Reordering methods for data locality improvement

Cédric Bastoul Paul Feautrier
Laboratoire PRiSM, Université de Versailles Ecole Normale Supérieure de Lyon
45 avenue dektats-Unis 46 Allee d'ltalie
78035 Versailles Cedex, France 60364 Lyon, France
cedric.bastoul@prism.uvsq.fr paul.feautrier@ens-lyon.fr
Abstract renders them unsuitable for embedded systems.

A lot of work has been devoted to improving the be-
Cache memories were invented to decouple fast proceshavior of memory hierarchies. There are two kinds of ap-
sors from slow memories. However, this decoupling is only proaches for this problem. The first approach consists in
partial, and many researchers have attempted to improve designing highly optimized libraries (LAPACK is a good
cache use by program optimization. Potential benefits are example [1]) for the most common linear algebra and sig-
significant since both energy dissipation and performance nal processing algorithms. This method often gives the best
highly depend on the traffic between memory levels. Butresults, provided the source problem and the target ahite
modeling the traffic is difficult; this observation has led to ture are within the scope of the available library. The secon
the use of heuristic methods for steering program transfor- approach tries to optimize the source program at compile
mations. In this paper, we propose another approach: we time. This method is not restricted to a given set of algo-
simplify the cache model and we organize the target pro- rithms and can be adapted, with minor modifications, to any
gram in such a way that an asymptotic evaluation of the memory hierarchy architecture. The present work belongs
memory traffic is possible. This information is used by our to the later approach.
optimization algorithm in order to find the best reordering Most optimizing Comp”ers try to transform the source
of the program operations, at least in an asymptotic sense.program in order to improve the behavior of the memory
Our method optimizes both temporal and spatial locality. It hierarchy. The basic principle is to regroup all accesses to
can be applied to any static control program with arbitrary - given memory cell, in order to take a maximum advantage
dependences. The optimizer has been partially implemente@f possible reuses. This is obtained first by applying loop
and applied to non-trivial programs. We present experimen- transformations [16, 12] according to some cost model [14],
tal evidence that the amount of cache misses is drasticallythen by tiling the resulting loop nest [17] with tiles hav-
reduced with corresponding performance improvements. ing a carefully chosen size [6]. Basically, this method ap-
plies only to perfect loop nests in which dependences are
non-existent or have a special form (fully permutable loop
1 Introduction nests). Another data-centric [10] approach starts from a
memory cell and tries to build the slice that accesses this
Technological advances in the realization of integrated cell. Here again, dependences greatly complicate the-trans
chips result in faster clocks for processors, and in larger ¢ formation process.
pacity for memory. In consequence, if nothing is done, pro- As said above, previous methods require most of the time
cessors will starve because their memory systems cannosevere limitations on the input program. Our work can be
supply data at the required speed. Memory hierarchies are applied to a wide application domain since we do not lay
good solution to this problem: they are cheap and efficient, down any requirement on dependences provided that the
at least for ordinary programs and situations. Nevertlseles program has static control [7]. This program class includes
their efficiency decreases dramatically for scientific com- a large range of problems which are discussed in depth by
puting and signal processing codes, where large data setXue [18]. The properties of such programs can be sum-
are accessed according to highly regular patterns. Next,marized in this way: (1) control statements a® loops
their temporal behavior is difficult to predict; this forlsid with affine bounds ani conditionals with affine conditions
their use in systems with hard real time constraints. Lastly (in fact control can be more complex, see [18]); (2) arrays
moving data from level to level uses a lot of power, which are the only data structures, and their subscripts are affine

(3) affine bounds, conditions and subscripts depend only on do i=1, n

outer loop counters and structure (or size) parameters. a(i) =i I S1
All methods mentioned earlier are based on a heuristic do j=1, m

cost model. Let us consider for instance two accesses to the b(j) = b(j) + a(i) I S2

same memory cell. It seems probable that the longer the enddo

time interval between these accesses is, the higher the prob enddo
ability of the first reference to be evicted from the cache is.

. . . (a) source program
Hence, loop transformations aim at moving these references
to neighboring iterations of some innermost loop. Our tech- i
nique is based on an estimate of the memory traffic, and tries st ([i]) = [i] 052 ({ j) = [j+mn]
to find the loop transformation that minimizes this estimate
under the constraint that all dependences are satisfied. Thi (b) chunking functions
technigue, which we calthunkingis presented in section

2. Section 3 explains how to construct good chunking func- do c=1, n
tions for a given program. Section 4 deals with the problem a(c) =c I Sl
of code generation when the chunking functions are given. ~ €nddo
Section 5 describes our implementation and experimental ~ do ¢=n+1, n+m
results. Section 6 compares chunking to other approaches. do i=1, n _
We then conclude and discuss future work. b(c-n) = b(c-n) + a(i) ! S2
enddo
enddo

