Toward a Polynomial Model

Paul Feautrier

LIP - ENS de Lyon

Paul.Feautrier@ens-lyon.fr

September 28, 2015

Université Claude Bernard ((Us))/Lyon 1

1/31

Models

The Basic Algorithms
Motivation

Mathematical Background
Theorems
Implementation

Applications
Dependences
Scheduling

Related Work
Unsolved Problems

Conclusion and Future Work

2/31

Models

Models

To reason about the behaviour of a program, one needs a notation
for:

> its set of operations (instances, not statements)
» the execution order (a.k.a. the Happens Before Relation)
» a mapping from operations to memory cells

These sets are enormous: a 1 Gflops processor (big deal!) running
for 1 second generates 10° operations.

The only possibility is to take advantage of regularities and
represent these sets by symbolic constraints.

3/31

Models

Requirements

>

necessary operations must have efficient implementations:
emptyness test

intersection, union, complement

projection, image

optimization

Beware: do not confuse “efficient implementation” with
decidability.

4/31

Models

The polyhedral Model

Sets are represented by Z-polyhedra: the set of integral solutions
of affine inequalities.
These sets are associated to regular loop nests.

j i<=n-1

for(i=0;i<n;i++)
for(j=0;j<i;j++)

i>=0

5/31

The Basic Algorithms

Motivation

» Farkas lemma: construct an affine formula positive inside a
polyhedron

» Linear programming : to solve the resulting constraints,
emptiness test

» Fourier Motzkin elimination algorithm : emptiness test,
projection

Linear programming has very efficient implementations: glpk,
CPLEX, gurobi, and parametric extensions (PIP).

6/31

The Basic Algorithms

Motivation

Evaluation

Most (large) programs do not fit into the polyhedral model. Some
approaches:

» Extract small polyhedral kernels (SCOPs), optimize
independently and plug the results back into the original
program. A SCOP running time must represents a significant
portion of the total running time (Amdhal law).

» Approximate: construct a polyhedral program with more
operations, more dependences and more memory than the
original. Optimizations valid for the approximations are valid
for the original but the approximation may have no parallelism.

» Invent Other models.

7/31

The Basic Algorithms

Motivation

Other Models

The Tree model
> Represent sets by formal languages
» Regular languages for flat programs
» Context free languages for (recursive) procedures

» Many questions are undecidable by reduction to Post
correspondance problem.

The Polynomial Model

> Represent sets by semi-algebraic sets.
» Problem 1: no projection algorithm in integers
» Problem 2: Hilbert 10th problem.

8/31

The Basic Algorithms

Motivation

Motivation: Polynomials Everywhere, |

k =0;
for(i=0; i<N; i++)
for(j=0; j<N; j++) -
alk++] = 0.;

for (i=0; i<N; i++)
for(j=0; j<N; j++)
a[N*xi+j] =0.;

Are the loops parallel? Are there loop-carried dependences?

Can be solved by delinearization, or by the SMT solver Z3, or by
ISL using Bernstein polynomials. Other approaches?

9/31

The Basic Algorithms

Motivation

Polynomials Everywhere: Scheduling

Find a schedule for:

s = 0.;
for(i=1; i<N; i++)
for(j=0; j<i; j++)
s += alil [j];

Since the program runs in time O(N?2) whatever the number of
processors, it has no affine schedule. It has a two-dimensional
schedule, which is equivalent to a quadratic schedule.

Can one find the quadratic schedule directly?

10/31

The Basic Algorithms

Motivation

Polynomials Everywhere: Transitive Closure

What is the exact transive closure of:

X =x+y,y =y i"=i+1)

Answer:

(X' =iy =x—iyy =y, >i).

a polynomial relation.

11/31

Mathematical Background Theorems

Implementation

The Basic Problem

Given: a set K and a function f, is f positive in K:
Vx € K: f(x) >07?

Extension: f is a template depending on a vector of parameters .
Find p such that:
Vx € K: f,(x) > 0.

Farkas lemma is the case where K is a polyhedron
K = {x | Ax+ b > 0} and f is affine. The solution is:

f(x) = o+ A(Ax+ b) , A >0

12/31

Mathematical Background Theorems

Implementation

Notations, |

A semi-algebraic set (sas):

K:{X|p1(X)ZO’7pn(X)20}

where x is a set of unknowns xi, ..., X, and the p;s are polynomials in x.
A polyhedron is an sas such that all the p;s are of first degree. One
usually include the trivial 1 > 0 among the p;s.

