Elementary transformation analysis for Array-OL

Ouassila Labbani and Paul Feautrier Eric Lenormand and Michel Barreteau
Ecole Normale Sugrieure de Lyon THALES Research & Technology
46 allee d'ltalie 69364 Lyon, France RD 128 - 91767 Palaiseau, France
Email: first nameast namé&ens-lyon.fr Email: first nameast nameédthalesgroup.com

Abstract—Array-OL is a high-level specification language ded- first, that HPF is intended to compile a complete application,
icate_d to the_ definition of multidiment?onal intensive signal pro-  while Array-OL tools consider the inner processing as a black
cessing applications. It allows to specify both the task parallelism box. Second, the user specified distribution of data can be

and the data parallelism of these applications on focusing on _ . . L o
their complex multidimensional data access patterns. Several quite arbitrary and complex. The generated code is difficult

tools exist for implementing an Array-OL specification as a data t0 Optimize. In contrast, Array-OL is more constrained, which
parallel program. While Array-OL can be used directly, it is makes for more efficient implementations.

often convenient to be able to deduce part of the specification Despite the considerable research effort put presently on
from a sequential version of the application. This paper proposes 5 1omating the paralellization process, it is still difficult in

such an analysis and examines its feasibility and its limits. . . . .
Index Terms—Data parallelism, multidimensional signal pro- practice to find tools that manage automatically the entire de-

cessing, program analysis, Array-OL sign flow from high level source code down to executable code
on potentially heterogeneous parallel computing platforms.
|. INTRODUCTION Human involvement is still necessary, but it can (and must)

Today embedded applications need increasing processiglimited to high level decisions on the way the application
power, as they move from synthesis (e.g. image drawing) sbould be partitioned and mapped on the architecture. A major
analysis (e.g., face recognition). At the same time, and fadvantage of Array-OL is that it provides high level, concise
basic physics reasons, technology progress is slowing dovand human-manageable views of the data dependencies. This
Pending a breakthrough in non-standard technologies, the onlgkes it possible to create tools like SpearDE, which allow
way out is increased use of parallelism, as shown by the adverperienced designers to control the implementation at a
of multicore processors and Systems on Chips. coarse grain level, relying on appropriate automatic tools that

Parallel programming is admitedly difficult and error pronegperate at lower level, where they are the most efficient. This
hence the invention of parallel programming frameworksypproach, which first has the advantage to be operational, is
where the programmer is limited to safe and easily compilabdficient both in terms of productivity, as the entire final code
features. Examples are parallel divide and conquer, data flevgenerated error-free, and in terms of performance as the
(as in Kahn Process Networks) and data parallelism. Arragesigner can tune its mapping iteratively with rapid feed-backs
OL is such a framework, a combination of dataflow and dafeom the tool on each particular mapping strategy.
parallelism. In addition, since it was originally designed for In the Array-OL formalism, an application is a network
radar and sonar applications [DG98], it is specially optimizeaf processes which communicate through shared arrays. Each
for processing large multidimensional datasets. process is a data-parallel program which acts repetitively on

Among the formalisms that target such multidimension@s input arrays to generate its output. Several tools and en-
signal processing applications, let us quote MDSDF (Multisironments exist for implementing an Array-OL specification
Dimensional Synchronous Dataflow [ML02] and its follow-as a data parallel program such as SpearDE [LEO3] (Signal
up GMDSDF (Generalized MDSDF) [ML95] proposed byProcessing Environments and ARchitectures) and Gashard?2
Lee and Murthy. Thanks to their multidimensional structurén these environments, the Array-OL formalism must be used
these models allow the expression of computation intensigizectly. The programmer is responsible for constructing the el-
signal applications. However, they do not offer effective meamesnentary transforms, identifying the input and output regions,
to exploit data or computation parallelism, and can hawhecking parallelism and specifying the regions parameters. To
some constraints limiting the field of the studied applicationsnplement these tasks, a thorough knowledge of the Array-
such as the number of dimensions which can be taken irdd formalism is necessary. To avoid this problem, another
account and mechanisms of access to the data (cyclic/acydliossibility is to infer the Array-OL specifications from a
etc) [Lab06]. sequential version of the program. This requires the solution

Another possibility is to use general purpose array process-three problems:
ing languages, like Fortran 95 [ABM+97] or HPF [HPF94]. | Rewriting the sequential program in such a way that the
Parallelism in HPF is expressed by specifying the distribution  gyter loops have no dependences.
of data among the processors, and then applying the “owner
computes” rule. The main differences with Array-OL are, lhttp:/iwww.lifl.friwest/gaspard



« Deducing the shape and size of the regions from @nce the paving matrix i$ = (
analysis of the array subscript functions and loop bounds.

