Stor age Management in Parallel Programs

Vincent Lefebvre
Laboratoire PRiSM
Université de Versailles
45, avenue des Etats-Unis, 78 035 Versailles Cédex, France
Vincent.Lefebvre@prism.uvsg.fr

Paul Feautrier
Laboratoire PRiSM
Université de Versailles
45, avenue des Etats-Unis, 78 035 Versailles Cédex, France
Paul .Feautrier@prism.uvsg.fr

Abstract

e have been interested in this article on the data stuc-
tures generation as part of the polyedric technique designed
in PAF (Parall@iseur Automatique pour Fortran). The re-
moval of dependences whichare not dataflowsinaprogram
is generally realized by a total memory expansion of data
structures. We present a new technique which allowsto re-
duce the memory cost by expanding carefully sel ected parts
of code only. It consistsin limiting the memory expansion
processin accordance with contraintsimposed by the sched-
ule determined for the parallel program.

1 Introduction

The polyedric method, an automatic parallelization tech-
nique, uses explicit schedules. A schedule has to satisfy
congtraints which are given by dataflow analysis. The goal
is to determine the execution date of each operation of the
source program. Operationswhich have the same execution
date are gathered in wavefronts, which can be executed in
paralel. Dependences which don’'t belong to the dataflow
are caled false dependences. A partia removal of fase
dependences, is the price to pay to preserve the correct-
ness of the parallel program. It is realized by data expan-
sion. One generdly builds a single assignment form for the
source program. Tota data expansion has a high memory
cost. For instance, in matrix multiplication, the single as-
signment form has adataspace of O(n*) memory words, in-
stead of O(n?) inthe classical version. This paper presents
a new technique which limits memory expansion in accor-

dance with contraintsimposed by the schedule of the paral-
lel program. Wewill first restate several classical techniques
of program semantic analysis (array dataflow analysis) and
transformati ons (scheduling, existing memory management
techniques). Finally, we will present our optimized storage
techniquefor parallel programs.

2 Semantic Analysis of Static Control Pro-
grams

2.1 Static Control Programs

We focuse on automatic parallelization of static control
programs. For Static control programs, one may describe
the set of operations which are going to be executed in a
given program run. Let be £ the operations set of a pro-
gram. Static control programs are built from assignment
statementsand DOloops. Theonly datastructuresare arrays
of arbitrary dimensions. Loop bounds and array subscripts
are affine functionsin the loop counters and integral struc-
ture parameters. An operation is one execution of a state-
ment. It may be named (R, ¥) where R is a statement and
¥ theiteration vector built from the surrounding loop coun-
ters (from the outside to the inside). The iteration domain
D(R) of astatement R, istheset of instancesof R and canbe
described by the conjunction of all inequalities for the sur-
roundingloops. It givesva uesthat theiteration vector i can
have. We will take as a running exampl e the sequentia pro-
gram of figure (1).

PROGRAM scal ar
INTEGER s,i,j,n
DOi =1,n
{s1} s =0
DOj =1,n
{s2} s =s +1
ENDDO
ENDDO
END

Figure 1. The source program

2.2 Sequential Execution Order

Let usintroducethe following notations.
e The k-th entry of vector # is denoted by #[£].

o Thesubvector builtfrom component % to/ iswritten as:
Zk.1].

e The expresson R < S indicates that statement R is
before statement S’ in the program text.

e Npg isthenumber of loops surroundingboth R and S.

