
A Parallelization Framework for Recursive TreeProgramsPaul FeautrierMay 20, 1998The automatic parallelization of \regular" programs has encountered a fairamount of success due to the use of the polytope model. However, since mostprograms are not regular, or are regular only in parts, there is a need for a paral-lelization theory for other kinds of programs. This paper explore the suggestionthat some \irregular" programs are in fact regular on other data and controlstructures. We adduce as an example the recursive tree programs, for which webuild a parallelization model and a dependence test.Keywords : automatic parallelization, recursive programParall�elisation automatique des programmes r�ecursifssur les arbresPaul Feautrier20 Mai 1998Le mod�ele poly�edrique a permis de d�evelopper des parall�eliseurs automatiquespuissants et e�caces, mais qui ne peuvent traiter que les programmes \r�eguliers".Or les programmes usuels sont rarement r�eguliers ou ne sont r�eguliers que parmorceaux. Il faut donc �etendre la th�eorie des programmes r�eguliers au del�a dumod�ele poly�edrique. Cet article explore l'id�ee que certains programmes con-sid�er�es comme irr�eguliers sont en r�ealit�e r�eguliers sur d'autres structures que despoly�edres. On donne comme exemple les programmes r�ecursifs sur les arbres,pour lesquels on construit un mod�ele de parall�elisation et un test de d�ependence.Mots clefs : parall�elisation automatique, programmer�ecursif
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A Parallelization Framework for RecursiveTree ProgramsPaul Feautrier�Laboratoire PRiSM,Universit�e de Versailles St-Quentin45 Avenue des Etats-Unis78035 VERSAILLES CEDEX FRANCEMay 20, 19981 A Model for Recursive Tree ProgramsThe polytope model [Len93, Fea96] has been found a powerful tool for the par-allelization of array programs. A brief description of its basic concepts is givenbelow. Programs which conform to this model use only DO loops and arrays witha�ne subscripts. The relevant entities (iteration domain, data space, executionorder, dependences) of such programs can be modeled as Z-polytopes, i.e. assets of integral points belonging to bounded polyhedra. Finding parallelism insuch programs depends on our ability to answer questions about the associatedZ-polytopes, for which task we can use well known results from mathematics andoperational research.The aim of this paper is to investigate whether there exists other programmodels for which we can devise an automatic parallelization framework. Theanswer is yes, and we give as an example the recursive tree programs which arede�ned in sections 1.4 and 1.5. The relevant framework is presented in section2. In the conclusion, we point to unsolved problems for the recursive tree model,and we suggest a search for other examples of parallelization frameworks.1.1 An Assessment of the Polytope ModelIn the classical literature, programs are seen as built from elementary statementsby control statements. In denotational semantics, for instance, the meaning of an�e-mail : Paul.Feautrier@prism.uvsq.fr3



elementary statement is a function, and control statements are explained as rulesfor combining these functions to get the meaning of more complicated constructs.For instance, the meaning of the sequence operator (usually written ;) is functioncomposition, and the meaning of a loop is a �xpoint operator.The main lesson of the polytope model is that this point of view is not suitablefor discussing parallelism, mainly because many questions which one has to an-swer have no meaning in it. For instance, it makes no sense to ask if a statementcan be executed in parallel with itself, or in which order statements inside a loopbody are executed. The suitable level of abstraction is the operation, i.e. oneexecution of a statement. It makes sense to ask whether two operations can beexecuted in parallel, and, in a sequential program, operations are totally ordered.The problem with operations is that they are too numerous to be handled inextension. For instance, a program running for 1" on a 1 M
ops machine (nobig deal at the present time), generates 106 operations. It follows that operationsets must be handled in intention, i.e. that we must design a �nite symbolicrepresentation for them.In the case of DO loop programs, operations are created by loop iterations.Operations can be named by giving the values of the surrounding loop counters,arranged as an iteration vector. These values are integers. Moreover, they mustbe within the loop bounds. If these bounds are a�ne forms in the surroundingloop counters and constant structure parameters, then the iteration vector scansthe integer points of a polytope, hence the name of the model. The sequentialexecution order in a perfect loop nest is lexicographic ordering of iteration vectors.This de�nition can easily be extended [Fea88] to cope with imperfect loop nestsand whole programs.To achieve parallelization, one has to �nd subsets of independent operations.Two operations are in dependence if they access the same memory cell, one atleast of the two accesses being a write. To make use of this de�nition, we mustbe able to relate an operation and the accessed memory cells. If the data struc-tures are arrays, this is possible if subscripts are a�ne functions of iterationvectors. The dependence condition then translates into a system of linear equa-tions and inequalities, whose unknowns are the surrounding loop counters. Thereis a dependence if and only if this system has a solution in integers. There arewell known dependence tests, ranging from exact algorithms, like Integer LinearProgramming, to approximations like the Banerjee tests (see e.g. [ZC91]).In the polytope model, one can pursue the parallelization process much far-ther, by the use of such techniques as array data
ow analysis, scheduling andplacement (see [Len93, Fea96] and the references therein). In this paper, wewill limit ourselves to the simpler problem of constructing a dependence test foranother type of programs.Let us try to summarize our observations as a set of requirements for a par-allelization framework. 4



