
Toward Automati
 DistributionPaul FeautrierLaboratoire PRiSMUniversit�e de Versaillesfeautrier�prism.uvsq.frApril 8, 2009Abstra
tThis paper
onsiders the problem of distributing data and
ode amongthe pro
essors of a distributed memory super
omputer. Provided that thesour
e program is amenable to detailed data
ow analysis, one may determinea pla
ement fun
tion by an algorithm analogous to Gaussian elimination. Su
ha fun
tion
ompletely
hara
terizes the distribution by giving the identity ofthe virtual pro
essor on whi
h ea
h elementary
al
ulation is exe
uted. Onehas then to \realize" the virtual pro
essors on the PE. The resulting stru
turesatis�es the \owner
omputes" rule and is reminis
ent of two-level distributions
hemes, like HPF's ALIGN and DISTRIBUTE dire
tives, or the CM-2 virtualpro
essor system.1. Introdu
tionThe emphasis in super
omputer ar
hite
ture has re
ently shifted from ve
torpro
essors to massively parallel
omputers. The main
ause of this
hange is theavailability of new RISC
hips, whi
h o�er in a small pa
kage a pro
essing powerwhi
h is a signi�
ant fra
tion of the power of most ve
tor pro
essors. Building asuper
omputer by assembling a moderate to large number of su
h
hips { from 32to more than a thousand { seems to make good sense, both in term of pri
e and of
omputing power. For te
hni
al reasons, it is very diÆ
ult to equip su
h a
omputerwith a global memory with uniform a

ess time. The simplest possibility, from thehardware designer point of view, is to distribute the memory among pro
essors. Anetwork takes
are of inevitable
ommuni
ations. There is generally more than anorder of magnitude between the lo
al memory a

ess time and the network laten
y,hen
e the importan
e of good data pla
ement for minimizing the
ommuni
ationoverhead. This problem is usually left to the programmer. Computers built a

ord-ing to this s
heme are message passing ar
hite
tures.The alternative is to hide the problem by providing a uniform address spa
e witha non uniform a

ess time. All su
h proposals { among whi
h the most notable aredistributed
a
hes and Distributed Virtual Memory { rely heavily on data lo
ality toobtain a

eptable performan
es. We see that, on the whole,
orre
t pla
ement of thedata, whether in a real or virtual global memory or among the distributed memoriesof a message passing ar
hite
ture, is the
riti
al fa
tor in the overall performan
eof this type of super
omputer. When the pla
ement is known, in a message passing1

ar
hite
ture, the
ompiler still has to build the
ommuni
ation
ode. This
hore istaken
are of dynami
ally by a
ombination of hardware and software in the
aseof global memory or DVM.Several authors have proposed that the distribution be spe
i�ed by the program-mer 1;2;3;4. The rationale is that most s
ienti�

omputing programs are models ofphysi
al reality, and that lo
ality is often obvious in the reality if not in the sour
e
ode. The problem with this proposal is that, �rstly, it does not apply to standardalgorithms from numeri
al analysis, whi
h are de�ned in abstra
to, and se
ondthat in large
odes, intuitive
onsiderations may o�er several
on
i
ting distribu-tions. In su
h a
ase, one needs a te
hnique for either
hoosing between proposals,or, alternatively, for using them all for di�erent phases of the
omputation, withredistribution operations in between.In this paper, I will explore another dire
tion, automati
 distribution. The basi
idea is, �rst, to analyze the sour
e
ode to identify the
ommuni
ation patterns, andthen to
onstru
t a pla
ement for the program data, with the aim of minimizing {or, at least, of diminishing { the volume of
ommuni
ation.In the next se
tion, I will present the restri
tions on the sour
e programs and onthe target ar
hite
tures whi
h are prerequisites for the appli
ation of the method.If these restri
tions are met, it is possible to
hara
terize at
ompile time all
om-muni
ation patterns of the sour
e program. One may then seek a distribution ofdata among the pro
essors with the aim of repla
ing most
ommuni
ations by lo
aloperations. Su
h a distribution is spe
i�ed in term of a pla
ement fun
tion. Se
-tion is devoted to the design of an algorithm for the sele
tion of a good pla
ementfun
tion. This algorithm makes use of an ordering of the
ommuni
ation patterns,whi
h is dis
ussed in se
tion . The resulting te
hnique, whi
h is of a highly exper-imental nature, may be extended in several dire
tions whi
h are dis
ussed in the
on
lusion.2. ContextThere are many types of distributed
omputers, with widely di�ering
ommu-ni
ation systems. An important
hara
teristi
s is the so-
alled topology, i.e. theshape of the
onne
tion network. Here, I will
onsider only the \ether"
ommu-ni
ation model. All pro
essors are supposed to be inter
onne
ted: the time totransmit a message is independent of the sour
e and destination pro
essors. Themodel is nearly exa
t for bus networks (for instan
e, a
olle
tion of workstations onan Ethernet). In many re
ent designs, the ar
hite
ts have taken pains to build fairapproximations to the ether model { e.g. by randomizing the routing.Suppose a pro
essor needs a value. This value may reside in the memory ofthe pro
essor, in whi
h
ase the
ost of a

