Forward Communication Only Placements and
their Use for Parallel Program Construction

Martin Griebl!, Paul Feautrier?, Armin Gréflinger!

! FMI, University of Passau, Germany. {griebl,groessli}@fmi.uni-passau.de
2 INRIA, Unité de Recherche de Rocquencourt, France. Paul .Feautrier@inria.fr

Abstract. The context of this paper is automatic parallelization by the
space-time mapping method. One key issue in that approach is to adjust
the granularity of the derived parallelism. For that purpose, we use tiling
in the space and time dimensions. While space tiling is always legal, there
are constraints on the possibility of time tiling, unless the placement is
such that communications always go in the same direction (forward com-
munications only). We derive an algorithm that automatically constructs
an FCO placement — if it exists. We show that the method is applicable
to many familiar kernels and that it gives satisfactory speedups.

1 Introduction

In the field of automatic parallelization the question of selecting the right gran-
ularity is still not completely solved. Especially for imperfectly nested loops or
non-uniform dependences (not to talk about irregular programs) many questions
remain open.

In this paper, we present a method that allows to freely choose the granularity
of the parallelism — if possible. Note that it is not the focus of this paper to find
the optimal granularity for a given program and actual machine parameters,
but to offer a technique that yields a parallel program in which the desired
granularity can be set freely.

Our parallelization framework is space-time mapping, based on the polytope
model [7,9,16]. It is designed for automatic parallelization of imperfect loop
nests, and has been extended so as to be widely applicable, e.g., to non-uniform
dependences, or, sometimes, with a slight loss in efficiency, even to irregular
programs. The main idea is that every instance of every statement is mapped
to a virtual point in time (schedule) and to a virtual processor (placement). In
other words, the space-time mapping distributes all computations of the source
program to as many processors as required. In order to map the parallel program
on a machine with a fixed number of physical processors, we must apply standard
tiling techniques.

Note that the initial idea and the technical basis of tiling in our setting is the
same as in traditional tiling, namely coalescing iterations, but its application is
different: we do not discover parallelism by tiling (this is the task of the preceding
scheduling phase), but we limit parallelism to the physically possible amount by
applying tiling techniques.

When running the resulting parallel programs on distributed memory sys-
tems, we usually find that (even for few physical processors) the granularity is
still too fine for being efficient. The reason is that typically there are communi-
cations after every single virtual time step.

M- gregating
processors
virtual processors

—

logical time

Fig. 1. Target space before tiling the time dimension

Ezxample 1. Consider the program fragment

for k=0 to m
for i=1 to n-1
Alk,i] = (Alk,i-1] + 2 * A[k-1,i]) /3
end
end

After space-time mapping and tiling (partitioning) the one-dimensional proces-
sor space, we obtain a space-time mapped iteration domain as in Figure 1. The
black arrows represent communications.

The execution times, speedups and efficiency for (n, m) = (393216, 128) are
given in Figure 2. The speedups for 2, 4, 8 and 16 processors are 0.94, 1.0,
1.05, and 1.13, which gives poor efficiency values of 0.47, 0.25, 0.13, and 0.07,
respectively.

Our solution is to add another tiling phase, which adapts the granularity of
the parallelism by coalescing virtual time steps. The idea behind this partition-
ing of time is (in the setting of distributed memory machines) to postpone and
collect all send operations within a time partition and to execute the commu-
nications only at the end of the partition. Obviously, this reduces the number
of communications. On the other hand, the larger the time partition, the longer
the receiver has to wait for its data, i.e., the longer the receiver is delayed. The
optimal size for the time partitions depends on the program and on the machine
parameters.