1. We must be able to describe, in �nite terms, the set of operations of aprogram. This set will be called the control domain in what follows. Thecontrol domain must be ordered.2. Similarly, we must be able to describe a data structure as a set of locations,and a function from the locations to values.3. We must be able to associate sets of locations to operations through theuse of address functions.We can then set up a dependence problem as a set of conditions for the exis-tence of a dependence. Solving the problem will be either exhibiting one depen-dence, or proving that none exists. This solution can be exact or pessimistic. Incase of doubt, the dependence test must decide there is a dependence. Any otherbehaviour may lead to the construction of non deterministics parallel programs.Our aim here is to apply these prescriptions to the design of a parallelizationframework for recursive tree programs.1.2 Related WorkWe follow here the discussion in [HHN94]. The analysis of programs with dynamicdata structures has been carried mainly in the context of pointer languages likeC. The �rst step is the identi�cation of the type of the data structures in theprogram, i.e. the classi�cation of the pointer graph. The main types are trees(including lists), DAG and cyclic graphs. This can be done by static analysis atcompile time [GH96], or by asking the programmer for the information. In thispaper, we will use the second solution, and we will restrict ourselves to the casewhere the data structures are trees.The next step is to collect information on the possible values of pointers. Thisis done statement-wise in the following sense: the set of possible pointer valuesis associated not to a runtime operation but to a so-called program point i.e.to a statement. These sets will be called regions here, by analogy to the arrayregions which were introduced by Triolet [TIF86] in the polytope model. Regionsare usually represented as path expressions, which are regular expressions on thename of structure members [LH88]. For a more precise representation, in whichKleene stars can be replaced by named counters, see [Deu94].Now, a necessary (but not su�cient) condition for two statements to be independence is that two of their respective regions intersect, one of these at leastcorresponding to a write. We will see later that this method incurs a loss ofinformation which may forsake parallelization in important cases. One of thecontributions of this paper is to improve the precision of the analysis for a re-stricted family of recursive tree programs.5



Another work [Coh98] extends the concept of array data
ow analysis to re-cursive array programs. One of our long term objectives is to merge these twothreads of research into one uni�ed framework.1.3 Basic Concepts and NotationsWe recall here some basic facts of the elementary theory of �nite state automataand rational transductions. The reader is referred to [Ber79] for a more detailedtreatment. This section can be skipped at �rst reading and used as a referencewhenever a new concept or notation is encountered.A �nite set A (an alphabet) being given, A� is the set of words on A, includingthe zero-length word, �. In the following we will not distinguish between a letter(an element of A) and the corresponding word of length 1. The dot (.) denotesconcatenation, whose unit element is �.We will use IN (the set of nonnegative integers) as our basic alphabet. It willbe understood that in any actual application, the alphabet is some �nite subset ofIN. This will dispense us with explicitly stating the alphabet before each exampleor theorem.A �nite state automaton (fsa) is a �nite labeled graph. Its vertices are calledstates and its edges are called transitions. Edges are labeled with (one letter)words or �. Some states are called initial and others (not necessarily disjoint) areterminal. The set of terminal states of automaton a is denoted term(a).To each path from an initial to a terminal state, one associates the wordobtained by concatenating the edge labels in the order of path traversal. Theset of words obtained in this way from automaton a is the regular languagegenerated (or recognized) by the automaton, L(a). A regular language can alsobe represented as a regular expression: an expression built from the letters and� by the operations of concatenation (.), union (+) and Kleene star. There arewell known algorithms for going from one representation to the other.An automaton may have inaccessible states; these states can be removedwithout modifying the generated language. This process is called trimming.From one fsa, one may generate many others by changing the set of initial orterminal states, then trimming. For instance, c(s; ) is deduced from c by usings as the unique initial state. c(; t) has t as its unique terminal state. In c(s; t),both the initial and terminal states have been changed. An automaton is emptyif, after trimming, it has no state left.The family of regular languages is closed under many operation, includingconcatenation, Kleene star, union, intersection and complementation.A rational transduction is a relation on IN� � IN� which is de�ned by a gen-eralized sequential automaton (gsa): a fsa whose edges are labeled by digrams.A digram is a pair whose elements are either a letter or �. Consider the regularlanguage L(h) generated by h as a fsa. The �rst projection �1(w) of a word ondigrams w is obtained by concatenating the �rst element of each digram in w.6