The fact that operation (R, %) is executed before opera-
tion (S,) iswritten: (R, #) < (S,%). Itisshownin [5]
that:

2

f[l..NRs] < y‘[l..NRk

<y
=
2
oy
0
>
=
A
2

@

(R,) < (5,0 = \/ (B.8) <, (5,9) @
where
0<p < Nrs:
(R, 5) <p (5,0) & (7L = gl1-p) A @l + 1] < Tl +1]))

(R, &) <ngps (5, 7) & #[1.Nrs] = J[1. Nrs]A R < S 4)

2.3 Dependences

Two operations (R, ¥) and (.S,) areindependent if their
order of execution can be reversed without changing the
global effect on the program store. If not, the operations
are said to be dependent. The goa of automatic paraleliza
tion isto build a parale program which exactly gives the
same results as the sequential program. R(R, Z) is the set
of memory cellswhich are read by (R, Z) and M(R, &), is
the set of memory cells which are modified by (R, #). Sup-
posing forinstancethat (R, Z) < (S, ¢), onecan distinguish
three kinds of dependences:

o flow dependence (M (R, Z) N R(S,y) # 0, written
(R,)3 (S, 9);

o anti-dependence (R(R, ¥) N M(S,§) # 0, written
(R,)3 (S, 9);

o output dependence (M (R, Z)NM(S, §) # 0, written
(R, Z)6° (S,).

One may be more precise and associate a dependence to a
depth p. For instance, if onewrites (R, &) 6, (S,), it indi-
catesthat M (R, Z) NR(S,4) #0 A (R, Z) <, (S, 7).

2.4 Array Dataflow Analysis

The sole real dependences inherent to the algorithm are
direct flow dependences from a definition to a use of the
same memory cell (data flows). All others dependences
which are called fal sedependences, aredueto memory reuse
and can be deleted by data expansion. Direct flow depen-
dences are detected by dataflow analysis technique. If a
memory cell ¢ isread in an operation (S, i), dataflow anal-
ysis determines the latest writing into ¢, which is given by
the source function [5]:

source(c, (S, 7)) = mjx{(R, Z) € E|(R,Z)8(5, §)} (5)

Theresult of theanalysisisaquasi-affinetreeor quast, i.e. a
many-level conditionnal in which predicates aretestsfor the
positiveness of affine formsin the loop counters and struc-
ture parameters and | eaves are either operation names, or L.
1 indicatesthat the array cell under study is not modified.
For our example, we have:

Ifj>2
source(s,{(52,1,5)) = Then (52,4,5 — 1) (6)
Else (51,3)

3 Program Transformations

3.1 Parallelization by Scheduling

From constraintsgiven by dataflow analysis, one deduces
aschedule which gives alogical execution time to each op-
eration of the source program. It must also respect the con-
straints implied by the source functions. If #(S,) is the
schedule of (S, #), one must have:

Y(S,J) € E,VYc € R(5,¥) : 0(source(e,{S,9))) € 6(5,9) ()

For complexity reasons, finding the exact solution of
(7) is not practicable. One limits onesdf to affine one-
dimensionnal ([6]) or multidimensionnal schedules([7]). In
the case of our example, one must have:

(if (> 2)then 6(52,4,7 — 1) else8(S1,1)) < 6(52,1, §) ®
One may show that #(R,4{) = 0 and 0(S,4,j) = jisthe
best schedule for our example, i.e gives the largest opera-

tionsfronts. From a schedule given by 6, one deduces oper-
ationsfronts:

F(B) = {{R, &) € E|6(R,&) = I} ©

There is no dataflow between operations of a given front.
Hence, all such operations can be executed in parallel. The
parallel program must enumerate all lexicographica execu-
tionsdates :

{f| fTer
executein parallel operationsin F (%) (10)
synchronize

¥

The set 7 isthelexicographical enumeration of each possi-
ble execution date.

3.2 Changing Data Structures

However, using any execution order which satisfies (7)
for constructing a parallel program will give an incorrect
result, because output dependences, anti-dependences and
spuriousflow dependences (flow dependences which are not
dataflows) have not been taken into account. Onecan get rid
of these fal se dependences by data expansion. Several tech-
niques have been proposed in the litterature.

3.21 Total Memory Expansion

The easiest solution consists in trandating the source pro-
gram in single assignment form. This transformation is
independent from scheduling but needs results given by
dataflow analysis. Generally, total memory expansionisre-
alized before the parallelization.

