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Abstract

This article presents an overview of our recent research on automatic parallelization
of imperative programs. It describes our researches on the extension of the polytope
model to general programs, and the current status of the PAF prototype parallelizer.
The main contributions are a general algorithm for single-assignment form transforma-
tion, an algorithm to compute parallel schedules, and a clean framework to simultane-
ously address parallelization by scheduling and expansion of data structures. We also
recall general results on our array data-flow analysis technique, and advocate for its use
at the core of parallelizing compilers. In addition, we discuss important design issues
underlying the project, we compare our work with other compilation frameworks, and
we propose several research perspectives for enhancing our parallelization scheme.

1 Introduction

This article presents an overview of our recent research on automatic parallelization of im-
perative programs. It describes our researches on the extension of the polytope model [30] to
general programs, and the current status of the PAF (Paralléliseur Automatique de Fortran)
prototype parallelizer developed in Versailles.

Until recently, the polytope model has been restricted to affine loop nests, i.e. do loops
with affine bounds and array subscripts. On this class of static control programs, our pro-
totype parallelizer proceeds according to the following compilation chain: First, an array
data-flow analysis (ADA)—a powerful, element-wise reaching definition analysis on arrays—
is applied. Thanks to ADA, the program is converted into single-assignment form, thus
removing spurious, memory-based dependences. Then, the computations, ordered by the
data-flow graph, are scheduled using a logical, integer-valued time. At each time step, a
front of computations is executed. The generated code then consists of an outer loop on
time values that spawns each front in turn.

This paper shows how the same comprehensive parallelization scheme can apply to general
programs. First, we recall our results on FADA—an enhanced ADA—in Section 3. Then,
in Section 4 we report our results, first published in French, on an algorithm to convert
programs into single-assignment form. We also compare these techniques to recent research
on array static single-assignment (SSA). Notice that, in our minds, single-assignment (SA)
is a property of a program, whereas SSA is one framework to achieve this property. SSA
provides an intermediate program representation in single-assignment form, allowing further



compilation techniques to be applied; Depending on the application, the program in single-
assignment form is actually generated or not. In addition, we believe that the separation
between the array data-flow analysis and the single assignment transformation must be
clarified, as opposed to the SSA framework. Indeed, this separation is not simply a matter
of religion: We show that—as in many compilers—having clear-cut, distinct phases has
several benefits.

However, when the behavior of the program cannot be predicted precisely at compile-
time, a conversion to single-assignment form may lead to a lot of run-time overhead. We
may thus prefer a partial expansion, yielding possibly less parallelism but also less run-time
overhead. On the other hand, thanks to the experience gained [45] on the memory reduction
of affine programs, we notice that some memory cells can be reused at distinct times to store
different values (thus breaking the SA property) without losing parallelism. We show how
parallelism and expansion of data structures are intermingled, and why recent works of ours
happen to be two faces of the same coin, two instances of the same problem. The resolution
of the full problem, however, will be left for future work.

Therefore, in addition to providing a comprehensive overview of recent extensions of the
polytope model, this paper makes the following contributions:

o We show why, to achieve array single-assignment, the separation of array data-flow
analysis and array expansion is important.

o We give a general algorithm to convert programs to single-assignment form.

o We provide formal techniques to schedule general programs, perhaps with speculative
execution.

o We introduce a clean framework to simultaneously address parallelization by scheduling
and expansion of data structures.

2 Definitions and Overview of the Compilation Chain

Figure 1 shows the different techniques we present in this paper along with their interactions
and related articles.

2.1 An Abstract View of Parallelization

In this section, we present a general framework for automatic parallelization and make no
limitation on the input programs—mneither on control nor on data structures.

Let us consider the set ) of all operations in the program, and let W C ) be the set of
all writes. Every operation may perform read or write accesses to memory: Let f be the
function mapping operations to the memory cells they write into.

Reaching Definition Analysis: Compute for each operation u, the set o(u) of definitions
reaching u. To stress the point that we deal with run-time instances of statements
(i.e. operations), the elements of o(u) are called the sources of u. In general, the set
o(u) has to be a conservative approximation. Notice that, when the array data-flow
analysis is exact (for instance, in the case of affine loop nests) then o(u) is a singleton.
(See Section 3).



Conversion to Single-Assignment: (See Section 4.) Define a new function f” mapping
operations to the memory cells they write into, such that: Yu,v € W, u # v = f'(u) #
f'(v). An overview of the expansion algorithm is:

1. First create a data structure D such that there is a bijection (a one-to-one map-
ping) from € to the elements of D.

2. In each assignment, the left-hand side is replaced with D [ f'(u)].
3. Each read (e.g., in right-hand side of assignments) is replaced with
e D[ f'(o(u))]1,if o(u) is a singleton.

e o(o(u)) otherwise. Asin the SSA framework, the ¢-function restores the flow
of data: It picks at run-time the value computed by the actual source in o(u).

Scheduling: We then schedule all operations, i.e. we find a mapping 6 from € to logical
integer dates such that all operations scheduled at the same date can execute simul-
taneously, in the same “front”: F(t) = {u € Q|0(u) = t}. Let L(8) be the latency of
schedule 8, defined as L(#) = max,ecq 0(u) — min,eq 0(u). Intuitively, the latency cap-
tures the execution time (in logical time units) of the parallelized program. Minimizing
the latency is an important issue in computing a “good” schedule, but it is of course
not the only one when dealing with distributed memory machines. (See Section 5.)

Code Generation: At last, we scan the operations in 2 according to the (partial) order
given by the schedule. If min,eq 6(u) = 0, then the abstract parallel code is:

dot =0 to L(#)
doall F(t)
synchronize

end do

It is no big surprise that this abstract parallelization scheme will be especially suitable for
loop nests and arrays. Indeed, the practical techniques we present in this paper are devoted
to such kind of programs (see 2.2). Nevertheless this abstract view can be adapted to more
general programs and structures:

e This parallelization scheme can be applied to any control structure: we “only” have
to name each operation in € in a unique way, then craft an element-wise reaching-
definition analysis on €, and build a (set of) data structures in bijection with .
Consider for instance the case of recursive programs: We have to label each node in
the call tree, which is a simple process [13, 32]. Then, we need to extract the flow
of data, which is a relation on  x Q; In the world of formal languages, we have a
transduction [13].

e To apply this scheme to any data structure, we need to build new classes of functions f
and modify the data-flow analysis accordingly. Once again, the transduction framework
provides a simple way to express our problems [32].

In both cases, data structure expansion and scheduling algorithms are likely to be completely
new techniques. Notice that a straightforward application of the steps above leads to several
interesting issues. Converting to single-assignment requires a lot of memory, which can be



reduced when the schedule shows that two values have completely separate “life times”; In
this case, the two memory cells storing each value can be folded into one; This single cell
will store both values in turn (see Section 6.2). On the other hand, converting to single-
assignment may add run-time overhead when some execution support (the ¢ functions)
is needed to restore the flow of data; Then, one may prefer a partial expansion of data
structures, implying more dependences and possibly less parallelism extraction; This is the
purpose of the maximal static expansion (MSE), cf. Section 6.1. In conclusion, we see that
scheduling and expansion are tightly intermingled. In the beginning of Section 6 we discuss
these issues in more details.

2.2 But a Down-to-Earth Program Model

The concrete parallelization techniques presented in this paper applies to the following pro-
gram model: The authorized control structures are the sequence, do (a.k.a. for) loops,
while loops, and conditionals. Obviously, some while loops can be transformed into do
loops. We will suppose here that these simplifications have been performed, when possible,
by a previous phase of the compiler. gotos are forbidden because they can be eliminated by
well known algorithms [3, 2], at the cost of some code duplication in the rare cases where
the control graph is not reducible [1]. Procedure calls are not allowed. The problem of
interprocedural parallelization has been widely studied [41, 18, 38, 10] in the non-recursive
case, and we believe such methods can be readily included in our framework.