ess will be
onsidered as null, or it mayreside somewhere else, in whi
h
ase the
ost of
ommuni
ation will be
onsideredas \very high". As a
onsequen
e, the quality of the distribution may be assessedsimply by estimating the volume of remote data a

esses.Automati
 distribution ne
essitates a global analysis of the sour
e program.With present day te
hniques, this is only possible if
onstraints are imposed to thesour
e
ode. These
onstraints { whi
h de�ne stati

ontrol programs 5 { are thefollowing:� statements are restri
ted to assigments and DO loops,2

do i=1,n1 s = a(i,i)do k = 1, i-12 s = s - a(i,k)**2end do3 p(i) = 1.0/sqrt(s)do j = i+1, n4 s = a(i,j)do k=1,i-15 s = s - a(j,k) * a(i,k)end do6 a(j,i) = s * p(i)end doend do Figure 1: Cholesky Fa
torization� the only data stru
tures are s
alar and arrays of unrestri
ted dimension,� subs
ripts and loop bounds are aÆne fun
tions of surrounding loop
ountersand size parameters.Programs whi
h do not meet these requirements are very diÆ
ult to analyze at
om-pile time. It might be possible to handle them by a
ombination of approximationte
hniques and run-time analysis, but this must be left for future resear
h.In this paper, I will use the program in Fig. 1 as a running example. It iseasy to
he
k that this
ode { a straightforward implementation of the CholeskyFa
torization algorithm { has stati

ontrol.In a stati

ontrol program, ea
h statement exe
ution or operation may be iden-ti�ed by spe
ifying the exe
uted statement and the values of the surrounding loop
ounters: the iteration ve
tor. Analysis of loop bounds allows one to asso
iate toea
h statement its iteration domain, whi
h is a subset of Nd, where d is the nestinglevel for the statement. The iteration domain of R will be noted DR.Furthermore, it is possible to analyze the
ow of data through the operations andthe memory
ells of a stati

ontrol program. For ea
h read a

ess in the program,the set of all pre
eding write a

esses to the same memory
ell is
hara
terizedand its latest exe
uted element is
omputed. The result is the sour
e of the valueobtained by the read a

ess. A sour
e is
omposed of a statement name and aniteration ve
tor. Both these elements may depend on the iteration ve
tor of theread a

ess. A method has been de�ned elsewhere5 whi
h yields sour
e fun
tionsin the form of more or less
ompli
ated
onditional expressions.The result of this analysis may be presented as the so-
alled Data
ow Graphor DFG for short. The DFG has one node per statement in the original program.There is an edge from statement R (the sour
e) to statement S (the sink) for ea
hread referen
e in S whi
h may use a value produ
ed by R. The sour
e and sink ofedge e will be written �(e) and Æ(e).Ea
h edge is labelled by the following information:� The governing predi
ate, whi
h must be true for the value to be a
tually used3

