
Fuzzy Array Data
ow AnalysisDenis Barthou�, Jean-Fran�cois Collardy, Paul FeautrierzPRiSM LaboratoryUniversit�e de Versailles45 Avenue des Etats-UnisF-78035 Versailles CedexJune 28, 19961 IntroductionWhereas processor and interconnection network technologies make giant leapsnearly every couple of years, the corresponding software technology lags farbehind. In particular, comparatively few parallelizing compilers are used inproduction environments. This is partly due to the di�culty for the compilerto �nd in the source program the information it needs to exhibit parallelismand optimize code generation.Vectorization and parallelization methods are mainly based on the paral-lelism generated by independent references to distinct parts of arrays. Variousdependence tests have been proposed [1]. However, most of these tests are notexact, and, even when they are, cannot distinguish between true dependences,which describe a real information
ow, and spurious dependences, in which thevalue purported to be transmitted is destroyed before being used. To obvi-ate this di�culty, methods have been designed to compute, for every array cellvalue read in a right-hand-side expression (the \sink"), the very operation whichproduced it (the \source"). These methods are called Array Data
ow Analy-ses (ADA) [10, 15], or Value-Based Dependence Analyses [16]. These ADAs,however, make quite stringent hypotheses on the input programs. The onlytractable control structures are the do loop and the sequence; loop counters'bounds and array subscripts must be a�ne functions of surrounding countersand possibly of symbolic constants, the structure parameters . Programs follow-ing this model have been called \static control programs" in [10]. The samepaper has shown that an exact ADA can be mechanically performed on staticcontrol programs.Obviously, there is a continumm of analyses between the detection of simpledependences and full-
edged ADA. These analyses are often designed for aspecial purpose (e.g., array privatization) and may need less precise information�Denis.Barthou@prism.uvsq.fryJean-Francois.Collard@prism.uvsq.fr.zPaul.Feautrier@prism.uvsq.fr 1

than ADA. The consequence is that they can be applied to less constrainedprograms.The present paper deals with more general control structures, such as ifsand while loops, and with unrestricted array subscripts. Notice that we assumethat unstructured programs are preprocessed, and that for instance \backward"gotos are �rst converted into whiles. However, with such unpredictable, dy-namic control structures, no exact information can be hoped for in general.Hence, the aim of this paper is threefold. First, we aim at showing that evenpartial information can be automatically gathered by Fuzzy Array Data
owAnalysis (FADA). This paper extends our previous work [6] on FADA to gen-eral, non-a�ne array subscripts. The second purpose of this paper is to formal-ize and generalize these previous proposals and to prove general results. Third,we will show that the precise, classical ADA is a special case of FADA.1.1 Program modelIn this paper, our aim is to extend the scope of array data
ow analysis toprograms respecting the following constraints:1. The only data structures are integers, reals, and arrays thereof.2. The only control structures are the sequence, the do loop, the whileloop1, and the if..then..else construct. gotos and procedure calls areforbidden.3. Basic statements are assignments to scalars or array elements.4. No pointer, EQUIVALENCE or aliasing is allowed.Non-linear constraints are equations or inequalities which:� depend on variables other than loop counters and structure parameters,and/or� are non-linearly dependent on loop counters and structure parameters.For example, non-linear constraints may come from predicates of if or whileconstructs or from array subscripts. Obviously, some non-linear constraintscan be removed by replacing some variables by their expression in terms of loopcounters and structure parameters (induction variable detection and forwardsubstitution). Similarly, some while loops can be transformed into do loops.We will suppose here that these simpli�cations have been performed, whenpossible, by a previous phase of the compiler.1Similarly to do loops, an iteration of a while loop is denoted by giving its ordinal numberw in the iteration sequence. 2

1.2 NotationsThe k-th entry of vector ~x is denoted by ~x[k] or ~xk . The dimension of a givenvector ~x is denoted by j~xj. The sub-vector built from components k to l iswritten as: ~x[k::l]. If k > l, then this vector is by convention the vector ofdimension 0, which is written []. For a set of vectors A of dimension m, the setAjn denotes the set f~x[1::n]j ~x 2 Ag if n � m, and f~x j~x 2 ZZn; ~x[1::m] 2 Agotherwise. By convention, the j operator has priority on all other operators onsets.Furthermore, � denotes the strict lexicographic order on integral vectors.When clear from the context, \max" denotes max�, i.e. the maximum operatoraccording to the � order. An instance of Statement S is denoted by hS; ~xi,where ~x, the iteration vector of S, is the vector built from the counters of loopssurrounding S { including while loops { from outside inward.By convention, program statements are labeled by capital letters in type-writer style. Sets of vectors are denoted by capital letters in bold style, prop-erties by letters in calligraphic style, and operations (instances of statements)by the last letters of the Greek alphabet (&; �; �; �, etc.)2 A Motivating ExampleThe following example, even though already used in a previous work [6], illus-trates the kind and the precision of data
ow information we want to obtain.(The reader is referred to [6] for the formal derivation of the result.)program Mdo i = 1, nS0 a(i) = ...if ::: thendo j = i , n+2S1 a(j) = a(j-2)enddoendifenddoAssume that n = 4, and let us study the case of the instance of StatementS1 when i = 3 and j = 4, i.e. hS1; 3; 4i. Note that we don't even knowat compile-time if this instance actually executes. If it does, however, thenthe problem is to know where and when the right-hand-side value a(2) wasproduced. This source may be an instance of S1, but not if i > 3, since thisinstance would execute after hS1; 3; 4i. Since the source must write into a(2),the value of j is �xed to 2. This source cannot be an instance of S1 for i = 3either, since one can deduce from the bounds of the j loop that j � i. Thus,possible sources are instances hS1; 1; 2i and hS1; 2; 2i. Another potential sourceis hS0; 2i. Note moreover that hS0; 2i overwrites the value that hS1; 1; 2i mayhave written. Thus, the set of potential sources is fhS0; 2i; hS1; 2; 2ig:Actually, the iteration points of S1 fall into three groups (see Fig. 1 (b)):3

� A member (i; j) of the �rst group is such that j � i + 2. It has one andonly one possible source from S1 (namely, hS1; i; j�2i) since, if point (i; j)executes, then (i; j � 2) did execute too.� On the contrary, a member of the second group has an unpredictablesource. However, all the members of this group have at least one source,since all the array cells they read (a(1) through a(n-1)) are written intoby S0. Dotted edges symbolize this.� Finally, members of the third group do not have sources in the givenprogram.
i

j

1 2 3 4

1

2

3

4

5

6

i

j

1 2 3 4

1

2

3

4

5

6

(a) (b)

First group

Second group

Third groupFigure 1: Data
ow graph of Program M.3 An Overview of Array Data
ow Analysis3.1 Exact Array Data
ow AnalysisIn synthetic terms, Array Data
ow Analysis (ADA) is a very simple process.Let us �rst introduce some notations. A static control program is de�ned byits set of operations E and by a total order � on it. If �; � 2 E, then � � �(read \� before �") means that operation � does not begin executing until �has terminated. The precise de�nition of � will be given later (section 3.2).To each operation � are associated two sets of memory cells: R(�), the setof read cells, and M(�), the set of modi�ed cells. For static control programs,these sets can be constructed by a simple examination of the program text.The basic problem of array data
ow analysis is, given an operation � , the\sink", and a memory cell c which is read by � (c 2 R(�)), to �nd the \source"ofc in � . The source is an operation �(c; �) which writes into c (c 2 M(�(c; �)),which is executed before � , and such that no operation which executes between�(c; �) and � also writes into c.Let us consider the following set:Q(c; �) = f�j c 2M(�); � � �g:4

It is easy to see that the above de�nition of � is exactly the de�nition of themaximum of Q(c; �) according to �:�(c; �) = max� Q(c; �):In this section, all maxima are computed according to �. Hence this su�x willbe omitted without ambiguity.The computation of �(c; �) is discussed in depth in [10]. Let us just sayhere that the set Q(c; �) can be written explicitly as a union of subsets, each ofwhich is associated to a statement which modi�es c and a dependence depth.Let us enumerate these subsets as:Q(c; �) = n[i=1Qi(c; �):In this paper, we will repeatedly use the following general property:Property 1 If F = Si2I Fi, then:maxF = maxi2I maxFi:Applying this result to the present case gives:maxQ(c; �) = nmaxi=1 &i(c; �); (1)where &i(c; �) = maxQi(c; �): (2)The dependence from &i(c; �) to � is know as a direct dependence since [2]. Theevaluation of (1) when the direct dependences are known is a simple exercise informal computation. The relevant rules are recalled in Section 3.3.3.2 Notations and basic conceptsThe depth of a construct is the number of surrounding loops. The counter of aloop at depth k is the (k + 1)-th component of the iteration vector.Let hR; ~yi be the sink operation reading an element a(~g(~y)) of array a andhS; ~xi be an operation writing it with subscripts a(~f(~x)). LetNSR be the numberof loops surrounding both S and R. Since the quantity NSS occurs very often inthe following sections, it will be abbreviated as NS. Let / be the textual orderof the program. S / T i� S occurs before T in the source text. The sequentialexecution order, �, is:hS; ~xi � hR; ~yi � NSR_p=0 hS; ~xi �p hR; ~yi; (3)where0 � p < NSR : hS; ~xi �p hR; ~yi , (~x[1::p] = ~y[1::p])^ (~x[p+ 1] < ~y[p+ 1]); (4)5

hS; ~xi �NSR hR; ~yi , ~x[1::NSR] = ~y[1::NSR] ^ S / R: (5)For a given loop at depth k, ~x[k + 1] has a minimum and a maximum whichare given by the loop bounds. In the static control case, these bounds are a�nefunctions of outer loop counters and structure parameters:lk(~x[1::k])� ~x[k + 1] � uk(~x[1::k]): (6)The iteration domain of a statement S is denoted by I(S) and is given by theconjunction of all inequalities (6) for the surrounding loops and of the predicatesof all surrounding while and if constructs.Let us suppose that operation � above is an iteration of Statement R : hR; ~yiand that cell c is element a(~g(~y)) of an array a. Let us suppose that we areinvestigating candidate sources from a Statement S at depth p : hS; ~xi. If thesource program handles its arrays correctly, S necessarily writes into array a.Let ~f (~x) be the relevant subscripts.The candidate source hS; ~xi has to satisfy the following constraints:Existence predicate hS; ~xi is a valid operation:~x 2 I(S): (7)Subscript equation hS; ~xi and hR; ~yi access the same array cell:~f(~x) = ~g(~y): (8)~f and ~g are a�ne functions of ~x and ~y, respectively.Sequencing condition hS; ~xi is executed before hR; ~yi at depth p:hS; ~xi �p hR; ~yi: (9)Environment Sources have to be computed under the hypothesis that hR; ~yiis a valid operation, i.e. ~y 2 I(R):We conclude �rst that the Qi in (2) are indexed in fact by S and p. EachQpS(~y) is associated to the set:QpS(~y) = f~x j ~x 2 I(S); ~f (~x) = ~g(~y); hS; ~xi �p hR; ~yig; (10)by the rule: hS; ~xi 2 QpS � ~x 2 QpS(~y):Furthermore,� in QpS is associated to the lexicographic order � in QpS(~y).Since each predicate �p is a�ne, QpS(~y) is a Z-polytope. The direct depen-dence from S to R at depth p is given by the maximal element:~KpS(~y) =max� QpS(~y): (11)The maximal value is computed for each depth by integer linear programming[9]. The corresponding operation is denoted by:&pS(~y) = hS; ~KpS(~y)i: (12)The result is a quast, i.e. a many-level conditional in which:6

