Fuzzy Array Dataflow Analysis

Denis Barthou? Jean-Francois Collard! Paul Feautrier*
PRiSM Laboratory
Université de Versailles
45 Avenue des Etats-Unis
F-78035 Versailles Cedex

June 28, 1996

1 Introduction

Whereas processor and interconnection network technologies make giant leaps
nearly every couple of years, the corresponding software technology lags far
behind. In particular, comparatively few parallelizing compilers are used in
production environments. This is partly due to the difficulty for the compiler
to find in the source program the information it needs to exhibit parallelism
and optimize code generation.

Vectorization and parallelization methods are mainly based on the paral-
lelism generated by independent references to distinct parts of arrays. Various
dependence tests have been proposed [1]. However, most of these tests are not
exact, and, even when they are, cannot distinguish between true dependences,
which describe a real information flow, and spurious dependences, in which the
value purported to be transmitted is destroyed before being used. To obvi-
ate this difficulty, methods have been designed to compute, for every array cell
value read in a right-hand-side expression (the “sink”), the very operation which
produced it (the “source”). These methods are called Array Dataflow Analy-
ses (ADA) [10, 15], or Value-Based Dependence Analyses [16]. These ADAs,
however, make quite stringent hypotheses on the input programs. The only
tractable control structures are the do loop and the sequence; loop counters’
bounds and array subscripts must be affine functions of surrounding counters
and possibly of symbolic constants, the structure parameters. Programs follow-
ing this model have been called “static control programs” in [10]. The same
paper has shown that an exact ADA can be mechanically performed on static
control programs.

Obviously, there is a continumm of analyses between the detection of simple
dependences and full-fledged ADA. These analyses are often designed for a
special purpose (e.g., array privatization) and may need less precise information

*Denis.Barthou@prism.uvsq.fr
tJean-Francois. Collard@prism.uvsq.fr.
‘Paul. Feautrier@prism.uvsq.fr

than ADA. The consequence is that they can be applied to less constrained
programs.

The present paper deals with more general control structures, such as ifs
and while loops, and with unrestricted array subscripts. Notice that we assume
that unstructured programs are preprocessed, and that for instance “backward”
gotos are first converted into whiles. However, with such unpredictable, dy-
namic control structures, no exact information can be hoped for in general.
Hence, the aim of this paper is threefold. First, we aim at showing that even
partial information can be automatically gathered by Fuzzy Array Dataflow
Analysis (FADA). This paper extends our previous work [6] on FADA to gen-
eral, non-affine array subscripts. The second purpose of this paper is to formal-
ize and generalize these previous proposals and to prove general results. Third,
we will show that the precise, classical ADA is a special case of FADA.

1.1 Program model

In this paper, our aim is to extend the scope of array dataflow analysis to
programs respecting the following constraints:

1. The only data structures are integers, reals, and arrays thereof.

2. The only control structures are the sequence, the do loop, the while
loop!, and the if..then..else construct. gotos and procedure calls are

forbidden.
3. Basic statements are assignments to scalars or array elements.
4. No pointer, EQUIVALENCE or aliasing is allowed.
Non-linear constraints are equations or inequalities which:

e depend on variables other than loop counters and structure parameters,
and/or

e are non-linearly dependent on loop counters and structure parameters.

For example, non-linear constraints may come from predicates of if or while
constructs or from array subscripts. Obviously, some non-linear constraints
can be removed by replacing some variables by their expression in terms of loop
counters and structure parameters (induction variable detection and forward
substitution). Similarly, some while loops can be transformed into do loops.
We will suppose here that these simplifications have been performed, when
possible, by a previous phase of the compiler.

!Similarly to do loops, an iteration of a while loop is denoted by giving its ordinal number
w 1n the iteration sequence.

1.2 Notations

The k-th entry of vector # is denoted by #[k] or &). The dimension of a given
vector ¥ is denoted by |#|. The sub-vector built from components k to [is
written as: Z[k..[]. If & > [, then this vector is by convention the vector of
dimension 0, which is written [|. For a set of vectors A of dimension m, the set
A, denotes the set {Z[l..n]|7 € A} if n < m, and {77 € Z",2[l..m] € A}
otherwise. By convention, the | operator has priority on all other operators on
sets.

Furthermore, < denotes the strict lexicographic order on integral vectors.
When clear from the context, “max” denotes max¢,i.e. the maximum operator
according to the < order. An instance of Statement S is denoted by (S, 7),
where #, the iteration vector of 8, is the vector built from the counters of loops
surrounding S — including while loops — from outside inward.

By convention, program statements are labeled by capital letters in type-
writer style. Sets of vectors are denoted by capital letters in bold style, prop-
erties by letters in calligraphic style, and operations (instances of statements)
by the last letters of the Greek alphabet (s,0, ¢, x, etc.)

2 A Motivating Example

The following example, even though already used in a previous work [6], illus-
trates the kind and the precision of dataflow information we want to obtain.
(The reader is referred to [6] for the formal derivation of the result.)

program M

doi=1,n

S0 a(i) = ...
if ... then
do j =1, nt2
S1 a(j) = a(j-2)
enddo
endif
enddo

Assume that n = 4, and let us study the case of the instance of Statement
Sy when ¢ = 3 and j = 4, i.e. (S1,3,4). Note that we don’t even know
at compile-time if this instance actually executes. If it does, however, then
the problem is to know where and when the right-hand-side value a(2) was
produced. This source may be an instance of Sq, but not if ¢+ > 3, since this
instance would execute after (S1,3,4). Since the source must write into a(2),
the value of j is fixed to 2. This source cannot be an instance of 31 for ¢ = 3
either, since one can deduce from the bounds of the 7 loop that 7 > 7. Thus,
possible sources are instances (Sy,1,2) and (S1,2,2). Another potential source
is (Sg,2). Note moreover that (Sp,2) overwrites the value that (S;,1,2) may
have written. Thus, the set of potential sources is {(So,2), (S1,2,2)}.

Actually, the iteration points of S; fall into three groups (see Fig. 1 (b)):

e A member (¢,7) of the first group is such that j > ¢ + 2. It has one and
only one possible source from S; (namely, (S1,7, j —2)) since, if point (7, 7)
executes, then (7,7 — 2) did execute too.

e On the contrary, a member of the second group has an unpredictable
source. However, all the members of this group have at least one source,
since all the array cells they read (a(1) through a(n-1)) are written into
by Sg. Dotted edges symbolize this.

e Finally, members of the third group do not have sources in the given
program.

6 6 // First group
5 5
- - Second group
4 4
// - — /
P
3/ 3
/7 N
/A7
2 2
/ﬁ/ Third group
1y 1
i i
1 2 3 4 1 2 3 4
(@ (b)

Figure 1: Dataflow graph of Program M.

3 An Overview of Array Dataflow Analysis

3.1 Exact Array Dataflow Analysis

In synthetic terms, Array Dataflow Analysis (ADA) is a very simple process.
Let us first introduce some notations. A static control program is defined by
its set of operations F and by a total order < on it. If o,7 € F, then ¢ < 7
(read “o before 77) means that operation 7 does not begin executing until o
has terminated. The precise definition of < will be given later (section 3.2).

To each operation o are associated two sets of memory cells: R(o), the set
of read cells, and M (o), the set of modified cells. For static control programs,
these sets can be constructed by a simple examination of the program text.

The basic problem of array dataflow analysis is, given an operation 7, the
“sink”, and a memory cell ¢ which is read by 7 (¢ € R(7)), to find the “source”of
¢ in 7. The source is an operation o(c,7) which writes into ¢ (¢ € M(o(c, 7)),
which is executed before 7, and such that no operation which executes between
o(c,7) and 7 also writes into c.

Let us consider the following set:

Qe,7) =A{¢lce M(¢),¢ <7}

It is easy to see that the above definition of ¢ is exactly the definition of the
maximum of (¢, 7) according to <:

o(e,7) = mjLXQ(C, T).

In this section, all maxima are computed according to <. Hence this suffix will
be omitted without ambiguity.

The computation of o(e¢,7) is discussed in depth in [10]. Let us just say
here that the set Q(¢, 7) can be written explicitly as a union of subsets, each of
which is associated to a statement which modifies ¢ and a dependence depth.
Let us enumerate these subsets as:

In this paper, we will repeatedly use the following general property:
Property 1 If F'= ;e I3, then:

max I’ = maxmax F}.
el

Applying this result to the present case gives:

maXQ(CvT) = mialxgi(ch)v (1)
where
sile, 7) = max Qi(c, 7). (2)

The dependence from (¢, 7) to 7 is know as a direct dependence since [2]. The
evaluation of (1) when the direct dependences are known is a simple exercise in
formal computation. The relevant rules are recalled in Section 3.3.

3.2 Notations and basic concepts

The depth of a construct is the number of surrounding loops. The counter of a
loop at depth k& is the (k4 1)-th component of the iteration vector.

Let (R, #) be the sink operation reading an element a(g(%)) of array a and
(S,) be an operation writing it with subscripts a(f(Z)). Let Ngg be the number
of loops surrounding both S and R. Since the quantity Ngg occurs very often in
the following sections, it will be abbreviated as Ng. Let < be the textual order
of the program. S« T iff S occurs before T in the source text. The sequential
execution order, <, is:

NgR

(s.7) < (R, 7) = \/ (8,7) <, (R.7), (3)

p=0

where

0<p< Ngg:(S,%) <p (R, %) & (£[L..p] = J[L.p)) A (Z[p+ 1] < Flp+ 1]), (4)

<S,f> <NSR <R,@7> & f[l..NSR] = ﬂl"NSR] A S <R. (5)

For a given loop at depth k, Z[k 4+ 1] has a minimum and a maximum which
are given by the loop bounds. In the static control case, these bounds are affine
functions of outer loop counters and structure parameters:

I(Z[1.k]) < &k + 1] < ug(Z[1..k]). (6)

The iteration domain of a statement S is denoted by I(S) and is given by the
conjunction of all inequalities (6) for the surrounding loops and of the predicates
of all surrounding while and if constructs.

