
The Interplay of Expansion and Scheduling in PAFPaul Feautrier, Jean-Fran�cois Collard,Michel Barreteau, Denis Barthou,Albert Cohen and Vincent LefebvrePRiSM, University of Versailles, 45 avenue des �Etats-Unis, 78035 Versailles, FranceAbstractThis article presents an overview of our recent research on automatic parallelizationof imperative programs. It describes our researches on the extension of the polytopemodel to general programs, and the current status of the PAF prototype parallelizer.The main contributions are a general algorithm for single-assignment form transforma-tion, an algorithm to compute parallel schedules, and a clean framework to simultane-ously address parallelization by scheduling and expansion of data structures. We alsorecall general results on our array data-
ow analysis technique, and advocate for its useat the core of parallelizing compilers. In addition, we discuss important design issuesunderlying the project, we compare our work with other compilation frameworks, andwe propose several research perspectives for enhancing our parallelization scheme.1 IntroductionThis article presents an overview of our recent research on automatic parallelization of im-perative programs. It describes our researches on the extension of the polytope model [30] togeneral programs, and the current status of the PAF (Parall�eliseur Automatique de Fortran)prototype parallelizer developed in Versailles.Until recently, the polytope model has been restricted to a�ne loop nests, i.e. do loopswith a�ne bounds and array subscripts. On this class of static control programs, our pro-totype parallelizer proceeds according to the following compilation chain: First, an arraydata-
ow analysis (ADA)|a powerful, element-wise reaching de�nition analysis on arrays|is applied. Thanks to ADA, the program is converted into single-assignment form, thusremoving spurious, memory-based dependences. Then, the computations, ordered by thedata-
ow graph, are scheduled using a logical, integer-valued time. At each time step, afront of computations is executed. The generated code then consists of an outer loop ontime values that spawns each front in turn.This paper shows how the same comprehensive parallelization scheme can apply to generalprograms. First, we recall our results on FADA|an enhanced ADA|in Section 3. Then,in Section 4 we report our results, �rst published in French, on an algorithm to convertprograms into single-assignment form. We also compare these techniques to recent researchon array static single-assignment (SSA). Notice that, in our minds, single-assignment (SA)is a property of a program, whereas SSA is one framework to achieve this property. SSAprovides an intermediate program representation in single-assignment form, allowing further1

compilation techniques to be applied; Depending on the application, the program in single-assignment form is actually generated or not. In addition, we believe that the separationbetween the array data-
ow analysis and the single assignment transformation must beclari�ed, as opposed to the SSA framework. Indeed, this separation is not simply a matterof religion: We show that|as in many compilers|having clear-cut, distinct phases hasseveral bene�ts.However, when the behavior of the program cannot be predicted precisely at compile-time, a conversion to single-assignment form may lead to a lot of run-time overhead. Wemay thus prefer a partial expansion, yielding possibly less parallelism but also less run-timeoverhead. On the other hand, thanks to the experience gained [45] on the memory reductionof a�ne programs, we notice that some memory cells can be reused at distinct times to storedi�erent values (thus breaking the SA property) without losing parallelism. We show howparallelism and expansion of data structures are intermingled, and why recent works of ourshappen to be two faces of the same coin, two instances of the same problem. The resolutionof the full problem, however, will be left for future work.Therefore, in addition to providing a comprehensive overview of recent extensions of thepolytope model, this paper makes the following contributions:� We show why, to achieve array single-assignment, the separation of array data-
owanalysis and array expansion is important.� We give a general algorithm to convert programs to single-assignment form.� We provide formal techniques to schedule general programs, perhaps with speculativeexecution.� We introduce a clean framework to simultaneously address parallelization by schedulingand expansion of data structures.2 De�nitions and Overview of the Compilation ChainFigure 1 shows the di�erent techniques we present in this paper along with their interactionsand related articles.2.1 An Abstract View of ParallelizationIn this section, we present a general framework for automatic parallelization and make nolimitation on the input programs|neither on control nor on data structures.Let us consider the set
 of all operations in the program, and let W �
 be the set ofall writes. Every operation may perform read or write accesses to memory: Let f be thefunction mapping operations to the memory cells they write into.Reaching De�nition Analysis: Compute for each operation u, the set �(u) of de�nitionsreaching u. To stress the point that we deal with run-time instances of statements(i.e. operations), the elements of �(u) are called the sources of u. In general, the set�(u) has to be a conservative approximation. Notice that, when the array data-
owanalysis is exact (for instance, in the case of a�ne loop nests) then �(u) is a singleton.(See Section 3). 2

Conversion to Single-Assignment: (See Section 4.) De�ne a new function f 0 mappingoperations to the memory cells they write into, such that: 8u; v 2 W; u 6= v) f 0(u) 6=f 0(v). An overview of the expansion algorithm is:1. First create a data structure D such that there is a bijection (a one-to-one map-ping) from
 to the elements of D.2. In each assignment, the left-hand side is replaced with D [f 0(u)].3. Each read (e.g., in right-hand side of assignments) is replaced with� D [f 0(�(u))], if �(u) is a singleton.� �(�(u)) otherwise. As in the SSA framework, the �-function restores the
owof data: It picks at run-time the value computed by the actual source in �(u).Scheduling: We then schedule all operations, i.e. we �nd a mapping � from
 to logicalinteger dates such that all operations scheduled at the same date can execute simul-taneously, in the same \front": F(t) = fu 2
 j �(u) = tg: Let L(�) be the latency ofschedule �, de�ned as L(�) = maxu2
 �(u)�minu2
 �(u). Intuitively, the latency cap-tures the execution time (in logical time units) of the parallelized program. Minimizingthe latency is an important issue in computing a \good" schedule, but it is of coursenot the only one when dealing with distributed memory machines. (See Section 5.)Code Generation: At last, we scan the operations in
 according to the (partial) ordergiven by the schedule. If minu2
 �(u) = 0, then the abstract parallel code is:do t = 0 to L(�)doall F(t)synchronizeend doIt is no big surprise that this abstract parallelization scheme will be especially suitable forloop nests and arrays. Indeed, the practical techniques we present in this paper are devotedto such kind of programs (see 2.2). Nevertheless this abstract view can be adapted to moregeneral programs and structures:� This parallelization scheme can be applied to any control structure: we \only" haveto name each operation in
 in a unique way, then craft an element-wise reaching-de�nition analysis on
, and build a (set of) data structures in bijection with
.Consider for instance the case of recursive programs: We have to label each node inthe call tree, which is a simple process [13, 32]. Then, we need to extract the
owof data, which is a relation on
 �
; In the world of formal languages, we have atransduction [13].� To apply this scheme to any data structure, we need to build new classes of functions fand modify the data-
ow analysis accordingly. Once again, the transduction frameworkprovides a simple way to express our problems [32].In both cases, data structure expansion and scheduling algorithms are likely to be completelynew techniques. Notice that a straightforward application of the steps above leads to severalinteresting issues. Converting to single-assignment requires a lot of memory, which can be3

reduced when the schedule shows that two values have completely separate \life times"; Inthis case, the two memory cells storing each value can be folded into one; This single cellwill store both values in turn (see Section 6.2). On the other hand, converting to single-assignment may add run-time overhead when some execution support (the � functions)is needed to restore the
ow of data; Then, one may prefer a partial expansion of datastructures, implying more dependences and possibly less parallelism extraction; This is thepurpose of the maximal static expansion (MSE), cf. Section 6.1. In conclusion, we see thatscheduling and expansion are tightly intermingled. In the beginning of Section 6 we discussthese issues in more details.2.2 But a Down-to-Earth Program ModelThe concrete parallelization techniques presented in this paper applies to the following pro-gram model: The authorized control structures are the sequence, do (a.k.a. for) loops,while loops, and conditionals. Obviously, some while loops can be transformed into doloops. We will suppose here that these simpli�cations have been performed, when possible,by a previous phase of the compiler. gotos are forbidden because they can be eliminated bywell known algorithms [3, 2], at the cost of some code duplication in the rare cases wherethe control graph is not reducible [1]. Procedure calls are not allowed. The problem ofinterprocedural parallelization has been widely studied [41, 18, 38, 10] in the non-recursivecase, and we believe such methods can be readily included in our framework.The only data structures are scalar types and arrays of scalars. Array subscripts areunrestricted.Since our framework is based on the polytope model, our main interest is to abstractvalues and operation domains in terms of a�ne relations. When dealing with complexprograms (non-a�ne array subscripts, dynamic control
ow), we may have to cope with non-linear constraints: These are equations or inequalities which depend on variables other thanloop counters and symbolic constants, and/or are non-linearly dependent on loop countersand structure parameters. For example, non-linear constraints may come from predicatesof if or while constructs or from array subscripts. Obviously, some non-linear constraintscan be removed by replacing some variables by their expression in terms of loop countersand symbolic constants (induction variable detection and forward substitution). However,Section 6.2 in this paper is restricted to a�ne loop nests. They are built of: Assignmentstatements and do loops; Scalars and arrays of arbitrary dimensions; Loop bounds and arraysubscripts restricted to a�ne functions in the loop counters and symbolic constants.2.3 De�nitons and NotationsThe k-th entry of vector ~x is denoted by ~x[k]. The sub-vector built from components k to lis written as: ~x[k::l]. If k > l, then this vector is by convention the vector of dimension 0,which is written [].Furthermore, � denotes the strict lexicographic order on integral vectors. When clearfrom the context, \max" denotes \max�", i.e. the maximum operator according to the �order. An instance of statement S is denoted by hS; ~xi, where ~x, the iteration vector of S,is the vector built from the counters of loops surrounding S|including while loops|fromoutside inward.Let S be a statement in the program. Because of the \surrounding" control structures, S4

executes several times. Our program analysis and transformation techniques should be ableto distinguish between these successive instances. Each run-time instance of a statement iscalled an operation. Let Dom(S) be the set of all the instances of S. Let
 denotes theset of operation spawned by the program, and � is the execution order on it. If u; v 2
,then u � v (read \u before v") means that operation v does not begin executing until u hasterminated. A more precise de�nition of � will be given later.The special name ? indicates that the array cell under study is not modi�ed by S. Acoherent way of thinking about ? is to consider it as the name of an operation which isexecuted once before all other operations of the program: 8u 2
;? � u. In the following,? will be used to denote, also, an unde�ned vector.[7, 5]
[28, 29, 36, 31]

