Optimizing Storage Size for Static Control
Programs in Automatic Parallelizers

Vincent Lefebvre and Paul Feautrier

Laboratoire PRiSM, Université de Versailles-St. Quentin,
45, Avenue des Etats—Unis7 78 035 Versailles cédex, FRANCE
e-mail: {Vincent.Lefebvre,Paul.Feautrier } @prism.uvsq.fr
Workshop: 03 Automatic Parallelization and High-Performance Compilers

Abstract. This article deals with automatic parallelization of static
control programs. During the parallelization process the removal of arti-
ficial dependences is usually realized by translating the original program
into a single assignment form. This total data expansion has a very high
memory cost. We present a technique of partial data expansion which
leaves untouched the performances of the parallelization process, with
the help of algebra techniques given by the polytope model.

1 Introduction

This article deals with the automatic parallelization technique based on the
polytope model. This method can be applied provided that source programs are
static control programs, i.e. are limited to do loops and assignment statements to
array with affine subscripts. The first step is an array data flow analysis in order
to extract exact dependences on memory cells. All artificial dependences, which
are due to reuse of data, are deleted by a total data expansion. The transformed
program has the single assignment property and residual dependences constitute
the data flow. The program is then parallelized by scheduling a method which
automatically satisfies the sequential constraints inherent in the data flow.

The single assignment form translation has a very high memory cost. The aim
of this paper is to present a new technique for partial data expansion. We show
that starting with a schedule function given by the data flow, it is possible to
build a parallel program in which memory is reused.

2 The polyedric method

All techniques and algorithmes described in this section are directly taken from
the PAF compiler developped at the university of Versailles by P. Feautrier and
his team. All Parametric Integer Programming problems, are solved with the
PIP algorithm as described in [5].

2.1 Static Control Programs

Static control programs are built from assignment statements and DO loops.
The only data structures are arrays of arbitrary dimensions. Loop bounds and

array subscripts are affine functions in the loop counters and integral structure
parameters.

An operation may be named (R,x) where R is a statement and x the iteration
vector built from the values of the surrounding loop counters. The iteration
domain D(R) of a statement R, is the set of instances of R and can be described
by the conjunction of all inequalities associated to the surrounding loops. One
will take as running example in this article, the following program:

program matrix-vector
real s, a(n,n), b(n), c(n)
integer 1,j,n

do i=1n
S1 s = 0.
do j=1,n
S2 s = s + a(i,j)*b(j)
end do
S3 c(i) =s
end do
end

In the program (S2,4,5) is an instance of S2 and D(S2) = {¢,j|1 < i <
n A 1 <j < n}is the iteration domain of S2.

2.2 Sequential Execution Order

Let us introduce some notations. The lexicographic order is noted <. The ex-
pression R <1 S indicates that statement R is before statement S in the pro-
gram text. Npg is the number of loops surrounding both R and S. One has
x &y =x[l.p]l=y[l.p] A x[p+ 1] <ylp+1] and <« is given by
[X|—-1
xLy = \/ x<Lpy (1)

p=0

The fact that operation (R, x) is executed before the operation (S, y) is written:
(R,x) < {S,y). It is shown in [5] that:

p=0
where
0<p<Nrs:x<Lpy
<R7 X> ~p <57 y> g {P = Ngs : X[l..NRs] = y[l..NRs] ANR<AS (3)

In our running example, we have: (S1,2) <, (52,3, 1) and (52,2, 3) <y (52,3,1)

2.3 Array Data Flow Analysis

To each operation v we associate two sets: R(v) is the set of memory cells
which are read by v; M(v) is the set of memory cells which are modified by
v. Berstein’s conditions distinguish three kinds of dependences between v and
u, where v < u. If M(v) N R(u) # @, there is a flow dependence, writ-
ten vdu. If R(v) N M(u) # 0, there is an anti-dependence, written vd u. If

M(v) N M(u) # 0, there is an output dependence, written v 6° u. One may
be more precise and associate a dependence to a depth p. For instance, if two
operations v and w are in flow dependence at depth p, written vd, u, it means
that: v <, u A M(v) "R (u) # 0.

