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Abstract

Programs and systems of recurrence equations may be represented
as sets of actions which are to be executed subject to precedence con-
straints. In many cases, actions may be labelled by integral vectors in
some iteration domain, and precedence constraints may be described
by affine relations. A schedule for such a program is a function which
assigns an execution date to each action. Knowledge of such a schedule
allows one to estimate the intrinsic degree of parallelism of the pro-
gram and to compile a parallel version for multiprocessor architectures
or systolic arrays.

This paper deals with the problem of finding closed form schedules
as affine or piecewise affine functions of the iteration vector. An effi-
cient algorithm is presented which reduces the scheduling problem to
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a parametric linear program of small size, which can be readily solved
by an efficient algorithm.

Résumé

De nombreux programmes ou systèmes d’équations de récurrence
peuvent se représenter comme un ensemble d’actions qui doivent être
exécutées en respectant des contraintes de précédence. En général,
une action peut être repérée par un vecteur d’itération à coordonnées
entières, et les contraintes de précédence se représentent par des re-
lations affines. Un ordonnancement pour un tel programme est une
fonction qui donne la date d’exécution de chaque action. La con-
naissance d’un ordonnancement permet d’estimer le parallélisme in-
trinsèque du programme et d’en écrire très facilement une version par-
allèle bien adaptée aux multiprocesseurs ou aux réseaux systoliques.
Le présent travail traite de la recherche d’un ordonnancement ex-
plicitement représenté par des fonctions affines ou affines par morceaux.
On présente une méthode très simple qui ramène la question à la
résolution d’un programme linéaire paramétrique de petite taille,
problème qui peut être efficacement résolu.

Keywords Automatic parallelization, automatic systolic array de-
sign, scheduling.

1 Introduction

The basic problem of parallel programming may be stated in the following
terms:

• We are given a set Ω of operations, i.e. a set of transformations which
are to be applied to a given initial store.

• The order in which the operations of Ω are to be applied is not totally
arbitrary. We are given a binary relation Γ on Ω, the dependence graph,
with the understanding that if:

u, v ∈ Ω, uΓv,

then application of v cannot begin before the end of the application
of u. Conversely, if the pair 〈u, v〉 does not belong to the transitive
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closure of Γ, then u and v may be applied in any order and may even
be applied simultaneously if there are enough resources to support their
parallel execution.

• Constructing a parallel program is the process of selecting a partial
order which is as close as possible to the transitive closure of Γ while
being susceptible of a simple description.

Note that, in general, we are not interested in a single dependence
graph 〈Ω,Γ〉 but in a possibly infinite family of similar graphs, each
member of the family being specified by one or more integer parame-
ters, which will be collectively denoted by n, and called the structure
parameters of the graph. Consider for instance the family of pro-
grams which compute the product of two n × n matrices. We will
suppose implicitly that the complexity of the programs in the family
increases with n, and we will be mostly interested with what happens
when n gets large – after all, there is no need of a super-computer and
sophisticated programming techniques for multiplying small matrices.

A graph 〈Ω,Γ〉 does not necessarily describe a computing process. If there
is a vertex of Γ with an infinite incoming path, the corresponding operation
will start only after an infinite number of operations have terminated, i.e.,
never. This occurs mainly when there is a cycle in Γ. A dependence graph
is said to be consistent if it has no infinite incoming path. As is well known,
consistency is a necessary and sufficient condition for the dependence graph
to define a parallel program. All dependence graphs which are derived from
sequential programs in various ways are consistent.

Many researchers in the field of parallel programming have realized that a
simple way of describing a parallel program uses a schedule, i.e. a function θ
from Ω to R which gives the epoch at which each operation must be executed.

The idea of using schedules comes from Operation Research and PERT
charts. In OR, one tries to tabulate the function θ, it being understood
that the number of operations is small. The idea has been applied to the
construction of parallel programs under the name macro-tasking . However,
the method has several disadvantages:

• Constructing the operations (or tasks) by chunking elementary opera-
tions is no trivial matter. In fact, to the author’s knowledge, the only
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algorithm for the automatic construction of tasks has been given by
Ayguadé et. al.[1].

• One cannot proceed unless one knows the execution time of each task
and the exact number of processors. This is difficult: for instance, the
execution time of a task may depend on the iteration count of a loop,
which may vary from execution to execution.

• Lastly, when all elements of the problem are given, the general schedul-
ing problem is NP-complete.

To solve these difficulties, several authors have proposed to work with the
smallest possible tasks – for instance, the execution of only one statement.
Since there will be a very large number of operations one can use asymptotic
evaluation of the resulting program. In that case, exact knowledge of the
operation execution times is no longer critical, provided they all are of the
same order. One may even suppose that all execution times are equal to one
time unit [2].

In contrast, it will no longer be feasible to tabulate the schedules; one
must look for closed forms. This is possible only if one is given a synthetic
description of the dependence graph. For instance, when the dependence
graph derives from a sequential program, the operations are iterations of
statements. It is possible to name them by using the name of the statement
and the iteration vector coordinates. One may then seek schedules with
simple expressions in term of the iteration vector.

Affine scheduling is the special case in which both the set of operations Ω
and the dependence graph Γ are described by sets of linear inequalities. We
will show that the equivalent parallel program can be described by an affine
or piecewise affine schedule.

The problem of finding affine schedules has been mainly studied with the
aim of designing systolic arrays [?, 3] from systems of recurrence equations.
The use of affine schedules for the construction of parallel programs may be
related to the wavefront method [4], and has be advocated in several recent
publications [2, 5, 6, 7, 8, 9]. The starting point is the causality condition:

u, v ∈ Ω, uΓv ⇒ θ(v) ≥ θ(u) + 1. (1)

To find a closed form schedule, one assumes θ to be of the selected form
with unknown coefficients. One then writes (1) for all edges of Γ and solves.
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For instance, in many cases u and v are vectors. One looks for a
schedule of the form:

θ(u) = τ.u+ α,

where τ is an unknown vector and α an unknown number. All in-
stances of (1) are linear in τ and α, and one has to solve a linear
programming problem.

In general, this method is not practical, because one gets a prohibitively
large system of linear inequalities. In fact, the size of the set Ω is equal to the
total operation count of the program (e.g., O(n3) for a matrix inversion), and
the size of Γ may be even larger. Another point is that, if one is interested in
program families, then the system to be solved may well become infinite. The
main theme of the present paper is how to take into account the special form
of usual dependence graphs in order to compress (1) into a set of inequalities
whose size does no longer depend on the program complexity.

The paper is organized as follow. Section 2 is a review of previous work on
the subject and general results. Section 3 will be devoted to the computation
of affine schedules. I will show how to summarize an indefinite number of
instances of (1) by a few linear constraints with the help of a classical result
of the theory of linear inequalities, the affine form of Farkas Lemma, and how
to solve these constraints for an efficient schedule, efficiency being defined in
several ways.

We will show in the conclusion that there are programs for which no affine
schedule exists. The solution in that case is the construction of multidimen-
sional schedules [10].