Ezxample 2. If we apply this idea to the space-time mapped iteration domain
of Figure 1, we obtain the iteration domain in Figure 3, which shows the re-
duced number of communications and also the increased latency for the upper

Without partitioning time

[execution time

] speedup
2 Od efficiency

1 -
" JT E E
0 T T T
2 4 8 16

number of processors

Fig. 2. Execution times, speedup and efficiency after tiling space dimensions only

aggregating time
000000000

000000 O0COO
..’..QO Qaqqreqating
._._.(processors
irtual processo
""“?pr do000000 00
00000000 OCO
—
logical time

Fig. 3. Target space after partitioning time

processor. The efficiency for the same problem size as above and for different
values of the width of the time partitions is depicted in Figure 4. The presence
of a maximum in the efficiency curve clearly points to a trade-off between fewer
communications and less latency.

The problem is that time tiling may generate deadlocks: suppose that some
operation in tile #; generates data for a later operation in t; while an operation
in t; generates data for ¢;. It is clear that no deadlock can occur if the time is not
tiled (since we need at least two operations with different schedules in each tile)
or if all communications roughly go into the same direction (e.g. from # to ¢y but
not the reverse). A formal definition and proof are given in Section 2. We call
this property forward communications only (FCO). A placement satisfying this
constraint allows any size for the time partitions [10]. (Note that this constraint
is not necessary but sufficient.)

Using FCO placements is not a novel idea. It has been suggested many times
as a sure way of avoiding deadlocks. Our aim here is not to advocate the use of
FCO placements, but to give an automatic method for building them.

Example 1

0.8 -

0.7 4
0.6 —
0.5 4
0.4 —
0.3 +

I I T I I T I
O B B RPN O R
a o O o a »~ o
a w O N O
W 0 o »
o B

efficiency

T T T
FNI S

no/m

number of time steps per tile

Fig. 4. Execution times after partitioning time

The rest of this paper is organized as follows. Section 2 sets the formal back-
ground and derives the FCO placement algorithm. Sections 3 and 4 discuss
variants of this algorithm: Section 3 uses a different placement approach, and
Section 4 points out some future extensions. Section 5 discusses related work.
Section 6 shows some preliminary experimental results and Section 7 concludes.

2 Forward Communication Only Placement

In the presence of loops, every statement S in the body has several instances at
run-time. We call them operations and denote them by (i, S) where the iteration
vector ¢ is the vector of all loop indices surrounding S. The set of all instances
of a given statement S is called the index set of S.

In order to use efficient mathematical tools, we require the loop bounds to be
affine functions in surrounding loop indices and structure parameters, i.e., sym-
bolic constants [7, 16]. (A method avoiding this restriction is given elsewhere [9].)

In our mathematical notation, we often use the homogeneous representation
of index vectors: we join the [-vector ¢ of surrounding loops indices and the
m-vector n of structure parameters in order to obtain the d-dimensional ho-
mogeneous index vector. Note that the m-vector of structure parameters shall
always contain one entry for the constant 1.

In the affine setting, the ¢ bounds of the loops surrounding a statement S
can be expressed as a system of linear inequalities and represented as a ¢ X d

matrix Dg with
1
Ds. >0 1
«(1)z 1)

where 1 is the iteration vector of S, and n is the vector of all structure parameters.
For consistency, we take care that the trivial inequality 1 > 0 is always included
in DS-

A computation placement m is a function which maps every operation to an
integer vector that represents a virtual processor. Again, we require placements
to be affine in the loop indices and the structure parameters. Hence, the place-
ment of every statement S, mg, can be represented by a p x d matrix Ilg where p
is the number of processor dimensions, and d = [+ m, i.e. d is the dimensionality
of the index set of S plus the number of symbolic parameters:

rs(iyn) = M. (;) (2)

Similarly, a data placement maps array elements to virtual processors. For
each array A, we express this placement as:

maa,n) = Iy. (Z) (3)

where a is the vector of A subscripts and n is as above.

Lastly, we need a schedule function 6, which maps operations to (virtual)
time. Schedules are assumed to be affine in the loop indices and the structure
parameters, as this is necessary for subsequent target code generation.

