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Abstract. The automatic parallelization of “regular” programs has en-
countered a fair amount of success due to the use of the polytope model.
However, since most programs are not regular, or are regular only in
parts, there is a need for a parallelization theory for other kinds of pro-
grams. This paper explore the suggestion that some “irregular” programs
are in fact regular on other data and control structures. We adduce as an
example the recursive tree programs, for which we build a parallelization
model and a dependence test.

1 A Model for Recursive Tree Programs

The polytope model [Len93,Fea96] has been found a powerful tool for the par-
allelization of array programs. A brief description of its basic concepts is given
below. Programs which conform to this model use only DO loops and arrays with
affine subscripts. The relevant entities (iteration domain, data space, execution
order, dependences) of such programs can be modeled as Z-polytopes, i.e. as
sets of integral points belonging to bounded polyhedra. Finding parallelism in
such programs depends on our ability to answer questions about the associated
Z-polytopes, for which task we can use well known results from mathematics
and operational research.

The aim of this paper is to investigate whether there exists other program
models for which we can devise an automatic parallelization framework. The
answer is yes, and we give as an example the recursive tree programs which are
defined in sections 1.4 and 1.5. The relevant framework is presented in section
2. In the conclusion, we point to unsolved problems for the recursive tree model,
and we suggest a search for other examples of parallelization frameworks.

1.1 An Assessment of the Polytope Model

In the classical literature, programs are seen as built from elementary statements
by control statements. In denotational semantics, for instance, the meaning of
an elementary statement is a function, and control statements are explained
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as rules for combining these functions to get the meaning of more complicated
constructs. For instance, the meaning of the sequence operator (usually written
;) is function composition, and the meaning of a loop is a fixpoint operator.

The main lesson of the polytope model is that this point of view is not
suitable for discussing parallelism, mainly because many questions which one
has to answer have no meaning in it. For instance, it makes no sense to ask if a
statement can be executed in parallel with itself, or in which order statements
inside a loop body are executed. The suitable level of abstraction is the operation,
i.e. one execution of a statement. It makes sense to ask whether two operations
can be executed in parallel, and, in a sequential program, operations are totally
ordered.

The problem with operations is that they are too numerous to be handled
in extension. For instance, a program running for 1” on a 1 Mflops machine (no
big deal at the present time), generate 106 operations. It follows that operation
sets must be handled in intention, i.e. that we must design a finite symbolic
representation for them.

In the case of DO loop programs, operations are created by loop iterations.
Operations can be named by giving the values of the surrounding loop counters,
arranged as an iteration vector. These values are integers. Moreover, they must
be within the loop bounds. If these bounds are affine forms in the surrounding
loop counters and constant structure parameters, then the iteration vector scans
the integer points of a polytope, hence the name of the model. The sequential
execution order in a perfect loop nest is lexicographic ordering of iteration vec-
tors. This definition can easily be extended [Fea88] to cope with imperfect loop
nests and whole programs.

To achieve parallelization, one has to find subsets of independent operations.
Two operations are in dependence if they access the same memory cell, one at
least of the two accesses being a write. To make use of this definition, we must
be able to relate an operation and the accessed memory cells. If the data struc-
tures are arrays, this is possible if subscripts are affine functions of iteration
vectors. The dependence condition then translates into a system of linear equa-
tions and inequalities, whose unknowns are the surrounding loop counters. There
is a dependence if and only if this system has a solution in integers. There are
well known dependence tests, ranging from exact algorithms, like Integer Linear
Programming, to approximations like the Banerjee tests (see e.g. [ZC91]).

In the polytope model, one can pursue the parallelization process much far-
ther, by the use of such techniques as array dataflow analysis, scheduling and
placement (see [Len93,Fea96] and the references therein). In this paper, we will
limit ourselves to the simpler problem of constructing a dependence test for
another type of programs.

Let us try to summarize our observations as a set of requirements for a
parallelization framework.

1. We must be able to describe, in finite terms, the set of operations of a
program. This set will be called the control domain in what follows. The
control domain must be ordered.



2. Similarly, we must be able to describe a data structure as a set of locations,
and a function from the locations to values.