A few words on notations are in order here. The main objects in this work
will be vectors and set of vectors with positive coordinates. Such vectors will
be denoted by italic letters. All classical scalar operators will be tacitly
extended component-wise to such vectors.

a ≤ b

e.g., will be interpreted as:
∀i, ai ≤ bi,

and, as such, will be a partial order on the set of vectors. Similar conventions
will apply to other binary connectives. We will sometime use a[i] instead of
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ai, and a[i..j] for the vector built from the components i to j of a. This
notation will be undefined if j < i. Lexicographic ordering :

∃i (a[1..i] = b[1..i] ∧ a[i+ 1] < b[i+ 1])

will be written a� b. Lexicographic ordering is a strict total order.
The basic reference for the theory of linear inequalities is Schrijver’s text-

book [11].

2 A review of definitions and general results

2.1 Generalized Dependence Graph

Dependence graphs are used in every form of parallel programming as a mean
of specifying timing relationships between operations. There are nearly as
many dependence graphs as there are workers in the field. However, most
definitions may be subsumed under the following generalization.

A Generalized Dependence Graph (GDG) is a directed multigraph. A
vertex represents a set of related operations (e.g. all iterations of the same
instruction in the case of imperative programs, or all evaluations of instances
of the same variable in the case of systems of recurrence equations). Each
operation belongs to one (and only one) vertex of the GDG. An edge repre-
sents a timing constraint between two operations which belong respectively
to its source and destination. The GDG may have loops (i.e. an edge whose
source and destination are the same vertex) and cycles.

Each vertex is labeled with a description of its operations. Similarly, an
edge is labeled with a description of the associated dependence relation. This
paper will deals only with linearly described GDG’s, in which all sets and
relations are set of integral vectors belonging to convex polyhedra. Namely:

• To each vertex S is associated a polyhedron DS in QpS , its domain. The
integer pS is the dimension of the iteration space of S. For instance,
if the GDG has been extracted from a program, pS is the number of
loops enclosing S. Each operation of S may be denoted by a pair (S, x)
where x is integral and belongs to DS.

• To each edge e from R to S may be associated a polyhedron Re in
QpR+pS such that a causality condition like (1) must be imposed be-
tween (R, x) and (S, y) iff 〈x, y〉 ∈ Re.



7

In short, a GDG is a tuple 〈V,E,D,R〉 where V is the set of vertices, E is
the set of edges, D is a function from V to the associated domains and R
a function from E to the associated dependence relations. The source and
destination of edge e will be written σ(e) and δ(e) respectively.

Observe that all DS and Re are included in the first octant of iteration
space. This restriction is more a matter of technical convenience than
a strict necessity. In case of need, it may be lifted by appropriate
change of variables.

The Detailed Dependence Graph (DDG) associated to 〈V,E,D,R〉 is the
graph whose vertices are:

Ω =
⋃
S∈V
{(S, x) | x ∈ DS}

and whose edges are:

Γ =
⋃
e∈E
{〈(σ(e), x), (δ(e), y)〉|x ∈ Dσ(e), y ∈ Dδ(e), 〈x, y〉 ∈ Re}.

When working with GDG families, V and E will stay fixed, the only variables
being the structure parameters n, which will occur linearly in the description
of the polyhedra DS and Re. One cannot construct a DDG from a given
GDG unless the actual values of the structure parameters are known.

I will now show that this definition cover most cases of interest.

Dependence Graph of Sequential Programs In the case of ordinary
DG, vertices are data processing statements and the associated domains are
derived from an analysis of the surrounding loops[12]. As to the dependence
relation, its form depends mainly on the thoroughness of the analysis which
has been performed on the program. For instance, Allen and Kennedy[13]
have shown that a fairly good parallel program can be deduced simply from
a knowledge of the depth of each dependence, i.e. of an integer pe such that
Re is1:

〈x, y〉 ∈ Re ≡ x[1..pe] = y[1..pe] ∧ x[pe + 1] < y[pe + 1].

1The present depth is one less than Allen and Kennedy’s definition.
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Dependence direction vectors (DDV [14]) are a refinement on the idea
of depth. A DDV is a word on the alphabet of comparison operators,
{<,≤,=,≥, >}. Each letter of the word is associated with the corresponding
components of x and y; it states that those components stand in the indi-
cated relation to each other. If no particular relation is extant, one uses the
neutral connective, ∗.

A depth p dependence corresponds to a DDV of the form:

〈
p︷ ︸︸ ︷

=, · · · ,=, <, ∗, · · ·〉.

In some cases it may be possible to find a constant vector d such that the
dependence exists only if:

y = x+ d.

Such a d is called a dependence vector and the dependence is said to be
uniform. The idea may be extended to cases in which the difference y − x
may be expressed as a positive linear combination of a finite set of dependence
vectors. Such vectors span the dependence cone [15]. Both cases are easily
included in the framework above.

As an extreme case, one may take asRe the polyhedron whose description
is:

〈x, y〉 ∈ Re ≡ f(x) = g(y) ∧ (x[1..pe] = y[1..pe]) ∧ (x[pe + 1] < y[pe + 1]),

where f and g are the indexing functions of the colliding references. One
should then test Re ∩Dσ(e) ∩Dδ(e) for nonemptiness. This kind of GDG will
contain much redundant information. The aim of Data Flow Analysis [12] is
to reduce Re to minimal form . One obtains a polyhedron Pe and an affine
transformation he such that Re is given by:

〈x, y〉 ∈ Re ≡ (x = he(y) ∧ y ∈ Pe) (2)

In such a case, one usually modifies the definition of Pe in such a way
that:

y ∈ Pe ⇒ y ∈ Dδ(e) ∧ he(y) ∈ Dσ(e).

A dependence is uniform in the special case where the associated he
is a translation.
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do i = 0,n

1 s(i) = 0.

do j = 0,n

2 s(i) = s(i) + a(i,j)*x(j)

end do

end do

Figure 1: A sample program

All such cases share a common property: the dependence relation is
coarser than the sequential execution order of the source program. As a
consequence, the GDG is automatically consistent.

Let us consider a simple kernel (Figure 1). There are two statements
whose domains are:

D1 = {i | 0 ≤ i ≤ n},
D2 = {i, j | 0 ≤ i, j ≤ n}.

Standard dependence analysis indicates two dependences: one from
statement 1 to 2, the other a loop on statement 2. Both dependences
are at depth 1. Consider the first edge. The corresponding depen-
dence polyhedron describes a relation between the (one-dimensional)
iteration vector of statement 1, say i′, and the iteration vector of of
statement 2, say 〈i, j〉. The corresponding relation is:

〈i′, i, j〉 ∈ R1,2 ≡ i′ = i.

With similar conventions, the dependence polyhedron for the loop is:

〈i′, j′, i, j〉 ∈ R2,2 ≡ i′ = i ∧ j′ < j.

Dataflow Analysis gives more precise results. The first dependence
exists only for the first iteration of the j loop (j = 1), and the second
one exists only from iteration j − 1 to iteration j provided j ≥ 2:

〈i′, i, j〉 ∈ R1,2 ≡ i′ = i ∧ j = 1.

〈i′, j′, i, j〉 ∈ R2,2 ≡ i′ = i ∧ j′ = j − 1 ∧ j ≥ 2.

