Array Dataflow Analysis

Paul Feautrier *

February 8, 2006

May 21, 1997

Abstract

While mathematical reasoning is about fixed values, programs are
written in term of memory cells, whose contents are changeable values.
To reason about programs, the first step is always to abstract from the
memory cells to the values they contains at a given point in the execution
of the program. This step, which is known as Dataflow Analysis, may use
different techniques according to the required accuracy and the type of
programs to be analyzed.

This paper gives a review of the ad hoc techniques which have been
designed for the analysis of Array Programs. An exact solution is possible
for the tightly constrained static control programs. The method can be
extended to more general programs, but the results are then approxima-
tion to the real dataflow. Extensions to complex statements and to the
interprocedural case are also presented.

The results of Array Dataflow Analysis may be of use for program
checking, program optimization and parallelization.

1 Introduction

There are many situations in which one needs to thoroughly understand the
behavior of a program. The most obvious one is at program checking time.
If we could extract a description of a program as, e.g., a set of mathematical
equations and compare it to a specification, also given in the same medium,
debugging would become a science instead of an art. Reverse engineering is
another case in point. But the most important application of such analyses is
to optimization. Each optimization has to be proved valid in the sense that
it does not modifies the program ultimate results. To achieve this, we have
to know, in a more or less precise way, what these results are intended to be.
Since the most aggressive type of optimization a program can be subjected to
is parallelization, understanding a program before attempting to parallelize it
is a very important step.

Now, since the time of Von Neuman, programs are written in term of “vari-
ables” which are in fact symbolic names for memory cells. Values are never
given!, or even named, but always alluded to as “the present content of cell

99

2”. On the other hand, in mathematics, the subject of discourse is always a

*e-mail : Paul.Feautrier@ens-1lyon.fr
Lexcept in the case of constants.

value which never change, albeit it can be unknown or arbitrary. The value in
a given memory cell can be modeled as a function of time (that function may
be constant).

Obviously, “time” here is not physical time. Besides the fact that exhibiting
such a function would be nearly impossible, it would have the added inconve-
nience of not being portable among different computers. We will use a logical
time, to be defined later. The only requirement is that there must be a “time
arrow”: time must belong to an ordered set. Since the state of a computer mem-
ory does not change except at each execution of an assignment, logical time is
not continuous but discrete. Each time step is an operation of the computer,
which corresponds, from the point of view of the programmer, to the execution
of an instruction. For program analysis purposes, there is some leeway in the
definition of an operation. It may be the execution of a machine instruction, as
in the case of Instruction Level Parallelization, or the execution of an assignment
statement, as in most of this paper, or the execution of a complex statement,
as in Sect. 4.

If we stipulate that the meaning of a program is given by expressing the
value of variables as a function of (logical) time, then dataflow analysis is the
process of extracting properties of these functions from the program text. These
properties may be of widely varying precision. In some cases, one may exhibit a
closed formula for the function. In other cases, one may only knows that it has
positive values. In the most frequent cases, one has to be content with relations
between values taken either at the same time (Floyd’s assertions [Flo67]) or at
different, times. As before, these relations may be more or less precise. We will
show that, for a simple but useful category of programs, the result of Array
Dataflow Analysis is a system of equations relating the values of variables at
distinct time points.

Dataflow analysis is based on the observation that the value one may retrieve
from a memory cell is the one which was written last. In the scalar case, this
allows one to write dataflow equations, which may be solved either by iterative
methods or by direct methods. In the case of array cells, the problem is more
difficult because there is no simple method for deciding if two references to the
same array are references to the same cell or not: two occurrences of al[i] are
references to the same cell iff i has not been modified in between. Conversely,
it may happen that a[i] and a[j] refer to the same cell if the values i and ;2
are equal.

There is a general method for devising dataflow analyses [CC77]. One starts
from a semantical description of the source language, and then one abstracts
the features of interest by constructing a nonstandard semantics. The result
of executing a given program according to this semantics, if possible, is the
required property.

Our main interest here is another type of analysis which has been designed
in an ad hoc way for the use of automatic parallelizers. The initial concept
was that of dependences. There is a flow dependence between statement S;
and S, iff a value produced by S; may be used later by Ss. By restricting
the allowed expressions in subscripts and loop bounds to affine expressions, the
problem reduces to the question of the feasibility in integers of a system of affine

2We will adhere to the following convention: identifiers will always be written in a Teletype
font. Their values at a given time will always be denoted by the same letter in an italic font.
If necessary, the time will be indicated by various devices (accents, subscripts, arguments).

inequalities. The problem is solved by standard Linear Integer Programming
algorithms. It was soon realized [Fea88a] that the same technology could give
much more precise results. For programs abiding to the same restrictions as
above, and for each value in the program, one can pinpoint its source, i.e. the
name of the write operation which created it. This information is invaluable for
program checking, program understanding (a.k.a. reverse engineering), program
optimization and parallelization.

Program whose only control structure is the do loop, whose only data struc-
ture is the array and in which loop bounds and subscripts are affine functions
are known as static control programs. For such programs, one can take itera-
tion vectors (the vectors whose components are the current values of the loop
counters) as logical time. It follows that, under the above hypotheses, array
subscripts are closed functions of (logical) time. This is the crucial property
which allows us to find relations between the other values in the program. For
program which are outside the static control model, devising an Array Dataflow
Analysis is much more difficult. A first possibility is to extend slightly the con-
trol model by adding conditionals and while loops. If this is not possible, it
means that the iteration count of the loop cannot be bounded at compile time.
The consequence is that, if these iterations can be the source of a value, then we
cannot find the last one. In that case, all we can do is to report that the source
belongs to a set of iterations. The result of our analysis is no longer sources,
but source sets, and our aim will be to find the smallest possible source sets.
The corresponding technique is known as Fuzzy Array Dataflow Analysis and
is presented in Sect. 3. It can be extended to the case where some subscripts
are no longer affine functions [BCF97].

We will next present some extensions of ADA. The first one is to statements
which may return an unbounded number of results. Typical cases are read
statements, vector statements & la Fortran 90 and forall statements a la HPF
(Sect. 4). Procedures may return an unbounded number of results as soon
as they have at least one array argument. Hence, they belong to the above
category and can be treated in the same way as, e.g., vector operations. These
techniques are presented in Sect. 4.3.