« Rewriting the sequential code by substituting regio
accesses to the original array accesses.

(1) ) and the origin is

] ) ) . Globally, some constraints on the number of rows and
This work is dedicated to a proposal for the solution of thg,;mns of the fitting and paving matrices can be derived from
second and third problems. The assumption is that one is giRRir se. The origin, the fitting matrix and the paving matrix
the sequential code, together with a list of input and OUtPHLye 4 number of rows equal to the dimension of the array: the
arrays, and an indication of which loop(s) are to be conS|derﬁﬁiing matrix has a number of columns equal to the dimension

as the outer (repetition) loop(s). of the pattern and the paving matrix has a number of columns

Il. A SKETCH OFARRAY-OL equal to the dimension of the repetition space.

For a detailed description of Array-OL, the reader is refered ~ !!l. ELEMENTARY TRANSFORMATION ANALYSIS
to [BouO7] or [DLB+95]. As we have said earlier, Array- In the following sections, we explain how to infer pattern
OL combine task parallelism — an Array-OL application ishape, paving and fitting matrices from a sequential code.

a process network — and data parallelism. In this paper, we .
will concentrate on the second aspect. A. Paving

Data-parallelism is specified as the repetitive applicationLet A be an input or output array and let its occurences
of an elementary transformation to one or more input sult the sequential code be numbered from 1No Let r be
arrays patterng, resulting in one or more output patterns. Th#éhe counter(s) of the repetition loop(s), and I¢t be the
basic hypothesis is that all the repetitions of the elementaggunter(s) of the inner loop(s) that surround occurenoé A.
transform are independent and hence can be scheduled in @lye” (r, j*) be its subscript functiore” is a vector function
order, even in parallel. whose dimension is the rank of.

At each repetition, the task reads the input pattern andTo be amenable to an Array-OL implementation, the sub-
performs computation to produce the output pattern. Forsaript functione* must be affine in- and j*. A convenient
given input or output, all the pattern instances have the sai@y of checking this property consists in computing the two
shape, are composed of regularly spaced elements and Jaeobian matrices:

i ifi k k
;glglg:\ﬁ:y .placed in the array. Patterns are specified by the P (%) B (3&)’
9 . | Ors 0t
« F: afitting matrix which maps array subscripts to pattern ) .
entries checking that they do not depend onor j*, and checking
« 0: the origin of the reference pattern (for the referend@€ identity:
repetition) _ _ N ek (r, %) = P*r + BEj% 4 ¢%(0,0).
« P: a paving matrix which maps repetition counters to
array subscripts In Array-OL terminology, P* is the paving matrix, and
For a better understanding of Array-OL concepts, considef(0, 0) is the origin of the paving. The elements of these enti-
the following elementary transformation code: ties may be numbers, or they may depend on constants, which
ET(nt in[], int out[][){ must be given numerical values just before code generation.
int i,J'Jf,fS; o p ion | References with different paving matrices may be separated
L°‘E‘éibz°f§'o}°’('EZC’,;LZ?f;kH){ ,/Rgg?:g:ﬂnloggp by arbitrary distance in the source or target array; it is not
S =0 possible to group them efficiently; they must be implemented
Loop3: for(j=0;j<100;j++)  // Pattern loop as separate channels.
outf;][;f:'”go.m*“] infi+1]fke+; In the preceding example, there are two referenceis to
with respective subscript functions (i, k, j) = jfll
Here, the elementary task reads a bidimensional drray o i+ 1 _ _
of unknown size to produce another bidimensional amaty. and e*(i, k,j) = kot ) The corresponding paving

In this simple example, the iterations of the repetition loop 0 1

are independent, provided the scafais properly privatized. matrices areP! = ( 0 ) and P? = ( 0 ) Hence, the
These iterations can be executed in any order or in parallglo accesses must be handled separately.