2 Chunking

(c) target program

The principle of our method is to partition the set of op-
erations of a program in subsets small enough that their ac-
cessed data fit in the cache: #teunks The program is then
executed chunk by chunk, as if there was a cache flush be3 Computing chunking functions
tween each of them. These subsets must be such that their

sequential execution is equivalent to the execution of the ¢ quality of a chunking can be assessed by using two
original program. In practice, chunks will be numberedthen |5 ations. First, théootprint sizewhich is the number of
executed in order of increasing numbers. A chunk numbermemory cells accessed by the operations of a chunk. Next,
will be assigned to each operation, i.e. to each instance ofieatraffic which is the number of data movements between
each statement. In other words, for each statenewe 3in and cache memories. We want to build an optimal
seek achunking functiorfs associating a chunk number cpnk systemi.e. where each chunk footprint fits in the
fs(z) to each iteration vectar. The original operations cache and the traffic is minimal. To be able to generate the
will be rescheduled accordingly to these chunking func- target code, we are looking for affine chunking functions.
tions. We present in figure 1 an example of chunking of a Subsequently, for an operatidi{z], instance of the state-

simple program. We assume as inputhypothesistiaiay ments with the iteration vector: in the iteration domain
elements can fit in the cache, butcannot. Such asimple . the chunk number can be written:

code yet exhibits several difficulties: non-perfect looptne

dependences between different statements, parameters and 0s(z) = Tsx + ks.

multiple references. In this example, the order of the oper-

ations has been modified for a maximal use of temporal lo- T's is a matrix called thehunking matrixits dimensions are
cality, according to the chunking functions in figure 1(5). | g x p(S) with p(.S) the number of loops surroundity The

the target program gives the number of the current chunk. choice of the value of is postponed till section 3.Zg is

This example will be used for illustration throughout this a constant vector. Chunking functions are calculated in sev
paper. It can be noticed that the code can be restructured ireral steps which are discussed in the next sections. In sec-
the same way by conventional loop distribution, loop per- tion 3.1 we show how to compute an asymptotic evaluation
mutation and skewing. Chunking is set in the framework of the traffic with respect to the chunking functions. Then
of the polytope model and every chunking can be brokenwe exhibit the constraints that the chunking functions must
down in a succession of well known transformations. In satisfy to minimize the traffic. Section 3.2 explains how
fact, chunking does not aim to fimewtransformations but to find all the functions verifying such constraints. Sewtio
to find theright transformation automatically. 3.3 shows how to choose the functions in such a way that

Figure 1. Running example

the transformation is legal for dependences. Lastly, sacti Theorem 1 Let H = {Ux | Ve = 0,z € D} be a set
3.4 and 3.5 gives respectively the constraints which have towhereU and V" are arbitrary integral matrices of the right
be satisfied by the chunking functions in order to achieve dimension, and wher® is a bounded full dimensional do-
group-locality and spatial-locality. main such that the value of each component of the vactor
_ _ is an integer in a segment of lengtt. ThenCard H is of
3.1 Asymptotic evaluation the order ofm! with I = rank < g) —rank V.
It is hard to find an accurate solution to the traffic eval- _ _ _
uation problem for a particular cache type. Modeling the Proof. —Let us first study the dimension of the support-
replacement mechanism is quite difficult, but it is bypassed ing subspaceX = {Uz | Vz = 0}. This corresponds to

by chunking. However, several difficulties remain, hence the rank of the applicatiofi from ker V to Im U that asso-
we propose the following simplifications: ciatesUzx to x. According to a well known algebraic the-

: : . orem, we havelim kerV = k dim ker f. As
¢ conflict misses do not change the order of magnitude ker f = ker U N ﬁg;v eil'; foIIow?n f+ dim ker f

of the traffic; this assumption is satisfied by fully as-

sociative caches and is close to be satisfied by mod- rank f = dim ker V — dim (ker U Nker V).

ern caches with high associativity; most discrepancies

can be compensated by using an effective cache sizeSince D is such that the value of each component:as
smaller than the real one; an integer in a segment of length, it follows that each
component oz also is integral and belongs to a segment
of length proportional tan. Hence, the size off is of
the order ofm!. Sincedim ker V + rank V' = number of
column of V, we have finallyCard H is of the order ofn’

o we will be satisfied with asymptotic evaluation of the
traffic; in many cases, program transformations can
change the order of magnitude of the traffic, then it
would be useless to fiddle with constant factors or o
worse, units in the last decimal place; in some cases,with [= rank —rank V. L]

. . Vv
l.e. when self-reuse has alrgady been epr0|ted,. only The orders of magnitude of the cardinals of sets describ-
the constant factors can be improved; the question of