In the conclusion, we sketch some applications of Array Dataflow Analysis
and point to several unsolved problems.

The work which is reported here has taken many years of research by many
peoples to evolve from the rough sketch in [Fea88a] to the present state of affairs.
I would like to acknowledge contributions by Denis Barthou and Jean-Francois
Collard [BCF97], by Vincent Lefebvre [LF97] and by Arnauld Leservot [Les96].

2 Exact Array Dataflow Analysis

Exact Array Dataflow Analysis is possible only in the case of static control
programs. We will first describe this program model. The results of exact
ADA are source functions, which give, for each step in the execution of the
source program and for each memory cell, the operation which has generated
the current value of the memory cell. We give an algorithm for computing source
functions and compare it to other proposals from the literature.

2.1 Notations

The objects we have to handle in this paper are mainly vectors with integer
coordinates and set of such vectors. |@| is the dimension of @. dafi..j] is the
subvector of @ built from components ¢ to j. @[i] is a shorthand for ali..i].
Familiar operators and predicates like + and > will be tacitly extended to
vectors. The sign < denote lexical ordering of vectors. The max operator, when
acting on vectors or vector sets, is always to be understood as the maximum
according to <. Large letters will usually denote sets; IN will be the set of
nonnegative integers and 7 the set of signed integers.

2.2 The Program Model

Let us first insist that the present work is not about any particular language, but
about the static subset of any programming language. To emphasize this fact,
the examples will be written indifferently in Fortran, Pascal or C. Furthermore,
the fact that a given program fragment belongs to this static subset may be self-
evident from the program text, or may be the result of elaborate preprocessing
(goto elimination, induction variable detection, constant propagation, do loop
reconstruction, to cite a few). In this paper, we will always suppose that such
preprocessing has already been applied and that we are dealing with its results.

For simplicity, data types will be restricted to integers, reals, and n-dimen-
sional arrays of integers and reals. Adding other scalar types (Boolean, complex
numbers) and even record types is easy. The only statements we will consider in
this section are scalar and array assignments. The only control constructs will
be the sequence and the do loop. A do loop has the property that it possesses
a counter, and that neither the counter nor its upper and lower bounds are
modified by the loop body. In this paper, we will suppose that the loop step is
always one. If the step is a known numerical constant, the program can always
be transformed to have step one. If the step is an expression, the program will
be considered to be beyond the static control model.

The Pascal for loop has all of the above properties and thus can be
considered equivalent to a Fortran do loop. The C for loop is a more
complex object since the loop counter, lower and upper bounds are not
recognized by the language, and since these elements can be modified in
the loop body. However, it is possible to check whether these restriction
are adhered to, and thus to identify those C loops which are equivalent to
a Fortran loop.

We will also suppose that compound statements are flattened, i.e. that con-
structions such as

begin S1;
begin S2; S3
end

end

are replaced by the equivalent:

begin S1; S2; S3 end

2.2.1 Restrictions

The above restrictions are obviously intended to simplify the calculation of the
total number of iterations of all loops. This is, however, not sufficient: we have to
specify the form and content of the loop bounds. The simplest case is when limits
are known numerical values. This, however, is much too restrictive, since many
programs use variable limits (matrix and vector dimensions, discretization size,
etc.) and even non rectangular loop nests: consider for instance the prevalence
in numerical analysis of triangularization algorithms (like those of Gauss or
Cholesky). These observations motivate the following definition of the class of
static control programs.

To recognize a static control program, one must first identify its structure
parameters: a set of integer variables which are defined only once in the pro-
gram, and whose value depends only on the outside world (through an input
statement) or on other already defined structure parameters. A program has
static control if all its loops are do loops whose bounds depend only on structure
parameters, numerical constants and outer loops iteration counters. The analy-
sis technique which is presented here is based on the theory of affine inequalities,
and hence is applicable only if all limits are affine functions. For similar rea-
sons, all subscripts are restricted to affine functions of the loop counters and
the structure parameters.

We will use the fact that in a correct program, array subscripts are always
within the array bounds. Hence, two array references address the same memory
location if and only if they are references to the same array and their subscripts
are equal. This restriction is not too severe if we note, first, that it is good
programming practice to debug a program before submitting it to an optimizing
or restructuring compiler, and also that the methods of this paper may be used
as a highly efficient array access checker (see Sect. 5 or, for a precursor of our
work, [SJ77]).

This hypothesis will allow us to ignore array declarations. As a consequence,
our technique will be equally applicable to languages which enforce constant
array bounds — Fortran, Pascal, C, ... — and to those which do not — as for
instance Fortran 90.

2.2.2 The Sequencing Predicate

Values in array elements are produced by execution of statements. Hence we
need a notation to pinpoint a specific execution of a statement, or operation.
Our first need is an unambiguous designation of a statement in a program. Our
solution is to use arbitrary names, which will be denoted by letters such as R, S,
T. When discussing examples, we will use the fact that our preferred languages
allow the affixing of a numerical label to each statement. By convention, the
statement labeled ¢ will be named S;. In the balance of this paper, we will
mostly be interested in simple statements. However, some discussions will be
clearer if all statements, compound or simple, are named.

In our source language fragments, the only repetitive construct is the do
loop. Hence, an operation is uniquely defined by the name of the statement
and the values of the surrounding loop counters (the iteration vector [Kuc78]).
A pair such as (R, @) whose components are a statement name and an integer
vector will be called an (operation) coordinate. To denote a statement instance,

a coordinate must satisfy two conditions:
e the dimension of @ must be equal to the number of loops surrounding R;
e all components of @ must be within the corresponding loop limits.

With each loop L we may associate a pair of inequalities:

lbL S a S Ub[.a
where a is the loop counter of L. If a statement R is embedded in a loop nest
Li,La,...,Ly, in that order, then the iteration vector @ of R must satisfy:
Vp:(1<p<N)lb, <dfp] < uby,. (1)

(1) may be summarized in matrix form as:

FRd > ip. 2)

where Eg is a 2N x N matrix and fig is a vector of dimension N in which the
structure parameters may occur linearly.

