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Abs t r ac t .  The automatic parallelization of "regular" programs has en- 
countered a fair amount of success due to the use of the polytope model. 
However, since most programs are not regular, or are regular only in 
parts, there is a need for a parallelization theory for other kinds of pro- 
grams. This paper explore the suggestion that some "irregular" programs 
are in fact regular on other data and control structures. An example of 
this phenomenon is the set of recursive tree programs, which have a well 
defined parallelization model and dependence test. 

1 A M o d e l  f o r  R e c u r s i v e  T r e e  P r o g r a m s  

The  polytope model [7, 3] has been found a powerful tool for the parallelization of 
array programs. This model applies to program tha t  use only DO loops and arrays 
with afline subscripts. The relevant entities of such programs (iteration space, 
da ta  space, execution order, dependences) can be modeled as Z-polytopes, i.e. 
as sets of integral points belonging to bounded polyhedra. Finding parallelism 
depends on our ability to answer questions about  the associated Z-polytopes, 
for which task one can use well known results from mathemat ics  and operat ion 
research. 

The  aim of this paper is to investigate whether there exists other p rogram 
models for which one can devise a similar au tomat ic  parallelization theory. The 
answer is yes, and I give as an example the recursive tree programs, which 
are defined in sections 1.4 and 1.5. The relevant parallelization f ramework is 
presented in section 2. In the conclusion, I point to unsolved problems for the 
recursive tree model, and suggest a search for other examples of parallelization 
frameworks. 

1.1 A n  A s s e s s m e n t  o f  t h e  P o l y t o p e  M o d e l  

The main lesson of the polytope model is that  the suitable level of abstract ion 
for discussing parallelization is the operation, i.e. an execution of a s ta tement .  
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In the case of DO loop programs, operations are created by loop iterations. 
Operations can be named by giving the values of the surrounding loop counters, 
arranged as an iteration vector. These values must be within the loop bounds. 
If these bounds are affine forms in the surrounding loop counters and constant 
structure parameters,  then the iteration vector scans the integer points of a 
polytope, hence the name of the model. 

To achieve parallelization, one has to find subsets of independant operations. 
Two operations are dependent if they access the same memory cell, one at least of 
the two accesses being a write. This definition is useful only if operations can be 
related to the memory cells they access. When the data  structures are arrays, this 
is possible if subscripts are affine functions of iteration vectors. The dependence 
condition translates into a system of linear equations and inequations, whose 
unknowns are the surrounding loop counters. There is a dependence iff this 
system has a solution in integers. 

These observations can be summarized as a set of requirements for a paral- 
lelization framework: 

1. We must be able to describe, in finite terms, the set of operations of a 
program. This set will be called the control domain in what follows. The 
control domain must be ordered. 

2. Similarly, we must be able to describe a data  structure as a set of locations, 
and a fonction from locations to values. 

3. We must be able to associate sets of locations to operations through the use 
of address functions. 

The aim of this paper is to apply these prescriptions to the design of a 
parallelization framework for recursive tree programs. 

1.2 R e l a t e d  W o r k  

This section follows the discussion in [5]. The analysis of programs with dynamic 
da ta  structures has been carried mainly in the context of pointer languages like 
C. The first step is the identification of the type of data  structures in the program, 
i.e. the classification of the pointer graph. The main types are trees (including 
lists), DAG and general graphs. This can be done by static analysis at compile 
t ime [4], or by asking the programmer for the information. This paper uses the 
second solution, and the data  structures are restricted to trees. 

The next step is to collect information on the possible values of pointers. This 
is done in a static way in the following sense: the sets of possible pointer values 
are associated not to an operation but to a statement.  These sets will be called 
regions here, by analogy to the array regions [9] in the polytope model. Regions 
are usually represented as path expressions, which are regular expressions on the 
names of structure attributes [8]. 

Now, a necessary (but not sufficient) condition for two statements to be in 
dependence is that two of their respective regions intersect. It is easy to see that  
this method incurs a loss of information which may forsake parallelisation in 
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important  cases. The main contribution of this paper is to improve the precision 
of the analysis for a restricted category of recursive tree programs. 

1.3 Basic Concepts  and Notat ions  

The main tool in this paper is the elementary theory of finite state au tomata  
and rational transductions. A more detailed treatment can be found in Berstel's 
book [1]. 

