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Abstract. Scheduling a program (i.e. constructing a timetable for the
execution of its operations) is one of the most powerful methods for au-
tomatic parallelization. A schedule gives a blueprint for constructing a
synchronous program, suitable for an ASIC or a VLIW processor. How-
ever, constructing a schedule entails solving a large linear program. Even
if one accepts the (experimental) fact that the Simplex is almost always
polynomial, the scheduling time is of the order of a large power of the
program size and of the maximum nesting level of its loops. Hence the
method is not scalable. The present paper presents two methods for im-
proving this situation. Firstly, a big program can be divided into smaller
units (processes) which can be scheduled separately. This is modular
scheduling. Second, one can use projection methods for solving linear
programming problems incrementally. This is especially efficient if the
dependence graph is sparse.

1 Introduction

One of the challenges in the design of embedded system is to devise methods
for the automatic or semi-automatic construction of application-specific devices
from a behavioral specification.

I only consider here the case of compute intensive systems, which are mostly
found in signal processing applications (audio and video processing, radar soft-
ware, telephony, etc.). Here the computing time cannot be neglected, the amount
of data is huge, and the need for safety is not stringent. At present, applications
(or parts thereof) in this field are first modeled in very high level languages
(mostly, Matlab), then mapped by hand on a variety of architectures, and then
implemented in a mixture of medium level code (C), assembly code and hard-
ware specification languages like VHDL. The design process is lengthy, complex,
error-prone, and does not lend itself to the exploration of the solution space.

The aim of this paper is to sketch another approach, in which the application
is specified as a system of communicating processes, each process being written
in a medium-level language like C. I will explain how such a specification can be
converted to a synchronous program, suitable for instance for a VLIW processor
or as a first step in the design of an ASIC. One begins by constructing a schedule,
which gives the instant at which each operation in the program is executed. The
problem of regenerating a program from a schedule has been first studied by
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Irigoin [1] and considered by many other scholars. Very efficient solutions (with
associated software) [2, 3] are available today.

The aim of this paper is to propose two methods for applying scheduling to
large applications. The first method consists in modifying the basic scheduling
algorithm to achieve better scalability. In the second method, I investigate under
which conditions a program can be divided into modules which can be scheduled
independently. This second method has the added advantage that it may be the
key to reuse of hardware or software components in parallel applications.

In the next sections I define which type of modules are suitable for parallel
programming and review the basic scheduling algorithm. In section 4, I explain
how to improve the scheduling time of one process provided that the depen-
dence graph is sparse. Section 5 explains how to do modular scheduling. In the
conclusion, I present some open problems and discuss future work.

2 Communicating Regular Processes

Communicating Regular Processes are a variant of Kahn Process Networks [4]
and of Communicating Sequential Processes [5]. The main difference is that
regularity conditions are imposed on processes in order to allow temporal analysis
of the full system.

2.1 Definitions

Processes. A process is a sequential program which can communicate with
other processes through channels (see below). With the exception of channels,
all variables are local to one process and are not visible from other processes.
The code of a process can be written in any convenient algorithmic language. I
use C here, but other choices are possible: Pascal, Fortran and others.

The code of a process is regular, or has static control [6]. Statements are
assignments and bounded loop statements. All variables are considered part of
some array, scalars being zero-dimensional arrays. Loops are of the arithmetics
progression variety, and the loop upper and lower bounds are affine forms in nu-
merical or symbolic constants and surrounding loop counters. The only method
of address calculation is subscripting into arrays of arbitrary dimension. The
subscripts must be affine forms in constants and surrounding loop counters.

The iteration vector of a statement is a list of its surrounding loop counters,
from outside inward. The iteration vector of S must belong to the iteration
domain of S, Dg, which is constructed from the bounds of the surrounding
loops. Under the assumption that the program is regular, iterations domains are
convex polyhedra (or, more precisely, sets of integral points inside polyhedra).

An iteration of S or operation is written (S, z), x € Dg. The set of operations
of a process P is the disjoint union:

Ep = |J{(S.2) |z € Ds},
SepP
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and the set of operations of a process system is £ = UpFEp. In more abstract
contexts, I may simply write u € F for a generic operation. <y is the sequential
order of execution.

Channels. A channel is an array of arbitrary dimension which is used as a
communication medium from a process to another process. Channels are unidi-
rectional. One process is declared as the writer to a channel. Considered as an
array, each cell of the channel must be written no more than once by its writer.
Writing to a channel is non-blocking.

On the other hand, a channel may have any number of readers, and there
are no constraints on the pattern of reading. Reading is not destructive: a value
remains in a channel at least as long as some process may have some use for it. If
a process reads a cell which has not yet been defined, it blocks until a definition
happens.