Let us suppose that operation 7 above is an iteration of Statement R : (R, %)
and that cell ¢ is element a(g(7)) of an array a. Let us suppose that we are
investigating candidate sources from a Statement S at depth p : (S,Z). If the
source program handles its arrays correctly, S necessarily writes into array a.

—

Let f(&) be the relevant subscripts.
The candidate source (S, Z) has to satisfy the following constraints:

Existence predicate (S,#) is a valid operation:

FeIs). (7)

Subscript equation (S,7) and (R, 7) access the same array cell:
(@) = §(y). (8)

fand g are affine functions of & and %, respectively.

Sequencing condition (S, 7) is executed before (R, %) at depth p:
<Sv f> <p <R'7 37> (9)

Environment Sources have to be computed under the hypothesis that (R, 7)
is a valid operation, i.e. § € I(R).

We conclude first that the ¢); in (2) are indexed in fact by S and p. Each
Qg(¥) is associated to the set:

—

Qs(9) = {7 | ¥ I(s), f(¥)=7g(y), (3.7) <p R, P}, (10)
by the rule:
(8,7) € Qg =7 € Qg(¥)-
Furthermore,< in Qg is associated to the lexicographic order < in Qg(g’)

Since each predicate <, is affine, Qg(gj’) is a Z-polytope. The direct depen-
dence from S to R at depth p is given by the maximal element:

Kg(7) =max Qg(7)- (11)

The maximal value is computed for each depth by integer linear programming
[9]. The corresponding operation is denoted by:

S&(7) = (s, K5(iN).- (12)

The result is a quast, i.e. a many-level conditional in which:

o Predicates are tests for the positiveness of quasi-affine forms? in the loop
counters and structure parameters.

e Leaves are either operation names whose iteration vector components are
again quasi-affine, or L. The special name 1 indicates that the array cell
under study is not modified by S. A coherent way of thinking about L is
to consider it as the name of an operation which is executed once before
all other operations of the program, i.e.:

VS, 71 L < (S,). (13)

In the following, L will be used to denote, also, an undefined vector.

3.3 Combining direct dependences

In the following, we will consider m statements, S; for 1 < k < m, writing
into array a. Beside, we will suppose that the read statement, R, and the read
cell, ¢, stay fixed. We may thus write o(§) instead of o(¢, (R,¢)). With this
convention, the equivalent of (1) is:

o(if) = max max S, K2 ()] . 14
D = om0 (11

When the direct dependences have been found, one must construct the real
source by computing their maximum. Let g be the number of candidate sources
ggk(gj’) To simplify the notations, we assign an index number n,1 < n < ¢, to

each ggk(gf), and rename the latter into 1,,. Then, the basic algorithm computes
the following recurrence:

I<n<g, xn=max (Xn=1>%n),

with
Xo = 1.

Each recurrence step has to compute the maximum of two quasts. This is done
with the help of the following rules®

Rule 1 max. (L,¢) = ¢. (This is simply a restatement of (13).)
Rule 2 if ¢ = if C'then ¢, else ¢, then:

max (¢,7) = if C'then max (¢1,7)else max (¢2,7)

Rule 3 if ¢ and 7 are elementary sources: ¢ = (S, &), T = (R,), then

max (¢,7) = if ¢ < T then Telse ¢.

2Quasi-affine forms may include integer division.
®Rules 1 and 2 have symmetrical counterparts which are not stated here. The reader is
referred to [10] for more details.

Rule 4 let if pthen ¢else 7 be a subtree of a quast, and let C be its context
(i.e. the set of predicates which are encountered on the unique path from the
root to the subtree). Then if C A p is not feasible, replace the subtree by T.
Simalarly, if C A —p is not feasible, replace the subtree by ¢.

Rule 5 if C'then ¢else ¢ = ¢.

3.4 From ADA to FADA

As soon as we extend our program model to include conditionals, while loops,
do loops with complicated bounds or non-linear subscripts, the algorithm above
breaks down. The reason is that conditions (7) and (8) may contain intractable
terms. One possibility is to ignore them. In this way, (7) is replaced by:

e I(s)

where I(S) is a superset of I(S) which is obtained by ignoring non-linear con-
straints. Supposing for the moment that the subscript condition is still linear,
we may obtain an approximate set of candidate sources:

Qs(9) = {7 | #€I(s). (&)=, (8.8) <, R, D)}, (15)

However, we can no longer say that the direct dependence is given by the
lexicographic maximum of this set, since the result may precisely be one of the
candidates which is excluded by the non-linear part of I(S). One solution is
to take all of Qg(gj’) as an approximation to the direct dependence. If we do
that, and with the exception of very special cases, computing the maximum
of approximate direct dependences has no meaning, and the best we can do is
to use their union as an approximation. Can we do better than that? Let us
consider some examples.

program E1l

do x = 1 while ...

Si: s = ...
end do

S2: 8 = ...

R : = s
end

Here and in the following examples, we will always stipulate that all relevant
accesses to the memory cell we are interested in — here s — have been exhibited.
What is the source of s in Statement R? There are two possibilities, Statements
Sy and Sy. In the case of Sz, everything is linear, and the source is exactly (S, []).
Things are more complicated for Sy, since we have no idea of the iteration count

of the while loop. We may, however, give a name to this count, say N, and
write the set of candidates as:

Q3 ()= {(si,2)[1 <z < N}
We may then compute the maximum of this set, which is simply
Cgl([]) =if N > 0 then (S;, N) else L.

The last step is to take the maximum of this result and (Sg, []), which is simply
(S2,[])- This is much more precise than the union of all possible sources. The
trick here has been to give a name to an unknown quantity, N, and to solve
the problem with N as a parameter. It so happens here that N disappears in
the solution, giving an exact result.

Consider now:

program E2

do x = 1 while ...

S1: s(x) = ...
end do
do k = 1,n

R: ... =...8k)
end do
end

With the same notations as above, the set of candidates for the source of s(k)
in (R, k) is:
Q%1(k) ={(S1,2)|1<a < N,z =k}

The direct dependence is to be computed in the environment 1 < k < n which
gives: if & < N then (S;,k) else L. Here, the unknown parameter N has
not disappeared. The best we can do is to say that we have a source set, or
a fuzzy source, which is obtained by taking the union of the two arms of the
conditional:

o(k) € {(S1,k), L}.

Equivalently, by introducing a new notation (%) for the source set at iteration
i, this can be written:

S(k) = {(S1,K). L},

The array dataflow analysis is exact when (%) is a singleton.
Our last example is slightly more complicated: we assume that n > 1,

program E3

do x =1,n
if then
Si: s = ...
else

S2: s = ...
end if
end do

end

What is the source of s in Statement R? We may build an approximate can-
didate set from Sy and another one from S;. Since both are approximate, we
cannot do anything beside taking their union, and the result is highly inaccu-
rate.

Another possibility is to partition the set of candidates according to the
value z of the loop counter. Let us introduce a new boolean function b(x)
which represents the outcome of the test at iteration x. The z-th candidate
may be written

7(z) = if b(z) then (S1,) else (S3, z).

We then have to compute the maximum of all these candidates (this is an
application of Property 1). It is an easy matter to prove that:

v <z = r(x)<7(a).

Hence the source is 7(n). Since we have no idea of the value of b(n), we are
lead again to the introduction of a fuzzy source:

E([) = {81, 1), (S2, 1)} (16)

Here again, notice the far greater precision we have been able to achieve. How-
ever, the technique we have used here is not easily generalized. Another way
of obtaining the same result is the following. Let L = {#]|1 < 2 < n}. Observe
that the candidate set from S; (resp. Sy) can be written {(S;,z)|z € Dg, NL}
(resp. {(S2,z)| = € Dg, } N L) where:

Dg, = {#[b(z) = true} and Dg, = {z|b(z) = false}.

Obviously,
DS1 N DS2 = @, (17)

and
DS1 U DS2 =Z. (18)

We have to compute
f = max(maxDg, N L,maxDg, NL).
It is a general property that (18) implies that:
f = max L. (19)

By (17) we know that § belongs either to Dg, or Dg, which gives again the
result (16).

10

To summarize these observations, our method will be to give new names
(or parameters) to the result of maxima calculations in the presence of non-
linear terms. These parameters are not arbitrary. The sets they belong to — the
parameters domains — are in relations to each others, as for instance (17-18).
These relations can be found simply by examination of the syntactic structure
of the program, or by more sophisticated techniques. From these relations
between the parameter domains follow relations between the parameters, like
(19), which can then be used to simplify the resulting fuzzy sources. In some
cases, these relations may be so precise as to reduce the fuzzy source to a
singleton, thus giving an exact result.

4 Basic Techniques for FADA

We present in this section a formal definition of fuzzy analysis. First of all, we
define a representation for non-linear constraints. Thanks to this representa-
tion, the expression of the source boils down to a computable expression with
linear constraints and unknown parameters. When these parameters take all
the values of a set defined by linear constraints, we get a set of possible sources,
called the fuzzy source. How this set of values is built will be the subject of the
next sections.

4.1 Non-linear constraints

Let us first have a close look at the non-linear constraints. Notice that they
come either from the predicate of a while or if, from a non-linear loop bound
appearing in the existence predicate (7), or from a non-linear array subscript
appearing in the conflicting access predicate (8). Each constraint can be num-
bered according to its apparition order in the text of the program. Let C
denote the set of integers that index non-linear constraints. Given a constraint
¢y, h € C, we note Ty, the statement in which it appears. This statement is
either:

e the then or else branch of a conditional, or
e a loop with non-affine bounds, or

e an assignment statement in which a non-linear subscript is used in an
array access.

If ¢;, appears in the set of candidate sources ng(gj’), the write operation (Sy, &)

depends on the value of ¢;, at the operation (T, Z[1..N4]), where Ny equals N,
if Tj, is a conditional or an assignment, and NTh + 1if Ty, is a do or a while.
In ng(gj’), the expression of the non-linear constraint ¢y is

Ch(gv 37)7 7 = f[lNh]

where 7 € I(Ty) is Np-dimensional. ¢), depends on 7 in the case it comes from
Equation (8). However, since the only term depending on p is the sequencing
predicate which is linear, non-linear constraints cannot depend on p.