In this paper, the basic alphabet is ]N (the set of non negative integers). 
e is the zero-length word and the point (.) denotes concatenation. In practical 
applications, the alphabet is always some finite subset of IN. 

A finite state automaton (fsa) is defined in the usual way by states and 
labelled transitions. One obtains a word of the language generated (or accepted) 
by an automaton by concatenating the labels on a path from an initial state 
to a terminal state. A rational transduction is a relation on IN* x IN* which 
is defined by a generalized sequential automaton (gsa): an fsa whose edges are 
labelled by input and output  words. Each time an edge is traversed, its input 
word is removed at the begining of the input, and its output  word is added at 
the end of the ouput. Gsa are also known as Moore machines. The family of 
rational transductions is closed by inversion (simply reverse the elements of each 
digram), concatenation and composition [1]. 

A regular language can also be represented as a regular expression: an ex- 
pression built from the letters and r by the operations of concatenation (.), union 
(+) and Kleene star. This is also true for gsa, with letters replaced by digrams. 

The domain of a rational transduction is a regular language whose fsa is 
obtained by deleting the second letter of each edge label. There is a similar 
construction for the range of a rational transduction. 

From one fsa c, one may generate many others by changing the set of initial 
or terminal states, c(s; ) is deduced from c by using s as the unique initial state. 
c(; t) has t as its unique terminal state. In c(s; t), both the initial and terminal 
states have been changed. Since rational transductions are defined by automata ,  
similar operations can be defined for them. 

1.4 T h e  C o n t r o l  D o m a i n  o f  R e c u r s i v e  P r o g r a m s  

The following example is written in a C-like language which will be explained 
presently: 

BOOLEAN tree leaf; 

int tree value; 

void sum(address I) { 

void main(void) { 

5 : sum([]);} 
} 

1 : if(! leaf[I]) { 

2 : sum(I.1); 

3 : sum(I.2); 

4 : value[I] = valueEI.1] + valueEI.2] 
} 
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v a l u e  is a tree whose nodes hold integers, and l e a f  is a Boolean tree. The 
problem is to sum up all integers on the leaves, the final result being found at 
the root of the tree. Addresses will be discussed in Sect. 1.5. 

Let us consider s ta tement  4. Execution of this s ta tement  results from a suc- 
cession of recursive calls to sum, the s ta tement  itself being executed as a par t  
of the body of the last call. Naming these operations is achieved by recording 
where each call to sum comes from: either line 2 or 3. The required call strings 
can be generated by a control au tomaton  whose states are the functions names 
and the basic s ta tements  of the program.  The state associated to main is initial 
and the states associated to basic s ta tements  are terminal.  There is a transit ion 
f rom state p to state q if p is a function and q is a s ta tement  occuring in p body. 
The transit ion is labelled by the label of q in the body of p. 

s2 ) 

Fig. 1. The Control Automaton of stm 

As the example shows, if the s ta tements  in each function body  are labeled 
by ascending numbers, the execution order is exactly lexicographic ordering on 
the call strings. 

1.5 A d d r e s s i n g  in  T r e e s  

Remark  first tha t  most  tree algorithms in the li terature are expressed recursively. 
Observe also tha t  in the polytope model,  the same mathemat ica l  object  is used 
as the control space and the set of locations of the da ta  space. Hence, it seems 
quite natural  to use trees as the prefered da ta  structure for recursive programs.  

In a tree, let us number the edges coming out of a node f rom left to right 
by consecutive integers. The name of node n is then simply the string of edge 
numbers which are encountered on the unique pa th  f rom the root of the tree to 
n. The name of the root is the zero-length string, e. This scheme dates back at 
least to Dewey Decimal Notat ion as used by librarians the world over. 

The set of locations of a tree structure is thus lN*, and a tree object is a 
partial  function from IN* to some set of values, as for instance the integers, the 
floating point numbers or the characters. 
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Address functions map operations to locations, i.e. integer strings to integer 
strings. The natural choice for them is the family of rational transductions [1]. 
Consider again the above example. Notice the global declaration for the trees 
v a l u e  and l e a f .  add re s s  is the type of integer strings. In line 4, such addresses 
are used to access va lue .  The second address, for instance, is built by postfixing 
the integer 1 to the value of the address variable I.  This variable is initialized 
to e at line 5 of main. If the call at line 2 (resp. 3) of sum is executed, then a 1 
(resp. 2) is postfixed to I. 