The first loopLoopl of the elementary task is the repetition

loop, while the other loops are pattern loops. At each iteratiéh Pattern and fitting

of Loop1l, eleven elements of the output arrawt[i][0] When discussing patterns, one has to consider three frames
to out[i][10] are written. The pattern is of size eleverof reference (see figure 1). The first one is the original (input

and the fitting matrix isF — 0 . The pattern moves one®" output) array. Its dimension is the rank of the array, noted

o ) S \1 ] . |Al, and its coordinates are callsdbscripts The shape of an
unit in the first subscript direction at each iterationLobpl , array is always a (hyper-) rectangle.



ﬁ given, the choice of the pattern and fitting matrix are somewhat
modified subscript arbitrary. There are two obvious solutions: in the first one, the

fitting pattern function pattern is the smallest rectangular box enclosing the footprint,
the fitting matrix is the identity, and the subscript function is
] I not changed. In the second solution, the pattern is isomorphic
— 'S°U°tfs'cript iteration to the iteration domain (provided it is a parallelepipeB):
function domain is the fitting matrix, and the new subscript function is the
footprint identity-
In signal processing applications, it is often the case that
several references to the same array have similar subscript

functions; constructing only one pattern for several references
is an interesting optimization. However, this should not be

obtained at the cost of a large overhead in the size of the
pattern. In other word, the number of useless elements in the

The second frame of reference is the iteration space RAtt€rn must be minimized. Useless elements come from two
the inner loops of the elementary transform. Its dimensiciPUrces:
is the number of loops enclosing the reference, nated e« A pattern whose shape is far from being rectangular
and its coordinates are callddop counters There may be e« A subscript matrix whose determinant is not of modulus
as many iteration domains as there are references, or several one: there will be holes (unused elements) in the foot-
references may share the same iteration domain. The shape of print. The inverse of the determinant gives an asymptotic
an iteration domain is arbitrary. The only requirement in the €valuation of the ratio of useful elements.
present context is to be able to construct its vertices, eitherThe next section presents a method for computing a pattern
because the iteration domain is rectangular, or because it @ a fitting matrix in the general case (many references).
be expressed as a convex polyhedron with parameters in Tids method can only be applied if all elements of the
constant terms only. The iteration domain of referehaill MatricesB* and the vectors” have known numerical values.
be denoted a®* in what follows. Section IlI-B2 presents fail-soft solutions for cases in which

The third frame of reference is the pattern. Accordintpese elements depend on unknown parameters.
to [Bou07] the pattern is always of rectangular shape. Thel) The General Case:The basic observation is that a
pattern associated to referencés denoted byl'’* and its di- conservative estimate of the footprint can be obtained by
mension isp*. The associated fitting matri¥*, connects the computing the projection of each iteration domain by the
pattern space to the array space and its dimension, accordingggociated subscript function, then constructing a convenient
is |A] x p*. superset of the union of these projections. One practical

The relation of these objects are as follows. Firstly, the locBlethod consists in projecting the vertices of the iteration
subscript functionf® (%) = B¥j*+¢*(0,0) = ¢¥(0, j*) gives domains. One then gathers all such projections, and constructs

