline that all five benchmarks generate activity in the modified clock do-
main, but not on the remaining part of the platform. As we can see from this figure, the five
experiments gives linear results against the frequency ratio. Hence, the event energy cost
can be modeled as:

Eevt — Ecyde X levt X Tf + Eg’l{tf (3)

base

where E¥“ is the base energy consumed by the remaining part of the platform in one full
speed CPU cycle. The CPU cycle is the unit of time since it is the shortest event which can
be measured and also which can happen on the platform. The E:{tf represents the unvarying
consumption of the event, the effective energy consumption. This part can be model as

follows:

1
Bl = 50V 0l (4)
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Figure 1: Multiple frequencies experiments: This figure shows that the energy per event

increases linearly against frequency ratio.
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This formula is derived from the equation (2). We can see here that it is not dependent
on the frequency. [, is the event length in terms of full speed CPU cycles. This term
explains the slope difference between the five lines, since each benchmark executes an event

of different length.

Linear regressions on the results presented in figure 1 gives the following results:

Benchmark name | EY% (nJ) | ESJ (nJ) | error (pJ)
insn-cmp__mul 9.34 17.62 340.8
loop-calibration 9.38 25.96 992.5
insn-cmp_nop 9.37 5.73 97.49

Table 2: Linear regression results

Equation (3) gives a good explanation for the experiments on clock frequency variation.
These results gives us an estimation of what we can consider as base energy, which is not

changing against software execution. The value obtained is about 9.37 nJ £1.4 1072

4.4 Model
4.4.1 Basic Model

As we presented in section 3.2, the energy model can be viewed as the sum of the instruction
costs and peripherals state costs. We cannot extract exact energy consumption of peripherals
from global measures. In that case we can manage the peripherals consumption as a state
machine that contains extra cost relative to a base cost. This base energy cost is part of the
instruction energy cost.

The energy consumption model is then given by equation (5).
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Eapp = 3 Bewt + 3 Eperl (5)

FE4pp is the application energy consumption, FE,; is the sum of the events costs and EJC7T
represents the peripheral state energy overhead relative to the state chosen as basis.

The E.,; values are given by equation (3). As we can realize from this formula, one part
is time dependent, the first, whereas the second is not.

A first step is then to express the total time of application. This quantity is given by

equation (6).

t=> ¢ X ﬁ (6)
j
where ¢; represents the durations of events of class ¢ expressed in CPU cycles, rjc is
the frequency ratio of class ¢ event domain frequency presented before, f; is the nominal
frequency of domain 7. Class 1 is containing CPU instructions, class 2 contains loads and
stores from the cache, class 3 are loads and stores accessing to the bus and finally class 4
contains memory accesses.

As far as energy is concerned, we can extend the first member of equation (5) as follows.
> Eew =t x Byle + 3 B x (7)

where F; represents the energy for each classes of event.

The complete model is depicted in equation (8).

Eopp = Z Eieff X ¢+ 1 X et + Z Jover (8)

base peri
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4.4.2 DVS Extrapolation

In this section we present an hypothetical extension of the previous model for a DVS en-
abled platform. The effective energy of different classes events presented before as Eff I are
approximated by the basis dynamic power model (equation (4)).

As we saw before the frequency influence on these part is null. This is the reason why
frequency scaling has no effect on energy consumption in our experiments. But if we intro-
duce the fact that Vy; can be adjusted this not true any more. We take the assumption that
if we divide the frequency by r; we can divide V4 by the same amount. This is true when we
are not too close to the transistor threshold voltage. In that situation the ngtf is modified
and expressed in equation (9).

Vi

2
dgd afreft;?{ (9)

. 1
Egz{tf - Pevttevt =-C
2 T

The benefit is then of é In our particular case, we can apply this on the three first class
of events since they are all three is the same clock domain. The fourth is not in the same
clock domain, hence the Vy; can not be modified in the same way.

It is clear that voltage and frequency scaling would have been of great interest for the

elements of our platform outside the CPU clock domain.

5 Model Validation

At this point we showed that it is possible to build a model of energy consumption by

using simple non-intrusive measurements. The last step is to validate this model. This
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validation is made by testing the accuracy of an application consumption estimation against
real consumption. Estimations are obtained as presented in section 4.4, by estimating the
model parameters and computing the application consumption. The effective consumption
is obtained by the same method than the one used for model building, by using the same
measurement setup and benchmark construction.

A first approximation of the model accuracy was obtained by reproducing this procedure
by hand on an operating system service, the commutation routine. To build a benchmark
whose structure is similar to the one created before, we make the commutation procedure
save and restore the same context. The overall structure of the benchmark is the same as in
the previous experiments.

The estimation of the energy consumption is 814.10 nJ. By physical measurement we
obtained a cost of 772.02 nJ per commutation, which means that our estimation has an error
smaller than 6%. This results gives a first approximation of the model accuracy. Further
validation tests will be made on more complex applications by deriving event counts from
a functional simulator. However, this first test allows us to confirm that the model is valid

and gives accurate results.

6 Conclusion

In this paper we have explained how an accurate energy consumption model for a full embed-
ded system can be built from external measurements and micro-benchmarks. Our method-
ology necessitates a prototype platform of comparable technology. Quantitative energy data

are gathered at the battery output, and are translated into per instruction energy figures by
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data analysis.

The resulting model is thus driven by the embedded software activity. It is for instance
possible to augment a software simulator with an energy estimator, or to use the analytical
model to arbitrate between possible implementation at the compiler or library level. The
resulting model is simple enough to be used efficiently in a simulator. Consumption data
clearly identify power hungry operations, thus offering guidelines for design tradeoffs.

Our immediate aim is to integrates our model in a simulator such as SimpleScalar [3].
Other work will provide extensions to this methodology in order to support advanced energy
consumption optimization techniques such as frequency and voltage scaling which may be

found on prototype platforms.
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