� Predicates are tests for the positiveness of quasi-a�ne forms2 in the loopcounters and structure parameters.� Leaves are either operation names whose iteration vector components areagain quasi-a�ne, or ?. The special name ? indicates that the array cellunder study is not modi�ed by S. A coherent way of thinking about ? isto consider it as the name of an operation which is executed once beforeall other operations of the program, i.e.:8S; ~x : ? � hS; ~xi: (13)In the following, ? will be used to denote, also, an unde�ned vector.3.3 Combining direct dependencesIn the following, we will consider m statements, Sk for 1 � k � m, writinginto array a. Beside, we will suppose that the read statement, R, and the readcell, c, stay �xed. We may thus write �(~y) instead of �(c; hR; ~yi). With thisconvention, the equivalent of (1) is:�(~y) = max� 1�k�m 0@max� 0�p�NSkR hSk; ~KpSk(~y)i1A : (14)When the direct dependences have been found, one must construct the realsource by computing their maximum. Let q be the number of candidate sources&pSk(~y). To simplify the notations, we assign an index number n; 1 � n � q; toeach &pSk(~y), and rename the latter into n. Then, the basic algorithm computesthe following recurrence:1 � n � q; �n =max� (�n�1; n);with �0 = ?:Each recurrence step has to compute the maximum of two quasts. This is donewith the help of the following rules3Rule 1 max� (?; �) = �. (This is simply a restatement of (13).)Rule 2 if � = if C then �1 else �2, then:max� (�; �) = if C then max� (�1; �)else max� (�2; �)Rule 3 if � and � are elementary sources: � = hS; ~xi; � = hR;~yi; thenmax� (�; �) = if � � � then � else �:2Quasi-a�ne forms may include integer division.3Rules 1 and 2 have symmetrical counterparts which are not stated here. The reader isreferred to [10] for more details. 7

Rule 4 Let if p then � else � be a subtree of a quast, and let C be its context(i.e. the set of predicates which are encountered on the unique path from theroot to the subtree). Then if C ^ p is not feasible, replace the subtree by � .Similarly, if C ^ :p is not feasible, replace the subtree by �.Rule 5 if C then � else � = �.3.4 From ADA to FADAAs soon as we extend our program model to include conditionals, while loops,do loops with complicated bounds or non-linear subscripts, the algorithm abovebreaks down. The reason is that conditions (7) and (8) may contain intractableterms. One possibility is to ignore them. In this way, (7) is replaced by:~x 2 bI(S)where bI(S) is a superset of I(S) which is obtained by ignoring non-linear con-straints. Supposing for the moment that the subscript condition is still linear,we may obtain an approximate set of candidate sources:bQpS(~y) = f~x j ~x 2 bI(S); ~f(~x) = ~g(~y); hS; ~xi �p hR; ~yig:; (15)However, we can no longer say that the direct dependence is given by thelexicographic maximum of this set, since the result may precisely be one of thecandidates which is excluded by the non-linear part of I(S). One solution isto take all of bQpS(~y) as an approximation to the direct dependence. If we dothat, and with the exception of very special cases, computing the maximumof approximate direct dependences has no meaning, and the best we can do isto use their union as an approximation. Can we do better than that? Let usconsider some examples.program E1do x = 1 while ...S1: s = ...end doS2: s = ...R : ... = ... s ...endHere and in the following examples, we will always stipulate that all relevantaccesses to the memory cell we are interested in { here s { have been exhibited.What is the source of s in Statement R? There are two possibilities, StatementsS1 and S2. In the case of S2, everything is linear, and the source is exactly hS2; []i.Things are more complicated for S1, since we have no idea of the iteration count8

of the while loop. We may, however, give a name to this count, say N , andwrite the set of candidates as:Q0S1([]) = fhS1; xij 1 � x � Ng:We may then compute the maximum of this set, which is simply&0S1([]) = if N > 0 then hS1; Ni else ?:The last step is to take the maximum of this result and hS2; []i, which is simplyhS2; []i. This is much more precise than the union of all possible sources. Thetrick here has been to give a name to an unknown quantity, N , and to solvethe problem with N as a parameter. It so happens here that N disappears inthe solution, giving an exact result.Consider now:program E2do x = 1 while ...S1: s(x) = ...end dodo k = 1,nR : ... = ... s(k) ...end doendWith the same notations as above, the set of candidates for the source of s(k)in hR; ki is: Q0S1(k) = fhS1; xij 1� x � N; x = kg:The direct dependence is to be computed in the environment 1 � k � n whichgives: if k � N then hS1; ki else ?. Here, the unknown parameter N hasnot disappeared. The best we can do is to say that we have a source set, ora fuzzy source, which is obtained by taking the union of the two arms of theconditional: �(k) 2 fhS1; ki;?g:Equivalently, by introducing a new notation �(~y) for the source set at iteration~y, this can be written: �(k) = fhS1; ki;?g:The array data
ow analysis is exact when �(~y) is a singleton.Our last example is slightly more complicated: we assume that n � 1,program E3do x = 1,nif thenS1: s = ...else 9

S2: s = ...end ifend doR : ... = ... sendWhat is the source of s in Statement R? We may build an approximate can-didate set from S1 and another one from S2. Since both are approximate, wecannot do anything beside taking their union, and the result is highly inaccu-rate.Another possibility is to partition the set of candidates according to thevalue x of the loop counter. Let us introduce a new boolean function b(x)which represents the outcome of the test at iteration x. The x-th candidatemay be written �(x) = if b(x) then hS1; xi else hS2; xi:We then have to compute the maximum of all these candidates (this is anapplication of Property 1). It is an easy matter to prove that:x < x0) �(x) � �(x0):Hence the source is �(n). Since we have no idea of the value of b(n), we arelead again to the introduction of a fuzzy source:�([]) = fhS1; ni; hS2; nig: (16)Here again, notice the far greater precision we have been able to achieve. How-ever, the technique we have used here is not easily generalized. Another wayof obtaining the same result is the following. Let L = fxj 1 � x � ng. Observethat the candidate set from S1 (resp. S2) can be written fhS1; xij x 2 DS1 \Lg(resp. fhS2; xij x 2 DS2g \ L) where:DS1 = fxj b(x) = trueg and DS2 = fxj b(x) = falseg:Obviously, DS1 \DS2 = ;; (17)and DS1 [DS2 = ZZ: (18)We have to compute� = max(maxDS1 \ L;maxDS2 \ L):It is a general property that (18) implies that:� = maxL: (19)By (17) we know that � belongs either to DS1 or DS2 which gives again theresult (16). 10

To summarize these observations, our method will be to give new names(or parameters) to the result of maxima calculations in the presence of non-linear terms. These parameters are not arbitrary. The sets they belong to { theparameters domains { are in relations to each others, as for instance (17-18).These relations can be found simply by examination of the syntactic structureof the program, or by more sophisticated techniques. From these relationsbetween the parameter domains follow relations between the parameters, like(19), which can then be used to simplify the resulting fuzzy sources. In somecases, these relations may be so precise as to reduce the fuzzy source to asingleton, thus giving an exact result.4 Basic Techniques for FADAWe present in this section a formal de�nition of fuzzy analysis. First of all, wede�ne a representation for non-linear constraints. Thanks to this representa-tion, the expression of the source boils down to a computable expression withlinear constraints and unknown parameters. When these parameters take allthe values of a set de�ned by linear constraints, we get a set of possible sources,called the fuzzy source. How this set of values is built will be the subject of thenext sections.4.1 Non-linear constraintsLet us �rst have a close look at the non-linear constraints. Notice that theycome either from the predicate of a while or if, from a non-linear loop boundappearing in the existence predicate (7), or from a non-linear array subscriptappearing in the con
icting access predicate (8). Each constraint can be num-bered according to its apparition order in the text of the program. Let Cdenote the set of integers that index non-linear constraints. Given a constraintch, h 2 C, we note Th the statement in which it appears. This statement iseither:� the then or else branch of a conditional, or� a loop with non-a�ne bounds, or� an assignment statement in which a non-linear subscript is used in anarray access.If ch appears in the set of candidate sources QpSk(~y), the write operation hSk; ~xidepends on the value of ch at the operation hTh; ~x[1::Nh]i, where Nh equals NThif Th is a conditional or an assignment, and NTh + 1 if Th is a do or a while.In QpSk(~y), the expression of the non-linear constraint ch isch(~z; ~y); ~z = ~x[1::Nh]:where ~z 2 I(Th) is Nh-dimensional. ch depends on ~y in the case it comes fromEquation (8). However, since the only term depending on p is the sequencingpredicate which is linear, non-linear constraints cannot depend on p.11