The only data structures are scalar types and arrays of scalars. Array subscripts are
unrestricted.

Since our framework is based on the polytope model, our main interest is to abstract
values and operation domains in terms of affine relations. When dealing with complex
programs (non-affine array subscripts, dynamic control flow), we may have to cope with non-
linear constraints: These are equations or inequalities which depend on variables other than
loop counters and symbolic constants, and/or are non-linearly dependent on loop counters
and structure parameters. For example, non-linear constraints may come from predicates
of if or while constructs or from array subscripts. Obviously, some non-linear constraints
can be removed by replacing some variables by their expression in terms of loop counters
and symbolic constants (induction variable detection and forward substitution). However,
Section 6.2 in this paper is restricted to affine loop nests. They are built of: Assignment
statements and do loops; Scalars and arrays of arbitrary dimensions; Loop bounds and array
subscripts restricted to affine functions in the loop counters and symbolic constants.

2.3 Definitons and Notations

The k-th entry of vector ¥ is denoted by #[k]. The sub-vector built from components k to [
is written as: Z[k..[]. If & > [, then this vector is by convention the vector of dimension 0,
which is written [].

Furthermore, < denotes the strict lexicographic order on integral vectors. When clear
from the context, “max” denotes “maxy”, i.e. the maximum operator according to the <
order. An instance of statement S is denoted by (S, ), where @, the iteration vector of 5,
is the vector built from the counters of loops surrounding S—including while loops—from
outside inward.

Let S be a statement in the program. Because of the “surrounding” control structures, 5



executes several times. Our program analysis and transformation techniques should be able
to distinguish between these successive instances. Each run-time instance of a statement is
called an operation. Let Dom(S) be the set of all the instances of S. Let Q denotes the
set of operation spawned by the program, and < is the execution order on it. If u,v € €,
then u < v (read “u before v”) means that operation v does not begin executing until u has
terminated. A more precise definition of < will be given later.

The special name L indicates that the array cell under study is not modified by 5. A
coherent way of thinking about L is to consider it as the name of an operation which is
executed once before all other operations of the program: Vu € 1, 1 < u. In the following,
L will be used to denote, also, an undefined vector.
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Figure 1: Parallelization framework for unrestricted loop nests over arrays

Figure 1 describes the parallelization process for this program model. The first phase
consists in an element-wise array data-flow analysis of the program. Then, we convert the
program into single-assignment, i.e., for each assignment S, we create a data structure Dg
isomorphic to Dom(.S). If the program is a nest of loops, then Dg is an array whose dimension
is the number of loops surrounding S. At last, we compute a schedule for every operation,
possibly fold the data structures and generate the corresponding parallel code.

3 Fuzzy Array Data-Flow Analysis

This section is an overview of our array data-flow analysis; The interested reader may refer

to [7, 5] for details.



3.1 Problem Statement

The basic problem of reaching-definition analysis is to find, for a given read, the write which
produced the read value. (The analysis of reaching definition is usually considered as a
special case of data-flow analysis, but we make no difference in this paper.) This defining
write is called the source.

Sources in array data-flow analysis (a.k.a. value-based dependences [52]) are more precise
than usual reaching definitions because, on the one hand, they capture data flow array-
element-wise and, on the other hand, they describe data flow on an operation-per-operation
basis. For instance, a reference to A[1i] is lexically different from a reference A[j], and two
separate analyses are usually done [8]. In ADA, however, both refer to the same value if
i = j. Of course, only appropriate tools for integer linear programming [26, 50] make this
analysis possible.

3.2 Definitions

Formally, let us consider a textual reference r and an instance u of this reference. Let ¢ be
the memory cell read by r in u. The source is an operation v satisfying three conditions:
First, it writes into ¢; Second, it executes before u; And third, it is such that no operation
executing between v and u also writes into c.

The depth of a construct is the number of surrounding do and while loops of this con-
struct. The counter of a loop at depth k is thus component k 4+ 1 of the iteration vector.
Let (R,y) be an operation performing some read in an element A[g(y)] of an array A, and
let (S, &) be an operation that writes it with subscripts ALg(¢)]. Let Nggr be the number of
loops surrounding both S and R; And let <1 be the textual order of the program—S5 < R iff
S occurs before R in the program text. The sequential execution order < can be formally

defined as

(5.5) < (B.) = \/(5.8) <, (R,

where 0 <p < Nsgr : (5,7) <, (R, 9) < (Z[1..p] = y[l..p]) A (F[p + 1] < glp + 1]),
and <S, f> <Nsg <R, 27> <~ f[lNSR] = g[lNSR] AS<aR.

3.3 Bases of our Technique

As soon as our program model includes conditionals, while loops, and do loops with non-
linear bounds, we have to consider a set Dom(.5)) defined by non-linear constraints.

The first possibility is to approximate this domain by a set I%I\H(S), obtained by ignoring
non-linear constraints. We would like to characterize the subset Qg4((R,y)) of Dom(S)

of candidate sources for (R,y) “coming” from S. Supposing for the moment that array
subscripts are still linear, one may obtain the following result:

~

Qs({R.7) = {7 | ¥ € Dom(S), f(T) = g(7). (5,7) < (R.D)}.

where ¥ € I%I\H(S) is the existence predicate, f(¥) = ¢(y) is the conflict predicate (with f
and ¢ affine functions w.r.t. @ and ¥, respectively), and (5,%) < (R,y) is the sequencing
predicate stating that the write is executed before the read. In addition we have the implicit
information that ¥ € Dom(R).



However, we cannot say in general that the source is given by the lexicographic maximum
of this set: The non-linear part of Dom(S) has been ignored. One solution is to take the
entire set QS(<R, ¥)) as an approximation of the source. But then, and with the exception
of very special cases, computing the maximum of approximate sources has no meaning, and
the best we can do is to use their union as an approximation.

Can we do better than that? Let us consider an example. Notice first that, for expository
reasons, only scalars are considered. The method, however, applies to arrays with any
subscript.

program conditional
dox =1 to N

if ... then
Sl 8= ...
else
SQ 8= ...
end if
end do
R - S

Assuming that N > 1, what is the source of s of statement R from the program
conditional? We may build an approximate candidate set from S; and another one from
Sy. Since both are approximate, we cannot do anything beside taking their union, and the
result is highly inaccurate.

Another possibility is to partition the set of candidates according to the value x of the
loop counter. Let us introduce a new boolean function b(x) which represents the outcome of
the test at iteration x. The x-th candidate may be written

T(x) = if b(z) then (S}, z) else (5, x).

We then have to compute the maximum of all these candidates. It is an easy matter to
prove that = < 2’ = 7(2) < 7(2'), so the source is 7(N). Since we have no idea of the value
of b(N), the best we can do is to say that we have a source set, or a fuzzy source, which is
obtained by taking the union of the two arms of the conditional:

o([]) = (51, V), (52, M)} (1)

Notice here the precision we have been able to achieve. However, the technique we have used
here is not easily generalized. Another way of obtaining the same result is the following.
Let L = {2|1 <2 < N}. Observe that the candidate set from Sy (resp. Sz) can be written
{(S1,2)| = € Dg,NL} (resp. {(S9, )|z € Dg,NL}) where Dg, = {x|b(x) = true} and Dg, =
{z|b(x) = false}. Obviously,

DslmDS2 :Q, and D51UDS2 :{1,... ,N}

We have to compute 3 = max (max(Ds, N L),max(Ds, N L)). As Ds, and Dg, partition
{1,..., N}, it is a general property that

0 =maxL = N.

Moreover, we know that 3 belongs either to Dg, or Dg, which gives again the result (1).