Formula (2) will be called the existence predicate of R. Notice that we do not
suppose that by, < ubp. In accordance with the Pascal convention (and with
the “modern” interpretation of Fortran do loops), a loop whose bounds violate
this inequality will not be executed at all.

Consider for example the program sketch in figure 1. Figure 2 describes
its iteration domains. The existence predicate of statement S» may be

written as:
1 0 -1
-1 0) n
11 (j) oo [20
0 -1 n

The preceding discussion leads to a spatial description of loops. Such a point
of view goes back to the work of Kuck; see also Padua and Wolfe’s review article
[PW86]. Usually, loops are explained from a temporal point of view: iteration i
is executed just before iteration i+1, and so on. We must seek a way to reconcile
those two aspects. This may be done by defining a sequencing predicate on the
iteration domains. The sequencing predicate is a strict total order on the set of
operation coordinates; it is written:

(R, @) < (S,D).

and expresses the fact that (R,@) is executed before (S,b). The sequencing
predicate depends only on the source program text. We have given a simple
expression for it in [Fea9l]. Let Nggs be the number of loops which enclose
both statements R and S. Let <ext be the textual order of the source program:
R <text S iff R occurs before S in the program text. The execution order is given
by:

= -

(R, @) < (S,b) = @[1..Nps] < b[1..Ngs] V (@[1..Nrs] = b[1..Nrs] AR <iext S).
(3)

DO i
DO

=1,n
j=1,i-1
S1

END DO

DO

j = i+i,n
S2

END DO

END

Figure 1: A sample program

Figure 2: The iteration domain of program 1

for k := 0 to 2*n do
clk] :=0.;
for i := 0 to n do

for j := 0 to n do

cli+j] := cli+j] + alil*b[j];

Figure 3: The product of two polynomials

Knowledge of Ngs (a matrix of integers) and <iext (a strict total order
relation) is all that is needed to sequence all operations in a program.

When lexicographic order is replaced by its definition, the sequencing pred-
icate becomes a disjunction of Ngg + 1 affine predicates which will be written
as <p:

- -

(Rd@) <, (8.5) = (@[L.p) = {L.p] Adlp+ 1] <Bp+1)), 0<p<Nps. (4)

The version for p = Ngg is :

-

<R, (_7:> <p <S, b> = 6[1..NR5] = g[l..NRs] AR <text S- (5)

One may notice that operations which stand in the relation <, to each
other have exactly p identical coordinates in their iteration vectors. In Allen
and Kennedy’s paper[AK87], if two such operations give rise to a dependence,
one says that this dependence is at depth p + 1, while if p = Ngg, the depth is
said to be infinite. With a slight displacement of the origin, we will say that <,
is the sequencing predicate at depth p, depths ranging from 0 to Ngg.

2.2.3 Another Presentation of the Sequencing Predicate

We can derive another expression for the sequencing predicate by considering
the execution tree of the program, which is obtained by (conceptually) unrolling
all its loops. The nodes of the execution tree are either simple statements (the
leaves) or compound statements (the interior nodes). A compound statement
comes either from a genuine compound statement in the source program or
from the unrolling of a loop. Let us number all edges issuing from a given node
consecutively from left to right, starting from the lower bound of the loop in
the case of unrolling, and from 1 in the case of a compound statement. The
coordinates of the iteration vector of a leaf are the numbers associated to the
unique path from the root to the leaf in top-down order. If we suppose that
the program has been normalized, i.e. that the body of a loop is always a
compound statement whatever the number of statements it contains, then the
coordinates of the iteration vector alternate between positions in compound
statements (constants) and loop counters (variables). By convention, the whole
program is a compound statement, hence the the first component of all iteration
vectors is a constant. The point of this construction is now that the sequencing
predicate is simply lexicographic order.

Consider the program of Fig. 3. The iteration vectors of S; and S» are
now (1,k,1) and (2,4,1, 7,1). From this we deduce, e.g. that all instances
of S; execute before all instances of S». Similarly, by simplifying the
lexicographic order, one can show that:

(SQaiaj> '<<52ai,7jl> = (27i71aj7 1><<<2ai1717j,71>
= i<iVv(i=inj<j).

The notations we have defined in the preceding section will be extended to
deal with the new iteration vectors. For instance, the existence predicate of a
statement S will still be written:

ERd > iig

where the matrix ER and the vector 7ig have new rows to deal with the constant
values in the iteration vector. Similarly, we will still use @ <, b for the depth p
sequencing predicate, the meaning being that the above expression begins by p
equalities on the variable components of @ and b.

These new iteration vectors where introduced in [Fea92b] for other purposes.
A similar proposal, with a different numbering scheme has been made in [KP96].

2.3 Data Flow Analysis
2.3.1 Formal Solution

Suppose that we are given a program conforming to the restrictions of section
2.2.1. Let T be a statement in which an array M is read. Statement T will be
called the observation statement in what follows. Let b be the iteration vector
of T; the subscripts of M are affine functions of b. In vector form, the reference

-

to M may be written M[§(b)].

Consider for instance the reference to v[i,k] in:

for i := 1 to n do
for j := 1 to i-1 do
for k := i+l to n do
1 vlj,k] := v[j,kl-v[i,k]l*v[j,i]1/v[i,i];

The iteration vector of 81 is (1,4,1, 7,1, k,1). The indexing function, g, is

given by:
> (0 1000 0 0)-
9()_<0000010>b'

We are interested in finding the source of the value of M[g(b)]. Let Sy,...,Sy
be the statements which produce a value for M, and let d@y,...,d, be their
iteration vectors. S; is of the form:

M@ =

The source is a function of b which gives a coordinate when evaluated, which
will be called the source function of M[g(b)].
For each S;, there is a set of operations which write into M[G(b)]. Let Q;(b)
be this set. The set of all candidate sources is:
Q(b) = U Qi (D).
i=1

-

Let us state the conditions which apply to a generic member, @ of Q;(b):

¢ Existence Predicate: @ must be a legitimate iteration vector for S;:

Eg,d > iig,. (6)

e Subscript Equations : the subscripts of M must be the same at the read
and write operations:

fi(@) = g(b).