Section 3
Section 5Section 6.2SchedulingFoldingCodeGeneration

Conversion to SA
Implementation in progressCurrently restrictedto a�ne loop nestsResearch and implementation status:Implemented in PAF

[6]Section 6.1Section 4[36] SA for Static ExpansionMaximalA�ne Loop NestsADA or FADA[27]
[45][14]Figure 1: Parallelization framework for unrestricted loop nests over arraysFigure 1 describes the parallelization process for this program model. The �rst phaseconsists in an element-wise array data-
ow analysis of the program. Then, we convert theprogram into single-assignment, i.e., for each assignment S, we create a data structure DSisomorphic to Dom(S). If the program is a nest of loops, then DS is an array whose dimensionis the number of loops surrounding S. At last, we compute a schedule for every operation,possibly fold the data structures and generate the corresponding parallel code.3 Fuzzy Array Data-Flow AnalysisThis section is an overview of our array data-
ow analysis; The interested reader may referto [7, 5] for details. 5

3.1 Problem StatementThe basic problem of reaching-de�nition analysis is to �nd, for a given read, the write whichproduced the read value. (The analysis of reaching de�nition is usually considered as aspecial case of data-
ow analysis, but we make no di�erence in this paper.) This de�ningwrite is called the source.Sources in array data-
ow analysis (a.k.a. value-based dependences [52]) are more precisethan usual reaching de�nitions because, on the one hand, they capture data
ow array-element-wise and, on the other hand, they describe data
ow on an operation-per-operationbasis. For instance, a reference to A[i] is lexically di�erent from a reference A[j], and twoseparate analyses are usually done [8]. In ADA, however, both refer to the same value ifi = j. Of course, only appropriate tools for integer linear programming [26, 50] make thisanalysis possible.3.2 De�nitionsFormally, let us consider a textual reference r and an instance u of this reference. Let c bethe memory cell read by r in u. The source is an operation v satisfying three conditions:First, it writes into c; Second, it executes before u; And third, it is such that no operationexecuting between v and u also writes into c.The depth of a construct is the number of surrounding do and while loops of this con-struct. The counter of a loop at depth k is thus component k + 1 of the iteration vector.Let hR; ~yi be an operation performing some read in an element A[g(~y)] of an array A, andlet hS; ~xi be an operation that writes it with subscripts A[g(~y)]. Let NSR be the number ofloops surrounding both S and R; And let C be the textual order of the program|S C R i�S occurs before R in the program text. The sequential execution order � can be formallyde�ned as hS; ~xi � hR; ~yi () NSR_p=0hS; ~xi �p hR; ~yi;where 0 � p < NSR : hS; ~xi �p hR; ~yi () (~x[1::p] = ~y[1::p]) ^ (~x[p+ 1] < ~y[p+ 1]);and hS; ~xi �NSR hR; ~yi () ~x[1::NSR] = ~y[1::NSR] ^ S / R:3.3 Bases of our TechniqueAs soon as our program model includes conditionals, while loops, and do loops with non-linear bounds, we have to consider a set Dom(S)) de�ned by non-linear constraints.The �rst possibility is to approximate this domain by a set[Dom(S), obtained by ignoringnon-linear constraints. We would like to characterize the subset bQS(hR; ~yi) of [Dom(S)of candidate sources for hR; ~yi \coming" from S. Supposing for the moment that arraysubscripts are still linear, one may obtain the following result:bQS(hR; ~yi) = f~x j ~x 2[Dom(S); f(~x) = g(~y); hS; ~xi � hR; ~yig:where ~x 2[Dom(S) is the existence predicate, f(~x) = g(~y) is the con
ict predicate (with fand g a�ne functions w.r.t. ~x and ~y, respectively), and hS; ~xi � hR; ~yi is the sequencingpredicate stating that the write is executed before the read. In addition we have the implicitinformation that ~y 2 Dom(R). 6

However, we cannot say in general that the source is given by the lexicographic maximumof this set: The non-linear part of Dom(S) has been ignored. One solution is to take theentire set bQS(hR; ~yi) as an approximation of the source. But then, and with the exceptionof very special cases, computing the maximum of approximate sources has no meaning, andthe best we can do is to use their union as an approximation.Can we do better than that? Let us consider an example. Notice �rst that, for expositoryreasons, only scalars are considered. The method, however, applies to arrays with anysubscript.program conditionaldo x = 1 to Nif ... thenS1 s = ...elseS2 s = ...end ifend doR ... = ... s ...Assuming that N � 1, what is the source of s of statement R from the programconditional? We may build an approximate candidate set from S1 and another one fromS2. Since both are approximate, we cannot do anything beside taking their union, and theresult is highly inaccurate.Another possibility is to partition the set of candidates according to the value x of theloop counter. Let us introduce a new boolean function b(x) which represents the outcome ofthe test at iteration x. The x-th candidate may be written� (x) = if b(x) then hS1; xi else hS2; xi:We then have to compute the maximum of all these candidates. It is an easy matter toprove that x < x0) � (x) � � (x0), so the source is � (N). Since we have no idea of the valueof b(N), the best we can do is to say that we have a source set, or a fuzzy source, which isobtained by taking the union of the two arms of the conditional:�([]) = fhS1; Ni; hS2; Nig: (1)Notice here the precision we have been able to achieve. However, the technique we have usedhere is not easily generalized. Another way of obtaining the same result is the following.Let L = fxj 1 � x � Ng. Observe that the candidate set from S1 (resp. S2) can be writtenfhS1; xijx 2 DS1\Lg (resp. fhS2; xijx 2 DS2\Lg) where DS1 = fxj b(x) = trueg and DS2 =fxj b(x) = falseg. Obviously,DS1 \DS2 = ;; and DS1 [DS2 = f1; : : : ; Ng:We have to compute � = max �max(DS1 \ L);max(DS2 \ L)�. As DS1 and DS2 partitionf1; : : : ; Ng, it is a general property that� = maxL = N:Moreover, we know that � belongs either to DS1 or DS2 which gives again the result (1).7

To summarize these observations, our method will be to give new names|parameters|tothe result of maxima calculations in the presence of non-linear terms. These parameters arenot arbitrary. As shown in the example, the sets they belong to|the parameter domains|are in relation to each other. More generally, one can �nd relations on non-linear constraints,either by a simple examination of the syntactic structure of the program, or by more sophis-ticated techniques. These relations imply relations on the parameters, which are then usedto increase the accuracy of the source. In some cases, these relations may be so precise asto reduce the fuzzy source to a singleton, thus giving an exact result. See [7, 5] for a formalde�nition and handling of these parameters.The source � as a quast, i.e. a many-level conditional in which:� Predicates are tests for the positiveness of quasi-a�ne forms 1 in the loop counters, thesymbolic constants, and the new parameters (when non-linear constraints are involvedin the maximum computation).� Leaves are either sets of operations whose iteration vector components are again quasi-a�ne, or ?.3.4 Improving AccuracyTo improve the accuracy of our analysis, we �nd properties on non-a�ne constraints involvedin the description of the dependences and integrate them in the data-
ow analysis. As shownin the previous example, these properties imply the properties on the parameter domainsintroduced in our computation.Several techniques have been proposed to �nd properties on the variables of the programor on non-a�ne functions (See [33, 40, 17, 47, 48, 55] for instance). They use very di�erentformalisms and algorithms, such as abstract interpretation or pattern-matching. However,the relations they �nd can be written as �rst order formulae of additive arithmetic on thevariables and non-a�ne functions of the program. This general type of property makesthe data-
ow analysis algorithm independent of the practical technique involved to �ndproperties.How the properties are taken into account in the analysis is detailed in [7, 5]. Thequality of the approximation is de�ned w.r.t. the ability of the analysis to integrate (fullyor partially) these properties. We have shown that in general, the analysis cannot �nd thesmallest set of possible sources [5]. This is due to decidability reasons, but for some kind ofproperties such as the properties implied by the structure of the program, we have shownthat the best approximation could be obtained.Besides existing symbolic analyses, we propose in the following section a powerful methodthat uses the results of a data-
ow analysis to improve the accuracy of another data-
owanalysis.3.5 Iterative analysisThe key remark in this section is that two values of the same variable at two di�erent stepsof the execution are equal if they have the same source. Thanks to this remark, we may go1Quasi-a�ne forms may include integer division. 8