11

Definition 1 (parameter set) Let P, (7) be the set of iteration vectors for
which the constraint ¢y, is true. It is called the parameter set and is defined by:

(i) = {z[z e 2V, (25} .

Definition 2 (parameter domain) Let Cg, C C denote the set of the in-
dices of the constraints involved in the computation of ng(gj’) and Mg, =
maXheCS Ny,. The set:

k

. N - M s
Dg (y)=47|7€Z Sk, /\ (Z11..Np] € Pr(¥)) ¢ »
hECSk

is the set of iteration vectors for which all of the constraints indeved by Cg, are
true. This set is called the parameter domain of Sg.

Note that Mg _does not depend on g and that Mg, < Ng . By convention,
. . s . — N
when all constraints in ng(y) are linear, Dg (§) = Z Sk

The following piece of code illustrates these definitions:
program structex

T1: do x=1 while £(x)>0

S1: a(x)=x
if p(x)
T2: then
S2: a(x)=2%x
T3: else
S3: a(x)=3*x
end if
end do
do y=1,n
R : r=a(y)
end do
end
The non-linear constraints are: ¢y (x,y) = (f(z) > 0) from Ty,

ca(z,y) = p(x) from Ty, ¢s(x,y) = -p(a) from Ts. The parame-
ter sets are: P1(y) = {z|f(2) > 0}, P2(y) = {z|p(2)} and P3(y) =
{z[=p(2)} = Po(y)-

The domains are Dg (y) = P1(y), Ds,(y) = Pi(y) N Py(y) and
Dg, (y) = P1(y) N Pa(y).

12

4.2 Parameterization
Let us recall the definition (14) of the source:

7) = Se, K2 ()] .
a(¥) mAX (max (Sk> xsk(y)>)

=< < 0<p<Ng R
k

The purpose of parameterization is to code (14) as a linear problem, so as to
enable the computation of the source o(§) (or perhaps an approximation of
this source) using linear programming methods and tools, even in the presence
of non-linear constraints. We give thereafter the steps to transform (14) in a
parametric linear problem. Let us also recall the definition (11) of the direct
dependence:

Kg (5) = max Qg (7). (20)

We first partition each set ng(gj’) into subsets defined by parametric linear
constraints. Let Lgk denote the set of vectors of dimension Ng defined by the

linear constraints appearing in ng(gj’) The set of candidate sources is:

&, (7 (D) Ds, (Mg,

— —

Partitioning ng(y) is obtained by partitioning Dg, (%) as the union of its

elements:
Dg (= |J {a}
aeDg, (7)

Let Q3" (7,d) = Lg (7) N {@}|n, denote a subset of the partition of Q& (%).
Then:

s = U Qg (21)

Eg (i) = max [|J Q@] (22)
aeDg, (7)

From Equation (22) and Property 1, we have:

_ *p >

An elementary direct dependence I?gi(gf, @) can then be evaluated for each

subset Qgi(gf, @) as a function of its parameters:
]r*p(gj Q) =max Qgi(gf, a), (24)

13

which is computable by parametric integer programming. From Equations (23)
and (24), we have:

I(gk(gj’) = max I(gi(gf,ol’). (25)

If the maximum as defined by (25) exists, then it is reached in at least one
vector of Dg () since there is a finite number of candidate sources. Such a
vector is called a parameter of the maximum:

Definition 3 (parameter of the maximum) All the vectors in Dg (§) for
which (25) is defined are called parameters of the maximum of Dg, for State-

ment Sy at depth p. Let ﬁg (§) be one such vector. (If the mazimum does not
exist, we set ﬁS (%) to an undefined value.) The following equality always holds:

-,

Kg (7) = K& (7.55, ()- (26)

In other words:
=m; Dg (¥),d = (max QL (7 . 27
ﬁsk(7) ax {a a € Dg (9),a (ax Sk(y)) |MSk} (27)

Thus, (14) implies that the source can be written as:

of) = max (max <sk,r*p<y,ﬁ§k@>>>). (28)

= < 0<p<Ng R
k

We can extend (12) into:
@ (D) = (5, B 55 (D). (29)

4.3 Fuzziness

To sum things up, we enumerated each set Dsk(gf) of non-linear constraints by
parameters a. Among these parameters, we distinguished one element for each
p, the parameter of the maximum ﬁS (7). The benefit is that Expression (28)
is computable exactly by parametric mteger programming as a function of the
parameters of the maximum.

However, parameters of the maximum cannot themselves be computed, be-
cause the sets Dg (%) of non-linear constraints cannot be handled.

First “brute-force” solution Each ﬁS (%) is replaced by a bound variable,

call it 47, in the set of all possible values (perhaps Z Sk). This is equivalent
to considering the set below as the set of all possible sources:

M
Y(7) = { max max P, A | 152 € Z Sk,). 30
() { ax (P, g g ST 7 (30)

14

The fuzziness comes from the fact that we do not know the values of the
parameters of the maximum: we would compute a set of possible sources — or
a fuzzy source — by giving all possible values to the parameters.

This would mean that we would not even try to take non-linear constraints
into account. Obviously, this is a safety net for a FADA analyzer and this is

similar to the “panic mode” in Wonnacott’s work [16].
A variant of this solution is to keep the non-linear expressions in the solution,
without trying to interpret them.

- g = M =
Y(y) = < max max S| el Se Yk, p /\ ch(FL[1..Np])
1<k<m \ < 1<p<Ng g o
k hECSk
(31)
In this case, the analyzer just hopes that a later phase of the compiler will be
able to handle this source.

Second solution Our aim is now to try to reduce the size of ¥(7). The first
idea is to try to find properties on ﬁgk(gj’) This was the method used in our
initial work [6] and by Wonnacott.

The parameters of the maximum are defined by non-linear constraints, linear
constraints, and the lexicographic maximum. Intuitively, it was then difficult
to work on non-linear constraints in isolation from other phenomena.

The second idea, proposed in this paper, is thus to handle separately the
non-linear constraints. To do that, we will try to find properties (call them P)
on the parameter domains Dg (#). From these properties P on Dg, (), we will

deduce linear properties (call them P*) on the parameters ﬁgk(gj’) The benefit
of this approach is that we can then prove, for some P, that the properties
found on parameters of the maximum are the most precise that can be derived.
That is, there is no loss of information when deriving P* from P.

Therefore, the method to be presented in the next sections will proceed in
five steps:

1. Properties P will be derived from the parameter domains.

2. We will consider all sets, call them Gy, satisfying properties 7. Note that
for all Dg (¥), there is a set G s.t. Gx = Dg_ (%)

3. For each set Gy, we consider a parameter of the maximum 7}. Note that
when Gy, = Dsk(gf) then 77 = ﬁgk(gj’) We must use as many o as there
are depths, since each parameter of the maximum is used to describe the
set Lgk(gf) NDs, (7)jng which depends on p.

k

4. We derive properties P* defining exactly the set of parameters ;.

5. We build the set of sources corresponding to each 77:

Y(¥) = { max max seP (4, 4%
(9) { 12X em (ocrng g s (7. 7%)

- M - N
T €Z Sk,P*('y?,~..,'ymSmR)}~

(32)

15

which can be computed exactly if P* is a conjunction or disjunction of
linear constraints.

The fuzziness of the source depends on the precision with which P* abstracts
the relations existing among the parameters of the maximum ﬁgk(gf), k=1..m.

4.4 Removing Parameters

The result of this analysis may be considered as the final solution of the prob-
lem, since it gives a parametric representation of the possible sources. It may,
however, be more interesting to “eliminate” the parameters in order to distin-
guish clearly the cases in which the source is precisely known from those in
which there are several possible solutions.

The term max<;cp<p, (maX<0§p§NS R Céi(@ﬂ)
k

is computed as in Section 3.3. Consider a leaf in which a parameter appears.
This leaf represents the set of sources obtained by giving all possible values
to these parameters. The set of possible values is obtained by “anding” all
predicates in the unique path from the root of the quast to the leaf in question.

in (32) is a quast which

Rule 6 Let A(Y) be a leaf governed by | predicates Py, ..., P in the unique path
from the root to the leaf. Then A(7) is transformed into {A(7)| Nz, P;}.

After a systematic application of this rule, any leaf in which parameters occur
is transformed into a set in which the parameters are bound by the predicates
governing the leaf. Leaves which do not depend on parameters become single-
tons.

Now consider a quast:

if C'(7) then Aelse B.

Thanks to Rule 6, A and B are sets of sources. Since the exact value of 7 is
unknown, we cannot predict the outcome of the test. The best we can do is to
take the union AU B as an approximation :

Rule 7 A quast if C(7)then Aelse B is transformed into AU B.

Observe that if we do not simplify our parametric quasts, then leaves which
are governed by inconsistent predicates give empty sets by Rule 6, and then dis-
appear by Rule 7. Similarly, a quast if pthen A(¥)else A(7) is transformed
first into if pthen {A(9)|C A p}else {A(7)|C A =p} and then in {A(F)|C}
which is coherent with rule 5. We may show in this way that our quast simpli-
fication rules and our parameter elimination rules are consistent.

These observations are enough for solving examples E1 and E2. In the
first case, there is one non-linear constraint, which is associated to the
while loop at depth one. This gives rise to one parameter domain Dg (%)
and one parameter of the maximum, 77, with no special properties. The
equivalent of (24):

Kg ([1,77) = max{w|1 < w,w =7},

16

gives the solution:
0 S0y _ s 0 ~0
g, ([I,71) =if 7 > 1 then (S;,7;) else L.

The computation of the direct dependence from S, to S3 is exact, since all
constraints are linear. Their combination gives the final results:

a([]) = 1rnax((Sl,if’_y'§J > 1 then :y'(f) else L, {S5,]})) = (S2,[])-

For E2, the situation is similar, but the definition of the direct dependence
18 now:

[{;gl,w‘f(ﬂ) =max{w|l <w,w=7), w=k}=ifk = 7] then k else L.