Note that this vector equation subsumes r scalar equations, where r is the
rank of M. In writing this equation, we have taken into account the fact
that the subscripts of M are guaranteed to be within M bounds.

e Sequencing Predicate @ must be executed earlier than b:
@< b.
e Environment : The observation statement must be executed:

ETEZ -

From this we deduce the definition of Q;:

-

Qi) = {@ | Hs,d > s, d < b, fi(@) = §(B)}. (7)

The sets Q; may still be subdivided according to the following observation.
Under the restrictions of Sect. 2.2.1, the existence predicate and subscript
equations generate a set of affine constraints. As we have seen earlier, the
sequencing predicate is a disjunction of affine predicates <,. Hence, Q; is a
union of polyhedra, or, rather, sets of integer points contained in polyhedra:

-, - - -

Q) = {@l|Fg,d>ns,,d<, b fi@ = §0)}, ®)
- " NSIT -
b = U U @b ©)

-

) =max|J J Q). (10)

In this paper, we will make repeated use of the following;:
Property 1

n
max U E; = I?Ea,f((max E;),
i=1
where the E; are arbitrary subsets of a totally ordered set E, and where max is

the maximum operator associated to the order relation of E.

The proof is trivial if none of the sets F; is empty. If not, we have to introduce
a special symbol, 1, representing the undefined value, to stand in place of the
maximum of an empty set. By convention, L is less than any other value in any
of the sets Ej;:

10

Vee F: 1Lz (11)
Application of the above property to (10) lead to the computation of

() = maxQY(b) (12)
o n NS, T o
<(b) = max max 7 (b). (13)

-

The quantities ¢ (b) are known as direct dependences and were first defined
by Brandes [Bra88].

To avoid multiple indices, we will renumber all possible candidates at all
depths with a new index j. L will stand for the cardinal of the set of possible
sources. (13) will be rewritten as :

- -,

¢(b) = max{g;(b) [j = 1, L}. (14)

Let us go back to the example in Figure 3. Consider the problem of finding
the source of c[i+j] in statement S;. There are two candidates, S; and
S» itself, and as a consequence, three functions ¢?, ¢J and 3. The vector
b, in this case, has dimension 5: (2,14,1,4,1). To simplify notations, only
its variable components, ¢ and j, will be taken into account.

Consider for instance the set Q2(7,j). Its elements are five dimensional
integer vectors (2,4',1, 4, 1) which satisfy the following constraints:

e the index equations, i’ + j' =i + j;

e the sequencing constraint i’ < iV (i’ =i A j' < j). One sees that
the second term in the disjunction is incompatible with the index
equation. This implies that Q) is empty and ¢ = L.

e the limit constraints 0 <4’ <n,0 < j' < n.

Examination of figure 4 shows that Q2(7,7) is empty if i = 0 or j = n.
If not empty, its lexical maximum is the vector (2,4 —1,1,5 + 1,1). This
implies that to represent <3, we will need a conditional:

S@,j)=if i >1Aj<n)then (2,i—1,1,j +1,1)else L. (15)
The case of the other candidate is simpler; we always have:
0 . .
1 = (17 ? +]a 1)
Computing the lexicographic maximum of these values is now a straight-
forward exercise in algebra. The result is:
s(i,j)=1if (i > 1Aj <n)then (2,i—1,1,j+1,1)else (1,i+j,1). (16)
To obtain this result, we have relied a lot on figure 4 and geometrical
intuition. Now this works fine on one- and two-dimensional problems, but
is quite difficult and error prone in three dimensions, and is impossible
beyond. Furthermore, a computer has no geometrical intuition at all.

Our aim now will be to solve the above problem in a general, systematic
fashion and to implement the corresponding algorithm.

11

Q(2,4) [4]

S1

Q32,1 [¢t]

Figure 4: Computing the source function for the program of Figure 3
The problem is finding the source of c¢[3] at iteration (2,1) and of c[6] at

iteration (2,4) (circled points).
Square boxes enclose the corresponding Q sets.

12

2.3.2 Evaluation Techniques

Direct Dependences In this section, we will focus first on one particular
direct dependence ¢! at a given depth p. When the original program conforms
to the restrictions of section 2.2.1, all terms in formula (12) are linear equalities
or inequalities. In fact since indexing functions are affine, the first term is a
linear system whose dimension is the rank of array M. The last term is simply
a set, of linear inequalities. The second term is given by (4) or (5). If the depth
p is less than Ng,¢, then it is the conjunction of p equalities and one inequality.
For p = Ng,, it is made of equalities only and does not exist if S; <text T iS
false.

As a consequence, Q¥ (5) is the set of integer vectors which lie inside a
polyhedron. Finding its lexical maximum is a Parametric Integer Program (a
PIP)[Fea88b]. A short description of an algorithm for solving PIP problems is
given in the appendix. The parameters are the components of b and the struc-
ture parameters. Note that the components of b are not arbitrary; they must
satisfy various constraints, among which is:

ETE > T

to which may be added any available information on the structure parameters.
These inequalities form the context of the parametric integer problem.

To express the solution, we need the concept of a quasi-affine form. Such a
form is constructed from the parameters and integer constants by the operations
of addition, multiplication by an integer, and FEuclidean division by an integer.
The solution is then expressed as a multistage conditional expression. The
predicates are of the form f (5) > 0, where f is quasi-affine. The leaves are
vector of quasi-affine forms or the “undefined” sign, L. Such an expression will
be called a quasi-affine selection tree (quast for brevity).

The result of this analysis is the direct dependence at depth p between the
definition by S; and the use in T. The presence of a L sign in a direct dependence
indicates that, for some values of the loop counters, the reference in T is not
defined by statement S;.

Formula (15) is a quast in the above sense (notice that integer division is
not used here). Integer division appears when analyzing programs which
access arrays with strides greater than one, as in:

s = 0.
do i =1, 2%n, 2
1 x(1) =1
end do
do k =1, 2*n
2 s = s + x(k)
end do

The direct dependence from x[2*i-1] in S; to x[k] in S» is given by the
following quast:

(k) = (1,if 2((k+1)+2) — (k+1) > 0then (k+1) + 2else 1,1).

This formula expresses the fact that x[k] is not defined when k is even.

13

Combining the direct dependences Consider now the problem of evalu-
ating (14). This will be done in a sequential manner, by introducing:

on, = max{q;|j=1,...,n},
gp = 1.