one step further in data-
ow analyses: The result of a �rst application of the FADA analysiscan in turn help a second application in deriving a more precise result.To see this, suppose that the same array occurs in the left hand side of two statements,with di�ering variables as subscripts. These variables are supposed not to depend linearly oninduction variables. Data-
ow analyses do not make assumptions on the values of variables,and therefore are not able to give the exact source. We may, however, try to prove thatwhatever the values of these variables, these values are equal. As hinted above, we mayapply a data-
ow analysis on the subscripting variables themselves, thus iterating the overallprocess of the analysis. Similarly, two constraints that are the same function but appear atdi�erent places in the program have the same value if the variables they use are the sameand have the same values.Therefore, the purpose of iterative analysis is to �nd properties between the non-linearconstraints appearing in the existence predicates and in the con
icting access constraints ofdi�erent write statements. This method may use the results of data-
ow analysis on thevariables of the non-linear constraints so as to �nd more accurate relations. As this data-
ow analysis can be fuzzy, the method can then be applied once more and eventually thefuzziness will be reduced by successive analyses. This method �nds some relations betweenparameter domains. Refer to [7, 5] for details.3.6 An ExampleLet us consider the program in Figure 2. This program will be used throughout this paper.If P is an intricate predicate, we cannot make any assumption on its outcome. But sinceT always executes when j equals N , a value read by hS; i; ji with j > N , is never de�nedby an operation hS; i0; j0i with j0 � N . Figure 2 describes the data-
ow relations betweeninstances of S: An arrow from (i0; j0) to (i; j) means that instance (i0; j0) de�nes a value thatmay reach (i; j).program examplereal A[1..4*N-1]do i = 1 to 2*Ndo j = 1 to 2*Nif P (i; j) thenS A[i-j+2*N] = ... A[i-j+2*N] ...end ifT if j = N then A[i+N] = ... end ifend doend do i
2NN

N 2N
j

Figure 2: Program example and data-
ow graph.Formally, the source of an instance hS; i; ji of statement S can be given by a closed-form9

formula parameterized by symbolic constants such as N .�(hS; i; ji) = ��������������� if j � Nthen �hS; i0; j 0i : 1 � i0 � 2N ^ 1 � j 0 < j ^ i0 � j 0 = i� j	 [�?	else ��������� if i� j +N < 1then �hS; i0; j 0i : 1 � i0 � 2N ^N < j 0 < j ^ i0 � j 0 = i� j	[�?	else � �hS; i0; j 0i : 1 � i0 � 2N ^N < j0 < j ^ i0 � j 0 = i� j	[�hT; i� j +N;Ni	 � (2)This result is found automatically by the fuzzy array data-
ow analysis.3.7 Related WorkWork on non-linear constraints in dependence analysis can be divided into two classes. Inthe �rst one, the dependence analyzer uses a limited amount of mathematical knowledgeto decide whether dependences exist [48, 47]. In the other class of methods, to which thispaper belongs, one uses syntactical information only: This may include the structure of theoriginal program, the shape of subscript expressions and the list of variables which occur inthem.The work nearest to our own in that direction is the one by Pugh and Wonnacott [52, 51].The engine behind Pugh's ADA is the Omega Calculator, a logical Presburger formulasimpli�er. The main di�erence between their work and ours is the use of uninterpretedfunction symbols in Presburger formulae to express non-linear constraints and the inabilityof their analysis to cope with some relations on these constraints. See [7, 5] for a detailedcomparison.From the results of ADA or FADA, one may deduce many useful abstractions, like reach-ing de�nitions, upward and downward exposed regions, and so on. In the case of scalars, thisinformation can be obtained more directly by iterative data-
ow analysis. These methodscan be extended to arrays: An example is the work of Tu [53, 55]. Regions are approxi-mated by coarser objects than polyhedra: For instance, regular sections [11]. When solvingdata-
ow equations, one has to compute unions and complements of regular sections, whichare not regular sections in general. Hence, one introduces approximate operations. Theinformation obtained in this way is less precise than the one given by ADA or FADA, butthe analysis is faster and is precise enough for solving some problems like array privatization.Another case in point is the work of Duesterwald et al. [21]. In our opinion, the main interestof FADA is that it gives an exhaustive analysis of the source program, and hence is moreversatile than other, less precise techniques.3.8 In BriefWe have given a method to build a conservative approximation of the
ow of values in pro-grams whose control
ow and array accesses cannot be known at compile-time. Such pro-grams include control
ow constructs such as whiles and if ... then ... else constructs,making both control and data
ow unpredictable at compile-time . More importantly, thenet e�ect of our handling of while loops and tests is to add equations to the de�nition of thecandidate set, thus improving the probability of success of fast analysis schemes like [49, 39].As a concluding remark, note that a ? in a source set points to a possible programmingerror. Beyond automatic parallelization, a fuzzy array data-
ow analysis may therefore be10

a general tool for translators, compilers and program checkers, as array data-
ow analysiswas.4 Conversion to Single Assignment FormWe present in this section a general algorithm to perform conversion into single-assignmentform. It is based on the results of our fuzzy array data-
ow analysis.4.1 Problem StatementThe reaching de�nitions given by array data-
ow analysis capture the
ow of data in pro-grams. However, memory-based dependences remain. To eliminate them, we can use aspecial intermediate representation, called single-assignment form, of the program. Thisrepresentation can be used internally by the compiler (e.g., to schedule the operations, asin Section 5), or serve to actually generate the �nal code. The latter case is assumed inthis section, since automatic generation of single-assignment code is a general and usefultechnique.The single-assignment property states that each memory cell in the program is written atmost once. Obviously, this property seldom holds in imperative programming. The bene�tsof the single-assignment property, however, are well known: Programs having this propertyare easier to reason about, they have more parallelism, etc. This is the reason why the SSAframework [19] has been used so successfully in the compiler community.Extension to arrays is therefore an important issue. We �rst present our algorithm forsingle-assignment form transformation, then compare with recent work published on arraySSA.4.2 An Algorithm SketchOur algorithm to convert programs into array single-assignment form, presented in [36], pro-ceeds as follows. This algorithm follows directly from the general scheme given in Section 2.Let us �rst de�ne Stmt(hS; ~xi) = S and Index(hS; ~xi) = ~x.1. For each assignment S whose iteration vector is ~x:(a) Create a data structure DS in one-to-one mapping with Dom(S). The new functionmapping operations to memory cells is f 0 = Index.(b) Let ~x be an index in Dom(S). The control structures surrounding S, sweepingover ~x, are left unchanged.(c) Replace the left-hand side with DS [~x].(d) Replace each reference r in the right-hand side with Convert(r), where:� If �(hS; ~xi) = fug, then Convert(r) = DStmt(u) [u].� If �(hS; ~xi) = f?g, then Convert(r) = r (the initial reference expression).� If �(hS; ~xi) is a non-singleton set, then Convert(r) = �r(�(hS; ~xi)).� If �(hS; ~xi) = if p then r1 else r2, thenConvert(r) = ifp thenConvert(r1) elseConvert(r2).11

� functions are needed to preserve the original data
ow when the control
ow cannotbe predicted at compile-time. They were introduced, for scalars only, in the static single-assignment framework: �-functions may be needed to \merge" multiple reaching de�nitions,i.e. possible data de�nitions due to several incoming control paths [19].In our method, a �-function implements the result of fuzzy array data-
ow analysis sincethe returned value is the one produced by the last possible executed source, or by the initialelement of the initial array if no possible source is executed. The reader is referred to [36]for the algorithms to generate �-functions.Notice that our technique does not include any \pseudo-assignments" of �-functions tointermediary arrays. The bene�t is that placing �-nodes is trivial for us. The drawback isthat, when the same �-function is used several times, our scheme generates several instancesof the same function. Notice also that, when iteration domains are not bounded at compile-time, the data structures DS we allocate are not bounded either; we thus have to allocatethem dynamically, or to tile the iteration space.program examplereal DS [1..2*N,1..N]real DT [1..N,N..N]do i = 1 to 2*Ndo j = 1 to 2*Nif P (i; j) thenS DS [i,j] = ... ���������������� if j � Nthen �1(fhS; i0; j0i : 1 � i0 � 2N ^ 1 � j0 < j ^ i0 � j0 = i � jg [�?)else ���������� if i� j +N < 1then �2(fhS; i0; j0i : 1 � i0 � 2N ^N < j0 < j ^ i0 � j0 = i� jg [�?)else �3� fhS; i0; j0i : 1 � i0 � 2N ^N < j0 < j ^ i0 � j0 = i � jg;fhT; i� j + N;N ig �end ifT if j = N then DT [i,N] = ... end ifend doend do Figure 3: Conversion to single-assignment on the running example.The algorithm above, applied to the running example, yields the program in Figure 3.4.3 Related WorkOur method to convert programs with arrays to single-assignment form [27, 36], uses theresult of an array data-
ow analysis, and then transforms the code. Recent work by Knobeand Sarkar [44], on the other hand, does not make this separation. So, is this an importantissue?We believe the answer is yes. Cutting the conversion to SA into two phases has severalbene�ts:� A �-function is needed only when the (compile-time) analysis fails to �nd the unique(run-time) source. In [44], �-functions are inserted even for a�ne programs, whereas12

