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Abstract

This paper investigates a new algorithm for solving systems of
linear inequalities in the presence of integer parameters. The applica-
tions are to various problems in the analysis of scientific programs. We
give methods for computing dependences, for data-flow analysis and
for several code generation questions. These techniques all are rele-
vant to the automatic and semi-automatic construction of programs
for parallel and vector super-computers.

1 Introduction

It is a well known fact that scientific programs spend most of their running
time in executing loops operating on arrays. Hence if a restructuring compiler

*e-mail : Paul.Feautrier@prism.uvsq.fr



is to be a success, it must be able to do a very thorough analysis of the
adressing patterns in such loops. If taken in full generality, the problem
is intractable. In this paper, we delimit a class of programs for which this
analysis is possible: programs with so-called static control and linear indices.
There are reasons to believe that a large proportion of all numerical programs
belongs to this class, and that many more may be converted to this form by
appropriate preprocessing. The analysis of adressing patterns in this class
may be reduced to the solution of parametric systems of linear inequalities
in integers, for which we have devised an efficient algorithm in [Fea88b].

The first problem we will explore is the calculation of the data depen-
dence relation. Beyond the construction of the dependence graph as used
for instance by [Kuc78] or [AK82], our technique gives a precise criterium
for loop interchange and allows the exact computation of direct dependences
as defined in [Bra88]. In favourable cases, such dependences are regular and
may be described by a set of vectors which spans the dependence cone [Iri87].

We will then study data-flow analysis; here, our aim is to find the source of
the values which are used at each stage of the computation. Such information
is very useful for array expansion [Fea88a], for verifying program correctness,
etc.

Lastly, we will show how to solve the problem of enumerating the integer
vectors which lies inside a polyhedron. This technique may be applied to
code generation problems (loop interchange, supernode construction, etc.)
and to memory management problems.

1.1 Notations

Notwithstanding the fact that most parallelizers use Fortran as a source
language, all examples here will be given in Pascal.

Bold letters will denote vectors or vector valued functions; |a| is the
dimension of vector a. a[i..j] is the subvector of a built from components ¢
to j. af¢] is a shorthand for afi..z]. Familiar operators and predicates like +
and > will be tacitly extended to vectors. The sign < will denote lexical
ordering of integer vectors. The remainder operator will be written as % in
the C fashion. Large letters will usually denote sets; N will be the set of
non-negative integers. If A is a matrix, A;; will be its generic element, A;,
its generic row and A,; its generic column.



2 The program model

In this chapter, we delimit the set of programs to which our methods are
applicable. We will distinguish in the sequel between instructions, which
are syntactical parts of the program text, and operations which are actions
inducing modifications of the computer store. Most often, an instruction will
be executed several times, giving rise to as many distinct operations.

2.1 Static control programs

To recognize a static control program, one must first identifies its structure
parameters: a set of integer variables which are defined only once in the
program, the defining value depending only on the outside world (throught
an input instruction) or on other already defined structure parameters.

Secondly, when the structure parameters are known, one must be able to
enumerate the operations which will be executed when the program is run.
It the program uses only if-then-else, for loops and procedure calls as
control instructions, this imply that the predicate of an if or the bounds
of a for loop may depend only on structure parameters and enclosing loop
counters, and that the same restrictions should apply to all procedures. In
the sequel, we will consider the special case where for is the only control
instruction. Many programs may be brought to this form by preprocessing;
the case of the while loop is an important exception and will be the subject
of future studies. In a program in which the for loop is the only control
instruction, naming an operation is easy; one only has to give the name
of the instruction of which the operation is an instance, and the values of
the surrounding loops counters. Such a tuple forms what we have called in
[Fea88a] an (operation) coordinate.