The loop on statement 2 describes a uniform dependence.
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Systems of Recurrence Equations The recent interest in systems of
recurrence equations (SRE) as a mean of specifying parallel processes results
from the convergence of several trends of research. A pioneer paper by Karp
et.al.[16] was motivated by the study of explicit difference schemes for the
solution of systems of differential equations. Other authors [17, 18] were
interested in the mathematical simplicity of SRE and their use for proving
program correctness. The last motivation [19] was the fact that in SRE
parallelism detection (if not parallelism exploitation) is obvious. Hence, it
is felt that SRE are well adapted to the specification of massively parallel
computing processes and in particular as a starting point for systolic array
design. All these trends have converged in the definition of SRE languages
[20, 21] and their associated programming environments.

The basic objects of an SRE are variables, which really are functions from
a convex polyhedron to an arbitrary value space (e.g. the real numbers or
the booleans). The domain of U will be DU . Each variable is defined by an
equation of the form:

U(x) = case x ∈ DU1 : EU1;

. . .

x ∈ DUn : EUn;

esac

The DUi are disjoint subdomains of DU ; the EUi are expressions whose
general form is:

f iU(. . . , V (hiUV (x)), . . .).

The f iU functions are supposed to be strict. The hiUV transformations are
affine. The SRE is uniform (and is called a SURE), if all these transforma-
tions are translations. Transforming an arbitrary SRE to a SURE is called
uniformization or pipelining and is an important step in the construction of
a systolic array.

A SRE may be trivially translated into a Generalized Dependence Graph,
whose vertices are the variables. The domain of each vertex is the domain of
the corresponding variable. For each occurrence of a variable U in expression
EUi in the right hand side of the equation for U , there is an edge e from V
to U whose associated polyhedron is:

〈x, y〉 ∈ Re ≡ (x = hiV U(y) ∧ y ∈ DV i).



11

One may note the similarity of this description with the Dataflow Graph
(2). This should not be a surprise, since the one of the motivations of dataflow
analysis was the automatic conversion of imperative programs to single as-
signment form [22].

The following SRE is in some sense equivalent to the program in Fig. 1:

1 ≤ i ≤ n : A1(i) = 0.;
1 ≤ i ≤ n : case j = 1 : A2(i, j) = A1(i) + a(i, j)x(j);

j ≥ 2 : A2(i, j) = A2(i, j − 1) + a(i, j)x(j);
esac

They have the same DFG. One of the important properties of SRE’s
is that one may “replace variables by their values”. For instance, one
may substitute 0 to A1(i) in the first case of the equation for A2.

2.2 Schedules

Definition 1 A schedule for a given GDG 〈V,E,D,R〉 is a positive function
θ : Ω 7→ N such that for every edge e of E with source R and destination S,

x ∈ DR, y ∈ DS, 〈x, y〉 ∈ Re,⇒ θ(S, y) ≥ θ(R, x) + 1.

The number 1 in the above definition stands for the duration of statement R,
which is taken as the unit of time. In a more realistic setting, one should ap-
parently introduce a duration ∂(R) for each statement, and rewrite definition
1 accordingly. Most often, this refinement is not really necessary.

For any operation u, θ(u) is the date at which u may be initiated on
a computer with an unlimited number of processors. Such a schedule is a
guideline for the construction of a program for a limited number of processors.
Let F(t) be the set of operation which are initiated at time t (the front at
t):

F(t) = {u ∈ Ω | θ(u) = t}. (3)

Build the following program:
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do t = 0, L
doall F(t)
barrier

end do

In this program sketch, L is the latency of the schedule:

L = max
u∈Ω

θ(u), (4)

and barrier is the classical synchronization operation, in which each pro-
cessor stops until all processors have reached the barrier2. All operations of
the front are distributed among the available processors. This program is
not optimal in general. However, if one is interested only in large calcula-
tions, the interesting figure of merit is asymptotic efficiency , for which I have
proved the following lower bound[2]:

εP ≥
1

1 + νP L
T

,

where:

• P is the number of processors,

• ν is the duration of the synchronization operation,

• T is the total workload,
T = Card Ω.

The ratio T/L is the mean degree of parallelism of the schedule. Its max-
imum value – which is obtained with a minimum latency schedule – is a
characteristics of the object program.

We will show later that the program in Fig. 1 has an affine schedule
whose latency is n. Since the sequential operation count is O(n2), the
mean degree of parallelism is O(n), and the efficiency tends to 1 when
n grows large.

2barrier is a null operation on a synchronous computer.
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This lower bound on the efficiency does not depend on the precise duration
of operations, provided that they are all of the same order, and that the
run-time system has reasonable load-balancing facilities. In the interest of
simplicity, definition 1 will be used without modification. Most of the results
and algorithms in this paper will still stand on more general assumptions.
The form of (1) which corresponds to this hypothesis is:

u, v ∈ Ω, uΓv ⇒ θ(v) ≥ θ(u) + 1. (5)

2.3 Existence and decidability theorems

2.3.1 Basic Results

The first point is deciding whether a schedule exists, i.e. whether the GDG
is consistent.

Proposition 2 A necessary and sufficient condition for the existence of a
schedule is that in 〈Ω,Γ〉 there is no vertex u with an infinite incoming path.

An order ≺ on the set of operations Ω is said to be causal iff

uΓv ⇒ u ≺ v.

If one knows a causal order, the best (or free) schedule is given by:

θ(u) = max{θ(v) | vΓu}+ 1. (6)

To be effective, this formula must be evaluated according to any linear ex-
tension of the given causal order. One then has the certainty that at any
given time, all needed values of θ have been computed previously. This for-
mula is the basis of inductive methods for computing schedules – compute
enough values from (6), guess a closed form representation, and check that
(1) is satisfied everywhere. Another use is in run-time parallelization [23], in
which a schedule is computed according to (6) by a so-called inspector loop,
then exploited for the actual parallel execution of the program.
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2.3.2 Decidability and Undecidability results

The following theorem has been proved by Karp, Miller and Winograd [16]:

Theorem 3 The problem of deciding whether a system of uniform recurrence
equations is consistent is decidable.

The situation is quite different for nonuniform dependence graphs.

Theorem 4 The consistency problem for a nonuniform GDG with at least
one infinite domain is undecidable.

The proof[?] proceeds by coding the halting problem of a Turing machine
into a consistency problem for a GDG.

Theorem 5 The consistency problem for an infinite family of nonuniform
GDG with finite domains is undecidable.

The basic idea of the proof[24] is to code any instance of Hilbert tenth
problem as the consistency problem of some GDG family.

2.3.3 Approximations to the Best Schedule

In the light of the above results, the problem of finding the best schedule looks
quite intractable. In the general case, theorems 4 and 5 preclude the exis-
tence of a well defined algorithm. The situation is the opposite for uniform
dependences, but this fact shows that there are GDG which cannot be con-
verted to uniform GDG. It may be possible that uniform GDG have sufficient
expressive power for the needs of numerical computing and signal process-
ing, but this is at present an unproved conjecture. Existing uniformization
algorithms [?] may not be applied to a GDG unless one knows a schedule;
they offer no help for the solution of the present problem.