The second projection, �2 is de�ned in a similar way. The relation de�ned by his [Niv68]: R = fh�1(w); �2(w)i j w 2 L(h)g:In the following, we will no longer distinguish between an fsa and the languageit generates, or between a gsa and the relation it de�nes.The family of rational transductions is closed by� inversion (simply reverse the elements of each digram),� concatenation (to build f:g, connect the terminal states of f to the initialstates of g by edges bearing the null digram h�; �i.� composition [EM65].Many subfamilies of fsa and gsa have been de�ned in the literature: deter-ministic fsa, length preserving gsa, rational functions, etc. We will have no usefor such special cases in this work.1.4 The Control Domain of Recursive ProgramsLet us consider the following contrived example (the language uses a C-like syntaxfor better understanding):int tree val;void foo(address I) void bar(address J)){int x; {1 : if(...) bar(I.3); 3 : foo(J);2 : if(...) x = val[I.1];} }void main(void){4 : foo([]);}All statements have been numbered for easier reference. The only operativestatement is 2; the function calls are control statements. The discussion willbe clearer if we insure that labels are unique in the whole program, but thisrestriction is not mandatory. trees and addresses will be discussed later.In this paper, we will not analyse conditionals. When we say, for instance, thatoperations u and v are in dependence, it will mean that, whenever the predicatesin the tests are such that u and v are executed, then they are in dependence.How do we identify a particular execution of statement 2? We observe thatfoo must be called �rst by main. There may then be an arbitrary number of7
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Figure 2: A Control Treecalls of bar then foo. Then the test in statement 1 must fail, and 2 is executed.We may record the succession of function calls leading to an instance of 2 as astring, each \letter" being the name of a function. However, this representationis not precise enough, since a function may be called several time in the samebody. We will use instead the labels of statements as letters of call strings.In the above case, all these strings can be represented in compact form by theregular expression 4:(1:3)�:2. This is not a piece of luck. In fact, to each recursiveprogram we can associate a �nite state automaton. The states are the functionsand the basic statements of the program. The state associated to main is initialand the states associated to basic statements are terminal. There is a transitionfrom state p to q if p is a function and q is a statement occurring in p body. Thetransition is labeled by the label of q in the body of p.The result of this construction is the control automaton of the original pro-gram. The control automaton of the example above is given in Fig. 1. Let s bea terminal state of a control automaton. A string which is accepted by s gives apossible call sequence for the basic statement associated to s. The set of thesestrings (a regular language) is the control domain of the associated statement.The reader is cautioned not to confuse a call sequence and execution history.Let us suppose for instance that the only information we have is that operationsassociated to the strings 4:1:3:1:3:2 and 4:2 have been executed. Both representcall sequences for statement 2. We can also say that 4:1:3:1:3:2 is executedbefore 4:2 because, in the body of the �rst call to foo, operation 1 and all theoperations it initiates are executed before operation 2. However, we have noway of knowing whether operation 4:1:3:2, which would occur between the two8