2.2 Linearity conditions

The techniques we have devised are applicable only to linear problems. To
be able to use them, we will suppose that our object programs obey the
following restrictions:

e The loop bounds are integral affine functions of the structure param-
eters and of enclosing loop counters. This insure that the loop body



is executed for all integer vectors inside a polyhedron whose equations
are easily retrieved from the program text; if {r,a} is the coordinate
of an operation which belong to a given loop nest, the constraints on
a will be written:

e(a)>0 (1)

where e, is an affine function of a. (1) is the existence predicate of
operation {r,a}.

e The indices of arrays are affine functions of the surrounding loop coun-
ters and the structure parameters.

As is customary, we will suppose that all arrays are non overlapping and
that all indices are within the array bounds.

2.3 The sequencing predicate

When given two coordinates {r,a} and {s,b}, knowing which one will be
executed first is an important information. We have shown in [Fea88a] that
if N, is the number of loops which enclose both r and s, and if T}, is true
iff r precedes s in the text of the program, then the execution order of {r,a}
and {s,b} is given by the sequencing predicate:

{r.a} < {s,b} = a[l..N,,] < b[L..N,,] V (a[L..N,,] = b[L.N,,] A T)). (2)

This is not linear, but may be split into N,; + 1 linear predicates by
replacing the lexicographical order by its familiar definition. The sequencing
predicate at depth p, (p =0, N,s — 1) is:

{r,a} <, {s,b} =a[l..p] =b[l.p] Aa[p+ 1] < b[p+ 1], (3)

while the version for p = N,, is:

{r,a} <, {s,b} = a[l..N,;] = b[l..N,s] A T,;. (4)

When dealing with program transformations, we will select one particu-
lar coordinate system which will remain fixed. The transformations will be
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seen as modifications of the sequencing predicate. The distinguished coordi-
nate system will usually be the one associated with the original sequential
program.

We will use as example, in the sequel, the following version of the Gauss-
Jordan elimination algorithm (declarations omitted):

read(n);
fori := 0 to n do
begin
for j := 0 to 1-1 do
fork := i+1 to i+n do
{1} a1[j,k] =ay[j,k] - azli,k] * ay[j,i] / as[i,i];
for j := 1i+1 to n do
for k := i+1 to i+n do
{2} aglj,k] =ar[j,k] - agli,k] * aglj,il / ajoli,il;
end

We have indexed all references to a in the interest of clarity. n is the only
structure parameter. The existence predicate for instances of instruction 1
is:

e(t,7,k)=(0<i<m)AN0<j<i—1)A(+1<k<n)
The sequencing between an instance of 1 and an instance of 2 is given by:
{177:7].7 k} _< {277:/7]./7 k/} = Z < 7:/ \/ Z = il?

since Ni3 =1 and T}, = true .

3 The dependence computation

The above version of the sequencing predicate defines a total order, and, as
such, reflects only the execution of a sequential program. Now, there are
many parallel architectures and many styles of parallel programming. To
each such style corresponds a particular structure for the sequencing predi-
cate. In macrotasking style, the sequencing predicate is total for operations
which belong to the same task, and is explicitly given by a finite dag for



different tasks. In a synchronous machine (a SIMD or VLIW machine or
a systolic array ), there is a timing function 7' (which may be extracted
from the program or microprogram text) giving the date of execution of any
operation; the squencing predicate is simply:

r=<y="T(x)<T(y).

In general, the result of a computation depends on both the set of oper-
ations and the sequencing predicate. In most programs, however, there is a
certain degree of freedom: the result is the same as the sequential one as long
as certain operations are properly ordered. Two operations are dependent
if their original sequencing must not be modified for the program to give
the proper result. The dependence relation is a preorder and its transitive
closure is the coarsest sequencing predicate such that the parallel program
gives the same result as the sequential one.

Parallelization, may be seen as a two step process:

1. Determine the dependence relation;

2. For a given architecture (and hence for a given class of sequencing pred-
icate) find the coarsest sequencing which is finer than the dependance
relation.

Here again, the calculation of the true dependence relation is a very dif-
ficult task, which may involve complicated mathematical problems. Most
often, one computes only the syntactical dependence relation, which is given
by [Ber66] conditions.

