
Detection of Recurrences in SequentialPrograms with LoopsXavier Redon and Paul FeautrierLaboratoire MASI,Universit�e de Versailles-St. Quentin,45, Avenue des Etats-Unis,78000 Versailles, Francee-mail : redon@masi.ibp.fr, feautrier@masi.ibp.frAbstract. To improve the performances of parallelizing compilers, onemust detect recurrences in scienti�c programs and subject them to spe-cial parallelization methods. We present a method for detecting recur-rences which is based on the analysis of Systems of Recurrence Equations.This method identi�es recurrences on arrays, recurrences of arbitrary or-der and multi-equations recurrences. We explain how to associate a SREto a restricted class of imperative programs. We present a normalizationof such SRE that allows the detection of recurrences by simple inspec-tion of equations. When detected, a recurrence may be replaced by asymbolic expression of its solution. To iterate the process can lead to theidenti�cation of multi-dimensional recurrences.1 IntroductionOne of the most important challenges in present day computer science is thee�cient compilation of programs for the newly emerging massively parallel ar-chitectures. In contrast of the situation for the last generation of supercomputers,which were mostly vector processors with a moderate degree of parallelism, nowevery last ounce of parallelismmust be extracted in order to feed several hundredof vector microprocessors. It may be shown that potential parallelism exists assoon as the execution order of some operations may change without any conse-quence on the �nal result of the program. This kind of commutativity propertymay have two origins. The �rst one depends only on the pattern of use of memorycells. It is subsumed by Bernstein's conditions ([2]), and has been extensivelyexploited by present day parallelizing compilers. The second kind depends onalgebraic properties of the operators which appears in the computation. Thename \semantic parallelization" for the exploitation of these opportunities forparallelism has been coined by P. Jouvelot.Example 1. Consider for instance the computation of the sumPni=1 xi, its usualimplementation is s=0.DO i=1,ns=s+x(i)END DO



An ordinary parallelizing 1 compiler will say that this loop is sequential, due toa loop-carried dependence on s. As a consequence, the computation will take atime of the order of n. However, since addition is associative and commutative 2one may divide the summation into segments of length np (where p is the numberof processors) then add the partial sums in a time of the order of np + log2 p. Ifthe number of processors is very large (of the order of n) one may compute sin time O(log2 n). Most programming languages lack a notation for expressingcomputations like Pni=1 xi. The main exception is APL, in which the namereduction was introduced.It is thus seen that extracting expressions like the above sum from loopsis a very important task for a parallelizing compiler. This is usually done intwo steps. The �rst one consists in recognizing recurrences from their sequentialexpression. For instance the recurrence associated to the previous example is 3� s0 = 08i 2 IN�n; si = si�1 + xiThis is a purely algebraic task; it becomes very di�cult when the sequentialprogram gets complicated, and especially when arrays are involved. The secondstep consists in examining the recurrences to see whether the operators have therequired properties. This is a pattern recognition step, whose performance willdepend mainly on the size of the pattern base. Hence the interest of reducingthis size by normalization of the recurrences.The paper is organized as follows. The next section is a review of recent workson the subject. In section 3, we describe the basis on which our solution will bebuilt, namely the translation of a sequential program into a System of LinearRecurrence Equations. In section 4 we discuss the pattern-matching process anddescribe a normal form for SLRE. Section 5 describes the normalization pro-cess and give a necessary and su�cient condition for the existence of a normalform. Section 6 describes the �nal step of our analysis, that is multi-dimensionalrecurrences detection. The conclusion includes some informations on an imple-mentation of the method. In the interest of conciseness, most proofs have beenomitted. They may be found in full in [10].2 State of the ArtSome papers on reductions detection have already been published ([5] and [9]).The �rst presents a method based on symbolic stores and the last a methodbased on the dependence graph.1 some commercial compilers will recognize this form as an idiom and compile ite�ciently.2 if one neglects rounding errors.3 Let IN�n denote the set of natural integers f1; : : : ; ng.