Schweighofer products: for each € € IN":
Se(x) = P2 (6) () = [[o ().
i=1

The quantity N = Y7, & is the order of the product, not to be confused
with its degree.

13/31

Mathematical Background Theorems

Implementation

Notation, Il

Given a finite subset Z C IN” the associated Schweighofer sum is:

Sz(X) = Z)\@.S@'(X), Az > 0.
ez

Clearly, all Schweighofer sums are positive in K.

14/31

Mathematical Background Theorems

Implementation

Theorems

Theorem (Handelman, 1988)

If K is a compact polyhedron, then a polynomial p is strictly
positive in K if and only if it can be represented as a Schweighofer
sum for some finite Z € IN".

Theorem (Schweighofer, 2002)

If K is the intersection of a compact polyhedron and a
semi-algebraic set, then a polynomial p is strictly positive in K if it
can be represented as a Schweighofer sum for some finite Z € IN".

15/31

Mathematical Background Theorems

Implementation

Comparisons

Notice the similarity between the conclusion of the two theorems,
and the difference with Farkas lemma: since there is no useful
bound on the size of Z, it is usually impossible to obtain a
negative answer.

Another difference: those two theorems deals with strictly positive
inequalities, while Farkas deals with non-strict inequalities.

16/31

Mathematical Background
Theorems

Implementation

Algorithm H

The aim of this algorithm is to collect a set C of constraints on the
unknowns A and p.

» C = 0.

» Given: a set of Schweighofer products {Sz(x) | € € Z C IN"}
and a polynomial (template) p,(x),

> Result: A system of constraints on the A\ and .

» Completely expand the master equation:

E=pu(x) = > Xe-Sa(x

=v4

» For each monomial xlf1 .. .x,g”, collect its coefficient ¢ and add
c=0toC. cis an affine form in the A and .

17/31

Mathematical Background
Theorems

Implementation

Comments

» Algorithm H works equally well in the Handelman or
Schweighofer case, provided one use a uniform representation
of polynomials, whatever their degree.

» The main difficulty is the selection of the products. One may
use an oracle(!), or all products of a given degree, or all
products of a given order.

> The resulting system of constraints may be used in many
ways: it may be solved by itself, or may be combined with
other constraints before solving.

» If a solution for the A and p is found, this solution can be
certified, independently of Handleman or Schweighofer, by
straightforward algebraic evaluation.

18/31

Dependences

Applications Scheduling

Dependence Tests

A dependence set D is defined by a system of constraints:
» The iteration domains of its source and destination,
» A set of subscript equations,
» An order predicate.

Some or all of these constraints may involve polynomials. The
problem is to decide whether this set is empty or not.

A possible solution is to prove, using algorithm H, that -1 is a
positive combination of Schweighofer products of D!

Since -1 can never be positive, it follows that the constraints defining D
cannot all be satisfied at the same time, i.e. that D is empty. Compare
to the familiar Fourier-Motzkin algorithm.

19/31

Dependences

Applications Scheduling

An Example

The dependence set:

for(i=0; i<n; i++)

. . . 0<i<N-1 , 0<i<N-1
for(j=0; j<n; j++)
a[N*i+j] = 0.; 0<j<N-1 , 0<j/<N-1
Ni+j = Ni'+]j
i+1 <

Algorithm H finds the following solution:

-1 = (IN—i=1)({"—i=-1)+i(i'=i—1)+ (" —i-1)
+ A+ N—j—1)+(Ni+j— Ni'—]j)

Hence, the dependence set is empty.

20/31

Dependences

Applications Scheduling

Scheduling

Notations
» R,S,... a set of instructions
» Dg the iteration domain of R, usually a polyhedron,
sometimes an sas
» Agrs C Dr x Ds, a dependence set from R to S.
Problem For each statement R find a function 6 : Dr — IN such

that:
XGDR:>(9R(X)20

< ; > € Aps :>9R(X)+1 Ses(y)

21/31

Dependences

Applications Scheduling

Method

» For each statement R, build a template schedule 0 by
applying the first part of algorithm H to Dg

» For each dependence, build a master equation for the delay
0s(y) — Or(x) — 1 by applying algorithm H to Ags

» Collect the constraints and solve for the A and us using a
linear programming tool.