3.1 The basic techniques and some extensions

By Bernstein’s conditions, two operations are dependent if they access at
least one common memory location, and one of these accesses is a write.
Dependences may be classified according to the position of the write oper-
ation. If the write is executed first, one has a Producer-Consummer (PC)
dependence. If executed last, one has a Consummer-Producer (CP) depen-
dence, and finally a Producer-Producer (PP) dependence if both operations
are writes. In general, the set of locations which are accessed by an opera-
tion depends both on the corresponding instruction and the current memory



state, throught the value of indices and pointers. In our program model,
the situation is much simpler because the influence of the memory state is
summarized by the values of the loop counters as embodied in the operation
coordinates. Let A[f(a)] and A[g(b)] be two references to array A by oper-
ations {r,a} and {s,b} . These array elements refer to the same memory
location iff:

f(a) = g(b). (5)

The dependence is from r to s iff:

{r,a} < {s,b}. (6)

Finally, {r,a} and {s,b} are valid coordinates iff:

e.(a) > 0Aeyb)>0. (7)

Formulae (5) to (7) give a complete specification of the dependence re-
lation of the object program. (5) and (7) are systems of linear constraints.
If one goes back to (3), one sees that (6) splits into N, + 1 different linear
systems. Each such system starts with p equalities (p = 0,..., N,;) and gives
rise to the depth p dependences according to the definition of [AKS82].

3.1.1 Computing the dependence graph

For most parallelization or vectorization algorithms, one is interested only in
the existence of at least one dependence between r and s at a given depth
p. This is equivalent to deciding whether (5)—(7) has solutions in integers.
This may be done by several integer programming algorithms, which were
pioneereed by Gomory ([Gom63]). This technique is used in the parallelizer
PAF ([TDF8T7]); a variation has been proposed in [Wal88].

In the computation of dependences, wrong decision are harmless (at least
with respect to program correctness) provided they are always taken con-
servatively: deciding there is a dependence when in fact there is not. This
remark may be applied in several ways:

e One may solve (5)—(7) in rationals by the Fourier-Motzkin elimination
algorithm or by the simplex method;



e If the indexing function and/or loop bounds contains non-linear terms
or variables beyond the loop counters, one may consider them as sup-
plementary unknowns in the resolution process in the manner of [L'T88].

o Lastly, one may use approximate decision methods like [Ban79] tests.

The Gauss-Jordan example contains some eighty potential dependences.
Most of these are proved spurious by our technique. The remaining 18 real
dependences are all at depth 0.

3.1.2 Loop Interchange

When restructuring a perfect loop nest for parallel or vector execution, one
is often interested in deciding whether two loops (say at level ¢ and ¢ 4 1)
may be interchanged. In accordance with a remark at the end of 2.3, this
transformation will be seen as a modification of the sequencing predicate. In
this case, let s be the loop body; two executions of s are sequenced according
to:

{s,a} < {s,b} =a < b, (8)

After interchange, the new sequencing predicate <., is given by:

{s,a} <. {s,b} = Piipia < P b, (9)

where P;;4q 1s a permutation matrix. Now, this transformation will be
correct if all operations whose execution order is reversed:

{s,a} < {s,b} A {s,a} <. {s,b},

or

a<bA Pi,i-l—lb < Pm'Ha, (10)

are independent. Let k be the leftmost place at which a differs from b. It
is easy to see that for all value of & with k = ¢ excepted, (a < b) and
(Piiy1b < P,;11a) have the same value. Hence & = ¢ and the critical
operations are given by:

a[l..i—1] = b[l..i — 1],a[i] < b[i],b[i + 1] < a[i + 1].



We conclude that loops ¢ and ¢ + 1 may be interchanged if there is no
dependence at depth ¢ — 1 which satisfies the added constraint b[¢ + 1] <
afi + 1]; this is again a linear inequality problem. This criterium for loop
interchange is more comprehensive than the one of [AK84], since it does not
depends on the possibility of defining direction vectors. Note that if there
are no dependences at depth 7, the criterium above is trivially satisfied, and
loop 7 is parallel. This result gives the following corollary ([PK87]): a perfect
loop nest may always be rewritten with the sequential loops outermost. The
reasoning may be extended to non-consecutive loops and to other kinds of
loop restructuring (e.g. the choice of a timing function for a systolic array).