One can prove that these restrictions on processes and channels are enough
to guarantee that the channel contents are the same for all executions of a CRP
system, and are independent of relative processor speeds or scheduling decisions.
The detailed proof will be given elsewhere.

2.2 An Example

The following trivial example specify a system in which a producer generates an
infinite stream of values which are sent to a consumer which compute a sliding
mean. | hope that the extensions to C are clear for the reader.

channel float A[]; process consumer (){
float s;
process producer (){ int 1i;
int i; Z: s = 0.0;
for(i=0; ;i++) for(i=0; ;i++)
W: Ali]l = £(i); R: s = 0.5%(s + A[i]);
} }

2.3 Dependences

Data dependences were defined, as early as 1966, for the purpose of paralleliza-
tion [7]. For each operation u, let R(u) be the set of memory cells that are read
by u and W (u) be the set of cells which are modified by w. Two operations u
and v from the same process (4 <geq v) are in dependence if at least one of the
three sets W(u) N W (v) (output dependence), W(u) N R(v) (flow dependence)
and R(u) N W (v) (anti-dependence) is not empty. The dependence relation is
written u d v.

Assume now that the cell which causes the dependence is a channel cell.
Before defining a dependence, one has to decide how to order the two dependent
operations. This is not self-evident in the case of channels, since the dependent
operations do not belong to the same process. In accordance with the intended
semantics, I assume that the dependence is always from the write operation to
a read, or that the write always occurs before any read to the same cell.
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3 Scheduling

3.1 Target Architectures

In contrast to the above programming model, most of today electronic systems
are synchronous: there is one global clock, and all changes of state occur in
relation to the clock. Example of synchronous systems are VLIW processors and
ASIC/FPGA special purpose circuits. A generic VLIW processor will be the
main target architecture in what follows.

3.2 Schedules

A schedule is a function which assign a starting time to all operations in a
program. In other words, a schedule is a function from E to the set of time
values, T', and is a way of specifying an execution order. 7" may be any ordered
set. The order associated to 6 is:

u<gv="0(u)<0(v).

The favorites for T are IN and IN?, lexicographically ordered. This second case
gives rise to the so-called multidimensional schedules.

The execution order which is defined by a schedule must be legal, i.e. it must
extend the dependence relation:

Yu,v € E:udv = 0(u) <0(v). (1)

To solve this functional inequality, one has to postulate a shape for 8. The usual
choice is that 0((S, z)) is an affine form in the iteration vector, x:

0((S,z)) = hg.x + kg, (2)

where hg is the timing vector of S and kg is a scalar offset. For regular programs,
this choice has the advantage that everything in (1) becomes affine, and that
powerful results from the theory of linear inequalities, like Farkas lemma [8], can
be used to characterize the solutions. The reader is refered to [6,9] for details.
A short review of the method will be given below.

3.3 Solving the Scheduling Constraints

The first step of the solution consists in splitting formula (1) according to the
source and sink of the dependence. For a given pair of statements, S and 7', the
constraint now reads:

Va € Dg,y € Dy : (S,x) 6 (T,y) = 0((S,x)) < 0((T,y)). (3)

Then, one has to eliminate the quantifiers on = and y. This can be done
either by the vertex method [10], or by making use of Farkas lemma. Whatever
the method, (3) can be shown to be equivalent to a system of affine constraints’:

! Here and in what follows, I assume that constant terms have been included in the
matrices by the well known homogeneous coordinate trick.
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Mgt (hs, ks)" + Nsr(hr, kr)* > 0. (4)

Mg and Ngp are constant matrices which can be computed from the pro-
gram text. The direct application of Farkas lemma introduces new unknowns,
the Farkas multipliers, which can be eliminated along the lines of [6].

Lastly, one can solve (4) using any convenient linear programming algorithm.

In some cases, the scheduling constraints are not feasible, because not all
programs can be executed in linear time on many processors. One can resort
in this case to multidimensional schedules, whose parallel latency is polynomial.
The construction of multidimensional schedules is explained in [9]. T will ignore
this point in this preliminary paper.

4 Scalability

The number of unknown in a scheduling problem is of the order of the number
of statements times the mean depth of loop nests. The number of dependences
is in general quadratic in the program size, and the number of constraints per
dependences is again proportional to the mean nesting depth. Lastly, the Simplex
algorithm, while exponential in the worst case, has a high probability of being
cubic in the number of unknowns or constraints, when these two numbers are
of the same order of magnitude. Hence, the direct solution of the scheduling
constraints by linear programming does not scale well.