The outcome of this discussion is that at entry into function sum, I comes 
either from lines 2 or 3 or 5, hence the regular equation: 

i = (5, + I.(2, + i . (a,  2), 

whose solution is the regular expression: 

I = (5, e).((1, 2) + (3, 2))*. 

Similarly, the second address in line 4 is given by the following rational trans- 
duction : (4, @((2, 1) + (3, 2))*.(4, 1). 

I conjecture that  the reasoning that  has been used to find the above address 
functions can be automated, but the details have not been worked out yet. It 
seems probable that this analysis will succeed only if the operations on adresses 
are suitably limited. Here, the only allowed operator is postfixing by a word 
of IN*. This observation leads to the definition of a toy language, T , which is 
similar to C, with the following restrictions: 

- No pointers are allowed. They are replaced by addresses. 
- The only data  structures are scalars (integers, floats and so on) and trees 

thereof. Trees are always global variables. Addresses can only be used as 
local variables or functions parameters. No function may return an address. 

- The only control structures are the conditionals and the function calls, pos- 
sibly recursive. No loops or go to  are allowed. 

2 D e p e n d e n c e  A n a l y s i s  o f  7 "  

2.1 P a r a l l e l i z a t i o n  M o d e l  

When parallelizing static control programs, one has first to decide the shape of 
the parallel version. One usually distinguishes between control parMIelism, where 
operations executed in parallel are instances of different statements, and data 
parMlelism, where parallelism is found among iterations of the same statement.  
In recursive programs, repetition of a s tatement is obtained by enclosing it in 
the body of a recursive function, as for example in the program of Fig. 2. 

Suppose it is possible to decide that  the operations associated to S and all 
operations generated by the call to foo  are independent. The parallel version 
in Fig. 3 (where (^ . . .  ~} is used as the parallel version of s . . .  } [6]) is 
equivalent to the sequential original. The degree of parallelism of this program 



void foo(x) { 
s; 
if (p) foo(y); 

} 

Fig. 2. Sequential version 

void foo(x) { 
{- 

S; 
if(p) foo(y); 

-} 

} 

Fig. 3. Parallel version 
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is of the order of the number of recursive calls to foo,  which probably depends 
on the da ta  set size. This is da ta  paralellism expressed as control parallelism. A 
possible formalization is the following. 

Let us consider a function foo  and the s ta tements  {$1, �9 . . ,  Sn} of its body. 
The s ta tements  are numbered in textual  order, and i is the label of S~. Tests in 
conditional s ta tements  are to be considered as elementary, and must  be num- 
bered as they occur in the program text. 

Let us construct a synthetic dependence graph (SDG) for foo .  The vertices 
of the SDG are the s tatements  of foo.  There is a dependence edge f rom S~ to 
Sj, i < j iff there exists three iteration words u, v, w such that:  

- u is an iteration of foo.  
- Both u.i.v and u.j .w are iterations of some terminal  s ta tements  Sk and St. 
- u.i.v and u.j .w are in dependence. 

Observe tha t  u is an iteration word for foo ,  hence belongs to the language 
generated by c( ; foo) .  Similarly, v is an iteration of Sk relative to an i teration 
of Si, hence belongs to c(Si;Sk),  and w 6 c(Sj;St) .  As a consequence, the pair 
(u.i.v, u. j .w) belongs to the following rational transduction: 

h = 4;  j>.c(S,; 

m which if a is an automaton,  then a = is the transduction obtained by setting 
each output  word equal to the corresponding input word. This formula  also uses 
an au tomaton  as a transduction whose output  words have zero length. Similarly, 
the inverse of an au tomaton  is used as a t ransduction whose input words have 
zero length. 

S~ and Sj may also access local scalar variables, for which the dependence 
calculation is trivial. Besides, one must  remember  to add control dependences, 
f rom the test of each conditional to all s ta tements  in its branches. Lastly, de- 
pendences between stqtements belonging to opposite arms of a conditionM are 
to be ommited.  

Once the SDG is computed,  a parallel program can be constructed in several 
well known ways. Here, the program is put in serie/parallel form by topological 
sorting of the SDG. As above, I will use the C-EARTH version of the f o r k  . . .  
j o in  construct, {" . . .  ~}. The run t ime exploitation of this kind of parallelism 
is a well known problem [6]. 
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2.2 T h e  D e p e n d e n c e  Tes t  

Comput ing  dependences for the body of function foo  involves two distinct al- 
gorithms. The first, (or outermost)  one enumerates all pairs of references which 
are to be checked for dependence. This is a purely combinatorial  algori thm, of 
polynomial  complexity, which can be easily reconstructed by the reader. 