When working with GDG’s derived from sequential programs, the ques-
tion of consistency does not apply. One could then hope to find an exact
algorithm whose convergence would be guaranteed in that case and that case
only, thus sidestepping theorem 5. How to do that is unclear at present.
Furthermore, one should expect to get results at least as complex as in the
uniform case, and this may be too complex to be useful.
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The solution out of this dilemma is to look for sub-optimal schedules, i.e.
schedules which, while giving acceptable performance, are not guaranteed to
be the best possible. One likely approach is to search not in the class of all
functions from Ω to N, but in a smaller class. One may in that case hope to
devise a total algorithm. Getting a negative answer will only mean that there
is no schedule in the selected class, another way of sidestepping theorem 5.
In the case of linearly described GDG, the class of choice is the class of affine
functions – affine in terms of the iteration vectors and structure parameters.
One may even dispense with integrality conditions, in view of the following
theorem [25]:

Theorem 6 If θ is a real valued solution to (1), then bθc is an integral
solution to the same scheduling problem. Obviously, bθc is at least as good
as the original θ.

Proof Suppose that:
uΓv.

It follows that:
θ(v) ≥ θ(u) + 1.

Then:
bθ(v)c ≥ bθ(u) + 1c ≥ bθ(u)c+ 1.

3 Computing Affine Schedules

Basically, the problem is the following. Let us be given a GDG 〈V,E,D,R〉.
Postulate that each schedule is of the form:

θ(S, x) = τS.x+ σS.n+ αS. (7)

τS and σS are fixed but unknown vectors with rational coordinates, αS is an
unknown number. Recall that n is the vector of structure parameters of the
GDG. The form above will be called a prototype schedule. The problem is
to characterize the values of the unknowns such that the causality condition
is satisfied, and then to select one particular solution in such a way as to
optimize some quality criterion like maximal throughput or minimum latency.
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The above choice for the prototype schedule is not arbitrary. Darte
and Robert [26] have shown that if one solves the scheduling problem
for larger and larger values of n, the solution has a limit which is linear
in n.

When the GDG has a linear description, the causality condition may be
expressed in a more precise form. For each edge e of E, one must verify the
condition:

x ∈ Dσ(e), y ∈ Dδ(e), 〈x, y〉 ∈ Re ⇒ θ(δ(e), y) ≥ θ(σ(e), x) + 1. (8)

This condition has to be verified for all values of n. This universal quan-
tification will be kept implicit in what follows. For special forms of the GDG,
this condition may be somewhat simplified. In the case of a DFG, if one takes
into account the form (2) of the relation Re, one gets:

y ∈ Pe ⇒ θ(δ(e), y) ≥ θ(σ(f), he(y)) + 1. (9)

One may use simpler prototype schedules. Most authors do not include a
dependence on n in (7). In the case of uniform GDG’s, the problem is further
simplified by postulating that all schedules have the same spatial behaviour,
i.e. that there is only one vector τ . The schedules one gets in that case are
wavefronts[4].

When one substitutes appropriate values for x, y and n in (8) or (9), one
gets systems of linear inequalities in the unknown coefficients. The situation
is similar with the positivity constraints, θ(S, x) ≥ 0. These systems may be
solved by any standard technique, e.g. the simplex algorithm. The problem
is that there will be a very large number (perhaps an infinity of) values of x,
y and n, and that one can never be sure that all important constraints have
been included. The problem is how to take advantage of the special form
of the GDG and of the prototype schedule to compress all these inequalities
into a finite set. There are two basic methods for that; one of them may
be called the vertex method [25] and will be briefly reviewed presently. The
other one uses a fundamental result of the theory of linear inequalities, the
affine form of Farkas lemma[11], and is the basic theme of this paper.

Before starting on the actual methods themselves, let us investigate a
subtle point. Any affine form φ satisfies the following identity:

λ, µ ≥ 0, λ+ µ = 1⇒ φ(λx+ µy) = λφ(x) + µφ(y). (10)
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Hence, if an inequality φ(x) ≥ 0 is satisfied at all points of a set D it is also
satisfied at all points of the convex hull of D. (8) or (9) must be verified
at all integral points inside a polyhedron Re. As a consequence, they are
satisfied at all points of the convex hull of the set of integral points of Re –
the so-called integer hull of Re. But the integer hull of a polyhedron is not
necessarily equal to the polyhedron itself – see the cover picture of Schrijver’s
book for a nice counterexample. However:

• The integer hull of a polyhedron is included in the polyhedron. Hence,
enforcing (8) or (9) everywhere in the polyhedron is a pessimistic ap-
proach, which may eliminate some valid solutions but never give false
results.

• While no systematic study has been made of the problem, it seems that
the cases in which the discrepancy is significant are very rare.

• Lastly, the integer hull of a polyhedron is also a polyhedron, which may
be constructed, in case of need, by adding cutting planes to the original
description [11, chapter 23].

For all these reasons, I will ignore the difficulty and proceed by relaxing the
integrality constraint on vectors like x and y in (8).

3.1 The vertex method

There are two ways of describing a polyhedron. One is as the set of points
which satisfy a finite set of linear inequalities, and the other one is as the
convex hull of a finite set of points. The two points of view are dual in some
sense, and there are well defined algorithms for going from one representation
to the other. Now it is obvious from (10) that a linear inequality is satisfied
at all points of a convex hull if and only if it is satisfied at all extremal points.
Hence the method: find generating systems for the polyhedra Ds and Re,
write (8) or (9) at each of these points, and solve for the unknown coefficients.

It has been shown that for each polyhedron there exist a finite set of
points, called its vertices, which together generate the polyhedron, none of
them being a convex combination of the other. Such a set of points is a
minimal generating system. If the polyhedron is unbounded, some of the
vertices will be at infinity – those are called rays – but since both cases can
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be nicely subsumed by using homogeneous coordinates, I will not bother with
the distinction in the sequel.

Here is a summary of the vertex method:

• Compute a generating system for all polyhedra DS, S ∈ V and Re, e ∈
E.

• Write instances of (8) at all vertices of Re. Similarly, write instances
of θ(S, x) ≥ 0 at all vertices of DS.

• Solve the resulting finite system of linear inequalities by any standard
algorithm.

Finding all the vertices of a polyhedron is a well known problem – Schri-
jver gives about twenty references. Chernikova’s algorithm seems particularly
well adapted[27]. Researchers in the field have a tendency to use the same
algorithm for solving the resulting inequality system, but this appears to be
a case of overkill.

3.2 The Farkas algorithm

While the transformation from a set of inequality to a set of vertices is an
involution, it is by no means a polynomial process. For instance, a hypercube
in p-space may be described by 2p inequalities, or by 2p vertices! Hence, the
size of the problem may be largely increased as one goes from the initial
representation of the domains, which is in term of inequalities, to the vertex
representation. The problem will still be compounded if one again uses the
transformation algorithm to select the final solution, hence the interest in a
method which uses directly the original inequations. This is based on the
following well known result [11, Corollary 7.1h]:

Theorem 7 (Affine Form of Farkas Lemma) Let D be a nonempty poly-
hedron defined by p affine inequalities

ak.x+ bk ≥ 0, k = 1, p.