The real dependences which define the inherent semantic of a program, are a
subset of flow dependences: the direct flow dependences. All others depen-
dences are due to memory reuse and are artificial. A direct flow dependence is
a data flow from a definition by an operation v to a use by an operation w of a
same memory cell ¢ and provided there 1s no write on ¢ between the executions
of v and w. It means that the value read by w in ¢ is the one produced by
v. Direct flow dependences are computed by data flow analysis [5]. Tt must
determine for each memory cell ¢ read by an operation w, the last operation in
< which gives a value to ¢ before the execution of w. This operation is called
the source function of the read:

source(c,w) = mjx{v |véw} (4)

The computation of the source function can be done by PIP (Parametric Integer
Programming) algorithm (cf [5] for more details). The result of the analysis is
a quasi-affine tree or quast, i.e. a many-level conditionnal in which predicates
are tests for the positiveness of affine forms in the loop counters and structure
parameters. The Leaves are either operation names, or L. 1 indicates that the
array cell under study is not modified.

Sources functions are gathered in the Data Flow Graph (DFG). The DFG of our
running example is:

memory cell referenced|read operation source operation
if j—2>0
s (52,4,7) {then (52,4, — 1)
else (51,%)
a(?, J) (52,4, 5) -
o) (52,7,) -
s (53, 1) (52,i,n)

2.4 Total Data Expansion

The aim is to delete all artificial dependences. Total data expansion gives to the
program the single assignment property: each memory cell allocated to data
will only receive one value produced by one operation during all the execution
of the program. In this way, one associates a memory cell to an operation. One
can find the algorithm of translation of a static control program into a single
assignment form in [5]. The first step is a complete renaming: for each state-
ment R one associates a specific data structure InsR, used to store all values
produced by the operations instances of R. Then one totally expands all data
structures: InsR is indexed by the iteration vector of R.

R: A[f(x)] = ... becomes R : InsR[x] = ...

Finally one reconstitutes the data flow by replacing each rhs reference by
its corresponding source

2.5 Parallelization by Scheduling

One computes a time function # which gives the partial execution order of the
parallel program by taking into account the sequential constraints of the data
flow. For any operation w, if f(u) is its execution time, one must have:

Ve € R(u),8(source(c,u)) < 6(u) (5)

It defines a set of linear constraints. For complexity reasons finding the exact
solution of (5) is not practicable. One limits oneself to affine one-dimensionnal
and multi-dimensionnal [6] schedules. In the case of our running example, one
can have the following schedule function 8:

9(S1,3) =0
{9(52,i,j)=j (6)
9(S3,i) =n+1

An operation front F(t) gathers all operations which have a same execution
time. The operations of a same front can be executed in parallel. Let 7 be the
set of lexicographical enumeration of each possible execution time (¢t € 7 =
F(t) # 0). The parallel program must enumerate each possible date t € . If
one translates in Fortran 90 the parallel program built with (6) as new operations
execution order, one gets the following code:

program matrix-vector
real InsS1(n), InsS2(n,n), InsS3(n), a(n,n), b(n)
do t=0,n+1
if (t .EQ. 0) then
S1 InsS1(1:n:1)=0.
end if
if (t .EQ. 1) then
S2 InsS2(1:n:1,t) = InsS1(1:n:1) + a(l:n:1,t)*b(t)
end if
if (t.GE. 2 AND. t LE. n) then
S2 InsS2(1:n:1,t) = InsS2(1:m:1,t-1) + a(l:n:1,t)*b(t)
end if
if (t .EQ. n+1) then
S3 InsS3(1:n:1) = InsS2(1:n:1,n)
end if
end do
end

Notice that the total data expansion has created one one-dimensionnal array

InsS1 with n elements and a two-dimensionnal array with n? elements. Moreover
it has induced the split of S2 in two different statements in the parallel code.