well-known analyses such as [27] can easily prove that �-functions are not necessary.This has practical applications for compiler writers: When a useless �-function hasbeen inserted in a program, we know what to blame: The data-
ow analysis.� Element-wise analysis allows optimizations that are not related to single-assignment.For instance, the element-wise dead code elimination cited in [44] is simply givenby eliminating the set of operations fu : @v; u 2 �(v)g. Several other applications(program checking, etc.) do not need the single-assignment property either.� The last reason is that the program may not be converted to single-assignment, perhapsbecause �-functions are considered too expensive. A maximal static extension [6] maybe preferred instead, on top of the data-
ow analysis (cf Figure 1).To sum things up, array data-
ow analysis is not opposed to array SSA. Actually, theycannot be opposed: The former is a compile-time analysis, whereas the latter is a frameworkfor single-assignment form transformation. We believe that the �rst phase of an array SSAshould be an array data-
ow analysis.Notice �nally that the work by Knobe and Sarkar is also, in a sense, more advanced,because they give a better description of how the actual code generation is performed in thegeneral case. In our mind, they prefer a robust \safety net" for general programs to moreprecise but also more restricted methods. How to use an array data-
ow analysis to improvearray SSA is de�nitely an interesting future work.5 SchedulingDependence or data-
ow analyses derive a graph where nodes are operations and edges areconstraints on the execution order. The problem is now to traverse the graph in a partialorder; This order is the execution order for the parallel program. The more partial the order,the higher the parallelism. Obviously, this partial order cannot be expressed as the list ofrelation pairs: One needs an expression of the partial order that does not grow with problemsize, i.e., a closed form. Additional constraints on the expression of partial orders are: Havea high expressive power; Be easily found and manipulated; Allow optimized code generation.A suitable solution is to use scheduling functions.5.1 Problem StatementWhen constructing parallel programs, one may use a schedule, i.e. a function � from the set
 of all operations to the set N of positive integers. the schedule must satisfy the followingconstraint: u � v) �(u) < �(v):where � is some dependence relation on operations. If no expansion on data structures isapplied, then � is the classical order given by true, anti- and output dependences. If theprogram is converted to single-assignment form, then � is the data
ow (i.e. the relationgiven by function �). If a more general|intermediate|expansion scheme is preferred (cf.Section 6), then � is given by the memory-based dependences that are not removed by theexpansion. 13

On the other hand, since � is integer valued, the constraint above is equivalent to:u � v) �(u) + 1 � �(v): (3)This system of functional inequalities, called causality constraints, must be solved for theunknown function �. As it is often true for system of inequalities, it may have many di�erentsolutions. One can minimize various objective functions, as e.g., the number of synchroniza-tion points or the latency.5.2 A Scheduling AlgorithmLet us introduce ~x, the vector of all variables in the problem: ~x is obtained by concatenatingu; v, and the vector of size parameters in the problem. It so happens that, in the context ofthis work, u � v is the disjunction of conjunctions of linear inequalities. In other words, theset fu; v j u � vg is a union of convex polyhedra. This is true for ordinary dependences whereu � v is the usual dependence relation of [50]. It is also true when the dependence relation isapproximate in various ways (dependence cones, direction vectors, dependence level, etc.).Lastly, it is true in the case of our fuzzy data-
ow analysis, since the source sets are linearlydescribed.Therefore, the constraints in the antecedent of (3) are a�ne; Let us denote them byCi(~x) � 0; 1 � i �M . Similarly, let (~x) � 0 be the consequent �(v)� �(u)� 1 � 0 in (3).Then, we can apply the following lemma:Lemma 1 (A�ne Form of Farkas' Lemma) An a�ne function (~x) is non-negative ona polyhedron f~xjCi(~x) � 0; 1 � i � Mg if there exists a set of non-negative integers�0; : : : ; �M (the Farkas coe�cients) such that: (~x) = �0 + MXi=1 �iCi(~x) (4)This relation is valid for all values of ~x. Hence, one can equate the constant term and thecoe�cient of each variable in each side of the identity, to get a set of linear equations wherethe unknowns are the coe�cients of the schedules and the Farkas multipliers, �i. Since thelatter are constrained to be positive, the system must be solved by linear programming.Unfortunately, some loop nests do not have \simple" a�ne schedules. The solution inthis case is to use a multidimensional a�ne schedule [29], whose domain is Nd; d > 1 orderedaccording to the lexicographic order. Such a schedule can have as low a degree of parallelismas necessary, and can even represent sequential programs. The selection of a multidimen-sional schedule can be automated by using algorithms from [28, 29]. It can be proved thatany loop nest in an imperative program has a multidimensional schedule. Notice that multi-dimensional schedules are particularly useful in the case of dynamic control programs, sincewe have in that case to overestimate the dependences and hence to underestimate the degreeof parallelism.Using Lemma 1, we can compute an a�ne parallel schedule for our running example:�(S; i; j) = j � 1; if j � N�(S; i; j) = j �N; if j > N�(T; i;N) = 014

The resulting latency is N .We have shown in Section 4 how to eliminate data dependences. Constraints on theschedule have been alleviated in this way. When the control
ow is not precisely known atcompile-time, these constraints may still be too stringent to extract a satisfying degree ofparallelism. Hence, ignoring some control dependences is a complementary issue; This is thepurpose of speculative execution.5.3 Speculative ExecutionBefore exploring speculation, let us de�ne control dependences: There is a control depen-dence between u and v if the very execution of v depends on the result of u. u is calledthe governing operation. Such a dependence is denoted by � c. Notice that such controldependences are part of the program data
ow. Therefore, when the result of the data-
owanalysis is approximate, the control
ow may not be precisely known at compile-time.First, why does speculation have a chance to give more parallelism? This is simply be-cause every dependence, including control dependences, is an obstacle for parallel execution,and that removing one of them may give a better schedule. Suppose that operation u guardsthe execution of v, i.e. u is in control dependence with v. If the control dependence issatis�ed when computing schedule �, we have �(u) < �(v). If this control dependence isdiscarded, then the above constraint may not hold. In this case, v may be executed beforebeing sure that it was executed in the original program. The execution of v is speculative.A speculative operation must not modify the program memory. Its result must be heldin temporary storage until its governing operations are executed. If the outcome is true,then the result is committed by moving it to permanent storage. In the opposite case, theresult is discarded from temporary storage.Our objective now is to give rules for the correctness of a speculative program.Intuitively, not taking a control dependence into account may yield, �rst, incorrect re-sults and, second, a non-terminating behavior. The �rst problem arises when one of thearguments is the result of a speculative operation. This result cannot be used until it hasbeen committed, i.e. until its governing operations have terminated. This can be enforcedby the introduction of compensating dependences. For more details, the reader is referredto [31].Let us focus on the second problem. When there is a single and outermost while loop, anecessary and su�cient condition for correctness is that fronts must be �nite [15]. Our aimhere is to give a termination criterion for more general speculative programs. Together withthe preceding theorem, it will entail the total correctness of the object program.Firstly, we must have some idea about the structure of the target code. As it is thecase for synchronous parallel programs, we will suppose that the outer loop is sequential,its function being the enumeration of the successive values of time. Contrary to the staticcontrol case, this is a while loop 2. The operations which are scheduled at time t constitutethe front at time t. The de�nition of a front is more complicated than in the static controlcase. An operation which is scheduled at time t is to be executed provided that all itsgoverning operations which have been executed before t have been evaluated to true.2In the case of multidimensional schedules, one may have several loops of this kind, the number of loopsbeing the dimension of the schedule. 15

The result of operation u will be written �(u). With this notation, the speculative frontF(t) of operation scheduled at time t is:F(t) = [S FS(t); (5)where FS(t) = fu 2[Dom(S)j �(u) = t;8v : (�(v) < t ^ v �c u) �(v) = true)g: (6)To write the speculative program, we need the following auxiliary functions:�rst = minftj F(t) 6= ;g (7)next(�) = minftj F(t) 6= ; ^ t > �g (8)with the provision that these functions take the unde�ned value ? if the set over which theminimum is computed is empty. \�rst" gives the �rst clock tick at which there is work tobe done, and \next(�)" is the �rst clock tick after � at which there is work to be done.With these notations, the abstract speculative program is:do t = �rst while t 6= ?doall F(t)t = next(t)end doLet us introduce: B(t) =[�<tF(�):To be correct, the abstract program above has to satisfy several conditions:1. An uncommitted value has to be held in temporary storage until the results of allgoverning predicates are known. The size of the temporary storage has to be �nite.2. Each operation has to be executed in �nite real time. Since the execution time of aparallel program is bounded from below by the number of its operations divided bythe number of processors, this means that the total number of operations before anylogical instant t has to be �nite: Card B(t) <1 (9)3. Lastly, the speculative program must terminate whenever the original program does.The set of uncommitted results is a subset of the set of all results. Hence, condition 2implies point 1 above. In [31], we prove that:Proposition 1 A program with speculative schedule terminates provided that the originalprogram terminates and the schedule is such that all sets B(t) are �nite.The complete su�cient condition for the total correctness of the target speculative programis given described in [31].Obviously, the more speculative the schedule, the larger the memory needed to storeintermediate uncommitted result. For simple cases, this issue is addressed in [15]. Theinterplay of expansion and speculative scheduling, in the general case, is left for future work.In the rest of this paper, schedules are supposed to be non-speculative.16