To summarize these observations, our method will be to give new names—parameters—to
the result of maxima calculations in the presence of non-linear terms. These parameters are
not arbitrary. As shown in the example, the sets they belong to—the parameter domains—
are in relation to each other. More generally, one can find relations on non-linear constraints,
either by a simple examination of the syntactic structure of the program, or by more sophis-
ticated techniques. These relations imply relations on the parameters, which are then used
to increase the accuracy of the source. In some cases, these relations may be so precise as
to reduce the fuzzy source to a singleton, thus giving an exact result. See [7, 5] for a formal
definition and handling of these parameters.

The source o as a quast, i.e. a many-level conditional in which:

o Predicates are tests for the positiveness of quasi-affine forms?! in the loop counters, the
symbolic constants, and the new parameters (when non-linear constraints are involved
in the maximum computation).

o Leaves are either sets of operations whose iteration vector components are again quasi-
affine, or L.

3.4 Improving Accuracy

To improve the accuracy of our analysis, we find properties on non-affine constraints involved
in the description of the dependences and integrate them in the data-flow analysis. As shown
in the previous example, these properties imply the properties on the parameter domains
introduced in our computation.

Several techniques have been proposed to find properties on the variables of the program
or on non-affine functions (See [33, 40, 17, 47, 48, 55] for instance). They use very different
formalisms and algorithms, such as abstract interpretation or pattern-matching. However,
the relations they find can be written as first order formulae of additive arithmetic on the
variables and non-affine functions of the program. This general type of property makes
the data-flow analysis algorithm independent of the practical technique involved to find
properties.

How the properties are taken into account in the analysis is detailed in [7, 5]. The
quality of the approximation is defined w.r.t. the ability of the analysis to integrate (fully
or partially) these properties. We have shown that in general, the analysis cannot find the
smallest set of possible sources [5]. This is due to decidability reasons, but for some kind of
properties such as the properties implied by the structure of the program, we have shown
that the best approximation could be obtained.

Besides existing symbolic analyses, we propose in the following section a powerful method
that uses the results of a data-flow analysis to improve the accuracy of another data-flow
analysis.

3.5 Iterative analysis

The key remark in this section is that two values of the same variable at two different steps
of the execution are equal if they have the same source. Thanks to this remark, we may go

!Quasi-affine forms may include integer division.



one step further in data-flow analyses: The result of a first application of the FADA analysis
can in turn help a second application in deriving a more precise result

To see this, suppose that the same array occurs in the left hand side of two statements,
with differing variables as subscripts. These variables are supposed not to depend linearly on
induction variables. Data-flow analyses do not make assumptions on the values of variables,
and therefore are not able to give the exact source. We may, however, try to prove that
whatever the values of these variables, these values are equal. As hinted above, we may
apply a data-flow analysis on the subscripting variables themselves, thus iterating the overall
process of the analysis. Similarly, two constraints that are the same function but appear at
different places in the program have the same value if the variables they use are the same
and have the same values.

Therefore, the purpose of iterative analysis is to find properties between the non-linear
constraints appearing in the existence predicates and in the conflicting access constraints of
different write statements. This method may use the results of data-flow analysis on the
variables of the non-linear constraints so as to find more accurate relations. As this data-
flow analysis can be fuzzy, the method can then be applied once more and eventually the
fuzziness will be reduced by successive analyses. This method finds some relations between
parameter domains. Refer to [7, 5] for details.

3.6 An Example

Let us consider the program in Figure 2. This program will be used throughout this paper.
If P is an intricate predicate, we cannot make any assumption on its outcome. But since
T always executes when j equals N, a value read by (S,4,7) with 7 > N, is never defined
by an operation (5,7, 7") with j* < N. Figure 2 describes the data-flow relations between
instances of S: An arrow from (7', j') to (i, 7) means that instance (¢, j') defines a value that
may reach (1, 7).

program example
real A[1..4*N-1]
do i =1 to 2%N
do j =1 to 2xN
if P(i,7) then

S Ali-j+2*N] = ... A[i-j+2xN] i

end if ﬁ

T  if j = N then A[i+N] = ... end if |
end do — ( i

end do N 2N

Figure 2: Program example and data-flow graph.

Formally, the source of an instance (5,1, j) of statement S can be given by a closed-form



formula parameterized by symbolic constants such as N.

ifj <N
then {(S,¢,j): 1<V <2NA1<j <jAi—j =i-j}U{L}
o((S.1.4)) = AR
else | then {(S, ¢, i) 1 1<V <2NAN<j <jAnd—j=i—ju{Ll} (2

else( {8,730 1< SANAN <j < jAai' = =i—j} )
(T, i—j+N,N)}

This result is found automatically by the fuzzy array data-flow analysis.

3.7 Related Work

Work on non-linear constraints in dependence analysis can be divided into two classes. In
the first one, the dependence analyzer uses a limited amount of mathematical knowledge
to decide whether dependences exist [48, 47]. In the other class of methods, to which this
paper belongs, one uses syntactical information only: This may include the structure of the
original program, the shape of subscript expressions and the list of variables which occur in
them.

The work nearest to our own in that direction is the one by Pugh and Wonnacott [52, 51].
The engine behind Pugh’s ADA is the Omega Calculator, a logical Presburger formula
simplifier. The main difference between their work and ours is the use of uninterpreted
function symbols in Presburger formulae to express non-linear constraints and the inability
of their analysis to cope with some relations on these constraints. See [7, 5] for a detailed
comparison.

From the results of ADA or FADA, one may deduce many useful abstractions, like reach-
ing definitions, upward and downward exposed regions, and so on. In the case of scalars, this
information can be obtained more directly by iterative data-flow analysis. These methods
can be extended to arrays: An example is the work of Tu [53, 55]. Regions are approxi-
mated by coarser objects than polyhedra: For instance, regular sections [11]. When solving
data-flow equations, one has to compute unions and complements of regular sections, which
are not regular sections in general. Hence, one introduces approximate operations. The
information obtained in this way is less precise than the one given by ADA or FADA, but
the analysis is faster and is precise enough for solving some problems like array privatization.
Another case in point is the work of Duesterwald et al. [21]. In our opinion, the main interest
of FADA is that it gives an exhaustive analysis of the source program, and hence is more
versatile than other, less precise techniques.

3.8 In Brief

We have given a method to build a conservative approximation of the flow of values in pro-
grams whose control flow and array accesses cannot be known at compile-time. Such pro-
grams include control flow constructs such as whilesand if ... then ... else constructs,
making both control and data flow unpredictable at compile-time . More importantly, the
net effect of our handling of while loops and tests is to add equations to the definition of the
candidate set, thus improving the probability of success of fast analysis schemes like [49, 39].

As a concluding remark, note that a L in a source set points to a possible programming
error. Beyond automatic parallelization, a fuzzy array data-flow analysis may therefore be

10



a general tool for translators, compilers and program checkers, as array data-flow analysis
was.

4 Conversion to Single Assignment Form

We present in this section a general algorithm to perform conversion into single-assignment
form. It is based on the results of our fuzzy array data-flow analysis.

4.1 Problem Statement

The reaching definitions given by array data-flow analysis capture the flow of data in pro-
grams. However, memory-based dependences remain. To eliminate them, we can use a
special intermediate representation, called single-assignment form, of the program. This
representation can be used internally by the compiler (e.g., to schedule the operations, as
in Section 5), or serve to actually generate the final code. The latter case is assumed in
this section, since automatic generation of single-assignment code is a general and useful
technique.

The single-assignment property states that each memory cell in the program is written at
most once. Obviously, this property seldom holds in imperative programming. The benefits
of the single-assignment property, however, are well known: Programs having this property
are easier to reason about, they have more parallelism, etc. This is the reason why the SSA
framework [19] has been used so successfully in the compiler community.