There is a strong relation between output dependences
and anti-dependences. Consider two operations (S, 7),
(T, %), and c acell memory, suichase € R(S,y) and ¢ €
M(T, 7). Inacorrect program, each vari ablemust be set be-
forebeing read. So, thereis necessarily an operation (R, ¥)
which sets ¢ and which is executed before (S, i): (R, @) <
(S, 4) < (T, 7). Thereisalso aoutput dependence between
(R, %) and (T, 7). From this, one may deduce that if dll
output dependences are del eted, then anti-dependences and
spurious flow dependences also disappear. Tota memory
expansion consists in assigning one distinct memory cell to
each operation. Thefollowingalgorithm presentedin[3] es-
tablishes the single assignment form of a static control pro-
gram:

1. Renaming: for each statement R, with & asiteration
vector, associate a specific data structure | nsR:

—

R: alf(&)] = .. = InsRf(&)] = ...

2. Expanding: for each instruction R, replace the sub-

—

script function £(£) in | nsRby # in left hand-sides:

—

R:InsRf(¥)]=..— InsR&] = ..

3. Reconstructing the dataflow: replace al read refer-
ence by its new representation as given by the source

function. The value produced by (R, %) is stored
in I nsRZ]. So if one finds the following source
function for a memory cell ¢ in an operation (S, #):
source(c, (S, ¥)) = (S, Z), then ¢ must be replaced by
| nsR[#] in the single assignment program.

Renaming deletes al output dependences which appear be-
tween two operationsinstances of two different instructions.
Expanding deletes output dependences which appear be-
tween two operationsinstances of the same instruction. The
single assignment form version of our running example is
givenin fig. (2). Itisclear that the memory cost is high.
Startingfrom ascalar s, onegetsan array of n eementsand
another onewith n? elements.

A first intuitiveapproach can easily show that deleting all
fal se dependencesisnot necessary. During an execution of a
parallel program in single assignment form, a memory cell
| nsR[#] isempty until the execution of (R, ¥) at 6(R,).
Moreover in many cases, avaluestoredinamemory cell can
become usdless in memory after alimited delay. Consider
InsS2[i,]j] inourrunning example:

e In the parald program scheduled by ¢, this mem-
ory cdl is empty until the execution of (52,1, ;) at
0(52,4,5) = j.

e Thevalueproduced by (S2, 4, j) isread by (52,4, +
af(S2,4,5+1) = j+ 1. After thistime, thevalue
isuseless but still residesin memory.

PROGRAM scal ar

INTEGER i, j, n, InsSil[n], InsS2[n,n]
DOi =1,n
{s1} InsS1[i] =0
DOj =1,n
{s2} InsS2 [i,j] =if (j >=2) then InsS2 [i,]-1]
else InsS1 [i] + 1
ENDDO
ENDDO
END

Figure 2. The scal ar program in single as-
signment form

3.2.2 Previous Techniquesto Reduce Memory Cost

Some methods try to eliminate fal se dependences with are-
duced memory cost. Wolfe in [11] defines the method of
array contraction for vector architectures. After scalar ex-
pansion and loop interchange, he performsarray contraction
because the vector instructions only concern the innermost
loop of each loop nest. Maydan and Lam in [8], Li and Lee
in[9] define amethod which optimizearray privatization af -
ter arenaming phase. Privatization is equivaent to expan-
sion. They don’t delete an output dependence between op-
erationsinstances of asame instruction R, if itis masked by

a dataflow. Darte, Vivien, Calland and Robert in [1] into-
ducetwo graph transformationsto eiminate anti and output
dependences by renaming. They give an unified framework
for such transformation and prove that the problem of de-
termining a minimal process of renaming is NP-compl ete.
Values Lifetime Analysisis a technique which comes from
the "systolic* community. It takes into account single as-
signment form programs and try to generate output and anti-
dependences without changing the dataflow([2],[10]).