2.1 Method Based on Symbolic StoresThe �rst step of this method is the analysis, by symbolic evaluation, of the bodiesof the innermost loops of the program. A pattern matching step is then appliedto the symbolic stores to recognize the reductions. Loop nests can be processedby propagation of the solutions of recurrences.The principal advantage of these methods is that a normalization of theprogram occurs during the computation of the symbolic stores. Thus a methodbased on symbolic stores is somewhat indi�erent to variations in the implemen-tation of the algorithm. As against this the fact that values are considered assymbolic items is a substantial disadvantage. Indeed such a method cannot fullyhandle arrays (e.g. a(i) and a(i0 + 1) are di�erent symbols but may representthe same array cell if i = i0 + 1). Therefore some recurrences on arrays cannotbe detected. Moreover the imprecision due to the symbolic analysis can lead towrongly replace a piece of code by a recurrence computation. To avoid this prob-lem one must use an heuristic method to select loop bodies on which it is safeto apply the reduction detection. Consequently more recurrences will be missed.2.2 Method Based on the Dependence GraphFor a detection of recurrences based on the Dependence Graph (DG) , one needsto represent loops. [9] presents a way to build such a DG. First, loops must beunrolled so as to reach normal form. A loop is in normal form when an iterationof the new loop uses only arrays cells and scalars computed in the same iterationor in the previous one. When the normal form is reached, a generic DG of theloop body is build. Since the loop is in normal form, the union of the DG ofthe initial iteration with the DG of an intermediate iteration and with the DGof the �nal iteration gives a DG for the whole loop. Then a pattern-matchingstep is applied to the loop DG, and for each sub-graph that involve recurrencean appropriate algorithm is generated.Such a method allows better detection (e.g. it detects some cross-recurrences).A disadvantage is that this method does not include any normalization. Thisnormalization must be done by classical transformations (e.g. substitution oftemporaries, scalar expansion, loop interchange, etc.). Therefore this step canhardly be done without human control. Moreover, since the pattern-matchingis applied to the whole graph, the time complexity increases quickly with theprogram size. Another limitation is that normal form for a loop exists only forthe case of uniform dependences.3 A New Method Based on SLRE Analysis3.1 MotivationThe methods presented in the previous section all have some weak points. Theseare due to the lack of precision of the program representation (symbolic stores)or to the absence of normalization. An intermediate representation of programs



by a System of Linear Recurrence Equations (SLRE) seems to be well adaptedto the detection of recurrences. Indeed, a program written in an imperativelanguage (e.g. FORTRAN) can be translated into a SLRE under certain usualassumptions (i.e. the Data
ow Graph of the program is computable, see below).Moreover we are able to normalize SLRE with a powerful tool: the forwardsubstitution.3.2 The Data
ow GraphIn order to translate the source program into SLRE, we use the algorithm de-scribed in [4] for computing the Data
ow Graph (DFG) of the source program.The DFG deals with operations. An operation is a pair build with an instruc-tion and an occurrence of the iteration vector of the instruction. (i;v) being anoperation, the DFG gives, for each reference to a scalar or array element in thisoperation, the source operation (that is the operation in which the scalar or thearray element is computed). When the DFG is build, it is easy to translate thesource program into a Single Assignment program by renaming and expansionof variables.Data
ow Analysis has been implemented, along the lines of [4] as part of thePAF project 4. The present software for reduction detection uses the result of thisanalysis. It has the same range of application as the Data
ow Analysis module:static control programs with linear subscripts (see [4] for more informations onthat point).3.3 Representation for SLREOur detection is based on SLRE, thus we must give a precise de�nition of suchsystems and �nd out a way to represent them. Some languages (e.g. the Al-pha language [8]) have already been designed to describe such equations. Alphavariables are spatial variables, i.e. triplets < D;�; V > where the function �associates to each point of the convex domain D a value in V . However, theAlpha notation has been designed more for automatic processing than for easeof use. Thus we prefer to deal with equations in the usual mathematical way.We will work with LRE equations of the formz 2 Di; Ui(z) = fi(U1(I1(z)); : : : ; Un(In(z))) ,assuming that (Ui)i2IN�n is the family of variables of the system. Moreover, weassume that Di is a bounded convex. The Ii are linear subscripts functions andthe functions fi are conditional functions such thatfi(x) = 8><>:Exp1i (x) if x 2 D1i...Expmi (x) if x 2 Dmi(The Expji are classical mathematical expressions and the Dji are bounded con-vexes). We say that fi is an m clauses expression.4 PAF is a French acronym standing for Automatic Parallelization of FORTRAN.