Extension to arrays is therefore an important issue. We first present our algorithm for
single-assignment form transformation, then compare with recent work published on array

SSA.

4.2 An Algorithm Sketch

Our algorithm to convert programs into array single-assignment form, presented in [36], pro-
ceeds as follows. This algorithm follows directly from the general scheme given in Section 2.

Let us first define Stmt((S,#)) = S and Index((S, 7)) = .
1. For each assignment S whose iteration vector is &:
(a) Create a data structure Dg in one-to-one mapping with Dom(.S). The new function

mapping operations to memory cells is f' = Index.

(b) Let & be an index in Dom(S). The control structures surrounding S, sweeping
over T, are left unchanged.

(c¢) Replace the left-hand side with Dg [Z].
(d) Replace each reference r in the right-hand side with Convert(r), where:

o If 0((5, %)) = {u}, then Convert(r) = DStmt(u LU -
o If o((5,%)) = {L}, then Convert(r) = r (the initial reference expression).
o If 0((5, %)) is a non-singleton set, then Convert(r) = ¢,(o ({5, Z))).
o If 0((5,%)) = if p then ry else ry, then
Convert(r) = if pthen Convert(r;) else Convert(ry).

11



¢ functions are needed to preserve the original data flow when the control flow cannot
be predicted at compile-time. They were introduced, for scalars only, in the static single-
assignment framework: ¢-functions may be needed to “merge” multiple reaching definitions,
i.e. possible data definitions due to several incoming control paths [19].

In our method, a ¢-function implements the result of fuzzy array data-flow analysis since
the returned value is the one produced by the last possible executed source, or by the initial
element of the initial array if no possible source is executed. The reader is referred to [36]
for the algorithms to generate ¢-functions.

Notice that our technique does not include any “pseudo-assignments” of ¢-functions to
intermediary arrays. The benefit is that placing ¢-nodes is trivial for us. The drawback is
that, when the same ¢-function is used several times, our scheme generates several instances
of the same function. Notice also that, when iteration domains are not bounded at compile-
time, the data structures Dg we allocate are not bounded either; we thus have to allocate
them dynamically, or to tile the iteration space.

program example
real Dg [1..2%N,1..N]
real Dr [1..N,N..N]
do i =1 to 2%N
do j =1 to 2xN
if P(i,7) then

ifj <N
then ¢1({(S,#,j): 1< <2N A 1<j' <jAi'—j=i—jtu{L})
S Dg [i,j1 = ... ifi—j+N<1

else | then ¢o({(S,7,j") : 1<V <ANAN <j <jni—j =i—jtu{Ll})
else ¢ US, 7Y 1<V KAINAN<F <jAd —j =i—j},
3 {<Tal_]+NaN>}

end if
T if j = N then Dy [i,N] = ... end if
end do
end do

Figure 3: Conversion to single-assignment on the running example.

The algorithm above, applied to the running example, yields the program in Figure 3.

4.3 Related Work

Our method to convert programs with arrays to single-assignment form [27, 36], uses the
result of an array data-flow analysis, and then transforms the code. Recent work by Knobe
and Sarkar [44], on the other hand, does not make this separation. So, is this an important
issue?

We believe the answer is yes. Cutting the conversion to SA into two phases has several
benefits:

e A ¢-function is needed only when the (compile-time) analysis fails to find the unique
(run-time) source. In [44], ¢-functions are inserted even for affine programs, whereas
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well-known analyses such as [27] can easily prove that ¢-functions are not necessary.
This has practical applications for compiler writers: When a useless ¢-function has
been inserted in a program, we know what to blame: The data-flow analysis.

o Element-wise analysis allows optimizations that are not related to single-assignment.
For instance, the element-wise dead code elimination cited in [44] is simply given
by eliminating the set of operations {u : fv,u € o(v)}. Several other applications
(program checking, etc.) do not need the single-assignment property either.

o The last reason is that the program may not be converted to single-assignment, perhaps
because ¢-functions are considered too expensive. A maximal static extension [6] may
be preferred instead, on top of the data-flow analysis (cf Figure 1).

To sum things up, array data-flow analysis is not opposed to array SSA. Actually, they
cannot be opposed: The former is a compile-time analysis, whereas the latter is a framework
for single-assignment form transformation. We believe that the first phase of an array SSA
should be an array data-flow analysis.

Notice finally that the work by Knobe and Sarkar is also, in a sense, more advanced,
because they give a better description of how the actual code generation is performed in the
general case. In our mind, they prefer a robust “safety net” for general programs to more
precise but also more restricted methods. How to use an array data-flow analysis to improve
array SSA is definitely an interesting future work.

5 Scheduling

Dependence or data-flow analyses derive a graph where nodes are operations and edges are
constraints on the execution order. The problem is now to traverse the graph in a partial
order; This order is the execution order for the parallel program. The more partial the order,
the higher the parallelism. Obviously, this partial order cannot be expressed as the list of
relation pairs: One needs an expression of the partial order that does not grow with problem
size, i.e., a closed form. Additional constraints on the expression of partial orders are: Have
a high expressive power; Be easily found and manipulated; Allow optimized code generation.
A suitable solution is to use scheduling functions.

5.1 Problem Statement

When constructing parallel programs, one may use a schedule, i.e. a function € from the set
Q of all operations to the set N of positive integers. the schedule must satisty the following
constraint:

udv = 0(u) < 0(v).

where 4 is some dependence relation on operations. If no expansion on data structures is
applied, then ¢ is the classical order given by true, anti- and output dependences. If the
program is converted to single-assignment form, then ¢ is the data flow (i.e. the relation
given by function o). If a more general—intermediate—expansion scheme is preferred (cf.
Section 6), then § is given by the memory-based dependences that are not removed by the
expansion.
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On the other hand, since 8 is integer valued, the constraint above is equivalent to:
udv=0(u)+1<0(v). (3)

This system of functional inequalities, called causality constraints, must be solved for the
unknown function #. As it is often true for system of inequalities, it may have many different
solutions. One can minimize various objective functions, as e.g., the number of synchroniza-
tion points or the latency.

5.2 A Scheduling Algorithm

Let us introduce ¥, the vector of all variables in the problem: # is obtained by concatenating
u, v, and the vector of size parameters in the problem. It so happens that, in the context of
this work, ud v is the disjunction of conjunctions of linear inequalities. In other words, the
set {u,v | ud v} is a union of convex polyhedra. This is true for ordinary dependences where
ud v is the usual dependence relation of [50]. It is also true when the dependence relation is
approximate in various ways (dependence cones, direction vectors, dependence level, etc.).
Lastly, it is true in the case of our fuzzy data-flow analysis, since the source sets are linearly
described.

Therefore, the constraints in the antecedent of (3) are affine; Let us denote them by
Ci(Z) >0, 1 <7< M. Similarly, let ¢»(&) > 0 be the consequent §(v) — 6(u) — 1 > 0 in (3).
Then, we can apply the following lemma:

Lemma 1 (Affine Form of Farkas’ Lemma) An affine function 1 (Z) is non-negative on
a polyhedron {Z|Ci(Z) > 0,1 < i < M} if there exists a set of non-negative integers
Aoy« s A (the Farkas coefficients) such that:

O(F) = Ao + Z AiCi(E) (4)

This relation is valid for all values of #. Hence, one can equate the constant term and the
coefficient of each variable in each side of the identity, to get a set of linear equations where
the unknowns are the coefficients of the schedules and the Farkas multipliers, A;. Since the
latter are constrained to be positive, the system must be solved by linear programming.