4.1 Stepwise Scheduling

To go further, one has to observe that the constraint matrix is sparse, or, rather,
block sparse: see (4). If one compress each block Mgy or Ngr to a single cell,
one gets the incidence matrix of the dependence graph.

If the scheduling problem is solved by a variant of the simplex algorithm,
one cannot make use of this sparsity to speed up the resolution: the simplex has
fillup. The solution is to use projection algorithms. The projection of a set D in
IR"*! along its first dimension is:

Proj(D,y) ={z |y : y.x € D}. (5)

It is well known that if D is a polyhedron, so is Proj(D, y). For polyhedra, there
are several projection algorithms:

— The simplest one is the Fourier-Motzkin algorithm. Its complexity is super
exponential. Part of this complexity is due to the fact that the resulting
system of constraints contains many redundant inequalities.

— One can also use parametric linear programming as in PIP [11]. The com-
plexity is less, but the result still has many redundancies.

— Lastly, if one knows the Minkowski representation of D, it is easy to find the
Minkowski representation of its projection. From that, one can reconstruct
an irredundant constraint system with the Chernikova algorithm.
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The last solution is probably the best one, especially since there exists an efficient
implementation [12]. However, for the preliminary experiments that are reported
here, I have used the Fourier-Motzkin algorithm coupled to a naive redundancy
elimination method.

Whatever the projection algorithm, once the final feasibility test has suc-
ceeded, one can reconstruct values for the eliminated variables by back-propa-
gation. This suggest the use of the following algorithm:

— For each statement S:
e Collect all the rows of the constraint matrix where hg has a non-zero
coefficient.
e Eliminate hg.
e Remember the bounds for hg.
— If the resulting system is trivially unfeasible (like —1 > 0) stop. No schedule
exists.
— For each statement S in reverse order:
e The bounds for hg are constants. Select a value within the bounds for
hs (e.g. the lower bound).
e Substitute these values in all other bounds.

Experience with a limited set of programs shows that while this technique
does not reduce much the number of constraints, the number of unknown at
each elimination step decreases sharply, which is a big improvement since the
Fourier-Motzkin algorithm is super exponential in the number of unknowns.

The order in which statements are eliminated is obviously important for
the scalability of the algorithm. One may devise many heuristics for selecting
the next victim: select for instance the statement with lowest degree in the
dependence graph. Systematic evaluation of this and others heuristics is left for
future work.

5 Modularity

In language and compiler design, the standard definition of a module is “a part
of a program which can be partially compiled without reference to other parts”.
Traditionally, the result of partial compilation is called an object. When all mod-
ules have been compiled, another processor, the linker, is needed to finish the
construction of the program. Modularity has many advantages. Modules promote
reuse and increases the readability of programs. Also, in case of a modification,
one recompile only the affected module(s). As we have seen earlier, the natural
unit of compilation for a parallel program is the process.

5.1 Channel Schedules

Going back to the scheduling constraints (1), one can see that processes are
not independent, as there will be relations between the schedules of the writer
and the readers of each channel. This does not allow modular scheduling. The
solution is to provide some “insulation” between processes.
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Observe that each cell in a channel A is written only once at a definite time
by statements from only one process. Therefore, one can postulate the existence
of a channel schedule §({(A,x)) such that the value A[z] is guaranteed to be
available at time 6((A4,z)) (and later). For simplicity, I will assume that 6 is
affine. There is a loss of generality here, but I believe it is not important for
most programs and can be easily corrected in other cases.

With this definition, a channel dependence can be split in two parts:

— On the write side, a cell is not available before it has been written. Let
S : Alwa(z)] := - - be a statement that writes into A:

0((A,w(x))) = 0((S,z)) +1 (6)

— On the other side, a cell cannot be read before it is available. Let R: -+ :=
- Alpa(z)]--- be a statement that read A:

O(R,x) = 0((A; pa(x))). (7)

The 1 in formula (6) is intended to represent a propagation delay through the
channel. I have arbitrarily inserted this delay on the write side, but many other
configurations can be used without changing the overall method.

5.2 The Modular Algorithm

Let hp be the concatenation of the timing vectors for all statements in process
P, and let h4 be the timing vector for array A. After application of the Farkas
algorithm to (6) or (7) and elimination of the Farkas multipliers, the shape of
the constraint matrix is as follows.

For each process P there is a system Uphp > 0 which represents the con-
straints generated by the inner dependences in P. The matrix Up is block
sparse, and each of its blocks is one of the Mg or Ng blocks in formula (4).
For each process P and each channel A which is connected to P there is a
system Vaphp + Wapha > 0 which represents the constraints generated by
the communication dependences of the system. These observations suggest the
following modular scheduling algorithm.