4 Minimal Memory Expansion With Respect
to a Schedule

Our method tries to maintain as many fal se dependences
as possible from the original program to the parallel one.
One takes into account the original data structures, the re-
sults given by data dependences and data flow analysis, the
schedule function. One generates a program with new data
structureswhichisstill sequential but can be parallelized ac-
cording to the scheme (10).

4.1 Neutral Dependences

Consider an operation (R, Z) instance of an assignment
statement R. Let ¢/ (R, ¥) bethe set of operations such that
there is a dataflow from (R, ¥) to each operation (S, &) of
U(R, Z):

U(R,Z) = {(5,7) € E|source(c,{S,¥)) = (R, &)} (1)

Let be V(R,#%) the value produced by (R,Z),
V(R,¥) must absolutly reside in memory for
t € [H(R,f),u%gg)e(s,g)]. Before and after these

datesthisvaueis uselessin memory. Suppose that one has
an output dependence at depth p between (R, %) and an
operation (7', 7) (written R, T") inthe sequential program.
Ifo(T,2) > S (S, y), itis clear that this output de-

pendence can be maintened in the parallel program, because
V(R, %) is uselessin memory at #(7, 7). To improve this
idea, we will develop the concept of neutral dependences.

Definition 1. An output dependence is neutral for a sched-
ule @, which satifies (7), iff keeping this dependence doesn’t
change the sequential dataflow in the parallel program ob-
tained from @ by scheme (10).

An output dependence can be maintained in a parald
programiff itisneutral. Inthiscase, theresultsof the paral-
lel program are still vaid. The following proposition gives
specific conditionsthat an output dependence must verify to
be neutral.

Proposition 1. A output dependence R4, 7' (Rand T are
two statements) is neutral for @ iff:

M(R, &) = M(T,2) A (R, &) <, (T,7) = (R, &) < 8(T, 7)
(12

and

9(T,2) » max (8(5,9)) (13)
U(R, &)

(12) ensures that the execution order between (R, %)
and (T, 7} is the same in the sequential and parallel pro-
grams. (13) verifies that dataflow between (R, Z) and op-
erationsin ¢/ (R, £) won't be affected by (T', 7). This con-
dition ensures that V(R, %) is present in memory when ¢ €
[0(R, %), MIE%)(H(S, ¥))], even if the output dependenceis

not removed in the parallel program.

We can extend this definition to anti-dependences and
flow dependences which are not dataflows. For these kinds
of dependences it isjust necessary to verify that execution
order of operationsin dependance isthe samein the sequen-
tial and parallel programs.

Definition 2. An anti-dependence between two instructions
S and 7" is neutral for a schedule function ¢ which satisfies
(7) iff the execution order of these operationsisthe samein
the sequential and parallel programs.

The definition is the same for a spurious flow depen-
dence.

Proposition 2. A anti-dependence Sd, 7' is neutral ac-
cording to @ iff:

R(S,9) 0 M(T,2) £ 0 A (5, 7) <p (T, 7) = 0(5,9) 9(T75)(l4)

(14) ensures that if this dependence is not deleted, it will
still be verified in the parallel program.

Proposition 3. A spurious flow dependence R J, 1" is neu-
tral for @ iff:

M(R,ZE)NR(S,§) Z2OA(R, &) <, (5, 7) = 0(R, &) < 4(5, 37)(15)

4.2 Tests of Neutrality

4.2.1 Neutral Output Dependences

Let’'sconsider:

R: alf
T: g

Consider the output dependences between operations in-
stancesof R and 7" a depthp. A dependence R4, T', ischar-
acterized by the following conditions:

o (R,) and (T, Z) mustexist: ¥ € D(R), Z € D(T);

o Accessconflict: f(Z) = §(2);

¢ Sequencing Predicate at depth p: (R, &) <, (T}, Z)