In general, each operation (i,S) both reads and writes memory. Our basic
assumption is that these accesses are to array cells. Let A be one of the arrays
accessed by S. We assume that we have been able to extract from the program
text a subscript function f4g such that the cell of A accessed by S is A[fas (i, n)].
Here again we suppose fas to be affine: there exists a matrix F 45 such that:

fas(i,n) = Fas. (;) . ()

0100 0

Let A[fas(i,n)] be a read reference to A in S. If this array cell is not on the
same processor as operation (i, S), a communication is necessary. This commu-
nication will be forward if:

In Example 1, the F' matrix for the rightmost reference to A is (1 000-1 >

ma(fas(i,n),n) < ms(i,n). (5)

On the other hand, if the distinguished reference is a write, it will be forward if:

Ws(i,n) SWA(fAs(i,n),n). (6)

These inequalities are to be understood component-wise. They are to be veri-
fied everywhere in the index set Dg of S. The conjunction of these properties
for all references in the program defines a forward communication only (FCO)
placement. (Note that the definition of the direction is arbitrary: we can always
reorder processors independently in each dimension).

A tile is a set of operations which are executed atomically by one processor.
Operations of a tile are executed sequentially. In this paper, we use a very simple
tiling scheme. Let T be the tile size in time and B be the tile size in space!.
Operation (7, S) is executed by physical processor 7s (%, n)+B in its 05(i, n)+ T-
th time step.

Arrays are tiled according to the same scheme: cell A[z] is in the memory
of physical processor m4(z,n) + B. The communication graph has the tiles as
vertices; there is an edge from tile a to b if a sends data to b.

Theorem 1. Any space/time tiling according to an FCO placement is valid.

Proof. For easier understanding, the proof will be written as if the schedule and
placement were one-dimensional. Extension to several dimensions is trivial.

A tiling is valid if there are no cycles in the communication graph. Let us
suppose a contrario that such a cycle exists. For k = 0,...,¢ — 1, tile (#, px)
sends data to tile (#x+1,pr+1) and tile (Z,pe) sends data to tile (y,po). For
each communication, there is an emitter (a memory cell or an operation)
and a receiver y (an operation or a memory cell), each one having a placement
function 7. (resp. 7). The FCO condition implies:

71'8(33) < ﬂ'r(y)a

from which follows:
pe = me(z) + B <7 (y) + B = py,

where p. (resp. p,) is the name of the (real) processor executing (or holding) z
(resp. y). Furthermore, the inequality is strict, since there actually is a commu-
nication.

We have just proved that py < pgy1 for £ =0,...,¢ —1 and py < pg which
is impossible since < is an order.

Let us now consider one of the FCO conditions, (5) for instance. It can be
rewritten as:

o(Yee (D) zomm () mer ()20 o

Farkas’ lemma [20] shows how such an affine inequation system can be trans-
formed into an equivalent equation system by adding non negative variables.
Thus, (7) is equivalent to:

IIs —II4.Fps = AasDs. (8)

where the Farkas multipliers A 45 are non negative. In this equation, the IIg, IT4
and Aggs are unknowns, while F4s5 and Dg can be deduced from the source
program. Similar considerations apply to (6).

! When the schedule and /or placement are multidimensional, T and B become vectors,
the integer division operator =+ being extended componentwise.

Let II be the vector obtained by concatenating the II4 and Ilg in some
order, and A be the vector obtained by concatenating the Agg. (The fact that
the entries of II and A\ are p-vectors themselves is irrelevant for the following
reasoning.) It is clear that there exist matrices C' and D such that the FCO
condition is equivalent to:

C.IT = D.A, (9)
A>0. (10)

The set of solutions of this system (i.e. the set of valid FCO placements) is a
cone C (it is closed both by addition and by multiplication by a non-negative
constant). Let (IT, A) be such a solution; let us consider a specific reference to A
in S. There is a part of A which corresponds to A4 in (8). If this part is null, then
the distinguished reference entails no communication. Let (II1, A1) and (112, A2)
be two solutions. It is clear that (II; + IT5,\; + X3) is another solution whose
residual communications are the union of the residual communications of the
two initial solutions. This leads us to consider only extremal solutions, which
cannot be obtained as a weighted sum of other solutions.