Use of rules 6 et 7 then gives

E(H) = {<Sla k)a J-}

Example E3 is more complicated and needs more sophisticated techniques.

5 Finding Properties on Parameter Domains

Our aim now is to find all interesting properties of the parameter domains.
Several techniques have been proposed that find mostly properties on each
parameter domain, independently of each other. The two algorithms presented
in Sections 5.2 and 7 find relations between the parameter domains. We will
first define the general type of property we want to handle. Step 4 of the
previous approach will thus be independent of the analysis technique.

5.1 General properties

The first kind of properties gives constraints on the elements of a parameter
domain, independently of any other parameter domain. For instance, a set of
vectors defined with linear constraints may be included in the parameter domain
under study. This is the case when ¥ is in a parameter domain and we will show
that in this case there is no fuzziness at all in the computation of some direct
dependences. Another example is when the vectors of the parameter domain
satisfy a system of linear constraints. This system is provided by a detailed
analysis of the non-linear constraints. Most of the properties found by Dumay
[8] are of this kind and Maslov [14] has proved that for some specific non-linear
constraints, the parameter domain is equal to a set defined by linear constraints.
Given a known set A(¥) defined by linear constraints, this kind of properties
can be written as:

A(9) € Dg, (¢) or Dg, (§) € A(9).

Another kind of properties involves two or more parameter domains. Such
a property can be an inclusion using the union or intersection of parameter
domains. For instance, in Program structex, we have Dg (¥) U Dg, (%) =
Dg, () and Dg,(7) N Dg, () = 0, which entails that the source can only come

17

from Statement 2 or 3 and cannot come from both at the same time (no kill
between 2 and 3).

Finally, the relations can involve parameter domains or their image by a
simple affine function, so as to express the fact that a parameter domain is
built from another parameter domain by translation, for instance. Such con-
siderations are taken into account by Dumay and suggested by Wonnacott as
an improvement of his methods. A simple affine function will be defined as a
monotone increasing affine function, according to the lexicographic order.

In order to take into account the existing methods for finding properties of
parameter domains, we will consider properties that can be written as conjunc-
tion of relations of inclusion between two sets. Each of these sets can be:

1. a parameter domain or the image of a parameter domain by a mono-
tone increasing affine function, possibly expanded (or reduced) to a set of
different vector dimension, or

2. a set defined by linear inequalities, or
3. the union of sets defined by one of these four definitions, or
4. the intersection of sets defined by one of these four definitions.

In the following section, we will show that the set of the parameters of the
maximum 7} corresponding to all the sets Gy verifying this kind of properties
can be defined exactly by linear constraints. Thus this entails that the fuzzy
source computed with Expression (32) takes into account all the information
derived from the non-linear constraints and only this information.

We now provide an algorithm that finds properties on the parameter do-
mains that can be deduced from the structure of the program itself. The advan-
tage of this method is that no case-by-case detailed analysis of the non-linear
constraints is needed.

5.2 Structural Analysis Algorithm

In this section we have to deal we the structure of the source program. Now, it
is true that we deal only with the structured part of Fortran. We nevertheless
have a problem: Fortran has no independent notation for compound statements.
We have already tacitly extended Fortran by using non-numerical labels and
the PL/I-like do while loop. In the same vein, we will use C-like braces {
} to indicate statement grouping. With these conventions, example structex
becomes:

program structex

TO: {

T1: do x=1 while f(x)>0
T6: A

S1: a(x)=x

T4: if p(x)

T2: then

18

S2: a(x)=2%x

T3: else
S3: a(x)=3%x
end if
}
end do
T5: do y=1,n
R: r=a(y)
end do
}
end

The starting point of the algorithm is a pruned version of the abstract syntax
tree (A.S.T.), in which the only statements are the candidate sources S, 1 <
k < m, the read Statement R and all the control statements which surround
them. We will extend the concept of a parameter domain to all statements in
this simplified A.5.T. Consider for instance a compound statement

To: {T1;...5Tn}.

The parameter domain of T, D (7) is associated to the non-linear part of
the conditions under which Ty is executed. (Again, ¥ is the iteration vector of
the read Statement R.) Depending on the nature of Statement T;, 1 < j < n,
we may say that D (7) = DT, (%), or at least that D, (¥) 2 DTJ(37)|MT .

The form of the algorithm will be a recursive descent in the A.S.T. At each
node, a pattern match will indicate which rule in the algorithm is to be used.
Some of these rules specify that one or more relations are to be “emitted”. The
algorithm will then continue its exploration of the tree. The end result is the
collection of all emitted relations.

A special symbol, E(%), will be used to denote the non-linear part of the
environment (the conditions under which the read statement is executed).Note
that the parameter domain associated to the compound statement representing
the whole program is the set {[]}.

At the end of the algorithm, a post-processing phase, which will be specified
later, will eliminate unwanted information from the original result.

Structural analysis algorithm
1. To: {Ty;...;T,} : Fori=1,...,n do:

(a) If T; is another control statement, emit D (7) = DT (%), then visit

T;.
(b) If T; is one of the source statements, S, : a(f(Z)) = ... and
if f is linear, then emit: Dt (¥) = DT (%), else emit: D (%) 2
(c) If T; is the read statement: R: ... = ... a(g(7)) ..., then

emit D (7) = E(7).

19

—

2. Tp :do w = 1 while p Ty end do : If p is linear* then emit: D (%)
Dr, () else emit: D, () > D, (7 - Vist Ts.
0

3. To : if p then Ty else Ty endif: If p is non-linear then emit Dt (#) N

D, (§) = ¢ and D (§)UDT,(¥) = DT, (¥), else emit: Dt (§) = Dr,(9) =
D, (7). Visit Ty and Ts.

4. T : if p then T endif : If p is non-linear then emit D (%) 2 DT (¥)
else emit: D (7) = D, (¥). Visit Ty.

5. Tp : do 1 = lb,ub Ty end do : If both lb and ub are linear, then emit:
D, (%) = DT, (%), else emit D (%) 2 DTl(gj’)|MTO. Visit Tj.

As the algorithm needs to go through the reduced A.S.T once, the complex-
ity is O(m.s), with s the maximum number of nested control structures and m
the number of write statements. m also gives a bound on the number of leaves
visited in the abstract tree: O(m).

This analysis has a small cost and covers all the cases where non-linearity
comes from control structures, and only these cases.

Post-processing phase The idea is to eliminate all domains except Envi-
ronment E and the domains associated to the potential sources. All emitted
equations of the form D = D’ can be used to eliminate either D or D’. Let us
rank all domains in an arbitrary order, except that the domains of the source
statements and E (the protected domains) are ranked last. Select an equation
in which the highest ranking domain occurs, use it for eliminating this domain
from all other relations, discard the equation and start again. The process stops
as soon as the highest ranking domain is protected. At this point, discard all
relations which contain an unprotected domain. This phase may take as much
as O(m?) time.

Exact analysis Among the results may occur relations of the form:

E(9) = Dg, (),

or
Ds, (7) 2 BD)jug -

Since we are computing sources under the hypothesis that the read state-
ment is executed, we know that 7 belongs to E(7). Suppose then that the prefix
gl1..Mg,] of § is in Lgk(g)lMS . Thus, as the parameters of the maximum are

k

lexicographically lower than § due the sequencing predicate, this entails that
y[1..Mg, | is a parameter of the maximum and the analysis is exact.

An example of such an exact case is when the only while loop in the source
program is the outermost statement. This result was proved by other, less
general means in[6, 5] and justifies a conjecture in [4].

*This indicates that the while loop may be transformed into a for loop and should not
occur in restructured programs

20

5.3 Example

Let us go back to Example structex and apply the algorithm above. Notice
that]\4’1‘1 =1.

Dr,(9) = Dr,(9) 33
Dr,(9) = Dr,(9) 34

w
|_]

—

&
I
o

|_]
w
<t

)
|_]
S

Il

-l
n

@

S

|_]

>
N
ll
W
S o

Dg,(7) N Dg

N

[
TN TN TN TN TN N N N

N

N
ll
|_]
'S
N
TN TN TN TN TN TN T
w
-~J
R N NI N N N g

N
o

w
&

Let us rank these sets in the following increasing order, from 1 to 9: Dg (%),
Ds, (9), Ds, (), E(), D1,(9), D1, (9), D1,(#), D1,(9), D1, (9). Eliminating
D, (%) yields

Then eliminating D, () yields

Dg, (#) U Dg, () = Dg, (¥, (41)
and
Dr,(9) € Dg, (%)
The final result is that the linear properties on the domains are described
by the following predicate:

(41)/\(39) = P(D817D827D83) = (DS2ﬂD53 = @)/\(DS2UDS3 = Dsl). (42)

6 Constructing Properties on Parameters

In the previous section, the purpose was to extract properties 7 on the pa-
rameter domains. The purpose of this section is to derive properties P* on
parameters of the maximum from properties P on parameter domains, without
forgetting sources (correctness) and without adding fuzziness (precision). For
each relation on domains that is of the form given in Section 5.1, we will find a
relation on the parameters that preserves both correctness and precision. More-
over, we will show that P* is a conjunction or disjunction of linear inequalities
thus enabling the exact computation of (32).

Notice that from (20) and (27), we immediately deduce the following result:
the parameter of the maximum is equal to the Mg, first components of ng(y*)
when the latter is defined. This can be generalized to the following property:

Property 2 Let 7] be a parameter of the maximum of the set Gy, for Statement
Sy at depth p. The value of 7, is given by:

77 = max Gy N Lgk(gj’)uwsk.

21

This gives a characterization of the parameters of the maximum. We will use
repeatedly this property in the following.

In the sequel, we will consider properties 7 that are inclusions between
union of and intersection of sets. These sets are either parameter domains, or
arbitrary sets defined by linear constraints. Moreover, the inclusion properties
we consider are such that:

e The left-hand-side of C only consists of intersections.
e The right-hand-side of C only consists of unions.