3.2 Direct dependences

The dependence relation often contains redundant edges, i.e. edges which
could be regenerated by transitivity. It would be interesting to eliminate all
such edges, but this is a quite difficult problem. A first step in this direction
is the determination of direct dependences, a notion which was introduced
in [Bra88]. Remember that the dependence relation is the union of all sets:

Q(T,S,A,p) = {< {T, a}v {va} > | f(a) = g(b)v (11)
{r.a} <, {s, b},
e, (a) > 0,e5(b) >0}

for all instructions r, s and all depths p not greater than N,; and all array

references A which are modified in at least one of r and s. The direct depen-

dences are obtained simply by removing all redundant edges from Q(r, s, A, p).
Theorem D The set of direct dependences in Q(r, s, A, p) is given by:

D(r,s,A,p) = {<{r,K(b)},{s,b} > |es(b) > 0}
where
K(b) = < maxF(b), (12)
F(b) = {alf(a) =g(b),{r,a} <, {s,b},e,(a) > 0},
if the dependence is PC, and:
D(T,S,A,p) = {< {T, a}v {SvK(a)} > |e7“(a) > 0}
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where

K(a) = < minF(a), (13)
Fla) = {blf(a) =g(b),{r,a} <, {s,b},e,(b) = 0},

if the dependence is PP or CP.

The proof is easy if one notice that, e.g., if {r,a} and {r,a’} both are
in PC dependence with {s,b} and a < a’ then {r,a} and {r,a’} are in
PP dependence and the result follows by transitivity. The computation of
K(a) is no longer a simple integer programming probleme. The reasons are
twofold:

e The feasible set F(a) is not constant: it depends on integer parameters
a and may even be empty for some values of these parameters. We are
interested in the solution as a fonction of a. One may remark also that
the parameters are not entirely arbitrary: the solution is interesting
only if a satisfies the existence predicate e,.

o The elements of the feasible set are not ranked according to a linear cost
function, as is customary, but according to the lexicographical order,
<.

The problem may be solved by an extension of Gomory’s algorithm, the
Parametric Integer Programming (PIP) algorithm of [Fea88b]. A short de-
scription may be found in the appendix; the algorithm may be adapted to
cope with the computation of the lexical maximum, and for the elimination
of one or more variables from a system of constraints.

3.3 Dependence vectors

In the general case, the solution of a PIP is a multilevel conditional with
quasi-affine predicates and values. The dependence is said to be regular if
K(b) is a conditional whith one leaf of the form b+ d (d a constant vector)
all other leaves being (). The vectors d which are constructed in this way are
dependence vectors in the sense of [Lam74]. In fact, from the way they are
constructed, they are the generators of the dependence cone as defined in
[[ri87]. Dependence vectors are important for the application of algorithms
such as the wavefront method [Lam74], for loop partitioning ([Iri87]) and for
the automatic construction of systolic arrays ([Qui88]).
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In the Gauss-Jordan example, reference 6 generates by itself a PP depen-
dence for which the K function is:

if (k—0—2>0)if (j—¢—2>0)(t+1,j,k)else 0)else 0,

which is regular with the dependence vector (1,0,0). On the other hand,
references 6 and 5 give rise to a PC dependence for which K is (¢ — 1,4,4),
which is not regular.

4 Data flow analysis

The aim of data flow analysis is to keep track of the values which are gener-
ated in the course of the calculation, in contrast to the program itself which is
written in term of memory locations. The first step in the analysis is to give
a name to each value. We will suppose that all instructions in our language
produce one and only one value: a value may be named by the coordinate of
the generating operation. The main problem is how to find the name of the
values which are used in the right hand side (rhs) of instructions.