Any cone can be characterized [20] by its extremal rays r,...,rs and its
lines ly,...,[l; in such a way that:

C:{Zxkrk+2yklk|xk20}. (11)

There are well known algorithms for finding the rays and lines of a cone, and at
least one efficient implementation, the Polylib [21].

Let us now consider a line I, = (I, \). Since i, is a line, (—ITj, —\;) is
also in C. By (10) we obtain Ay > 0 and —\;, > 0 which implies Ay = 0.

Conversely, if (II, A\gx) is a ray with Ay = 0, then (—IIx,—\;) is also a
solution and the ray is a line. It follows that lines correspond to communication-
free placements, and that rays correspond to FCO placements with residual
communications. Furthermore, an analysis of the null components of the A\ part
of a ray allows one to identify residual communications. If we assign a weight
to each reference (e.g. an estimate of the number of transmitted values), we
can associate a weight to each ray and select the one with minimum weight
(remember that in this context, lines will show up as zero weight solutions).

However, we still have to consider parallelism. Let ITg be the part of a solution
which corresponds to statement S. While up to now we have considered Il as a
vector, it is in fact a matrix with p rows, where p is the dimension of the processor
grid. The set of active processors is the image of the index set of S by IIg. In
order to preserve efficiency, we want this set to have the same dimension as the
processor grid (however, this dimension cannot be higher than the dimension of
S index set). Finding the dimension of the set of active processors is a simple
rank computation.

We can thus propose the following algorithm:

— Build the matrices C' and D from the source program.
— Build the rays and lines of the cone C associated to C' and D.

— Filter out rays and lines which do not satisfy the rank condition above.
— Compute the weight of each remaining ray or line.
— Select the ray or line with the smallest weight.

If a line has survived the filtering process, it has zero weight and will be se-
lected, giving a communication free placement. If the selectee is a ray, it will give
an FCO placement with minimum communication volume. Lastly, if there are no
survivors, then the problem has no FCO placement of the required dimension.

We cannot claim that the placement we find in this way is the best one,
in the sense of giving the best speedup. However, if the weights we assign to
communications are estimates of the communication volumes, then our algorithm
is a greedy solution to the problem of finding a minimum communication FCO
placement.

Let us note that the severity of the filtering increases with the dimension
of the processor grid. Hence, we can always try again with a grid of a smaller
dimension. In general, the higher the dimension, the higher the volume of resid-
ual communications, but also the higher the bandwidth of the communication
network. Since the relative importance of these two opposite factors depends on
details of the architecture, the best choice can only be found experimentally.

3 Another approach: Dependence driven placements

The presented placement algorithm computes one computation placement per
statement and one data placement per array. However, there also exists other
approaches for the computation of placements. We show how our basic FCO
placement algorithm can be adapted accordingly.

One possibility is to drop the notion of ownership and assume that every
processor holds the data it computes, and that it sends the data directly to every
consumer. We call such a placement method dependence driven, in contrast to
the original method which we call ownership driven.

Note that we have a very strong notion of dependences in this context: we use
direct dependences for this approach. On the one hand, this requires a precise
dataflow analysis, e.g. [2,4]. On the other hand, the result is as precise as if
we had converted the program to single assignment form: we can tell, for every
operation, where the accessed data is located — because we know the source of
the direct dependence, i.e., the producer in the case of flow dependences.

Note that if some array element A[z] is re-assigned, the new producer holds
the new value and, as written above, sends it to those processors that need this
new value. Thus, we cannot say that A[z] is owned by some processor, because
the “ownership” for A[z] changes. In this aspect, the dependence driven approach
is more flexible than the ownership driven approach.

On the other hand, the implicit owner of every element (provided that it
exists, e.g., because the program is single assignment) is its producer. There is
no possibility that the producer stores the value at some different processor if
this would be beneficial. So, in this aspect the ownership driven approach is more
flexible [8] .

The construction of a dependence driven FCO placement can be achieved
along the same lines as above. There is one placement constraint per dependence
in the program.