To simplify the study of such relations, notice that:
Ui Iy C U <= Vi, F; C U TS, (43)

N F; C N F <= V5,0 C F;. (44)

Notice also that, until Theorem 1, we do not take into account the application
of linear functions to parameter domains.

We first present some relations deduced from Property 2 that must be ver-
ified by any parameter of the maximum. We then give some simple results
for the case wher P is a relation of inclusion involving at most one parameter
domain on each side of the inclusion. Then we introduce the use of the union,
of the intersection and finally present the general case, in Theorem 1.

6.1 Characterization of parameters of the maximum

Given a set Gy, for all 0 < p < Ng g, the parameter of the maximum 77 of Gy,
for Statement Sy at depth p must verify Property 2. We will find now Property
P* that must be verified by any parameter of the maximum of any set Gy, for
all 1 <k <m.

Construction of P* According to Property 2, for 0 < p < Ng g, 7 is an
element of Lg (#)ag Or is L:
S Sy

(7% € L, (Dsg) v (= 1) (45)

In particular, when Mg < p < Ng g, L&@)m is equal to {g1..Mg,]} or (.
Therefore, when §[1..Mg | & Gy, 7, = L for Mg < p < Ng g. To sum up this
relation, for all Mg, < p < Ng g:

i LG (7)ng = {71 Ms,]} then A A= v(3=dmg,)).
* Mg <p<Ng R

(46)
Property P* is then defined by Equations (45) and (46), for 1 < k < m.

22

How much fuzziness is added Consider a set of vectors 7}, for 1 < k < m,
0 < p < Mg, , verifying P* defined by Equations (45) and (46). In order to
prove that P* is an exact characterization of the parameters of the maximum,
we want to exhibit Gq,..., Gy, such that 7} is a parameter of the maximum
of Gy for Statement S5 at depth p, for 1 <k < m,0 < p < NSkR- We define
these sets by:

Gi={7[10<p< Ng,p},
for 1 < k < m. We try to show that

77 = max Gy N Lgk(gj’)uwsk. (47)

For p < min(Mg_, Ng g), notice that quk(gf)|MS N Lgk(g)lMS =0ifqg#p
k k
thanks to the sequencing condition (9). Equation (45) then shows that Gy N
Lgk(g)lMS = {71}, thus (47) is verified. For p > Mg, , (46) and the above
k

remark imply (47).

Hence P* defined by (45) and (46) describes exactly the set of the param-
eters of the maximum of all possible sets, for Statement S; at depth p, for
1§k§m,0§p§NSkR.

6.2 Inclusion between two parameter domains

Suppose now that Property P on the parameter domains is
DSi(gj)|min(MSi Mg) NA:(7) C Dsj(g)|min(MSi,MS]) U A;(9),

where A;(7) and A;(7) are two sets defined by linear constraints, of dimension
M = min(Mg,, Mg,). Let us consider all sets G;, G; verifying P and such that
the dimension of the vectors of G; (resp. G;)is Mg, (resp. Mg). Let 7 and

’_y’f be the respective parameters of the maximum for Statements S; and S; at
depth p. The general expression of P is:

P(Gi; Gj) = (G N Ai(7)) € (G 0 AG(H))-

Construction of P* Let us try to find a necessary condition for 77 and ’_y']q
to be parameters of the maximum of G; at depth p and of G; at depth ¢,
respectively, for all 0 < p < Ngp,0 < ¢ < NSJR- According to 6.1, Equations
(45) and (46) are verified by 77 and 77. Besides, for 0 < p < Ngg,0 < ¢ <
Ns g, if 7[1..M] € quj(gf)|M NLg () N Ai(F), then either 77[1..M] € A;(3)
or, thanks to Property 2:

%p[lM] = max G2|M N Az(gj) N quj(gj)uw N ng(gj)'M

I Property P on G; and G;, and 77[1..M] ¢ A;(¥)
< max Gy, 0 quj(gf)|M N Lgi(y_’)|M

UL (P = (L4 (Diasg

23

< max (Gj N quj(gf)|MSJ)
|l Property 2
< Fi1.M].

|M

When Mg > MSJ, this is equivalent to

T Ms <97,

otherwise:

Thus, if P is defined by P(Gi, G;) = Gip N Ai(7) € Gjp,NA;(7)) then P~
can be defined by the conjunction of (45), (46) and, for all 0 < p < Ngp,0 <
q < Ng R
if #[1.M] e L§1(§)|MﬂLqu(37)|MﬂAi(37) then 77 [1.M] € A;(7)V77[L..M]<7][1..M].

(48)

Notice that thanks to the sequencing predicate (9), when p or ¢ is lower
than min(M, Ng g, Ng g) and p # ¢, then Lg () N quj(g]’)|M = (.

How much fuzziness is added? Let us now pick a set of parameters 7,
k= 1.m,p=0..Ng g verifying P~ defined by (45),(46) and (48). In order to
prove that no fuzziness is added, we want to exhibit (Gq,..., G,,) such that
P(Gi, G;) is true and 7}, is the parameter of the maximum of Gy, for Statement
Sk at depth p, for all 1 <k <m,0 < p< Ng g.

Let us define some new vectors 7, of dimension Mg . forall 0 < p < Ngpg:

?Z[lM] = J7[1..M]
LM +1.Mg] = mingeo. Ng g TIM +1..Mg]
If 77 = L then 7% = L.

Let us define the sets Gy by:

G = {7,10 < p < Ng,g} for k # j,
G; = {7/10 < ¢ < Ngp} U{¥]|0 < ¢ < Ngp,75[1..M] € Ai(9), 7[L..M] & Aj(9)}-

These sets verify the two conditions:

o Gijn N Ai(Y) € Gy UA;(Y): for each P, i yP[1.M] ¢ A;(¥) then
7 N AY) € G|y otherwise {77} m € Aj(7). Hence the condition
is verified.

e 77 is a parameter of the maximum of Gg: we try to show that (47) is
verified. For k # j, this was proved in 6.1.

Suppose now k = j. As in the previous case,

max {’_y’]q| 0<qg< NSJR} N L]éj(g)lMS = 7%
J

24

There remains the computation of:
max {7510 < ¢ < Ng g F5[1.-M] € Ai(7). T511.-M] ¢ Aj() }NLE (D)jar-

As the last coordinates are the same for all 7;'1]‘7 0 < g < Ngp, this is
equivalent to the computation of:

max {F7[1..M]|0 < ¢ < Ng g, /[1..M] ¢ A;() | VL (s 0 Ai(F)-

According to Equation (45), ¥/[1..M] € LS (7)ar or F{[1..M] = L. There-
fore the expression of the maximum is:

max {F{[1..M]|0 < g < Ng g, 7/[1..M] ¢ A;(7) }LE (7)NLE (7)nNA(D),

which is lower than 77[1..M] according to Equation (48). As ¥/[M +
1..MSJ]§’7§?[M + 1.Mg] for all 0 < p < Ng g by definition, this shows
that Equation (47) is verified for k = j, i.e. ’_y’f is a parameter of the
maximum for G; for Statement S; at depth p.

Therefore the conjunction of (45),(46) and (48) defines exactly the set of the
parameters of the maximum of all sets Gy,..., Gy, verifying G;jps N A;(3) C
Gy Y A (7). No fuzziness is added when deriving P* from P.

Particular cases The properties on the parameters of the maximum corre-
sponding to relations on the parameter domains defined by:

AL() € Dg, (§) U Ax(y) or Dg, () N A1) € Ar(),

where Ay(¢) and A (%) are sets of vector size Mg, defined by affine constraints,

can be derived in the same way as above.
The property P* corresponding to Aj(7) C Dg, (7) U Ax(¥) is defined by

(45), (46) and:

ingk(g)lMSk NA%(7) # 0 then maXL’é (g)|MS NAL(7) € Ak(¥)\/maXL ()lMSk NAL (9 <A,

and the property P* corresponding to Dg () N AL(7) C Ax(9) is defined by
(45), (46) and:

if 77 € Lg, (Mimg N AL(Y) then 7 € Ar(y).

6.3 Union of parameter domains

We now extend the previous results to properties using the union operator on
both sides of the inclusion. As U;F; C U;F} is equivalent to F; C U;F}, Vi, we
will consider the following property P on the parameter domains:

Ds. (i) N A C | Ds (7)m U A(9),
jeJ

25

where M = min(Mg, , minjes(Msg;)), Ai(7) and A(¥) are two sets defined by
linear constraints of vector dimension M and J is a set of indices not including
i. Let us consider all sets G; and Gj,j7 € J verifying P and such that the
dimension of the vectors of G; (resp. Gj) is Mg, (resp. Mg). Let 7 and
’_y’f be the respective parameters of the maximum for Statements S; and S; at
depth p.

Construction of P* Asin 6.2 the parameters 77 are constrained by (45) and
(46). Moreover, it can be shown that, for all 0 < p < Ngg,0 < ¢; < Ng g,

if ¥7[1.M] € Lg. |MﬂL DuNA(F) then (1. M] € A(f) \/ 7[1.M]<FV[1..

Jjed JjeJ
(49)
Thus if P is defined by P(G;,Gj,j € J) = Gipy N Ai C Uy Gj U A(7)
then P* is defined by the conjunction of the equations (45), (46) and (49).

How much fuzziness is added? It can be shown in the same manner as in
6.2 that P* defines exactly the set of the parameters of the maximum of all the
sets Gy, G;,j € J verifying P.

This property is exactly what is needed to express the fact that at least one
branch of a conditional is taken each time the conditional is executed.

Particular case When P is defined on the parameter domains by:

U DS |man€JMS UA()
J€J

then the corresponding property on the parameters of the maximum is defined

by (45), (46) and:

if ﬂLqﬂ *|mmJ€JMS NA(J) #0theny € A'(y \/’y<<’y [1.. mmMS I,
JEJ JEJ

= 95 s
where 7 stands for max();c; LSJJ(y)lminjeJMsj N A(7).

6.4 Intersection of parameter domains

Let us examine now relations involving intersections of parameter domains.
This situation occurs when we want to express the fact that exactly one branch
of a conditional is taken each time the conditional is executed.