1. Construct the constraint matrix for each process and its adjacent channels.
2. For each process P eliminate hp from the constraints:

Uphp >0, Vpahp + Wpaha > 0, for all A connected to P ()

This first pass of compilation is modular, in so far as this can be done one
process at a time, without reference to other processes. The result is a system
of constraints on channel schedules.

3. When all such communication constraints have been computed (or collected
from a repository), they can be solved as a whole, giving a solution for the
channel schedules. Again, the communication constraints matrix is block-
isomorphic to the communication graph of the whole system, and has a high
probability of being sparse. This is the only place where the system has to
be considered in toto.
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4. The solution for the channel schedules can then be substituted in the bounds
for the coefficients of the schedules, and these coefficients can be recovered
by back-substitution.

5. It remains to gather all schedules and submit them to a code generator. With
present day tools [3], there is no hope of staying modular there, unless one
deals with highly specialized architectures. However, tools like CLooG are
quite efficient and can handle very large programs.

Consider the example of Sect. 2.2. The first step is to compile the two pro-
cesses. Let:

0((W,i)) = ai, 0((Z)) = B, O((R, 1)) = vi+ 0, 0((A, 1)) = ex + ¢.

The producer has no data dependence, hence the only constraint is a communi-
cation constraint:
i>0=>e+¢>ai+ 1

Application of the Farkas algorithm gives ¢ > 1 and € > « after elimination of
the multipliers. After elimination of «, the only remaining constraint is ¢ > 1.

In the consumer there is a flow dependence from Z to R, which gives § > +1,
and a flow dependence from R to itself, which gives v > 1. Lastly, there is a
communication dependence from A to R which entails ¢ < ¢ and € < ~. The
next step is the elimination of 8, and ¢ from the system of constraints:

The resulting system is empty. The only communication constraint is ¢ > 1
whose smallest solution is ¢ = 1. From there, one may reconstruct the schedules:

O((W,i)) =0, 0((Z)) =0, 0((R,i)) =i+ 1, 0((A,x)) = 1.

This solution is not satisfactory, since one has to deposit an infinite number of
values in A in one clock cycle. An easy way out is to slow down the producer by
introducing a dependence:

C: t=7f@);
W: A[i] = t;

The schedules become:
0((C,i)) =2i, 0((Z)) =0, O0((W,i)) =20+ 1, 0((A,x)) =2i + 2, O((R,1)) = 2i + 2.

Notice that it was not necessary to recompile the consumer. These schedules
correspond to a VLIW program whose kernel is:

clock cycle|C|W|R

* *

even

odd *
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6 Related Work

While the literature on automatic parallelization is enormous, and the literature
on scheduling is only slightly smaller, the problems of modular parallelization
and of modular scheduling have not been extensively considered by the academic
community, let alone industry.

In [13], the unit of modularity is the procedure, whose effect is summarized by
computing regions. The drawback of this method is that one can find parallelism
between procedure calls, and also inside procedures, but not parallelism that
requires a transformation involving both a procedure and its calling context.

Nearer to the subject of this paper, Risset and Quinton [14] have defined
structured scheduling for systems in the ALPHA specification language [15]. Sys-
tems can be scheduled independently. The schedules of several systems are then
composed to give the global schedule. This is possible only if somewhat stringent
restrictions are imposed on systems.

The use of processes in parallel programming dates back to the commence-
ment of the subject. Kahn Process Networks [4] have been a source of inspiration
for the present paper. The main difference is that in KPN, there are no con-
straints on the definition of each process — which may not be a program in the
usual sense — hence their a prior: analysis and compilation is almost impossible.
This results in the present situation, where KPN are only used for simulation
or even direct execution. In contrast, CRP systems can be checked statically or
compiled into synchronous programs.

7 Conclusion and Future Work

This paper is very preliminary and many problems have to be solved if this
proposal is to become a practical solution for the design of embedded systems.
Let me quote some of them.

In the above description, there is nothing to bound the size of a channel.
One needs a way of constructing schedules under the additional constraint that
each channel uses no more than a given amount of memory. Let us note that
the inverse problem (finding the amount of memory needed to support a given
schedule) has been the subject of much research and that good solutions are
known [16, 17].

For complexity reasons, as soon as resources are in a fixed finite amount,
the restriction to affine schedules is no longer tenable. One has to use many-
dimensional schedules. While there are methods for constructing such schedules
[9], building their modular extension is by no means obvious.

Many problems in, e.g., image processing, are outside the regular (or poly-
tope) model. One may sometime obviate this difficulty by overestimating depen-
dences, or by encapsulating the irregular program parts, or by asking for help
from the programmer. There is much work to be done in this direction.
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