Edge Sour
e Destination Dimension Predi
ate101 h2; i; k � 1i h2; i; ki 2 k � 2 � 0102 h1; ii h2; i; ki 1 1� k � 0103 h2; i; i� 1i h3; ii 1 i� 2 � 0104 h1; ii h3; ii 0 1� i � 0105 h3; ii h6; i; ji 1106 h5; i; j; k � 1i h5; i; j; ki 3 k � 2 � 0107 h4; i; ji h5; i; j; ki 2 1� k � 0108 h5; i; j; i� 1i h6; i; ji 2 i� 2 � 0109 h4; i; ji h6; i; ji 1 1� i � 0110 h6; k; ii h2; i; ki 2111 h6; k; ji h5; i; j; ki 2112 h6; k; ii h5; i; j; ki 2Table 1: The Data
ow graph of program
holesin the sink. The governing predi
ate of edge e is asso
iated to a subset Pe ofthe iteration domain of the sink DÆ(e).� The sink-to-sour
e transformation whi
h allows one to
ompute the iterationve
tor of the sour
e in terms of the iteration ve
tor of the sink. In most pra
ti-
al
ases, this transformation is aÆne, but there is a possibility of en
ounteringinteger divisions as the result of the sour
e
omputation. The sour
e-to-sinktransform of edge e will be denoted by he. Its domain is Pe, and its
odomainis in
luded in D�(e).Table 1 is a representation of the DFG of the Cholesky Fa
torization programin Fig. 1. Line 108, e.g., indi
ates that provided that i � 2, iteration hi; j; i� 1i ofstatement 5 provides a value for s in iteration hi; ji of statement 6.3. Data and
ode distribution3.1. Introdu
tionThere are many types of parallel
omputers, and ea
h type has its own program-ming style and introdu
es its parti
ular kind of overhead. Here, we are interested inasyn
hronous distributed memory ma
hines. These ar
hite
tures are programmeda

ording to the message passing paradigm. Data are distributed among the mem-ories of the
omputer. Ea
h elementary pro
essor a
ts independently on lo
al data.When it en
ounters an operation whi
h uses a non-lo
al datum, it has to ex
hangemessage with the owner pro
esssor, either to send or re
eive the needed information.A
ommon
onvention when
onstru
ting distributed programs is the owner
omputes rule. A

ording to this rule, all
omputations are done by the pro
essorwhi
h owns the result
ell. We may
onsider then that all
ommuni
ations are in theform of remote reads { albeit it is possible to do better at the implementation level.Our main
on
ern is the minimization of the number of remote reads. Now, if theowner
omputes rule is obeyed, the only
ause for
ommuni
ation is the fa
t thatan operation may use a value whi
h has been produ
ed elsewhere. The Data
ow4

Graph is a pre
ise des
ription of all su
h situations. If operations hS; he(x)i andhR; xi are
onne
ted in the DFG, a
ommuni
ation will be ne
essary unless bothoperations are exe
uted by the same pro
essor. This suggests that the distributionpattern be de�ned stati
ally, i.e. that the same operation is always exe
uted on thesame pro
essor on every exe
ution of the program. This may be implemented bypostulating the existen
e of a pla
ement fun
tion �(S; x) whi
h gives the name ofthe pro
essor on whi
h hS; xi is to be exe
uted. If the
omputer has P pro
essors,whi
h are numbered from 0 to P � 1, � is a fun
tion from DS to [0; P � 1℄.To eliminate all
ommuni
ations implied by edge e of the DFG, the pla
ementfun
tion has to satisfy the following pla
ement equation:x 2 Pe) �(Æ(e); x) = �(�(e); he(x)): (1)The �rst observation is that if we insist that the pla
ement equation be ver-i�ed everywhere, then the program may well end up being exe
uted on only onepro
essor. As an example of this phenomenon,
onsider the following kernel:do i = 1,ndo j = 1,ndo k = 1,na(i,j,k) = a(i-1,j,k)+ a(i,j-1,k) + a(i,j,k-1)end doend doend doThe pla
ement equations are:�(i; j; k) = �(i� 1; j; k) = �(i; j � 1; k) = �(i; j; k � 1)and their only solution is the trivial one �(i; j; k) = 0.A possible way out is to
ompute the size of the set of operations for whi
hthe pla
ement equations are veri�ed, and to sele
t the pla
ement fun
tions whi
hmaximize this size, subje
t to the
onstraint that the solution is not trivial. Inthe \ether" model, this makes good sense, sin
e
ommuni
ation overhead dependsonly on the volume of data to be transferred, not on the position of
ommuni
atingpro
essors. This is, however, a very diÆ
ult problem; an idea of its diÆ
ulty
an behad by observing that simply
omputing the size of the iteration spa
e is diÆ
ult.One may solve approximately this optimization problem by
lassifying edges in two
ategories:�
ut edges, for whi
h equation 1 is veri�ed,� un
ut edges, for whi
h it is not,and then maximizing the set of
ut edges under the
ondition that all pla
ementfun
tions are non trivial. This is the solution we are going to explore, with theadded re�nement that ea
h edge will be assigned a weight, and that we will tryto
ut edges with large weights �rst. The problem of sele
ting the weights will bepostponed to the next se
tion.Pla
ement fun
tions are used to
onstru
t a distributed program a