We first examine the particular property:

D, (§)min(rg Mg) N Ds, (F)min(ug Mg) = 0.
2 J ? J

Let us consider all the sets G; and G respectively of vector size Mg, and Mg
verifying this property. Let M denote min(MSi,MSJ).

Construction of P* Clearly, if ¥ and ’_y’f are the parameters of the maximum
of G; and G; then 7[1..M] # ¥![1..M]. P~ will then be defined by this equation
and by (45) and (46).

26

How much fuzziness is added? The above definition of P* defines exactly
the parameters of the maximum of all the sets G; and G; such that G;p; N
Gj = 0. Indeed, given 77 and 77, for all 0 < p < Ngg,0 < ¢ < Ns R
verifying P*, the sets {7/]0 < ¢ < Ngg} and {7/]0 < ¢ < Ng,r} have an
empty intersection and 77 (resp. ’_y'f) is the parameter of the maximum of G;
(resp. Gj) for Statement S; (resp. S;) at depth p (for the proof, see Section
6.1)

For the general case, we define three new sets:
* Ginj = Gi|Muax N G,

e G,_;, =G, - Gj|MS. and
° Gj—i = G]‘ - G”MS R
J

with M. = maX(MSivMS])' We have G; = Gi—JUGiﬁJ|MS and G]‘ = G]‘_Z'U

Gm“MS . Moreover, each of the three new sets is disjointed from the two others.
J
Therefore, we can replace a property using G; and G; by an equivalent property

using G;_;,G;_; and G;n;. Doing repeatedly such transformations on Property
P, we will eventually get a property using only relations of inclusion between
unions of sets and relations of empty intersections of sets. Both relations can
be transformed into relations on parameters of the maximum without adding
fuzziness.

6.5 General relations

This theorem sums up the results obtained in this section and gives the steps
for constructing Property P* from a Property P verifying the hypotheses stated
in 5.1.

Theorem 1 For every property P on parameter domains in the class of prop-
erties defined in 5.1, the set of the parameters of the maximum for all the sets
verifying P is defined by a conjunction or disjunction of linear terms on the
elements of this set. This set can be represented by a quast.

Proof We first consider properties P with at most one relation,
simplified with (43) and (44). All the intersections between param-
eter sets are transformed into new sets thanks to Section 6.4. The
new property gives a Property P* by using the results of Section
6.3 and 6.4. P* is defined as a conjunction or disjunction of linear
terms on the parameters of the maximum.

Concerning the application of monotone increasing functions to pa-
rameter domains, the monotony preserves the parameters of the
maximum: if ’_y’,f is the parameter of the maximum of Gy for S; at
depth p then t(7}) is the parameter of the maximum of ¢(Gy) for
S at depth p provided that ¢ is an increasing function. Therefore

27

the previous results apply easily to parameter domains transformed
by linear monotone increasing functions.

Finally, it can be easily shown that when Property P is a conjunction
of several relations of inclusion, Property P* is the conjunction of
the properties on the parameters of the maximum corresponding to
each relation.

6.6 Examples
6.6.1 Program E3

We present thereafter the formal computation of the source of Statement R of
Program E3 presented in Section 3.4. We recall the property P on the parameter
domains:

P(Dg,,Dg,) = (Dg, NDg, =0) A (Dg, UDg, = Z).

Note that in this case the parameter domains do not depend on ¥, they are sets
of scalars and Ng g = Ng,p = 0. From Dg N Dg, = 0 and Section 6.4, we
deduce one conjunct of P*: 47 # 7v,. From Section 6.1, we have the relations:
1€ L%l(y) Vyi=1,72€ L%2(y) V92 = L. Relation (46) is obviously verified
since Mg, = Mg, = 1 > 0 = Ng g = Ng,g- The relation Dg UDg, = Z
can be written Z C Dg, U Dg . Applying the result of the particular case of
Section 6.3 with A(y) = Z and A'(§) = 0, we get the relation:

if L%l(y) N L%2(y) # O then \/ max L%l(y) N L%Z)(y)g’yq.
1<¢<2

Therefore, P* is defined by:

Pirye) = (n#7)
My eLg (y) V= 1)
My2 € Lg (y) Ve = 1)
A(if L%1 (y)N L%2(y) # O then \/ max L%1 (y)N L%2(y)§7q).
1<¢<2
As L%l(y) = L%2(y) = {z|1 <z < n} and we assumed that 1 < n, L%l(y) N

L%2(y) is not empty and its maximum is n. We may rewrite P* as:

P (y1.72) = (1 #72)
AMI<m<nvy =1)
AMI<y<nvy=1)
An <y V<)

It can be shown easily that as a consequence:

(11=nAy2<n)V(1n<nAvy=n).

28

For each clause of P* in which there is a conditional or disjunction, there
will be two different contexts for the computation of the source. Hence the
quast of the source begins with:

ifyy=nAv<n
then Plug in the result given by PIP in context v; = n,v, < n
else Plug in the result given by PIP in context v < n,y2 =n

The parametric sets of candidates are:
Qg?(y,a) = Qgg(y,a) ={z]1 <z <n,z=a}.
The parametric direct dependences are:
I_fg?(y,a) = K’gg(y,a) = ifl <a <nthenaelse L.
Hence the parametric source, after simplification, is:
if 1 = n Ay2 < nthen (51, n) else (S, n),

and the fuzzy source is:

Y(y) = {(S1, 1), (S2,m)}.

Therefore no previous value of s can reach Statement R.

6.6.2 Program structex

Let us go back to Example structex. We recall the properties P on the domain
given by (42) in Section 5.2.

(41) A (39) = P(Dg,,Dg,,Dg,) = (Dg, N Dg, = 0) A (Dg, UDg, = Dg,).

From Dg, N Dg, = §) and Section 6.4, we deduce one conjunct of P*: 75 # 5.

We write DS2 U D53 = DS1 as DS2 U D53 2 D517 DS2 - D517 D53 - Dsl.
We then apply Sections 6.3, 6.2 and 6.2, respectively. Note that Mg =1 and
Ng g =0for 1 <k < 3. We get:

Yk, 1 <k <3,(y eLg (y)V (1 = 1),

ify, € Lgl(y) N L%2(3/) N L%g(y) then (v < 7v2) V(71 < 73),

if vy, € L%l(y) N L%2(y) then vy < 74,

and
if y3 € L%1(j) N L%g(y)then ~v3 < 71,

respectively.

29

As L%l(y) = L%2(y) = L%g(y) = {z| 2 = y}, P* can be simplified in:

P (11:72,73) = (72 # 73)
AMyt=yVy=1)
AMyz=yVye=1)

AMyz=yVys=1)

(
(

>

if 7, = ythen y < 1)
A(if y3 = ythen y < 1)
A(ify; = ythen (y < v2) V (y < 73)).

Due to the context, the quast of the source begins with the predicates:

ify =y
ify, =y
ifys =y
then | then Plug in the result given by PIP in context
then else Plug in the result given by PIP in context v = y,72 = y,73 = L
ifys =y
else | then ..
else ..
ify,=y
ifys =y
then | then ..
else else ..
ifys=y
else | then ..
else ..

The parametric sets of candidates are:

Q3 (y,0) = Q5 (y,0) = QP (y, @) = {z|x = a,2 =y}
The parametric direct dependences are:

I?g?(y,a) = I?gg(y,a) = I?gg(y,a) = ifa = ythen yelse L.

The parametric source obtained in the context, after simplification, is:

if v, = ythen (S3,y) else if y3 = ythen (S5, y) else L.
Thus the fuzzy source is:

() = {(S2,9), (S3,9), L}

This shows that the dependences from statements 2 and 3 kill the dependence
from 1.

7 Iterative analysis

In this section, we will show that we may go one step beyond in data-flow
analyses. That is, that the result of a first application of the FADA analysis
may in turn help a second application in deriving a more precise result.

30

To see this, suppose that the same array occurs in the l.h.s. of two state-
ments, with differing variables as subscripts. These variables are supposed not
to depend linearly on induction variables. Dataflow analyses do not make as-
sumptions on the values of variables, and therefore are not able to give the exact
source. We may, however, try to prove that whatever the values of these vari-
ables, these values are equal. As hinted above, we may apply a dataflow analysis
on the subscripting variables themselves, thus iterating the overall process of
the analysis.

We may generalize this remark to non-linear constraints. Given two con-
straints that are the same function but appear at different places in the program,
we can say that they have the same value if the variables they use are the same
and have the same values.

Therefore, the purpose of iterative analysis is to find relational properties
between the non-linear constraints appearing in the existence predicates (7)
and in the conflicting access constraints (8) of different write statements. This
method may use the results of dataflow analysis on the variables of the non-
linear constraints so as to find more accurate relations. As this dataflow analysis
can be fuzzy, the method can then be applied once more and eventually the
fuzziness will be reduced by successive analyses. This method finds some rela-
tions between the parameter sets and then extends these relations to the real
domains of parameters.

The key remark in this section is that two values of the same variable at
two different steps of the execution are equal if they have the same source.

7.1 Variables in non-linear constraints

To formalize the previous paragraph, let ¢, and ¢, be two non-linear con-
straints. Our purpose is to decide whether the value of ¢j, at operation 7 is the
same as the value of ¢y at operation ¢:

S (50)

So far, we have defined constraints as functions of i and of the iteration vector
of the surrounding loops. As a matter of fact, a constraint ¢; depends on
variables that are functions of the iteration vector. Let V(h) = (vf,.. .,vlf;)
denote the list of the variables appearing in the expression of ¢j,. At operation
¢, the value of these variables is denoted V(#),,.

The following result is used in the sequel:

Property 3 If ¢;, and ¢jy define the same function (perhaps because they are
syntactically equal), Equation (50) holds if V(h) = V(R') and if the sources of
V(h) at operation T and V(h') at operation ¢ are the same.