3 Reduced Data Expansion in Parallelized Programs

Translating the sequential program in single assignment form has a very high
memory cost. It is clear in the case of our running example: from a scalar s and
an array c(n), one gets three arrays with a data space of O(n?).

Our aim is now to define a method of partial data expansion which reduces the
memory expansion induced by parallelization and replaces the single as-
signment form translation during the parallelization process. The constraint
is that the schedule which has been deduced from the DFG should remain valid
in the presence of output and anti dependences. An intuitive presentation of the
method is given below.

3.1 An intuitive Approach

One must precise some conventions and notations. One writes V(v) for the value
produced by an operation v. C(v) is the memory cell in which V(v) is stored.
The set U (v) gathers all operations « such that there is a direct data flow from
v to u. U(v) is the set of all operations which will be executed after v and will
read V(v):

U(v) = {u| source(C(v),u) = v} (7)
U(v) is usually called the utilization set of v.
L(v) is the execution time of the last read of V(v) in the parallel program. L(v)
is the operation which executes this last read:

L(v) =60(L(v)) = max 8(u),u € U(v) (8)

Consider a memory cell C(v) during the execution of a parallel program in single
assignment form. One can distinguish three periods:

1. Period (I): the memory cell stays empty until the execution of v with
which it i1s associated.
In our running example, InsS2[1i, j] stays empty” until the execution of
(52,4, 7) (InsS2[i, i1 = C(52,4,5)) at 0(52,4,5) = j,if L <j<nLl.

2. Period (II): the execution of v stores V(v) in C(v). The operations of U (v)
read V(v) until £(v). During this time, V(v) is useful.
One has U(S52,4,j) = {(S2,4,j+ 1)}. V(52,4,j) is read by (S2,i,5 + 1) at
0(52,4,j + 1) = j + 1. This time is the last read of V(52,4,5): £(52,4,7) =
J+1

3. Period (III): the memory cell is not read anymore after £(v), nevertheless
V(v) is still in C(v) until the end of the execution of the parallel program.
V(v) becomes useless.
V(52,4, j) becomes useless after 6(52,4, j+1) = j+1 and stays in InsS2[1i, j]
until the end of the program at #(S3,¢) = n+1

It is clear that during the period (T) and (IIT), C(v) can store others values. If one
stores others values in C(v), output dependences appear in the parallel program.
The problem is to define an automatic method for partial data expansion which
ensures that the parallel program obtained is valid.

3.2 Previous Techniques to Automatically Reduce Storage Size

Most of papers from the automatic parallelization community deal with array
privatization. Privatization is a technique that allows each thread on a processor
to allocate a distinct instance of a variable. It may require less space than total
expansion because it creates one copy per processor and the number of processors
cooperating in the execution of the parallel loop is less than the number of
iterations ([9],[7]). Lam [1] proposes to optimize array privatization with the
help of the Data Flow Graph. Another solution has been proposed by the systolic
community ([3],[10]). Programs in this case are directly given in single assignment
form. They try to create output dependences which don’t invalidate the data flow
by estimating the lifetime of each variable. It is interesting to notice that these
techniques are similar to data-localization methods ([4],[11]).

3.3 Utility Span of a Value

Our method of partial data expansion is based on the notion of utility span
of a value. The main advantage over the notion of variable lifetime is that it
can be applied to programs which are not necessarily in single assignment form.
The atomic entity in our study is not the memory cell C(v) like in most previous
methods, but the value V(v).

The utility span of a value is a subsegment of [0,L] where L is the latency
i.e. the execution time of the last front executed in the parallel program. It is
clear that it corresponds to the period (IT): V(v) must reside in memory during

t € [0(v), L(v)].

Definition 1 The utility span of V(v) is the span between the time of production
of V(v) and the time of its last read in the parallel program, where V(v) must
reside 1 memory.

t € [8(v), L(v)] = V(v) € C(v) (9)

One can estimate the utility span of V(52,¢,5) in our running example. If
1 <i<nAl<j<ndll, then V(52,4,j) must reside in C(v) for t €
[0(52,4,4),0(52,4,j+ 1) =[4,7 +1].