3. We must be able to associate sets of locations to operations through the use
of address functions.

We can then set up a dependence problem as a set of conditions for the
existence of a dependence. Solving the problem will be either exhibiting one de-
pendence, or proving that none exists. This solution can be exact or pessimistic.
In case of doubt, the dependence test must decide there is a dependence. Any
other behaviour may lead to the construction of non deterministics parallel pro-
grams.

Our aim here is to apply these prescriptions to the design of a parallelization
framework for recursive tree programs.

1.2 Related Work

We follow here the discussion in [HHN94]. The analysis of programs with dy-
namic data structures has been carried mainly in the context of pointer languages
like C. The first step is the identification of the type of the data structures in the
program, i.e. the classification of the pointer graph. The main types are trees
(including lists), DAG and cyclic graphs. This can be done by static analysis at
compile time [GH96], or by asking the programmer for the information. In this
paper, we will use the second solution, and we will restrict ourselves to the case
where the data structures are trees.

The next step is to collect information on the possible values of pointers. This
is done statement-wise in the following sense: the set of possible pointer values is
associated not to a runtime operation but to a so-called program point i.e. to a
statement. These sets will be called regions here, by analogy to the array regions
which were introduced by Triolet [TIF86] in the polytope model. Regions are
usually represented as path expressions, which are regular expressions on the
name of structure members [LH88]. For a more precise representation, in which
Kleene stars can be replaced by named counters, see [Deu94].

Now, a necessary (but not sufficient) condition for two statements to be in
dependence is that two of their respective regions intersect, one of these at least
corresponding to a write. We will see later that this method incurs a loss of
information which may forsake parallelization in important cases. One of the
contributions of this paper is to improve the precision of the analysis for a
restricted family of recursive tree programs.

Another work [Coh98] extend the concept of array dataflow analysis to re-
cursive array programs. One of our long term objectives is to merge these two
threads of research into one unified framework.

1.3 Basic Concepts and Notations

We recall here some basic facts of the elementary theory of finite state automata
and rational transductions. The reader is referred to [Ber79] for a more detailed



treatment. This section can be skipped at first reading and used as a reference
whenever a new concept or notation is encountered.

A finite set A (an alphabet) being given, A∗ is the set of words on A, including
the zero-length word, ε. In the following we will not distinguish between a letter
(an element of A) and the corresponding word of length 1. The dot (.) denotes
concatenation, whose unit element is ε.

We will use IN (the set of nonnegative integers) as our basic alphabet. It
will be understood that in any actual application, the alphabet is some finite
subset of IN. This will dispense us with explicitly stating the alphabet before
each example or theorem.

A finite state automaton (fsa) is a finite labeled graph. Its vertices are called
states and its edges are called transitions. Edges are labeled with (one letter)
words or ε. Some states are called initial and others (not necessarily disjoint) are
terminal. The set of terminal states of automaton a is denoted term(a).

To each path from an initial to a terminal state, one associates the word
obtained by concatenating the edge labels in the order of path traversal. The
set of words obtained in this way from automaton a is the regular language
generated (or recognized) by the automaton, L(a). A regular language can also
be represented as a regular expression: an expression built from the letters and
ε by the operations of concatenation (.), union (+) and Kleene star. There are
well known algorithms for going from one representation to the other.

An automaton may have inaccessible states; these states can be removed
without modifying the generated language. This process is called trimming . From
one fsa, one may generates many others by changing the set of initial or terminal
states, then trimming. For instance, c(s; ) is deduced from c by using s as the
unique initial state. c(; t) has t as its unique terminal state. In c(s; t), both the
initial and terminal states have been changed. An automaton is empty if, after
trimming, it has no state left.

The family of regular languages is closed under many operation, including
concatenation, Kleene star, union, intersection and complementation.

A rational transduction is a relation on IN∗ × IN∗ which is defined by a
generalized sequential automaton (gsa): a fsa whose edges are labeled by digrams.
A digram is a pair whose elements are either a letter or ε. Consider the regular
language L(h) generated by h as a fsa. The first projection π1(w) of a word on
digrams w is obtained by concatenating the first element of each digram in w.
The second projection, π2 is defined in a similar way. The relation defined by h
is [Niv68]:

R = {〈π1(w), π2(w)〉 | w ∈ L(h)}.