De�nition 1 (parameter set) Let Ph(~y) be the set of iteration vectors forwhich the constraint ch is true. It is called the parameter set and is de�ned by:Ph(~y) = n~z ���~z 2 ZZNh ; ch(~z; ~y)o :De�nition 2 (parameter domain) Let CSk � C denote the set of the in-dices of the constraints involved in the computation of QpSk (~y) and MSk =maxh2CSk Nh. The set:DSk(~y) = 8>><>>:~z ��������~z 2 ZZMSk ; ^h2CSk (~z[1::Nh] 2 Ph(~y))9>>=>>; ;is the set of iteration vectors for which all of the constraints indexed by CSk aretrue. This set is called the parameter domain of Sk.Note that MSk does not depend on ~y and that MSk � NSk . By convention,when all constraints in QpSk(~y) are linear, DSk(~y) = ZZNSk .The following piece of code illustrates these de�nitions:program structexT1: do x=1 while f(x)>0S1: a(x)=xif p(x)T2: thenS2: a(x)=2*xT3: elseS3: a(x)=3*xend ifend dodo y=1,nR : r=a(y)end doendThe non-linear constraints are: c1(x; y) = (f(x) > 0) from T1,c2(x; y) = p(x) from T2, c3(x; y) = :p(x) from T3. The parame-ter sets are: P1(y) = fxjf(x) > 0g, P2(y) = fxjp(x)g and P3(y) =fxj:p(x)g = P2(y).The domains are DS1(y) = P1(y), DS2(y) = P1(y) \ P2(y) andDS3(y) = P1(y) \P2(y). 12

4.2 ParameterizationLet us recall the de�nition (14) of the source:�(~y) =max� 1�k�m 0@max� 0�p�NSkR hSk ; ~KpSk (~y)i1A :The purpose of parameterization is to code (14) as a linear problem, so as toenable the computation of the source �(~y) (or perhaps an approximation ofthis source) using linear programming methods and tools, even in the presenceof non-linear constraints. We give thereafter the steps to transform (14) in aparametric linear problem. Let us also recall the de�nition (11) of the directdependence: ~KpSk(~y) = max� QpSk(~y): (20)We �rst partition each set QpSk (~y) into subsets de�ned by parametric linearconstraints. Let LpSk denote the set of vectors of dimension NSk de�ned by thelinear constraints appearing in QpSk(~y). The set of candidate sources is:QpSk(~y) = LpSk(~y)\DSk(~y)jNSk :Partitioning QpSk(~y) is obtained by partitioning DSk(~y) as the union of itselements: DSk(~y) = [~�2DSk (~y)f~�g:Let Q�pSk(~y; ~�) = LpSk (~y) \ f~�gjNSk denote a subset of the partition of QpSk(~y).Then: QpSk(~y) = [~�2DSk (~y)Q�pSk(~y; ~�): (21)From Equations (20) and (21), we have:~KpSk(~y) = max� 0B@ [~�2DSk (~y)Q�pSk(~y; ~�)1CA : (22)From Equation (22) and Property 1, we have:~KpSk(~y) = max� ~�2DSk (~y) �max� Q�pSk(~y; ~�)� : (23)An elementary direct dependence ~K�pSk(~y; ~�) can then be evaluated for eachsubset Q�pSk(~y; ~�) as a function of its parameters:~K�pSk (~y; ~�) =max� Q�pSk(~y; ~�); (24)13

which is computable by parametric integer programming. From Equations (23)and (24), we have: ~KpSk(~y) = max� ~�2DSk (~y) ~K�pSk(~y; ~�): (25)If the maximum as de�ned by (25) exists, then it is reached in at least onevector of DSk(~y) since there is a �nite number of candidate sources. Such avector is called a parameter of the maximum:De�nition 3 (parameter of the maximum) All the vectors in DSk(~y) forwhich (25) is de�ned are called parameters of the maximum of DSk for State-ment Sk at depth p. Let ~�pSk(~y) be one such vector. (If the maximum does notexist, we set ~�pSk (~y) to an unde�ned value.) The following equality always holds:~KpSk(~y) = ~K�pSk(~y; ~�pSk(~y)): (26)In other words:~�pSk(~y) =max� 8<:~� ������~� 2 DSk(~y); ~� = �max� QpSk(~y)�jMSk 9=; : (27)Thus, (14) implies that the source can be written as:�(~y) = max� 1�k�m 0@max� 0�p�NSkR hSk; ~K�pSk(~y; ~�pSk(~y))i1A : (28)We can extend (12) into:&�pSk(~y; ~�pSk(~y)) = hS; ~K�pSk (~y; ~�pSk(~y))i: (29)4.3 FuzzinessTo sum things up, we enumerated each set DSk(~y) of non-linear constraints byparameters �. Among these parameters, we distinguished one element for eachp, the parameter of the maximum ~�pSk(~y). The bene�t is that Expression (28)is computable exactly by parametric integer programming as a function of theparameters of the maximum.However, parameters of the maximum cannot themselves be computed, be-cause the sets DSk(~y) of non-linear constraints cannot be handled.First \brute-force" solution Each ~�pSk(~y) is replaced by a bound variable,call it ~
pk , in the set of all possible values (perhaps ZZMSk). This is equivalentto considering the set below as the set of all possible sources:�(~y) = 8<:max� 1�k�m 0@max� 1�p�NSkR &�pSk(~y;~
pk)1A���~
pk 2 ZZMSk ; 9=; : (30)14

The fuzziness comes from the fact that we do not know the values of theparameters of the maximum: we would compute a set of possible sources { ora fuzzy source { by giving all possible values to the parameters.This would mean that we would not even try to take non-linear constraintsinto account. Obviously, this is a safety net for a FADA analyzer and this issimilar to the \panic mode" in Wonnacott's work [16].A variant of this solution is to keep the non-linear expressions in the solution,without trying to interpret them.�(~y) =8><>:max� 1�k�m max� 1�p�NSkR &�pSk(~y;~
pk)!�������~
pk 2 ZZMSk ; 8k; p ^h2CSk ch(~
pk [1::Nh])9>=>; :(31)In this case, the analyzer just hopes that a later phase of the compiler will beable to handle this source.Second solution Our aim is now to try to reduce the size of �(~y). The �rstidea is to try to �nd properties on ~�pSk(~y). This was the method used in ourinitial work [6] and by Wonnacott.The parameters of the maximum are de�ned by non-linear constraints, linearconstraints, and the lexicographic maximum. Intuitively, it was then di�cultto work on non-linear constraints in isolation from other phenomena.The second idea, proposed in this paper, is thus to handle separately thenon-linear constraints. To do that, we will try to �nd properties (call them P)on the parameter domains DSk(~y). From these properties P on DSk(~y), we willdeduce linear properties (call them P�) on the parameters ~�pSk(~y). The bene�tof this approach is that we can then prove, for some P , that the propertiesfound on parameters of the maximum are the most precise that can be derived.That is, there is no loss of information when deriving P� from P .Therefore, the method to be presented in the next sections will proceed in�ve steps:1. Properties P will be derived from the parameter domains.2. We will consider all sets, call themGk , satisfying properties P . Note thatfor all DSk(~y), there is a set Gk s.t. Gk = DSk(~y).3. For each set Gk, we consider a parameter of the maximum ~
pk . Note thatwhen Gk = DSk (~y) then ~
pk = ~�pSk(~y). We must use as many ~
pk as thereare depths, since each parameter of the maximum is used to describe theset LpSk(~y)TDSk(~y)jNSk which depends on p.4. We derive properties P� de�ning exactly the set of parameters ~
pk .5. We build the set of sources corresponding to each ~
pk :�(~y) = (max� 1�k�m max� 0�p�NSkR &�pSk(~y;~
pk)!����~
pk 2 ZZMSk ;P�(~
01 ; : : : ; ~
NSmRm)) :(32)15

which can be computed exactly if P� is a conjunction or disjunction oflinear constraints.The fuzziness of the source depends on the precision with which P� abstractsthe relations existing among the parameters of the maximum ~�pSk(~y), k = 1::m.4.4 Removing ParametersThe result of this analysis may be considered as the �nal solution of the prob-lem, since it gives a parametric representation of the possible sources. It may,however, be more interesting to \eliminate" the parameters in order to distin-guish clearly the cases in which the source is precisely known from those inwhich there are several possible solutions.The term max�1�k�m �max�0�p�NSkR &�pSk(~y;~
pk)� in (32) is a quast whichis computed as in Section 3.3. Consider a leaf in which a parameter appears.This leaf represents the set of sources obtained by giving all possible valuesto these parameters. The set of possible values is obtained by \anding" allpredicates in the unique path from the root of the quast to the leaf in question.Rule 6 Let A(~
) be a leaf governed by l predicates P1; : : : ; Pl in the unique pathfrom the root to the leaf. Then A(~
) is transformed into fA(~
)j Vli=1 Pig.After a systematic application of this rule, any leaf in which parameters occuris transformed into a set in which the parameters are bound by the predicatesgoverning the leaf. Leaves which do not depend on parameters become single-tons.Now consider a quast: if C(~
) then A else B:Thanks to Rule 6, A and B are sets of sources. Since the exact value of ~
 isunknown, we cannot predict the outcome of the test. The best we can do is totake the union A [B as an approximation :Rule 7 A quast if C(~
) then A else B is transformed into A [B.Observe that if we do not simplify our parametric quasts, then leaves whichare governed by inconsistent predicates give empty sets by Rule 6, and then dis-appear by Rule 7. Similarly, a quast if p then A(~
)else A(~
) is transformed�rst into if p then fA(~
)j C ^ pgelse fA(~
)j C ^ :pg and then in fA(~
)j Cgwhich is coherent with rule 5. We may show in this way that our quast simpli-�cation rules and our parameter elimination rules are consistent.These observations are enough for solving examples E1 and E2. In the�rst case, there is one non-linear constraint, which is associated to thewhile loop at depth one. This gives rise to one parameter domainDS1(~y)and one parameter of the maximum, ~
01 , with no special properties. Theequivalent of (24):~K0S1([]; ~
01) = maxfwj 1 � w;w = ~
01g;16