3.4 Overview of the MethodLike every method for the detection of recurrences, our method consists of threeparts. The �rst part is the conversion of the source program into SLRE. Thesecond part is the normalization of the SLRE and the last part is the applica-tion of a pattern-matching on the SLRE. We want the pattern-matching phase,which is quite time consuming, to be as e�cient as possible. Therefore, we applythe pattern-matching only on one equation at a time. But we want an e�cientmethod too, thus the normalization part try to break multi-equations systemsinto several systems with only one equation. Note that we are working withmulti-dimensional arrays and loops. We begin to detect the recurrences relativeto the highest dimension (i.e. the recurrences relative to the innermost loops).A detected recurrence is replaced by its symbolic solution and the analysis isapplied to the next dimension. This allows the detection of multi-dimensionalrecurrences, that is recurrences relative to several nested loops.4 Validity of Detection by Pattern-MatchingWe use pattern-matching for the detection of recurrences. This section shows onwhich conditions this must be done to be valid. First we give some de�nitionsabout equations systems and about systems graphs.4.1 De�nitionsIn this paper, we use de�nitions and results from graph theory. Our reference is[1]. First, we must precise the notion of equations system.De�nition1 equations system. An equations system S is a set of LRE equa-tions 5 such that8(e; e0) 2 S2; ve = ve0 ) De = De0 ^ 8z 2 De; Expe(z) = Expe0(z) .To point out the dependences between equations we build the system graph (thisgraph is a sub-graph of the Dependence Graph of the original program).De�nition2 system graph. Let S be an equations system, the graph of S(denoted by GS) is the graph whose vertices are the equations of S and whoseedges are the couples (e; e0) such that the variable ve0 appears in the expressionExpe.We need to introduce the notion of depth into our graphs.De�nition3 system p-graph. Let S be an equations system, the p-graph ofS (denoted by GpS) is a sub-graph of GS such that (e; e0) is an edge of GpS if andonly if there exists z 2 De and z0 2 De0 such that ve0 (z0) is used in expressionExpe(z) and p is the largest integer verifying z[1::p] = z0[1::p].5 We will assume that an LRE equation e has the form 8z 2 De; ve(z) = Expe(z).



4.2 Conditions of ValidityA naive method to detect recurrences in a SLRE is to scan all the clauses of theequations and compare them with a general pattern. But this syntactic criteriondoes not su�ce to characterize a recurrence. We need two additional conditions.First, the values needed for the computation of an element of the sequence mustbelong to the clause, except for the initial values of the recurrence. Second,the equation must not be part of a multi-equations recurrence. Indeed, in thiscase, a reference to an other equation can hide an auto-reference. A su�cientcondition is that, if we are detecting recurrences in respect to dimension l, thegraph Gl�1S does not have any cycle (except loops) which include the equation.This condition presents the advantage of being easily veri�ed.Now we can present a two level characterization of a recurrence. At theequation level we must �nd the recurrent clauses:De�nition4 recurrent clause. Let S be an equations system, e an equationof S and c a clause of Expe. The clause c is recurrent with order o and step kfor the dimension p if and only if c matches the following patternF (ve(�p;k(z)); : : : ; ve(�p;o:k(z))if z 2 Dce = fa1 � z1 � b1; : : : ; am(z1; : : : ; zm�1) � zm � bm(z1; : : : ; zm�1)gwhere the vectors �p;k0(z) are of the form�p;k0(z) = (z1; : : : ; zp; zp � k0; xk01 (z); : : : ; xk0m�p(z))and if and only if the images of Dce by the �p;k0 auto-reference functions areincluded in Dce except for the initials values of the recurrence.At the system level we must verify that equation level detection is valid:Proposition5 validity of pattern-matching. Let S be an ordered system, ean equation of S and c a clause of Expe. If c is a recurrent clause with order o,step k and propagation function F c for dimension l and if there is no cycle inGl�1S with length greater than or equal to 2 then c can be computed by a recurrencewith order o, step k and propagation function F c.5 System NormalizationThe aim of systems normalization is to allow pattern-matching to recognize amaximum of recurrences. So, the condition of validity from the previous sectionmust be ful�lled by a maximumof clauses. Therefore, we want to transform eachsystem into a reduced one (i.e. a system whose graph does not have any cycle oflength greater than 1). To be sure that the transformed system is equivalent tothe original one we will use only forward substitution as a transformation tool.First, we de�ne the notions of substitution and transformation. Then wepresent the conditions on which a system can be transformed into a reducedone.