S) . _ ing footprints (1) and traffic (2) are directly given by theo-
deciding if a more precise evaluation can influence the (g 1. The asymptotic size of footprints are found wiith

target code is left for future work. asT andU asF', and considering the traffic, with as the
In our model, it is possible to make estimates of foot- || matrix andl/ as the block matri T composed of
print sizes and traffic with respect to the chunking funcsion F

the matrixT for its first rows and of the matri¥’ for the
§ nextrows. If the value of each componentok an integer
in a segment of lengt, we have:

Considering a statemeft an arrayA and a subscript func-
tion f, the footprint generated by this reference is the set o
memory cells accessed during the chunk execution:

Foas(t)={f(2) |2 € Ds,bs(z) =t}. (1) Carde,A,fa):o(ml>,wathl:mnk<§>_mnkT,

Let us suppose that the cache is empty at the start of a chunk

and that its footprint fits in the cache. Then any cells in the A T
R . . . =0 th k = rank .

footprint is copied once to the cache at some time during Ts.as (m) Wi ran F

the execution of the chunk and stays there until the termina- These evaluations depend Bhwhich can be extracted by
tion of the chunk. Hence the traffic can be estimated as theanalysis of the source code afidvhich is the unknown of
number of pairgdata, chunk numbgr the problem. Thus we can find the constraints tRdtas
Ts.a.s = Card {(f(:n),es(:n)> |z € Ds}-) to sz_iti_sfy in prder that the footprints fit in the cache and the
traffic is minimal.
Note that there is no need to insert a flush instruction be- Let us consider one statement Wm’]array accesses,
tween chunks provided that the replacement mechanism althe subscript matrix of thé" access beingd;. All tuples
ways selects data from previous chunks for eviction. This is T .)
true for the LRU and FIFO policies, but not for RANDOM. rank T, rank < F;) forl <i< ”> corresponding to
Since input programs have static control, subscript func- the possible sets of constraints can be enumerated. We need
tions are affine and can be written to know the cache siz€ and an estimate of the size param-
f(z) = Fo+a eterm. We then_ determine_an.integersuch thaﬂn"‘ <C.
’ A footprint of sizeO (m!) fits in the cache if < a. We
whereF' is the subscript matrix of dimensigr{A) x p(S), can thus eliminate all tuples for which this condition is not
with p(A) the dimension of array, anda a constantvector. satisfied, and we can rank the remaining ones in order of

increasing traffic. It then remains to try buildingfawhich
satisfies the rank condition of the best tuple. If this is pebv
to be impossible, we start again with the next tuple.

p(S) —w + 1to p(S) — w + v. Hence, the kernel df is
generated by the column vectors@ffrom 1 to p(S) — w
T

F

is the intersection of the kernel @f with the kernel ofF,
hence it is generated by théS) — w first column vectors

and fromp(S) — w + v + 1t0 p(S). The kernel of
3.2 Building chunking matrices

Thanks to the evaluations, we know which rank con- T
straints must be satisfied by the chunking matrices to mini- F
mize the traffic. In this section, we show how to build such for the choice ofg, the number of rows of’, it is clear
matrices, at first when the corresponding statement inslude that bordering a matrix by null rows does not change its
only one reference. Then, we show that there always exists'ank. Since when reordering the programiit is useful to have
a chunking matrix such that each associated footprint fits in @ll chunking function of the same dimension, we may take

of G and the constraintank = w is satisfied. As

the cache.
For a statementS with one reference, it is always
possible to find a matriX’ such thatrank 7" = v and

rank = w, provided thaty andw have compati-

T
F
ble values (i.e.p(S) > w > v). The building process is
described by the algorithm in figure 2. From the returned
matrix 7', we can generate the set of matrices with the re-
quired properties: the set 6f7" matrix whereC' is a matrix

of full row rank. We will choose in this set the matrices in
order to satisfy additional constraints described in secti
3.3and 3.4.

CONSTRUCTION ALGORITHM : Build a matrix under

rank constraints.

Input: the subscript matrixt” and the rank constraints
rank T' = v andrank < z; > = w.

Output: a matrixT respecting the rank constraints.

1. Compute a basis @&kr F' and complete it to a basis of

Nr(S),

. LetG be the matrix of these vectors (vectors added to
complete to a basis d¥*() are the last columns).

. Compute& 1, inverse ofG.
. Build matrixT"

(a) Forifrom1tow:
ith row of T = (p(S) — w + i)t row of G~'.

(b) Completel” with null rows.

Figure 2. Construction Algorithm

Let us demonstrate that this algorithm builds a matrix
T that answers the requirements. Since the madftiis
composed ofv linearly independent rows, the constraint
rank T = v is satisfied. These rows are those®f! from

g = max p(S).

The generalization te references implies the combina-
F, =wi,1§i§n.The
matrix G must have for each reference exagilys) — w;
vectors of a basis dfer I} for a total of at most vectors.
Such a matrix does not always exist. The choice of vectors
to be included in the matris is essential. We can guide
this choice by adding for each reference as many vectors
from a preceding reference as possible. If a solution does
not exist for a tuple, then we try to find another one for the
next more interesting tuple.