Unfortunately, some loop nests do not have “simple” affine schedules. The solution in
this case is to use a multidimensional affine schedule [29], whose domain is N¢, d > 1 ordered
according to the lexicographic order. Such a schedule can have as low a degree of parallelism
as necessary, and can even represent sequential programs. The selection of a multidimen-
sional schedule can be automated by using algorithms from [28, 29]. It can be proved that
any loop nest in an imperative program has a multidimensional schedule. Notice that multi-
dimensional schedules are particularly useful in the case of dynamic control programs, since
we have in that case to overestimate the dependences and hence to underestimate the degree
of parallelism.

Using Lemma 1, we can compute an affine parallel schedule for our running example:
6(S,i,j) = j—N,ifj>N
o(T,i,N) = 0
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The resulting latency is V.

We have shown in Section 4 how to eliminate data dependences. Constraints on the
schedule have been alleviated in this way. When the control flow is not precisely known at
compile-time, these constraints may still be too stringent to extract a satisfying degree of
parallelism. Hence, ignoring some control dependences is a complementary issue; This is the
purpose of speculative execution.

5.3 Speculative Execution

Before exploring speculation, let us define control dependences: There is a control depen-
dence between u and v if the very execution of v depends on the result of u. wu is called
the governing operation. Such a dependence is denoted by §°. Notice that such control
dependences are part of the program data flow. Therefore, when the result of the data-flow
analysis is approximate, the control flow may not be precisely known at compile-time.

First, why does speculation have a chance to give more parallelism? This is simply be-
cause every dependence, including control dependences, is an obstacle for parallel execution,
and that removing one of them may give a better schedule. Suppose that operation u guards
the execution of v, i.e. w is in control dependence with v. If the control dependence is
satisfied when computing schedule 6, we have 6(u) < 0(v). If this control dependence is
discarded, then the above constraint may not hold. In this case, v may be executed before
being sure that it was executed in the original program. The execution of v is speculative.

A speculative operation must not modify the program memory. Its result must be held
in temporary storage until its governing operations are executed. If the outcome is true,
then the result is committed by moving it to permanent storage. In the opposite case, the
result is discarded from temporary storage.

Our objective now is to give rules for the correctness of a speculative program.

Intuitively, not taking a control dependence into account may yield, first, incorrect re-
sults and, second, a non-terminating behavior. The first problem arises when one of the
arguments is the result of a speculative operation. This result cannot be used until it has
been committed, i.e. until its governing operations have terminated. This can be enforced
by the introduction of compensating dependences. For more details, the reader is referred
to [31].

Let us focus on the second problem. When there is a single and outermost while loop, a
necessary and sufficient condition for correctness is that fronts must be finite [15]. Our aim
here is to give a termination criterion for more general speculative programs. Together with
the preceding theorem, it will entail the total correctness of the object program.

Firstly, we must have some idea about the structure of the target code. As it is the
case for synchronous parallel programs, we will suppose that the outer loop is sequential,
its function being the enumeration of the successive values of time. Contrary to the static
control case, this is a while loop 2. The operations which are scheduled at time ¢ constitute
the front at time t. The definition of a front is more complicated than in the static control
case. An operation which is scheduled at time ¢ is to be executed provided that all its
governing operations which have been executed before ¢ have been evaluated to true.

’In the case of multidimensional schedules, one may have several loops of this kind, the number of loops
being the dimension of the schedule.
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The result of operation u will be written p(u). With this notation, the speculative front
F(t) of operation scheduled at time ¢ is:

Fy = JFs). (5)

where Fs(t) = {u € Dom(S)|0(u) =1t,Yv: (0(v) < tAvdu= p(v)=true)}. (6)
To write the speculative program, we need the following auxiliary functions:

first = min{t| F(t) # 0} (7)
next(r) = min{t|F(t) DAt > T} (8)

with the provision that these functions take the undefined value L if the set over which the
minimum is computed is empty. “first” gives the first clock tick at which there is work to
be done, and “next(7)” is the first clock tick after 7 at which there is work to be done.

With these notations, the abstract speculative program is:

do t = first while t # L
doall F(t)
t = next(t)

end do

Let us introduce:
B(t) =] F ().
Tt
To be correct, the abstract program above has to satisfy several conditions:

1. An uncommitted value has to be held in temporary storage until the results of all
governing predicates are known. The size of the temporary storage has to be finite.

2. Each operation has to be executed in finite real time. Since the execution time of a
parallel program is bounded from below by the number of its operations divided by
the number of processors, this means that the total number of operations before any
logical instant ¢ has to be finite:

Card B(t) < oo (9)

3. Lastly, the speculative program must terminate whenever the original program does.

The set of uncommitted results is a subset of the set of all results. Hence, condition 2
implies point 1 above. In [31], we prove that:

Proposition 1 A program with speculative schedule terminates provided that the original
program terminates and the schedule is such that all sets B(t) are finite.

The complete sufficient condition for the total correctness of the target speculative program
is given described in [31].

Obviously, the more speculative the schedule, the larger the memory needed to store
intermediate uncommitted result. For simple cases, this issue is addressed in [15]. The
interplay of expansion and speculative scheduling, in the general case, is left for future work.

In the rest of this paper, schedules are supposed to be non-speculative.
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5.4 Related Work

The scheduling problem has been widely studied since the first Kennedy and Allen algorithm.
It is not the purpose of this paper to compare these algorithms, the interested reader may
refer to [20, 29, 25] for details.

6 The Interplay of Array Expansion and Scheduling

The previous section presented a method to express the parallelism in a dependence graph.
It computes a schedule satisfying the partial order given by the dependence graph. Moreover,
memory expansion aims at deleting dependences due to memory reuse. Applying memory
expansion and then scheduling seems a natural way to extract additional parallelism.

However, several problems arise from a straightforward application of our compilation
process:

1. ¢-functions are a significant overhead when data structures hold several scalar elements
(like arrays) and when their elements are spread across processors. Therefore, we may
want to expand the initial data structures, but not convert into SA, so as to avoid
¢-functions. More formally, when the source o(u) of some operation u is a not a
singleton, then we may want to build an expansion of the program such that the new
function f’ mapping operations to memory cells verifies:

Vo, w € o(u), f'(v) = f'(w).

The benefit is that we always know which memory cell stores the value needed by u:
This cell always is f'(v) = f'(w) = f'(o(u)). The drawback is that some parallelism
may be lost, i.e. we may have to choose a schedule with higher latency.

2. It may happen that a single memory cell can store two successive, distinct values
(without consequences on the program schedule). Let us consider a program with
exactly four operations wi,ry,wy and ry, such that o(r1) = {wy} and o(ry) = {w2},
scheduled at time steps 0, 1, 2 and 3, respectively. Then, assigning two memory cells
(one for wy, r; and one for wq, r3) is a waste, since a single cell can store the first value
(defined by w; and last read by ry), and then store the second value used by wy and
ro. In other words, when looking at the schedule, the two memory cells given by SA
can be folded into one.

One simple solution would be to first expand, then to schedule, and finally to fold, but this
is not very elegant. How to solve both problems simultaneously is left for future work. In
Section 6.1, we solve the first problem and assume scheduling is applied later. In Section 6.2,
we restrict ourselves to affine loop nests and show how to take benefit from scheduling
information to decrease memory usage.

6.1 Maximal Static Expansion

In this section, we show how to automatically find the static expansion which expands all data
structures as much as possible without introducing ¢-functions. Maximal static expansion
may be considered as a trade-off between parallelism and memory usage. We present an
algebraic framework to derive the maximal static expansion; The input of this framework is

17



the (perhaps approximate) output of a data-flow analysis. Our framework is valid for any
imperative program, without restriction—the only restrictions being those of your favorite
data-flow analysis. In the sequel, we use the analysis presented in Section 3.