5.4 Related WorkThe scheduling problem has been widely studied since the �rst Kennedy and Allen algorithm.It is not the purpose of this paper to compare these algorithms, the interested reader mayrefer to [20, 29, 25] for details.6 The Interplay of Array Expansion and SchedulingThe previous section presented a method to express the parallelism in a dependence graph.It computes a schedule satisfying the partial order given by the dependence graph. Moreover,memory expansion aims at deleting dependences due to memory reuse. Applying memoryexpansion and then scheduling seems a natural way to extract additional parallelism.However, several problems arise from a straightforward application of our compilationprocess:1. �-functions are a signi�cant overhead when data structures hold several scalar elements(like arrays) and when their elements are spread across processors. Therefore, we maywant to expand the initial data structures, but not convert into SA, so as to avoid�-functions. More formally, when the source �(u) of some operation u is a not asingleton, then we may want to build an expansion of the program such that the newfunction f 0 mapping operations to memory cells veri�es:8v;w 2 �(u); f 0(v) = f 0(w):The bene�t is that we always know which memory cell stores the value needed by u:This cell always is f 0(v) = f 0(w) = f 0(�(u)). The drawback is that some parallelismmay be lost, i.e. we may have to choose a schedule with higher latency.2. It may happen that a single memory cell can store two successive, distinct values(without consequences on the program schedule). Let us consider a program withexactly four operations w1; r1; w2 and r2, such that �(r1) = fw1g and �(r2) = fw2g,scheduled at time steps 0, 1, 2 and 3, respectively. Then, assigning two memory cells(one for w1; r1 and one for w2; r2) is a waste, since a single cell can store the �rst value(de�ned by w1 and last read by r1), and then store the second value used by w2 andr2. In other words, when looking at the schedule, the two memory cells given by SAcan be folded into one.One simple solution would be to �rst expand, then to schedule, and �nally to fold, but thisis not very elegant. How to solve both problems simultaneously is left for future work. InSection 6.1, we solve the �rst problem and assume scheduling is applied later. In Section 6.2,we restrict ourselves to a�ne loop nests and show how to take bene�t from schedulinginformation to decrease memory usage.6.1 Maximal Static ExpansionIn this section, we show how to automatically �nd the static expansion which expands all datastructures as much as possible without introducing �-functions. Maximal static expansionmay be considered as a trade-o� between parallelism and memory usage. We present analgebraic framework to derive the maximal static expansion; The input of this framework is17

the (perhaps approximate) output of a data-
ow analysis. Our framework is valid for anyimperative program, without restriction|the only restrictions being those of your favoritedata-
ow analysis. In the sequel, we use the analysis presented in Section 3.6.1.1 Problem De�nitionLet us consider two operations u and v belonging to the same set of possible sources of someread r. If they both write in the same memory cell f(u) = f(v) and if we assign two distinctmemory cells to u and v (f 0(u) 6= f 0(v)), then a �-function is needed to restore the data
owsince we do not know which of the two cells has the value needed by r. Static expansionenforces f 0(u) = f 0(v).De�nition 1 (Static expansion) A static expansion is a mapping f 0 from operations tomemory cells such that8u; v 2 W : �9r; u 2 �(r) ^ v 2 �(r) ^ f(u) = f(v)� =) f 0(u) = f 0(v):Notice that the condition f(u) = f(v) is necessary in presence of non-a�ne array subscripts:A set of sources �(r) may hold operations writing in di�erent memory cells.Notice also that, according to this de�nition, even a constant function on W is a staticexpansion. Because we are interested in maximizing the memory expansion, the range of a\good" static expansion should be as large as possible. Such an expansion would be constanton sets as small as possible:De�nition 2 (Maximal static expansion) A static expansion f 0 is maximal on the setof operations W i� for any static expansion f 008u; v 2 W : f 0(u) = f 0(v) =) f 00(u) = f 00(v):Intuitively, if f 0 is maximal, then any f 00 cannot do better and maps two writes to the samememory cell when f 0 does.We need to characterize the sets of operations on which a maximal static expansion f 0is constant. By de�nition, these sets are exactly the equivalence classes of relation fu; v 2W : f 0(u) = f 0(v)g. The set of theses classes is denoted by W�f 0. The number of memorycells after maximal static expansion is thus equal to the cardinal of W�f 0.However, this hardly gives us an expansion scheme, because this result does not tell ushow much each individual memory cell should be expanded. The purpose of Section 6.1.2is to give a similar result for each memory cell c used in the original program. This resultappears in Theorem 2. This theorem is then used to give a practical expansion scheme.6.1.2 Expansion SchemeLet us de�ne the relation: uRv () 9r; u 2 �(r) ^ v 2 �(r): (10)Relation R is obviously symmetric. De�nition 1 requires that a static expansion f 0 veri�esf 0(u) = f 0(v) when f(u) = f(v) and uRv. Given u, v and w in W, if f(u) = f(v) = f(w),uRv and vRw then f 0(u) = f 0(v) = f 0(w). Therefore, given u 2 W, f 0 is constant on theset of all v 2 W such that f(u) = f(v) and uR�v, R� being the transitive closure of R. Wemay give an equivalent de�nition of a static expansion:18

De�nition 3 A static expansion is a mapping f 0 from operations to memory cells such that8u; v 2 W : uR�v ^ f(u) = f(v) =) f 0(u) = f 0(v):From this characterization, we proved in [6] that f 0 is a maximal static expansion i�8u; v 2 W : uR�v ^ f(u) = f(v) () f 0(u) = f 0(v): (11)For a memory cell c, the set of operations writing into c is W(c) = fu 2 W : f(u) = cg.Given a memory cell c, a static expansion f 0 is maximal i�8u; v 2 W(c) : f 0(u) = f 0(v) () uR�v:Therefore, classes of R� in W(c) are exactly the sets we are looking for:Proposition 2 The sets on which a maximal static expansion f 0 is constant are given byW�f 0 = [c2M W(c)�R� (12)Therefore, the expansion factor of each individual memory cell c is Card(W(c)�R�).To generate the transformed code, one �rst has to remember which equivalence class anoperation belongs to. This can be done by picking a representative in each class: Let ' bethe function mapping an operation u to the (unique) representative of its equivalence class.The second stage consists in labeling every element (i.e. equivalence class) of W(c)�R�. Interms of representatives, each element of '(W(c)) should be labeled. Such a labeling schemeis obviously arbitrary, but all programs transformed using our method are equivalent up toa permutation of these labels. We denote by �(u) the label we choose for the elements of'(W(f(u))). Then, f 0 = (f; �).Our expansion scheme depends on the transitive closure calculator and on the part cal-culating W(c). We would like to stress the fact that the expansion produced is static andmaximal with respect to the results yielded by these parts, whatever their accuracy:� The transitive closure may be too complicated to give an exact result. Therefore, itmay be over-approximated. The expansion factor of a memory cell c is then lower thanCard(W(c)�R�). However, the expansion remains static and is maximal with respect tothe transitive closure given to the algorithm.� The sets W(c) may not be known precisely at compile-time. (E.g. when dealingwith non-a�ne array subscripts.) One may use some approximation]W(c) such thatW(c) �]W(c), then label all classes of W�R�, which in turn gives labels to the classesof all]W(c)�R� . The drawback of this method is that some memory cells not used duringprogram execution may be allocated.Notice that the de�nitions given in Section 6.1.1 and the expansion scheme are valid forany imperative program. The only restrictions and limitations are those of the data-
owanalysis and of the algorithm to compute transitive closures.19

