
Optimizing Storage Size for Static ControlPrograms in Automatic ParallelizersVincent Lefebvre and Paul FeautrierLaboratoire PRiSM, Universit�e de Versailles-St. Quentin,45, Avenue des �Etats-Unis, 78 035 Versailles c�edex, FRANCEe-mail: fVincent.Lefebvre,Paul.Feautrierg@prism.uvsq.frWorkshop: 03 Automatic Parallelization and High-Performance CompilersAbstract. This article deals with automatic parallelization of staticcontrol programs. During the parallelization process the removal of arti-�cial dependences is usually realized by translating the original programinto a single assignment form. This total data expansion has a very highmemory cost. We present a technique of partial data expansion whichleaves untouched the performances of the parallelization process, withthe help of algebra techniques given by the polytope model.1 IntroductionThis article deals with the automatic parallelization technique based on thepolytope model. This method can be applied provided that source programs arestatic control programs, i.e. are limited to do loops and assignment statements toarray with a�ne subscripts. The �rst step is an array data 
ow analysis in orderto extract exact dependences on memory cells. All arti�cial dependences, whichare due to reuse of data, are deleted by a total data expansion. The transformedprogram has the single assignment property and residual dependences constitutethe data 
ow. The program is then parallelized by scheduling a method whichautomatically satis�es the sequential constraints inherent in the data 
ow.The single assignment form translation has a very high memory cost. The aimof this paper is to present a new technique for partial data expansion. We showthat starting with a schedule function given by the data 
ow, it is possible tobuild a parallel program in which memory is reused.2 The polyedric methodAll techniques and algorithmes described in this section are directly taken fromthe PAF compiler developped at the university of Versailles by P. Feautrier andhis team. All Parametric Integer Programming problems, are solved with thePIP algorithm as described in [5].2.1 Static Control ProgramsStatic control programs are built from assignment statements and DO loops.The only data structures are arrays of arbitrary dimensions. Loop bounds and



array subscripts are a�ne functions in the loop counters and integral structureparameters.An operation may be named hR;xi where R is a statement and x the iterationvector built from the values of the surrounding loop counters. The iterationdomain D(R) of a statement R, is the set of instances of R and can be describedby the conjunction of all inequalities associated to the surrounding loops. Onewill take as running example in this article, the following program:program matrix-vectorreal s, a(n,n), b(n), c(n)integer i,j,ndo i=1,nS1 s = 0.do j=1,nS2 s = s + a(i,j)*b(j)end doS3 c(i) = send doendIn the program hS2; i; ji is an instance of S2 and D(S2) = fi; j j 1 � i �n ^ 1 � j � ng is the iteration domain of S2.2.2 Sequential Execution OrderLet us introduce some notations. The lexicographic order is noted �. The ex-pression R < S indicates that statement R is before statement S in the pro-gram text. NRS is the number of loops surrounding both R and S. One hasx�p y � x[1::p] = y[1::p] ^ x[p+ 1] < y[p+ 1] and � is given byx� y � jxj�1_p=0 x�p y (1)The fact that operation hR;xi is executed before the operation hS;yi is written:hR;xi � hS;yi. It is shown in [5] that:hR;xi � hS; yi � x� y_(x[1::NRS] = y[1::NRS]^R< S) � NRS_p=0 hR;xi �p hS;yi (2)where hR;xi �p hS; yi , �0 � p < NRS : x�p yp = NRS : x[1::NRS] = y[1::NRS] ^R < S (3)In our running example, we have: hS1; 2i �0 hS2; 3; 1i and hS2; 2; 3i �0 hS2; 3; 1i2.3 Array Data Flow AnalysisTo each operation v we associate two sets: R(v) is the set of memory cellswhich are read by v; M(v) is the set of memory cells which are modi�ed byv. Berstein's conditions distinguish three kinds of dependences between v andu, where v � u. If M(v) \ R(u) 6= ;, there is a 
ow dependence, writ-ten v � u. If R(v) \M(u) 6= ;, there is an anti-dependence, written v � u. If



M(v) \M(u) 6= ;, there is an output dependence, written v �� u. One maybe more precise and associate a dependence to a depth p. For instance, if twooperations v and u are in 
ow dependence at depth p, written v �p u, it meansthat: v �p u ^ M(v) \R(u) 6= ;.The real dependences which de�ne the inherent semantic of a program, are asubset of 