6.1.1 Problem Definition

Let us consider two operations u and v belonging to the same set of possible sources of some
read r. If they both write in the same memory cell f(u) = f(v) and if we assign two distinct
memory cells to w and v (f'(u) # f'(v)), then a ¢-function is needed to restore the data flow
since we do not know which of the two cells has the value needed by r. Static expansion

enforces f'(u) = f'(v).
Definition 1 (Static expansion) A static expansion is a mapping [’ from operations to
memory cells such that

Vu,o e W @ (Ir, u€a(r)Avea(r)A flu)=fv) = f(u)=f(v).

Notice that the condition f(u) = f(v) is necessary in presence of non-affine array subscripts:
A set of sources o(r) may hold operations writing in different memory cells.

Notice also that, according to this definition, even a constant function on W is a static
expansion. Because we are interested in maximizing the memory expansion, the range of a
“good” static expansion should be as large as possible. Such an expansion would be constant
on sets as small as possible:

Definition 2 (Maximal static expansion) A static expansion [’ is mazimal on the set
of operations W iff for any static expansion f"

Vu,v e W @ fl(u) = f'(v) = f"(u)=f"(v).

Intuitively, if f’ is maximal, then any f” cannot do better and maps two writes to the same
memory cell when f’ does.

We need to characterize the sets of operations on which a maximal static expansion f’
is constant. By definition, these sets are exactly the equivalence classes of relation {u,v €
W f'(u) = f'(v)}. The set of theses classes is denoted by W/f/. The number of memory
cells after maximal static expansion is thus equal to the cardinal of W/f/.

However, this hardly gives us an expansion scheme, because this result does not tell us
how much each individual memory cell should be expanded. The purpose of Section 6.1.2
is to give a similar result for each memory cell ¢ used in the original program. This result
appears in Theorem 2. This theorem is then used to give a practical expansion scheme.

6.1.2 Expansion Scheme

Let us define the relation:

wRv <= 3Jr, u € o(r)ANv € o(r). (10)

Relation R is obviously symmetric. Definition 1 requires that a static expansion f’ verifies
f'(w) = f'(v) when f(u) = f(v) and uRv. Given u, v and w in W, if f(u) = f(v) = f(w),
uRv and vRw then f'(u) = f'(v) = f'(w). Therefore, given u € W, f’ is constant on the
set of all v € W such that f(u) = f(v) and uR*v, R* being the transitive closure of R. We

may give an equivalent definition of a static expansion:
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Definition 3 A static expansion is a mapping [’ from operations to memory cells such that
Vu,v e W : uR*vA f(u) = f(v) = f'(u) = f'(v).
From this characterization, we proved in [6] that f’ is a maximal static expansion iff
Vu,v €W @ uRvA f(u) = f(v) <= f'(u)= f'(v). (11)

For a memory cell ¢, the set of operations writing into ¢is W(e¢) ={u e W : f(u) = ¢}.
Given a memory cell ¢, a static expansion f’ is maximal iff

Vu,v € W(e) : fl(u) = f'(v) <= uR™v.
Therefore, classes of R* in W(¢) are exactly the sets we are looking for:

Proposition 2 The sets on which a maximal static expansion [’ is constant are given by

= U re (12)

ceM

Therefore, the expansion factor of each individual memory cell ¢ is Card(w(c)/n*).

To generate the transformed code, one first has to remember which equivalence class an
operation belongs to. This can be done by picking a representative in each class: Let ¢ be
the function mapping an operation u to the (unique) representative of its equivalence class.
The second stage consists in labeling every element (i.e. equivalence class) of W(C)/R*. In
terms of representatives, each element of ¢(W(c)) should be labeled. Such a labeling scheme
is obviously arbitrary, but all programs transformed using our method are equivalent up to
a permutation of these labels. We denote by v(u) the label we choose for the elements of
POW(f(w). Then, f’ = (f,v).

Our expansion scheme depends on the transitive closure calculator and on the part cal-
culating W(e). We would like to stress the fact that the expansion produced is static and
maximal with respect to the results yielded by these parts, whatever their accuracy:

o The transitive closure may be too complicated to give an exact result. Therefore, it
may be over-approximated. The expansion factor of a memory cell ¢ is then lower than
Card(w(c)/n*). However, the expansion remains static and is maximal with respect to
the transitive closure given to the algorithm.

e The sets W(c¢) may not be known precisely at compile-time. (E.g. when dealing
with non-affine array subscripts.) One may use some approximation W(c) such that

W(e) € W(e), then label all classes of W/R*, which in turn gives labels to the classes

of all V%/R* The drawback of this method is that some memory cells not used during
program execution may be allocated.

Notice that the definitions given in Section 6.1.1 and the expansion scheme are valid for
any imperative program. The only restrictions and limitations are those of the data-flow
analysis and of the algorithm to compute transitive closures.
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6.1.3 Example

Let us apply maximal static expansion to a practical example: The expansion of array A in
the program of Figure 2.

Because sources in (2) are non-singleton sets, a straightforward conversion of this program
into single-assignment form would require run-time computation of the memory location read
by S. However, we notice that the iteration domain of S may be split into separate subsets by
grouping together operations involved in the same data flow. These subsets build a partition
of the iteration domain. Each subset may have its own memory cell, a cell that will not be
written nor read by operations outside the subset. The partition is given in Figure 4.a.

Figure 4.a. Figure 4.b.

Figure 4: Partition of the iteration domain (N = 4).

Using this property, we can duplicate only those elements of A that are used twice. These
are all the array elements ALc¢], 14+ N < ¢ <3N — 1. They are accessed by operations in
the large central set in Figure 4.b. Let us label with 1 the subsets in the lower half of this
area, and with 2 the subsets in the top half. We add one dimension to array A, subscripted
with 1 and 2 in statements S5 and S3 in Figure 5, respectively. Elements AL¢], 1 < ¢ < N
are accessed by operations in the upper left triangle in Figure 4.b and have only one subset
each (one subset in the corresponding diagonal in Figure 4.a), which we label with 1. The
same labeling holds for sets corresponding to operations in the lower right triangle.

The maximal static expansion is shown in Figure 5. Notice that this program has the
same degree of parallelism as the corresponding single-assignment program, without the
run-time overhead of ¢-functions.

6.2 Optimizing Memory Usage

It is clear that converting a program to single-assignment has a very high memory cost. In
the particular case of affine loop nests, this section presents a technique to reduce memory
expansion without hampering the performances of the parallelization process.

To each operation u is associated two sets of memory cells: R(u), the set of read cells, and
M (u) the set of modified cells. Bernstein’s conditions distinguish three kinds of dependences
between u and v, where u < v. If M(u) N R(v) # 0, there is a true dependence. If
R(u) N M(v) # 0, there is an anti-dependence. If M(u) N M(v) # @, there is an output

dependence.
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real A[1..4%N-1,1..2]
do 1 =1 to 2xN
do j =1 to 2xN
{expansion of statement S}
if -2*N+1 <= i-j <= -N then
if P(i,7) then
Sy A[i-j+2#N,1] = ... A[i-j+2xN,1]
end if
elsif -N+1 <= i-j <= N-1 then
if j <= N then
if P(i,7) then
S5 A[i-j+2#N,1]
end if
else
if P(i,7) then
S3 Ali-j+2*N,2]
end if
end if
else
if P(i,7) then
S4 A[i-j+2#N,1] = ... A[i-j+2xN,1]
end if
end if
{expansion of statement T'}
T if j = N then A[i+N,2] = ... end if
end do

. A[i-j+2#N,1]

. A[i-j+2#N,2]

end do

Figure 5: Maximal static expansion for the example.

In terms of memory dependences, array data-flow analysis (see Section 3) computes the
data-flow graph which is a subset of true dependences. All other dependences are due to
memory reuse: They are artificial in the sense that conversion to single-assignment form
eliminates them. Our aim is now to define a method for partial data expansion which builds
a parallel program with memory reuse.

We suppose that a schedule function § has been deduced from the data-flow graph. The
constraint for our partial expansion being that this schedule should remain valid in presence
of output and anti-dependences.