Then an affine form ψ is non negative everywhere in D iff it is a positive
affine combination:

ψ(x) ≡ λ0 +
∑
k

λk(ak.x+ bk), λk ≥ 0.
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Proof While the if part is obvious, the proof of the only if
part relies on deep results of the theory of Linear Inequalities, like
the Duality Theorem or the completeness of the Fourier-Motzkin
elimination method. For a proof see Schrijver’s book.

The positive constants λk whose existence is asserted by Farkas
Lemma will be called Farkas multipliers.

3.2.1 Presentation of the method

Let us first introduce some notations. Let:

aSk.

(
x
n

)
+ bSk ≥ 0, k = 1,mS, (11)

be the inequalities which define each domain DS. Similarly,

cek.

 x
y
n

+ dek ≥ 0, k = 1,me, (12)

will define the dependence polyhedron Re. In case the dependence graph
comes from a SRE or from Dataflow Analysis, let:

cek.

(
y
n

)
+ dek ≥ 0, k = 1,me (13)

be the description of Pe.
Let us consider first the sign restriction on schedules. Affine forms like (7)

will be nonnegative in the associated domain iff there exists Farkas multipliers
µSk such that:

θ(S, x) ≡ µS0 +
mS∑
k=1

µSk(aSk.

(
x
n

)
+ bSk). (14)

These formulas are a new representation of the prototype schedules. They
may be used in place of (7) for all subsequent calculations. When numerical
values have been found for the unknowns µSk, it will be a simple matter to
reorder terms and to recover (7).
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Now in case the schedules θ(S, x) are affine, the delay associated to edge
e in the GDG:

∆e = θ(δ(e), y)− θ(σ(e), x)− 1

is a nonnegative affine form in Re. Hence, there exists Farkas multipliers λek
such that:

θ(δ(f), y)− θ(σ(f), x)− 1 ≡ λe0 +
me∑
k=1

λek(cek.

 x
y
n

+ dek). (15)

Observe that the aim of classical dependence analysis is to prove that Re is
not empty, thus supplying the required minor premise for the application of
Farkas Lemma. In the case of (14) the relevant hypothesis is the fact that
instruction S is executed at least once for at least one value of the structure
parameters. If this hypothesis is false, the offending instruction may as well
be removed from the program.

In the case of a Dataflow Graph, one can see that the delay:

∆e = θ(δ(e), y)− θ(σ(e), he(y))− 1

is affine, since he is an affine transformation. Hence the same reasoning
applies. One can introduce Farkas multipliers λek and get:

θ(δ(e), y)− θ(σ(e), he(y))− 1 ≡ λe0 +
me∑
k=1

λek(cek.

(
y
n

)
+ dek). (16)

All these formulas are identities: one can gather coefficients of each inde-
pendent variables (x, y and n) and equate the resulting sums to zero. From
an algorithmic point of view, this may be seen either as a standard applica-
tion of elementary computer algebra techniques or as a matrix transposition.

The result of the identification process is a system of linear equations
whose unknowns are Farkas multipliers, which are constrained to be positive.
As a consequence, the solution must use an algorithm like the simplex for
solving linear inequalities. To get a feeling of the work to be done, let us
evaluate the size of the problems to be solved. This will be done only for the
DFG case, which is simpler.

The first step is counting unknowns. DomainDS is defined by mS inequal-
ities. As a consequence, schedule θ(S, x) will use mS + 1 Farkas multipliers.
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Similarly, to each edge e will correspond a dependence domain Pe with me

inequalities, i.e., me + 1 Farkas multipliers. The total number of unknowns
therefore is:

X =
∑
S∈V

(mS + 1) +
∑
e∈E

(me + 1).

On the other hand, for each edge e, identity (16) will give one equation
for each independent variable, i.e. pδ(e) + |n| + 1 equations, where |n| is the
number of structure parameters.Hence the total number of equations will be:

Q =
∑
e∈E

pδ(e) + |n|+ 1.

In nearly all practical cases, each iteration domain is defined by two inequal-
ities per loop:

mS ≈ 2pS.

Similarly, it is an empirical fact that the dependence domain Pe is a subset
of Dδ(e) which is defined by adding one supplementary constraint to those
defining Dδ(e):

me ≈ 2pδ(e) + 1.

From these observations one deduces the approximate relation:

X = 2
∑
S

pS + 2Q+ Card V − (|n| − 1)Card E.

Since |n| is always a small integer and since Card V and Card E are of the
same order of magnitude – another empirical fact[12] – one concludes that
there are about twice as much unknowns than equations. The first conse-
quence is that, if there are solutions at all, they will form a very large family
among which one will have to choose the “best” schedule, in a sense yet to
be defined.

The second point is that the size of the problem may be reduced by using
a kind of Gauss-Jordan elimination:

• Select an equation and an unknown which occurs in it with a nonzero
coefficient and solve it, to obtain an equality of the form x = e.

• Set up the constraint e ≥ 0.
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• Eliminate x in favor of e both in previously obtained inequalities and
in all unprocessed equations.

• Iterate until there are no equations left.

All equational constraints will be replaced by the same number of in-
equalities, while the number of unknowns will be reduced by Q. In order to
facilitate the subsequent reconstruction of the schedules, one should prefer-
ably eliminate the λek Farkas multipliers.

3.2.2 An example

Let us go back to example 1. As we have said earlier, Dataflow Analysis
shows that there are two edges in the DFG. The first one represents the
initialization of s by instruction 1, for the use of the first j-iteration of 2.
The second edge is associated to the transmission of the successive values of
s from one j-iteration of the second instruction to the next one. The first
edge has the following characteristics:

P1 = D2 ∩ {i, j|j ≤ 0},
h1(i, j) = i.

The elements of the second edge are:

P2 = D2 ∩ {i, j|j ≥ 1}
h2(i, j) = 〈i, j − 1〉

The prototype schedules may be written as:

θ(1, i) = µ1,0 + µ1,1i+ µ1,2(n− i),
θ(2, i, j) = µ2,0 + µ2,1i+ µ2,2(n− i) + µ2,3j + µ2,4(n− j).

For the first edge, the equivalent of (16) is:

µ2,0 + µ2,1i+ µ2,2(n− i) + µ2,3j + µ2,4(n− j)
− (µ1,0 + µ1,1i+ µ1,2(n− i))− 1

≡ λ1,0 + λ1,1i+ λ1,2(n− i) + λ1,3j + λ1,4(n− j)− λ1,5j,
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which gives, by a process of identification, the following equations:

µ2,0 − µ1,0 − 1 = λ1,0,

µ2,1 − µ2,2 − µ1,1 + µ1,2 = λ1,1 − λ1,2,

µ2,3 − µ2,4 = λ1,3 − λ1,4 − λ1,5,

µ2,2 + µ2,4 − µ1,2 = λ1,2 + λ1,4.