gives the solution:&0S1([]; ~
01) = if ~
01 � 1 then hS1; ~
01i else ?:The computation of the direct dependence from S2 to S3 is exact, since allconstraints are linear. Their combination gives the �nal results:�([]) = max(hS1; if ~
01 � 1 then ~
01i else ?; hS2; []i) = hS2; []i:For E2, the situation is similar, but the de�nition of the direct dependenceis now:~K0S1;~
01 ([]) = maxfwj 1 � w;w = ~
01 ; w = kg = if k = ~
01 then k else ?:Use of rules 6 et 7 then gives�([]) = fhS1; ki;?g:Example E3 is more complicated and needs more sophisticated techniques.5 Finding Properties on Parameter DomainsOur aim now is to �nd all interesting properties of the parameter domains.Several techniques have been proposed that �nd mostly properties on eachparameter domain, independently of each other. The two algorithms presentedin Sections 5.2 and 7 �nd relations between the parameter domains. We will�rst de�ne the general type of property we want to handle. Step 4 of theprevious approach will thus be independent of the analysis technique.5.1 General propertiesThe �rst kind of properties gives constraints on the elements of a parameterdomain, independently of any other parameter domain. For instance, a set ofvectors de�ned with linear constraints may be included in the parameter domainunder study. This is the case when ~y is in a parameter domain and we will showthat in this case there is no fuzziness at all in the computation of some directdependences. Another example is when the vectors of the parameter domainsatisfy a system of linear constraints. This system is provided by a detailedanalysis of the non-linear constraints. Most of the properties found by Dumay[8] are of this kind and Maslov [14] has proved that for some speci�c non-linearconstraints, the parameter domain is equal to a set de�ned by linear constraints.Given a known set A(~y) de�ned by linear constraints, this kind of propertiescan be written as: A(~y) � DSk(~y) or DSk(~y) � A(~y):Another kind of properties involves two or more parameter domains. Sucha property can be an inclusion using the union or intersection of parameterdomains. For instance, in Program structex, we have DS2(~y) [DS3(~y) =DS1(~y) and DS2(~y) \DS3(~y) = ;, which entails that the source can only come17

from Statement 2 or 3 and cannot come from both at the same time (no killbetween 2 and 3).Finally, the relations can involve parameter domains or their image by asimple a�ne function, so as to express the fact that a parameter domain isbuilt from another parameter domain by translation, for instance. Such con-siderations are taken into account by Dumay and suggested by Wonnacott asan improvement of his methods. A simple a�ne function will be de�ned as amonotone increasing a�ne function, according to the lexicographic order.In order to take into account the existing methods for �nding properties ofparameter domains, we will consider properties that can be written as conjunc-tion of relations of inclusion between two sets. Each of these sets can be:1. a parameter domain or the image of a parameter domain by a mono-tone increasing a�ne function, possibly expanded (or reduced) to a set ofdi�erent vector dimension, or2. a set de�ned by linear inequalities, or3. the union of sets de�ned by one of these four de�nitions, or4. the intersection of sets de�ned by one of these four de�nitions.In the following section, we will show that the set of the parameters of themaximum ~
pk corresponding to all the sets Gk verifying this kind of propertiescan be de�ned exactly by linear constraints. Thus this entails that the fuzzysource computed with Expression (32) takes into account all the informationderived from the non-linear constraints and only this information.We now provide an algorithm that �nds properties on the parameter do-mains that can be deduced from the structure of the program itself. The advan-tage of this method is that no case-by-case detailed analysis of the non-linearconstraints is needed.5.2 Structural Analysis AlgorithmIn this section we have to deal we the structure of the source program. Now, itis true that we deal only with the structured part of Fortran. We neverthelesshave a problem: Fortran has no independent notation for compound statements.We have already tacitly extended Fortran by using non-numerical labels andthe PL/I-like do while loop. In the same vein, we will use C-like braces fg to indicate statement grouping. With these conventions, example structexbecomes:program structexT0: {T1: do x=1 while f(x)>0T6: {S1: a(x)=xT4: if p(x)T2: then 18

S2: a(x)=2*xT3: elseS3: a(x)=3*xend if}end doT5: do y=1,nR: r=a(y)end do}endThe starting point of the algorithm is a pruned version of the abstract syntaxtree (A.S.T.), in which the only statements are the candidate sources Sk; 1 �k � m, the read Statement R and all the control statements which surroundthem. We will extend the concept of a parameter domain to all statements inthis simpli�ed A.S.T. Consider for instance a compound statementT0 : fT1; : : : ; Tng:The parameter domain of T0, DT0(~y) is associated to the non-linear part ofthe conditions under which T0 is executed. (Again, ~y is the iteration vector ofthe read Statement R.) Depending on the nature of Statement Tj , 1 � j � n,we may say that DT0(~y) = DTj(~y), or at least that DT0(~y) � DTj(~y)jMT0 .The form of the algorithm will be a recursive descent in the A.S.T. At eachnode, a pattern match will indicate which rule in the algorithm is to be used.Some of these rules specify that one or more relations are to be \emitted". Thealgorithm will then continue its exploration of the tree. The end result is thecollection of all emitted relations.A special symbol, E(~y), will be used to denote the non-linear part of theenvironment (the conditions under which the read statement is executed).Notethat the parameter domain associated to the compound statement representingthe whole program is the set f[]g.At the end of the algorithm, a post-processing phase, which will be speci�edlater, will eliminate unwanted information from the original result.Structural analysis algorithm1. T0 : fT1; : : : ; Tng : For i = 1; : : : ; n do:(a) If Ti is another control statement, emit DT0(~y) = DTi(~y); then visitTi.(b) If Ti is one of the source statements, Sk : a(~f (~x)) = ... andif ~f is linear, then emit: DT0(~y) = DTi(~y); else emit: DT0(~y) �DTi(~y)jMT0 :(c) If Ti is the read statement: R : ... = ... a(~g(~y)) ..., thenemit DT0(~y) = E(~y): 19

2. T0 : do w = 1 while p T1 end do : If p is linear4 then emit: DT0(~y) =DT1(~y) else emit: DT0(~y) � DT1(~y)jMT0 : Visit T1.3. T0 : if p then T1 else T2 endif: If p is non-linear then emit DT1(~y) \DT2(~y) = ; andDT1(~y)[DT2(~y) = DT0(~y), else emit: DT1(~y) = DT2(~y) =DT0(~y): Visit T1 and T2.4. T0 : if p then T1 endif : If p is non-linear then emit DT0(~y) � DT1(~y)else emit: DT0(~y) = DT1(~y): Visit T1.5. T0 : do i = lb; ub T1 end do : If both lb and ub are linear, then emit:DT0(~y) = DT1(~y); else emit DT0(~y) � DT1(~y)jMT0 : Visit T1.As the algorithm needs to go through the reduced A.S.T once, the complex-ity is O(m:s), with s the maximum number of nested control structures and mthe number of write statements. m also gives a bound on the number of leavesvisited in the abstract tree: O(m).This analysis has a small cost and covers all the cases where non-linearitycomes from control structures, and only these cases.Post-processing phase The idea is to eliminate all domains except Envi-ronment E and the domains associated to the potential sources. All emittedequations of the form D = D0 can be used to eliminate either D or D0. Let usrank all domains in an arbitrary order, except that the domains of the sourcestatements and E (the protected domains) are ranked last. Select an equationin which the highest ranking domain occurs, use it for eliminating this domainfrom all other relations, discard the equation and start again. The process stopsas soon as the highest ranking domain is protected. At this point, discard allrelations which contain an unprotected domain. This phase may take as muchas O(m2) time.Exact analysis Among the results may occur relations of the form:E(~y) = DSk(~y);or DSk(~y) � E(~y)jMSk :Since we are computing sources under the hypothesis that the read state-ment is executed, we know that ~y belongs to E(~y). Suppose then that the pre�x~y[1::MSk] of ~y is in LpSk (~y)jMSk . Thus, as the parameters of the maximum arelexicographically lower than ~y due the sequencing predicate, this entails that~y[1::MSk] is a parameter of the maximum and the analysis is exact.An example of such an exact case is when the only while loop in the sourceprogram is the outermost statement. This result was proved by other, lessgeneral means in[6, 5] and justi�es a conjecture in [4].4This indicates that the while loop may be transformed into a for loop and should notoccur in restructured programs 20

5.3 ExampleLet us go back to Example structex and apply the algorithm above. Noticethat MT1 = 1. DT0(~y) = DT1(~y) (33)DT0(~y) = DT5(~y) (34)DT1(~y) � DT6(~y)j1 (35)DT6(~y) = DS1(~y) (36)DT6(~y) = DT4(~y) (37)DT4(~y) = DS2(~y) [DS3(~y) (38)DS2(~y) \DS3(~y) = ; (39)DT5(~y) = E(~y): (40)Let us rank these sets in the following increasing order, from 1 to 9: DS1(~y),DS2(~y), DS3(~y), E(~y), DT0(~y), DT1(~y), DT5(~y), DT6(~y), DT4(~y). EliminatingDT4(~y) yields DS2(~y) [DS3(~y) = DT6(~y):Then eliminating DT6(~y) yieldsDS2(~y) [DS3(~y) = DS1(~y); (41)and DT1(~y) � DS1(~y):The �nal result is that the linear properties on the domains are describedby the following predicate:(41)^(39)) P(DS1 ;DS2 ;DS3) = (DS2\DS3 = ;)^(DS2[DS3 = DS1): (42)6 Constructing Properties on ParametersIn the previous section, the purpose was to extract properties P on the pa-rameter domains. The purpose of this section is to derive properties P� onparameters of the maximum from properties P on parameter domains, withoutforgetting sources (correctness) and without adding fuzziness (precision). Foreach relation on domains that is of the form given in Section 5.1, we will �nd arelation on the parameters that preserves both correctness and precision. More-over, we will show that P� is a conjunction or disjunction of linear inequalitiesthus enabling the exact computation of (32).Notice that from (20) and (27), we immediately deduce the following result:the parameter of the maximum is equal to theMSk �rst components of ~KpSk(~y)when the latter is de�ned. This can be generalized to the following property:Property 2 Let ~
pk be a parameter of the maximum of the setGk for StatementSk at depth p. The value of ~
pk is given by:~
pk = maxGk \ LpSk(~y)jMSk :21

This gives a characterization of the parameters of the maximum. We will userepeatedly this property in the following.In the sequel, we will consider properties P that are inclusions betweenunion of and intersection of sets. These sets are either parameter domains, orarbitrary sets de�ned by linear constraints. Moreover, the inclusion propertieswe consider are such that:� The left-hand-side of � only consists of intersections.� The right-hand-side of � only consists of unions.To simplify the study of such relations, notice that:[i Fi � [jFj () 8i; Fi � [jFj ; (43)\i Fi � \jFj () 8j;\iFi � Fj : (44)Notice also that, until Theorem 1, we do not take into account the applicationof linear functions to parameter domains.We �rst present some relations deduced from Property 2 that must be ver-i�ed by any parameter of the maximum. We then give some simple resultsfor the case wher P is a relation of inclusion involving at most one parameterdomain on each side of the inclusion. Then we introduce the use of the union,of the intersection and �nally present the general case, in Theorem 1.6.1 Characterization of parameters of the maximumGiven a set Gk, for all 0 � p � NSkR, the parameter of the maximum ~
pk of Gkfor Statement Sk at depth p must verify Property 2. We will �nd now PropertyP� that must be veri�ed by any parameter of the maximum of any set Gk, forall 1 � k � m.Construction of P� According to Property 2, for 0 � p � NSkR, ~
pk is anelement of LpSk(~y)jMSk or is ?:�~
pk 2 LpSk(~y)jMSk� _ �~
pk = ?� : (45)In particular, when MSk � p � NSkR, LpSk(~y)jMk is equal to f~y[1::MSk]g or ;.Therefore, when ~y[1::MSk] 62 Gk, ~
pk = ? forMSk � p � NSkR. To sum up thisrelation, for all MSk � p � NSkR:if LpSk(~y)jMSk = f~y[1::MSk]g then 0B@ ^MSk�p�NSkR ~
pk = ?1CA_�~
pk = ~y[1::MSk]� :(46)Property P� is then de�ned by Equations (45) and (46), for 1 � k � m.22