4.1 The source computation

A partial answer is given by the results of 3.2. If the source is reference ¢ in
the left hand side (lhs) of instruction r, then r and s are in PC dependence,
and the source is the latest such operation, i.e. the one which produce the
direct dependence from r to s. To each depth p and each possible source 2
in instruction s; is associated a function K, which is defined by 12. This
function is easily converted to a coordinate by inserting instruction names at
appropriate places. What we need is an algorithm to compute the maximum
of these sources according to the sequencing order, <. The solution is given
by the following set of rewrite rules:

< max(z, () => z,
~< max(if (p)zelse y,z) => if (p) < max(z, z) else < max(y, z),

< max({r,a},{s,b}) =1if ({r,a} < {s,b}){s,b}else {r,a},

11



and their symmetric counterparts. Note that a direct dependence is in
the form of a quasi-affine selection tree. One may see that when starting
from such initial data, the rewriting process always terminate, and that the
result is again in the correct format. Most often, the result may be further
simplified by checking the compatibility of the predicates along each branch
of the tree, again by using linear integer programming, and by applying the
rule:

if (v)yelse y => y.

Let us consider reference 2 in the example. There are two possible sources,
references 1 and 6. A straightforward application of the above rewriting rules
gives a tree with five leaves. Two of these are eliminated by the compatibility
test or otherwise simplified, and the final result is:

if(1—j7—2>0){1,i—1,j,k}elseif (j —1>0){2,5 — 1,7, k} else 0.

4.2 Total expansion

A knowledge of the source of each value in a computation allows one to solve
various problems connected to scalar and array expansion and renaming. All
such transformation consist in modifying some or all lhs references with the
aim of removing PP and CP dependences. ”"Evaluating” a source is the pro-
cess of replacing in its leaves all operation coordinates by the corresponding
lhs. After one or more references have been expanded or renamed, all rhs
references which are in PC dependence with at least one modified lhs must
be replaced by the evaluation of their sources in the modified context.

For instance, if in the above Gauss-Jordan program, reference 1 is changed
to a1li,j,k] and 6 to a2[i,j,k], then reference 2 becomes!:

if(i-j-2 >= 0) aili-1, j, kI
else if(j -1 >= 0) a2[j-1,j, kI
else ().

Note that all renaming and expansion are not legitimate. When one needs
a value, one must take care that it has not been overwritten sometime before.
The following stategies are safe:

LFor the meaning of the last term, see 4.3
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e (Gives a new name to an array or scalar;

e Replace the index list by the counters of all surrounding loops.

It this is done systematically, one gets a single assignment program or
equivalently a system of recurrence equations ([Qui88]).

4.3 Program correctness and optimization

The results of the source computation may be used for program checking and
improvement. If an instruction occurs in no source, it can be removed ; the
process can be iterated until all such dead code is eliminated.

The presence of a () in a source indicates access to an undefined memory
cell. According to the context, this may be taken as an error (if the program
is complete) or as the caracterization of an input datum. In the case of the
source for reference 2 which was given above, the presence of () simply means
that array a must be initialized somewhere else before being used by iteration
0 of the 1 loop.

5 Enumeration problems

We have already said that scientific computations are repetitive: the same
instruction or block of instructions is executed many times according to the
variation of the surrounding loop counters. In so doing, indices range over
subarrays whose caracterization is important for architectures with more
than one level of memory. For programs which conform to the model of
paragraph 2, all these problems may be expressed as the enumeration of
the integers vectors which lie inside a polyhedron. We will first present the
general technique then give several applications.