In the following, we will no longer distinguish between an fsa and the language
it generates, or between a gsa and the relation it defines.

The family of rational transductions is closed by

– inversion (simply reverse the elements of each digram),
– concatenation (to build f.g, connect the terminal states of f to the initial

states of g by edges bearing the null digram 〈ε, ε〉.
– composition [EM65].



Many subfamilies of fsa and gsa have been defined in the literature: deter-
ministic fsa, length preserving gsa, rational functions, etc. We will have no use
for such special cases in this work.

1.4 The Control Domain of Recursive Programs

Let us consider the following contrived example (the language uses a C-like
syntax for better understanding):

int tree val;

void foo(address I) void bar(address J))

{int x; {

1 : if(...) bar(I.3); 3 : foo(J);

2 : if(...) x = val[I.1];

} }

void main(void)

{

4 : foo([]);

}

All statements have been numbered for easier reference. The only operative
statement is 2; the function calls are control statements. The discussion will
be clearer if we insure that labels are unique in the whole program, but this
restriction is not mandatory. trees and addresses will be discussed later.

In this paper, we will not analyse conditionals. When we say, for instance,
that operations u and v are in dependence, it will mean that, whenever the
predicates in the tests are such that u and v are executed, then they are in
dependence.

How do we identify a particular execution of statement 2? We observe that
foo must be called first by main. There may then be an arbitrary number of
calls of bar then foo. Then the test in statement 1 must fail, and 2 is executed.
We may record the succession of function calls leading to an instance of 2 as a
string, each “letter” being the name of a function. However, this representation
is not precise enough, since a function may be called several time in the same
body. We will use instead the labels of statements as letters of call strings.
In the above case, all these strings can be represented in compact form by the
regular expression 4.(1.3)∗.2. This is not a piece of luck. In fact, to each recursive
program we can associate a finite state automaton. The states are the functions
and the basic statements of the program. The state associated to main is initial
and the states associated to basic statements are terminal. There is a transition
from state p to q if p is a function and q is a statement occurring in p body. The
transition is labeled by the label of q in the body of p.

The result of this construction is the control automaton of the original pro-
gram. The control automaton of the example above is given in Fig. 1. Let s be
a terminal state of a control automaton. A string which is accepted by s gives a
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Fig. 2. A Control Tree

possible call sequence for the basic statement associated to s. The set of these
strings (a regular language) is the control domain of the associated statement.

The reader is cautioned not to confuse a call sequence and execution history.
Let us suppose for instance that the only information we have is that operations
associated to the strings 4.1.3.1.3.2 and 4.2 have been executed. Both represent
call sequences for statement 2. We can also say that 4.1.3.1.3.2 is executed before
4.2 because, in the body of the first call to foo, operation 1 and all the operations
it initiates are executed before operation 2. However, we have no way of knowing
whether operation 4.1.3.2, which would occur between the two distinguished
operations, has been executed or not, since it is guarded by a test.

Notice also that the strings in the control domain can be arranged as a tree
(see Fig. 2). This tree may be infinite, and is represented in finite terms by the
associated control automaton. Each terminating execution corresponds to some
finite subtree of the control tree.

As the example shows, if we take care of numbering statements in each func-
tion body by ascending numbers, the execution order is exactly lexicographic
ordering on the call strings.

1.5 Addressing in Trees

Remark first that most tree algorithms in the literature are expressed recursively.
Observe also that in the polytope model, the same mathematical object is used
as the control domain and the set of locations of the data space. Hence, it seems
quite natural to use trees as the preferred data structure for recursive programs.



In the case of ordered trees (trees in which the successor set of a given node
is linearly ordered), there is a simple scheme for node naming. First, number
all outgoing edges of a given node according to the order of the corresponding
successors. The name of node n is then simply the string of edge numbers which
are encountered on the unique path from the root of the tree to n. The name of
the root of the tree is the zero-length string, ε. This scheme dates back at least
to Dewey Decimal Notation as used by librarians the world over.