How much fuzziness is added Consider a set of vectors ~
pk , for 1 � k � m,0 � p � MSk , verifying P� de�ned by Equations (45) and (46). In order toprove that P� is an exact characterization of the parameters of the maximum,we want to exhibit G1; : : : ;Gm such that ~
pk is a parameter of the maximumof Gk for Statement Sk at depth p, for 1 � k � m; 0 � p � NSkR. We de�nethese sets by: Gk = n~
pk j 0 � p � NSkRo ;for 1 � k � m. We try to show that~
pk = maxGk \ LpSk(~y)jMSk : (47)For p < min(MSk ; NSkR), notice that LqSk(~y)jMSk \ LpSk(~y)jMSk = ; if q 6= pthanks to the sequencing condition (9). Equation (45) then shows that Gk \LpSk(~y)jMSk = f~
pkg, thus (47) is veri�ed. For p � MSk , (46) and the aboveremark imply (47).Hence P� de�ned by (45) and (46) describes exactly the set of the param-eters of the maximum of all possible sets, for Statement Sk at depth p, for1 � k � m; 0 � p � NSkR.6.2 Inclusion between two parameter domainsSuppose now that Property P on the parameter domains isDSi(~y)jmin(MSi ;MSj) \Ai(~y) � DSj (~y)jmin(MSi ;MSj) [Aj(~y);where Ai(~y) and Aj(~y) are two sets de�ned by linear constraints, of dimensionM = min(MSi ;MSj). Let us consider all sets Gi;Gj verifying P and such thatthe dimension of the vectors of Gi (resp. Gj) is MSi (resp. MSj). Let ~
pi and~
pj be the respective parameters of the maximum for Statements Si and Sj atdepth p. The general expression of P is:P(Gi;Gj) = (GijM \Ai(~y)) � (Gj jM \Aj(~y)):Construction of P� Let us try to �nd a necessary condition for ~
pi and ~
qjto be parameters of the maximum of Gi at depth p and of Gj at depth q,respectively, for all 0 � p � NSiR; 0 � q � NSjR. According to 6.1, Equations(45) and (46) are veri�ed by ~
pi and ~
qj . Besides, for 0 � p � NSiR; 0 � q �NSjR, if ~
pi [1::M] 2 LqSj (~y)jM \LpSi(~y)jM \Ai(~y), then either ~
pi [1::M] 2 Aj(~y)or, thanks to Property 2:~
pi [1::M] = maxGijM \Ai(~y) \ LqSj(~y)jM \ LpSi(~y)jM+ Property P on Gi and Gj , and ~
pi [1::M] 62 Aj(~y)� maxGj jM \ LqSj (~y)jM \ LpSi(~y)jM+ LqSj (~y)jM = (LqSj(~y)jMSj)jM23

� max�Gj \ LqSj(~y)jMSj�jM+ Property 2� ~
qj [1::M]:When MSi > MSj , this is equivalent to~
pi [1::MSj]�~
qj ;otherwise: ~
pi�~
qj [1::MSi]:Thus, if P is de�ned by P(Gi;Gj) = GijM\Ai(~y) � Gj jM\Aj(~y)) then P�can be de�ned by the conjunction of (45), (46) and, for all 0 � p � NSiR; 0 �q � NSjR:if ~
pi [1::M] 2 LpSi(~y)jM\LqSj (~y)jM\Ai(~y) then ~
pi [1::M] 2 Aj(~y)_~
pi [1::M]�~
qj [1::M]:(48)Notice that thanks to the sequencing predicate (9), when p or q is lowerthan min(M;NSiR; NSjR) and p 6= q, then LpSi(~y)jM \ LqSj (~y)jM = ;.How much fuzziness is added? Let us now pick a set of parameters ~
pk ,k = 1::m; p = 0::NSkR verifying P� de�ned by (45),(46) and (48). In order toprove that no fuzziness is added, we want to exhibit (G1; : : : ;Gm) such thatP(Gi;Gj) is true and ~
pk is the parameter of the maximum ofGk for StatementSk at depth p, for all 1 � k � m; 0 � p � NSkR.Let us de�ne some new vectors ~
pij of dimension MSj , for all 0 � p � NSiR:(~
pij [1::M] = ~
pi [1::M]~
pij [M + 1::MSj] = minq20::NSjR ~
qj [M + 1::MSj]If ~
pi = ? then ~
pij = ?.Let us de�ne the sets Gk by:(Gk = f~
pk j 0 � p � NSkRg for k 6= j;Gj = f~
qj j 0 � q � NSjRg [f~
qijj 0 � q � NSiR; ~
qij[1::M] 2 Ai(~y); ~
qij[1::M] 62 Aj(~y)g:These sets verify the two conditions:� GijM \ Ai(~y) � Gj jM [Aj(~y): for each ~
pi , if ~
pi [1::M] 62 Aj(~y) thenf~
pi gjM \Ai(~y) � Gj jM otherwise f~
pi gjM � Aj(~y). Hence the conditionis veri�ed.� ~
pk is a parameter of the maximum of Gk: we try to show that (47) isveri�ed. For k 6= j, this was proved in 6.1.Suppose now k = j. As in the previous case,maxn~
qj j 0 � q � NSjRo \ LpSj(~y)jMSj = ~
pj :24

There remains the computation of:maxn~
qij j 0 � q � NSiR; ~
qij[1::M] 2 Ai(~y); ~
qij[1::M] 62 Aj(~y)o\LpSj (~y)jM :As the last coordinates are the same for all ~
qij , 0 � q � NSiR, this isequivalent to the computation of:maxn~
qi [1::M]j 0� q � NSiR; ~
qi [1::M] 62 Aj(~y)o \ LpSj(~y)jM \Ai(~y):According to Equation (45), ~
qi [1::M] 2 LpSi(~y)jM or ~
qi [1::M] = ?. There-fore the expression of the maximum is:maxn~
qi [1::M]j 0� q � NSiR; ~
qi [1::M] 62 Aj(~y)o\LpSi(~y)jM\LpSj (~y)jM\Ai(~y);which is lower than ~
pj [1::M] according to Equation (48). As ~
qij[M +1::MSj]�~
pj [M + 1::MSj] for all 0 � p � NSiR by de�nition, this showsthat Equation (47) is veri�ed for k = j, i.e. ~
pj is a parameter of themaximum for Gj for Statement Sj at depth p.Therefore the conjunction of (45),(46) and (48) de�nes exactly the set of theparameters of the maximum of all sets G1; : : : ;Gm verifying GijM \ Ai(~y) �Gj jM [Aj(~y). No fuzziness is added when deriving P� from P .Particular cases The properties on the parameters of the maximum corre-sponding to relations on the parameter domains de�ned by:A0k(~y) � DSk(~y) [Ak(~y) or DSk(~y) \A0k(~y) � Ak(~y);whereAk(~y) and A0k(~y) are sets of vector sizeMSk de�ned by a�ne constraints,can be derived in the same way as above.The property P� corresponding to A0k(~y) � DSk(~y) [Ak(~y) is de�ned by(45), (46) and:if LpSk(~y)jMSk\A0k(~y) 6= ; then maxLpSk(~y)jMSk\A0k(~y) 2 Ak(~y)_maxLpSk(~y)jMSk\A0k(~y)�~
pk ;and the property P� corresponding to DSk(~y) \A0k(~y) � Ak(~y) is de�ned by(45), (46) and: if ~
pk 2 LpSk(~y)jMSk \A0k(~y) then ~
pk 2 Ak(~y):6.3 Union of parameter domainsWe now extend the previous results to properties using the union operator onboth sides of the inclusion. As [iFi � [jFj is equivalent to Fi � [jFj ; 8i, wewill consider the following property P on the parameter domains:DSi(~y)jM \Ai(~y) � [j2JDSj (~y)jM [A(~y);25

where M = min(MSi ;minj2J(MSj)), Ai(~y) and A(~y) are two sets de�ned bylinear constraints of vector dimension M and J is a set of indices not includingi. Let us consider all sets Gi and Gj ; j 2 J verifying P and such that thedimension of the vectors of Gi (resp. Gj) is MSi (resp. MSj). Let ~
pi and~
pj be the respective parameters of the maximum for Statements Si and Sj atdepth p.Construction of P� As in 6.2 the parameters ~
pk are constrained by (45) and(46). Moreover, it can be shown that, for all 0 � p � NSiR; 0 � qj � NSjR,if ~
pi [1::M] 2 LpSi(~y)jM \j2J LqjSj (~y)jM\Ai(~y) then ~
pi [1::M] 2 A(~y)_j2J ~
pi [1::M]�~
qjj [1::M]:(49)Thus if P is de�ned by P(Gi;Gj ; j 2 J) = GijM \ Ai � Sj2J Gj jM [A(~y)then P� is de�ned by the conjunction of the equations (45), (46) and (49).How much fuzziness is added? It can be shown in the same manner as in6.2 that P� de�nes exactly the set of the parameters of the maximum of all thesets Gi;Gj ; j 2 J verifying P .This property is exactly what is needed to express the fact that at least onebranch of a conditional is taken each time the conditional is executed.Particular case When P is de�ned on the parameter domains by:A(~y) � [j2JDSj (~y)jminj2J MSj [A0(~y);then the corresponding property on the parameters of the maximum is de�nedby (45), (46) and:if \j2J LqjSj(~y)jminj2J MSj \A(~y) 6= ; then ~
 2 A0(~y) _j2J ~
�~
qjj [1::minj2J MSj];where ~
 stands for maxTj2J LqjSj(~y)jminj2J MSj \A(~y).6.4 Intersection of parameter domainsLet us examine now relations involving intersections of parameter domains.This situation occurs when we want to express the fact that exactly one branchof a conditional is taken each time the conditional is executed.We �rst examine the particular property:DSi(~y)jmin(MSi ;MSj) \DSi2 (~y)jmin(MSi ;MSj) = ;:Let us consider all the sets Gi and Gj respectively of vector size MSi and MSjverifying this property. Let M denote min(MSi ;MSj).Construction of P� Clearly, if ~
pi and ~
pj are the parameters of the maximumofGi andGj then ~
pi [1::M] 6= ~
qj [1::M]. P� will then be de�ned by this equationand by (45) and (46). 26