6.1.3 ExampleLet us apply maximal static expansion to a practical example: The expansion of array A inthe program of Figure 2.Because sources in (2) are non-singleton sets, a straightforward conversion of this programinto single-assignment form would require run-time computation of the memory location readby S. However, we notice that the iteration domain of S may be split into separate subsets bygrouping together operations involved in the same data
ow. These subsets build a partitionof the iteration domain. Each subset may have its own memory cell, a cell that will not bewritten nor read by operations outside the subset. The partition is given in Figure 4.a.
Figure 4.a.
j

iN N 2N2N i
j
Figure 4.b.N 2NN2N

Figure 4: Partition of the iteration domain (N = 4).Using this property, we can duplicate only those elements of A that are used twice. Theseare all the array elements A[c], 1 + N � c � 3N � 1. They are accessed by operations inthe large central set in Figure 4.b. Let us label with 1 the subsets in the lower half of thisarea, and with 2 the subsets in the top half. We add one dimension to array A, subscriptedwith 1 and 2 in statements S2 and S3 in Figure 5, respectively. Elements A[c]; 1 � c � Nare accessed by operations in the upper left triangle in Figure 4.b and have only one subseteach (one subset in the corresponding diagonal in Figure 4.a), which we label with 1. Thesame labeling holds for sets corresponding to operations in the lower right triangle.The maximal static expansion is shown in Figure 5. Notice that this program has thesame degree of parallelism as the corresponding single-assignment program, without therun-time overhead of �-functions.6.2 Optimizing Memory UsageIt is clear that converting a program to single-assignment has a very high memory cost. Inthe particular case of a�ne loop nests, this section presents a technique to reduce memoryexpansion without hampering the performances of the parallelization process.To each operation u is associated two sets of memory cells: R(u), the set of read cells, andM(u) the set of modi�ed cells. Bernstein's conditions distinguish three kinds of dependencesbetween u and v, where u � v. If M(u) \ R(v) 6= ;, there is a true dependence. IfR(u) \M(v) 6= ;, there is an anti-dependence. If M(u) \ M(v) 6= ;, there is an outputdependence. 20

real A[1..4*N-1,1..2]do i = 1 to 2*Ndo j = 1 to 2*Nfexpansion of statement Sgif -2*N+1 <= i-j <= -N thenif P (i; j) thenS1 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...end ifelsif -N+1 <= i-j <= N-1 thenif j <= N thenif P (i; j) thenS2 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...end ifelseif P (i; j) thenS3 A[i-j+2*N,2] = ... A[i-j+2*N,2] ...end ifend ifelseif P (i; j) thenS4 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...end ifend iffexpansion of statement TgT if j = N then A[i+N,2] = ... end ifend doend do Figure 5: Maximal static expansion for the example.In terms of memory dependences, array data-
ow analysis (see Section 3) computes thedata-
ow graph which is a subset of true dependences. All other dependences are due tomemory reuse: They are arti�cial in the sense that conversion to single-assignment formeliminates them. Our aim is now to de�ne a method for partial data expansion which buildsa parallel program with memory reuse.We suppose that a schedule function � has been deduced from the data-
ow graph. Theconstraint for our partial expansion being that this schedule should remain valid in presenceof output and anti-dependences.6.2.1 Memory Reuse in Parallelized ProgramsLet V(v) be the value produced by an operation v. Let C(v) be the memory cell in whichV(v) is stored. Let U(v) be the set which gathers all operations u such that there is a data-
ow from v to u. U(v) is usually called the utilization set of v. Let L�(v) be the executiontime of the last read of V(v) in the parallel program scheduled by �.Consider a memory cell C(v) during execution of a parallel program in single-assignmentform. The memory cell stays empty until the execution of v at �(v). The operations of U(v)read V(v) until L�(v). The memory cell is not read anymore after L�(v), nevertheless V(v)21

is still in C(v) until the end of the execution of the parallel program.It is clear that the utility span of V(v) is between �(v) and L�(v). Before and after thisutility span, C(v) can store other values without changing the data-
ow from v to operationsin U(v): Output dependences between v and some other operations can be reintroduced inthe parallel code. Such output dependences are called neutral dependences.6.2.2 Neutral DependencesDe�nition 4 An output dependence is neutral for a schedule function � i� it does not changethe data-
ow in the parallel program built with the help of �.One can precisely give the characteristics of a neutral output dependence between twooperations v and w in the parallel program:� v must be executed before w (�(v) < �(w)).� There is an access con
ict (C(v) = C(w)).� The utility spans are separate (L�(v) < �(w)).To decide if an output dependence is neutral in a parallel program, one must have aprecise estimation of the utility span of each value V(v). Then this estimation can help usto reconstruct the data space of the program by adjusting data size to utility spans. The�nal purpose is to build a parallel program with neutral output dependences. Refer to [45]for details.6.2.3 Utility SpanConsider the utility span of a value V(v): [�(v); L�(v)]. The lower bound of this timesubsegment is directly given by �. The problem is to compute the upper bound L�(v).Determining this time uses techniques from data-
ow analysis. The main di�erence is thatthe lexicographic maximum computation is not on the sequential execution order �, but onthe execution order given by the schedule function �.L�(v) is the execution time of the last operations of U(v) according to �:L�(v) = maxf�(u) ju 2 U(v)g (13)6.2.4 Data ReconstructionThe �rst step is a partial array and scalar expansion process that decides the shape of eachstatement left-hand side (LHS). The second step consists in a partial renaming process anddecides which statements can share the same data structure.Partial Array Expansion We want to build a structure lhsS which is speci�cally asso-ciated to the statement S. It will give the shape (number of dimensions and size of eachdimension) and the index function which constitute the data in the left-hand side of S inthe restructured program. The aim is that lhsS provides memory reuse, i.e. neutral outputdependences between some operations instances of S. Moreover the elaboration of lhsS mustbe independent from the original data structure in the LHS of S.22

A neutral output dependence cannot kill a value V(S; ~x) during its utility span. Torespect this rule for any instance of S, one must take into account the maximum durationthat the utility span of V(S; ~x) can have in the parallel program. For an operation hS; ~xithis duration is obtained by subtracting the lower bound of its utility span from the upperbound. Let d(S) = max~x2Dom(S)(L�(S; ~x) � �(S; ~x)) be the maximum utility span durationof all instances of S.To protect every instance of S during its utility span, lhsS must be built in such a waythat no value V(S; ~x) can be killed between �(S; ~x) and �(S; ~x) + d(S).The algorithm that builds the data structure lhsS can be summarized like this:1. One starts with a scalar lhsS. The elaboration of lhsS is iterative, the number ofiterations is equal to NS (number of loops surrounding S, cf. Section 3). Each iterationis called partial expansion of S at depth p where p is the depth of the loop considered.2. A partial expansion of S at depth p consists in computing the expansion degree EpS ofS at depth p (it gives the number of elements of a new dimension that one adds tolhsS).The problem is now to compute EpS. The partial expansion of S at depth p avoids non-neutral output dependences between two operations hS; ~xi and hS; ~x0i if hS; ~xi �p hS; ~x0i. Foran operation hS; ~xi, we build the set of candidates gathering all the operations hS; ~x0i whichcannot share the same memory cell as hS; ~xi because their utility spans are not separate. LethS; ~xci be the last operation in this set. No output dependence can appear between operationshS; ~xi and hS; ~x0i with hS; ~xi �p hS; ~x0i �p hS; ~xci. From this follows the inequalities on theiteration vectors: ~x[p+ 1] < ~x0[p+ 1] � ~xc[p+ 1].If lhsS is expanded at depth p with ~xc[p + 1] � ~x[p + 1] + 1 elements, we are surethat no non-neutral output dependence at depth p can appear concerning hS; ~xi. But itmust be veri�ed for every instance of S, hence the expansion degree EpS is the maximum of~xc[p+ 1]� ~x[p+ 1] + 1 for all ~x 2 Dom(S).Partial Renaming For two statements S and T , partial expansion builds two structureslhsS and lhsT which can have di�erent shapes. If at the end of the renaming process S andT are authorized to share the same array, this one would have to be the rectangular hull oflhsS and lhsT : lhsST . It is clear that these two statements can share the same data i� thissharing does not generate non-neutral dependence between S and T with lhsST in the LHSof the two statements. Let fST be the index function of lhsST . One must verify for eachoperation hS; ~xi and hT; ~yi that would be in output dependence (i.e. fST (~x) = fST (~y)) thatV(S; ~x) cannot be killed by hT; ~yi before the end of its utility span and that V(T; ~y) cannotbe killed by hS; ~xi before the end of its utility span.Finding the minimal number of renaming is an NP-complete problem (see [1]). Ourmethod consists in building a graph similar to an interference graph as used in code gen-eration process of a classical compiler to optimize registers allocation. In this graph, eachvertex represents a statement of the program. There is an edge between two vertices S andT i� it has been shown that they cannot share the same data structure in their LHS. Thenone applies on this graph a greedy coloring algorithm. Finally it is clear that vertices thathave the same color can have the same data structure.23