5.1 De�nitionsLet us formalize the usual process of substitution in equations systems. Let eand (ei)i2IN�n be LRE equations. We denote by e � fe1; : : : ; eng the equation ein which all references to the variables (vei)i2IN�n are simultaneously replaced bytheir respective expressions (i.e. the (Expei)i2IN�n).Our elementary transformation is the action of replacing one or more equa-tions in a system S by new equations of the form e� S0 where e is the originalequation and S0 is a sub-system of S.5.2 Criterion for System ReductionThe aim of this sub-section is to �nd the conditions on which a system is reducible(i.e. there exists a sequence of transformations such that the resulting system isa reduced system).Proposition6 reduction of a strongly connected system. Let S be astrongly connected system 6. Then S is reducible if and only if the cycles of GShave a common vertex.In fact, when detecting recurrences with respect to the dimension l, the ful�ll-ment of the validity condition only requires the reduction of the (l � 1)-graphof the system. Therefore we just need to verify that the cycles of Gl�1S have acommon vertex. This criterion stands only for strongly connected systems. Inthe case of an arbitrary equations system one must try to reduce the systemstrong components. If each component is reducible then the system is reducible.5.3 An Algorithm for NormalizationThis section presents an e�cient algorithm to reduce a system.Algorithm7 algorithm A. let S be a strongly connected system.Initialization:S0 = C0 = SPropagation:If there exists, In set Ci, an e0i only referenced by eiThen /* Replace ei by ei � e0i and remove e0i from Ci */Si+1 = (Si � feig) [ fei � e0igCi+1 = (Ci � fei; e0ig) [ fei � e0igElse /* End of normalization */Si+1 = SiCi+1 = CiEndIf.We denote by i�nal the smallest i such as Si+1 = Si. It is of no use to computethe sequence ((Si; Ci)) beyond i�nal.6 A strongly connected system is a system whose graph is strongly connected. In thesame way a strong component of a system is the vertex set of a strong componentof the system graph.



For each strongly connected system S, this algorithm builds a system Sifinal . IfS is reducible, Sifinal is a reduced system. Moreover the complexity of A is linearin relation to the number of vertices of S. All these a�rmations are proved in[10].6 Symbolic Solutions for RecurrencesThe major di�culty when detecting recurrences in a SLRE system is to dealwith multi-dimensional sequences. We must detect recurrences relative to all di-mensions. Moreover some recurrences can be relative to two or more dimensions.The �rst step to solve these problems is to detect recurrences from inside out-ward. The second step is to replace the clauses which represent a recurrence byits symbolic solution.We can draw an analogy with di�erential equations: an equation dy = f(x)dxmay not have an algebraic solution but we always can say that y is equal toy = R f(x)dx. The equation is not solved but we can work with y, for instancereplace it by the integral in an expression. The symbol used to write a symbolicsolution of a recurrence (i.e. the counterpart of the integral symbol) is called therecurrence operator.We can summarize the algorithm of reduction detection by the following.Algorithm8. Let S be a SLRE system extracted from an imperative programand let D be the maximal dimension of equation domains.For p=D � 1 Downto 0 Dop-reduce the system S.Recognize recurrences relative to the dimension p+ 1 and replacethem by a symbolic solution.DoneIn the �nal system, compose recurrence operators to obtain multi-dimensional recurrences.6.1 Recurrence OperatorDe�nition9 recurrence operator. An expression build with the recurrenceoperator is of the following form.Recur( (o; k); f(l; �i1 : : : il�1:�; �i1 : : : il�1:�)g;�i1 : : : ilx1 : : :xo:f; (�i1 : : : il:gs)s2[1;o]) . (1)Let us give the meaning of the di�erent terms: o is the recurrence order, k isthe recurrence step (see section 4.2). The recurrence is relative to dimension l,must iterate between the lower bound � and the upper bound �, its propagationfunction is f and the initial values are the (gs)s2IN�o .It is easy to rewrite a recurrent clause with the recurrence operator.