distinguished operations, has been executed or not, since it is guarded by a test.Notice also that the strings in the control domain can be arranged as a tree(see Fig. 2). This tree may be in�nite, and is represented in �nite terms by theassociated control automaton. Each terminating execution corresponds to some�nite subtree of the control tree.As the example shows, if we take care of numbering statements in each func-tion body by ascending numbers, the execution order is exactly lexicographicordering on the call strings.1.5 Addressing in TreesRemark �rst that most tree algorithms in the literature are expressed recursively.Observe also that in the polytope model, the same mathematical object is usedas the control domain and the set of locations of the data space. Hence, it seemsquite natural to use trees as the preferred data structure for recursive programs.In the case of ordered trees (trees in which the successors of a given nodeare linearly ordered), there is a simple scheme for node naming. First, numberall outgoing edges of a given node according to the order of the correspondingsuccessors. The name of node n is then simply the string of edge numbers whichare encountered on the unique path from the root of the tree to n. The name ofthe root of the tree is the zero-length string, �. This scheme dates back at leastto Dewey Decimal Notation as used by librarians the world over.The set of locations of a tree structure is thus IN�, and a tree object is apartial function from IN� to some set of values, as for instance the integers, the
oating point numbers or the characters. More complicated tree types can beconsidered, but their study is left for future work. Furthermore, we will supposethat our data structures are trees of bounded fan-out. Hence, in fact, locationsare strings on an initial segment of IN.A tree in the above sense can be implemented as a set of C structures. Eachstructure corresponds to one tree cell. One member of the structure holds thevalue of the cell. Other members of the structure hold pointers to the successorsof the cell.Address functions map operations to locations, i.e. integer strings to integerstrings. Furthermore, in a given program, the set of statements labels is �nite.Hence, the functions we are interested in map words on some �nite alphabet towords on another alphabet. Another point is that it is interesting to extend theconcept of address functions to address relations. This allows us both to handleapproximations | we do not know the exact address which is accessed by anoperation, but we can exhibit a set to which that address belongs | and complexoperations | e.g. operations which access all locations in a given subtree.One family of relations which meets all these requirements is the set of rationaltransductions of [Ber79]. Consider again the above example. Notice the globaldeclaration for the tree val. address is the type of integer strings. In line 2, such9



an address is used to access val. This address is built by post�xing the integer 1to the value of the address variable I. This variable is initialized to � at line 4 ofmain. If the call at line 1 of foo is executed, then a 2 is post�xed to I. bar doesnot change the value of its argument and uses it directly to call foo again.We may summarize this discussion by saying that at the entry to functionfoo, I comes either from line 3 or 4, which gives the following regular equation:I = h4; �i + I:h1; 3i:h3; �i;whose solution is the regular expression:I = h4; �i:(h1; 3i:h3; �i)�:Lastly, the address which is used at line 2 is given by the following rationaltransduction : h4; �i:(h1; 3i:h3; �i)�:h2; 1i. The reader may care to verify that,according to this formula, the address used by operation 4.1.3.2 is 3.1.1.6 The T LanguageWe believe that the reasoning which has been used to �nd the above rationaltransduction can be automated, but the details have not been worked out yet.The technique seems to be very similar to those which are used for structureanalysis, the di�erence being that one has to keep track of control information.For this \address analysis" to succeed we have to mimic the way a rational trans-ducer works by appending one letter to the output each time an edge is traversed.This corresponds to the following class of address assignments:<address variable> = <address_expression>where an address expression is either an address constant (including [] whichrepresents �), an address variable or the result of post�xing an address variableby an integer constant.The type of address variables is address in our language. An address constantis written as a list of integers separated by dots. If t is a tree and a is an address,then t[a] is the cell of t at address a. The zero-length address is written []:see for instance statement 4 in the above example. The notation t[[]] (the rootcell of t) may be abbreviated to t[].Besides these rules, our source language, T 1, will be like C, with the followingrestrictions:� No pointers are allowed. In fact, addresses are to be used as a kind ofdisciplined pointers.1T stands for \tre�e' and also for \toy". 10