How much fuzziness is added? The above de�nition of P� de�nes exactlythe parameters of the maximum of all the sets Gi and Gj such that GijM \Gj jM = ;. Indeed, given ~
pi and ~
qj , for all 0 � p � NSiR; 0 � q � NSjR,verifying P�, the sets f~
qi j 0 � q � NSiRg and f~
qj j 0 � q � NSjRg have anempty intersection and ~
pi (resp. ~
pj) is the parameter of the maximum of Gi(resp. Gj) for Statement Si (resp. Sj) at depth p (for the proof, see Section6.1)For the general case, we de�ne three new sets:� Gi\j = GijMmax \Gj jMmax,� Gi�j = Gi �Gj jMSi and� Gj�i = Gj �GijMSj ,withMmax = max(MSi ;MSj). We haveGi = Gi�j[Gi\j jMSi andGj = Gj�i[Gi\j jMSj . Moreover, each of the three new sets is disjointed from the two others.Therefore, we can replace a property usingGi andGj by an equivalent propertyusing Gi�j ,Gj�i andGi\j. Doing repeatedly such transformations on PropertyP , we will eventually get a property using only relations of inclusion betweenunions of sets and relations of empty intersections of sets. Both relations canbe transformed into relations on parameters of the maximum without addingfuzziness.6.5 General relationsThis theorem sums up the results obtained in this section and gives the stepsfor constructing Property P� from a Property P verifying the hypotheses statedin 5.1.Theorem 1 For every property P on parameter domains in the class of prop-erties de�ned in 5.1, the set of the parameters of the maximum for all the setsverifying P is de�ned by a conjunction or disjunction of linear terms on theelements of this set. This set can be represented by a quast.Proof We �rst consider properties P with at most one relation,simpli�ed with (43) and (44). All the intersections between param-eter sets are transformed into new sets thanks to Section 6.4. Thenew property gives a Property P� by using the results of Section6.3 and 6.4. P� is de�ned as a conjunction or disjunction of linearterms on the parameters of the maximum.Concerning the application of monotone increasing functions to pa-rameter domains, the monotony preserves the parameters of themaximum: if ~
pk is the parameter of the maximum of Gk for Sk atdepth p then t(~
pk) is the parameter of the maximum of t(Gk) forSk at depth p provided that t is an increasing function. Therefore27

the previous results apply easily to parameter domains transformedby linear monotone increasing functions.Finally, it can be easily shown that when Property P is a conjunctionof several relations of inclusion, Property P� is the conjunction ofthe properties on the parameters of the maximum corresponding toeach relation.6.6 Examples6.6.1 Program E3We present thereafter the formal computation of the source of Statement R ofProgram E3 presented in Section 3.4. We recall the property P on the parameterdomains: P(DS1 ;DS2) = (DS1 \DS2 = ;) ^ (DS1 [DS2 = ZZ):Note that in this case the parameter domains do not depend on y, they are setsof scalars and NS1R = NS2R = 0. From DS1 \ DS2 = ; and Section 6.4, wededuce one conjunct of P�:
1 6=
2. From Section 6.1, we have the relations:
1 2 L0S1(y)_
1 = ?,
2 2 L0S2(y)_
2 = ?. Relation (46) is obviously veri�edsince MS1 = MS2 = 1 > 0 = NS1R = NS2R. The relation DS1 [DS2 = ZZcan be written ZZ � DS1 [DS2 . Applying the result of the particular case ofSection 6.3 with A(~y) = ZZ and A0(~y) = ;, we get the relation:if L0S1(y) \ L0S2(y) 6= ; then _1�q�2maxL0S1(y) \ L0S2(y)�
q:Therefore, P� is de�ned by:P�(
1;
2) = (
1 6=
2)^(
1 2 L0S1(y) _
1 = ?)^(
2 2 L0S2(y) _
2 = ?)^(if L0S1(y) \ L0S2(y) 6= ; then _1�q�2maxL0S1(y) \ L0S2(y)�
q):As L0S1(y) = L0S2(y) = fxj 1 � x � ng and we assumed that 1 � n, L0S1(y) \L0S2(y) is not empty and its maximum is n. We may rewrite P� as:P�(
1;
2) = (
1 6=
2)^(1 �
1 � n _
1 = ?)^(1 �
2 � n _
2 = ?)^(n �
1 _ n �
2):It can be shown easily that as a consequence:(
1 = n ^
2 < n) _ (
1 < n ^
2 = n):28

For each clause of P� in which there is a conditional or disjunction, therewill be two di�erent contexts for the computation of the source. Hence thequast of the source begins with:������ if
1 = n ^
2 < nthen Plug in the result given by PIP in context
1 = n;
2 < nelse Plug in the result given by PIP in context
1 < n;
2 = n :The parametric sets of candidates are:Q�0S1(y; �) = Q�0S2(y; �) = fxj 1 � x � n; x = �g:The parametric direct dependences are:~K�0S1(y; �) = ~K�0S2(y; �) = if 1 � � � n then � else ?:Hence the parametric source, after simpli�cation, is:if
1 = n ^
2 < n then hS1; ni else hS2; ni;and the fuzzy source is: �(y) = fhS1; ni; hS2; nig:Therefore no previous value of s can reach Statement R.6.6.2 Program structexLet us go back to Example structex. We recall the properties P on the domaingiven by (42) in Section 5.2.(41)^ (39)) P(DS1 ;DS2 ;DS3) = (DS2 \DS3 = ;) ^ (DS2 [DS3 = DS1):From DS2 \DS3 = ; and Section 6.4, we deduce one conjunct of P�: ~
p2 6= ~
p3 .We write DS2 [DS3 = DS1 as DS2 [DS3 � DS1 , DS2 � DS1 , DS3 � DS1 .We then apply Sections 6.3, 6.2 and 6.2, respectively. Note that MSk = 1 andNSkR = 0 for 1 � k � 3. We get:8k; 1 � k � 3; (
k 2 L0Sk(y))_ (
k = ?);if
1 2 L0S1(y) \ L0S2(y) \ L0S3(y) then (
1 �
2) _ (
1 �
3);if
2 2 L0S1(y) \ L0S2(y) then
2 �
1;and if
3 2 L0S1(j) \ L0S3(y) then
3 �
1;respectively. 29

As L0S1(y) = L0S2(y) = L0S3(y) = fxj x = yg, P� can be simpli�ed in:P�(
1;
2;
3) = (
2 6=
3)^(
1 = y _
1 = ?)^(
2 = y _
2 = ?)^(
3 = y _
3 = ?)^(if
2 = y then y �
1)^(if
3 = y then y �
1)^(if
1 = y then (y �
2) _ (y �
3)):Due to the context, the quast of the source begins with the predicates:������������������������������
if
1 = ythen �������������� if
2 = ythen ������ if
3 = ythen Plug in the result given by PIP in context ;else Plug in the result given by PIP in context
1 = y;
2 = y;
3 = ?else ������ if
3 = ythen ::else ::else �������������� if
2 = ythen ������ if
3 = ythen ::else ::else ������ if
3 = ythen ::else ::The parametric sets of candidates are:Q�0S1(y; �) = Q�0S2(y; �) = Q�0S3(y; �) = fxj x = �; x = ygThe parametric direct dependences are:~K�0S1(y; �) = ~K�0S2(y; �) = ~K�0S3(y; �) = if � = y then y else ?:The parametric source obtained in the context, after simpli�cation, is:if
2 = y then hS2; yi else if
3 = y then hS3; yi else ?:Thus the fuzzy source is: �(~y) = fhS2; yi; hS3; yi;?g:This shows that the dependences from statements 2 and 3 kill the dependencefrom 1.7 Iterative analysisIn this section, we will show that we may go one step beyond in data-
owanalyses. That is, that the result of a �rst application of the FADA analysismay in turn help a second application in deriving a more precise result.30

To see this, suppose that the same array occurs in the l.h.s. of two state-ments, with di�ering variables as subscripts. These variables are supposed notto depend linearly on induction variables. Data
ow analyses do not make as-sumptions on the values of variables, and therefore are not able to give the exactsource. We may, however, try to prove that whatever the values of these vari-ables, these values are equal. As hinted above, we may apply a data
ow analysison the subscripting variables themselves, thus iterating the overall process ofthe analysis.We may generalize this remark to non-linear constraints. Given two con-straints that are the same function but appear at di�erent places in the program,we can say that they have the same value if the variables they use are the sameand have the same values.Therefore, the purpose of iterative analysis is to �nd relational propertiesbetween the non-linear constraints appearing in the existence predicates (7)and in the con
icting access constraints (8) of di�erent write statements. Thismethod may use the results of data
ow analysis on the variables of the non-linear constraints so as to �nd more accurate relations. As this data
ow analysiscan be fuzzy, the method can then be applied once more and eventually thefuzziness will be reduced by successive analyses. This method �nds some rela-tions between the parameter sets and then extends these relations to the realdomains of parameters.The key remark in this section is that two values of the same variable attwo di�erent steps of the execution are equal if they have the same source.7.1 Variables in non-linear constraintsTo formalize the previous paragraph, let ch and ch0 be two non-linear con-straints. Our purpose is to decide whether the value of ch at operation � is thesame as the value of ch0 at operation �:ch� = ch0': (50)So far, we have de�ned constraints as functions of ~y and of the iteration vectorof the surrounding loops. As a matter of fact, a constraint ch depends onvariables that are functions of the iteration vector. Let V(h) = (�h1 ; : : : ; �hlh)denote the list of the variables appearing in the expression of ch. At operation', the value of these variables is denoted V(h)'.The following result is used in the sequel:Property 3 If ch and ch0 de�ne the same function (perhaps because they aresyntactically equal), Equation (50) holds if V(h) = V(h0) and if the sources ofV(h) at operation � and V(h0) at operation ' are the same.Indeed, if these variables have the same exact source, then they have the samevalue. In the case of fuzzy sources, two variables have the same source if theyhave the same parameter of the maximum. This equality between parametersof the maximum can be obtained by comparing the parameter domains for bothread statements, and this may need another FADA.31