Example 2. For instance, the symbolic solution of the Fibonacci sequence24 u0 = 1u1 = 18i 2 IN� f0; 1g; ui = ui�1 + ui�2is24 u0 = 1u1 = 18i 2 IN� f0; 1g; ui = Recur((2; 1); f(1; 2;1)g; �ixy:x+ y; (�i:1; �i:1))(i)Example 3. Let us process the following program to show how our method handleuni-dimensional recurrences.x(0)=0 (Ins1)DO i=1,2*nsave(i)=x(2*n-i+1) (Ins2)x(i)=x(i-1)+save(i) (Ins3)END DOThe corresponding system is26648i 2 IN�2n; Ins2i = �x2n�i+1 if i � 1 ^ i � nIns32n�i+1 if i � n+ 1 ^ i � 2n8i 2 IN�2n; Ins3i = � Ins21 if i = 1Ins3i�1 + Ins2i if i � 2 ^ i � 2n(note that replacing the array reference save(i) by a scalar reference to save ininstructions Ins2 and Ins3 would lead to the same system). The 0-graph of thissystem is not reduced, so the system must be normalized. Let us assume thatthe algorithm A choose to replace Ins2 by its value in Ins3 expression. The newsystem (Ins2 become useless and is removed) is248i 2 IN�2n; Ins3i = 8<:x2n if i = 1Ins3i�1 + x2n�i+1 if i � 2 ^ i � 2nIns3i�1 + Ins32n�i+1 if i � n+ 1 ^ i � 2nThe �nal system (after recurrence detection) is266666648i 2 IN�2n; Ins3i = 8>>>>>><>>>>>>:Recur( (1; 1); f(1; 1; n)g;�i1y:y + x2n�i1+1; (�i1:0))(i)if i � 1 ^ i � nRecur( (1; 1); f(1; n+ 1; 2n)g;�i1y:y + Ins32n�i1+1; (�i1:Ins3i1�1))(i)if i � n+ 1 ^ i � 2nApplying some algebraic transformations on the �nal system give us the follow-ing result: Ins3n = nXi=1(n � i + 2)x2n�i+1 .



Hence the original program may be useful to compute a discrete random variableexpectation. Moreover this sequential program is e�cient since no multiplicationis used. Note that classical methods do not handle this example. Indeed, thedependence i ! 2n � i + 1 prevent loop normalization as presented in [9] andcannot be exploited by symbolic analysis.The recurrence operator is designed to allow substitutions, but some precau-tions must be respected. We distinguish two kinds of substitution in presence ofrecurrence operators.The �rst kind is substitution by a recurrence operator. Since an expressionbuild with such an operator is independent of the domain of its clause, thisexpression can be moved anywhere. Thus substitution by a recurrence operatoris always valid. But since detection of recurrences is done in order to reducecomputation time, we must not duplicate the symbolic solution of a recurrence.Therefore this kind of substitution will be allowed only if the symbolic solution isreferenced once. As a result we will not be able to reduce some reducible systemssince some substitutions are forbidden.The second kind of substitution is substitution into a recurrence operator.In an expression of the form Recur(a; b; c; d) the only terms in which doingsubstitutions make sense are c and d. A substitution in term c may lead tobreak the expression into severals symbolic solutions. There is no advantagein doing that, because we must re-compute the initial terms and because thenew expressions must be computed sequentially, therefore the time complexityincreases. But substitutions in term d are valid and useful. They do not involvemodi�cation in the other terms and they are necessary for multi-dimensionalrecurrences detection.6.2 Multi-Dimensional RecurrencesAs shown in algorithm (8) multi-dimensional recurrences are build in a �nalstage of recurrence operators composition. We �rst extend the de�nition of therecurrence operator to deal with multi-dimensional recurrence. Then we provethat, on certain conditions, two interlocked recurrence operators are equivalentto a recurrence operator with higher dimension.De�nition10 extension of the recurrence operator. An expression buildwith a recurrence operator can also have the following form (the sequence ofnatural numbers (ls)s2IN�n is a strictly increasing one):Recur( (1; 1);f (l1; �i1 : : : il1�1:�1; �i1 : : : il1�1:�1); : : : ;(ln; �i1 : : : iln�1:�n; �i1 : : : iln�1:�n)g;�i1 : : : ilnx:f; (�i1 : : : iln :g)) . (2)All the remarks of the previous sub-section about the incidence of the recur-rence operator on equations substitution remain true with this new de�nition.Now we give the rule of composition for recurrence operators.