6.2.5 An ExampleConsider the matrix-vector program. It is given in Figure 6 with its data-
ow graph.program matrix-vectorreal s, A[N,N], B[N], C[N]do i = 1 to NS1 s = 0do j = 1 to NS2 s = s + A[i,j]*B[j]end doS3 C[i] = send do �(s; hS2; i; ji) = �������� if j � 2then hS2; i; j� 1ielse hS1; ii�(a(i; j); hS2; i; ji) = ?�(b(j); hS2; i; ji) = ?�(s; hS3; ii) = hS2; i; NiFigure 6: Program matrix-vector and its data-
ow graphConverting the matrix-vector program into single-assignment yields a program whosedependence graph equals the data-
ow graph in Figure 6. The following schedule � is thusa valid one for the expanded program:�(S1; i) = 0 �(S2; i; j) = j �(S3; i) = N + 1 (14)The utility spans are: Operation v L�(v) Utility span of V(v)hS1; ii 1 [0;1]hS2; i; ji j + 1 [j; j + 1]hS3; ii N + 1 [N + 1;N + 1]The partial expansion step gives the following results:Statement Maximum utility Expansion Final data Final LHSspan duration degree structureS1 d(S1) = 1 E0S1 = N lhsS1[N] lhsS1[i] = ...S2 d(S2) = 1 E0S2 = NE1S2 = 0 lhsS2[N] lhsS2[i] = ...S3 d(S3) = 0 E0S3 = N lhsS3[N] lhsS3[i] = ...Notice that the array in the LHS of S3 is left untouched even if its values are never read,because it stores output values.Applying our coloring algorithm shows that S1, S2 and S3 have the same color. Thememory requirement is �nally a one-dimensional array with N elements which can be thearray C. Hence the statement S3 can be deleted. After partial expansion and code generationthe parallel version of the program is:real A[N,N], B[N], C[N]do t = 0 to Nif t = 0 thendoall i = 1 to NS1 C[i] = 0 24

end doelsedoall i = 1 to NS2 C[i] = C[i] + A[i,t]*B[t]end doend ifend doOur method can e�ectively reduce the memory cost of data expansion process for a�ne loopnests. The conversion of the source program to single-assignment would give a memory spaceof O(N2) instead of O(N) with partial expansion. Notice that in this example the data sizeof the parallel program is less than the original data size. Moreover the simpli�cation ofmemory accesses can in some cases simplify the complexity of the parallel code (removal ofS3).6.3 Related WorkMany studies are related to array privatization [53, 49]. Maydan et al. [49] proposed analgorithm to privatize arrays. Their method only applies to a�ne loop nests. Tu andPadua [54] proposed a privatization technique for a very large class of programs. But itresorts to dynamic restoration of the data
ow. Another accurate approach using arrayregions has been described by Creusillet [18], her method avoids the cost of a dynamicrestoration and copies back the privatized elements into the original arrays.Array privatization may require less space than total expansion, but only detects par-allelism along the enclosing loops; It is thus less powerful than general array expansiontechniques|in terms of parallelism extraction.De Greef and Catthoor have addressed the memory reuse problem for a�ne loop nests.They stop at the formulation of the constraints to be satis�ed [22]. Another solution hasbeen proposed by the systolic community [56]. Programs in this case are directly given insingle-assignment form. They try to create output dependences which do not invalidate thedata
ow by estimating the lifetime of each variable.6.4 PerspectivesWe have presented in this section two techniques for array expansion, addressing two di�erentbut complementary problems: The �rst one kills as much memory-based dependences aspossible without introducing any run-time overhead, and the second one reduces the memorycost of the generated code according to the parallel schedule.As discussed earlier (see Section 6), our aim is now to make these two techniques worktogether. Interestingly enough, the static expansion algorithm does not require any precisionlevel of the data-
ow analysis, nor does it require the closure computation to be exact.Conservative approximate results are �ne as well, the only drawback being a probable lossin static expansion. When the data-
ow analysis and/or the transitive closure tool give poorresults, our expansion scheme does not fail but degrades gracefully. A fundamental issuein designing a uni�ed technique is thus to extend the memory optimization framework to amore general class of programs and analyses.25

7 Related Work on Compilation FrameworksInitial but restricted parallelizing frameworks aimed at reordering techniques for perfectlynested loops [4]. These approaches cannot handle imperfectly nested loops or representtransformations such as loop distribution or fusion.The SUIF [23] and Polaris [24] compilers are among the major compilers in the �eld.The �rst obvious di�erence between these compilers and our approach is that they are muchmore robust than PAF. However, Polaris is based on array privatization only. SUIF is, inthat respect, more advanced, and features an array data-
ow analysis and a�ne mappings.Several automatic parallelizing compilers rely on the polytope model. The Loopo par-allelizer [37], developed at the University of Passau, implements the scheduling algorithmsproposed in [28] and [20]. Moreover, Loopo is an excellent platform to compare schedul-ing techniques. The Omega project [43], is very similar in spirit to PAF. The �ndings ofPugh and Wonnacott on data-
ow analysis of general programs [57] are very close to ours,even though both results were achieved independently. Their analysis and scheduling tech-niques are based on the Omega Calculator [50, 43]. But their mappings allow additionaltransformations such as loop fusion, loop distribution and statement reordering.We may roughly say that the compiler e�orts cited above, with the exception of Polaris,are based on a�ne transformations. Another paradigm in the �eld is supernode partitioning,also known as tiling [42, 9, 12]. In particular, tiling may be useful to solve some codegeneration issues addressed in Section 4. However, even state-of-the-art tiling techniques [46]restrict themselves to loop nests with a�ne bounds and a�ne array subscripts. Notice thatthe partition given in Figure 4.a can be seen as a special case of tiling.Finally, let us recall that several compiler projects have focused on pointer analysis insteadof arrays. For instance, the McCAT compiler includes sophisticated pointer analyses [34, 35].How to extend our techniques to pointers is left for future work.8 ConclusionThe research issues that have been reported here are part of a long term project whose aimis to improve automatic parallelization techniques for arbitrary programs. The problem isso complex that one has to divide in the remote hope of conquering. A possible division lineis to separate problems in which the size of data structures is known beforehand (let us say,at program loading-time), and those where data structures are built dynamically. In thispaper, we deal only with the �rst type of programs. The second type will be the subject offuture work [13, 32].It is clear that, for programs with dynamic control structures and/or complex arraysubscripts, the basic objects of automatic parallelization (iteration domains, dependences,data
ow) cannot be computed exactly and have to be approximated. This in turn generatestwo subproblems:� How to reduce uncertainty in approximations.� How to synthesize a parallel program in the presence of approximate information.26

8.1 AnalysisAutomatic parallelization in the presence of approximate dependences is not a new idea.Many parallelizers ignore non linear constraints in dependence tests, with the result thatdependences are overestimated. One can apply classical algorithms to such overestimates(as, e.g. the Allen and Kennedy algorithm), but the end result often is simply a copy ofthe source program. In fact, one needs much more information for the use of some of themost powerful parallelization algorithms, like scheduling and placement. On the other hand,classical parallelizers cannot handle dynamic control structures. while loops, for instance,are considered as inherently sequential.Our answer has been to devise FADA (see Section 3), a fuzzy array data-
ow analysiswhich is able to handle any array program. FADA is more a framework than a completelyspeci�ed method. It can use information from preliminary analyses (including a preliminaryapplication of itself) to increase its precision. When this information is deduced from thestructure of the program, we have been able to prove that our analysis has maximum pre-cision. This cannot be generalized, since it would contradict the undecidability of predicatecalculus. There are many sources of information about a program that one would like tointegrate in the data-
ow analysis process: Structural analysis, property analysis like [33],[40] or [17], more general results from abstract interpretation [16] and so on. How to organizethis wealth of information is still a mystery to us.8.2 SynthesisWhether the array data-
ow analysis is exact (i.e. its result is a singleton) or approximate(i.e. its result is expressed as an a�ne relation), one can construct a�ne schedules (see[28, 29]). One must observe that the causality condition takes into account all the memory-based dependences that are not eliminated by array expansion. The program can be broughtinto single-assignment form, or, more cleverly, one can determine the minimum amount ofmemory which is able to support the parallelism of the schedule. There is in fact a tradeo�between parallelism and memory: Let us suppose that useless operations have been removed.Values which are generated in a front cannot be used before the next front. For this, oneneeds at least as many memory cells as there are operations in the front. Hence, the size ofthe largest front is a lower bound for the size of memory. Suppose that the total number ofoperations is s and that the number of fronts is `. s is a rough measure of the duration of thesequential program, and ` is a rough measure of the duration of the parallel program. Themean size of a front is s=`, and if we suppose that the size of fronts is more or less constant,then this is also the size of the needed memory. But s=` is the maximum speed-up for alarge number of processors. Hence, we conclude that the maximum speed-up of a programis of the order of the size of its working memory. Using this result as a practical estimatoris complicated by the fact that one must consider the size of the input and of the output,and that these subsets of the data space are not necessarily separate.In the case of fuzzy analysis, the situation becomes more complicated, because, �rstly,some constructions cannot be parallelized without recourse to speculation, and, secondly,because too much expansion requires the use of �-functions. Both of these devices incuroverhead, which may or may not be compensated by more parallelism.Hence, we see that the designer of a parallel program has to tradeo� memory for speed ina complicated way. If the running time is a constraint and memory size is to be minimized,one can compute the best schedule as in Section 5, then slow it down arti�cially if needed.27