Indeed, if these variables have the same exact source, then they have the same
value. In the case of fuzzy sources, two variables have the same source if they
have the same parameter of the maximum. This equality between parameters
of the maximum can be obtained by comparing the parameter domains for both
read statements, and this may need another FADA.

31

7.2 Relations on parameter sets

The iterative analysis yields properties on parameter domains, as in 5.2. So as
to produce more precise results, we are trying to find relations on the parameter
sets and then extend them to parameter domains. We give thereafter the list
of the relations that are detected between two parameter sets Py and P, and
a description of their detection.

Notice that comparing two sets of parameters is useless if the correspond-
ing parameter domains cannot themselves be compared. This occurs when a
parameter domain is defined w.r.t. a non-linear constraint which does not ap-
pear anywhere else, or w.r.t. a variable which does not appear in any set of
parameters of the other domain.

7.2.1 Partial equality

Equality P, = Py holds if V(h) = V(R) and if the value of V(h) at opera-
tion (Ty, Z[1..Np]) and the value of V(') at operation (T, Z[1..Ny/]) have the
same source. Detecting this case consists in the computation and comparison

of the sources of V(h) and V(1/).

Partial equality This is a more general case: only some quast leaves in
the sources of V(h), V(h') are equal. The context then takes into account
the different conditions from the branches of the quast for which these leaves
are actually sources. Let F denote the set of iteration vectors verifying these
conditions. Then the partial equality corresponds to the equality:

P,NF =P, NnF.

7.2.2 Image of a parameter set

We now generalize the equality of parameter sets to the case where one param-
eter set is equal to the image of the second set by a function.

Our purpose is to detect cases in which the value of a non-linear constraint
cp, at a given step of the execution is equal to the value of another constraint
cp at a previous step. That is, we are looking for a function € such that:

Ch{Ty,@1..Np]) = Ch'(Ty,&(Z[1..Np]))

Relations between a set and the image of a set can thus be detected. So as to
verify the hypotheses of 5.1 on the relations between parameter domains, € has
to be a monotone increasing affine function with respect to loop counters and
structure parameters. Note also that we may have partial equality of a set of
parameters and the image of another set by function €.

Analyzing the following example brings into play partial equality
and the image of a parameter set by a function.

SO: z=0
do x=1,n

32

Si: a(z)=x

S2: z=f (%)
S3: a(z)=0
end do

do y=1,n
R : r=a(y)
end do

Our aim is to find the source of a(y) in operation (R, y). For the two
candidate sources Sy and S, parameter domains are Dg (z,y) =
{elz(s, 2y = v} and Dg (2, y) = {z]zs, ,y = y}. The constraints
are the same and the subscripting expressions are both equal to
variable z. We will thus first apply a dataflow analysis to z.

First iterate As far as Statement Sy is concerned, the source of
z is
if 2 > 2then (S;,z — 1) else (S, []).

For Statement Sz, the source is (S3,z). Let f be the function:
f(z) =2 — 1. We then have:

f(Gin{i2<z<n})=Gsn{z[l <z <n-1}.
We thus have the additional environment:
if2 <z <nthen 3 =p05; — 1. (51)

Second iterate The set of candidate sources for Statement R from
Statement S is:

Qs (y,0) = {z[l <z <z = o,z =y},

whose maximum is: K’é?(y,ﬁl) = if §; = ythen Gy else L. The
direct dependence from Statement S3 is the same. From (51) we
can compute the source of a(y):

B if 31 = ythen (S, 1) else L,
oly) = max (if 33 = ythen (S3, fs) else L

if2< i ANBL=y
then max. ((S1,051),(Ss, 81 — 1))
ifo=y=1
= then (Sq, 1)
else iffs=y=n
else | then (S3,n)
else L

(1) = A48, Dy (Ss,m) U{(S1,m) | 2 < < m

33

7.2.3 Composition of a constraint with an affine function

Let us now examine a more general case where constraints ¢; and ¢js are dif-
ferent but there exists some function e such that ¢, = ¢y 0o e. From a practical
point of view, ¢, and ¢ have to be affine functions of the variables of the
program. All possible affine functions e verifying this equality are found by
Gaussian resolution.

So as to reuse previous results, our aim is to find a function f such that

(Vg on.v) = V), p@n.v):

Since this expression is the formal definition of a recurrence as given by Redon

[18], this problem boils down to the detection of a recurrence on V(h). Notice

that detecting recurrences requires the computation of a dataflow graph, thus

additional iterative analyses and recurrence detections may have to be applied.
We now have the following equality:

(V) an.ngy) = ew(e(V(h) g, z1.8,0))
= (VW) sam.nu))-
We then try to find a relation between V(h) g, ¢z .n,p) 2nd V(h/)<T;va[1"Nh’]>'

Such a relation is a partial equality or a property on the image of a set of
parameters. Finding such a relation would allow us to find a relation between
(V) z1.v,7)) and ew(V(R) s a1 w,))-

Obviously, we can generalize this result to relations between V(h)(Th,f"(f[l..Nh]))
and V(h/)(T}'va[LNh/D’ where n is a positive integer, as illustrated below.

The following example is an application of these ideas:

S0: b(0)=...
do x=1,n
S1: b(x)=b(x)+2
S2: if b(x)=x then a(16)=5%x
S3: if b(x)=x+4 then a(16)=3%x
end do
R: z=a(16)

The parameter domains for direct dependences from Statements Sy
and 83, respectively, are: Dg ([]) = {z[b(s, .,y = } and Dg,([]) =
{z[bs, o) = z+4}. Non-linear constraints are different: let ca(z,) =
z—1,c3(2,0)=2z—i—4and g, \(2,7) = (pz—4+ A, pi + A). We
have:
c2(b(s, o)) = 3(Fu(0(S, 2y5 7))

Parameterized functions like g, \ are found by resolution of a system
of linear equations, and describe the set of possible solutions.

We then seek a recurrence on z so as to eliminate g, \ and to reduce
our problem to the case of an image of a domain of parameters.
Recurrence detection shows that:

if$ > 1 then b(Sg,x> = b(Sg,x—1> —|— 26156 b<8371> = b(SO7[]>

34

Let us consider functions é(z,z) = (2 — 2,2 — 1) and f(z) =2 — 1.
When z > 1, we get: é(bs, ,y) = (bs, s(x)), /(). We notice that
ifn=2and p=1and A = =2, then:

ca(Fun(b(S,)5) = €2(@ (s, 1y 7)) = ealbis, 2> F2(2)),

when x > 2. Moreover, a dataflow analysis on b shows that big, .
and byg, .y have the same source. We thus come down to a partial
image of a domain of parameters, such that:

c3(bs, >) = c2(bs, po2), T — 2),
when z > 2.

This eventually allows us to prove that the write in Sy covers the
write which occurred in Sz two iterations before. Thus, the sources
are:

{L}U{(S2,72)|1 <72 < n} U {(S3,73)|1 < 73 < min(2,n)}.

7.3 Graph of the analyses

The iterative analysis can be represented by an oriented graph of dataflow
analyses. There is an edge from the analysis of the variable v’ at operation
(R, 7'} to the analysis of v at operation (R, %) if:

e the same non-linear constraint ¢, appears in the computation of several
direct dependences for the variable v read in R,

e several expressions of non-linear constraints used in these computations
need the value of the variable v/,

e and R’ is one of the statements in which appears v’.

Notice that all of the analyses on v have the same predecessors. This comes
from the fact that the same statements writing v are examined. Moreover, exact
analyses do not have any predecessor. This gives the order of the computations
of the FADAs. We first begin with the exact analyses, since they do not have
any predecessor, then we perform the analyses on the variables that have only
one level of predecessor, and so on. In this way, all needed information will be
available to reduce the fuzziness for a given analysis.

Some cycles may appear in the graph. It means that the result of an anal-
ysis is needed so as to reduce its own fuzziness. There is no easy solution to
this problem. However, all the direct dependences of an analysis preceding a
node of the graph are not necessarily needed. Indeed, they are combined by
decreasing depth with the dependences of the other predecessors. If the source
is completely determined during this combination, all direct dependences left
do not participate to the reduction of the fuzziness. This can prevent an iter-
ative analysis to go through a cycle. If this simplification is not possible, the
iterative analysis is performed as a structural analysis for the variable of the
cycle.

35

8 Related Work

Work on non-linear constraints in dependence analysis can be divided in two
classes. In the first one, the dependence analyzer uses a limited amount of
mathematical knowledge to decide whether dependences exist. In the second
class, to which this paper belongs, no such knowledge is needed, but the results
are less precise.

An example of the first approach is found in Dumay PhD thesis [8] where
techniques borrowed from formal algebra are used to prove or disprove memory
based dependences. With some information on polynomials and exponentials
and the computation of derivatives, Dumay’s system is able to parallelize fa-
miliar kernels like bloc matrix product or the Fast Fourier Transform.

Using a different approach, Maslov noticed in [14] that the set of integer
points in a convex body may sometime be defined by linear inequalities. For
instance zy > 1,z > 0,y > 0 is equivalent to & > 1,y > 1. There are two
difficulties with this method:

e The number of necessary linear constraints may grow very fast or even
becomes infinite (consider e.g. zy > z).

e If the non-linear relation defines a non-convex body, one has to introduce
disjunction, which complicates the subsequent analysis.

Still another example of this class of algorithms is the work of Masdupuy
[13] in which modulo constraints are handled exactly.

In the other class of methods, one uses syntactical information only. This
may include the structure of the original program, the shape of subscript ex-
pressions and the list of variables which occur in them.