the coordinates of an array cell relative to the reference pofRe€ir convex hull by familiar (e.g., Chernikova’s) algorithms.
P* r which moves according to the paving matrix. To reduce the size overhead, one should notice that a useful
Next, the imagef* (D*) is thefootprint of referencek. Its point for referencek also belongs to the lattice which is
shape is an arbitrary polyhedron. The images of the vertic@@nerated by the column vectors Bf. Hence,B", properly
of D* by f* form a superset of the vertices of the footprint. Aimplified (see later) could be used as the fitting matrix.
polyhedron can be represented either as the set of solutiongigfvever, in the case of several references, we have to combine
a system of inequalities, or as the set of convex combinatiop@veral lattices into one, since each pattern has only one fitting
of a finite number of points. There exists an efficient algorithn"if,‘atrix- As an illustration of this construction, consider the one-
the Chernikova algorithm [Sch86], for going from one of thes@imensional case. A one-dimensional lattice is simply a set of
representations to the other and back. An implementation f§gularly spaced points. Combining two lattices generates a
this algorithm is at the core of the Polylib lattice whose spacing is the greatest common divisor (gcd) of
Lastly, the image of the pattern by the fitting matrix musfie component spacings. The many-dimensional equivalent of
enclose the footprint, and it must be feasible to retrieve tAe gcd is the construction of the Hermite normal form of the
datum from the pattern instead of the original array. Thaubscript matrices.
implies that there exists a functiap from D* to T* such Let A(B,b) _be the lattice generadted dy with origin b, i.e.
that for every iteration vectof* € D¥, f*(j*) = Fkgh(j*). the set of points{Bx +b | = € N}, Let Lt = A(BYbY)
In the text of the elementary transforf must be substituted and L* = A(B2,b?) be two such lattices. It is easy to see
to e* in referencek to A. that the union ofZ! and L? is included in the latticel. =
As one may see from this discussion, while the iteratioh([B'B*(b* — b%)],b'). This construction can be extended

domain and footprint are fixed once the sequential programtfs @ny number of component lattices. The resulting matrix
is [BY...BN(b? — b')... (BN — b)] and the origin isb.

2http:/ficps.u-strasbg.fr/polylib Furthermorep' can be moved to the origin of the paving and

array
Fig. 1. Data access in Array-OL



hence taken as 0 when computing the fitting. However, tHi®unding box. If there is only one access, or if all accesses

matrix is highly redundant. It can be simplified by using thbave the same constant part, the pattern has only one element,

well known fact that the Hermite normal form &f generates and, by convention, the fitting matrix is empty.

the same lattice a® [Sch86]. It is also possible that the studied application does not
It is interesting to notice that this general solution reducdgespect the Array-OL model semantics in the following sit-

to one of the approximate methods above in special casestions:

If B is unitary, then its Hermite normal form is the unit « Several references to the same input or output array with

matrix. In that case, the pattern is the footprint, eventually different paving

extended to a rectangular box and the fitting matrix is the s Several repetition loops at the same level

identity. Conversely, ifB is already in Hermite normal form, « Sequential loops with recurrence on a given variable

the pattern is isomorphic to the iteration space, &hd the « Array used as subscript

fitting matrix. In these cases, it is difficult, even impossible to compute the
2) The Parametric CaseParameters occurs mostly in loopArray-OL informations and predict the pattern shape.

bounds. They may also appear as strides and, more seldonfs discussed in section IlI-A, if there are several references

in the coefficients of subscript functions. to the same input or output array, our general algorithm
In the Array-OL formalism, the repetition loops must be&omputes one paving matrix for each reference. This is not

square. Hence, their bounds may be extracted directly from thiiowed in the Array-OL model if the paving matrices are

program text. The extraction of the paving matrix is a simpldifferent. In this model, the different accesses to the same

derivative computation, which is an easy task for a competearray must be handled separately. A possible solution is then

computer algebra system. Similarly, tf¥* matrices are the to implement the array accesses as separate channels.

result of a derivation, and may contain parameters. Using different repetition loops at the same level is also not
There are no restrictions on the inner loops. For the coalowed by the Array-OL model. In this model, each repetition

struction of the pattern, one needs to know the vertices of tlw®p nest must be performed as a separate elementary trans-

inner iteration domain. There are three cases: form. To solve this problem, we can compute the pattern for
« The bounds are constant: they can be extracted everf&ch repetition loop nest, and then join the different resulting
parametric. patterns.