Before and after this utility span, C(v) can store others values without changing
the data flow from v to operations in U (v): one can reintroduce output depen-
dences between v and some others operations. The next subsection show which
are the conditions that an output dependence must verify to be tolerable in the

parallel program. Such output dependences are called neutral dependences.

3.4 Neutral Dependences
Consider two operations v and w. The rule (9) imposes that:

1. V(v) € C(v) for t € [6(v), L(v)
2. V(w) € C(w) for t € [0(w), L(w)]

In the case of a program in single assignment form, one has systematically C(v) #
C(w) because there is no output dependence. Optimizing the storage, means that
one introduces memory reuse in the parallel program, i.e. we want to have some
operations v and w such as C(v) = C(w). It is clear that is possible iff the basic
rule (9) is still verified for v and w in spite of this output dependence. Hence
an output dependence is valid in the parallel program if the subsegments which
are the utily spans of v and w are separate. A such output dependence is called
neutral output dependence.

Definition 2 An output dependence is neutral for a schedule function 6 iff it
doesn’t change the data flow in the parallel program built with the help of 0.

One can precisely gives the characteristics of a neutral output dependence
v d° w in the parallel program:

— v must be executed before w: 0(v) < 6(w).

— there is an access conflict: C(v) = C(w)
— the utility spans are separate: £(v) < 0(w)

By extension an output dependence between v and w can be considered as neu-
tral if w is L(v), i.e. the operation which executes the last read of V(v). Here
the utility spans of V(v) and V(w) are not separate because £(v) = #(w). Nev-
ertheless these two operations can share the same memory cell because w must
read V(v) before computing V(w). It means that the write of V(w) occurs after
the read of V(v) by w.

An output dependence between (52,4, j) and (52,4, j + 2) would be neutral be-
cause (52,7, j + 2) is executed after the utility span of V(52,1,) in the parallel
program.

Notice that if two operations v and w belong to the same operations front,
an output dependence v3° w would be non neutral in the parallel program.
Hence one must use data expansion to ensure that they are stored in two dif-
ferent memory cells. In fact, the memory requirement of a parallel program is
strongly linked to the parallelism degree (size of operations fronts) given by the
schedule function. As we have seen, the utility span of V(52,4,j) for j < n is
between t = j and t = j + 1 in our running example. An output dependence
between (52,4, j) and (S2,i+ 1,j) would not be neutral because the two oper-
ations belong to the same front F(t) = j.

To decide if an output dependence is neutral in a parallel program, one must
have a precise estimation of a utility span of each value V(v). Then this estima-
tion can help us to reconstruct the data space of the program by adjusting data
size to utility spans. The final purpose is to build a program with direct flow
dependences and output dependences that will be neutral. Qur first approach
has consisted to maintain neutral output dependences from the original program
to its parallel version [8]. But this method is directly dependent from the original
data space and can’t be used to reduce data size of programs provided in single
assignment form. We have decided to improve our technique to become inde-
pendent from the original data: with the new method presented in this article,
the output dependences existing in the program after partial expansion are not
necessarily present in the original version.

3.5 Determinating Utility Span

Consider an operation (R, x). One wants to determine the subsegment of [0, L]
which corresponds to the utility span of this operation: [#(R,x), L(R, x)]. The
lower bound of this subsegment is directly given by . The problem is to com-
pute the upper bound £(R, x). We recall that it is the last execution time in the
parallel program of an operation of the utilization set U (R, x).