The inner algorithm has to decide whether there exists three strings x, y, w 
such that:  

where the first term expresses the fact that  x and y are iterations of Sk and 
St which are generated by one and the same call to foo,  the second and third 
ones expressing the fact that  both  x and y access location w. f a n s  g are the 
address transductions of Sk and St. The first step is to el iminate w, giving 
@, y) C k = g-1 o f .  k is a rational transduction by Elgot and Mezei theorem 
[2]. Hence, the pair (x, y) belongs to the intersection of the two transductions h 
and k Deciding whether h M k is empty  is clearly equivalent to deciding whether 
e M = is empty  where = is the equality relation and l = k-1 o h. 

Deciding whether the intersection of two transductions is empty  is a well 
known undecidable problem [1]. It  is possible however to solve it by a semi- 
algori thm, wich is best presented as a (one person) game. A position in the 
game is a triple (u, v, p) where u and v are words and p is a state of g. The initial 
s ta te  is (e, c, p0), where P0 is the initial state ofg. A position is a win if u = v = e 
and i fp  is terminal.  A move in the game consists in selecting a transit ion from p 
to q in ~ with label (x, y}. The outcome is a new position (u',  v', q) where u' and 
v ~ are obtained from u.x and v.y by deleting their common prefix. A position is 
a loss if u and v begin by distinct letters: in such a case, no amount  of postfixing 
can complete u and v to equal strings. There remains positions in which either 
u or v or both are e. Suppose u = c. Then, for success, v must  be the prefix of 
a string in the domain of g when start ing from p. This can be tested easily, and, 
if the check fails, then the position again is a loss. The situation is symmetr ica l  
i f v = c .  

This game may  have three outcomes: if a win can be reached, then by restor- 
ing the deleted common prefixes, one reconstructs a word u such tha t  (u~ u} E g, 
hence a solution to the dependence problem. If  all possible moves have been 
explored without reaching a win, then the problem has no solution. Lastly, the 
game can continue for ever. One possibility is to put  an upper  bound to the 
number  of moves. If this bound is reached, one decides that ,  in the absence of a 
proof  to the contrary, a dependence exists. 

The following algorithm explores the game tree in breadth-first fashion. 

Algorithm D. 

1. Set D = 0 and L = {(c, c,p0)] where P0 is the initial node of l. 
2. If  L = ~, stop. There is no dependence. 
3. Extract  the leftmost element of L, (u, v, p). 
4. If  (u,v,p) E D, restart  at step 2. 



477 

5. If  u = v = e and if p is terminal,  stop. There is a dependence. 
6. If  both  u r ~ and v r r the position is a loss. Restart  at step 2. 
7. If  u = c and if v is not a prefix of a word in the domain of l(p; ), restart  at 

step 2. 
8. If  v = ~ and if u is not a prefix of a word in the range of g(p;), restart  at 

step 2. 
9. Add (u, v,p) to D. Construct all the positions which can be reached in one 

move fl'om (u, v,p) and add them on the right of L. Restart  at step 2. 

Since the exploration is breadth-first, it is easy to prove tha t  if there is a 
dependence, then the algorithm will find it. 

This algorithm has been implemented as a stand alone program in Objective 
Caml.  The user has to supply the results of the analysis of the input program,  
including the control automaton,  the address transductions, and the list of state- 
ments  with their accesses. The program then computes the SDG. All examples 
in this paper  have been processed by this pilot implementat ion.  As far as my  
experience goes, the case where algorithm D does not terminate  has never been 
encountered. 

2.3 sum R e v i s i t e d  

Consider the problem of parallelizing the body of sum. There are already control 
dependences from sta tement  1 to 2, 3, and 4. The  crucial point is to prove tha t  
there are no dependences from 2 to 3. One has to test one output  dependence 
from v a l u e  [ I ]  to itself, two flow dependences f rom v a l u e  [ I ]  to v a l u e  [ I .  1] 
and v a l u e  [ I .  2],  and two symmetrical  anti-dependences. 