A dependence d is given as a relation from the source index set to the desti-
nation index set:

{(irm, S) = (G,m, T | m(?) > 0},

n

in which we have assumed that the dependence is representable as one polyhe-
dron. For every such dependence, we require the FCO property:

ws(i,n) < wr(j,n). (12)

This can be rewritten as

n n n

From then on, the algorithm follows the same lines as above. We eliminate
quantifiers with the help of Farkas lemma, then find the rays and lines of the
solution cone, and select the best one.

4 On the use of redistribution

The ownership driven approach has the drawback that an array has only one
placement for all the execution of a program. This is unsatisfactory: many pro-
grams can be divided in successive phases with differing access patterns to ar-
rays. Hence, we need the ability to freely determine a data placement, but also
to change this data placement during program execution. Let us discuss this on
an example.

Ezample 3. Consider the source program in Figure 5. There, we can avoid any
communication due to the two-dimensional (hence, most important) accesses to
arrays A and B by the following mapping: A[z,y] — z and (4,7, T') — 7 (this
eliminates the dependences cycle inside T), and B[l,k] — [and (l,k, U) — I
(this eliminates the dependence from T to U due to A and enables a local store
of B).

Furthermore, we map (¢, S) — ¢ and C[z] — z in order to eliminate commu-
nications due to accesses of C' in S and T'. This solution is optimal if we allow
one mapping per array and per statement — even if every of the n? accesses to
C[l —1] in U causes a communication.

A much better solution would be if we could re-map array C between its
uses in T and U. If we re-map C[l — 1] to [before executing U, then there
are no communications caused by U. The cost for the redistribution is one

DO i=0,n-1
S: C[i] = 42;
DO j=0, n-1
T: A[i,jl = A[i,j-11 + C[il
END DO
END DO
DO 1=1,n-1
DO k=0, n-1
U: B[1,k] = A[1,k] + C[1-1]
END DO
END DO

Fig. 5. A source program that needs redistribution

read/re-store per element of C, i.e., the redistribution causes only linearly many
communications.

How can we modify our placement algorithm in order to find this solution?
The first step is to split the first loop. We then add redistribution points in
the source program, i.e., technically, we add artificial statements that read all
elements of the array to be redistributed and copy them to a new array (and
update the subsequent accesses to the new array). This scheme has the added
advantage of limiting the complexity of each elementary placement problem,
thus improving the scalability of our approach.

After inserting redistribution points for array C between the loops on S
and T, and also between the loops on 7" and U, and applying our placement
algorithm, we obtain:

— between S and T: C'[z] — 2
— between T and U: C"[z] — z+1

This means that we should not redistribute C' between S and T, but between
T and U - the expected result.

The central question for this approach is where to insert redistribution points,
and for which arrays. One heuristics is to try redistribution along the edges
of the acyclic condensation of the statement dependence graph. On the one
hand this allows redistribution between different phases of an algorithm (where
redistribution might be most important); on the other hand it guarantees that
the expensive re-mapping is not executed too often, esp. not executed repeatedly
back and forth, since it forbids redistribution inside dependence cycles. Of course,
other strategies can be imagined as well.

In addition, there are other possibilities to make placement algorithms more
flexible (e.g., to allow replication of arrays or even redundant computations, or
to deal with piecewise affine placements, e.g., via index set splitting [12]). We
leave this for our ongoing work.

10

5 Related Work

Tiling has many applications in program optimization. We will not consider
here its use for locality improvement in sequential programs as in the work of
Wolfe [23] or Xue et. al. [26]. Tiling may be used as a parallelization method.
This approach was first proposed by Triolet [15]. The shape of the tile is first
chosen in such a way that deadlocks are avoided. The parallel program is then
constructed by a simple application of the hyperplane method. Lastly, the size
of the tiles is adjusted for minimum run time [1, 13,14, 18,19, 24, 25].