5.1 Enumerating the integer vectors of a polyhedron
Let:
B={i|Ai+b e N,ie N},

be the set of integer vectors belonging to a polyhedron defined by a system
of linear inequalities. Vector b may depend on auxilliary integer parameters.
Let n be the dimension of 1. The problem is to construct a loop nest:
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for i1 := al to bl do...
for in := an to bn do ...

such that (iy,...,7,) visits all vectors inside B. Let Dy(x) be the following
polyhedron :

Di(x) = {y|xy € B},

where x is of dimension £ — 1 and y is of dimension n — k + 1. Compute :

u =< minDg(i1,...,0%1),

v =< max Dg(t1,...,0%-1),

by algorithms M and N. It easy to prove that the solution to the enumeration
problem is given by :

ap = u[l], bk = V[l]

Here again the solutions are quasi-affine selection trees. The value ()
indicates that the corresponding polyhedron is empty. This is no problem
if we extend the semantics of for loops by the convention that a loop with
undefined bounds is not executed at all.

The expressions for a; and b, may be somewhat simplified if one takes
into account the bounds on ¢1,...,t;_; which where obtained at the previous
steps of the algorithm. This is most easily done if these bounds are affine,
by adding them as context when computing u and v.

5.2 Loop interchange

As a first application of the above method, consider the problem of rewriting
a loop nest after one or more loop interchanges. In the case of rectangular
loops there is no difficulty. In the general case, each bound may depend on
outer loop variables. One simply has to express the loop bounds as linear
inequalities, reorder the variables to reflect the new nesting pattern, and
apply the above method. Consider for instance the following nest:

for 1:= 0 to m do
for j := 0 to n do
for k := 0 to 1+] do

14



which is to be rewritten in the order k, j,7. The first problem to be solved is:
Dy ={k,j,tli <m,j <n,k <i+j}
and the result is 0 < &k < m + n. The second problem is:
Da(k) = {j,2li <m,j <k <i+j},
which is to be solved in the context £ < m 4 n. The result is:
(if (m—k>0)0else k —m) <j <nmn,
which is by no means obvious. The last problem is :
Ds(k,j) = {ili <m,j <n,k<i+j},
in the context & < m +n,j < n. We get the following bounds for ¢:

it (j—k>0)0
else if(m—k+j>20k—m | <i<
else ()

if(m—Fk+j;>0)m
else () '

This result could have been simplified by taking into account the fact
that m — k4 7 > 0 is a consequence of the bounds on j, but this is, at the
present time, beyond the capabilities of our algorithm.

5.3 Region extraction

When using computers with several levels of memory, one has to plan (or
analyze) the movements of data between levels. In its most basic form, the
problem may be cast in the following terms:

e Consider a loop nest and an array reference in the body of the loop:
for i1 := al to bl do

for in := an to bn do
{r} ... A[£f({i1,...,in)]
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where f is an affine multi-dimensional function of i = (¢q,...,17,) and
perhaps other structure parameters.

o Write a copy loop to move the elements of A which are in the range of
f from one level of memory to another one. Such a subset of A will be
called a region.

e The problem is to be solved with varying precision. There is usually
no harm done (except to the program run time) if one reads more
than necessary. In contrast, writing more than necessary may induce
coherence problems, unless special help is provided by the hardware;
see [GJG88] for details. The hardware itself may impose restrictions
on the shape of the regions which can be handled efficiently.

The first step is to decide if f is bijective or not. This is done simply
by testing for autodependence on the distinguished reference (whether this
reference is a read or a write). Similarly, testing for dependence between two
distinct references indicates whether the corresponding regions are disjoint
or not.

Let u be a vector of the same dimension as f. The accessed region is the
set:

R={uldi:u=1£(i),e(i) > 0}

This set is not necessarily convex. If R is computed by algorithm E in the
appendix, the result will be in the form of a boolean expression in disjunctive
normal form with quasi-affine predicates. Each litteral will describe a subset
of R, these subsets being mutually disjoint. If such a subset is a polyhedron
(i.e. if its equations do not use the div operator), application of the method
of 5.1 will give the required copy code. There are two reasons for the presence
of div operators. First, all points of R lies on the lattice generated by the
column vectors of f. This lattice does not necessarily span all space. The
problem may be corrected by computing the Hermitte normal form of f and
using its column vectors as a new base. The second reason is that, due to the
integrity condition, the edges of R are not necessarily straight lines. They
may exhibit periodic patterns which are described by remainder operators.
Consider the following example, which is adapted from [GJG88]:

for 1 := 0 to 1 do
for j := 0 tom do
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for k :=