« The bounds are affine expressions in outer loop coun-If the studied application contains loops that can not be

ters and parameters: the vertices can be computed wetecuted in parallel, it i{s difficult to model it in the A_\rray—OL.
the help of Chernikova's algorithm, as implemented foq)aral!el mod_el as explanjed by the example of section V. It is
instance in the Polylib. glso mposs@le to predlcj[ the pa.ttern and. Array-OL 'parallel
« In other cases, there is no way of computing vertices, blunﬂ‘ormano_ns if the_ subscript function contal_ns array since we
the user may supply a bounding box. have no information on the content of this array as in the

The computation of the Hermite normal form can be dor}‘gllowmg example:

; i i ; ; int tab_inter(];
only if th_e matnx is k_no_wn numerically, except in two Caseél.nt INl__Dl,I[llll_DZ, IN1_D3, OUTI D1:
the matrix is1 x 1 (it is its own normal form) or2 x 2. void SP_Interleave(
If none of these circumstances applies, the solution of last  int D_In[IN1_D1][IN1_D2][IN1_D3],
resort is to use one of the approximate schemes above. Far, é?éczygzt[g_’un—m]){
instance, if the vertices of the inner iteration domain are int Ncbps, nb_sous_p._utiles;
available, it is possible, whatever tiiematrix, to compute the  int Dim1_bits_poinconnes;

; ; ; im1_bits_poinconnes = OUT1_D1;
vertices of the footprints and to enclose them in a rectangularg r(bloc=0"bloc<Dim1 bits_ poinconnes:bloc++){

box. The paving matrix is then the identity. for(symb=0;symb<nb_sous_p_utiles;symb++) {
3) Degenerate casefegenerate cases occur in the follow- for(b=0;b<nb_bits_par_symb:b++) {
ing situations: D_lIn[bloc][symb][b] =
! D_Out[tab_inter[symb*nb_bits_par_symb-+b]];
« Access to scalars or constant subscripts }
« No repetition loops ) }
« No pattern loops }

These cases have to be handled by specific code since th
underlying computer algebra system has difficulties undedf
standing matrices with no rows or no columns. Let us consi
the case when there are no pattern loops. One can still com
a fitting matrix for each access and group accesses accor
to their paving matrix.
In a group, accesses may differ by the constant part of the IV. IMPLEMENTATION

subscript function. In that case, one may still compute a fitting A prototype tool has been implemented as an extension to
matrix — via the Hermite normal form construction — and the Syntol scheduler [Fea06]. CRP, the input language of Syn-

ff the present implementation, and in order to simplify the
ocessing of the special cases which are not allowed by the
d/sFray-OL model, we decided that the paving matrix is empty,
téafitting matrix is the identity and the pattern is the whole
?t%y. A warning message is also displayed to inform the user.



Sequential code ) Pattern
> | CRPcode |—> — | -ofile

(C code) \ Fitting

SpearSyntol - Paving

number of /

repetition loops

Fig. 2. SpearSyntol implementation

tol, is a specification language for processes communicating D_Out[ b+ ofs*bdM] = D_In[b][ofs];
via shared arrays. The basic syntax of CRP is ANSI C. TheSP_Collapse_depunc_OUT1 D1 = bdM*ofsM;
conversion of ordinary C code to CRP is straightforward and
completely automated. Arrays appear in the ET's declaration with their dimension
The algorithms we have presented in the preceding sectidfisor 2 here), and the type of their data (int, double, ..). Their
have been implemented as an additional pass in Syntektent in each dimension is given as a parameter which is
Syntol is responsible for syntax analysis and checking, lospused within the ET, in particular to derive the loop bounds.
identification and array accesses extraction. As a side effdct,the above example, the main loop @fs is declared
Syntol catches many errors and inconsistencies, like type aldewhere as being the repetition loop, i.e. the associated
subscript errors. The output of Syntol is submitted to th#&acobian will be used to create the paving matrices (stride
SpearSyntol pass, which has been implemented within the1 on the first dimensions of both input and output). The
MuPAD? computer algebra system. SpearSyntol needs anothgernal loop on b is analysed to find a fitting of 1 on the
information: the number of repetition loops, which cannot bgecond dimension of the input array and a pattern length equal
inferred from the program text. to parametebdM.
The first step in this analyser is the detection of the The next example illustrates the case where an array is
repetition loops and the pattern loops. Thereafter, the analyreferenced several times:
computes for each input and output array the pattern shape oincon;
the origin reference and the paving and fitting matrices.  int SP_Puncture_IN1_D1, SP_Puncture_OUT1_D1;
_ The results of this analysis can be given in several forms?’%{d Siit—PE‘)J_”gitth‘fc(o des[SP_Puncture. INL D1] |
simple output log or an XML file or as additions to an Eclipse iyt 5 pits_poinconnes[SP_PunctureOUT1_D1]){
Ecore model. A gateway from SpearSyntol to SpearDE hasnt i;

| n vel . Figure 2 i flow diaaram of the thght Diml_bits_codes = SP_Puncture_IN1_D1;
also been developped gure s a flow diagram of the t eIDiml_bits_codes = SP_Puncture_IN1_D1,;