6.2.1 Memory Reuse in Parallelized Programs

Let V(v) be the value produced by an operation v. Let C(v) be the memory cell in which
V(v) is stored. Let U(v) be the set which gathers all operations u such that there is a data-
flow from v to u. U(v) is usually called the utilization set of v. Let Lg(v) be the execution
time of the last read of V(v) in the parallel program scheduled by 6.

Consider a memory cell C(v) during execution of a parallel program in single-assignment
form. The memory cell stays empty until the execution of v at #(v). The operations of U(v)
read V(v) until Lg(v). The memory cell is not read anymore after Lg(v), nevertheless V(v)
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is still in C(v) until the end of the execution of the parallel program.

It is clear that the wutility span of V(v) is between (v) and Lg(v). Before and after this
utility span, C(v) can store other values without changing the data-flow from v to operations
in U(v): Output dependences between v and some other operations can be reintroduced in
the parallel code. Such output dependences are called neutral dependences.

6.2.2 Neutral Dependences

Definition 4 An output dependence is neutral for a schedule function 0 iff it does not change
the data-flow in the parallel program built with the help of 6.

One can precisely give the characteristics of a neutral output dependence between two
operations v and w in the parallel program:

o v must be executed before w (6(v) < O(w)).
o There is an access conflict (C(v) = C(w)).
o The utility spans are separate (Lg(v) < 0(w)).

To decide if an output dependence is neutral in a parallel program, one must have a
precise estimation of the utility span of each value V(v). Then this estimation can help us
to reconstruct the data space of the program by adjusting data size to utility spans. The
final purpose is to build a parallel program with neutral output dependences. Refer to [45]
for details.

6.2.3 Utility Span

Consider the utility span of a value V(v): [0(v), Lg(v)]. The lower bound of this time
subsegment is directly given by 6. The problem is to compute the upper bound Lg(v).
Determining this time uses techniques from data-flow analysis. The main difference is that
the lexicographic maximum computation is not on the sequential execution order <, but on
the execution order given by the schedule function 6.

Lg(v) is the execution time of the last operations of U(v) according to §:

Lg(v) = max{0(u) |u € U(v)} (13)

6.2.4 Data Reconstruction

The first step is a partial array and scalar expansion process that decides the shape of each
statement left-hand side (LHS). The second step consists in a partial renaming process and
decides which statements can share the same data structure.

Partial Array Expansion We want to build a structure 1hsg which is specifically asso-
ciated to the statement S. It will give the shape (number of dimensions and size of each
dimension) and the index function which constitute the data in the left-hand side of S in
the restructured program. The aim is that lhsg provides memory reuse, i.e. neutral output
dependences between some operations instances of S. Moreover the elaboration of 1hsg must
be independent from the original data structure in the LHS of S.
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A neutral output dependence cannot kill a value V(S,%) during its utility span. To
respect this rule for any instance of S, one must take into account the maximum duration
that the utility span of V(S,#) can have in the parallel program. For an operation (5, 7)
this duration is obtained by subtracting the lower bound of its utility span from the upper
bound. Let d(5) = maxzepom(s)(Le(S, T) — 0(S, %)) be the maximum utility span duration
of all instances of S.

To protect every instance of S during its utility span, lhsg must be built in such a way
that no value V(9,#) can be killed between (S, Z) and 0(5, %) + d(5).

The algorithm that builds the data structure 1hsg can be summarized like this:

1. One starts with a scalar 1hsg. The elaboration of 1hsg is iterative, the number of
iterations is equal to Ng (number of loops surrounding S, cf. Section 3). Each iteration
is called partial expansion of S at depth p where p is the depth of the loop considered.

2. A partial expansion of S at depth p consists in computing the expansion degree % of
S at depth p (it gives the number of elements of a new dimension that one adds to
thS).

The problem is now to compute E%. The partial expansion of S at depth p avoids non-
neutral output dependences between two operations (5, ¥) and (9, :17’> if (S, 2) <, (9, :17’> For
an operation (5, Z), we build the set of candidates gathering all the operations (.5, :17’> which
cannot share the same memory cell as (5, ¥) because their utility spans are not separate. Let
(S, %.) be the last operation in this set. No output dependence can appear between operations
(S,%) and <S,:17’> with (5, %) <, <S,:17’> =, (9, %.). From this follows the inequalities on the
iteration vectors: Z[p+ 1] < /[p+ 1] < Z.[p + 1].

If 1hsg is expanded at depth p with Z.[p + 1] — Z[p + 1] + 1 elements, we are sure
that no non-neutral output dependence at depth p can appear concerning (S5, 7). But it
must be verified for every instance of S, hence the expansion degree E% is the maximum of

Zp+ 1] = Z[p+ 1] + 1 for all ¥ € Dom(5).

Partial Renaming For two statements S and 7', partial expansion builds two structures
lhsg and lhsy which can have different shapes. If at the end of the renaming process S and
T" are authorized to share the same array, this one would have to be the rectangular hull of
lhsg and lhsy: 1lhsgy. It is clear that these two statements can share the same data iff this
sharing does not generate non-neutral dependence between S and T' with lhsgr in the LHS
of the two statements. Let fsy be the index function of lhsgy. One must verify for each
operation (9, %) and (T, y) that would be in output dependence (i.e. fsr(Z) = fsr(y)) that
V(S, ) cannot be killed by (7', ) before the end of its utility span and that V(7,y) cannot
be killed by (S, Z) before the end of its utility span.

Finding the minimal number of renaming is an NP-complete problem (see [1]). Our
method consists in building a graph similar to an interference graph as used in code gen-
eration process of a classical compiler to optimize registers allocation. In this graph, each
vertex represents a statement of the program. There is an edge between two vertices .S and
T iff it has been shown that they cannot share the same data structure in their LHS. Then
one applies on this graph a greedy coloring algorithm. Finally it is clear that vertices that
have the same color can have the same data structure.
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6.2.5 An Example

Consider the matrix-vector program.

program matrix-vector
real s, A[N,N], B[N], C[N]

doi=1+toN

Sl s =0
do j =
SQ s =

end do

53 C[i:l = B8

end do

1 to N
s + A[i,jI*B[j]

It is given in Figure 6 with its data-flow graph.

if j > 2
o(s,(S2,%,7)) = | then (Sy,i,j—1)
else (51,1)

o(a(i, ), (52 1,j)) = L

a(b(j),(S2,4)) =L

o(s,(5s,1)) = (52,7, N)

Figure 6: Program matrix-vector and its data-flow graph

Converting the matrix-vector program into single-assignment yields a program whose
dependence graph equals the data-flow graph in Figure 6. The following schedule  is thus
a valid one for the expanded program:

0(51,1) =0

The utility spans are:

0(527i7j) = .]

Operation v Lg(v) | Utility span of V(v)
(Slvi> 1 [07 1]
(S5, 1) N+1 [N+1,N +1]

The partial expansion step gives the following results:

0(Ss,i) = N + 1 (14)

Statement | Maximum utility | Expansion | Final data Final LHS
span duration degree structure
Sy d(S1) =1 EY =N | lhsg [N] | 1lhsg [i] =
Sy d(S2) =1 E%2 =N
Ef, =0 | 1lhss,[N] | lhsg,[i] =
S3 d(S3) =0 EY, =N | lhsg,[N] | lhsg,[i] =

Notice that the array in the LHS of S5 is left untouched even if its
because it stores output values.