ording tothe following re
ipe: repla
e ea
h statement S by:5

if �(S; x) = qthen remote-read all non lo
al data for SSend ifwhere x is the iteration ve
tor and q is the pro
essor number. This version is highlyineÆ
ient. Optimization is easy only if � is aÆne. There is however a diÆ
ulty.Consider a program with size parameter n. A typi
al domain will be of the formDS = fx jMx � nbg:Suppose that fx j Mx � bg is full dimensional. It
ontains a ball of diameter �,and the range of any linear fun
tion �(S; x) = a:x+ b in DS will be at least n�jaj.If we insist that a is integral, jaj � 1, and, for a suÆ
iently large value of n, � willhave more values than there are pro
essors. The solution is to express � as the
omposition of two fun
tions: � = � Æ �:where � is aÆne. It maps the
omputation onto a set of \virtual" pro
essorswhose size will depend on the size parameters. � is a \folding" fun
tion withrange [0; P �1℄. The primary obje
tive will be to minimize
ommuni
ation betweenvirtual pro
essors. Sin
e
ommuni
ation between virtual pro
essors whi
h are im-plemented on the same real pro
essor is simply a
opy operation, proper
hoi
e ofthe folding fun
tion will o�er some opportunities for further redu
tion of the traÆ
.This two-tier mapping system is reminis
ent of the Conne
tion Ma
hine software 6,or of the templates in HPF 3, the main di�eren
e being that templates or so-
alledgeometries are multidimensional obje
ts. I will return to that point later.In this paper, I will be mainly
on
erned with the determination of the virtualmapping. Some indi
ations on the
hoi
e of the folding fun
tion will be given inse
tion .3.2. A Pra
ti
al AlgorithmThe problem is to �nd a system of fun
tions �(S; x) whi
h
uts as many edgesas possible. To ea
h edge is asso
iated a distan
e fun
tion:de(x) = �(Æ(e); x) � �(�(e); he(x)): (2)The edge is
ut if the distan
e is identi
ally zero in Pe. �(S; x) is supposed to bean aÆne form in x: �(S; x) = aS :x+ bS : (3)For given aS and bS , one may
ompute the de(x) and test whether they are nulleverywhere in Pe. If Pe
ontains enough aÆnely independent points, (i.e., if it isfull dimensional), this
an happen only if all
oeÆ
ients in de(x) are zero. If not,one may
onstru
t a parametri
 representation of Pe in term of new independentvariables y. One then rewrites de(x) in term of the new variables, whose
oeÆ
ientmust also be null. In both
ases, the edge
utting
ondition translates to a systemof equations: Cea = 0;6