SpearSyntol analyzer. for (i=1; i<=(Dim1_bits_codes/4); i++){
D_bits_poinconnes|[(i-1)*3 + 0] =
V. CASE STUDY D_bits_codes[(i-1)*4 + 0];
. . D_bits_poinconnes|(i-1)*3 + 1] =
As a case study, we have used a prototype implementation D_bits_codes[(i-1)*4 + 1];
of a full 802-16 modem transmit and receive processing chain D_bits_poinconnes[(i-1)*3 + 2] =
as implemented at Thales on SpearDE from a hand-mad D_bits_codes|(i-1)*4 + 3J;

description of the elementary transformations (ETs). A randomsp pyncture OUT1 D1 = 3*Dim1_bits_codes/4;
sequence of bits is encoded, interleaved, and converted td a

sequence of signal samples that are passed through a radil% that case, the analyser computes for each array a rect-
channel simulator. The output of this simulator is submitte‘,g1 '

. . . lar approximation of the pattern; namely of length 4 for
to the inverse processing chain, and the decoded sequencttﬁjéu pproximat P y g

compared to the source. The corresponding 23 ETs repre ?ﬁginput and 3 for the output. Most elementary transforms in
: j . experiment were correctly analyzed by our tools. Some
about 1200 lines of C (see Figure 3). An example of ET co b y y y

o below: { the difficulties came from genuine algorithmics problems.
IS given below. For instance, in the bit decoding routine, one find a loop:

current = 0;
for(i=0; i<n; i++)Y

void SP_Collapse_depunc(
double D_In[SP_Collapse_depunc_IN1_D1]
[SP_Collapse_depunc_IN1_D2],

t = In[current][n-i];

double D_Out[SP_Collapse_depunc_OUT1_D1]){ current = :
int Dim1_In, Dim2_lIn; Outln-i] = etat & mask;
int ofsM, bdM, b,ofs; }
Dim1_In = SP_Collapse_depunc_IN1_D1; : . . .
Dim2_In = SP_Collapse_depunc_IN1_D2: This loop cannot be executed in parqllel, since there is
ofsM = Dim1_In; a recurrence orcurrent . Furthermore, since this variable
?d'zf': ODiTZ_L“?M s+ takes its values from the arrdy , which is an input to the
or(ors=0;o01s<ofsM; ors++ . . . . . . .

for(b=0;b<bdM: b++) routine, it is impossible to predict its value as a function of

the iteration variable. Hence, the indexing patternirof is
3http://Awww.mupad.de unknown at compile time. The only possibility is to decide



® nbOfSensors: 1 ®lgr_de_contrainte: 7 ® puncRatioNum: 4 ® numberOfUsefulSubCarriers: 48 » nbOfSymbol: 64 » ModulationFactor: 15430

. @ nbBits PerSymbol: 6
@ nbOfUsers; 1 ® nbOfStates: 64 SpEDdiotenE  numberOfSubCarriers: 52 i

o cyclicPrefid ength: MSize/d @ numPunc: 2 ® numberOfPilots: 4 @ EbNo: 30
& nbOOFDMSymbols: 10

» fitSize: 64
® nbBitsToGenerate: 4314

DataSource

Compare
>

AppendZeros  Coder Puncture Interleave Pilotinsert Bits2Symb Modulato PrefixAppend

ISRV IN IO I OIS I b i eow s

LPreﬁxRem ove FFT ReorderSCh  Channellny Demap PilotRemove  Deinterleave Depunctura Collapse_depunct Decoder_traj

B—B— BB BB —8—

Fig. 3. Elementary transformations in the modem example

thatIn has no paving, and that its fitting is the identity, thelangerous since they may induce non-determinism. The ex-
pattern being the whole array. istence of overlap may be tested provided one stays inside the
Other difficulties come from the coding practices of thgolytope model (affine loop bounds and indexing functions,
writers of elementary transforms. In many cases, array amth numerical coefficients and linear parameters).
not declared as such, but accessed through descriptors. Loop
: C . REFERENCES
bounds are computed from information in these descriptors.