Therefore, thereis a dependence iff, system Q% (7, 2),
QIJJ%T (#2) =1
= (16)

has asolution. To verify (12), one must have a dependence
in the sequentia program, which must still be verified in
the pardld program. Therefore, inthe paralle program, we
must have: 0(R, #) < 6(T, Z). If thisexecution order isnot
respected for only one of the operationsinstancesof R and 7'
linked by this dependence, the condition (12) isnot verified.
Sowesimply consider that (12) isverifiedif for no operation
of R and T in dependence, onehasd(T, z)<0(R, ¥) thatis
tosay if thesystem NL,. (%, 7),

NP_(#,7) = {

) A a7)

has no solution. Q% (&, 2) is a Z-polyhedron. 0(R, Z)
and 4(T,) are vectors of affine functionsin theloop coun-
ters. Hence NL, (7, 72) is a digunction of Z-polyhedra
which must all be empty. So verifying the emptiness of
NET (%, 7) can be easily done by the PIP (Parametric Inte-
ger Programing) tool (see [4] for more explanations). Re-
member that in our example, we have chosen the schedule
function (R, i) = 0 and 6(S,¢,j) = j. Let’'sverify (12)
for program scal ar . For the R ¢ R dependence, one has
if 1 <i < nthen N3;(i) # 0 = thisdependence is not
neutral. For others dependences, one can find that (12) is
verified for R3S, R3S and S 69 .S dependences and not
verified by S 63 R and S 45 .S dependences (hence these de-
pendences are not neutral).

Theorem 1. The condition (13) is verified for a given out-
put dependence iff all anti-dependences generated by this
dependence, are neutral.

Proof: consider the operations of ¢/ (R,). If thereisan
output dependence between (R, #) and an operation (T, 2)
at depth p, thereisa so an anti-dependence between any op-

eration (S, ¢) € U(R, ¥) and (T, 7 at depth p’:
< (R, &) : c=
(5, 9) e = Co.
(T, 2) c =

If every dependence S,/ 1" is neutrd, it ensures that
0(S,y) < 6(T,7) (according to (14)) . Therefore
O(T,7) > 0(5,%),¥(S,9) € U(R,Z), hence d(T,7) >
ul?}%) 0(S, i). So (13) isverified.

4.2.2 Neutral Anti-dependences

Consider:

One must determineif the S 6, 7' dependence is neutral,
that isto say verify (14). To determineif (14) is respected,
one hasto verify that theexecution order between (.S,) and
(T, 7) staysthe same in the parallel program for the opera-
tionsinstances of .S and 7" which are linked by this depen-
dence. Also the dependence S 6, 7" is neutral iff the system

NST (37’ _’)

m m
v R
52
> >

¥) = g(Z) A (18)

P~ g &,
{Qil 4y

has no solution.

When one knows that an anti-dependence is not neu-
tral, one knows that for the associated output dependence
the condition (13) isinvalidated and the dependence is not
neutral. Suppose, one has the following situation: ¢ =
MR, %) = M(T,Z) and (R, %) = source(c,(S gj’})
If the S8, T' dependence is not neutral, then the operation
(T, %) killsthe value produced by (R, #) and storedin ¢ be-
foreit isread by (S, #) in the parallel program. This sit-
uation would have occurred if the output dependence be-
tween (R, #) and (T,) was not deleted. So the output de-
pendence between (R, #) and (T, Z) isnot neutral. Weknow
the depths p and p’ of 5, T and R 6,/ S dependences. We
must determine the depth p” of R4y, 7' dependence. With
the 53, T dependence, we have: (S,7) <, (T,7) &
(yIL..p] = Z[1..p) A(glp+ 1] < Z[p+1]). Withthe R4, S
dependence, we have: (R, %) <, (S,7) & (Z[1..p]] =
yl1..p]) A (Z[p' + 1] < ylp’ + 1]). Wemust consider, three

AEp+1] < Zp+1]) =
]) (Zlp+1] < Zp+ 1) A(&p+

<p (I,2) = p"=p
3. p>pt(Elp]= z[P A @+ 1] < Zp’ +1]) A
@EP+1<Zp +1])=>(RE) <y (T,2)=>p" =P
So, if the Sd, T dependence is not neutral, then the
Rémm(p o) T dependence is not neutral either. In our run-

ning example, consider the S 6, .S dependence, we have:

Ifj>2
source(s,{(52,1,5)) = { Then (52,¢,5 — 1)

Else (51,1)
Thefirst leaf of the source function concerns a instance of
52, so one must determinate if the 52 6, S2 dependence is
neutral. Onefindsthat N2, (i, j) # 0 = so thisdepen-
dence is not neutral, and 5245 S2 dependence is not neu-
tral either. The second leaf of the source function concerns
an instance of 51, hence the dependence 5143 .52 is not
neutral. For others anti-dependences, one finds that depen-
dence 524, S2 is neutra and that 526, S1 is not neutral.
As a conseguence the dependences 52 55 S2 and S145 S1
are not neutral.

Finally, we have for the output dependences in our run-
ning example: S145 51, 5245 .52 5245 S1 and S143 52
whicharenot neutral; 5149 .52 and 5267 S2 whichareneu-
tral.

4.2.3 Neutral Spurious Flow Dependences

Theorem 2. It is usdless to verify if a flow dependence,
which is not a dataflow, is neutral.
Proof : consider the following operations:
<: (R, &): ¢
(1,2y: c= ..
(5, 9): .= ..c..
Suppose that (S,) € U(T, 7). Dependence R 4, S isnot
adataflow, because the value stored in ¢ by (R, &) iskilled
by (T,) before the reading of ¢ by (S,). In the parall€l
program, one has 6(T, Z) < 6(S, i) according to (7). We
must consider two cases:

1. If the output dependence between R and 7" is not neu-
tral, then it must be removed in the paralel program
and the flow dependence has disappeared.

2. If this output dependence is neutral, one has aso
O(R, %) < 6(T,7) = 0(R, %) <« 6(S,7) hence (15)
is verified and it means that the dependence R4, S is
neutral.

4.3 Exploitation of Results

The examination of neutrality of output dependences
will help us to decide if we must add a dimension or new
elements in a specific dimension (minimal expanding) or
if we must proceed or not in renaming a data structure
used by two different instructions (minimal renaming).
We have developped the following algorithm which gives
an optimized storage for data of a parallel static control
program:

1. Minimal expansion for each statement R: if a isthe
data structure in the left hand side of R, one must find
theminimal shapethat « can havein R. Thegoal isto
eliminate al output dependences R 6° R which are not
neutral. 1f an output dependence at depth p between op-
erationsinstances of R isnot neutral, one must expand
a according to Z[p + 1]:

o oneadds onedimensionto a. The size of thisdi-
mension is the number of iterations of the loop
p + 1 which surrounds R;

e This new dimension must be indexed by the
counter of thisloop in left hand side of R.

—

R :alf(®)] = ... = of(D),fp+1]] = ...

In our running example, for S1, the dependence
S14g S1 isnot neutral hence

Sl :(s=..—= sl =..)

The scalar s is now an array of n elements because
there are n iterationsin the loop i. 1n .52, the depen-
dence 5243 S2 is not neutral so it must be deleted,
the dependence 52 47 S2 is neutra, so it can be main-
tained:
S2: (s =... = sl =..)

With these new subscript functions, we are sure that
every output dependences which only concern opera-
tions instances of a single statement R and which are
not neutral, are deleted.

. Correcting the dependence graph: the minimal ex-

pansion can suppress some output dependences which
appear between operations instances of different in-
structions. Consider our previous statements R and 7"
(R # 7T). Suppose that in the next steps ot this d-
gorithm, one doesn’t proceed in renaming the array «
shared by the statements. After minimal expansion,
one gets two data structures which can be different. If
thereis no renaming, the data struture shared by R and
T must be in fact the rectangular hull of the union of
the two data structures defined by minimal expansion
of R and T. Imagine that there is an output depen-
dence R4°T' a depth p in the origina program with
p € Ngp. If, for instance, one had expanded a in R
according to Z[p + 1], it adds the following constraint
in Q% (Z, Z) whichisz[p+1] = Z[p+ 1]. Oneknows
that (R, %) <, (T,7) = &[p+ 1] < Z[p + 1]. Hence,
now Q% (Z, Z) has no solution and the output depen-
dence has disappeared. In our running example, min-
imal expansion deletes the dependences 5245 S1 and
S14§.52.