where a is the ve
tor whose
omponents are all the unknown
oeÆ
ients aS andbS . As a rough estimate of the size of the problem, if there are N statements whosemean nesting level is d, there will be N(d+ 1) unknowns in a, while if there are Eedges in the DFG, there will be about E(d + 1) equations, some of whi
h may betrivial. Sin
e for pra
ti
al
odes E � 2:R, where R is the number of read referen
es,the problem will in general be overdetermined.The matrix Ce is obtained by straighforward algebrai
 manipulations from he.The union of all su
h systems will be written:Ca = 0: (4)Let us return to the
ode of Fig. 1. Let us write:�(5; i; j; k) = b5 + a5;1i+ a5;2j + a5;3k;for the pla
ement fun
tion of statement 5, with similar notations for other pla
ementfun
tions. Let us
onsider �rst edge 106 in table 1. The sour
e is h5; i; j; k� 1i andthe sink is h5; i; j; ki. As a
onsequen
e, the pla
ement equations is simply: a5;3 = 0.Consider now edge 107, whose sour
e and sink are respe
tively h4; i; ji andh5; i; j; ki. The pla
ement equation is:b4 + a4;1i+ a4;2j � b5 � a5;1i� a5;2j � a5;3k = 0:In that
ase, however, the set P107 is not fully dimensional. In fa
t the governingpredi
ate k � 1 and the
onstraint k � 1 in the domain imply k = 1. As a
onsequen
e, the pla
ement equation redu
es to:b4 � b5 � a5;3 = 0;a4;1 � a5;1 = 0;a4;2 � a5;2 = 0:The union of all su
h equations is a linear, homogeneous system whi
h, in gen-eral, has only the trivial solution a = 0. The problem is to sele
t a subset of thissystem whi
h
uts as many important edges as possible, and whi
h gives a non triv-ial distribution. It would be possible to use an exhaustive sear
h algorithm, but thefollowing greedy algorithm has been found to be quite satisfa
tory in most
ases.The idea is to order the rows of matrix C by de
reasing importan
e, and tosolve the system Ca = 0 by su

essive Gauss-Jordan elimination. The algorithm isas follows:

7

Algorithm E1. Suppose that a partial solution has been found, in the form of a substi-tution �. Initially, � is the empty substitution.2. Extra
t the next line of C and apply � to it. There is nothing to do ifthe result is 0 = 0. If not, write the resulting equation in the form:x = f;where x is some
omponent of a whi
h has not yet been eliminated. Let� be the elementary substitution [x f ℄;
ompute �0 = � Æ �.3. Apply �0 to all prototype pla
ement fun
tions and test whether any ofthem be
omes trivial.4. If there is no trivial prototype, repla
e � by �0.5. Start again at step 2 until all rows of C have been used.We have still to explain how to dete
t a trivial pla
ement fun
tion. Sin
e theoriginal problem is homogeneous, the right hand sides in � are homogeneous too.The uneliminated variables { those whi
h do not o

ur in the left hand side of �{ may take arbitrary values. One easily proves that by giving proper values tothe uneliminated variables, one may give non zero values to all variables with theex
eption of those whi
h are expli
itly set to zero by �. As a
onsequen
e, we seethat a pla
ement fun
tion is not trivial provided one of its
oeÆ
ients at least isnot set to zero by the
urrent solution �.Let us
onsider again the Cholesky solver, starting with edge 106. As we haveseen earlier, the
orresponding equation is a5;3 = 0. The �rst solution is then:� = [a5;3 0℄. The next edge to be
ut is 112. The asso
iated equations are:a5;3 = a6;1; a5;2 = 0; a5;1 = a6;2; b5 = b6:The solution is now:�0 = [a5;1 a6;2; a5;2 0; a6;1 0; b5 b6; a5;3 0℄:If we try to
ut edge 111 next, some of the pla
ement fun
tions be
ome trivial.One of the equations for this edge is: a6;2 = a5;2, whi
h implies a6;2 = 0. At thattime, all
oeÆ
ients in the pla
ement fun
tion for statement 6 are set to 0. As a
onsequen
e, we ignore the equation and try again with the next one.The algorithm
ontinues until all equations have been tested. At the end, weare left with only two arbitrary
oeÆ
ients, a6;2 and b6. We may set the �rst to 1and the se
ond to 0. The end result is:�(1; i) = i ; �(2; i; k) = i;�(3; i) = i ; �(4; i) = i; (5)�(5; i; j; k) = i ; �(6; i; j) = j:8