Conversely, if one has to �nd the fastest program under memory-size constraints, a tentativesolution is to state that front cardinals should never exceed a given memory size and to solvethe corresponding scheduling problem. These issues are left for future work.References[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.Addison-Wesley, Reading, Mass, 1986.[2] Z. Ammarguellat. A control-
ow normalization algorithm and its complexity. IEEETrans. on Software Engineering, 18(3):237{251, March 1992.[3] B. S. Baker. An algorithm for structuring programs. J. of the ACM, 24:98{120, 1977.[4] U. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.Kluwer Academic Publishers, 1992.[5] D. Barthou. Array Data
ow Analysis in Presence of Non-a�ne Constraints. PhDthesis, PRiSM, Universit�e de Versailles, February 1998.[6] D. Barthou, A. Cohen, and J.-F. Collard. Maximal static expansion. In ACM Symp. onPrinciples of Programming Languages (PoPL), pages 98{106, San Diego, CA, January1998.[7] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array data
ow analysis. Journal ofParallel and Distributed Computing, 40:210{226, 1997.[8] R. Bod�ik and S. Anik. Path-sensitive value-
ow analysis. In ACM Symp. on Principlesof Programming Languages (PoPL), pages 237{251, San Diego (CA), January 1998.[9] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling? In ScalableHigh-Performance Computing Conf., pages 568{576, Knoxville, Tenn., May 1994. IEEEComputer Society Press.[10] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. ACMSIGPLAN Notices, 21(7):162{175, July 1986.[11] D. Callahan. The program summary graph and
ow-sensitive interprocedural data
owanalysis. In SIGPLAN PLDI, pages 47{56, Atlanta, Ga, June 1988. ACM.[12] L. Carter, J. Ferrante, and S. Flynn Hummel. E�cient multiprocessor parallelism viahierarchical tiling. In SIAM Conference on Parallel Processing for Scienti�c Computing,1995.[13] A. Cohen and J.-F. Collard. Applicability of algebraic transductions to data-
ow anal-ysis. Technical Report 98/002, PRiSM, U. of Versailles, January 1998.[14] J.-F. Collard. Code generation in automatic parallelizers. In C. Girault, editor, Proc. ofthe Int. Conf. on Applications in Parallel and Distributed Computing, IFIP W.G 10.3,pages 185{194, Caracas, Venezuela, April 1994. North Holland.28

[15] J.-F. Collard. Space-time transformation of while-loops using speculative execution.In Proc. of the 1994 Scalable High Performance Computing Conf., pages 429{436,Knoxville, TN, May 1994. IEEE.[16] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for staticanalysis of programs by construction or approximation of �xpoints. In ACM Symp. onPrinciples of Programming Languages (PoPL), pages 238{252, Los Angeles, CA, 1977.[17] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variablesof a program. In ACM Symp. on Principles of Programming Languages (PoPL), SanDiego, CA, 1978.[18] B. Creusillet. Array Region Analyses and Applications. PhD thesis, �Ecole des Mines deParis (ENSMP), December 1996.[19] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. E�ciently com-puting static single assignment form and the control dependence graph. ACM Trans-actions on Programming Languages and Systems, 13(4):451{490, October 1991.[20] A. Darte and F. Vivien. Optimal �ne and medium grain parallelism detection in polyhe-dral reduced dependence graphs. Int. Journal of Parallel Programming, 25(6):447{496,December 1997.[21] E. Duesterwald, R. Gupta, and M.-L. So�a. A practical data
ow framework for arrayreference analysis and its use in optimization. In ACM SIGPLAN'93 Conf. on Prog.Lang. Design and Implementation, pages 68{77, June 1993.[22] F. Catthoor E. de Greef and H. deMan. Reducing storage size for static control programsmapped to parallel architectures. In Dagstuhl Seminar on Loop Parallelization, April1996.[23] M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEEComputer, 29(12):84{89, December 1996.[24] W. Blume et al. Parallel programming with Polaris. IEEE Computer, 29(12):78{82,December 1996.[25] Alain Darte et Yves Robert. A�ne-by-statement scheduling of uniform loop nests overparametric domains. Technical Report 92-16, LIP, ENS Lyon, France, 1992.[26] P. Feautrier. Parametric integer programming. RAIRO Recherche Op�erationnelle,22:243{268, September 1988.[27] P. Feautrier. Data
ow analysis of scalar and array references. Int. Journal of ParallelProgramming, 20(1):23{53, February 1991.[28] P. Feautrier. Some e�cient solution to the a�ne scheduling problem, part I, one di-mensional time. Int. J. of Parallel Programming, 21(5):313{348, October 1992.[29] P. Feautrier. Some e�cient solution to the a�ne scheduling problem, part II, multidi-mensional time. Int. J. of Parallel Programming, 21(6), December 1992.29

[30] P. Feautrier. Automatic parallelization in the polytope model. In G.-R. Perrin andA. Darte, editors, The Data Parallel Programming Model, volume 1132 of LNCS, pages79{103. Springer-Verlag, June 1996.[31] P. Feautrier. Basis of parallel speculative execution. In Europar'97, pages 3{14. Springer-Verlag, LNCS 1300, 1997.[32] P. Feautrier. A parallelization framework for recursive tree programs. Technical report,PRiSM, University ov Versailles, 1998. To appear.[33] R. J. Floyd. Assigning meaning to programs. In Mathematical Aspects of ComputerScience. AMS, 1967.[34] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape analysis forheap-directed pointers in c. In ACM Symp. on Principles of Programming Languages(PoPL), pages 1{15, St. Petersburg, Florida, January 1996.[35] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In ACM Symp. onPrinciples of Programming Languages (PoPL), San Diego, California, January 1998.[36] M. Griebl and J.-F. Collard. Generation of synchronous code for automatic paralleliza-tion of while loops. In S. Haridi, K. Ali, and P. Magnusson, editors, EURO-PAR '95,Lecture Notes in Computer Science 966, pages 315{326. Springer-Verlag, 1995.[37] M. Griebl and C. Lengauer. The loop parallelizer LooPo | announcement. LNCS,1239:603{607, 1997.[38] M.W. Hall, J.M. Mellor-Crummey, A. Carle, and R. Rodriguez. Fiat: A framework forinterprocedural analysis and transformation. In Proceedings of the Sixth Annual Work-shop on Languages and Compilers for Parallel Computing. Springer-Verlag, January1994. updated version for book.[39] C. Heckler and L. Thiele. Computing linear data dependencies in nested loop programs.Parallel Processing Letters, 4(3):193{204, September 1994.[40] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,21, 1978.[41] F. Irigoin. Interprocedural analyses for programming environments. In J. J. Dongarraand B. Tourancheau, editors, Environments and Tools for Parallel Scienti�c Computing,pages 333{350. Elsevier, 1993.[42] F. Irigoin and R. Triolet. Supernode partitioning. In Proc. 15th POPL, pages 319{328,San Diego, Cal., January 1988.[43] W. Kelly and W. Pugh. A Framework for Unifying Reordering Transformations. Tech-nical Report CS-TR-2995.1, U. of Maryland, November 1992.[44] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In ACMSymp. on Principles of Programming Languages (PoPL), pages 107{120, San Diego(CA), January 1998. 30

[45] V. Lefebvre and P. Feautrier. Optimizing storage size for static control programs inautomatic parallelizers. In S. Gorlatch C. Lengauer, M. Griebl, editor, Euro-Par'97Parallel Processing, pages 356{363. Springer-Verlag, August 1997.[46] A. W. Lim and M. Lam. Maximizing parallelism and minimizing synchronization witha�ne transforms. In ACM Symp. on Principles of Programming Languages (PoPL),pages 201{214, Paris, January 1997.[47] F. Masdupuy. Semantic analysis of interval congruences. In D. B�rner, M. Broy, and I.V.Pottosin, editors, Int. Conf. on Formal Methods in Programming and their Applications,volume 735 of LNCS, pages 142{155, Academgorodok, Novosibirsk, Russia, June 1993.Springer-Verlag.[48] V. Maslov and W. Pugh. Simplifying polynomial constraints over integers to makedependence analysis more precise. Technical Report CS-TR-3109.1, U. of Maryland,February 1994.[49] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data
ow analysis and its usein array privatization. In Proc. of ACM Conf. on Principles of Programming Languages,pages 2{15, January 1993.[50] W. Pugh. The omega test: a fast and practical integer programming algorithm fordependence analysis. Communications of the ACM, 8:102{114, August 1992.[51] W. Pugh. A practical algorithm for exact array dependence analysis. Communicationsof the ACM, 35(8):27{47, August 1992.[52] W. Pugh and D. Wonnacott. An exact method for analysis of value-based data depen-dences. Technical Report CS-TR-3196, U. of Maryland, December 1993.[53] P. Tu and D. Padua. Array privatization for shared and distributed memory machines.In Third Workshop on Languages and Compilers for Distributed Memory Machines,1992.[54] P. Tu and D. Padua. Automatic array privatization. In Proc. Sixth Workshop on Lan-guages and Compilers for Parallel Computing, number 768 in Lecture Notes in ComputerScience, pages 500{521, August 1993. Portland, Oregon.[55] P. Tu and D. Padua. Gated SSA-Based demand-driven symbolic analysis for paralleliz-ing compilers. In ACM Int. Conf. on Supercomputing, pages 414{423, Barcelona, Spain,July 1995.[56] D. Wilde and S. Rajopadhye. Memory reuse analysis in the polyhedral model. InMignotte Boug�e, Fraignaud and Robert, editors, Europar'96 Parallel Processing, pages389{397. Springer Verlag, LNCS 1123, 1996.[57] D. G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis, Universityof Maryland, 1995. 31