22/31

Applications Dependences

Scheduling

DEMONSTRATION

23/31

Dependences

Applications Scheduling

Result

table((__node,S) = [[i,j1,{(N >= i+1),(i >= j+1),(i >= 1),
(j >= 0)}],(__nodes) = [S],(__transition,T0) = [S,S,table(i = i’,j = j’),
{(i’> >= i+1)}], (__transition,T1) = [S,S,table(i = i’,j = j’),{G = 1i’),
(j? >= j+1)}1,(__transitions) = [TO,T1])
(N * N)*mu_6+N+i*mu_11+N*i*mu_8+N*j*mu_15+N*mu_5+(i * i)*mu_12+

(j * j)*mu_16-j*mu_15-j*mu_16-j*mu_17-j*mu_7-mu_10-mu_5-mu_7

dependence polyhedron [(N >= i+1),(N >= i’+1),(i’ >= i+1),(i >= j+1),
(1 >= 1),(@17 >= §7+1),(17 >= 1),(j >= 0),(j’ >= 0]

dependence polyhedron [(N >= i+1),(N >= i’+1),(i = i’),(i >= j+1),(1 >= 1),
(17 >= §7+1), (17 >= 1),(§’ >= j+1),(j >= 0),(j’ >= 0)]

table(mu = O,mu_10 = 1/2,mu_11 = O,mu_12 = O,mu_13 = 1/2,mu_14 = 1,mu_15 = 0,
mu_16 = O,mu_17 = O,mu_18 = O,mu_5 = O,mu_6 = O,mu_7 = O,mu_8 = O,mu_9 = 0
)

theta[S] = [1/2%(i * 1)+j-1/2%i] == (j) + 1/2 . (i-1)*(@i-1) + 1/2 . (i-1)

delay [TO] = 1/2%i+1/2%(i’> * i’)+j’-1/2*%(i * i)-1/2%i’-j-1

=== (j’) + 1/2 . (P’-i-1)*@E’-1) + 1/2 . (@’-i-1)*(@GE-1) + (i-j-1) + (i’-i-1)

24 /31

Related Work

Related Work

» Early work by B. Pugh et. al. using uninterpreted functions,
and by van Engelen et. al. using interval analysis

» Polynomial minimization using a Bernstein expansion,
implemented in ISL, can be applied to dependence testing

> Armin GroBlinger: using Cylindrical Algebraic Decomposition.

» Work in progress by A. Maréchal and M. Périn (Verimag) on
linearization (i.e. getting rid of polynomials) using Handelman
theorem and an oracle to control complexity.

25/31

Unsolved Problems

Code Generation

Given a polynomial schedule 9(7) and an iteration domain: D,
generate the corresponding code. Equivalent to the construction of
fronts:

F(t)={ieD|6(i) =t}

Needs a projection algorithm, for instance CAD. Can one do
better?

26 /31

Unsolved Problems

Projection

Given a semi algebraic set, construct a Schweighofer sum, expand,
and equate to zero the coefficients of all monomials containing the
variable(s) to be projected out. Solve in positive unknowns.
Problems

> Needs a polytope enclosing box.

» The result (if any) is an over approximation of the projection.
Except in the affine case, it is impossible to prove equality.
An example Eliminate y from the definition of the unit disk
1 —x? —y? > 0. The result shoud be 1 — x> > 0, but it cannot be
obtained as a Schweighofer sum, unless one add y? > 0 to the
definition of the disk.

27/31

Unsolved Problems

Other uses for schedules

Proving the absence of deadlock.
But:

» Sequential programs do not have deadlocks. Applies only to

parallel programs (e.g. OpenStream) or process networks (e.g.
KPN) with infinite loops.

» Deadlocks are caused by cycles in the channel structure.

The construction of a realistic example is difficult.

28/31

Conclusion and Future Work

Conclusion and Future Work, |

» The method works well and give interesting results in
acceptable time, at least for small problems.

» Other applications: transitive closure, program termination,
(perhaps) invariant construction, ressource allocation, ...

» Complexity, very high, exponential in the order of
Schweighofer products. However, well within the capability of
glpk or CPLEX.

» Can one use an oracle to guess which products are useful?

29/31

Conclusion and Future Work

Conclusion and Future Work, II

We are still far from a polynomial model.
Other polynomial tools: CAD, Berntein, combine?
Very preliminary implementation using glpk and Z3.

30/31

Conclusion and Future Work

THE END - QUESTIONS

31/31

	Models
	The Basic Algorithms
	Motivation

	Mathematical Background
	Theorems
	Implementation

	Applications
	Dependences
	Scheduling

	Related Work
	Unsolved Problems
	Conclusion and Future Work