Comparison with table 1 shows that all edges are
ut ex
ept 108, 109 and 111.Exe
ution of algorithm E is very fast: a Lisp-based implementation takes a fewse
onds on a low-end workstation.4. Heuristi
sIn this se
tion, I will address three problems. The �rst one is the determinationof the order in whi
h edges should be pro
essed. The se
ond one is the problem ofdistribution on a multidimensional grid of pro
essors. The last one is the questionof the sele
tion of the folding fun
tion.The following proposals will be justi�ed by heuristi
s arguments. These willstem from an asymptoti
 analysis of the workload and
ommuni
ation volume. Tosimplify this analysis, we will suppose that the sour
e program has only one sizeparameter, n, and that all dimensions of iteration domains, et
. are proportionalto n. As a
onsequen
e, we will admit that the number of integer points in a ddimensional polyhedron of parameter n is O(nd).4.1. Edge rankingIt is quite
lear that an edge has a better
han
e of being
ut if it is pro
essedearly by algorithm E. Hen
e, one should start with the edges whi
h indu
e thelargest traÆ
. The proposal is that we asso
iate to ea
h edge the volume of datawhi
h is ex
hanged if this edge is not
ut, and that we rank edges by de
reasingvolume. However, we do not need a pre
ise value for the said volume: any
onsistentestimate will suÆ
e.From the de�nition of the DFG, we see that the set of values whi
h are sentalong edge e is isomorphi
 to the image of Pe by the fun
tion he. We propose touse the dimension of this \emitter set" as a
hara
terization of this volume. Thissuppose that the target
omputer has broad
asting fa
ilities, i.e. that a value hasto be sent only on
e even if it is used by many PE.The emitter set is: Ee = fy j 9x 2 Pe; y = he(x)g:One �rst eliminates x by a
ombination of Gauss-Jordan and Fourier-Motzkin algo-rithms. This gives a de�nition of Ee by a system of inequalities. One then
onstru
tsthe set of impli
it equalities whi
h is satis�ed by Ee; the dimension of Ee is thedimension of y minus the number of impli
it inequalities.Consider as an exemple edge 108 in table 1. The emitter set is:E108 = fi0; j0; k0 j 9i; j; k : i0 = i; j0 = j; k0 = i� 1;2 � i � n; i+ 1 � j � ng:Obviously, all points in E108 satisfy i0 � 1 = k0. Hen
e, the dimension of this setis 2.The dimension of all emitter sets are given in the fourth
olumn of table 1.From these, one may dedu
e that the volume of residual
ommuni
ations whenusing pla
ement (5) will be O(n2).4.2. Multidimensional Pla
ement 9

The s
heme we have just proposed has one major drawba
k: in some
ases, thesize of the virtual pro
essor set may be less than the available parallelism, and lessthan the number of physi
al pro
essors. Consider for instan
e the
ase of statement5 in the Cholesky solver. Its O(n3) iterations are partitioned in about n fronts:hen
e, the mean paralellism is O(n2). In
ontrast the pla
ement fun
tion (5) willgenerate only n virtual pro
essors. Suppose that n is of the order of 100 and thatthere are about 1000 pro
essors: there will be a severe loss of pro
essing power.Sin
e in large distributed memory ma
hines, the pro
essors are most often or-ganized as a multidimensional grid, one is naturally led to the
onsideration ofmultidimensional pla
ement fun
tions, ea
h
omponent of the fun
tion giving one
oordinate of the virtual pro
essor in the grid. There is a diÆ
ulty in this s
heme:namely, that some fronts in the program may not have suÆ
ient dimension to �llthe grid. Suppose for instan
e that we try to implement Cholesky on a two dimen-sional grid. This is simple for statement 5, whi
h has a two dimensional front, butwhat are we to do for 6, whose front is one dimensional?There are two solutions here. The �rst one, if the hardware or software permits,is to rearrange the grid a