Determining this time uses techniques from data flow analysis. The main differ-
ence is that the lexicographic maximum computation is not on the sequential
execution order <, but on the execution order given by the schedule function 6.
Consider two statements R and S:

The operation Lg (R, x) is the last read of V(R, x) in the parallel program among
the operations instances of S which belong to ¢(R, x). The set of candidates is
<S, BRS (X)> with

Brs(x) = {y|x € D(R)A
y € D(S)A (10)
source(alh(y)], (S, y)) = (R, x)}

This set is built by scanning the Data Flow Graph. It is clear that the last
operation which reads V(R,x) between instances of S is the last one executed
according to 6:

Ls(R,x) = (S, max Brs(x)) (11)
8

The set Brg(x) is a disjunction of Z-polyhedra. All statements which may read
the data @ must be taken into account. The real last read is their maximum
according to 6:

L(R,x) = max Ls(R,x) (12)
g

Like the source function, L(R,x) is a quast. To determine L£(R,x) one just
applies the function # to each leaf of L(R,x) except for leaves which are the
symbol L which are left untouched. The different utility spans are gathered in
the Utility Span Graph (USG) which gives to each operations v the utility span
of V(v) and the operation executing the last read of V(v). The symbol L indi-
cates that V(v) is either useless or an output value. For our running example
one obtains:

Operation v L(v) L(v) Utility span of V(v) = [8(v), L(v)]
(51, 1) (52,1,1) 1 [0, 1]
Tj<n—1 Tj<n_1 Tj<n_1
(52,4,7) { then {S2,4,j + 1) { then j + 1 { then [j,j 4 1]
else (53,1) elsen + 1 else [j,n + 1]
(53, 1) — — [n+1,-]

3.6 Partial Data Expansion

The first step is a partial array and scalar expansion process that decides
the shape and the index function of each statement left hand side. The sec-
ond step consists in a partial renaming process and decides which are the
statements that can share the same data structure in their left hand side.

Partial Array Expansion The aims of partial array expansion for each state-
ment R are the following:

— We want to build a structure 1hsR which is specifically associated to the
statement R. It will give the shape (number of dimensions and size of each
dimension) and the index function which constitute the data in the left hand
side of R in the restructured program.

— The specifications used to build 1hsR is that if 1hsR provides memory reuse,
i.e. output dependences between some operations instances of R, these out-
put dependences have to be neutral in the parallel program.

— The elaboration of 1hsR must be independent from the original data struc-
ture in the lhs of R.

The problem is now to build 1hsR. One recalls that a neutral output dependence
can’t kill a value V(R,x) during its utility span. To respect this rule for any
instance of R, one must take into account the maximum duration that the utility
span of V(R,x) can have in the parallel program. For an operation (R, x) this
duration is obtained by subtracting the lower bound of its utility span from the
upper bound. One writes d(R, x) this parameter:

d(R,x) = L(R,x) — 0(R, %) (13)

One considers that L L#(R,x) = L. Each leaf of d(R, x) is a multi-dimensionnal
linear expression in term of loop counters and structure parameters. The max-
imum duration D(R) that the utility span of instances of R can have, is the
maximum value of d(R,x) on the iteration domain of R:

Vx € D(R),d(R,x)<D(R) (14)

D(R) is a multidimensionnal linear expression in term of structure parameters or

the symbol L. Notice that one considers that if d(R,x) # L, then L < d(R,x).
For our running example, one finds:

Statement R|Utility span duration of an instance of R|Maximum utility span duration on R
S1 d(51,i) =1 D(S1)=1
ifj<n-1
52 d(52,4,5) = {thenl D(52)=1
else 1
53 d(53,1) = — D(S3) = —

(9) implies that V(R, x) must be in C(R, x) between #(R,x) and L(R,x) =
O(R,x) 4+ d(R,x). If one wants to protect each instance of R during its utility
span, one must build 1hsR in such a way that (9) is verified for the greatest
utility span that an instance of R can have. Hence one has chosen to impose

that no value V(R,x) can be killed between (R, x) and #(R,x) + D(R):
V(R,x) € 1shRfor t in [§(R, x),0(R,x)+D(R)] where (R, x)+d(R,x)<8(R,x)+D(R)
The algorithm that builds the data structure 1hsR can be summarized like this:

— One starts with a scalar 1hsR.

— The elaboration of 1hsR is iterative, the number of iterations is equal to Ngg
(number of loops surrounding R). Each iteration is called partial expansion
of R at depth p where p is the depth of the loop considered (p € [0, Npr L
1]).