The second edge is a uniform loop, with the result that the delay does
not depend on the iteration vector. There is no need to use Farkas Lemma;
one obtains directly:

µ2,3 − µ2,4 − 1 ≥ 0. (17)

The next step is to eliminate as much unknowns as possible. One possible
result is:

λ1,0 = µ2,0 − µ1,0 − 1 ≥ 0, (18)

λ1,1 = µ2,1 + µ2,4 − µ1,1 − λ1,4 ≥ 0, (19)

λ1,3 = µ2,3 − µ2,4 + λ1,4 + λ1,5 ≥ 0, (20)

λ1,2 = µ2,2 + µ2,4 − µ1,2 − λ1,4 ≥ 0, (21)

µ2,3 − µ2,4 − 1 ≥ 0. (22)

These inequalities should be systematically solved by the simplex algorithm.
It is interesting, however, to get a feeling of the form of the result by at-
tempting to solve them by straightforward reasoning. Now λ1,5 has only one
positive occurrence in (20). Hence this constraint may always be satisfied
by giving λ1,5 a sufficiently large value, and is therefore void. On the other
hand, (19) and (21) will never be satisfied whatever the value of λ1,4 unless:

µ2,1 + µ2,4 − µ1,1 ≥ 0,

µ2,2 + µ2,4 − µ1,2 ≥ 0.

These two constraints, together with (18) and (22), completely describe the
solution space. A more explicit description is as follows: arbitrary select
positive values for µ1,0, µ2,1, µ2,2 and µ2,4. Other parameters should satisfy:

0 ≤ µ1,1 ≤ µ2,1 + µ2,4,

0 ≤ µ1,2 ≤ µ2,2 + µ2,4,

µ2,0 ≥ 1 + µ1,0,

µ2,3 ≥ 1 + µ2,4.
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doall (i = 0:n)

1 s(i) = 0.

end do

do j = 0,n

doall (i = 0:n)

2 s = s + a(i,j)*x(j)

end do

end do

Figure 2: The parallel form of program 1

The simplest solution is obtained for µ1,0 = µ2,1 = µ2,2 = µ2,4 = 0, from
which follows µ1,1 = µ1,2 = 0 and µ2,0 = µ2,3 = 1. The corresponding
schedules are:

θ(1, i) = 0, (23)

θ(2, i, j) = j + 1

Another possible solution is µ2,1 = µ1,1 = 1, which corresponds to:

θ′(1, i) = i, (24)

θ′(2, i, j) = i+ j + 1

There are many other possibilities.
One may construct the fronts for θ according to (3) and build the cor-

responding parallel program. The resulting program is shown in figure 2.
Statement 1 is the front at time 0. The j loop is the time loop. Statement 2
is the front at time j+1. In term of transformations, the new program is the
result of a loop splitting, a loop inversion and the detection of two parallel
loops.

3.3 Selecting a Good Schedule

It is obviously not possible to enumerate all causal schedules: one should
devise some criterion and choose a best one by as simple a process as possible.
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One of the possibilities is to consider that the set of constraints defines a
polyhedron in µ-space, and to construct its generating system. Whatever the
selection principle, it seems plausible that vertices will dominate all other
points in the solution space. The best schedule may then be found by a
process of inspection. This procedure seems to be quite wasteful; I will
investigate another approach, in which one select a performance factor, and
try to optimize it over the solution space.

Quite paradoxically, a possible solution is not to do anything. Suppose
that the set of constraints is submitted to some version of the simplex algo-
rithm. A classical version must be supplied with a linear objective function;
the PIP software[28] uses lexical ordering as a ranking principle. In non
parametric mode, this means that, given a polyhedron P , PIP will find its
lexicographic minimum x. Equivalently, one may say that PIP will first find
the minimum x1 of the first component of x ∈ P . Next, PIP will find the
minimum of the second component of x in P ∩ {x | x1 = x1}, and so on3.

Whatever the method chosen for solving the problem, there will be a
tendency to obtain solutions with small values of the µ’s. Since the schedules
are linear combinations of the µ’s with positive coefficients – see (14) – this
will tend to produce good schedules. In the case of the example, one will
directly obtain the solution (23).

In more complicated cases, the resulting schedule will be sensitive to such
irrelevant details as the ordering of the domain definitions or of the Farkas
multipliers, an unsatisfactory state of affairs. More definite results are needed
here.

3.3.1 Minimum latency schedules

In the special case where all iteration domains are bounded – possibly with
bounds depending on the structure parameters – one can define a total la-
tency: the maximum value of all schedules, and try to find a minimum latency
schedule. The method relies on the following

Lemma 8 If all domains are bounded, and if there exists at least one affine
schedule θ, then there exist at least one affine form in the structure parame-

3The above is not a precise description of the way PIP works. The minimum is found
directly; there is no successive minimization steps.
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ters:
L = h.n+ k,

such that
∀S, x ∈ DS : L− θ(S, x) ≥ 0. (25)

Proof Let us consider the set {vS1, . . . , vSn} of vertices of
DS. Since DS is bounded, there are no rays in this set. Since
a vertex is the intersection of a certain subset of the bounding
hyperplanes of DS, and since the structure parameters occurs lin-
early in their equations, the coordinates of the vertices are affine
forms in the structure parameters. As a consequence, for each
vertex vSi, θ(S, vSi) is an affine form in the structure parameters:

θ(S, vSi) = hSi.n+ kSi.

Selecting h ≥ hSi and k ≥ kSi for all S and i, which is always
possible, will satisfy (25) at all vertices, and as a consequence,

everywhere in DS.

Structure parameters are supposed to be a good characterization of the
size of the problem. This means that the latency increases with the structure
parameters, i.e. that the coordinates of h are positive. By Farkas Lemma,
(25) implies the existence of positive numbers νSk such that:

L− θ(S, x) ≡ νS0 +
∑
k

νSk(aSk

(
x
n

)
+ bSk).

By the preceding lemma, this does not reduce the search space. One then
proceeds as before. Identifying coefficients of independent variables gives a
set of equations. Some ν’s may be eliminated to give inequalities, which
are added to those obtained in the previous paragraph. The problem is then
solved, the unknowns in (25) being given the leading role. Since PIP finds the
lexicographic minimal solution, this process will tend to give minimal values
for the components of h, i.e. to find a schedule with minimal asymptotic
latency. Applying this method to the above example again gives the solution
(23), with a latency L = n+ 1.

There are two problems with this method. The first one is that, in the
case where there are several structure parameters, the solution may depend
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do i = 1,n

s(i) = s(i) + a(i)

end do

do i = 1,n-1

t(n-i) = t(n-i+1) + s(n-i)

end do

Figure 3: A program without a bounded-delay schedule

on their ordering. The other problem is well known in standard Operation
Research. Minimizing the total latency is equivalent to finding a critical
path in the DDG. The start time of operations on the critical path is fixed.
For other operations, there is some leeway, and the algorithm will choose a
solution more or less haphazardly, again depending on the ordering of the
unknowns.

3.3.2 Bounded delay schedules

A bounded delay schedule[29] is a schedule such that, for all edges of the
GDG:

〈x, y〉 ∈ Re ⇒ 1 ≤ θ(δ(e), y)− θ(σ(e), x) ≤ δ, (26)

where δ is a constant integer.
The interest of bounded-delay schedules is twofold. Firstly, having a small

delay is obviously an indication that the schedule is good, and this valuation
may be used even in the presence of unbounded domains (i.e. for the case of
on-line computational processes). Secondly, in the case of SRE or Dataflow
Graphs, δ is a bound on the lifespan of each value in the computation, thus
greatly facilitating memory allocation for the object program.