Another approach consists of applying tiling after parallelization in order
to adjust the grain of parallelism [22]. This has lead to the definition of fully
permutable loop nests. The present paper belongs to this category. It differs from
previous proposals in that we do not apply tiling either to arrays or to index
sets, but to time and space. In a previous work [11], the first author explained
in more detail why the parallelization procedure described in Section 1 can be
superior to the traditional tiling approach. The most important reasons are a
wider applicability and, at the same time, a possibly better quality of the result.

There also exist multiple papers about placement functions, some of them
using the same framework as this paper [3,6,17]. However, to the best of our
knowledge, this is the first time that automatic construction of FCO placements
is considered. In Lim and Lam terminology [17], our methods apply when con-
stant parallelism is not sufficient for taking benefit of all processors.

The use of Farkas lemma for quantifier elimination in formulas like (7) has
been first proposed by the second author [5], however in a different application
area.

6 Experiments

Our placement algorithm has been implemented as an extension to the LooPo
parallelizer and tested on about ten kernels, some real and some artificial. These
kernels are available on demand from the authors. We found FCO placements
for all examples, and even some communication free placements. The largest
examples where “burg” (a signal processing kernel with 22 lines of code) and
“LCZOS” (a Lanczos iteration with 60 lines). The algorithm has removed 31
communications out of 44 in the first case and 62 out of 64 in the second case.

We then tested the performances of our target code on an SCI-connected
network of 32 nodes, every node (board) with two Pentium 3 processors at 1
GHz and 512 MB of main memory. In order to avoid effects due to the shared
memory on the boards, we only used one processor per node. We took gcc-2.96
-02 for the compilation and SCAMPI as communication library.

Our first experiments show that tiling time is necessary for some cases. As
a rule of thumb, these cases arise for loop nests where one dimension goes to
space and all other dimensions are covered by the schedule. In this situation,
we must reduce the number of communication phases which, before tiling time,
take place at every iteration of the sequential loops.

11

DO J=1,M
D0 I=2,N-1
AC(D)=(A(I-1)+
A(I+1))/2.0
END DO
END DO

SOR 1-dimensional

DO k=0, n-1
sum[n-k] = b[n-k]
DO 1=0, k-1
sum[n-k]=sum[n-k] -

a[n-k] [n-1]1*b[n-1]

END DO
b[n-k]=sum[n-k]/a[n-k] [n-k]
END DO

LUBKSB

Fig. 6. Example programs that need partitioning of time

SOR-1dim SOR - 1dim
1y—
60 - —v_
0.9 — =
® 50 # 0.8 A
2 procs. - ~_
= 40 078
c | — \\2 Y M AN L
2 30 4 o tile width
g \ 5 0.5 \
Q20+ "o 8 £ 04 B ~ < |= 524288
3 i N o 16 ? 03 >~ = AN —|e1
— |32 02 ~» |V opt
[e e e e N E S B S B 0.1 L
CINE OWE0DNENE W © a
RERROANBLIIRRERD 0 T T T !
NP OWDHONOO O
rJo®E 2 4 8 16 32
width of time partitions number of processors

Fig. 7. Execution time and efficiency for SOR

We use the programs in Figure 6. The SOR algorithm has uniform, the
LUBKSB (LU Backward Substitution) non-uniform but affine dependences; the
complex array indices in LUBKSB result from loop normalization (in the initial
program, the loops are counting backward). The schedules for SOR and the three
statements of LUBKSB are 2xJ+1—4 and 0, 2x[+42, 2xk+1, and the FCO
placements generated by our algorithm are J and k, k, k, respectively. We give
the execution time and speedup for different numbers of processors and different
widths of the time partitions in Figures 7 and 8.