The set of locations of a tree structure is thus IN∗, and a tree object is a
partial function from IN∗ to some set of values, as for instance the integers, the
floating point numbers or the characters. More complicated tree types can be
considered, but their study is left for future work. Furthermore, we will suppose
that our data structures are trees of bounded fan-out. Hence, in fact, locations
are strings on an initial segment of IN.

A tree in the above sense can be implemented as a set of C structures. Each
structure corresponds to one tree cell. One member of the structure holds the
value of the cell. Other members of the structure hold pointers to the successors
of the cell.

Address functions map operations to locations, i.e. integer strings to integer
strings. Furthermore, in a given program, the set of statements labels is finite.
Hence, the functions we are interested in map words on some finite alphabet to
words on another alphabet. Another point is that it is interesting to extend the
concept of address functions to address relations. This allows us both to handle
approximations — we do not know the exact address which is accessed by an
operation, but we can exhibit a set to which that address belongs — and complex
operations — e.g. operations which access all locations in a given subtree.

One family of relations which meets all these requirements is the set of ra-
tional transductions of [Ber79]. Consider again the above example. Notice the
global declaration for the tree val. address is the type of integer strings. In line
2, such an address is used to access val. This address is built by postfixing the
integer 1 to the value of the address variable I. This variable is initialized to ε
at line 4 of main. If the call at line 1 of foo is executed, then a 2 is postfixed to
I. bar does not change the value of its argument and use it directly to call foo
again.

We may summarize this discussion by saying that at the entry to function
foo, I comes either from line 3 or 4, which gives the following regular equation:

I = 〈4, ε〉+ I.〈1, 2〉.〈3, ε〉,

whose solution is the regular expression:

I = 〈4, ε〉.(〈1, 2〉.〈3, ε〉)∗.

Lastly, the address which is used at line 2 is given by the following rational
transduction : 〈4, ε〉.(〈1, 2〉.〈3, ε〉)∗.〈2, 1〉. The reader may care to verify that,
according to this formula, the address used by operation 4.1.3.2 is 2.1.



1.6 The T Language

We believe that the reasoning which has been used to find the above rational
transduction can be automated, but the details have not been worked out yet.
The technique seems to be very similar to those which are used for structure
analysis, the difference being that one has to keep track of control information.
For this “address analysis” to succeed we have to mimic the way a rational
transducer works by appending one letter to the output each time an edge is
traversed. This corresponds to the following class of address assignments:

<address variable> = <address_expression>

where an address expression is either an address constant (including [] which
represents ε), an address variable or the result of postfixing an address variable
by an integer constant.

The type of address variables is address in our language. An address constant
is written as a list of integers separated by dots. If t is a tree and a is an address,
then t[a] is the cell of t at address a. The zero-length address is written []:
see for instance statement 4 in the above example. The notation t[[]] (the root
cell of t) may be abbreviated to t[].

Besides these rules, our source language, T 1, will be like C, with the following
restrictions:

– No pointers are allowed. In fact, addresses are to be used as a kind of disci-
plined pointers.

– The only data structures are scalars (integers, floats and so on) and trees
thereof. Trees are always global variables. Addresses can only be used as
local variables or functions parameters. No function may return an address.
The semantics of parameter passing is the same as in C: copy in, no copy
out.

– The only control structures are the conditional and the function call, possibly
recursive. No loops or goto are allowed.

There remains the problem of tree construction. As a first approximation, we
will suppose here that the first access to a tree cell creates it and all the not yet
created cells from the new cell to the root. This is similar to the way array cells
are created in Matlab. How to efficiently implement this proposal in a parallel
context is left for future work.

Assessing the expressive power and ease of use of T is an open question.
We have proved that one can simulate a Turing machine in T , but the proof
is omitted for lack of space. Some of the restrictions above can be removed by
appropriate preprocessing. Loops, for instance, can be implemented as terminal
recursions.

1 T stands for “tree” and also for “toy”.



2 Dependence Analysis of T

2.1 Parallelization Model

When parallelizing static control programs, one has first to decide the shape
of the parallel version. One can either construct processes, in which sequential
constructions are executed in parallel, or fronts, which are parallel construc-
tion which are executed sequentially. In the later case, one usually distinguish
between control parallelism, where the operations in a front are instances of dif-
ferent statements, and data parallelism, where a front is made of iterations of
the same statement. It is common belief that there is more potential in data
parallelism than in control parallelism, because there usually is much more data
than statements in high performance programs.