Since many array dimensions are not given, it may be ndfBM+97] Jeanne C Adams,_WaIter S. Brainerd, Jeanne T. Martin, Jerrold L.
Y y 9 y Wagener and Brian T. Smithrortran 95 Handbook: Complete ISO/ANSI

essary to mfer_ them frqm the loop bounds, by a PrOCESS Reference MIT Press, Cambridge, 1997.
akin to symbolic execution. In the exemple above, there [Bou07] Pierre Boulet.Array-ol revisited, multidemensional intensive signal
no information in the program text about the first dimension brocessing specification Research Report RR-6113, INRIA, February

of In ; it must be supplied by the user. [DG98] Alain Demeure and Yannick Del GalloAn Array Approach for
Signal Processing DesignIn Sophia-Antipolis conference on Micro-
Electronics (SAME 98), France, October 1998.
[DLB+95] Alain Demeure, Anne Lafarge, Emmanuel Boutillon, Didier
. . Rozzonelli, Jean-Claude Dufourd, and Jean-Louis Marvrray-OL:
In this paper, we have explained how to analyse elementary proposition d’un formalisme tableau pour le traitement de signal multi-
transformation to infer Array-OL speciﬁcationsl The objecti\/e dimensionnelin Gretsi(Groupe d’Etudes du Traitement du Signal et des

; ; il _ ; Images), pages 1029-1032, France, 1995.
of this work is to facilitate the use of Array-OL formalism anC{FeaOES] Paul Feautrier.Scalable and Structured Schedulingnternational

to allow the re-use of legacy code in a parallel context. The journal of Parallel Programming, 34(5), pages 459-487, Norwell, MA,
Array-OL system is dedicated to the specification of intensive USA, 2006.

. . . . : . i ot ~[MPF94] CORPORATE High Performance Fortran Forum. High performance
signal processing applications, and its main characteristic }I—E)Fortran language specification (part Il1). SIGPLAN Fortran Forum, 13(3),

that it allows the exploitation of the full parallelism in these pages 22-55, ACM, New York, NY, USA, 1994.
applications. [Lab06] Ouassila Labbani.Modélisation & haut niveau du confile dans

. - . des applications de traitement sgstatiquea parallelisme massif PhD
In the future, we will StUdy more general cases, In pamCUIar thesis, LIFL, Universié des Sciences et Technologies de Lille, November

the possibility of manipulating skewed patterns. It is also 2006.
possible to benefit from Syntol results for a better ana|y5{jl§03] Eric Lenormand and Gilbert EdelinAn Industrial Perspective: A

. . pragmatic high-end signal processing environment at ThdleSAMOS:
of the parallel application. Since the Syntol tool computes 3rd international workshop on synthesis, architectures, modeling and

dependences, it is thus possible to check that the repetition simulation, pages 52-57, 2003.

loops are actually parallel. One must take care that Syntol WiYL95] It,';,faveer_‘ K-I Murt"r‘]y and Edd"t"ilfd At- Le%-_tA ge”e'ra”f_aﬁo? ttc_’f
- . : ultidimensional synchronous datariow 1o aroitrary sampling latlices
find dependences if temporary scalars are used in the code o@roceedmgs of the ICASSP'96, Atlanta GA, May 1996.

the elementary transforms. These scalars must be expandepiow2] Praveen K. Murthy and Edward A. LeeMultidimensional syn-
privatized at code generation time. chronous dataflowlEEE Transactions on Signal Processing, 50(8):2064-
. . 2079, august 2002.
Overlap between patterns (or, rather, between fOOtp”ntS)[$%h86] Alexander Schrijver. Theory of linear and integer programming

another concern. For input arrays, overlap is just a cause of John Wiley & Sons, NewYork, June 1998.
inefficiency, since some arrays cells will be copied several
times to processors. Overlap for output arrays are more

VI. CONCLUSION AND FUTURE WORK