Let us consider for instance the problem of the flow dependence f rom v a l u e  [ I ]  
to v a l u e  [ I .  1]. The s transduction begins in the following way: 

t =  ( ( 2 , 2 ) + ( 3 , 3 ) ) * . ( 3 , 2 )  . . . .  

Algori thm D finds tha t  there is no way of crossing the (3, 2) edge without  gen- 
erating distinct strings. Hence, there is no dependence. 

On the other hand, algorithm D readily finds a dependence from 2 to 4. All in 
all, the SDG of sum is given by Fig. 4, to which corresponds the parallel p rogram 
in Fig. 5 - -  a typical case of parallel divide-and-conquer. 

3 C o n c l u s i o n  a n d  F u t u r e  W o r k  

I have presented here a new framework in which to analyze recursive tree pro- 
grams. The main differences between the present method and the more usual 
pointer alias analysis are: 

- Data  structures are restricted to trees, while in alias analysis, one has to 
determine the shape of the structures. This  is a weakness of the present 
approach. 
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•• void sum(address I) 
{ 

I : if(! leaf[I]) { 
{- 

2 : sum(I, i) ; 

3 : s u m ( 1 . 2 )  
"}; 

4 : v a l u e [ I ]  = 

value [I .  1] + value [I .  2] ; 
} 

Fig. 4. The SDG of sum Fig. 5. The parallel version of sum 

- In 7- ,  the operations on addresses are limited to postfixing, which, translated 
in the language of pointers, correspond to the usual pointer chasing. 

- The analysis is operation oriented, meaning that  addresses are associated to 
operations, not to statements. This allows to get more precise results when 
computing dependences. 

Pointer alias analysis can be transcribed in the present formalism in the following 
way. Observe that,  in the notations of Sect. 2.2, the iteration word x belongs 
to Domain(h), which is a regular language, hence w belongs to f (Domain (h ) ) ,  
which is also regular. This is the region associated to Sk. Similarly, w is in 
the region g(Range(h)) .  If the intersection of these two regions is empty, there 
is no dependence. When compared to the present approach, the advantage of 
alias analysis is that  the regions can be computed or approximated without 
restrictions on the source program. 

It is easy to prove that when f (Domain(h ) )  A g(Range(h))  -- 0 then e is 
empty. It is a simple matter  to test whether this is the case. The present imple- 
mentat ion reports the number of cases which can be decided by testing for the 
emptiness of ~, and the number of cases where Algorithm D has to be used. 

In a T implementation of the merge sort Mgorithm, there were 208 depen- 
dence tests. Of these, 24 were found to be actual dependences, 34 where solved 
by region intersection, and 150 required the use of algorithm D. While extrapo- 
lating from this example alone would be jumping at conclusions, it gives at least 
an indication of the relative power of the region intersection and of algori thm 
D. Incidentaly, the SDG of merge sort was found to be of the same shape as the 
SDG of sum, thus leading to another example of divide-and-conquer parallelism. 

The 7- language as it stands clearly needs a sequential compiler, and a tool for 
the automatic construction of address relations. Some of the pet ty  restrictions 
of Sect. 1.5 can probably be removed without endangering dependence analysis. 
For instance, having trees of structures or structure of trees poses no difficulty. 
Allowing trees and subtrees as arguments to functions would pose the usual 
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aliasing problems. A most  useful extension would be to allow trees of arrays, as 
found for instance in some versions of the adaptive multigrid method.  

How is T to be used? Is it to be another programming language, or is it bet- 
ter used as an intermediate representation when parallezing pointer programs as 
in C or ML or Java? The latter choice would raise the question of t ranslat ing 
C (or a subset of C) to T ,  i.e. translating pointer operations to address opera- 
tions. Another problem is that  7" is static with respect to the underlying set of 
locations. I t  is not possible, for instance, to insert a cell in a list, or to graft  a 
subtree to a tree. Is there a way of allowing tha t  kind of operations? 

Lastly, trees are only a subset of the da ta  structures one encounter in practice. 
I envision two ways of dealing, e.g., with DAGs and cyclic graphs. Adding new 
address operators,  for instance a prefix operator:  

7r(al . . . . .  a,~) = (al . . . . .  an-a) 

allows one to handle doubly linked lists and trees with an upward pointer. The 
other possibility is to use other mathemat ica l  structures as a substrate.  Finitely 
presented monoids or groups come immediately  to mind, but there might  be 
others. 
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