— A partial expansion of R according to (p + 1) consists in

1. Computing the expansion degree of R at depth p: E%,. It gives the
number of elements of a new dimension that one adds to 1hsR.
2. Indexing this new dimension of 1hsR:

thR[F/(X)] becomes lshR[F/(X)7 ip+1 mod E%]

where F/(x) is the index function built by previous iterations on p; ép41
is the counter of the loop (p+ 1) (from the outer one surrounding R);
”mod” is the modulo operator and E%, is the expansion degree computed
in the previous step.

— At the end of the process, 1hsR only provides neutral output dependences
on R,Vp € Ngg.

The problem is now to compute E%,. The partial expansion of R at depth
p avoids non neutral output dependences between two operations (R,x) and
(R,x'y if x <, x'. For an operation (R,x), we build the set of candidates
gathering all the operations (R,x’) which can’t share the same memory cell

than (R, x):

— the operations exist: x € D(R) and x’ € D(R)
— the sequential execution order is: (R, x) <, (R,x’)
— the utility spans are not separate:
[0(R, %), 6(R, %) + D(R)] 1 [0(R,x), 6(R, x') + D(R)] £ 0
Let be C%p(x) the set of candidates, it can be decomposed in disjunctions of
Z-polyhedra. Let eg’p be its lexicographic maximum:

e5? = max Cf o(x)
P

One can’t have output dependences between operations (R, x) and (R, x") with:
(R,x) <p (R,X') Zp (R, xe) = ei”
From this follows the inequalities on the iteration vectors:
xX[p+1] <x'[p+1] <xc[p+1]

If one expands 1hsR at depth p with E{R,X) =x[p+ 1] Lx[p+ 1]+ 1, we are
sure that no non neutral output dependence at depth p can appear concerning

(R, x). But it must be verified for each instance of R, hence the expension degree

E%, is the maximum value that E{R x) can have for x € D(R):

P P
bBp= X?S(XR) Erx) (15)

For our running example, one obtains the following results:

[Statements[Expansion degrees[Final data structure] Final Ihs |

S1 EY =n 1hsS1[n] 1hsS1[i] = ...
0
S2 E§2 =n
Ei, =0 1hsS2[n] 1hsS2[i] = ...
S3 B, =n lhsS3[n] lhsS3[i] = ...

There can’t be output dependences on S1 and S2 at depth 0, hence 1hsS1 is
fully expanded and 1hsS2 becomes a one-dimensionnal array with n elements.
But all output dependences on 52 at depth 1 will be neutral in the parallel
program, hence there 1s no expansion at depth 1 for S2. Notice that for the last
statement one leaves untouched the shape of the array in the lhs of 53 even if

its values are never read. It 1s due to the fact that it stores the final results of
the program.

Partial Renaming The partial renaming process must decide if two different
statements can share the same data structure. Consider two statements R and 7.
Partial expansion builds two structures 1hsR and 1hsT which can have different
shapes. If at the end of the renaming process R and T are authorized to share
the same array, this one would have to be the rectangular hull of 1hsR and
1hsT: 1hsR-T. It is clear that these two statements can share the same data iff
this sharing does not generate non neutral dependence between R and T with
1hsR-T in left hand side of the two statements. Let Fr_7 be the index function
of 1hsR-T. One must verify for each operation (R, x) and (7T, z) that would be
in output dependence (i.e. Fr_7(x) = Fr_r(z)) that:

1. V(R,x) can’t be killed by (T, z) before the end of its utility span:
(R, x)<b(T,z)<9(R,x) + D(R)

2. V(T,z) can’t be killed before by (R, x) before the end of its utility span:
8(T,z)<8(R, x)g8(T,z)+ D(T)

As in the case of partial expanding, one can decompose candidates sets in dis-
junctions of Z-polyhedra. All these Z-polyhedra must be empty for this trans-
formation to be legal. If there are no integral solutions, R and 7" can share the
same data structure else they can’t.