� The only data structures are scalars (integers, 
oats and so on) and treesthereof. Trees are always global variables. Addresses can only be used aslocal variables or functions parameters. No function may return an address.The semantics of parameter passing is the same as in C: copy in, no copyout.� The only control structures are the conditional and the function call, pos-sibly recursive. No loops or goto are allowed.There remains the problem of tree construction. As a �rst approximation, wewill suppose here that the �rst access to a tree cell creates it and all the not yetcreated cells from the new cell to the root. This is similar to the way array cellsare created in Matlab. How to e�ciently implement this proposal in a parallelcontext is left for future work.Assessing the expressive power and ease of use of T is an open question.We have proved that one can simulate a Turing machine in T , but the proofis omitted for lack of space. Some of the restrictions above can be removed byappropriate preprocessing. Loops, for instance, can be implemented as terminalrecursions.2 Dependence Analysis of T2.1 Parallelization ModelWhen parallelizing static control programs, one has �rst to decide the shape of theparallel version. One can either construct processes, in which sequential construc-tions are executed in parallel, or fronts, which are parallel construction which areexecuted sequentially. In the later case, one usually distinguishes between controlparallelism, where the operations in a front are instances of di�erent statements,and data parallelism, where a front is made of iterations of the same statement.It is common belief that there is more potential in data parallelism than in con-trol parallelism, because there usually is much more data than statements in highperformance programs.In the case of recursive programs, it so happens that the distinction betweencontrol parallelism and data parallelism becomes moot. To see this, consider apiece of linear code:{S;foo(x);}Suppose that we are able to decide that the operation associated to S and alloperations generated by the call to foo are independent. We might rewrite theabove sequence as: 11



{^ S; foo(x);^}where we use the EARTH-C notation {^ ... ^} as the parallel counterpart of{ ... } [HTZ+97] (refer also to the Algol 68 cobegin coend construction). Iffoo is not recursive, then we have found a degree of parallelism of 2 (this canbe improved by further analysis of foo, but it will stay bounded by the size ofthe program in any case). However, if foo is recursive and if in fact the abovecode is the body of foo itself, then the degree of parallelism is of the order of thenumber of recursive calls, which is data dependent. This is not surprising, sincethis example is a case of terminal recursion, which is known to be equivalent toa loop. In other situations (e.g. if a recursive function calls itself twice, and ifthe calls are independent), the amount of parallelism will be much larger (in thiscase, exponentially so).To summarize our �ndings, we propose to parallelize recursive function bodiesconsidered as linear sequences. A function is a candidate for parallelization if itis self-recursive or if it belongs to a recursion cycle. A possible formalization isthe following.Let us consider a function foo and the statements fS1; : : : ; Sng of its body.The statements are numbered in textual order, and statement Si is labelled i. Forthe purpose of this work, tests in a conditional statement are to be consideredas elementary statements, and must be numbered as they occur in the programtext.Let us construct a synthetic dependence graph (SDG) for foo. The verticesof the SDG are the statements of foo. There is a dependence edge from Si toSj; i < j i� there exists three iteration words u; v; w such that:� u is an iteration of foo.� Both u:i:v and u:j:w are iterations of some terminal statements.� Operations u:i:v and u:j:w are in dependence.In the case where Si and Sj are both elementary statements, the dependencemay involve, not only tree cells, but also local variables and function parameters.Local variables are treated as scalars, hence the dependence calculation is trivial.Besides, one must not forget to add control dependences, from the test of eachconditional to all statements in its branches. In the following, control depen-dences and dependences on local variables will be called classical dependences.Dependences on tree elements will be called tree dependences.Once the SDG is computed, a parallel program can be constructed in severalwell known ways. The edges in the SDG can be interpreted as synchronization,with a post at the source of the dependence, and a wait at the sink. We will use12