In the case of recursive programs, it so happens that the distinction between
control parallelism and data parallelism becomes moot. To see this, consider a
piece of linear code:

{

S;

foo(x);

}

Suppose that we are able to decide that the operation associated to S and all
operations generated by the call to foo are independent. We might rewrite the
above sequence as:

{^

S; foo(x);

^}

where we use the EARTH-C notation {^ ... ^} as the parallel counterpart of
{ ... } [HTZ+97] (refer also to the Algol 68 cobegin coend construction). If
foo is not recursive, then we have found a degree of parallelism of 2 (this can
be improved by further analysis of foo, but it will stay bounded by the size of
the program in any case). However, if foo is recursive and if in fact the above
code is the body of foo itself, then the degree of parallelism is of the order of the
number of recursive calls, which is data dependent. This is not surprising, since
this example is a case of terminal recursion, which is known to be equivalent
to a loop. In other situations (e.g. if a recursive function calls itself twice, and
if the calls are independent), the amount of parallelism will be much larger (in
this case, exponentially so).

To summarize our findings, we propose to parallelize recursive function bodies
considered as linear sequences. A function is a candidate for parallelization if it
is self-recursive or if it belongs to a recursion cycle. A possible formalization is
the following.

Let us consider a function foo and the statements {S1, . . . , Sn} of its body.
The statements are numbered in textual order, and statement Si is labelled i. For
the purpose of this work, tests in a conditional statement are to be considered



as elementary statements, and must be numbered as they occur in the program
text.

Let us construct a synthetic dependence graph (SDG) for foo. The vertices
of the SDG are the statements of foo. There is a dependence edge from Si to
Sj , i < j iff there exists three iteration words u, v, w such that:

– u is an iteration of foo.
– Both u.i.v and u.j.w are iterations of some terminal statements.
– Operations u.i.v and u.j.w are in dependence.

In the case where Si and Sj are both elementary statements, the dependence
may involve, not only tree cells, but also local variables and function parameters.
Local variables are treated as scalars, hence the dependence calculation is trivial.
Besides, one must not forget to add control dependences, from the test of each
conditional to all statements in its branches. In the following, control depen-
dences and dependences on local variables will be called classical dependences.
Dependences on tree elements will be called tree dependences.

Once the SDG is computed, a parallel program can be constructed in several
well known ways. The edges in the SDG can be interpreted as synchronization,
with a post at the source of the dependence, and a wait at the sink. We will use
here another possibility, which is to put the program in fork ... join form
with the help of the topological sort algorithm. While this method may entail
some loss of parallelism, the object programs look much better. As above, we
will use the EARTH-C version of the fork ... join construct, {^ ... ^}. The
run time exploitation of this kind of parallelism is a well known problem, see for
instance [LGH97].

2.2 The Dependence Test

The first step of the analysis of the function foo is the construction of its classical
dependence graph. This is a well known process, and we will not discuss it further
here. The next step is, for each pair of statements Si, Sj , i < j, to decide whether
there exists a tree dependence. Notice that, at least in the present context, this
is useless if Si and Sj are already connected by a classical dependence.

Our main source of information is the control automaton, c. We have first to
characterize, in the notations of section 1.3, the strings u which are iterations of
foo. This is simply the language generated by c(; foo).

The string v above connect Si to some terminal statement. Hence, it is gen-
erated by c(Si; ). Notice that this automaton generate only ε when Si is itself
terminal. The terminal states of c(Si; ) are candidates for the sources of tree
dependences. Similarly, the terminal states of c(Sj ; ) are candidates for the sinks
of tree dependences. Given a pair of source and sink Sk and Sl, we can construct
the associated automaton, c(Si;Sk) and c(Sj ;Sl). We may then construct the
rational transduction which relates x = u.i.v and y = u.j.w:

h = c(; foo)=.〈i, j〉.c(Si;Sk).c(Sj ;Sl)
−1, (1)

in which:



– if a is an automaton, then a= is the transduction obtained by setting each
output word equal to the corresponding input word;

Refering back to the example in Sect. 1.4, the iteration words of function
foo belong to the regular language c(; foo) = 4.(1.3)∗. One then has

c(; foo)= = 〈4, 4〉.(〈1, 1〉.〈3, 3〉)∗.