A chunking matrix such as each footprint fits in the cache
always exists. The hardest constraint for the footprints is
have a size i (m?), and the last tried possibility will be
the tuple{p(S),w; = p(S)forl < i < n). The corre-
sponding chunking generates for e reference footprint
sizes of0 (m?) and the maximal traffic of (m?'*)). Its

solutionT = Id always exists and is the trivial chunking
where there is one chunk per operation.

tion of n constraintsrank (r

Example Let us consider the source code in figure 1. We
assume thaa is an array o cells which fits in the cache
andb is an array oimcells which does not fit in the cache.
Then, the acceptable orders of magnitude for the footprints
size are0 (n') andO (m°). The program has two state-
ments:

¢ the statemenf1 has just one reference to the array
a with the index matrixFs;,; = [1 |; the matrix
Ts1 having the best properties corresponds to the tuple
(1,1), it will generate footprint sizes aP (n°) and a
traffic of O (n'); the algorithm build¥'s; = [1 |;

the statemenb2 has two references, the first one to
the arraya with the index matrixFso; = [1 0]
and the second one to the arfaywith the index ma-
trix Fs2o = [0 1]; the matrixTs, having the
best properties would correspond to the tufdle2, 1),

it would generate footprint sizes 6f (m° + n') and

a traffic of O (m! + n?); the construction is possible

andgivesngz[} efsu([i])=[1][i]+[0]

23 Legalty e ()=o)

Since chunking reorders operations, it must satisfies de-Tp hom_ogenlze the Ch””"'”g functions, one can add null
dimensions, or remove them if they are null for all the func-

pendences. In this section, we explain how chunking func-) his d h h K have finall
tions can be chosen in such a way that the transformationiO"S: Since this does not change the ranks. We have finally

satisfies dependences. We will show that there always exgg; ([i |) = [i | andfs» <[! D =[j+n].
ists a valid solution which satisfies the constraints descti J
in previous sections.
Chunks are numbered in the order they will be executed, 3-4 Group-reuse
and inside each of them, operations are executed in the orig-

o O
o =

inal sequential order. Let us consider, the statement set There is group-reuse when two statemeists,and 52,
of the progran, and §p, the dependence relation h a access the same arréythrough indexing matrices’} and
chunking is legal if and only if: F, (for the sake of readability, we will use homogeneous

coordinates in this section). There is reuse if there exists
VS,R € Ip, S[z]opRly] = 0s(z) <Or(y). (3) iteration vectors:; andz, such thatf,z, = Fz;, and this
reuse is exploited if these two operations are in the same

There is noa priori reason for (3) to be satisfied by the
chunk:

chunking matrices as constructed by the algorithm in previ-
ous section. However, we are free to modify them as long
as we do not change their rank properties. We are also free
to adjust the constant vectoks as they have no impact on
the footprints and traffic (at least asymptotically). Thias,
any statemen$, the chunking function can be written

VleiL‘z,FQ{L'Q — Fiz = 6:> Toxy — T2 = 6 (4)

Observe that this constraint has the same shape as a depen-
dence constraint. lfyz, = Fiay, thenS1[z;] and.Ss[z-]
are in dependence. This dependence may be a read-read de-
fs(z) = CsTsx + ks, pendence, which may not be taken into account in other cir-
cumstances, but which exists nevertheless. As to the right-
whereC's is a matrix of full row rank. We use the Farkas hand side of (4), it is similar but more restrictive than the
algorithm [8] to solve (3) and to find the set of &k and right-hand side of (3). As a consequence, we can give a
ks. If the problem has no solution, we declare a failure and more precise result:
try the next best traffic/footprint combination.
A legal solution such as the footprints fit in the cache Theorem 2 (4)is true iff (T, —T) = N (F> —F;) where
always exists. It corresponds to the worst solution, in Wwhic NV is a matrix of full row rank.
all the chunking matrices are identity matrices. In thissgas
the original program is not modified. This possibility must Proof. Let 2 be the concatenation of vectars andz-.
always be left open, since it might happen that the sourceFormula (4) can be written
program is already optimal.
Ve, (FQ - Fl)CU =0= (Tg - Tl).l” =0.
Example Let us continue the example of section 3.2. The
chunking functions associated to the proposed matrices are(p2 — F1)x = 0 and (T2 — T1)x = 0 describe two sets

- ([i]) _ [1] [i] + [0]; where one point belonging to the first one nec_essanly _be-
longs to the second one too. Therefore the first one is a
.0 i |01 i n 0 subset of the second one. So it can be written as the second
52 J 100 J 0| one withb additional constraints:

These functions do not describe a valid chunking: the de- T — Tz =0
. s . . F F, =0 (2 1)35
pendence front'1 to S2 is not satisfied. For instance, the (2 = 1)55 =V Qr=0

operationS2 { ?] is executed in chunk numbgémwhereas T
2 — 11 _ . .
the operationS1[2] on which it depends is executed then 0 = M(F, — Fy) with M a matrix
later, in chunk numbe2. Our method makes it possible such thatdet M # 0 (the system is not modified by linear
to correct this chunking so that all the dependences are re-tr nsformation Let us writa/ N where N’
spected and the quality is preserved. The correction sug- ansformations). Let us as\l w ere

gested by our prototype is the following one: is the matrix made with thé last lines of M. Now we

have(L ~T > = (N) (F, — F)) and finally hatisTi = Fy andT; = Fb. Therefore, the chunking func-

Q N’ tions will be :
(T2 —Tl)ZN(F2 —Fl). | .)
The unknowns are the entries 5, which define the lin- . 0s; <[i i) _ i K i ’
ear transformations to apply t((Fg — Fl) in such a way J J—9

that the chunking functions respect the dependences. g hisi

clearly the same problem as the correction for dependences , | <[i i) _ i j+10 i

in section 3.3. We solve them at the same time, by adding J i '

the necessary constraints (a set of constraints by paieg-of r

erences in which group-reuse is detected) to the initiabpro This transformation leads to the target pseudo-code below.
lem. This theory, which does not assume that group-reusel' he group-locality is now maximal: in the shared zone of
is associated to constant dependences, can even be used fr the two statements access the same memory cell during
“self-group-reuse”, when the two accessestare in the the same iteration.

same statement. Here, we deduce from (4) that the linear

subspac€’ = {z, — z1|Fiz; — Fha, = 0} is included in do cl=1, 14
the kernel ofl = T, = T».. Itis easy to find a basis fa¥ do ¢2=0, n-15
by gaussian elimination techniques. The resulting vectors f((cl,c2+5) , A(cl,c2)) ! Sl
can be taken into account when building the chunking ma- enddo
trices. Improving group-locality do not change the order of enddo
magnitude of the traffic. It can divide the traffic generated do c¢1=15, n
by n references by a factor of. f(C(cl,5) , A(cl,0)) I s1
do c2=1, n-15
Example Let us consider the following pseudo-code: f(C(cl,c2+5) , A(cl,c2)) ! s1
do i=1, n g(D(c2,c1-10) , A(cl,c2)) ! s2
do j=5, n-10 enddo
(i) A, j-5)) | s do c2en- 14, 1
g(D(i,j) , A(j+10,i)) | 2 g(D(c2,c1-10) , A(cl,c2)) ! S2
enddo enddo
enddo enddo

f andg are not function or procedure calls but all possible The selection of pairs of references offering a good
statements Using the giVen references. All control centric group-reuse is an interesting probiem_ On one hand, itis
methods will estimate that there is no self reuse and no eX'Certainly not possibie to Satisfy all constraints for aibpo
ploitable group-reuse. The reason is that they fail to con- siple pairs. Hence, there is a need to find a priority order
sider non uniformly generated references (uniformly gener on the sets of constraints according to the potential benefit
ated references are such as their subscript functions @iffe on the other hand, improving group-locality is less interes
at most the constant term [9]). In fact there is good reuse be-ing than improving self locality: it can’t change the ordér o
tween the two statements for a part of the aegs shown magnitude of the traffic. But adding constraints can compli-
by the figure 3. In this example, if there is no dependence cate the chunking functions and as a consequence the target
code. Thus, there is a need to evaluate which constraints
can give a performance benefit in spite of the control over-
head (this question has no sense when energy is the critical
resource). It is quite easy to know if there exists group-
Zone accessed by - reuse between a pair of references: it is sufficient to find an
integral solution to the system of constraints consistifig o
Zone accessed by - the conjunction of the equality of subscripts, the itenatio
domains and the contexts. It is much harder to compare
the number of integral solutions the different systems have
This question amounts to the well known problem of count-
ing integral points in polyhedra. There are exact solutions
when the parameters have fixed values [3, 5]. When there
Figure 3. Accessed zones of A is just one unfixed parameter, it is still possible to compare
the parametric numbers [5]. But in the general case, the use
we can use the trivial solution ¢f, —T1) = N (F> —F}), of heuristics is needed.

n_j

n-15

3.5 Spatial-reuse 4 Code generation

Code generation is the last step to the final program. Itis
en ignored in spite of its impact on the target code qual-
ity. We must ensure that a bad control management does
not spoil performance, for instance by producing redundant
guards or complex loop bounds. An outline of the resulting
code is a loop on the number of chunksvhich contains

lt(he chunk operations.