Proposition11 composition of recurrence operators. Let R be a valid ex-pression which have the following formR = Recur( (1; 1); f(l1; �1; �1)g;�i1 : : : il1x:�j1 : : : j!:Recur( (1; 1); f(l2; �2; �2); : : : ; (ln; �n; �n)g;f; (�k1 : : :kln :x �0(k1 : : : kln))) i1 : : : il1 �(i1; : : : ; il1 ; j1; : : : ; j!);(�i1 : : : il1 :�j1 : : : j!:(h i1 : : : il1 ))) ,where � is a map from INl1+! to INln�l1 and �0 a map from INln to IN!. Ifthe expression f does not contain any symbol x and if the following condition isful�lled 8I 2 INln ; Il2 = (�2 I1 : : : Il2�1)� 1�(I1 : : : Il1�1(Il1 � 1); �0(I)) = maxl2 (I1; : : : ; Il1�1; Il1 � 1; Il1+1; : : : ; Iln ) ,where maxlr is de�ned by recurrence: 8z 2 INln ; 8l 2 IN�ln ;maxlr (z)l = ��l maxlr (z)1 : : :maxlr (z)l�1 if l 2 flr ; : : : ; lngzl otherwisethen R is equivalent to�i1 : : : il1+! :Recur( (1; 1); f(l1; �1; �1); : : : ; (ln; �n; �n)g;f; (h)) i1 : : : il1�(i1; : : : ; il1+!) .Example 4. To illustrate the detection of multi-dimensional recurrences let us processthe following programs=0 (Ins1)DO i=1,nDO j=1,ms=s+a(i,j) (Ins2)END DOEND DOFirst we compute the system of the program"8(i; j) 2 IN�n � IN�m; Ins2i;j = ( Ins2i;j�1 + ai;j if j > 1Ins2i�1;m + ai;j if j = 1 ^ i > 10 + ai;j if j = 1 ^ i = 1The 1-graph of the system is reduced, that allows us to detect recurrences relative tothe second dimension. The system becomes:8(i; j) 2 IN�n � IN�m;Ins2i;j =8><>:Recur((1; 1); f(2; 2; m)g; �i1i2x:x+ ai1 ;i2 ; (�i1i2:Ins2i1;i2 ))(i; j)if j > 1Ins2i�1;m + ai;j if j = 1 ^ i > 10 + ai;j if j = 1 ^ i = 1



Then, we replace si1;i2 by its value in the �rst clause. Thus the system is now:8(i; j) 2 IN�n � IN�m;Ins2i;j =8><>:Recur((1; 1); f(2; 1; m)g; �i1i2x:x+ ai1 ;i2 ; (�i1i2:Ins2i1�1;m))(i; j)if j > 1 ^ i > 1Recur((1; 1); f(2; 1; m)g; �i1i2x:x+ ai1 ;i2 ; (�i1i2:0))(i; j)if j > 1 ^ i = 1Since the 0-graph of this new system is reduced, we can detect recurrences relative tothe �rst dimension:8(i; j) 2 IN�n � IN�m;Ins2i;j =8>>>>><>>>>>: Recur( (1; 1); f(1; 1; n)g;�j1y:�j2:Recur( (1; 1); f(2; 1;m)g;�i1i2x:x+ ai1 ;i2 ;(�i1i2:y(m)))(j1; j2);(�j1j2:0))(i; j)if j > 1 ^ i > 1In such a system the composition of recurrence operators is valid. The �nal system is:8(i; j) 2 IN�n � IN�m; Ins2i;j =8><>: Recur( (1; 1); f(1; 2; n); (2; 1; m)g;�i1i2x:x+ ai1 ;i2 ;(�i1:0))(i; j)if j > 1 ^ i > 16.3 Comparison to Other Recurrence OperatorsSome other recurrence operators already exist, namely the reduction operator inthe Alpha language (see [6]) and the scan primitives also known as parallel pre�xoperations (see [3]). However we have introduced our own recurrence operatorfor the following motives. The Alpha operator is an operator on un-ordered setof values, which is thus restricted to reduction by associative and commutativeoperators. It only gives the �nal result of the reduction, while we need the partialresults since they can be used in the original program.Example 5. For instance the following expression build with the Alpha operatorred(+, (i,j -> ), fi,j | 1<=i<=n; 1<=j<=mg : a)which computes the sum Pni=1Pmj=1 ai;j can be rewritten with the recurrenceoperator: Recur((1; 1); f(1; 1; n); (2;1;m)g; �ijx:x+ ai;j; (�ij:0))(n;m)But the set of values(Recur((1; 1); f(1; 1; n); (2; 1;m)g; �ijx:x+ ai;j; (�ij:0))(i; j))(i;j)2IN�n�IN�mcannot be expressed with the red operator.