Finding the minimal number of renaming is a NP-complete problem (see [2]).
Our method consists in building a graph similar to an interference graph as used
in code genaration process of a classical compiler to optimize registers allocation.
In this graph, each vertex represents a statement of the program. There is an
edge between two vertices R and T iff it has been shown that they can’t share
the same data structure in their left hand side: there is at least one non neutral
output dependence R4, 7. Then one applies on this graph a greedy coloring
algorithm. Finally it is clear that vertices that have the same colour can have
the same data structure in their lhs. In our running example, one finds that 51
and S2 have the same colour in the interference graph. It means that S1 and S2
can share the same data structure. 3 must have a specific data structure. One
just has to reconstruct the data flow. Then the program can be parallelized. Its
translation in Fortran 90 after partial expansion is:

program matrix-vector
real s(n), a(n,n), b(n), c(n)
integer 1,j,n

do t=0,n+1
if (t .EQ. 0) then
S1 s(lm:1) = 0.
end if
if (t .GE. 1 .AND. t .LE. n)
S2 s(1m:1) = s(1:n:1) + a(l:mn:1,t)*b(t)
end if
if (1 EQ. n+1)
S3 c(1lm:1) = s(ln:1)
end if
end do
end

4 Conclusion

Our aim has been reached, our method can effectively reduce the memory cost
in the data expansion process of static control programs. In our running example

the expansion is limited to an expansion of the scalar s in an one-dimensionnal
array with n elements. Notice that if one builds a schedule function equivalent
to the sequential execution order, one finds as final structure the scalar s and
the array c. It means that if the source program is provided in single assignment
form for instance, then our method reduces the two arrays in the lhs of S1 and
S2 to a single scalar. We have then obtained an important result: our method can
reduce the original data size of the program if the memory requirement necessary
for the schedule function is less than the original data size. Our method can be
used now to reduce data space of program directly provided in single assignment
form.

References

1. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data-flow analysis and
its use in array privatization. In Principles of Programming Languages, 1993.

2. P.Y Calland, A. Darte, Y. Robert, F. Vivien. On the removal of anti and out-
put dependences. Technical report RR96-04, laboratoire LIP - école normale
supérieure de Lyon - Feb 1996.

3. 7. Chamski. Environnement logiciel de programmation d’un accélérateur de cal-
cul paralléle. These de 'université de Rennes | - chapitre IV - 1993, numéro
d’ordre 957.

4. C. Eisenbeis, W. Jalby, D. Windheiser, and F. Bodin. A strategy for array man-
agement in local memory. In Proc. of the 4th Worlshop on Languages and Com-
pilers for Parallel Computing, Aug. 1991.

5. P. Feautrier. Dataflow Analysis of Array and Scalar References. Int. J. of Parallel
Programming, 20(1):23-53, February 1991.

6. P. Feautrier. Some efficient solutions to the affine scheduling problem part IT :
multidimensional time. Int J. of Parallel Programming, 21(6):389-420, December
92.

7. 7. Li, G. and G. Lee. Symbolic array dataflow analysis for array privatization
and program parallelization. In Supercomputing 95, 1995.

8. V. Lefebvre and P. Feautrier. Storage Management in Parallel Programs. In
Proc. of the Fith Euromicro Workshop on Parallel and Distributed Processing
Conf, Pages 181-188. London. Jan 1997.

9. P. Tu and D. Padua. Array privatization for shared and distributed memory
machines. In Proc. Third Workshop on Languages and Compilers for Distributed
Memory Machines, Boulder, Colorado 1992.

10. S. Rajopadhye and D. Wilde. Memory Reuse Analysis in the Polyhedral Model.
In Bougé, Fraignaud, Mignotte and Robert, editors, Euro-Par’96 Parallel Pro-
cessing, Vol I, pages 389-397. Springer-Verlag, LNCS 1123, Aug 1996.

11. M. Wolf and M. Lam. A data locality optimizing algorithm. In Proc. ACM SIG-
PLAN 91 Conf. on Programming Language Design and Implementation, June
1991.

This article was processed using the IATpX macro package with LLNCS style