– an automaton can be used as a transduction whose output words have zero
length. Similarly, the inverse of an automaton can be used as a transduction
whose input words have zero length.

To each statement Si are associated a list of read accesses, Ri and a list
of write accesses, Wi. An access is composed of the name of a tree, t and of
a rational transduction, f and is written t[f ]. Given two accesses, one of them
at least being a write, we have first to test if the accessed trees are the same,
and then search for solutions of a problem in rational transductions. Before
explaining how to solve this problem, let us summarize the preceding discussion
by the following algorithm, which is the combinatorial part of the construction
of the SDG:

Algorithm C.

Construct c(; foo).
Forall Si, i = 1, n

Construct c(Si; )
Forall Sj , j = i+ 1, n

Construct c(Sj ; )
Forall Sk among the terminal states of C(Si; )

Forall Sl among the terminal states of C(Sj ; )
Construct h according to (1).
Forall t[f ] ∈Wk

Forall s[g] ∈ Rl

If t = s then Dependence(f, g, h)
Forall t[f ] ∈Wk

Forall s[g] ∈Wl

If t = s then Dependence(f, g, h)
Forall t[f ] ∈ Rk

Forall s[g] ∈Wl

If t = s then Dependence(f, g, h)

The dependence test We have to decide whether there exists three strings x, y,
w such that:

〈x, y〉 ∈ h, (2)

〈x,w〉 ∈ f, (3)

〈y, w〉 ∈ g. (4)



where (2) expresses the fact that x and y are iterations of Sk and Sl which are
generated by one and the same call to foo, (3) and (4) expressing the fact that
both x and y access location w.

The first step is to eliminate w, giving 〈x, y〉 ∈ k = g−1 ◦ f . k is a ratio-
nal transduction by Elgot and Mezei’s theorem [EM65]. We thus see that the
pair 〈x, y〉 belongs to the intersection of the two transductions h and k. De-
ciding whether the intersection of two transductions is empty is a well known
undecidable problem [Ber79]: Post correspondence problem can be reduced to
it. Nevertheless, it is possible to define a semi-algorithm for solving it. Let us
first introduce ` = k−1 ◦h. Deciding whether h∩ k is empty is clearly equivalent
to deciding whether `∩ = is empty (where = is the equality relation, which is
clearly a rational transduction).

Our semi-algorithm is best presented as a (one person) game in which the
goal is to build a word u such that 〈u, u〉 ∈ `. A position in the game is a
tuple 〈u, v, p〉 where u and v are words and p is a state of `. The initial position
is 〈ε, ε, p0〉, where p0 is the initial state of `. A move in the game consists in
selecting a transition from p to q in ` with label 〈x, y〉. The outcome is a new
position 〈u′, v′, q〉 where u′ and v′ are obtained from u.x and v.y by deleting
their common prefix. A position is a loss if u and v begin by a different letter:
in such a case, no amount of postfixing can complete u and v to equal strings.
This leaves us with positions in which either u or v or both are ε. A position is
a win if u = v = ε and p ∈ term(`). Suppose now that v 6= ε. Then, for success,
v must be the beginning of a string in the domain of ` when starting from p.
This can be tested easily, and, if the check fails, then the position is a loss. The
situation is symmetrical if u 6= ε.

This game may have three outcomes: if a win can be reached, then by restor-
ing the deleted common prefixes, one reconstruct a word u such that 〈u, u〉 ∈ `,
hence a solution to the dependence problem. If all possible moves have been
explored without reaching a win, then the problem has no solution. Lastly, the
game can continue for ever. One possibility is to put an upper bound to the
number of moves. If this bound is reached, one decides that, in the absence of
a proof to the contrary, a dependence exists (this is an example of pessimistic
k-limiting).

The following algorithm explores the game tree in breadth-first fashion.

Algorithm D.