Applying our coloring algorithm shows that Sy, S; and S3 have the same color. The
memory requirement is finally a one-dimensional array with N elements which can be the
array C. Hence the statement S5 can be deleted. After partial expansion and code generation
the parallel version of the program is:

real A[N,N], B[N], C[N]
dot =0 to N

if t = 0 then

doall i
Sl C[i:l =0

1 to N
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end do

else
doall i =1 to N
S C[i] = c[i] + A[i,t]1*B[t]
end do
end if
end do

Our method can effectively reduce the memory cost of data expansion process for affine loop
nests. The conversion of the source program to single-assignment would give a memory space
of O(N?) instead of O(N) with partial expansion. Notice that in this example the data size
of the parallel program is less than the original data size. Moreover the simplification of
memory accesses can in some cases simplify the complexity of the parallel code (removal of

Ss).

6.3 Related Work

Many studies are related to array privatization [53, 49]. Maydan et al. [49] proposed an
algorithm to privatize arrays. Their method only applies to affine loop nests. Tu and
Padua [54] proposed a privatization technique for a very large class of programs. But it
resorts to dynamic restoration of the data flow. Another accurate approach using array
regions has been described by Creusillet [18], her method avoids the cost of a dynamic
restoration and copies back the privatized elements into the original arrays.

Array privatization may require less space than total expansion, but only detects par-
allelism along the enclosing loops; It is thus less powerful than general array expansion
techniques—in terms of parallelism extraction.

De Greef and Catthoor have addressed the memory reuse problem for affine loop nests.
They stop at the formulation of the constraints to be satisfied [22]. Another solution has
been proposed by the systolic community [56]. Programs in this case are directly given in
single-assignment form. They try to create output dependences which do not invalidate the
data flow by estimating the lifetime of each variable.

6.4 Perspectives

We have presented in this section two techniques for array expansion, addressing two different
but complementary problems: The first one kills as much memory-based dependences as
possible without introducing any run-time overhead, and the second one reduces the memory
cost of the generated code according to the parallel schedule.

As discussed earlier (see Section 6), our aim is now to make these two techniques work
together. Interestingly enough, the static expansion algorithm does not require any precision
level of the data-flow analysis, nor does it require the closure computation to be exact.
Conservative approximate results are fine as well, the only drawback being a probable loss
in static expansion. When the data-flow analysis and/or the transitive closure tool give poor
results, our expansion scheme does not fail but degrades gracefully. A fundamental issue
in designing a unified technique is thus to extend the memory optimization framework to a
more general class of programs and analyses.
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7 Related Work on Compilation Frameworks

Initial but restricted parallelizing frameworks aimed at reordering techniques for perfectly
nested loops [4]. These approaches cannot handle imperfectly nested loops or represent
transformations such as loop distribution or fusion.

The SUIF [23] and Polaris [24] compilers are among the major compilers in the field.
The first obvious difference between these compilers and our approach is that they are much
more robust than PAF. However, Polaris is based on array privatization only. SUIF is, in
that respect, more advanced, and features an array data-flow analysis and affine mappings.

Several automatic parallelizing compilers rely on the polytope model. The Loopo par-
allelizer [37], developed at the University of Passau, implements the scheduling algorithms
proposed in [28] and [20]. Moreover, Loopo is an excellent platform to compare schedul-
ing techniques. The Omega project [43], is very similar in spirit to PAF. The findings of
Pugh and Wonnacott on data-flow analysis of general programs [57] are very close to ours,
even though both results were achieved independently. Their analysis and scheduling tech-
niques are based on the Omega Calculator [50, 43]. But their mappings allow additional
transformations such as loop fusion, loop distribution and statement reordering.

We may roughly say that the compiler efforts cited above, with the exception of Polaris,
are based on affine transformations. Another paradigm in the field is supernode partitioning,
also known as tiling [42, 9, 12]. In particular, tiling may be useful to solve some code
generation issues addressed in Section 4. However, even state-of-the-art tiling techniques [46]
restrict themselves to loop nests with affine bounds and affine array subscripts. Notice that
the partition given in Figure 4.a can be seen as a special case of tiling.

Finally, let us recall that several compiler projects have focused on pointer analysis instead
of arrays. For instance, the McCAT compiler includes sophisticated pointer analyses [34, 35].
How to extend our techniques to pointers is left for future work.

8 Conclusion

The research issues that have been reported here are part of a long term project whose aim
is to improve automatic parallelization techniques for arbitrary programs. The problem is
so complex that one has to divide in the remote hope of conquering. A possible division line
is to separate problems in which the size of data structures is known beforehand (let us say,
at program loading-time), and those where data structures are built dynamically. In this
paper, we deal only with the first type of programs. The second type will be the subject of
future work [13, 32].

It is clear that, for programs with dynamic control structures and/or complex array
subscripts, the basic objects of automatic parallelization (iteration domains, dependences,
data flow) cannot be computed exactly and have to be approximated. This in turn generates
two subproblems:

e How to reduce uncertainty in approximations.

e How to synthesize a parallel program in the presence of approximate information.
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8.1 Analysis

Automatic parallelization in the presence of approximate dependences is not a new idea.
Many parallelizers ignore non linear constraints in dependence tests, with the result that
dependences are overestimated. One can apply classical algorithms to such overestimates
(as, e.g. the Allen and Kennedy algorithm), but the end result often is simply a copy of
the source program. In fact, one needs much more information for the use of some of the
most powerful parallelization algorithms, like scheduling and placement. On the other hand,
classical parallelizers cannot handle dynamic control structures. while loops, for instance,
are considered as inherently sequential.

Our answer has been to devise FADA (see Section 3), a fuzzy array data-flow analysis
which is able to handle any array program. FADA is more a framework than a completely
specified method. It can use information from preliminary analyses (including a preliminary
application of itself) to increase its precision. When this information is deduced from the
structure of the program, we have been able to prove that our analysis has maximum pre-
cision. This cannot be generalized, since it would contradict the undecidability of predicate
calculus. There are many sources of information about a program that one would like to
integrate in the data-flow analysis process: Structural analysis, property analysis like [33],
[40] or [17], more general results from abstract interpretation [16] and so on. How to organize
this wealth of information is still a mystery to us.

8.2 Synthesis

Whether the array data-flow analysis is exact (i.e. its result is a singleton) or approximate
(i.e. its result is expressed as an affine relation), one can construct affine schedules (see
[28, 29]). One must observe that the causality condition takes into account all the memory-
based dependences that are not eliminated by array expansion. The program can be brought
into single-assignment form, or, more cleverly, one can determine the minimum amount of
memory which is able to support the parallelism of the schedule. There is in fact a tradeoff
between parallelism and memory: Let us suppose that useless operations have been removed.
Values which are generated in a front cannot be used before the next front. For this, one
needs at least as many memory cells as there are operations in the front. Hence, the size of
the largest front is a lower bound for the size of memory. Suppose that the total number of
operations is s and that the number of fronts is /. s is a rough measure of the duration of the
sequential program, and / is a rough measure of the duration of the parallel program. The
mean size of a front is s//, and if we suppose that the size of fronts is more or less constant,
then this is also the size of the needed memory. But s// is the maximum speed-up for a
large number of processors. Hence, we conclude that the maximum speed-up of a program
is of the order of the size of its working memory. Using this result as a practical estimator
is complicated by the fact that one must consider the size of the input and of the output,
and that these subsets of the data space are not necessarily separate.

In the case of fuzzy analysis, the situation becomes more complicated, because, firstly,
some constructions cannot be parallelized without recourse to speculation, and, secondly,
because too much expansion requires the use of ¢-functions. Both of these devices incur
overhead, which may or may not be compensated by more parallelism.

Hence, we see that the designer of a parallel program has to tradeoff memory for speed in
a complicated way. If the running time is a constraint and memory size is to be minimized,
one can compute the best schedule as in Section 5, then slow it down artificially if needed.
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Conversely, if one has to find the fastest program under memory-size constraints, a tentative
solution is to state that front cardinals should never exceed a given memory size and to solve
the corresponding scheduling problem. These issues are left for future work.
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