There is spatial reuse for a reference if it accesses data on.
the same cache line during different iterations. As for grou
locality, improving spatial locality do not change the arde
of magnitude of the traffic. It can divide the traffic gener-
ated by a reference by a factor @f whered is the cache
line length in words. Spatial locality is achieved if the ope
ations accessing the same cache line are in the same chun
Let us consider a reference to an arrayvith the subscript do c=1, L
function F'. Leti be the number of the major dimension of | execute operations in chunk c
A, i.e. the dimension with data lines ordered successively enddo
in memory. Then spatial locality is achieved fdrif the
operations accessing the memory cells of the major dimen-
;ion are in the same chunk. In other words, spatial locality gacause the input problem is a static control program,
is achieved ifF; . € ker T the bounds on statement iteration spaces can be specified by

This constraint is added in tf# construction algorithm a set of linear inequalities defining a polyhedron [11]. le th
seen in section 3.2 by asking for a more accurate choicechunking case, we change the scanning order of this poly-
of vectors to be included in the matrX. If the new con- hedron by substitution of the original dimensions by chunk-

If the chunk numbers are vectors, we have as many sur-
rounding loops as chunking dimensions.

straint prevents the construction 6f we can try with an- ing dimensions. The code generation is then a well known
other component of the index function and suggest the cor-z-polyhedron scanning problem. At present, the best solu-
responding data layout transformation. tion is the Quilleré et al. one [15]. Their technique getesa
loop levels by projecting the polyhedra onto the correspond
Example Let us consider the following pseudo-code: ing dimension. Then by splitting the projection into disjpi
polyhedra and sorting the resulting polyhedra in order to
do i=1, m respect the lexicographic order. Lastly, it recursivelyige
do j=1, n erates loop nests that scan each resulting polyhedron. This
do k=1, p method is well adapted to the chunking problem provided
f(A(i+k,j) , B(i+j,k)) ! S1 we generalize it somewhat. We have implemented an ex-
enddo tended version, CL0o0G, which can handle sequential inner
enddo loops and imperfect loop nests. Our resulting code is quite
enddo efficient.

Example Let us continue the example of section 3.3. The
polyhedra describing the execution domainsSafand .S2
result from the study of the original code. We complete
them with the chunking dimensianand the chunking con-
straints. The figure 4 describe the iteration domain trans-
formation and show the chunks, i.e. the operations having
the same chunking coordinates. The constraint systems de-
scribing the iteration domains are:

We assume as the only input hypothesis thatrray ele-
ments cannot fit in the cache, and without loss of generality,
the FORTRAN's column major. Then the major dimension
is the first dimension for each reference. Bfth0 1] and

[1 1 0] must belong tdker T' in order to achieve spatial
locality. This would lead to a solution without respect to
the input hypothesis (th¢ loop would be done inside the
chunks). A solution is to change the data layout of the array
B to row major. In this case, the vectdis0 1] and[0 0 1]
must belong tder 7. Then we can find” = [0 1 0] and S1 constraint system S2 constraint system
the target pseudo-code achieving spatial locality would be

c — 3 — n =0
— c — 1 =0 - 71 + n >0
do ¢=1, n { — i 4+ n >0 i — 1 >0
do i=1, m i — 1 >0 - j + m >0
do k=1, p | -1 >0
f(A(i +k,c) , B(k,i+c)) ! S1
enddo On the first dimension, polyhedra are already disjoint: the
enddo first one coverd < ¢ < n while the second one covers

enddo n + 1 < ¢ < n+ m, hence there is no need to separate or

O operation of S1

® operation of S2

"t chunk

(a) original iteration domain (b) new iteration domain

Figure 4. lteration domain transformation for the running example

aggregate them. As a consequence, there will be one loop le+1l — :

nest per statement; the recursion on each of them is then 1e+10 | ch‘erngéi”nag: é misses ——
.. . original misses ¥

trivial. Lastly, we must order the loop nests in such a way 16409 |- chunking L2 misses &

that they respect the execution order. Itis easy to seettbat t le+08

first polyhedron must precede the second one. The resulting
code is the one shown in figure 1(c) as the target program.

1e+07
1le+06
100000 -

Cache misses (log scale)

10000

5 Experimental results 1000 1
100 &
We are implementing our approach in tlohunky 10 e
source-to-source optimizing tool. This prototype imple- m : array dimension (words, log scale)

ments at present the process from the chunking function cal-

culation to the code generation, but without group and spa-

tial locality improvement support. This prototype already ~ Figure 5. Cache misses for the running example
allows us to present preliminary results for some impor-

tant non-trivial problems. The experiments were conducted

on a PC workstation with a Pentium Il processor running put hypothesis are no longer satisfiee, when the array:

at l.l(?.HZ'I Thl|sL[)1ro;:e§sor comes W'tg SNO CicnglgveIS:hacannot fit in the cache. We have observed the same phe-
split first level (L1) for instructions and data o €ach homenon on most of the programs with good data reuse

ahnd an lun.|f|ed sfecrz]ond Ievt()al (sz) ofﬁSGKB. F'gli)re d sr(‘jOW_Shwe have tested. Some experimental results on well known
L edevo utions of t ?nurr]n ero C"’IIC (Zlmlsses 0 s_erve fWr']t problems are shown in figure 6. The compiler option was
ardware counters for the original and target versionsef th 3 ¢, ¢ original programs, but O1 for the transformed

running example (see figure 1), according to the value of the o 2 s in order to prevent any compiler optimization that
parametern. can disturb the chunking.