ow dependences: the direct 
ow dependences. All others depen-dences are due to memory reuse and are arti�cial. A direct 
ow dependence isa data 
ow from a de�nition by an operation v to a use by an operation w of asame memory cell c and provided there is no write on c between the executionsof v and w. It means that the value read by w in c is the one produced byv. Direct 
ow dependences are computed by data 
ow analysis [5]. It mustdetermine for each memory cell c read by an operation w, the last operation in� which gives a value to c before the execution of w. This operation is calledthe source function of the read:source(c; w) = max� fv j v � wg (4)The computation of the source function can be done by PIP (Parametric IntegerProgramming) algorithm (cf [5] for more details). The result of the analysis isa quasi-a�ne tree or quast, i.e. a many-level conditionnal in which predicatesare tests for the positiveness of a�ne forms in the loop counters and structureparameters. The Leaves are either operation names, or ?. ? indicates that thearray cell under study is not modi�ed.Sources functions are gathered in the Data Flow Graph (DFG). The DFG of ourrunning example is:memory cell referenced read operation source operations hS2; i; ji � if j � 2 � 0then hS2; i; j � 1ielse hS1; iia(i; j) hS2; i; ji ?b(j) hS2; i; ji ?s hS3; ii hS2; i; ni2.4 Total Data ExpansionThe aim is to delete all arti�cial dependences. Total data expansion gives to theprogram the single assignment property: each memory cell allocated to datawill only receive one value produced by one operation during all the executionof the program. In this way, one associates a memory cell to an operation. Onecan �nd the algorithm of translation of a static control program into a singleassignment form in [5]. The �rst step is a complete renaming: for each state-ment R one associates a speci�c data structure InsR, used to store all valuesproduced by the operations instances of R. Then one totally expands all datastructures: InsR is indexed by the iteration vector of R.R : A[f(x)] = ::: becomes R : InsR[x] = :::Finally one reconstitutes the data 
ow by replacing each rhs reference byits corresponding source



2.5 Parallelization by SchedulingOne computes a time function � which gives the partial execution order of theparallel program by taking into account the sequential constraints of the data
ow. For any operation u, if �(u) is its execution time, one must have:8c 2 R(u); �(source(c;u))� �(u) (5)It de�nes a set of linear constraints. For complexity reasons �nding the exactsolution of (5) is not practicable. One limits oneself to a�ne one-dimensionnaland multi-dimensionnal [6] schedules. In the case of our running example, onecan have the following schedule function �:� �(S1; i) = 0�(S2; i; j) = j�(S3; i) = n+ 1 (6)An operation front F(t) gathers all operations which have a same executiontime. The operations of a same front can be executed in parallel. Let � be theset of lexicographical enumeration of each possible execution time (t 2 � )F(t) 6= ;). The parallel program must enumerate each possible date t 2 � . Ifone translates in Fortran 90 the parallel program built with (6) as new operationsexecution order, one gets the following code:program matrix-vectorreal InsS1(n), InsS2(n,n), InsS3(n), a(n,n), b(n)do t=0,n+1if (t .EQ. 0) thenS1 InsS1(1:n:1)=0.end ifif (t .EQ. 1) thenS2 InsS2(1:n:1,t) = InsS1(1:n:1) + a(1:n:1,t)*b(t)end ifif (t .GE. 2 .AND. t .LE. n) thenS2 InsS2(1:n:1,t) = InsS2(1:n:1,t-1) + a(1:n:1,t)*b(t)end ifif (t .EQ. n+1) thenS3 InsS3(1:n:1) = InsS2(1:n:1,n)end ifend doendNotice that the total data expansion has created one one-dimensionnal arrayInsS1 with n elements and a two-dimensionnal array with n2 elements. Moreoverit has induced the split of S2 in two di�erent statements in the parallel code.3 Reduced Data Expansion in Parallelized ProgramsTranslating the sequential program in single assignment form has a very highmemory cost. It is clear in the case of our running example: from a scalar s andan array c(n), one gets three arrays with a data space of O(n2).Our aim is now to de�ne a method of partial data expansion which reduces thememory expansion induced by parallelization and replaces the single as-signment form translation during the parallelization process. The constraintis that the schedule which has been deduced from the DFG should remain validin the presence of output and anti dependences. An intuitive presentation of themethod is given below.