7.2 Relations on parameter setsThe iterative analysis yields properties on parameter domains, as in 5.2. So asto produce more precise results, we are trying to �nd relations on the parametersets and then extend them to parameter domains. We give thereafter the listof the relations that are detected between two parameter sets Ph and Ph0 anda description of their detection.Notice that comparing two sets of parameters is useless if the correspond-ing parameter domains cannot themselves be compared. This occurs when aparameter domain is de�ned w.r.t. a non-linear constraint which does not ap-pear anywhere else, or w.r.t. a variable which does not appear in any set ofparameters of the other domain.7.2.1 Partial equalityEquality Ph = Ph0 holds if V(h) = V(h0) and if the value of V(h) at opera-tion hTh; ~x[1::Nh]i and the value of V(h0) at operation hTh0 ; ~x[1::Nh0]i have thesame source. Detecting this case consists in the computation and comparisonof the sources of V(h) and V(h0).Partial equality This is a more general case: only some quast leaves inthe sources of V(h);V(h0) are equal. The context then takes into accountthe di�erent conditions from the branches of the quast for which these leavesare actually sources. Let F denote the set of iteration vectors verifying theseconditions. Then the partial equality corresponds to the equality:Ph \ F = Ph0 \ F:7.2.2 Image of a parameter setWe now generalize the equality of parameter sets to the case where one param-eter set is equal to the image of the second set by a function.Our purpose is to detect cases in which the value of a non-linear constraintch at a given step of the execution is equal to the value of another constraintch0 at a previous step. That is, we are looking for a function ~e such that:chhTk ;~x[1::Nh]i = ch0hTk;~e(~x[1::Nh])iRelations between a set and the image of a set can thus be detected. So as toverify the hypotheses of 5.1 on the relations between parameter domains, ~e hasto be a monotone increasing a�ne function with respect to loop counters andstructure parameters. Note also that we may have partial equality of a set ofparameters and the image of another set by function ~e.Analyzing the following example brings into play partial equalityand the image of a parameter set by a function.S0: z=0do x=1,n 32

S1: a(z)=xS2: z=f(x)S3: a(z)=0end dodo y=1,nR : r=a(y)end doOur aim is to �nd the source of a(y) in operation hR; yi. For the twocandidate sources S1 and S3, parameter domains are DS1(x; y) =fxjzhS1 ;xi = yg and DS3(x; y) = fxjzhS3;xi = yg. The constraintsare the same and the subscripting expressions are both equal tovariable z. We will thus �rst apply a data
ow analysis to z.First iterate As far as Statement S1 is concerned, the source ofz is if x � 2 then hS2; x� 1i else hS0; []i:For Statement S3, the source is hS2; xi. Let f be the function:f(x) = x� 1. We then have:f(G1 \ fij2 � x � ng) = G3 \ fxj1 � x � n� 1g:We thus have the additional environment:if 2 � x � n then �3 = �1 � 1: (51)Second iterate The set of candidate sources for Statement R fromStatement S1 is:Q�0S1(y; �) = fxj1 � x � n; x = �; x = yg;whose maximum is: ~K�0S1(y; �1) = if �1 = y then �1 else ?. Thedirect dependence from Statement S3 is the same. From (51) wecan compute the source of a(y):�(y) = max� if �1 = y then hS1; �1i else ?;if �3 = y then hS3; �3i else ? != ���������������� if 2 � �1 ^ �1 = ythen max� (hS1; �1i; hS3; �1 � 1i)else ����������� if �1 = y = 1then hS1; �1ielse ������� if �3 = y = nthen hS3; nielse ?�(j) = f?; hS1; 1i; hS3; nig [fhS1;
1i j 2 �
1 � ng:33

7.2.3 Composition of a constraint with an a�ne functionLet us now examine a more general case where constraints ch and ch0 are dif-ferent but there exists some function e such that ch = ch0 � e. From a practicalpoint of view, ch and ch0 have to be a�ne functions of the variables of theprogram. All possible a�ne functions e verifying this equality are found byGaussian resolution.So as to reuse previous results, our aim is to �nd a function f such thate(V(h)hTh;~x[1::Nh]i) = V(h)hTh;f(~x[1::Nh])i:Since this expression is the formal de�nition of a recurrence as given by Redon[18], this problem boils down to the detection of a recurrence on V(h). Noticethat detecting recurrences requires the computation of a data
ow graph, thusadditional iterative analyses and recurrence detections may have to be applied.We now have the following equality:ch(V(h)hTh;~x[1::Nh]i) = ch0(e(V(h)hTh;~x[1::Nh]i))= ch0(V(h)hTh;f(~x[1::Nh])i):We then try to �nd a relation between V(h)hTh;f(~x[1::Nh])i and V(h0)hT 0h;~x[1::Nh0]i.Such a relation is a partial equality or a property on the image of a set ofparameters. Finding such a relation would allow us to �nd a relation betweench(V(h)hTh;~x[1::Nh]i) and ch0(V(h0)hT 0h;~x[1::Nh0]i).Obviously, we can generalize this result to relations betweenV(h)hTh;fn(~x[1::Nh])iand V(h0)hT 0h;~x[1::Nh0]i, where n is a positive integer, as illustrated below.The following example is an application of these ideas:S0: b(0)=...do x=1,nS1: b(x)=b(x)+2S2: if b(x)=x then a(16)=5*xS3: if b(x)=x+4 then a(16)=3*xend doR: z=a(16)The parameter domains for direct dependences from Statements S2and S3, respectively, are: DS2([]) = fxjbhS2;xi = xg and DS3([]) =fxjbhS3 ;xi = x+4g. Non-linear constraints are di�erent: let c2(z; i) =z � i, c3(z; i) = z � i� 4 and ~g�;�(z; i) = (�z � 4 + �; �i+ �). Wehave: c2(bhS3 ;xi; x) = c3(~g�;�(bhS3;xi; x)):Parameterized functions like ~g�;� are found by resolution of a systemof linear equations, and describe the set of possible solutions.We then seek a recurrence on z so as to eliminate ~g�;� and to reduceour problem to the case of an image of a domain of parameters.Recurrence detection shows that:if x > 1 then bhS3;xi = bhS3;x�1i + 2 else bhS3;1i = bhS0;[]i:34

Let us consider functions ~e(z; x) = (z � 2; x� 1) and f(x) = x� 1.When x > 1, we get: ~e(bhS3;xi) = (bhS3;f(x)i; f(x)). We notice thatif n = 2 and � = 1 and � = �2, then:c2(~g�;�(bhS3;xi; x)) = c2(~e2(bhS3;xi; x)) = c2(bhS3;f2(x)i; f2(x));when x > 2. Moreover, a data
ow analysis on b shows that bhS2;xiand bhS3;xi have the same source. We thus come down to a partialimage of a domain of parameters, such that:c3(bhS3;xi; x) = c2(bhS2;x�2i; x� 2);when x > 2.This eventually allows us to prove that the write in S2 covers thewrite which occurred in S3 two iterations before. Thus, the sourcesare:f?g [fhS2;
2ij1 �
2 � ng [fhS3;
3ij1 �
3 � min(2; n)g:7.3 Graph of the analysesThe iterative analysis can be represented by an oriented graph of data
owanalyses. There is an edge from the analysis of the variable v' at operationhR0; ~y0i to the analysis of v at operation hR; ~yi if:� the same non-linear constraint ch appears in the computation of severaldirect dependences for the variable v read in R,� several expressions of non-linear constraints used in these computationsneed the value of the variable v0,� and R0 is one of the statements in which appears v0.Notice that all of the analyses on v have the same predecessors. This comesfrom the fact that the same statements writing v are examined. Moreover, exactanalyses do not have any predecessor. This gives the order of the computationsof the FADAs. We �rst begin with the exact analyses, since they do not haveany predecessor, then we perform the analyses on the variables that have onlyone level of predecessor, and so on. In this way, all needed information will beavailable to reduce the fuzziness for a given analysis.Some cycles may appear in the graph. It means that the result of an anal-ysis is needed so as to reduce its own fuzziness. There is no easy solution tothis problem. However, all the direct dependences of an analysis preceding anode of the graph are not necessarily needed. Indeed, they are combined bydecreasing depth with the dependences of the other predecessors. If the sourceis completely determined during this combination, all direct dependences leftdo not participate to the reduction of the fuzziness. This can prevent an iter-ative analysis to go through a cycle. If this simpli�cation is not possible, theiterative analysis is performed as a structural analysis for the variable of thecycle. 35

8 Related WorkWork on non-linear constraints in dependence analysis can be divided in twoclasses. In the �rst one, the dependence analyzer uses a limited amount ofmathematical knowledge to decide whether dependences exist. In the secondclass, to which this paper belongs, no such knowledge is needed, but the resultsare less precise.An example of the �rst approach is found in Dumay PhD thesis [8] wheretechniques borrowed from formal algebra are used to prove or disprove memorybased dependences. With some information on polynomials and exponentialsand the computation of derivatives, Dumay's system is able to parallelize fa-miliar kernels like bloc matrix product or the Fast Fourier Transform.Using a di�erent approach, Maslov noticed in [14] that the set of integerpoints in a convex body may sometime be de�ned by linear inequalities. Forinstance xy � 1; x � 0; y � 0 is equivalent to x � 1; y � 1. There are twodi�culties with this method:� The number of necessary linear constraints may grow very fast or evenbecomes in�nite (consider e.g. xy � z).� If the non-linear relation de�nes a non-convex body, one has to introducedisjunction, which complicates the subsequent analysis.Still another example of this class of algorithms is the work of Masdupuy[13] in which modulo constraints are handled exactly.In the other class of methods, one uses syntactical information only. Thismay include the structure of the original program, the shape of subscript ex-pressions and the list of variables which occur in them.The work nearest to our own in that direction is the one by Pugh andWonnacott [17, 16]. To compare these two approaches, one must recall that theengine behind Pugh's Array Data
owAnalysis is the Omega calculator, a logicalformula simpli�er. The formulae which are handled by this system are NumberTheory formulae with multiplication and division omitted and constitute whatis known as Presburger arithmetic. It is easy to see that this is enough aslong as one considers static control programs only. To handle more generalsituations, the authors introduce uninterpreted function symbols. For instance,the iteration domain of S in the following program:do i = 1,ndo w = 1 while ...S :is given by: 1 � i � n; 1 � w � f(i);where f is an uninterpreted function. Now, while Presburger arithmetic isdecidable, adding uninterpreted functions renders it equivalent to full NumberTheory, which is undecidable. The Omega calculator has been extended tohandle particular cases in which a simpli�cation is still possible. The outcomemay be: 36