_ The ratiom/n is set to64 in order to better_show the As for the running example, chunking can reduce the
impact of our method. The number of cache misses sharplynumber of cache misses by more than one order of mag-

grows whgn the array becomes larger than a cache level nitude. This cache miss reduction can imply a significant
in the ongmal program. The chunked program has a bgt- performance improvement. The speedup is better with big
ter behavior. The miss growth comes later, when the in- problems. Since the miss penalty for an L2 miss is of the
parts of Chunky are freely available under GNU license at order of 10 times an L1 miss, these results are not surpris-
http://ww. prismuvsg. fr/ ~cedb ing. The situation of Gauss-Jordan &ifrx 80 arrays shows

how it is necessary to avoid control overheads. In this Jrare be ineffective for some problems. To find which is the best
case, despite the attention given to code generation and application order of the transformations for a given progra
significant cache miss reduction, our method fails to im- is known to be very hard. Chunking bypasses this difficulty
prove performance on small problems. The point of view is because it unifies all kind of linear transformations in a sin
quite different when the critical resource is energy, like i gle framework. For group-reuse, McKinley et al. consider
embedded systems. Cathoor et al. [4] show that data movethe classic case afmiformly generated referencgg], with
ments in the hierarchy is one of the main cause of energysmall restrictions. We propose to go beyond this case by op-
consumption. In this case, a cache miss reduction is alwaygimizing group-locality between non uniformly generated
a benefit. references when they are in different statements. In com-
While some parts of our method have high theoretical pensation, chunking processing is heavier than the McKin-
complexity at worst (code generator and parametrized lin- ley et al. algorithm.
ear programming solver have exponential complexities at Alternatively to these control centric techniques, Ko-
worst), the prototype seems to offer good performance. Thedukula et al. [10] propose a data centric approach that plans
reason is that the main parameters are loop nest depths antb act on data movementdirectly, rather than as a sideteffec
array dimension which are usually small numbers. To give of control flow manipulations. Our work shares many fea-
an idea, the chunking of a Cholesky factorization with 7 tures with [10]. Both papers are set in the framework of the
statements, a maximal loop nest depth of 3 and a maximalpolytope model, and aim at partitioning the code in pieces
array dimension number of 2 requires about 20 seconds orwhich are (almost) free of cache misses. Both techniques
the test machine. Most of the time is spent in Maple code transform the code by well known transformations (loop ex-
and we have many reasons to think that a better implemen-change, loop skewing...): the problem is not to inveetv
tation will significantly improve the prototype performanc transformations, but to find theght transformation for a
Nevertheless, the question of scalability remains, antl wil given program. There are however several important dif-

be tested on a larger benchmark suite. ferences. Kodukula et al. start from the following intuitio
once a datum has been brought into the cache, it is benefi-
6 Related work cial to execute all operations which access this datum. Our

approach is different since we start from an estimate of the
traffic and try to minimize it. In both cases we have to find a
transformation legal for dependences. But while Kodukula
et al. can just check if their transformation respects depen
dences, we have integrated the legality in the transfoomati
construction. Lastly, while Kodukula et al. use an arbitrar
array blocking, we show that significant improvements can
be obtained without blocking. Testing whether blocking can
improve our results is left for future studies.

The effort of research to create effective locality optimiz
ing compilers began with Wolf and Lam [16] and thdata
locality optimizing algorithm This algorithm applies uni-
modular transformations to loop nests in order to maximize
locality, according to evaluations of legal loop transfarm
tions relevance. Then it applies tiling [17] to the innermos
loops. In comparison, our approach is applicable to a wider
range of programs since in one hand we do not require per-
fect nests or nests such as they can be made perfect. And on .
the other hand because we do not require that dependenceé Conclusion
must have any simplified shape (Wolf and Lam algorithm
needs that the dependence vectors be lexicographicaly pos In this article, we have presented a method based on traf-
itive). Moreover, to make perfect loops and to tile imply fic evaluations for data locality improvement. It exhibits
severe control overhead while we minimize it thanks to an many advantages. First of all, the computed solution always
accurate code generation method. fulfills the memory requirements imposed. Next, it can be

Li [12] generalizes the framework of unimodular matri- applied to any static control slice of a program. Lastly,
ces [2] by using linear, non-unimodular transformations to there is no requirement on dependences and we compute
change the iteration space. We expect our algorithm will the space of all legal transformations directly. The method
find more accurate transformations in practice since Li's requires nothing besides the original code but the relative
transformation and dependence types are quite simple: thesizes of the cache and data.
transformations do not handle parameters and the only case First results are very encouraging and make us believe
discussed is the one where dependences are represented lilyat our technique is a new significant way to achieve
distance vectors. data locality automatically for a large amount of problems.