3.1 An intuitive ApproachOne must precise some conventions and notations. One writes V(v) for the valueproduced by an operation v. C(v) is the memory cell in which V(v) is stored.The set U(v) gathers all operations u such that there is a direct data 
ow fromv to u. U(v) is the set of all operations which will be executed after v and willread V(v): U(v) = fu j source(C(v); u) = vg (7)U(v) is usually called the utilization set of v.L(v) is the execution time of the last read of V(v) in the parallel program. L(v)is the operation which executes this last read:L(v) = �(L(v)) = max �(u); u 2 U(v) (8)Consider a memory cell C(v) during the execution of a parallel program in singleassignment form. One can distinguish three periods:1. Period (I): the memory cell stays empty until the execution of v withwhich it is associated.In our running example, InsS2[i,j] stays "empty" until the execution ofhS2; i; ji (InsS2[i,j] = C(S2; i; j)) at �(S2; i; j) = j, if 1 � j � n� 1.2. Period (II): the execution of v stores V(v) in C(v). The operations of U(v)read V(v) until L(v). During this time, V(v) is useful.One has U(S2; i; j) = fhS2; i; j + 1ig. V(S2; i; j) is read by hS2; i; j + 1i at�(S2; i; j + 1) = j + 1. This time is the last read of V(S2; i; j): L(S2; i; j) =j + 13. Period (III): the memory cell is not read anymore after L(v), neverthelessV(v) is still in C(v) until the end of the execution of the parallel program.V(v) becomes useless.V(S2; i; j) becomes useless after �(S2; i; j+1) = j+1 and stays in InsS2[i,j]until the end of the program at �(S3; i) = n+ 1It is clear that during the period (I) and (III), C(v) can store others values. If onestores others values in C(v), output dependences appear in the parallel program.The problem is to de�ne an automatic method for partial data expansion whichensures that the parallel program obtained is valid.3.2 Previous Techniques to Automatically Reduce Storage SizeMost of papers from the automatic parallelization community deal with arrayprivatization. Privatization is a technique that allows each thread on a processorto allocate a distinct instance of a variable. It may require less space than totalexpansion because it creates one copy per processor and the number of processorscooperating in the execution of the parallel loop is less than the number ofiterations ([9],[7]). Lam [1] proposes to optimize array privatization with thehelp of the Data Flow Graph. Another solution has been proposed by the systoliccommunity ([3],[10]). Programs in this case are directly given in single assignmentform.They try to create output dependences which don't invalidate the data 
owby estimating the lifetime of each variable. It is interesting to notice that thesetechniques are similar to data-localization methods ([4],[11]).