—

Obviously, ¢(b) = o and we have the recurrence:
on = max(op_1,%n)- (17)

We are thus led to the evaluation of max(o,7) where o, T are arbitrary quasts.
We will use the term extended quast for any formula constructed from 1 and
quasi-linear vectors by the operations of selection (if ... then ... else
..) and taking a maximum.
Our problem is then to remove the maximum operator from an extended
quast. This is done with the help of the following rules (and of their symmetrical
counterparts, as the max operator is commutative).

Rule 1 max(L,0) = o. (This is simply a restatement of (11).)
Rule 2 If o0 = if C then o, else o3, then:
max(o, 7) = if C then max(o,7) else max(o2,)
Rule 3 If u and v are quasi linear vectors then
max(u,v) = if u € vthen velse u.

The context of a node in a quast, C, is the conjunction of all the predicates
which are asserted to be true as one follows the path from the root of the quast
to the distinguished node. C'is constructed by “anding” p if the leaf is in the
true part of a conditional if pthen, and by anding —p if it is in the false
part.

Rule 4 Let if pthen oelse 7 be a subtree of a quast, and let C be its context.
Then if C A p is not feasible, replace the subtree by T. Similarly, if C A —p is not
feasible, replace the subtree by o.

Rule 5 if Cthen ogelse 0 = 0.

Theorem 2 If Rules 1 to 5 are oriented from left to right and used as rewrite
rules, then their application to any extended quast always terminates.

Proof Let us introduce the following metrics:

e The size of an extended quast, || is the number of nodes in the
tree representation of o. It is given by the following recursive
definition:

1. |1| = |u] =1, where u is a quasi linear form.
2. |lif pthen oelse 7| =1+ |o| +|7|.
3. [max(o,7)| =14 |o] +|7].

14

e The height of a max operator is simply the sum of the sizes of
its arguments:
h(max(o, 7)) = |o| + |7

e |o|;¢ is the number of if ’s in an extended quast.

Rules 1 to 3 have the property that the max operator on the left has
greater height than the (eventual) max operators on the right. In
the case of 2, for instance, we have:

h(max(if C'then o; else 02,7)) = 1+ 01|+ |o2] + 7],
h(max(o1,7)) = |ou|+]7],
h(max(o2,7)) = |oa| + 7],

If there are further max operators inside 7, for instance, their height
is left undisturbed by application of the rules. All other rules may
only remove some max operators, without changing the height of
those which are left undisturbed.

Finally, the effect of rules 4 and 5 is to remove some if oper-
ators. From these results we deduce that as the reduction of an
extended quast proceeds, the maximum height of the max opera-
tors stays bounded by the maximum height in the original quast,
H. Let us associate to each quast o in the reduction a vector u(o)
of dimension H + 1, whose H first components are the histogram
of “max” heights in reverse order, the last component being |o|;f .
The first component of u(c) is the number of max’s of maximum
height, H. From the above discussion, we see that the effect of rules
1 to 3 is to decrease by one some component, i, of u(o). In the case
of rule 2, two components of index j,k > i are increased by one.
Rules 4 and 5 may have the effect of decreasing some components
of u(o) (if there are max operators in the discarded argument), and
also to decreases by at least 1 the last component. The conclusion is
that for all elementary reduction steps o — 7, we have u(1) < u(o)
in lexicographic order. Since lexicographic order on positive integer
vectors is well founded, the reduction process must eventually stops,
QED. Furthermore, as long as there is a max operator in the reduct,
one of the rules 1 to 3 can be applied. Hence, when the reduction
stops, there are no max operators in the result. il

In contrast to this result, it can be shown by counterexample that our rewrit-
ing system is not confluent, i.e. that the same extended quast can be reduced
to several distinct quasts. However, since all rules are semantical equalities, it
follows that all such reducts are semantically equal.

In the case of (16), we have to compute:
ifi>1Aj<n

o= max(J_,maX({ then (2,i —1,1,5+1,1) , (1,74 7,1))).
else L

15

We have successively:

ifi>1Aj<n
o=max({ then (2,i—1,1,j+1,1),(1,i+j1)))
else |

by rule 1, then
ifi>1IAj<n
o =< then max((2,i—1,1,7+1,1),(1,i 4+ j,1)) .
else max(L,(1,i+7,1))

For the application of rule 3, we notice that (2,7—1,1,j+1,1) < (1,i+7,1)
is always false. Use of this property is an example of rule 4. In the other
arm of the conditional, rule 1 is applied again, giving the final result:

oc=if (i>1Aj<n)then (2,i —1,1,5+1,1)else (1,i+ 7,1).

2.4 Summary of the algorithm

Suppose that a compiler or another program processor has need to find the
source of a reference to an array or scalar M in a statement S. The first step is to
construct the candidate list, which comprises all statements R which modify M
at all depths 0 < p < Ngg. If a standard dependence analysis is available, this
list can be shortened by eliminating empty candidate sets, which correspond to
non existent dependences.

The ordering of the candidate set is a very important factor for the com-
plexity of the method. Experience has shown that the best compromise is to
list the candidates in order of decreasing depth. For equal depth candidates,
it is best to follow the textual order backward, starting from the distinguished
reference, up to the beginning of the program, and then to loop back to the end
of the program.

Similarly, if rule 4 is used too sparingly, the resulting quasts will have many
dead branches, thus increasing the complexity of the final result. Conversely,
if used too often, it will result in many unsuccessful attempts at simplification,
also increasing the complexity. A good compromise is the following:

e When computing a step of the recurrence (17) we will always suppose that
rule 4 has been applied exhaustively to o,,_1.

e In the evaluation of o, rule 2 should be applied by priority on the left
argument. As long as reductions are still possible on o,,_1, there is no need
to apply rule 4. All contexts that can be constructed here are feasible,
because they either come from o,_; or ¢,. The first quast has been
simplified in the previous step, and the second one comes from PIP, which
does not generate dead branches.

e As soon as the application of rules 2 or 3 to g, starts, simplification by
rule 4 should be attempted.

As alast remark, one can show (see Sect. 3.3.3 of [Fea91]) that the complete
knowledge of the iteration vector is not needed when applying the max operator
to sources of differing depths. In this way, one can predict beforehand whether a
direct dependence can have influence on the source or not, and avoid computing
it in the latter case.