. Minimal renaming: we must take into account all

residua output dependences between R and T, ¥p €
Npgr. If only one of these dependences is not neutral,
we must rename « in 7', because all these kind of de-
pendences must bedeleted. If al dependences are neu-
tral, the data structure may remain the same in the two
statements. Finding the minimal number of data struc-
turesto rename isaNP-complete problem, asit shown
in[1]. We suggest the following heuristics: one builds
agraph for each data structure a which appears at least
once in a left hand side of a statement in the original
program. Each vertex represents a statement where a
istheleft hand side. There isan edge from avertex R
to another one 7' iff there isa residual R4, 1" depen-
dence which isnot neutra (Vp € Ngrr). Then one can
apply on this graph a greedy coloring algorithm. Fi-
nally it is clear that vertices that have the same colour

can share the same data structure. In our example, the
residual output dependence between R and Sis R4f S
whichisneutral. Soitisunnecessary torename s in S.
The final shape of each data structure shared by many
statements must be the rectangular hull of the union of
all shapes built form minimal expansion. The program
is reconstructed with the new data structures and their
subscriptsfunctions.

Finally, one gets the program of figure (3). The removal
of the conditional expressionisduetothefact, that s has not
been renamed.

PROGRAM scal ar
INTEGER i, j, n, s[n]
DOi =1
{s1} s[i]
DO j
{s2} s[i]
ENDDO
ENDDO
END

Hros

n
s[i] +1

Figure 3. The scal ar program in single as-
signment form

The array (4) gives an overview on the shape of differ-
ent data structures generated for the scalar program by the
different techniques referenced in this article; in the source
program (1), in the single assignment program (2), in the
program generated by the Chamsky’s method (3), by Dror
and Lam’s method (4) and by our technique (5).

©) @ (©) Q) ©)
S InsS1[n] InsSi[n] InsSi[n] | s[n]
InsS2[n,n] | InsS2[n, 2] | InsS2[n]

Figure 4. Data structures generated by differ-
ent methods

The program has now the appropriate data structures and
can be pardlelized with the modd given by (10).

5 Conclusion

Notice that if one builds a schedule function equivalent
to the sequential execution order, one finds that all depen-
dences are neutral, so thereis no expanding and no renam-
ing and we keep the scalar s. We have then obtained a
very satisfying result: inherently sequential programs are
fixed points for our parallelization method. Our method
effectively reduces the memory cost in the data expansion
process for static control programs. Our performances are
strongly linked to the parallelism degree (size of operations

fronts) given by the schedule. Hence one can go further and
improves our results by adjusting the scheduling to the ar-
chitecture. Consider for instance, that thetarget architecture
is a pipeline processor Cray. In this case, the real size of
afront is limited to 64 which is the size of a vector regis-
ter. One can easily adjust the schedule function such as no
front has more than 64 operations. Inthecase of our running
example, the memory requirement is reduced to an array of
64 elements. The interest of our method isthat it can have
result on one hand on the expansion and on the other hand
on renaming. All previous methods focused on only one of
these two topics. The technique has been implemented in
Lisp within the PAF project. This methods takes the place
of single assignment form trand ation.