3.3 Utility Span of a ValueOur method of partial data expansion is based on the notion of utility spanof a value. The main advantage over the notion of variable lifetime is that itcan be applied to programs which are not necessarily in single assignment form.The atomic entity in our study is not the memory cell C(v) like in most previousmethods, but the value V(v).The utility span of a value is a subsegment of [0;L] where L is the latencyi.e. the execution time of the last front executed in the parallel program. It isclear that it corresponds to the period (II): V(v) must reside in memory duringt 2 [�(v);L(v)].De�nition 1 The utility span of V(v) is the span between the time of productionof V(v) and the time of its last read in the parallel program, where V(v) mustreside in memory. t 2 [�(v);L(v)]) V(v) 2 C(v) (9)One can estimate the utility span of V(S2; i; j) in our running example. If1 � i � n ^ 1 � j � n � 1, then V(S2; i; j) must reside in C(v) for t 2[�(S2; i; j); �(S2; i; j + 1)] = [j; j + 1].Before and after this utility span, C(v) can store others values without changingthe data 
ow from v to operations in U(v): one can reintroduce output depen-dences between v and some others operations. The next subsection show whichare the conditions that an output dependence must verify to be tolerable in theparallel program. Such output dependences are called neutral dependences.3.4 Neutral DependencesConsider two operations v and w. The rule (9) imposes that:1. V(v) 2 C(v) for t 2 [�(v);L(v)]2. V(w) 2 C(w) for t 2 [�(w);L(w)]In the case of a program in single assignment form, one has systematically C(v) 6=C(w) because there is no output dependence. Optimizing the storage, means thatone introduces memory reuse in the parallel program, i.e. we want to have someoperations v and w such as C(v) = C(w). It is clear that is possible i� the basicrule (9) is still veri�ed for v and w in spite of this output dependence. Hencean output dependence is valid in the parallel program if the subsegments whichare the utily spans of v and w are separate. A such output dependence is calledneutral output dependence.De�nition 2 An output dependence is neutral for a schedule function � i� itdoesn't change the data 
ow in the parallel program built with the help of �.One can precisely gives the characteristics of a neutral output dependencev ��w in the parallel program:{ v must be executed before w: �(v) � �(w).



{ there is an access con
ict: C(v) = C(w){ the utility spans are separate: L(v)� �(w)By extension an output dependence between v and w can be considered as neu-tral if w is L(v), i.e. the operation which executes the last read of V(v). Herethe utility spans of V(v) and V(w) are not separate because L(v) = �(w). Nev-ertheless these two operations can share the same memory cell because w mustread V(v) before computing V(w). It means that the write of V(w) occurs afterthe read of V(v) by w.An output dependence between hS2; i; ji and hS2; i; j + 2i would be neutral be-cause hS2; i; j + 2i is executed after the utility span of V(S2; i; j) in the parallelprogram.Notice that if two operations v and w belong to the same operations front,an output dependence v ��w would be non neutral in the parallel program.Hence one must use data expansion to ensure that they are stored in two dif-ferent memory cells. In fact, the memory requirement of a parallel program isstrongly linked to the parallelism degree (size of operations fronts) given by theschedule function. As we have seen, the utility span of V(S2; i; j) for j < n isbetween t = j and t = j + 1 in our running example. An output dependencebetween hS2; i; ji and hS2; i + 1; ji would not be neutral because the two oper-ations belong to the same front F(t) = j.To decide if an output dependence is neutral in a parallel program, one musthave a precise estimation of a utility span of each value V(v). Then this estima-tion can help us to reconstruct the data space of the program by adjusting datasize to utility spans. The �nal purpose is to build a program with direct 
owdependences and output dependences that will be neutral. Our �rst approachhas consisted to maintain neutral output dependences from the original programto its parallel version [8]. But this method is directly dependent from the originaldata space and can't be used to reduce data size of programs provided in singleassignment form. We have decided to improve our technique to become inde-pendent from the original data: with the new method presented in this article,the output dependences existing in the program after partial expansion are notnecessarily present in the original version.3.5 Determinating Utility SpanConsider an operation hR;xi. One wants to determine the subsegment of [0;L]which corresponds to the utility span of this operation: [�(R;x);L(R;x)]. Thelower bound of this subsegment is directly given by �. The problem is to com-pute the upper bound L(R;x). We recall that it is the last execution time in theparallel program of an operation of the utilization set U(R;x).Determining this time uses techniques from data 