ording to the statement {
hanging the geometry inConne
tion Ma
hine parlan
e. In this way, there will be no loss of pro
essingpower. The drawba
k is that sin
e
hanging the geometry is a non linear transform,minimizing
ommuni
ations will be
ome very diÆ
ult.The other possibility is to use the same geometry for the whole program, somepro
essors being kept idle if ne
essary. One may note that this s
heme is alreadyused for one dimensional pla
ement. Consider the
ase of statement 3: its fronts
ontain just one operation. Hen
e, only one virtual pro
essor among n is in use atthat time. The situation will be the same for statement 6 in a two dimensional grid:at ea
h time ti
k, a
tive pro
essors will belong to a one dimensional subset.Choosing between the two s
hemes is likely to depend strongly on detailed per-forman
es of the target
omputer, and should be the subje
t of further experiments.Here, I will explore the feasibility of the se
ond proposal.Computing higher dimensional pla
ement may be done by an extension of algo-rithm E. The only
hange is in the triviality test. One requires that ea
h
andidatepla
ement fun
tion depends on enough parameters that one may
onstru
t the re-quired number of linearly independent solutions by giving suitable numeri
al valuesto the parameters. Obviously, one
annot impose this
ondition for statementswhose fronts do not have the requested dimension. For instan
e, one
annot ask fora two dimensional pla
ement fun
tion for statement 6 in Cholesky. In that
ase,one will obtain a pla
ement fun
tion whose two
omponents are not linearly inde-pendent. For Cholesky, the maximum possible dimension is two. Algorithm E withthe new triviality test gives a prototype with two independent parameters:�(1; i) = �i ; �(2; i; k) = �i;�(3; i) = �i ; �(4; i) = �i+ �j;�(5; i; j; k) = �i+ �j ; �(6; i; j) = �j:A two dimensional pla
ement fun
tion may be obtained by su

essively setting� = 1; � = 0, whi
h gives again (5), and � = 0; � = 1:10

�0(1; i) = 0 ; �0(2; i; k) = 0;�0(3; i) = 0 ; �0(4; i) = j;�0(5; i; j; k) = j ; �0(6; i; j) = 0:4.3. Sele
tion of the Folding Fun
tionA smart
hoi
e of the folding fun
tion may help in redu
ing residual
ommuni-
ation along un
ut edges. This will happen if the sour
e and sink operations belongto di�erent virtual pro
essors whi
h are folded to the same PE. Let us
onsider thedistan
e de(x) of equation (2). If de is a
onstant (a
onstant ve
tor in the
ase ofmultidimensional pla
ement), one should
hoose a blo
k folding fun
tion:�(z) = z � B;whith a suitable blo
k size B. If de depends on x, it does not seem possible toredu
e traÆ
 in this way. One should sele
t a
y
li
 folding, whi
h has better loadequalization properties: �(z) = z mod P:5. Related workThe problem of automati
ally distributing arrays in a distributed memory
om-puter has been widely dis
ussed in the re
ent literature. Many authors works withinthe
onstraint satisfa
tion paradigm 7;8;9;10. From an analysis of the sour
e pro-gram, one dedu
e a
onstraint graph whi
h indi
ates how the layout of the di�erentarrays must be related in order to remove all
ommuni
ations. The set of
onstraintsis usually in
onsistent. An algorithm is then spe
i�ed whi
h aims at satisfying asmany
onstraints as possible. Usually, the authors limit themselves to simple lay-outs; this is spe
ially appropriate when the input language favors high level arrayoperations, like Fortran 90 8 or Alexi 11.Nearest to our approa
h is the proposal of Ramanujan et. al. 12, whi
h useaÆne pla
ement fun
tions and
onstru
t systems of equations like (4), but do notgive a systemati
 method for solving them.Lastly, the approa
h of Ma
e 13 is from a somewhat di�erent point of view. Theproblem is how best to implement an array statement, given that there are severalways of distributing the data (storage pattern) ea
h of whi
h results in di�erent
ostsfor the operations. If one likens storage patterns to pla
ement fun
tions and loopnests to array statements, we see that our te
hnique has the ability of providing theneeded data to Ma
e's pro
edure, whi
h works \in the large" while our own works\in the small".6. Con
lusions and Future WorkOur proposal has two
hara
teristi
s:11