1. Set D = ∅ and L = {〈ε, ε, p0〉} where p0 is the initial node of `.
2. If L = ∅, stop. There is no dependence.
3. Extract the leftmost element of L, 〈u, v, p〉.
4. If 〈u, v, p〉 ∈ D, restart at step 2.
5. If u = v = ε and if p ∈ term(`), stop. There is a dependence.
6. If both u 6= ε and v 6= ε, the position is a loss. Restart at step 2.
7. If u = ε and if v is not accepted by ` when starting from p, restart at step 2.
8. If v = ε and if u is not accepted by ` when starting from p, restart at step 2.
9. Add 〈u, v, p〉 to D. Construct all the positions which can be reached in one

move from 〈u, v, p〉 and add them on the right of L. Restart at step 2.



Since the exploration is breadth-first, it is easy to prove that if there is a
dependence, then the algorithm will find it.

Algorithms C and D have been implemented as a stand alone program in
Objective Caml. The user has to supply the results of the analysis of the in-
put program, including the control automaton, the address relations, the list
of statements with their accesses and the classical dependences. The program
then executes algorithms C and D, the result being the SDG of the program.
All examples in this paper have been processed by this pilot implementation. As
far as our experience goes, the case where algorithm D does not terminate has
never been encountered.

2.3 A Simple Example

Let us consider the following T program.

#define BOOLEAN char

BOOLEAN tree leaf;

int tree value;

void sum(address I)

{

1 : if(! leaf[I]) {

2 : sum(I.1);

3 : sum(I.2);

4 : value[I] = value[I.1] + value[I.2]

}

}

void main(void) {

5 : sum([]);

}

value is a tree whose nodes hold integers, and leaf is a Boolean tree. The set
{I | leaf[I] = 1} is supposed to define a frontier of value. The problem is to
sum up all integers on the frontier, the final result being found at the root of
the tree (value[]).

The control automaton of this program is given by the following regular
expression:

c = 5.(2 + 3)∗.(1 + 4).

while an analysis along the lines of Sect. 1.5 shows that the rational transductions
associated with expressions I, I.1 and I.2 in statement 4 are respectively:

here = 〈5, ε〉.(〈2, 1〉+ 〈3, 2〉)∗.〈4, ε〉 (5)

left = 〈5, ε〉.(〈2, 1〉+ 〈3, 2〉)∗.〈4, 1〉 (6)

right = 〈5, ε〉.(〈2, 1〉+ 〈3, 2〉)∗.〈4, 2〉 (7)



Let us consider the problem of parallelizing the body of sum. There are already
control dependences from statement 1 to 2, 3, and 4. The crucial point is to
prove that there are no dependences from 2 to 3. According to algorithm C, we
have to consider two iterations of 4 (since the other basic statement, 1, does not
access value) one from an iteration of 2, and one from an iteration of 3, and
check whether they can access the same cell of value. There are one (candidate)
output dependence from value[I] to itself, two flow dependences from value[I]

to value[I.1] and value[I.2], and two symmetrical anti-dependences.
Let us consider for instance the problem of the flow dependence from value[I]

to value[I.1]. The related transduction begins in the following way:

` = (〈2, 2〉+ 〈3, 3〉)∗.〈3, 2〉 . . . .

Algorithm D finds readily that there is no way of crossing the 〈3, 2〉 edge without
generating distinct strings. Hence, there is no dependence.

@
@
@
@@R

�
�

�
��	

�
�

��	

@
@
@
@R ?
4

32

1

�
��
�
���
��

�
��

Fig. 3. The SDG of sum

Consider now the dependences from e.g. 2 to 4. Among the problems that
have to be solved is the question of a flow dependence from val[I] to val[I.1].
Here we have:

f = 〈5, 5〉.(〈2, 1〉+ 〈3, 2〉)∗.〈4, ε〉,
g = 〈5, ε〉.(〈2, 1〉+ 〈3, 2〉)∗.〈4, 1〉,
h = 〈5, ε〉.(〈2, 2〉+ 〈3, 3〉)∗.〈2, 4〉.(〈2, ε〉+ 〈3, ε〉)∗.〈4, ε〉

Algorithm C finds the solution x = 5.2.4 from which follows y = h(x) = 5.4,
then w = f(x) = g(y) = 1. All in all, the SDG of sum is given by Fig. 3, to which
corresponds the parallel program:

void sum(address I)

{



1 : if(! leaf[I]) {

{^

2 : sum(I.1);

3 : sum(I.2)

^};

4 : value[I] = value[I.1] + value[I.2];

}

}

a typical case of parallel divide-and-conquer.