here another possibility, which is to put the program in fork ... join formwith the help of the topological sort algorithm. While this method may entailsome loss of parallelism, the object programs look much better. As above, we willuse the EARTH-C version of the fork ... join construct, {^ ... ^}. Therun time exploitation of this kind of parallelism is a well known problem, see forinstance [LGH97].2.2 The Dependence TestThe �rst step of the analysis of the function foo is the construction of its classicaldependence graph. This is a well known process, and we will not discuss it furtherhere. The next step is, for each pair of statements Si; Sj; i < j, to decide whetherthere exists a tree dependence. Notice that, at least in the present context, thisis useless if Si and Sj are already connected by a classical dependence.Our main source of information is the control automaton, c. We have �rst tocharacterize, in the notations of section 1.3, the strings u which are iterations offoo. This is simply the language generated by c(; foo).The string v above connects Si to some terminal statement. Hence, it isgenerated by c(Si; ). Notice that this automaton generate only � when Si is itselfterminal. The terminal states of c(Si; ) are candidates for the sources of treedependences. Similarly, the terminal states of c(Sj; ) are candidates for the sinksof tree dependences. Given a pair of source and sink Sk and Sl, we can constructthe associated automaton, c(Si;Sk) and c(Sj;Sl). We may then construct therational transduction which relates x = u:i:v and y = u:j:w:h = c(; foo)=:hi; ji:c(Si;Sk):c(Sj;Sl)�1; (1)in which:� if a is an automaton, then a= is the transduction obtained by setting eachoutput word equal to the corresponding input word;Refering back to the example in Sect. 1.4, the iteration words offunction foo belong to the regular language c(; foo) = 4:(1:3)�. Onethen has c(; foo)= = h4; 4i:(h1; 1i:h3; 3i)�:� an automaton can be used as a transduction whose output words have zerolength. Similarly, the inverse of an automaton can be used as a transductionwhose input words have zero length.To each statement Si are associated a list of read accesses, Ri and a list ofwrite accesses,Wi. An access is composed of the name of a tree, t and of a rationaltransduction, f and is written t[f ]. Given two accesses, one of them at least beinga write, we have �rst to test if the accessed trees are the same, and then search13



for solutions of a problem in rational transductions. Before explaining how tosolve this problem, let us summarize the preceding discussion by the followingalgorithm, which is the combinatorial part of the construction of the SDG:Algorithm C.Construct c(; foo).Forall Si; i = 1; nConstruct c(Si; )Forall Sj; j = i+ 1; nConstruct c(Sj ; )Forall Sk among the terminal states of C(Si; )Forall Sl among the terminal states of C(Sj; )Construct h according to (1).Forall t[f ] 2 WkForall s[g] 2 RlIf t = s then Dependence(f; g; h)Forall t[f ] 2 WkForall s[g] 2 WlIf t = s then Dependence(f; g; h)Forall t[f ] 2 RkForall s[g] 2 WlIf t = s then Dependence(f; g; h)The dependence test We have to decide whether there exists three strings x,y, w such that: hx; yi 2 h; (2)hx;wi 2 f; (3)hy;wi 2 g: (4)where (2) expresses the fact that x and y are iterations of Sk and Sl which aregenerated by one and the same call to foo, (3) and (4) expressing the fact thatboth x and y access location w.The �rst step is to eliminate w, giving hx; yi 2 k = g�1 � f . k is a ratio-nal transduction by Elgot and Mezei's theorem [EM65]. We thus see that thepair hx; yi belongs to the intersection of the two transductions h and k. De-ciding whether the intersection of two transductions is empty is a well knownundecidable problem [Ber79]: Post correspondence problem can be reduced toit. Nevertheless, it is possible to de�ne a semi-algorithm for solving it. Let us�rst introduce ` = k�1 � h. Deciding whether h \ k is empty is clearly equivalentto deciding whether `\ = is empty (where = is the equality relation, which isclearly a rational transduction). 14



Our semi-algorithm is best presented as a (one person) game in which thegoal is to build a word u such that hu; ui 2 `. A position in the game is a tuplehu; v; pi where u and v are words and p is a state of `. The initial position ish�; �; p0i, where p0 is the initial state of `. A move in the game consists in selectinga transition from p to q in ` with label hx; yi. The outcome is a new positionhu0; v0; qi where u0 and v0 are obtained from u:x and v:y by deleting their commonpre�x. A position is a loss if u and v begin by a di�erent letter: in such a case, noamount of post�xing can complete u and v to equal strings. This leaves us withpositions in which either u or v or both are �. A position is a win if u = v = � andp 2 term(`). Suppose now that v 6= �. Then, for success, v must be the beginingof a string in the domain of ` when starting from p. This can be tested easily,and, if the check fails, then the position is a loss. The situation is symmetrical ifu 6= �.This game may have three outcomes: if a win can be reached, then by restoringthe deleted common pre�xes, one reconstructs a word u such that hu; ui 2 `, hencea solution to the dependence problem. If all possible moves have been exploredwithout reaching a win, then the problem has no solution. Lastly, the game cancontinue for ever. One possibility is to put an upper bound to the number ofmoves. If this bound is reached, one decides that, in the absence of a proof tothe contrary, a dependence exists (this is an example of pessimistic k-limiting).The following algorithm explores the game tree in breadth-�rst fashion.Algorithm D.1. Set D = ; and L = fh�; �; p0ig where p0 is the initial node of `.2. If L = ;, stop. There is no dependence.3. Extract the leftmost element of L, hu; v; pi.4. If hu; v; pi 2 D, restart at step 2.5. If u = v = � and if p 2 term(`), stop. There is a dependence.6. If both u 6= � and v 6= �, the position is a loss. Restart at step 2.7. If u = � and if v is not a pre�x of a word in Domain(`(p; )), restart at step2.8. If v = � and if u is not a pre�x od a word in Range(`(p; )), restart at step2.9. Add hu; v; pi to D. Construct all the positions which can be reached in onemove from hu; v; pi and add them on the right of L. Restart at step 2.15