� Ea
h statement uses the same \geometry", whatever the dimension of itsiteration spa
e. This means that for lower dimensional statements, somepro
essors will stay idle. As a
ompensation,
ommuni
ations are mu
h easierto set up and optimize in this
ase.� Ea
h array has its own pla
ement fun
tion, and this fun
tion is kept �xed forthe entire exe
ution of the program. This is in
ontrast with language whi
hprovide rearrangement dire
tives.Further resear
h is needed to evaluate these two assumptions and explore alter-natives. One should �rst experiment with other edge ranking s
hemes, giving forinstan
e a mu
h lower weight to �xed distan
e
ommuni
ations like edges 101 and106. Next, the sele
tion of a pla
ement fun
tion should be more in
uen
ed by theparti
ulars of the target ar
hite
tures. Su
h problems as the existen
e of broad
astand partial broad
ast me
hanisms, or the provision of eÆ
ient redu
tion and s
anprimitives should be taken into a

ount at this stage.7. Referen
es1. S. Hiranandani, Ken Kennedy, Charles Koelbel, Ulrike Kremer, and C-W. Teng. Anoverview of the fortran D programming system. Te
hni
al Report 91121, CRPC,Ri
e University, September 1991.2. H. P. Zima, H. J. Bast, and M. Gerndt. SUPERB : A tool for semi-automati
MIMD/SIMD parallelization. Parallel Computing, 6:1{18, 1988.3. David Loveman. High performan
e fortran. In Hans P. Zima, editor, Pro
eedings ofthe Third Workshop on Compilers for Parallel Computers, Vienna, July 1992.4. Hans Zima, Peter Brezany, Barbara Chapman, Piyush Mehrotra, and A. S
hawald.Vienna Fortran | a language spe
i�
ation. Te
hni
al Report 21, ICASE, 1992.5. Paul Feautrier. Data
ow analysis of s
alar and array referen
es. Int. J. of ParallelProgramming, 20(1):23{53, February 1991.6. Thinking Ma
hine Corp., Cambridge, MA. CM Fortran Referen
e Manual, Ver-sion 5.2, 1989.7. Li Jinke and Marina Chen. Index domain alignment: Minimizing
ost of
ross-referen
ing between distributed arrays. In Pro
. Third Symp. on the Frontiersof Massively Parallel Computation, pages 424{433. IEEE, O
tober 90.8. Kathleen Knobe, Joan D. Lukas, and Guy L. Steele. Data optimization: Allo
a-tion of arrays to redu
e
ommuni
ation on SIMD ma
hines. J. of Parallel andDistributed Computing, 8, 1990.9. Kathleen Knobe and Natarajan Venkataraman. Data optimization: Minimizingresidual interpro
essor data motion on SIMD ma
hines. In Pro
. Third Symp. onthe Frontiers of Massively Parallel Computation, pages 416{423. IEEE, O
tober1990.10. Manish Gupta and Prithviraj Banerjee. Demonstration of automati
 data partion-ning te
hniques for parallelizing
ompilers on multi
omputers. IEEE Trans. onParallel and Distributed Systems, 3:179{193, Mar
h 1992.11. Skef Wholey. Automati
 data mapping for distributed-memory
omputers. InICS'92, pages 25{34. ACM, 1992. 12

12. J. Ramanujan and P. Sadayappan. Compile-time te
hniques for data distributionin distributed memory ma
hines. IEEE Trans. on Paralell and DistributedSystems, 2:472{482, O
tober 1991.13. Mary E. Ma
e. Memory Storage Patterns in Paralell Pro
essing. Kluwer, 1987.

13