3 Conclusion

3.1 Contributions

We have presented here a new framework in which to analyze recursive tree
programs. The main differences between our method and the more usual pointer
alias analysis are:

– Our data structures are restricted to trees, while in alias analysis, one has to
determine the shape of the structures. This is a weakness of our approach.

– In our language, the operations on addresses are limited to postfixing, which,
translated in the language of pointers, correspond to the more usual

p = p -> member;

– Since our analysis takes into account all functions in a program, we do not
have to use so-called handles [HTZ+97]. In fact, the only handle we use is
the root of a tree.

– Our analysis is operation oriented, meaning that we associate set of addresses
to operations, not to statements. This allows us to get more precise results
when computing dependences.

In our formalism, we can reconstruct the usual alias analysis in the following
way. Observe that, in the notations of Sect. 2.2, the iteration word x belongs
to Domain(h), which is a regular language, hence w belongs to f( Domain(h)).
This is the region associated so Sk. Similarly, w is in the region g( Range(h)).
It follows that w belong to both regions, and hence to their intersection. The
image of a regular language by a rational transduction is a regular language,
and the intersection of two regular languages can be easily computed. When
compared to our approach, the advantage of alias analysis is that the regions
can be computed a priori, and that the emptiness or not of their intersection
can be decided without reference to the control automaton.

It is easy to prove that when f( Domain(h)) ∩ g( Range(h)) = ∅ then ` is
empty. It is a simple matter to test whether this is the case. Our implementation
reports the number of cases which can be decided by testing for the emptiness
of `, and the number of cases where Algorithm D has to be used.



In the case of sum, no dependence test can be solved by region intersection.
This may seem counter-intuitive. The explanation is that any specific instance
of the dependence problem can be solved by region intersection. For instance,
one can prove in this way that the two topmost calls to sum are independent.
We need the full force of Algorithm D to prove that calls to sum in any instance
of sum itself are independent.

In a T implementation of the merge sort algorithm, there were 208 depen-
dence tests. Of these, 24 were found to be actual dependences, 34 where solved
by region intersection, and 150 required the use of algorithm D. While extrap-
olating from this example alone would be jumping at conclusions, it gives at
least an indication of the relative power of the region intersection and of algo-
rithm D. Incidentally, the SDG of merge sort was found to be of the same shape
as the SDG of sum, thus leading to another example of a divide-and-conquer
parallelization.

3.2 Further Problems

A first class of problems deals with the T language as it stands. One clearly
need a sequential compiler, and a tool for the automatic construction of address
relations. Some of the petty restrictions of Sect. 1.6 can probably be removed
without endangering dependence analysis. For instance, having trees of struc-
tures or structure of trees poses no difficulty. Allowing trees and subtrees as
arguments to functions would pose the usual aliasing problems. A more useful
extension would be to allow trees of arrays, as found for instance in some ver-
sions of the adaptive multigrid method. Another set of questions is related to
our parallelization model. Is it the best one? Can one build a theory of pro-
gram transformations? What of memory expansion? Is there an equivalent of
scheduling for T programs?

The second question has to do with the status of T . Is it to be another
programming language, or is it better used as an intermediate representation
when parallezing pointer programs as in C or ML or Java? This would raise
the question of translating C (or a subset of C) to T , i.e. translating pointer
operations to address operations. T is static with respect to the underlying set
of locations. It is not possible, for instance, to insert a cell in a list, or to graft
a subtree to a tree. How do we deal with this problem?

Thirdly, trees are only a subset of the data structures one encounter in prac-
tice. We envision two ways of dealing, e.g., with DAGs and cyclic graphs. One
is to add new address operators to the language. For instance, adding a prefix
operator:

π(a1. . . . .an) = (a1. . . . .an−1)

allows one to handle doubly linked lists and trees with an upward pointer. The
other possibility is to use other mathematical structures as a substrate. Finitely
presented groups come immediately to mind, but there might be others.
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