16

If these rules are followed, the results of array dataflow analysis are sur-
prisingly simple. A limited statistical analysis in [Fea91] shows that the mean
number of leaves per source is about two. The probable reason is that good pro-
grammers do a kind of dataflow analysis “in their head” to convince themselves
that their program is correct. If the result is too complicated, they decide that
the program is not well written and start again.

2.5 Related Work

Another approach to Array Dataflow Analysis has been proposed by Pugh and
his associates (see e.g. [PW93, Won95]). The approach consists in reverting to
the basic definition of the maximum of a set. u is the maximum of a totally
ordered set () iff:

UuERAN-TER:u<wv.
Let us consider the definition (12) of a set of candidate sources. According to

-

the above definition, its maximum, ¢;(b) is defined by:

Gi(b) € Qi(b) A =37 : Gi(B) < @< bAT € Qi(b). (18)

In words, g (b) is the direct dependence from S; to b iff (B) is in flow
dependence to b and if there is no other operation in flow dependence to b
which is executed between ¢;(b) and b.

The formula (18) is written in a subset of Presburger logic (that part of
first order logic which deals with the theory of addition of positive numbers),
which is known to be decidable. Pugh has devised an algorithm, the Omega
test [Pug91] which is able to simplify formulas such as (18). The result is a
relation between the source ¢;(b) and b. It has been checked that this relation
is equivalent to the quast which is found by our method.

Some authors [MAL93, HT94] have devised fast methods for handling partic-
ular cases of the source computation. The idea is to solve the set of equations in
the definition of QY (b) by any integer linear solver (e.g. by constructing the Her-
mite normal form of the equation matrix). Suppose that this system uniquely
determines @ as a function of b: @ = f(b). It remains only to substitute f(b)
for @ in the _inequalities. The result is the existence condition for the solution,
which is f(b) if this condition is satisfied, and L if not. One must revert to
the general algorithm if there are not enough equations to fix the value of the
maximum.

3 Approximate Array Dataflow Analysis

To go beyond the static control model, one has to handle while loops, arbitrary
subscripts and tests, and, most important, modular programming (subroutines
and function calls). Let us first introduce the following convention. Constructs
occurring in the control statement of a program (do loop bounds, while loops
and tests predicates, subscripts) will be classified as tractable and intractable
according to their complexity. Affine constructs are always tractable, while the
definition of intractable constructs is somewhat subjective and may depends on
the analysis tools which are available at any given time. Tractable predicates
in tests can always be replaced by restrictions on the iteration domain of the

17

surrounding loop nest. Similarly, a tractable predicate in a while loop indicates
that the loop can be transformed into a do loop. We will suppose that such
simplifications have been applied before the approximate analysis starts.

In this section we will be interested in while loops and tests. Non linear sub-
scripts can be handled in the same framework, but they need rather complicated
notations. The reader is referred to [BCF97] for this extension.

As a matter of convenience, we will suppose here that while loops have an
explicit loop counter, according to the PL/I convention:

do ¢ = 1 while p(...)

The while loop counter may even be used in array subscripts.

When constructing iteration vectors, tests branches are to be considered as
new nodes being numbered 1 and 2. In accordance with our conventions for
static control programs, these nodes always are compound statements, what-
ever the number of their components. For instance, in example E3 below, the
iteration vector of Statement Ss is (1,z,1,2,1). The first 1 is the index of the
do loop in the whole program, and the second one is the index of the test in the
do loop body. The 2 indicates that the subject statement is in the false part of
the test.

With these conventions, we can transpose to this new program model most
of the notations we introduced for static control programs. Iteration vectors
may include while loop counters and the definition of the sequencing predicate
does not change.

3.1 From ADA to FADA

As soon as we extend our program model to include conditionals, while loops,
and do loops with intractable bounds, the set Q¥ of (8) is no longer tractable at
compile time. The reason is that condition (6) may contain intractable terms.
One possibility is to ignore them. In this way, (6) is replaced by:

Eg d >y, (19)

where E' and 71’ are similar to F and 7 in (6) with the intractable parts omitted.
We may obtain approximate sets of candidate sources:

Q(b) = {@| Bs,a > i @ <, b, fi(@) = 7B} (20)

However, we can no longer say that the direct dependence is given by the
lexicographic maximum of this set, since the result may precisely be one of the
candidates which is excluded by the nonlinear part of of the iteration domain of
S. One solution is to take all of Q;(b) as an approximation to the direct depen-
dence. If we do that, and with the exception of very special cases, computing
the maximum of approximate direct dependences has no meaning, and the best
we can do is to use their union as an approximation. Can we do better than

that? Let us consider some examples.

program E1

do x = 1 while ...
1 s = ...

end do

18

end

What is the source of s in Statement S3? There are two possibilities, Statements
S; and S,. In the case of S, everything is linear, and the source is exactly (2).
Things are more complicated for Sy, since we have no idea of the iteration count
of the while loop. We may, however, give a name to this count, say N, and
write the set of candidates as:

QY ={(,z,1) |1 <z < N}.
We may then compute the maximum of this set, which is
) =if N > 0then (1,N,1)else L.

The last step is to take the lexicographic maximum of this result and (2), which
is simply (2). This is much more precise than the union of all possible sources.
The trick here has been to give a name to an unknown quantity, NV, and to solve
the problem with N as a parameter. It so happens here that N disappears in
the solution, giving an exact result.

Consider now:

program E2

do x = 1 while ...
1 s(x) = ...

end do

do k = 1,n
2 A 10’9

end do

end

With the same notations as above, the set of candidates for the source of s (k)
in Sg is:
QV'k) = {(1,2,1) |1 <2 < N,z =k}.

The direct dependence is to be computed in the environment 1 < k < n which
gives: if k < Nthen (1,k,1) else L. Here, the unknown parameter N has not
disappeared. The best we can do is to say that we have a source set, or a fuzzy
source, which is obtained by taking the union of the two arms of the conditional:

c(k) € {(1,k,1), L}.

Equivalently, by introducing a new notation ¥(b) for the source set at iteration

B', this can be written:
B(k) = {(L,k,1), L}.

The fact that in the presence of of intractable constructs, the results are no
longer sources but sets of possible sources justifies the name Fuzzy ADA which
has been given to the method. FADA gives exact results (and reverts to ADA)
when the source sets are singletons.