The technique for obtaining bounded-delay schedules should by now be
familiar to the reader: introduce a set of Farkas multipliers for each inequality
in (26), identify, and solve, δ being treated as the leading unknown, so as
to obtain the minimum delay. In the case of the kernel in Fig. 1, one again
obtains (23).

Bounded delay schedules are more constrained than minimum latency
schedules. However, the minimum delay schedule is not unique. The reader
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may care to verify that (24) also is a schedule with delay 1 for the program
in Fig. 1. In such a case the result may depend on ordering details. Beside
that, there is another difficulty, namely that there are GDG which have no
bounded delay schedule. An exemple is given by the program of Fig. 3.

3.3.3 The dual method

All these difficulties may be solved at one step by attempting to find the best
affine schedule. The order on schedule is pointwise ordering :

θ1 ≺ θ2 ≡ ∀u ∈ Ω : θ1(u) ≤ θ2(u),

a partial order. As a consequence, the problem may appear to be very
difficult. This is not so, on account of the following

Theorem 9 If θ1 and θ2 satisfy the causality condition for a DDG 〈Ω,Γ〉,
then so does

θ3(u) = min(θ1(u), θ2(u)).

Proof The proof relies on two properties of the minimum
function:

1. the minimum function is nondecreasing in both its argu-
ments,

2. the identity min(x+ 1, y + 1) = min(x, y) + 1.

Let u and v be two points of Ω such that uΓv. As a consequence:

θ1(u) + 1 ≤ θ1(v),

θ2(u) + 1 ≤ θ2(v).

By property 1:

min(θ1(u) + 1, θ2(u) + 1) ≤ min(θ1(v), θ2(u) + 1)

≤ min(θ1(v), θ2(v)),

and the conclusion follows by property 2.
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This result suggests that one should look for schedules in the closure of
the set of affine fonctions by the min operator. The functions in this set are
piecewise affine functions. If G is the set of affine causal schedules for a given
GDG, then a better piecewise affine schedule is given by:

θ(u) = min
t∈G

t(u). (27)

Since affine functions are trivially concave and the min operator conserve
concavity, θ is concave; it will be called in the following the best concave
schedule. Consider the system of inequalities which is obtained from iden-
tities like (16) by a process of identification and elimination. Its unknowns
are the Farkas multipliers in (14) – let them be the components of the vector
µ – and some of the Farkas multipliers in (16) – let them be called λ. This
system of constraints will be written:

G

(
µ
λ

)
≥ h, (28)

where h is a constant vector. These inequalities fully characterize the set G.
The transcription of (27) is the following linear programming problem:

θ(S, x) = min µS0 +
mS∑
k=1

µSk(aSk.

(
x
n

)
+ bSk) (29)

µ ≥ 0,

λ ≥ 0,

G

(
µ
λ

)
≥ h.

For each value of x, this is a standard linear program which may be solved
by some classical algorithm. This process is not satisfactory, because one
will only get isolated numerical values of θ(S, x), rather than a closed form
solution. What is needed is a parametric solution, the parameters being the
coordinates of x. Now since the parameters in program (29) occur in the
objective function, this program is not in a form suitable for solution by the
PIP software[28] . This situation may be remedied by using one variant of
the Linear Programming Duality theorem [11]:
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Theorem 10 If both linear programs:

Z = min k.µ, (30)

µ ≥ 0,

Gµ ≥ h,

and

Y = max ν.h, (31)

ν ≥ 0,

νG ≤ k,

have solutions then these solutions are equal.

Application of this theorem directly gives the value of θ(S, x):

θ(S, x) = max ν.h, (32)

ν ≥ 0,

νG ≤ (

N︷ ︸︸ ︷
0, . . . , 0, 1, aS1

(
x
n

)
+ bS1, . . . , aSmS

(
x
n

)
+ bSmS

,

N ′︷ ︸︸ ︷
0, . . . , 0).

where:

N =
∑
R<S

(mR + 1),

N ′ =
∑
S<T

(mT + 1) + |λ|.

There will be one such problem for each sattement S. Each of them may be
solved in closed form by the PIP algorithm. Using the constraints:

aSk.

(
x
n

)
+ bSk ≥ 0, k = 1,mS,

as context will simplify the resulting solution, which will be piecewise affine,
since, by theorem 6, there is no need to impose integrality conditions. Ap-
plication of this method to the program of Fig. 1 will again give (23).
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do i = 1,n

1 s(i) = 0.

end do

do i = 1,n

2 t(i) = t(i-1) + s(i)

end do

Figure 4: A program with two different schedules

It is interesting to compare the schedules obtained in this way to minimum
latency schedules and bounded delay schedules.

In the first case, observe that the minimum latency schedule, θL, belongs
to the set G. Hence, according to (27), one has:

∀u ∈ Ω, θ(u) ≤ θL(u).

Conversely, consider the maximum value of θ. Since this function is piecewise
affine, the extremal point lies on an affine piece of θ which belongs to G. This
piece cannot have a lower latency than θL. As a consequence, θ has the same
latency as θL.

The situation is quite different for bounded delay schedules. Consider the
program of fig. 4 The best schedule is:

θ(1, i) = 0,

θ(2, i) = i,

whose maximum delay is n. However, the program has the following unit
delay schedule:

τ1(i) = i− 1,

τ2(i) = i.

In this case, θ and τ have the same latency. This is not true in general.

3.3.4 Uniform recurrences

Let us consider the case of one recurrence equation with uniform depen-
dences, or equivalently, of several equations with the added constraint that
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all schedules have the same linear part. The delay in this case is a constant.
Furthermore, the constant term µ0 may be taken as 0. Hence, one does not
need Farkas Lemma for the expression of the causality condition. For each
edge e with dependence vector de, the condition is:

θ(x)− θ(x− de) =
∑
k

µk(ak.

(
x
n

)
+ bk)−

∑
k

µk(ak.

(
x− de
n

)
+ bk)

=
∑
k

µkak.

(
de
0

)
≥ 1.

This is the uniform translation of (28). When going to the dual, the
unknown vector ν has as many components as there are constraints, i.e. one
component per dependence vector. The dual problem may be written in the
following form:

θ(x) = max
∑
e∈E

νe,

ν ≥ 0,

ak.

(
x−∑e∈E νede

n

)
+ bk ≥ 0.

This is exactly the generalization of linear program I in Karp et. al. paper
[16] to the case where the iteration domain is arbitrary – Karp et. al. consider
only the case of the first octant of iteration space.

As an exemple, consider the following problem[?]: find a causal sched-
ule for

v(j1, j2) = g(v(j1 − 2, j2 − 2), v(j1, j2 − 3)) (33)

in the domain

D = {j1, j2 | j1 ≥ 0, j2 ≥ 0, j1 + j2 ≥ s, j1 + j2 ≤ 2s}. (34)

The DFG of (33) is uniform and is described by two translations:

h1(j1, j2) =

(
j1 − 2
j2 − 2

)
,
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and

h2(j1, j2) =

(
j1

j2 − 3

)
.