McKinley et al. [14] propose a technique based on a de- Moreover, chunking seems to be well adapted to several ex-
tailed cost model that drives the use of loop permutation, tensions and we plan to obtain even better theoretical and
fusion and distribution. They apply the basic transforma- practical results. We are currently working on tiling which
tions according to a definite order, while this strategy can seems to be the natural continuation of our approach. Intu-

problem array size (words) missdown (%)| speedup (%
running example 16K 99.1 (L1) 7
1M 99.9 (L2) 427
LU decomposition 80 x 80 79.3 (L1) 2
256 * 256 84.1(L2) 43
Cholesky factorization 80 x 80 70.3 (L1) 2
256 x 256 85.5(L2) 46
Gauss-Jordan 80 x 80 70.2 (L1) -13
256 x 256 93.1(L2) 26

Figure 6. Experimental results

itively, tiling is a question of aggregating small chunks or

splitting big ones. We are also working on a more accurate

solution for spatial locality improvement. A step in that di

rection is the work of Loechner, Meister and Clauss [13],
which is based on precise counting of memory accesses.
Lastly, we must deal with programs which have static con-

trol regions but do not have static continltoto. Locality

optimization have the nice property that there is no need of
applying it to far away statements, since the hope of having
reuse in this situation is very small. Hence chunking can

(8]

(9]

[10]

be applied locally, i.e. to loop nests or small subroutines, [11]

and there is no danger of an excessive compilation time.

Our method can be adapted to local memories (or software [12]

managed caches) at the price of more attention to footprint

layout.

References

(1]

(2]

[3] A. Barvinok.

(4]

(5]

(6]

(7]

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. SorensenLAPACK User’s Guide,
Third Edition SIAM, 1999.

U. Banerjee. Unimodular transformations of double Isop
pages 192-219, Irvine, august 1990.

A polynomial time algorithm for count-
ing integral points in polyhedra when the dimension is
fixed. Mathematics of Operations Resear®(4):769-779,
november 1994,

F. Cathoor, S. Wuytack, E. De Greef, F. Balasa, L. Naehter
gaele, and A. Vandecappell€ustom memory managament
methodology Kluwer Academic Publishers, 1998.

P. Clauss. Handling memory cache policy with integer
points counting. IrEuro-Par'97 European Conference on
Parallel Processingpages 285-293, Passau, august 1997.
S. Coleman and K. McKinley. Tile size selection usingteac
organization and data layout. ACM SIGPLAN’95 Confer-

ence on Programming Language Design and Implementa-

tion, pages 279-290, La Jolla, june 1995.
P. Feautrier.
erences. International Journal of Parallel Programming
20(1):23-53, february 1991.

Dataflow analysis of scalar and array ref-

[13]

[14]

[15]

[16]

[17]

[18]

P. Feautrier. Some efficient solutions to the affine saliag
problem, part I: one dimensional timiaternational Journal

of Parallel Programming21(5):313—-348, october 1992.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for @ch
and local memories management by global program trans-
formation. Journal of Parallel and Distributed Computing
(5):587-616, 1988.

I. Kodukula, N. Ahmed, and K. Pingali. Data-centric
multi-level blocking. INACM SIGPLAN’97 Conference on
Programming Language Design and Implementatjmemges
346-357, Las Vegas, june 1997.

D. Kuck. The Structure of Computers and Computations
John Wiley & Sons, Inc., 1978.

W. Li. Compiling for NUMA parallel machine$’hD thesis,
Cornell University, 1993.

V. Loechner, B. Meister, and P. Clauss. Precise datilyc
optimization of nested loopsJournal of Supercomputing
21(1):37-76, january 2002.

K. McKinley, S. Carr, and C. Tseng. Improving data |dtal
with loop transformationsACM Transactions on Program-
ming Languages and Systerii8(4):424-453, july 1996.

F. Quilleré, S. Rajopadhye, and D. Wilde. Generatién o
efficient nested loops from polyhedtiaternational Journal

of Parallel Programming28(5):469—-498, october 2000.

M. Wolf and M. Lam. A data locality optimizing algo-
rithm. In ACM SIGPLAN’91 Conference on Programming
Language Design and Implementatiquages 3044, New
York, june 1991.

M. Wolfe. Iteration space tiling for memory hierarchieln
3rd SIAM Conference on Parallel Processing for Scientific
Computing pages 357—-361, december 1987.

J. Xue. Transformations of nested loops with non-canve
iteration spacesParallel Computing 22(3):339-368, 1996.