Our last example is slightly more complicated: we assume that n > 1,

19

program E3;
begin
for x := 1 to n do
begin
if ... then
begin
s = ...

O W

end
else
: begin
T : s = ...
end
end;

D

end

What is the source of s in Statement Sg? We may build an approximate can-
didate set from S5 and another one from S;. Since both are approximate, we
cannot do anything beside taking their union, and the result is highly inaccurate.

Another possibility is to partition the set of candidates according to the
value z of the loop counter. Let us introduce a new Boolean function b(x)
which represents the outcome of the test at iteration x. The z-th candidate
may be written®:

7(z) = if b(z) then (1,z,1,1,1) else (1,z,1,2,1).

We then have to compute the maximum of all these candidates (this is an
application of Property 1). It is an easy matter to prove that:

<z =71(x)<7(z).

Hence the source is 7(n). Since we have no idea of the value of b(n), we are lead
again to the introduction of a fuzzy source:

S ={(1,1,n,1,1),(1,1,n,2,1)}. (21)

Here again, notice the far greater precision we have been able to achieve. How-
ever, the technique we have used here is not easily generalized. Another way of
obtaining the same result is the following. Let L = {z | 1 < 2 < n}. Observe
that the candidate set from Sy (resp. S»2) can be written {({1,z,1,1,1) | z €
D; NL} (resp. {(1,2,1,2,1) | z € Dy NL}) where

D, = {z | b(z) = true } and Dy = {z | b(z) = false}.

Obviously,
D1 n D2 = 0, (22)

and
D, UD, = 7. (23)

30bserve that the ordinals in the following formula do not correspond to the statement
labels in the source program. These labels have been introduced for later use (see Sect. 3.3).

20

We have to compute
B = max(maxD; N L,max D, NL).
Using property 1 in reverse, (23) implies:
B = max L. (24)

By (22) we know that 3 belongs either to Dy or Dy which gives again the result
(21).

To summarize these observations, our method will be to give new names (or
parameters) to the result of maxima calculations in the presence of nonlinear
terms. These parameters are not arbitrary. The sets they belong to — the
parameters domains — are in relation to each others, as for instance (22-23).
These relations can be found simply by examination of the syntactic structure of
the program, or by more sophisticated techniques. From these relations between
the parameter domains follow relations between the parameters, like (24), which
can then be used to simplify the resulting fuzzy sources. In some cases, these
relations may be so precise as to reduce the fuzzy source to a singleton, thus
giving an exact result.

3.2 Introducing Parameters

In the general case, any statement in the program is surrounded by tests and
loops, some of which are tractable and some are not. Tractable tests and loops
give the linear part of the existence predicate, definition (19) above. To the non
tractable parts we may associate a set d; such that operation @ exists iff:

Eyd>ily Aicd; (25)

The observation which allows us to increase the precision of FADA is that
in many cases d; has the following property:

dl.p] =b[l.p] = (@edi=bed) (26)

for a p; which is less than the depth of S;. This is due to the fact that loops
and tests predicates cannot take into account variables which are not defined at
the point they are evaluated, as is the case for inner loop counters. Usually, p;
is the number of (while and do) loops surrounding the innermost non tractable
construction around S;. This depth may be less than this number, in case
the intractable predicate does not depend on some variables, but this can be
recognized only by a semantics analysis which is beyond the scope of this paper.

A cylinder is a set C of integer vectors such that there exists an integer p —
the depth — with the property:

geCAdl.pl=bl.p =beC. (27)

The depth of cylinder C' will be written 6(C).
The above discussion shows that to each d; we may associate a cylinder C}
by the definition: . .
adeC;=3bed;:dl.p;]=>bl.p],

21

with the property:
Eéﬁz ﬁ'sv /\d'ediEEé_d'Zﬁé_/\&'EC’i.

The depth of C; is bounded upward by the number of loops surrounding S;; a
more precise analysis may show that it has a lower value.
With these convention, the set of candidate sources becomes:

-

QV(b) = {@| Eg,@>ng,,d € Ci,d <, b, f;(d@) = §(b)}. (28)

Let us introduce the following sets:

-~ - - -

Q(b,a) = {| Fg,d > ng,,a[l.pi] = @, <, b, fi(@) = g(b)}. (29)

Q¥ (b, @) is the intersection of QY (b) with the hyperplane @[1..p;] = d@. (28) can
be rewritten:

O = |J &b (30)
aeC;
Another use of property 1 gives:

= -,

7 () = max Q7 (5) = max(max Q7 (5, @)) (31)

@ i

Now (AQf (b, @) is a polyhedron, as is evident from (29). Hence its lexicographic
maximum, R

¢P(b, @) = max Q¥ (b, @) (32)

can be computed by just another application of PIP. In fact, the presence of the

additional inequalities @[1..p;] = & may simplify this calculation. We then have:

—

P(b) = max P (b, d@). (33)

a€D; "

The maximum in the above formula is reached at some point of ;. This point
is a function of ¢, p and b, written as 37 (b) and is known as one of the parameters
of the maximum of the program. The direct dependence is now given by:

Gi (0) = 7 (b, 37 (). (34)
At this point, we can go on as we did in the case of exact analysis:
e Compute all parametric direct dependences by (32).

e Combine the direct dependences by rules 1 to 5.

e In the end result, quantify over all possible values of the parameters, so
as to get source sets.

This procedure does not give precise results, since we lose all information about
relations between parameters of the maximum. Our aim now is to explain how
to find these relations and how to use them to narrow the final result.

22

3.3 Taking Properties of Parameters into Account

The sets C;, C; for ¢ # j may be interrelated, depending on the position of
statements S;, S; in the abstract syntax tree. An example of this situation has
been observed for statements S5 and S; of program E3. These relations induce
relations between the corresponding parameters, which have to be taken into
account when combining direct dependences. The relations on the C; sets may
have several origins. The most obvious ones are associated to the structure
of the source program, as in the case of E3. It may be that other relations
are valid, due for instance to the equality of two expressions. Here again, this
situation can be detected only by semantics analysis and is outside the scope of
this paper.