ow analysis. The main di�er-ence is that the lexicographic maximum computation is not on the sequentialexecution order �, but on the execution order given by the schedule function �.Consider two statements R and S:R : a[f(x)] = :::S : ::: = ::: a[h(y)] :::



The operation LS(R;x) is the last read of V(R;x) in the parallel program amongthe operations instances of S which belong to U(R;x). The set of candidates ishS;BRS (x)i withBRS(x) = f y j x 2 D(R)^y 2 D(S)^source(a[h(y)]; hS;yi) = hR; xig (10)This set is built by scanning the Data Flow Graph. It is clear that the lastoperation which reads V(R;x) between instances of S is the last one executedaccording to �: LS(R;x) = hS;max�� BRS(x)i (11)The set BRS (x) is a disjunction of ZZ-polyhedra. All statements which may readthe data a must be taken into account. The real last read is their maximumaccording to �: L(R;x) = max�� LS(R;x) (12)Like the source function, L(R;x) is a quast. To determine L(R;x) one justapplies the function � to each leaf of L(R;x) except for leaves which are thesymbol ? which are left untouched. The di�erent utility spans are gathered inthe Utility Span Graph (USG) which gives to each operations v the utility spanof V(v) and the operation executing the last read of V(v). The symbol ? indi-cates that V(v) is either useless or an output value. For our running exampleone obtains:Operation v L(v) L(v) Utility span of V(v) = [�(v);L(v)]hS1; ii hS2; i;1i 1 [0;1]hS2; i; ji � if j � n � 1then hS2; i; j + 1ielse hS3; ii � if j � n� 1then j + 1else n+ 1 � if j � n� 1then [j; j + 1]else [j; n+ 1]hS3; ii ? ? [n + 1;?]3.6 Partial Data ExpansionThe �rst step is a partial array and scalar expansion process that decidesthe shape and the index function of each statement left hand side. The sec-ond step consists in a partial renaming process and decides which are thestatements that can share the same data structure in their left hand side.Partial Array Expansion The aims of partial array expansion for each state-ment R are the following:{ We want to build a structure lhsR which is speci�cally associated to thestatement R. It will give the shape (number of dimensions and size of eachdimension) and the index function which constitute the data in the left handside of R in the restructured program.{ The speci�cations used to build lhsR is that if lhsR provides memory reuse,i.e. output dependences between some operations instances of R, these out-put dependences have to be neutral in the parallel program.



{ The elaboration of lhsR must be independent from the original data struc-ture in the lhs of R.The problem is now to build lhsR. One recalls that a neutral output dependencecan't kill a value V(R;x) during its utility span. To respect this rule for anyinstance of R, one must take into account the maximumduration that the utilityspan of V(R;x) can have in the parallel program. For an operation hR;xi thisduration is obtained by subtracting the lower bound of its utility span from theupper bound. One writes d(R;x) this parameter:d(R;x) = L(R;x)� �(R;x) (13)One considers that ?��(R;x) = ?. Each leaf of d(R;x) is a multi-dimensionnallinear expression in term of loop counters and structure parameters. The max-imum duration D(R) that the utility span of instances of R can have, is themaximum value of d(R;x) on the iteration domain of R:8x 2 D(R); d(R;x)�D(R) (14)D(R) is a multidimensionnal linear expression in term of structure parameters orthe symbol ?. Notice that one considers that if d(R;x) 6= ?, then ?� d(R;x).For our running example, one �nds:Statement R Utility span duration of an instance of R Maximum utility span duration on RS1 d(S1; i) = 1 D(S1) = 1S2 d(S2; i; j) = � if j � n� 1then 1else 1 D(S2) = 1S3 d(S3; i) = ? D(S3) = ?(9) implies that V(R;x) must be in C(R;x) between �(R;x) and L(R;x) =�(R;x) + d(R;x). If one wants to protect each instance of R during its utilityspan, one must build lhsR in such a way that (9) is veri�ed for the greatestutility span that an instance of R can have. Hence one has chosen to imposethat no value V(R;x) can be killed between �(R;x) and �(R;x) +D(R):V(R;x) 2 lshR for t in [�(R;x); �(R;x)+D(R)] where �(R;x)+d(R;x)��(R;x)+D(R)The algorithm that builds the data structure lhsR can be summarized like this:{ One starts with a scalar lhsR.{ The elaboration of lhsR is iterative, the number of iterations is equal to NRR(number of loops surroundingR). Each iteration is called partial expansionof R at depth p where p is the depth of the loop considered (p 2 [0; NRR�1]).{ A partial expansion of R according to (p+ 1) consists in1. Computing the expansion degree of R at depth p: EpR. It gives thenumber of elements of a new dimension that one adds to lhsR.2. Indexing this new dimension of lhsR:lhsR[F0(x)] becomes lshR[F0(x); ip+1 mod EpR]where F0(x) is the index function built by previous iterations on p; ip+1is the counter of the loop (p + 1) (from the outer one surrounding R);"mod" is the modulo operator and EpR is the expansion degree computedin the previous step.