Since the exploration is breadth-�rst, it is easy to prove that if there is adependence, then the algorithm will �nd it.Algorithms C and D have been implemented as a stand alone program inObjective Caml. The user has to supply the results of the analysis of the in-put program, including the control automaton, the address relations, the list ofstatements with their accesses and the classical dependences. The program thenexecutes algorithms C and D, the result being the SDG of the program. Allexamples in this paper have been processed by this pilot implementation. As faras our experience goes, the case where algorithm D does not terminate has neverbeen encountered.2.3 A Simple ExampleLet us consider the following T program.#define BOOLEAN charBOOLEAN tree leaf;int tree value;void sum(address I){1 : if(! leaf[I]) {2 : sum(I.1);3 : sum(I.2);4 : value[I] = value[I.1] + value[I.2]}}void main(void) {5 : sum([]);}value is a tree whose nodes hold integers, and leaf is a Boolean tree. The setfI j leaf[I] = 1g is supposed to de�ne a frontier of value. The problem is tosum up all integers on the frontier, the �nal result being found at the root of thetree (value[]).The control automaton of this program is given by the following regular ex-pression: c = 5:(2 + 3)�:(1 + 4):while an analysis along the lines of Sect. 1.5 shows that the rational transductionsassociated with expressions I, I.1 and I.2 in statement 4 are respectively:here = h5; �i:(h2; 1i + h3; 2i)�:h4; �i (5)16
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Figure 3: The SDG of sumleft = h5; �i:(h2; 1i + h3; 2i)�:h4; 1i (6)right = h5; �i:(h2; 1i + h3; 2i)�:h4; 2i (7)Let us consider the problem of parallelizing the body of sum. There are alreadycontrol dependences from statement 1 to 2, 3, and 4. The crucial point is toprove that there are no dependences from 2 to 3. According to algorithm C, wehave to consider two iterations of 4 (since the other basic statement, 1, does notaccess value) one from an iteration of 2, and one from an iteration of 3, andcheck whether they can access the same cell of value. There are one (candidate)output dependence from value[I] to itself, two 
ow dependences from value[I]to value[I.1] and value[I.2], and two symmetrical anti-dependences.Let us consider for instance the problem of the 
ow dependence from value[I]to value[I.1]. The related transduction begins in the following way:` = (h2; 2i + h3; 3i)�:h3; 2i : : : :Algorithm D �nds readily that there is no way of crossing the h3; 2i edge withoutgenerating distinct strings. Hence, there is no dependence.Consider now the dependences from e.g. 2 to 4. Among the problems thathave to be solved is the question of a 
ow dependence from val[I] to val[I.1].Here we have:f = h5; 5i:(h2; 1i + h3; 2i)�:h4; �i;g = h5; �i:(h2; 1i + h3; 2i)�:h4; 1i;h = h5; �i:(h2; 2i + h3; 3i)�:h2; 4i:(h2; �i + h3; �i)�:h4; �iAlgorithm C �nds the solution x = 5:2:4 from which follows y = h(x) = 5:4,then w = f(x) = g(y) = 1. All in all, the SDG of sum is given by Fig. 3, towhich corresponds the parallel program:void sum(address I) 17