� a formula in which all uninterpreted functions have been eliminated. Thisis the equivalent of an exact FADA.� a formula in which the uninterpreted functions are used to describe a fuzzyrelation. This is the analogue of our use of parameters of the maximum.� In some cases, the structure of the formula to be simpli�ed is such thatit cannot be handled by the Omega calculator. The o�ending term isreplaced by a special marker, unknown. This case does not seem to havea counterpart in FADA.Comparison of Pugh and Wonnacott technique with our own is di�cult,because it depends on detailed knowledge of the inner behavior of the Omegacalculator. Some observations on example E3 may be of interest here. In Pughand Wonnacott's terms, there is a (memory based)
ow dependence relationbetween Statements S1 and T which is described by:f[x]! []j 1 � x � n; p(x)g;where p is an uninterpreted boolean function which represents the outcome ofthe test. To obtain the value-based dependence, one has to add the condi-tion that no write to s intervenes between hS1; xi and hR; []i. The part of thiscondition relating to hS1; x0i is::9x0s:t:(1 � x0 � n; x < x0; p(x0)):None of the constraints in the above formula is strong enough to �x the valueof x0. Hence, the application of a function to a quanti�ed variable cannot beavoided, and this is not handled by the Omega simpli�er ([21], section 8.4.1).There are probably cases in which Pugh and Wonnacott's method may givemore precise results than FADA. This is especially true since Wonnacott ([21]Section 8.3.1) uses semantic knowledge to improve the selection of uninterpretedfunctions. This is an example of the mixed approach, in which an attempt ismade to use all available information, whether syntactical or semantical, toimprove the dependence calculation. This is clearly the road toward a betterunderstanding of dynamic control programs. The next section is a preliminarydiscussion of the kind of problems we have to solve in this direction.From the results of ADA or FADA, one may deduce many useful abstrac-tions, like reaching de�nitions, upward and downward exposed regions, and soon. In the case of scalars, this information can be obtained quite convenientlyby iterative data
ow analysis. These methods can be extended to arrays: anexemple is the work of Peng Tu [20, 19]. Regions are approximated by coarserobjets than polyhedra: for instance, regular sections [3]. When solving data
owequations, one has to compute unions and complements of regular sections,which are not regular sections in general. Hence, one introduces approximateoperations. The information obtained in this way is less precise than the onegiven by ADA or FADA, but the analysis is faster and is precise enough forsolving some problems like array privatization. In our minds, the main interestof FADA is that it gives an exhaustive analysis of the source program, andhence is more versatile than other, less precise techniques.37

9 Final remarks and future workIn this paper, the right-hand sides of statements have been mostly ignored inthe analyses we discussed with the exception of recurrence detection. This isa voluntary restriction, so as to make the analysis purely syntactical. Sucha restriction does not preclude extremely accurate data
ow information, evenwhen arrays are subscripted by arrays. For example, let us consider the programbelow: do i = 0, 2*nS1: b(i) = ...end dodo i = 0, nS2: a(b(i)) = ...end dodo i = n, 2*nS3: a(b(2*n - i)) = ...end dodo i = 0, nS4: ... = a(b(i))end doThe iterative analysis disregard the values the elements of bmay take. However,the analysis can detect that Statement 2 never can be the source of instancesof Statement 4. More precisely, the source is:f?g [fhS3; i0i j n � i0 � 2ng:We may envision iterative analyses where right-hand sides would be takeninto account. Several levels of extension can be imagined, with increasing di�-culty in symbolical computation.First level We may �rst take into account numerically known right-handsides, which is equivalent to constant propagation. For instance, a trivial prop-agation would allow precise analysis in the following program:do i = 1, nS1: b(i) = 0end dodo i = 1, nS2: ... = a(b(i))end doSecond level We may then study the recurrences possibly appearing in theprogram, and try to detect special cases such as constant propagation andinduction variables. This requires a careful classi�cation of possible recurrences:if the right-hand side only reduces a variable (possibly an array element), thenwe only have to deal with some special (possibly parametric) case of valuepropagation. However, here is a typical program to which such an extensionwould be bene�cial: 38

b(0) = 0do i = 0, ...S1: a(i) = ...end dodo i = 1 , nS2: b(i) = b(i-1)end doS3: ... = a(b(k))Then, if we know that 1 � k � n, then �(hS3; ki) = fhS1; 0ig. (If not, thenthe source is f?g [fh1; 0ig, which already is quite precise.) However, assumeStatement 2 is slightly changed into:S2: b(i) = b(i-1) + 1Taking bene�t of right-hand sides then requires more sophisticated symboliccomputations, which are in the range of Redon's tool.10 ConclusionsThis paper gives a method to build a conservative approximation of the
owof values in programs whose control
ow and array accesses cannot be knownat compile-time. Such programs include control-
ow constructs such as whilesand if..then..else constructs, making both control and data
ow unpre-dictable at compile-time. In this paper, we have shown that we can extendthe notion of a unique source to that of a source set, and have designed a setof algorithms which give, in many cases, surprisingly precise results. A fuzzyarray data
ow analyzer is being implemented in Lisp within the PAF projectat PRiSM Laboratory.Our method is generic in so far as it gives a framework for fuzzy analysisthat may be adapted to most exact analysis algorithms. More importantly, thenet e�ect of our handling of while loops and tests is to add equations to thede�nition of the candidate set, thus improving the probability of success of fastanalysis schemes like [15, 12]. Some researchers already proposed techniques tohandle
ow-sensitive array data-
ow analysis: In [7], Duesterwald, Gupta andSo�a describe a �xed point computation to discover may-reaching de�nitions.Even though their method does not handle multi-dimensional arrays and givesonly maximal distances, a fuzzy array data
ow analysis along their lines maybe an interesting alternative to this paper.Applications of FADA to automatic parallelization include static schedul-ing [11], array privatization and register allocation [7]. As a concluding remark,note that a ? in a source set points to a possible programming error. Beyondautomatic parallelization, a fuzzy array data
ow analysis may therefore be ageneral tool for translators, compilers and program checkers, as array data
owanalysis was. 39

References[1] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Aca-demic Publishers, Boston / Dordrecht / London, 1988.[2] Thomas Brandes. The importance of direct dependences for automaticparallelization. In ACM Int. Conf. on Supercomputing, St Malo, France,July 1988.[3] David Callahan and Ken Kennedy. Compiling programs for distributedmemory multiprocessors. The Journal of Supercomputing, 2:151{169, 1988.[4] J.-F. Collard. Space-time transformation of while-loops using speculativeexecution. In Proc. of the 1994 Scalable High Performance ComputingConf., pages 429{436, Knoxville, TN, May 1994. IEEE.[5] J.-F. Collard. Automatic parallelization of while-loops using speculativeexecution. Int. J. of Parallel Programming, 23(2):191{219, April 1995.[6] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array data
ow analy-sis. In Proc. of 5th ACM SIGPLAN Symp. on Principles and Practice ofParallel Programming, Santa Barbara, CA, July 1995.[7] E. Duesterwald, R. Gupta, and M.-L. So�a. A practical data
ow frame-work for array reference analysis and its use in optimization. In ACMSIGPLAN'93 Conf. on Prog. Lang. Design and Implementation, pages 68{77, June 1993.[8] Alain Dumay. Traitement des Indexations non lin�eaires en parall�elisationautomatique : une m�ethode de lin�earisation contextuelle. PhD thesis, Uni-versit�e P. et M. Curie, December 1992.[9] Paul Feautrier. Parametric integer programming. RAIRO RechercheOp�erationnelle, 22:243{268, September 1988.[10] Paul Feautrier. Data
ow analysis of scalar and array references. Int. J. ofParallel Programming, 20(1):23{53, February 1991.[11] M. Griebl and J.-F. Collard. Generation of synchronous code for auto-matic parallelization of while loops. In S. Haridi, K. Ali, and P. Magnus-son, editors, Euro-Par95, volume 966 of LNCS, pages 315{326, Stockholm,Sweden, August 1995. Springer Verlag.[12] C. Heckler and L. Thiele. Computing linear data dependencies in nestedloop programs. Parallel Processing Letters, 4(3):193{204, 1994.[13] F. Masdupuy. Semantic analysis of interval congruences. In D. Borner,M. Broy, and I.V. Pottosin, editors, Int. Conf. on Formal Methods in Pro-gramming and their Applications, volume 735 of LNCS, pages 142{155,Academgorodok, Novosibirsk, Russia, June 1993. Springer Verlag.40

[14] Vadim Maslov and William Pugh. Simplifying polynomial constraints overintegers to make dependence analysis more precise. Technical Report CS-TR-3109.1, University of Maryland, February 1994.[15] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Arraydata
ow analysis and its use in array privatization. In Proc. of ACM Conf.on Principles of Programming Languages, pages 2{15, January 1993.[16] William Pugh and David Wonnacott. An exact method for analysis ofvalue-based array data dependences. In Lecture Notes in Computer Science768: Sixth Annual Workshop on Programming Languages and Compilers,Portland, OR, August 1993. Springer-Verlag.[17] William Pugh and David Wonnacott. Nonlinear array dependence analysis.In Third Workshop on Languages, Compilers, and Run-Time Systems forScalable Computers, Troy, New York, May 1995.[18] X. Redon and P. Feautrier. Detection of reductions in sequentials pro-grams with loops. In Arndt Bode, Mike Reeve, and Gottfried Wolf, edi-tors, Procs of the 5th International Parallel Architectures and LanguagesEurope, LNCS 694, pages 132{145, June 1993.[19] Peng Tu. Array Privatization and Demand Driven Symbolic Analysis. PhDthesis, University of Illinois at Urbana-Champlain, 1995.[20] Peng Tu and David Padua. Array privatization for shared and distributedmemory machines. September 1992.[21] David G. Wonnacott. Constraint-Based Array Dependence Analysis. PhDthesis, University of Maryland, 1995.
41