The work nearest to our own in that direction is the one by Pugh and
Wonnacott [17, 16]. To compare these two approaches, one must recall that the
engine behind Pugh’s Array Dataflow Analysis is the Omega calculator, a logical
formula simplifier. The formulae which are handled by this system are Number
Theory formulae with multiplication and division omitted and constitute what
is known as Presburger arithmetic. It is easy to see that this is enough as
long as one considers static control programs only. To handle more general
situations, the authors introduce uninterpreted function symbols. For instance,
the iteration domain of S in the following program:

doi=1,n
do w = 1 while ...
S :

is given by:
1<i<n, 1< w < f(i),

where f is an uninterpreted function. Now, while Presburger arithmetic is
decidable, adding uninterpreted functions renders it equivalent to full Number
Theory, which is undecidable. The Omega calculator has been extended to
handle particular cases in which a simplification is still possible. The outcome
may be:

36

e a formula in which all uninterpreted functions have been eliminated. This
is the equivalent of an exact FADA.

e aformula in which the uninterpreted functions are used to describe a fuzzy
relation. This is the analogue of our use of parameters of the maximum.

e In some cases, the structure of the formula to be simplified is such that
it cannot be handled by the Omega calculator. The offending term is
replaced by a special marker, unknown. This case does not seem to have
a counterpart in FADA.

Comparison of Pugh and Wonnacott technique with our own is difficult,
because it depends on detailed knowledge of the inner behavior of the Omega
calculator. Some observations on example E3 may be of interest here. In Pugh
and Wonnacott’s terms, there is a (memory based) flow dependence relation
between Statements S; and T which is described by:

{le] =11 <2 <n,p(e)},

where p is an uninterpreted boolean function which represents the outcome of
the test. To obtain the value-based dependence, one has to add the condi-
tion that no write to s intervenes between (Sy,z) and (R,[]). The part of this
condition relating to (Sy,a’) is:

—J2's.t.(1 <2’ < n,x <2, p(a’)).

Nomne of the constraints in the above formula is strong enough to fix the value
of #'. Hence, the application of a function to a quantified variable cannot be
avoided, and this is not handled by the Omega simplifier ([21], section 8.4.1).

There are probably cases in which Pugh and Wonnacott’s method may give
more precise results than FADA. This is especially true since Wonnacott ([21]
Section 8.3.1) uses semantic knowledge to improve the selection of uninterpreted
functions. This is an example of the mixed approach, in which an attempt is
made to use all available information, whether syntactical or semantical, to
improve the dependence calculation. This is clearly the road toward a better
understanding of dynamic control programs. The next section is a preliminary
discussion of the kind of problems we have to solve in this direction.

From the results of ADA or FADA, one may deduce many useful abstrac-
tions, like reaching definitions, upward and downward exposed regions, and so
on. In the case of scalars, this information can be obtained quite conveniently
by iterative dataflow analysis. These methods can be extended to arrays: an
exemple is the work of Peng Tu [20, 19]. Regions are approximated by coarser
objets than polyhedra: for instance, regular sections [3]. When solving dataflow
equations, one has to compute unions and complements of regular sections,
which are not regular sections in general. Hence, one introduces approximate
operations. The information obtained in this way is less precise than the one
given by ADA or FADA, but the analysis is faster and is precise enough for
solving some problems like array privatization. In our minds, the main interest
of FADA is that it gives an exhaustive analysis of the source program, and
hence is more versatile than other, less precise techniques.

37

9 Final remarks and future work

In this paper, the right-hand sides of statements have been mostly ignored in
the analyses we discussed with the exception of recurrence detection. This is
a voluntary restriction, so as to make the analysis purely syntactical. Such
a restriction does not preclude extremely accurate dataflow information, even
when arrays are subscripted by arrays. For example, let us consider the program

below:
do i = 0, 2%n
S1: b(i) = ...
end do
doi=0,n
S2: a(b(1)) = ...
end do
do i = n, 2%n
S3: a(b(2*xn - i)) = ...
end do
doi=0,n
S4: oo = al (i))

end do

The iterative analysis disregard the values the elements of b may take. However,
the analysis can detect that Statement 2 never can be the source of instances
of Statement 4. More precisely, the source is:

{LYU {(Ss,4) | n < i < 2n).

We may envision iterative analyses where right-hand sides would be taken
into account. Several levels of extension can be imagined, with increasing diffi-
culty in symbolical computation.

First level We may first take into account numerically known right-hand
sides, which is equivalent to constant propagation. For instance, a trivial prop-
agation would allow precise analysis in the following program:

doi=1,n

Si: b(i) = 0
end do
doi=1,n

S2: oo = al (i))
end do

Second level We may then study the recurrences possibly appearing in the
program, and try to detect special cases such as constant propagation and
induction variables. This requires a careful classification of possible recurrences:
if the right-hand side only reduces a variable (possibly an array element), then
we only have to deal with some special (possibly parametric) case of value
propagation. However, here is a typical program to which such an extension
would be beneficial:

38

b(0) =0
doi=20, ...
Si: a(i) =
end do
doi=1,n
S2: b(i) = b(i-1)
end do
S3: ... = al b(k))

Then, if we know that 1 < k < n, then o((S3,k)) = {(S1,0)}. (If not, then
the source is {L} U {(1,0)}, which already is quite precise.) However, assume
Statement 2 is slightly changed into:

S2: b(i) = b(i-1) + 1

Taking benefit of right-hand sides then requires more sophisticated symbolic
computations, which are in the range of Redon’s tool.

10 Conclusions

This paper gives a method to build a conservative approximation of the flow
of values in programs whose control flow and array accesses cannot be known
at compile-time. Such programs include control-flow constructs such as whiles
and if..then..else constructs, making both control and data flow unpre-
dictable at compile-time. In this paper, we have shown that we can extend
the notion of a unique source to that of a source set, and have designed a set
of algorithms which give, in many cases, surprisingly precise results. A fuzzy
array dataflow analyzer is being implemented in Lisp within the PAF project
at PRiSM Laboratory.

Our method is generic in so far as it gives a framework for fuzzy analysis
that may be adapted to most exact analysis algorithms. More importantly, the
net effect of our handling of while loops and tests is to add equations to the
definition of the candidate set, thus improving the probability of success of fast
analysis schemes like [15, 12]. Some researchers already proposed techniques to
handle flow-sensitive array data-flow analysis: In [7], Duesterwald, Gupta and
Soffa describe a fixed point computation to discover may-reaching definitions.
Even though their method does not handle multi-dimensional arrays and gives
only maximal distances, a fuzzy array dataflow analysis along their lines may
be an interesting alternative to this paper.

Applications of FADA to automatic parallelization include static schedul-
ing [11], array privatization and register allocation [7]. As a concluding remark,
note that a L in a source set points to a possible programming error. Beyond
automatic parallelization, a fuzzy array dataflow analysis may therefore be a
general tool for translators, compilers and program checkers, as array dataflow
analysis was.

39

References

[1]

[2]

[3]

[4]

Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Aca-
demic Publishers, Boston / Dordrecht / London, 1988.

Thomas Brandes. The importance of direct dependences for automatic
parallelization. In ACM Int. Conf. on Supercomputing, St Malo, France,
July 1988.

David Callahan and Ken Kennedy. Compiling programs for distributed
memory multiprocessors. The Journal of Supercomputing, 2:151-169, 1988.

J.-F. Collard. Space-time transformation of while-loops using speculative
execution. In Proc. of the 1994 Scalable High Performance Computing
Conf., pages 429-436, Knoxville, TN, May 1994. IEEE.

J.-F. Collard. Automatic parallelization of while-loops using speculative
execution. Int. J. of Parallel Programming, 23(2):191-219, April 1995.

J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analy-
sis. In Proc. of 5th ACM SIGPLAN Symp. on Principles and Practice of

Parallel Programming, Santa Barbara, CA, July 1995.

E. Duesterwald, R. Gupta, and M.-L. Soffa. A practical data flow frame-
work for array reference analysis and its use in optimization. In ACM
SIGPLAN’93 Conf. on Prog. Lang. Design and Implementation, pages 68—
77, June 1993.

Alain Dumay. Traitement des Indexations non linéaires en parallélisation
automatique : une méthode de linéarisation contextuelle. PhD thesis, Uni-
versité P. et M. Curie, December 1992.

Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243-268, September 1988.

Paul Feautrier. Dataflow analysis of scalar and array references. Int. J. of
Parallel Programming, 20(1):23-53, February 1991.

M. Griebl and J.-F. Collard. Generation of synchronous code for auto-
matic parallelization of while loops. In S. Haridi, K. Ali, and P. Magnus-
son, editors, Furo-Par95, volume 966 of LNCS, pages 315-326, Stockholm,
Sweden, August 1995. Springer Verlag.

C. Heckler and L. Thiele. Computing linear data dependencies in nested
loop programs. Parallel Processing Letters, 4(3):193-204, 1994.

F. Masdupuy. Semantic analysis of interval congruences. In D. Borner,
M. Broy, and 1.V. Pottosin, editors, Int. Conf. on Formal Methods in Pro-
gramming and their Applications, volume 735 of LNCYS, pages 142-155,
Academgorodok, Novosibirsk, Russia, June 1993. Springer Verlag.

40

[14]

[15]

[16]

[19]

[20]

[21]

Vadim Maslov and William Pugh. Simplifying polynomial constraints over
integers to make dependence analysis more precise. Technical Report CS-
TR-3109.1, University of Maryland, February 1994.

Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array
dataflow analysis and its use in array privatization. In Proc. of ACM Conf.
on Principles of Programming Languages, pages 2—15, January 1993.

William Pugh and David Wonnacott. An exact method for analysis of
value-based array data dependences. In Lecture Notes in Computer Science
768: Sixth Annual Workshop on Programming Languages and Compilers,
Portland, OR, August 1993. Springer-Verlag.

William Pugh and David Wonnacott. Nonlinear array dependence analysis.
In Third Workshop on Languages, Compilers, and Run-Time Systems for
Scalable Computers, Troy, New York, May 1995.

X. Redon and P. Feautrier. Detection of reductions in sequentials pro-
grams with loops. In Arndt Bode, Mike Reeve, and Gottfried Wolf, edi-
tors, Procs of the 5th International Parallel Architectures and Languages
Furope, LNCS 694, pages 132-145, June 1993.

Peng Tu. Array Privatization and Demand Driven Symbolic Analysis. PhD
thesis, University of Illinois at Urbana-Champlain, 1995.

Peng Tu and David Padua. Array privatization for shared and distributed
memory machines. September 1992.

David G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD
thesis, University of Maryland, 1995.

41