The prototype schedule is:

θ(j1, j2) = µ1j1 + µ2j2 + µ3(j1 + j2 − s) + µ4(2s− j1 − j2).

Computing the delays gives two constraints:

2µ1 + 2µ2 + 4µ3 − 4µ4 ≥ 1, (35)
3µ2 + 3µ3 − 3µ4 ≥ 1, (36)

and we have to find the minimum value of θ under those constraints.
The dual problem is:

t = max u+ v,

u, v ≥ 0,
0 ≤ 1,

2u ≤ j1,

2u+ 3v ≤ j2,

4u+ 3v ≤ j1 + j2 − s,
−4u− 3v ≤ 2s− j1− j2.

Submitting this problem to PIP gives the following solution:

θ(j1, j2) = if j2 − j1 + s ≥ 0
then if j1 − s ≥ 0

then j1+2j2−s
6

else j1+j2−s
3

else j2/2

This result may be interpreted as containing three schedules:

θ1(j1, j2) =
⌊
j1 + 2j2 − s

6

⌋
, (37)

θ2(j1, j2) =
⌊
j1 + j2 − s

3

⌋
, (38)

θ3(j1, j2) = bj2/2c , (39)
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each one being optimal in some subset of D. For instance, θ2 should
be used in:

D2 = {j1, j2 | j1 ≥ 0, j2 ≥ 0, j1 + j2 ≥ s, j1 − j2 ≤ 2s, j1 < s}.

All three solutions are found by Shang and Fortes’ procedure, and
only one is kept, namely θ2, since it gives the minimum latency, s/3.
The present method gives all three solutions and partition the iteration
space, each subdomain corresponding to one particular schedule. This
situation is depicted in figure 5.

The difference between the two approaches is brought out by another
example of Shang and Fortes: solve recurrence (33) in the new domain:

D = {j1, j2 | j1 ≥ 0, j2 ≥ 0, j1 ≤ s1, j2 ≤ s2}.

In that case, the prototype schedule is:

θ(j1, j2) = µ0 + µ1j1 + µ2j2 + µ3(s1 − j1) + µ4(s2 − j2).

The delay constraints are:

2µ1 + 2µ2 −2µ3 − 2µ4 ≥ 1, (40)
3µ2 −3µ4 ≥ 1. (41)

The schedule is given by the solution of the dual problem:

θ(j1, j2) = max u+ v, (42)
u, v ≥ 0,
2u ≤ j1,

2u+ 3v ≤ j2,

−2u ≤ s1 − j1, (43)
−2u− 3v ≤ s2 − j2.. (44)

It is quite clear that (43) and (44) are always true and may be removed.
The remaining system is so simple that it can be solved graphically
(see Figure 6). The solution is:

θ(j1, j2) = if j2 ≥ j1 then
j1 + 2j2

6
else j2/2.
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Figure 5: Shang and Fortes’ exemple 3.1. The heavy line encloses the set
{j1, j2 | θ(j1, j2) = 1}.
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Figure 6: Solving program (42). The arrow indicates the position of the
maximum.
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Figure 7: The solution of Shang and Fortes’ example 3.4
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The resulting schedule is depicted in Figure 7. Here again, the initial
domain has been dissected in two subdomains and an affine schedule
has been found in each of them. These partial schedules are the can-
didate schedules of Shang and Fortes, but instead of selecting one of
them according to the value of s1 and s2, the iteration domain has
been partitioned in two subsets where each component schedule is op-
timal. As a result, one does not have to build two different programs
and select one of them at run time. Since the subdomains which are
built by the PIP algorithm always are convex polyhedra, building the
corresponding programs – or the corresponding systolic arrays – is no
more difficult than processing the original domain.

4 Conclusion

This conclude the description of a new method for constructing affine sched-
ules. The method is fast and simple; no enumeration is needed. Its main
advantage is that it is not limited to uniform dependences. However, if, as is
often the case, a DFG has many uniform dependences and some nonuniform
ones, a very simple test allows one to substantially reduce the complexity of
the solution process. Other laborsaving devices have been used in section
3.2.2: eliminating some Farkas multipliers, taking advantage of unknowns
with only positive or only negative occurences. Ultimately, the solution is
found by solving a parametric integer program of relatively small size, which
is readily done by the PIP software. The method is even able to solve prob-
lems with unbounded domains: the reader may care to verify that in Shang
and Fortes example 3.4 as treated above, the upper limits of the domain may
be removed without changing the result. One may either try for a bounded
delay schedule or for a best concave schedule. In the latter case, the result
has minimum latency; if the DFG is uniform, the work of Darte et. al. [30]
indicates that under quite natural hypothesis on the shape of the domain,
the latency of the best concave schedule is asymptotically optimal.

The method has two drawbacks The first one is that it cannot find all
piecewise affine schedules. The reason is that there are programs whose free
schedule is not concave.

The program of figure 8 has the following free schedule:

θ(i) = if i > n then 1 else 0,



38

for i = 0,2n

x(i) = x(2n-i)

end

Figure 8: A program with a nonconcave schedule

do i = 0,n

do j = 0,i

1 s = s + a(i,j)

end do

end do

Figure 9: A simple program with no linear schedule

Edge Source Destination Condition
1 (1, i, j − 1) (1, i, j) j ≥ 1
2 (1, i− 1, i− 1) (1, i, j) j < 1 ∧ i ≥ 1

Figure 10: The DFG of program 9

while the dual Farkas algorithm gives simply:

θ′(i) = i. (45)

Furthermore, the free schedule has latency 1 while the best concave
schedule has latency O(n), thus showing that Darte et. al. result
cannot be extended to the non uniform case.

One should note, however, that is is quite simple to check whether
the result of any scheduling algorithm is optimal or not. One simply
verify that each operation which has no predecessor in the extended
DFG is scheduled at time 0, and that for others operations, one of the
delays is 1. The reader may be interested in checking in this way that
schedule (23) is the free schedule of program 1, while (45) is not the
free schedule of program 8.

Most importantly, there are GDG which have no affine schedule. An
example with its DFG is given in Fig. 9. The reader may care to verify, as a
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straightforward application of the above methods, that linear program (30)
for that example is unfeasible. This fact may be understood if we remember
lemma 8 which says in effect that an affine schedule has a latency which is
asymptotically linear in the structure parameters. Now it is clear that the
program of Fig. 9 has no parallelism, and that its minimum running time is
about n2

2
, which is quadratic.

On the other hand, Dowling[5] proved that any program instance (in
which the structure parameters have been given numerical values), has a
linear schedule, and concluded, wrongly, that any program with sufficient
loop nesting has lot of parallelism. In the case of Fig. 9, the Dowling schedule
is:

θ(i, j) = ni+ j,

which is linear when n is given. This schedule has latency n2; its mean degree
of parallelism is about 1/2!

While finding a schedule for example 9 is not very rewarding, it may still
happen, in more complicated cases, that a program has parallelism but no
affine schedule. For instance, its latency may be O(n2) with a sequential
execution time O(n3), giving a mean degree of parallelism of order n. The
design of a method for scheduling such programs is the subject of Part II of
this paper [10].
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