0 to n do

. al[3*%i+k, j+k]

In this case, the lattice generated by (3,0), (0,1) and (1,1) spans all space.
Let u and v be the components of u. The result of algorithm E in this case
(in Lisp notation), is:

(or (and (plusp
(plusp
(plusp

(and (plusp
(plusp
(plusp
(plusp
(plusp
(plusp

(and (plusp
(plusp
(plusp
(plusp

(and (plusp
(plusp
(plusp
(plusp
(plusp

(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+
(+

v (* -1 u)))

m (* -1 v) u))

n (* -1 u))))

v (* -1 u)))

m (* -1 v) u))

(* -1 n) u -1))

n (* 31) (* -1 u)))

nm (*x -1 v)))

(* 3 (div (+ n (* 2 1)) 3)) m (* -1 v) (*x -2 )))))
(* -1 v) u -1))

(*31) v (*-1u)))

n (* -1 v)))

(# 3 (div (+ v (* 2 1)) 3)) (* -2 u))))

(¢ -1 v) u -1))

(*31) v (*-1u)))

(* -1 n) v -1))

n (* 31) (* -1 u))) (plusp (+ nm (* -1 v)))

(3 (div (+n (¥ 2 w)) 3)) m (*x -1 v) (* -2 u)))))

The first litteral describe the polyhedron

v2u,v<ut+m,u<ni.
b b

The second litteral includes the following predicate:

3((n—|—2u)+3)—|—m—v20,

which is equivalent to:

v<m+n—(n+2u)%3,

and is a description of the characteristic saw-tooth shape of the upper edge
of the region. Let us note that this technique is not limited by the nature of
loop bounds. It applies equally well to constant, symbolic or variable bounds.
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6 Conclusions

We hope that these examples suffice to give an idea of the power and adapt-
ability of the parametric integer programming algorithm. We have found it
very robust. The largest example in this paper (paragraph 5.3) involve 3
unknowns, 6 parameters, and 9 constraints. Our C code solved it on a 16-bit
microcomputer in about 4”7. Porting it to a 32-bits mini would allow the
speedy solution of quite larger problems.

Some of our results are preliminary in nature and must be further devel-
opped, especially as regard total expansion and the simplification of quasi-
affine selection trees. There are also a host of new problems which suggest
themselves: let us note the construction of independence condition, the con-
struction of array predicates, the resolution of array recurrences, etc.

A last question: is there a way of extending our results to more general

programs, in the presence of conditionals, while loops, procedure and function
calls?

A The parametric integer algorithm

A.1 The basic algorithm

A parametric integer program (PIP) may be formulated in the following way.
Let F(z) be the set of integer points inside a convex polyhedron:

F(z) = {x|Sx+t(z) e N}/ Kz+h e N, (14)

where S and K are matrices and t(z) is an integer vector whose compo-
nents are affine functions of the integer vector z. z is not arbitrary, but is
constrained by the set of inequalities

Kz+heN,

the context of the problem. As a matter of convenience, we will suppose that
both S and K are such that they restrict x and z to non-negative integer
values.

The problem is to decide for which values of z is F(z) empty, and if not,
to compute its lexical minimum, as a function of z. The solution is given by
the following algorithm:

18



Algorithm N

1. Determine the signs of the components of t(z) in the context
(Kz 4+ h > 0), by solving non-parametric auxilliary integer programs?;

2. If there is a negative t;(z), then either:

(a) All elements of S;,. are negative. In this case, F(z) is empty, and
the solution is written as {;

(b) There is at least a positive S;;; a pivoting step is executed, giving a
new problem (5’,t'(z)). The solution of the initial problem is the
same as that of the problem (57, t'(z)) in the context (Kz+h > 0);
in so doing, keep track of D, the product of the pivots;

3. If all t;(z) are positive, select the earliest row ¢ such that (DS;;)%D and
(Dt,(z))%D are not identically 0. If no such row exists (in particular
if D = 1), the solution has been found; it is given by the first |x|
components of t(z). If such a row exists, let ¢ be a new parameter.