To conclude one gives our results obtained with the
chol esky program:

¢ Origina version:

program chol es

integer i, j, k
real x
real a(10,10), p(10)
do i=1,n
S1 x = a(i,i)
do k =1, i-1
S2 x =x - a(i,k)**2
end do
S3 p(i) = 1.0/sqrt(x)
doj =i+l n
S4 x =a(i,j)
do k=1,i-1
S5 x =x - a(j,k) * a(i,k)
end do
S6 a(j,i) =x* p(i)
end do
end do
end

e Singleassignment form version:

PROGRAM chol es

real a(10, 10)

real insSi(n)

real insS2(n,n-1)
real insS3(n)

real insS4(n,n-1)
real insS5(n,n-1,n-1)
real insS6(n,n-1)

integer n,i,j,k
DOi =1,n,1
S1 insS1(i) = a(i,i)
DOk =1,i-1,1
S2 insS2(i k) =if (k-2 >=0)
then insS2(i, k-1)
el se insS1(i)
- ins6(k,i) ** 2
END DO
S3 insS3(i) = 1./sqgrt(if (k-2 >= 0)

then insS2(i,j-1)
el se insSl(i))

DOj =i+l,n,n
S4 insS4(i,j) = a(i,j)
DOk =1,i-1,1
S5 insS5(i,j,k) =if (k-2 >=0)

then insS5(i,j,k-1)
else insS4(i,j)

- insS6(k,j) * insS6(k,i)

END DO
S6 insS6(i,j) = if(i-2 >= 0)

then insS5(i,j,j-1)
else insS4(i,j)
* insS3(i)
END DO
END DO

END

e Version with minimal data expansion:

PROGRAM chol es

integer i,j,k,n
real x(n)
real a(10, 10)
real p(10)
real sqrt
real insS4(n,n-1)
DOi =1,n,1
S1 x(i) = a(i,i)
DOk =1,i-1,1
S2 x(i) =x(i) - a(k,i) ** 2
END DO
S3 p(i) = 1./sqgrt(x(i))
DOj =i+l,n,1
s4 insS4(i,j) = a(i,j)
DOk =1,i-1,1
S5 insS4(i,j) = insS4(i,j) -
a(k,j) * a(k,i)
END DO
S6 a(j,i)= insSa(i,j) * p(i)
END DO
END DO
END
References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

PY Cadland, A. Darte, Y. Robert, F. Vivien. On there-
moval of anti and output dependences. Technical report
RR96-04, |aboratoireL P - école normal e supérieurede
Lyon - Feb 1996.

Zbigniew Chamski. Environnement logiciel de pro-
grammation d'un accélérateur de calcul parallde.
Theése de I’ université de Rennes | - chapitre IV - 1993,
numéro d’ ordre 957.

P. Feautrier. Array expansion. ACM Int. Conf on Super-
computing, pages 429-441, 1988.

P. feautrier. Parametric integer programing. RAIRO
Recherche opérationnelle, 22:243-268, Sept 1988

P. Feautrier. Dataflow Analysisof Array and Scalar Ref-
erences. Int. J. of Paralle Programming, 20(1):23-53,
February 1991.

P. Feautrier. Some efficients solutions to the affine
scheduling problem, I, one dimensionnal time. Int J. of
Parallel Programming, 21(5):313-348, October 1992.

P. Feautrier. Some efficient solutions to the affine
scheduling problem part 11 : multidimensional time. Int
J. of Paralel Programming, 21(6):389-420, December
92.

[8] D. E. Maydan, S. P Amarasinghe, M. S. Lam. Array

Data-Flow Analysisand itsUse in Array Privatization.
In Proc. of ACM Conf. on Principles of Programming
Languages, pages 2-15, January 1993.

[9] Z.Li, G.and G. Lee. Symbolic array dataflow analysis

for array privatization and program parallelization. In
Supercomputing 95, 1995

[10] S. Rajopadhye and D. Wilde. Memory Reuse Anal-

ysis in the Polyhedral Model. In Bougé, Fraignaud,
Mignotteand Robert, editors, Euro-Par’ 96 Parale Pro-
cessing, Vol |, pages 389-397. Springer-Verlag, LNCS
1123, August 1996.

[11] M. Wolfe. Optimizing Supercompilers for Supercom-

puters. Pitman 1989.