{1 : if(! leaf[I]) {{^2 : sum(I.1);3 : sum(I.2)^};4 : value[I] = value[I.1] + value[I.2];}}a typical case of parallel divide-and-conquer.3 Conclusion3.1 ContributionsWe have presented here a new framework in which to analyze recursive treeprograms. The main di�erences between our method and the more usual pointeralias analysis are:� Our data structures are restricted to trees, while in alias analysis, one has todetermine the shape of the structures. This is a weakness of our approach.� In our language, the operations on addresses are limited to post�xing,which, translated in the language of pointers, corresponds to the more usualp = p -> member;� Since our analysis takes into account all functions in a program, we do nothave to use so-called handles [HTZ+97]. In fact, the only handle we use isthe root of a tree.� Our analysis is operation oriented, meaning that we associate set of ad-dresses to operations, not to statements. This allows us to get more preciseresults when computing dependences.In our formalism, we can reconstruct the usual alias analysis in the followingway. Observe that, in the notations of Sect. 2.2, the iteration word x belongsto Domain(h), which is a regular language, hence w belongs to f(Domain(h)).This is the region associated so Sk. Similarly, w is in the region g(Range(h)).It follows that w belongs to both regions, and hence to their intersection. Theimage of a regular language by a rational transduction is a regular language,and the intersection of two regular languages can be easily computed. Whencompared to our approach, the advantage of alias analysis is that the regions can18



be computed a priori, and that the emptiness or not of their intersection can bedecided without reference to the control automaton.It is easy to prove that when f(Domain(h)) \ g(Range(h)) = ; then ` isempty. It is a simple matter to test whether this is the case. Our implementationreports the number of cases which can be decided by testing for the emptiness of`, and the number of cases where Algorithm D has to be used.In the case of sum, no dependence test can be solved by region intersection.This may seem counter-intuitive. The explanation is that any speci�c instanceof the dependence problem can be solved by region intersection. For instance,one can prove in this way that the two topmost calls to sum are independent. Weneed the full force of Algorithm D to prove that calls to sum in any instance ofsum itself are independent.In a T implementation of the merge sort algorithm, there were 208 dependencetests. Of these, 24 were found to be actual dependences, 34 were solved by regionintersection, and 150 required the use of algorithm D. While extrapolating fromthis example alone would be jumping at conclusions, it gives at least an indicationof the relative power of the region intersection and of algorithm D. Incidentally,the SDG of merge sort was found to be of the same shape as the SDG of sum,thus leading to another example of a divide-and-conquer parallelization.3.2 Further ProblemsA �rst class of problems deals with the T language as it stands. One clearlyneeds a sequential compiler, and a tool for the automatic construction of addressrelations. Some of the petty restrictions of Sect. 1.6 can probably be removedwithout endangering dependence analysis. For instance, having trees of struc-tures or structure of trees poses no di�culty. Allowing trees and subtrees asarguments to functions would pose the usual aliasing problems. A more usefulextension would be to allow trees of arrays, as found for instance in some ver-sions of the adaptive multigrid method. Another set of questions is related toour parallelization model. Is it the best one? Can one build a theory of pro-gram transformations? What of memory expansion? Is there an equivalent ofscheduling for T programs?The second question has to do with the status of T . Is it to be anotherprogramming language, or is it better used as an intermediate representationwhen parallezing pointer programs as in C or ML or Java? This would raisethe question of translating C (or a subset of C) to T , i.e. translating pointeroperations to address operations. T is static with respect to the underlying setof locations. It is not possible, for instance, to insert a cell in a list, or to graft asubtree to a tree. How do we deal with this problem?Thirdly, trees are only a subset of the data structures one encounters in prac-tice. We envision two ways of dealing, e.g., with DAGs and cyclic graphs. Oneis to add new address operators to the language. For instance, adding a pre�x19



operator: �(a1: : : : :an) = (a1: : : : :an�1)allows one to handle doubly linked lists and trees with an upward pointer. Theother possibility is to use other mathematical structures as a substrate. Finitelypresented groups or mono��ds come immediately to mind, but there might beothers.References[Ber79] Jean Berstel. Transductions and Context-Free Languages. Teubner,Stuttgart, 1979.[Coh98] Albert Cohen. Analyse de 
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