The scan primitives are more adapted since they use ordered sets and compute allthe terms of the recurrence. Indeed the one-dimensional form of our recurrenceoperator and the scan primitives are very similar.Example 6. The expressions8i 2 IN�n;Recur((1; 1); f(1; 1; n)g; �ix:x+ ai; (�i:0))(i)and scan(+; [a1; : : : ; an])compute the same vector [s1; : : : ; sn] with si =Pik=1 ak.But scan primitives are designed to describe one-dimensional recurrences. It ispossible, by a change of variables, to transform any multi-dimensional recurrenceinto a one-dimensional one. However, when doing this, the subscripts functionsbecome non-linear and the di�culty of system analysis increases.7 ConclusionIn summary, our method of recurrences detection, when compared with othermethods, presents the following advantages: our method is based on the DFGstructure which allows us to fully handle arrays. Moreover, the representation ofprograms as equations systems give us a way to perform a strong normalization.As a consequence the detection is not sensitive to the algorithm implementation.Lastly the introduction of the recurrence operator allows us to detect multi-dimensional recurrences.Note that conditionals can be easily handled by our method: the structuralones (i.e. conditionals whose predicate is a positive form, linear in the loopcounters and parameters of the program) are inserted in the DFG structure.The non structural conditionals are transformed into guarded instructions.We have realized an implementation of this method in Lisp (the size of thisimplementation is about 5000 lines). The program is mostly a symbolic manipu-lation of conditionals equations. These equations are de�ned on convex domains.As a consequence the forward substitutions leads us to deal with convex intersec-tions and convex simpli�cations. The easiest way to simplify a convex is to usean algorithm for computing its vertices, like Chernikova's algorithm. We wouldlike to thank H. Le Verge and D. Wilde for allowing us to use the particularimplementation they developed at IRISA ([7]).Due to the e�ectiveness of this algorithm the �nal systems (after recurrencesdetection) have a reasonable size (less than ten clauses per equations for smallexamples). Moreover the �nal systems are simpli�ed by the elimination of use-less equations. The execution time is function of the initial system complexity.Thus sample programs with classic uni-dimensional recurrences are processedquickly (a few seconds on a low end workstation). When composition of sym-bolic solutions of recurrences is necessary the execution time increases. Thereforea program computing a double sum needs 30s to be analyzed and we need 60s



to process a triple sum program. The decomposition of the system into strongcomponents allows us to deal with medium sized programs. But a real size pro-gram should be �rst analyzed by a front end program that �nds out the portionsof code where recurrences have to be detected.The directions for future work are the following: since special recurrences canbe implemented more e�ciently than others in present day super-computers (i.e.reductions), we must point them out. Thus a dedicated pattern-matching phasemust be developed. Moreover, in order to use the detected recurrences for parallelprogram construction, we plan to compute a schedule for the generated system(where recurrences are detected). Some adaptations to existing schedulers areneeded since our symbolic solutions of recurrences may use unbounded fan-inoperations.References1. C. Berge. Graphes. Gauthier-Villars, 1987.2. A.J. Bernstein. Analysis of programs for parallel processing. IEEE Trans. on El.Computers, EC-15, 1966.3. G.E. Blelloch. Scans as primitive parallel operations. IEEE Trans. on Computers,38(11):1526{1539, 1989.4. Paul Feautrier. Data
ow analysis of scalar and array references. Int. Journal ofParallel Programming, 20(1):23{53, February 1991.5. Pierre Jouvelot and Babak Dehbonei. A uni�ed semantic approach for the vec-torization and parallelization of generalized reductions. In Procs. of the 3rd Int.Conf. on Supercomputing, pages 186{194. ACM Press, 1989.6. H. Leverge. Reduction operators in alpha. In D. Etiemble and J.-C. Syre, editors,Lecture notes in Computer Science No 605, pages 397{411, 1992.7. Herv�e Leverge. A note on chernikova's algorithm. Technical Report 1992, INRIA,May 1992. R�ef�erence �a v�eri�er.8. Christophe Mauras. Alpha : un langage �equationnel pour la conception et laprogrammation d'architectures parall�eles synchrones. PhD thesis, Universit�e deRennes I, December 1989.9. Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelizationusing idioms. In POPL'91, 1991. to appear.10. X. Redon. D�etection des r�eductions. Technical Report MASI 92-52, Institut BlaisePascal, September 1992.
This article was processed using the LaTEX macro package with LLNCS style