{ At the end of the process, lhsR only provides neutral output dependenceson R; 8p 2 NRR.The problem is now to compute EpR. The partial expansion of R at depthp avoids non neutral output dependences between two operations hR;xi andhR;x0i if x �p x0. For an operation hR;xi, we build the set of candidatesgathering all the operations hR;x0i which can't share the same memory cellthan hR;xi:{ the operations exist: x 2 D(R) and x0 2 D(R){ the sequential execution order is: hR;xi �p hR;x0i{ the utility spans are not separate:[�(R;x); �(R;x) +D(R)] \ [�(R;x0); �(R;x0) +D(R)] 6= ;Let be CpRR(x) the set of candidates, it can be decomposed in disjunctions ofZZ-polyhedra. Let eC;pR be its lexicographic maximum:eC;pR = max�p CpRR(x)One can't have output dependences between operations hR;xi and hR;x0i with:hR;xi �p hR;x0i �p hR;xei = eC;pRFrom this follows the inequalities on the iteration vectors:x[p+ 1] < x0[p+ 1] � xe[p+ 1]If one expands lhsR at depth p with EphR;xi = xe[p+ 1]� x[p+ 1] + 1, we aresure that no non neutral output dependence at depth p can appear concerninghR;xi. But it must be veri�ed for each instance of R, hence the expension degreeEpR is the maximum value that EphR;xi can have for x 2 D(R):EpR = maxx2D(R)EphR;xi (15)For our running example, one obtains the following results:Statements Expansion degrees Final data structure Final lhsS1 E0S1 = n lhsS1[n] lhsS1[i] = ...S2 E0S2 = nE1S2 = 0 lhsS2[n] lhsS2[i] = ...S3 E0S3 = n lhsS3[n] lhsS3[i] = ...There can't be output dependences on S1 and S2 at depth 0, hence lhsS1 isfully expanded and lhsS2 becomes a one-dimensionnal array with n elements.But all output dependences on S2 at depth 1 will be neutral in the parallelprogram, hence there is no expansion at depth 1 for S2. Notice that for the laststatement one leaves untouched the shape of the array in the lhs of S3 even ifits values are never read. It is due to the fact that it stores the �nal results ofthe program.



