Simplification of Boolean Affine Formulas

Paul Feautrier

ENS de Lyon
Paul.Feautrier@ens-lyon.fr

November 7, 2011

0670 Cp— onversit taud Bernard (@) Jon 1

1/15

Motivation

Definitions

Ordered Binary Decision Diagrams

Simplification

Conclusion

2/15

Definitions

Boolean Affine Formulas

» Affine Atoms

n n
E ajx; +ap > 0, E ajxj + ag > 0.
i=1 i=1

a; integers, x; integers or rationals.

» Boolean Affine Formulas: affine and boolean atoms combined
by the usual connectives:

» A and, > = implies,
> \ or, » = equivalence
» - not, » true, false

3/15

Definitions

The If-Then-Else Operator

An interesting ternary connective:

if xthen y else z = ite(x, y, z).

ite with true and false are complete for Boolean algebra:

-x = ite(x,false, true),
xANy = ite(x,y,false),
xVy = ite(x,true,y).

Note Shannon formula:

f(ai,...,an) =ite(ay, f(true, ay, ..., a,), f(false, ap, ..., a,)).

4/15

Definitions

Simplification

Eliminate useless atoms: a; can be eliminated if there exists a
boolean function g such that:

f(a1,3) = g(3).

» Important for hardware synthesis: evaluating an affine atom is
costly.

» Elimination is possible because affine atoms are not
necessarily independent.

5/15

Definitions

Complexity

Complete simplification is at least as difficult as satisfiability
testing: an unsatisfiable formula must simplify to false.
Two approaches:

» Incomplete simplification, may have better complexity. No
known algorithm yet. Dillig et. al. (SAS 2000) is still
exponential.

» Take advantage of the peculiarities of the subject formula to
be less than exponential in practice.

6/15

Ordered Binary Decision Diagrams

Binary Decision Diagrams

A formula using only the ite coonective is a Binary Decision
Diagram, and look like a tree, with true or false leaves.

» A BDD is ordered if atoms always occur in the same order on
all paths.

» A BDD is reduced if one has applied the reduction rule:

ite(x,y,y) = y.

7/15

Ordered Binary Decision Diagrams

Properties of ROBDD

» The concept of ROBDD is a mathematical structure, which
can accomodate many kinds of atoms: boolean variables,
affine formulas, polynomials, etc.

» Some properties depend on the nature of the atoms, but most
are universal

» Pure boolean OBDD are a canonical form for Boolean
formulas

» This no longer true for affine OBDD

» There are many methods for constructing ROBDD (c.f.
Shannon formula)

» ROBDD may have exponential size, but are much smaller in
practice.

8/15

Ordered Binary Decision Diagrams

The size of an ROBDD strongly depends on the atoms order.

» There are examples which have exponential size — or not —
depending on the order

> There are also exceptional cases which have exponential size
whetever the order (integer multiplication, population
counting)

> There are algoritms and heuristics for selecting the best
possible order.

9/15

Simplification

Simplification of Boolean-Affine OBDD

Simplification is done by path cutting.

ap
Assume that /\
a

£ a1 N a AN a3 A a3z Is

/\ unfeasible. The right *
I} leaf under a; will never K\%

be reached, and can be * /\

/\ X removed with the test. true |

true false

10/15

Simplification

Order and Simplification

Whether a path can be cut may depend on the atoms order:

1<x 2<x
2<x false 1<x false
/\ /\
true false true false
Does not simplify. Simplifies to 2 < x.

However, one does not have to check all n! orders. It is enough to
have each atom occupy the last position in turn.

11/15

Simplification

Algorithm

Build the formula ROBDD using an arbitrary order

» Repeat n times

» Bring the last atom to the top
» For each path

> If the path is unfeasible, cut its last step and remove its last
test

Extract the simplified formula from the last ROBDD

12/15

Simplification

An Example

/\ /_\ 0<x+1

false x <1 N ﬂse
/\ N
true 0< +1 true false 0< X/\false tr/hse
/\ P
true false

true false

ite(x>0,x<1,x>-1)=-1<x<1

13/15

Simplification

Implementation

» The method has been implemented as a Java library, and is
available from the author on demand.

> Feasibility testing uses a home-made SMT solver, built over
the Piplib linear programming tool, based on Smullyan's
semantic tableaux.

» The software has been tested on small examples from the
litterature, on “quasts” generated by C. Alias’ synthesis tool,
with good results, and on random formulas courtesy of David
Monniaux, with less impressive results.

14/15

Conclusion

Conclusion and Future Work

As expected, the method takes advantage of the peculiarities of
the subject formula, but works poorly on random formulas.

It can be used as a post processing step for algorithms which
generate Boolean affine formulas, like static program analysis,
symbolic model checking, hardware and code generation.
Future work:

» Add a pure Boolean simplification step (redundant for
hardware synthesis)

» Try to minimize the size of the initial BDD
» Atom coalescing: x=0Vx>0=x>0.

» Improve the implementation (use an off-the-shelf SAT solver,
avoid multiple internal representations).

15/15

	Motivation
	Definitions
	Ordered Binary Decision Diagrams
	Simplification
	Conclusion