For the SOR experiment, we set M to 6144 and N to 1048576; the resulting
original sequential execution time was 180.5 seconds. Due to cache effects, the
optimized parallel program on one processor needed only 71.4 seconds. This is an
important collateral benefit: the aim of placement algorithms is to improve lo-
cality. This results not only in less communications, but also in less cache misses.
Figure 7, right, shows the efficiency (with respect to this improved sequential
time). We can see that the efficiency for the optimal time partitioning is about
15 to 30 % higher than without partitioning time, i.e., with time partition width
of 1. On the other end of the spectrum, long time partitions (width = 524288)
give up nearly all parallelism and so do not scale at all. Note that for the chosen
value for parameter M, the 32 processors are not fully used; this becomes better

12

LUBKSB LUBKSB

275 o 0.7
25
0.6
225 o
20 # procs. 3
[) o o 0.5 3
£ 175 o = "2 o width
= N S les B
S 15 = o 2 04 - a 128
2 ~. e V4 (o) v &
3 125 — ‘© v | 16
2 N4 s v 7 |as £ 03
3 10 < A Z A A A 2 > 6 ® vi
o i S S S S
5 a7 0.2
5
25 0.1
O—7T T T T T T T T T T 1
B N = N = [-J w = == S N = 0
o o o [& n = N o
§ & R °° 2 3 4 5 6 7
width of time partitions number of processors

Fig. 8. Execution time and efficiency for LUBKSB

for larger M (but at the same time the importance of partitioning time decreases
for the smaller number of processors).

In the LUBKSB experiment we use N = 10240 and obtain a sequential
execution time of 19.81 seconds. The parallel version executes in 20.69 seconds
on a single processor. We do not observe a speedup due to cache effects here since
both programs access the array a in a cache friendly way. Figure 8 shows that
we achieve the highest speedup with tile sizes between 16 (on 7 processors) and
128 (on 2 processors). This example does not scale as well as the SOR example,
because the iteration space is triangular, hence the work is distributed unevenly
among the processors. A possible solution is to build tiles with variable size, but
we have not worked out all the details of this technique.

7 Conclusions

As we have seen in Section 6, partitioning in the time direction is important
in order to obtain good speedups for some kinds of algorithms. However, par-
titioning time is not always legal. A sufficient condition for legality is that all
communications of the parallel program go forward in every dimension (FCO).
This condition is also necessary in one dimension.

The main theme of this paper has been the development of an algorithm for
the automatic construction of FCO placements. This algorithm has been imple-
mented as an extension to the LooPo parallelizer and used for all the examples in
this paper. Experiments show that the transformed programs have satisfactory
performances on a cluster of PC, although better load balancing is needed in
some cases.

Although we have not emphasized the point, the method can be generalized to
handle programs beyond the strict polytope model: modulo and integer division
in the subscripts, min and max operators in the loop bounds, tests on the loop

13

indices, union of polytopes in the dependence descriptions, and even infinite
iteration domains as in signal processing.
We intend to pursue this work in several directions:

— Analyze the FCO placement algorithm. Can its complexity be reduced? Find
examples in which no FCO placement can be found.

— Build a rough cost model for the tiled program, in order to help the selection
of a good tile size. Can this model help in the construction of programs with
tiles of varying size?

— Compare the ownership driven and the dependence driven approaches as to
applicability, complexity and efficiency.

— Explore the redistribution approach, with a view of improving the scalability
of the compiler.

Acknowledgments

The first author would like to thank Michael Classen for his support with the
experiments, and Max Geigl for his fruitful comments on a draft version of this
paper.

All authors acknowledge the help of the French-German exchange program
PROCOPE (grant 02969TB on the French side).

References

1. Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling?
INTEGRATION, 17:33-51, 1994.

2. Jean-Francois Collard and Martin Griebl. A precise fixpoint reaching definition
analysis for arrays. In Larry Carter and Jeanne Ferrante, editors, Languages and
Compilers for Parallel Computing, 12th International Workshop, LCPC’99, LNCS
1863, pages 286—302. Springer-Verlag, 1999.

3. Michele Dion and Yves Robert. Mapping affine loop nests: New results. In Bob
Hertzberger and Giuseppe Serazzi, editors, High-Performance Computing & Net-
working (HPCN’95), LNCS 919, pages 184-189. Springer-Verlag, 1995.