Add:
0 <((=Dti(z))%D)—¢D <D-—1

to the context. Let m be the number of rows in S. Add to the S the
new row m + 1 with the following coefficients:

Stmyny; = ((DS;;)%D)/ D,

tmy1(2) = (=((=Dti(2))% D)/ D) + g,

and start again at step (1).

4. In the remaining case, select a t;(z) whose sign is unknown; let x; and
x_ be respectively the solutions of (5,t(z)) in the contexts { Kz +h >
0,t;(z) > 0} and {Kz+h > 0,t;(z) < 0}. The solution of the initial

problem is:

if (ti(z) > 0)x, else x_.

For instance, t(z) > 0 if the program {Kz +h > 0,t(z) < 0} has no solution.
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This algorithm is guaranteed to terminate (see [Fea88b]). The result is a
multilevel conditional expression whose predicates and leaves are affine func-
tions of the parameters. The new parameters like ¢ above may be replaced
by their expressions as integer quotients of affine forms. In this paper, this
kind of expression will be called a quasi-affine selection tree.

The algorithm above is not entirely deterministic; there are many equiv-
alent solutions to the same PIP. Experience has shown that a few simple
heuristics suffice for selecting a well behaved solution; avoid splitting at all
cost (e.g. by grouping the case t;(z) = 0 with the positive or negative case if
the other does not exist); if forced to split, select a row with all coefficients
negative, which implies that x_ = (). This algorithm has been implemented
both in Le_Lisp and C; these codes have been used to run all examples in
this paper.

A.2 Some extensions
A.2.1 The lexical maximum

In many cases of interest, one has to compute the lexical maximum rather
than a minimum. Sometimes, a transformation from one problem to the other
is in evidence. We favour, however, the following systematic procedure.
Algorithm M
Refering back to (14), introduce a new "very large” parameter m and
solve:

u =< minG(z,m)/Kz+h e N,

where?:

G(z,m) ={y|0 <y <m,—Sy + S1m + t(z) € N}.

Compute v = m1 — u and prune the solution by replacing all predicates
in which m has a positive coefficient by true and conversely. A leaf in which
m occurs with a positive coefficient is associated to a range of the parameters
where F(z) is unbounded. This case will never occur in the problems we are
interested in.

It is easy to prove that v is the required maximum; it is also easy to devise
methods to do the pruning ”in line”, so as to keep the extra computation

31 is the vector all of whose components are 1.
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to a minimum. For instance, in step (1) of algorithm N, if m occurs with a
positive sign in t;(z), the ¢-th line may be taken as positive. We have found in
practice that in cases where we need to compute both the maximum and the
minimum of the same set (see 5.1), both algorithms have operation counts
of the same order of magnitude, and neither of them is systematically longer
than the other.

A.2.2 Elimination

Let Sx +t € N be a system of linear constraints. Suppose vector x is split
in two parts x = yz; to eliminate z is simply to compute the predicate:

P(ly)=3z: (Syz+t e N).
Now, if P(y) is true, the set:

Fy) = {z|Syz +t € N}

is not empty and hence, has a lexical minimum. This suggests the following
algorithm:
Algorithm E

e Compute < minF(y) by algorithm N;

e In the resulting conditional, replace () by false and any other value by
true, and simplify the result.

Elimination may be seen as the projection of the set F on the plane of the
un-eliminated variables. If F is taken as a set of rationals , the projection is
again a polyhedron, and the Fourier-Motzkin method directly gives the result
(see [Tri84]). When working with integers, the projection is no longer convex;
as a consequence, the result of algorithm E is not necessarily a conjunction of
linear predicates. We will use a simplification method which yields a result
in disjunctive normal form.
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