Partial Renaming The partial renaming process must decide if two di�erentstatements can share the same data structure. Consider two statements R and T .Partial expansion builds two structures lhsR and lhsT which can have di�erentshapes. If at the end of the renaming process R and T are authorized to sharethe same array, this one would have to be the rectangular hull of lhsR andlhsT: lhsR-T. It is clear that these two statements can share the same data i�this sharing does not generate non neutral dependence between R and T withlhsR-T in left hand side of the two statements. Let FR�T be the index functionof lhsR-T. One must verify for each operation hR;xi and hT; zi that would bein output dependence (i.e. FR�T (x) = FR�T (z)) that:1. V(R;x) can't be killed by hT; zi before the end of its utility span:�(R; x)��(T; z)��(R;x) +D(R)2. V(T; z) can't be killed before by hR;xi before the end of its utility span:�(T;z)��(R; x)��(T; z) +D(T )As in the case of partial expanding, one can decompose candidates sets in dis-junctions of ZZ-polyhedra. All these ZZ-polyhedra must be empty for this trans-formation to be legal. If there are no integral solutions, R and T can share thesame data structure else they can't.Finding the minimal number of renaming is a NP-complete problem (see [2]).Our method consists in building a graph similar to an interference graph as usedin code genaration process of a classical compiler to optimize registers allocation.In this graph, each vertex represents a statement of the program. There is anedge between two vertices R and T i� it has been shown that they can't sharethe same data structure in their left hand side: there is at least one non neutraloutput dependence R��p T . Then one applies on this graph a greedy coloringalgorithm. Finally it is clear that vertices that have the same colour can havethe same data structure in their lhs. In our running example, one �nds that S1and S2 have the same colour in the interference graph. It means that S1 and S2can share the same data structure. S3 must have a speci�c data structure. Onejust has to reconstruct the data 
ow. Then the program can be parallelized. Itstranslation in Fortran 90 after partial expansion is:program matrix-vectorreal s(n), a(n,n), b(n), c(n)integer i,j,ndo t=0,n+1if (t .EQ. 0) thenS1 s(1:n:1) = 0.end ifif (t .GE. 1 .AND. t .LE. n)S2 s(1:n:1) = s(1:n:1) + a(1:n:1,t)*b(t)end ifif (t .EQ. n+1)S3 c(1:n:1) = s(1:n:1)end ifend doend4 ConclusionOur aim has been reached, our method can e�ectively reduce the memory costin the data expansion process of static control programs. In our running example



the expansion is limited to an expansion of the scalar s in an one-dimensionnalarray with n elements. Notice that if one builds a schedule function equivalentto the sequential execution order, one �nds as �nal structure the scalar s andthe array c. It means that if the source program is provided in single assignmentform for instance, then our method reduces the two arrays in the lhs of S1 andS2 to a single scalar. We have then obtained an important result: our method canreduce the original data size of the program if the memory requirement necessaryfor the schedule function is less than the original data size. Our method can beused now to reduce data space of program directly provided in single assignmentform.References1. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data-
ow analysis andits use in array privatization. In Principles of Programming Languages, 1993.2. P.Y Calland, A. Darte, Y. Robert, F. Vivien. On the removal of anti and out-put dependences. Technical report RR96-04, laboratoire LIP - �ecole normalesup�erieure de Lyon - Feb 1996.3. Z. Chamski. Environnement logiciel de programmation d'un acc�el�erateur de cal-cul parall�ele. Th�ese de l'universit�e de Rennes I - chapitre IV - 1993, num�erod'ordre 957.4. C. Eisenbeis, W. Jalby, D. Windheiser, and F. Bodin. A strategy for array man-agement in local memory. In Proc. of the 4th Worlshop on Languages and Com-pilers for Parallel Computing, Aug. 1991.5. P. Feautrier. Data
ow Analysis of Array and Scalar References. Int. J. of ParallelProgramming, 20(1):23-53, February 1991.6. P. Feautrier. Some e�cient solutions to the a�ne scheduling problem part II :multidimensional time. Int J. of Parallel Programming, 21(6):389-420, December92.7. Z. Li, G. and G. Lee. Symbolic array data
ow analysis for array privatizationand program parallelization. In Supercomputing 95, 1995.8. V. Lefebvre and P. Feautrier. Storage Management in Parallel Programs. InProc. of the Fith Euromicro Workshop on Parallel and Distributed ProcessingConf, Pages 181-188. London. Jan 1997.9. P. Tu and D. Padua. Array privatization for shared and distributed memorymachines. In Proc. Third Workshop on Languages and Compilers for DistributedMemory Machines, Boulder, Colorado 1992.10. S. Rajopadhye and D. Wilde. Memory Reuse Analysis in the Polyhedral Model.In Boug�e, Fraignaud, Mignotte and Robert, editors, Euro-Par'96 Parallel Pro-cessing, Vol I, pages 389-397. Springer-Verlag, LNCS 1123, Aug 1996.11. M. Wolf and M. Lam. A data locality optimizing algorithm. In Proc. ACM SIG-PLAN 91 Conf. on Programming Language Design and Implementation, June1991.This article was processed using the LaTEX macro package with LLNCS style