4. Paul Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel
Programming, 20(1):23-53, February 1991.

5. Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part I.
One-dimensional time. Int. J. Parallel Programming, 21(5):313-348, 1992.

6. Paul Feautrier. Toward automatic distribution. Parallel Processing Letters,
4(3):233-244, 1994.

7. Paul Feautrier. Automatic parallelization in the polytope model. In Guy-René
Perrin and Alain Darte, editors, The Data Parallel Programming Model, LNCS
1132, pages 79-103. Springer-Verlag, 1996.

8. Paul Feautrier. Automatic distribution of data and computation. Tech-
nical Report 2000/3, Laboratoire PRiSM, Université de Versailles, URL:
http://www.prism.uvsq.fr/rapports/2000/abstract_2000_3.html, March 2000. En-
glish translation of TSI vol. 15 pp 529-557, 1996.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Martin Griebl. The Mechanical Parallelization of Loop Nests Containing while
Loops. PhD thesis, Fakultat fiir Mathematik und Informatik, Universitat Passau,
January 1997. Technical Report MIP-9701.

Martin Griebl. On the mechanical tiling of space-time mapped loop nests. Technical
Report MIP-0009, Fakultdt fiir Mathematik und Informatik, Universitit Passau,
August 2000.

Martin Griebl. On tiling space-time mapped loop nests. In Thirteenth annual ACM
symposium on parallel algorithms and architectures (SPAA 2001), pages 322-323,
July 2001.

Martin Griebl, Paul A. Feautrier, and Christian Lengauer. Index set splitting. Int.
J. Parallel Programming, 28(6):607—-631, 2000.

Edin Hodzi¢ and Weijia Shang. On time optimal supernode shape. In Eighth Int.
Workshop on Compilers for Parallel Computers (CPC 2000), pages 367-379, 2000.
Karin Hogstedt, Larry Carter, and Jeanne Ferrante. Selecting tile shape for mini-
mal execution time. In 11th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’99), pages 201-211. ACM Press, June 1999. Also available
with proofs as UCSD Tech Report CS99-616.

Francois Irigoin and Remi Triolet. Supernode partitioning. In Proc. 15th Ann.
ACM Symp. on Principles of Programming Languages (POPL’88), pages 319-329.
IEEECS, January 1988.

Christian Lengauer. Loop parallelization in the polytope model. In Eike Best,
editor, CONCUR’93, LNCS 715, pages 398-416. Springer-Verlag, 1993.

Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchro-
nization with affine partitions. Parallel Computing, 24(3-4):445-475, May 1998.
Daniel A. Reed, Loyce M. Adams, and Merrell L. Patrick. Stencils and problem
partitionings: Their influence on the performance of multiple processor systems.
IEEE Trans. on Computers, C-36(7):845-858, July 1987.

Robert Schreiber and Jack J. Dongarra. Automatic blocking of nested loops. Tech-
nical Report CS-90-108, University of Tennessee, Computer Science, May 1990.
A. Schrijver. Theory of Linear and Integer Programming. Series in Discrete Math-
ematics. John Wiley & Sons, 1986.

Doran K. Wilde. A library for doing polyhedral operations. Technical Report 785,
IRISA, December 1993.

Michael Wolf and Monica Lam. A loop transformation theory and an algorithm to
maximize parallelism. IJEEE Trans. on Parallel and Distributed Systems, 2(4):452—
471, October 1991.

Michel Wolfe. Iteration space tiling for memory hierarchies. In G. Rodrigue, editor,
Parallel Processing for Scientific Computing, pages 357-361. STAM, 1987.
Jingling Xue. Communication-minimal tiling of uniform dependence loops. J. Par-
allel and Distributed Computing, 42(1):42-59, April 1997.

Jingling Xue. On tiling as a loop transformation. Parallel Processing Letters,
7(4):409-424, 1997.

Jingling Xue and Chua-Huang Huang. Reuse-driven tiling for improving data
locality. Int. J. Parallel Programming, 26(6):671-696, December 1998.

15