The structural relations among the C; can be found by the following algo-
rithm:

e The outermost construction of the source program (by our convention,
a compound statement), is associated to the unique zero-depth cylinder,
which includes all integer vectors of any length, and can be written as 7ZZ*.

e If C, is associated to:
begin S1; Sn end
then C; = Cy.
e If C, is associated to:
if p then S1 else S2

where p is intractable, then the cylinders associated to Sy, C; and Sa, Cs
have the same depth as Cy and are such that:

CinCy =0, CiuCy = Ch.
If p is tractable, Cy = C1 = Cs.

e If () is associated to a for:

or to a while:
do ... while ... S1

and if these loops are intractable, then the cylinder C; associated to S;
has depth 6(Cp) + 1 and is such that:

Cy C Cy.

Otherwise, C; = Cp.

23

The relation between ADA and FADA In the case where all enclosing
statements of an assignment S; are tractable, it is easy to prove that C; = Z*.
The condition @ € C; is trivially satisfied in (28). Hence, in that case, FADA
defaults to ADA. Provided this case is detected soon enough, one and the same
algorithm can be used for all programs, and the precision of the results will
depends on the presence or absence of intractable control constructs.

Characterization of the Parameters of the Maximum The main obser-
vation is that each parameters is itself a maximum. Note first that from (29)
follows:

B (b) = <P (b, 7 (b))[1..pil.
Suppose now that @ is an arbitrary set of vectors all of which have dimension
at least equal to p. Let us set:

Qlp =A{z[l.p] |z € Q}.

The properties of the lexicographic order insure that:

(max@)[1..p] = max@Q |, .

In our case, this gives:

-

Br®) = OGP

pi) (35)

where Qf (5) is the “polyhedral envelope” of all possible sources at depth p (see
(20)). This formula fully characterizes the parameters of the maximum and will
be used repeatedly to obtain relations between them.

Another set of relations is given by depth considerations. Note that from
(29) follows:

- - - -

3P (b, BY(B)[1..ps] = B2 (D),
and
cP(b, B (b))[1..p] = b[L..p),

provided the set Ezp(l_;, gf’(l_;) is not empty. Now, in (35), we can exclude the
case where (AQf (b) is empty, since this can be decided a priori by integer linear
programming. If such is the case, statement S; is simply excluded from the list
of candidates at depth p. Hence, either C; is empty, in which case, by (35), we
set Eg’ (E) = 1, or else the above relations apply. Let us set m; = min(p, p;). We

obtain: oo . oo
B7(b)[1..m;] = b[1.m;] v B (b) = L. (36)

Exact Cases of FADA Among the C; there is the set corresponding to
the observation statement, C’w._‘Since our convention is that the observation
statement is executed, we have b € C,,, hence C,, is not empty. It may happen

24

that the results of structural analysis imply that C; = C,. Suppose that p >
pi = po,. From (36) we deduce:

gf = 5[1--1%]-

This allows us to remove the nonlinear condition @ € C; from (28) before com-
puting its maximum.

In the case where the innermost intractable statement is a while or a do
loop, we can go a step further since C; now has the property:

x € CiA(@[L.p; — 1] = b[l.p; — 1] Adlpi] < b[pi]) = b € C;.
This means that the exactness condition is in that case:
p>pi— 1
This enable us to solve exactly such problems as the source of s in:

do ¢ = 1 while ...
1 s =8+
end do

Here the candidate and observation statements are both S;. p; =1 and p = 0.
The exactness condition is satisfied, and the source is:

Pe) = max{{1,d,1)|1<d,d <c}
= ifc¢> 1then (1,c—1,1)else L.

From Parameter Domains to Parameters of the Maximum It remains
to study the case where the structural analysis algorithm has given non triv-
ial relations between parameters domains. The associated relations between
parameters can be deduced from (35) by Prop. 1 and the following trivial prop-
erties:

Property 3 IfCND =0, then:
(maxC = 1L AmaxD = 1)V maxC # maxD.
Property 4 If C C D then:
max C'< max D.
As a consequence, since C N D C C, we have
max(C N D)< max C, (37)

and the symmetrical relation.

25

Example E3 revisited The observation statement is Sg. It is enclosed in no
loops. Hence, the b vector is of zero length, and will be omitted in the sequel.
There are two candidate sources, S5 and Sy, whose iteration vectors are of length
one and will be denoted as z. It that case, lexicographic order defaults to the
standard order among integers.

The parametric sources are:

Pa) =max{z|1<z<n,z=a} =if | <a <nthen (1,a,1,1,1)else L.

Pa)=max{z|1<z<n,z=a} =if 1 <a <nthen (1,a,1,2,1) else L.
The structural analysis algorithm gives the following relations:
Cl = C’0 ’ 08 = CO
C’2 = Cl) 03 = 02
C,UCs = Cf
04 n 06 = 0
C;=Cy , Cr=0Cs.

Here, only Cs and C7 are interesting. Remembering that Co = Z*, all other
sets can be eliminated, giving:

CsUC; =727, CsnNC7 = .
The depths p5 and p7 are both equal to 1. From Equ. (35) we deduce:
A = max(Cs N QY) = max(Cs N [1,n]).

Similarly, .
A2 = max(Cs N [1,n]).

From the above relations, we deduce:
(Csn,n))Nn(CrN[1,n]) =0

and
(Csn[Ln)u(Crn(l,n]) =Z" N[l,n] =[1,n].

This equality can be interpreted as two inclusions from left to right, giving by
Prop. 4:

B <n, B <n,
or as an inclusion from right to left, giving:
n < max(gg,gg).
Lastly, we deduce from the first relation that:
(B =5y =L1)v 3 # 5.
Suppose now that the maximum of Eg and B? is Eg It is easily seen that this

implies:
Eg = n,ﬁ? <n.

26

In the reverse situation, the conclusion is:
B_b =n, Bg <n.
Hence, the final source is given by:

if R =nAf <n . . .
¢ ={ then max(@(3), S(FN/{R = n 7 < n)
else max(c3(A9), 0 (B)) /{F7 = n, B2 < n}

where the notation ¢/{C} indicates that the quast ¢ is to be evaluated by rules
1 to 5 in the context C'. We leave it to the reader to verify that the result is:

¢ =if Eg = n/\ﬁ_? < nthen (1,n,1,1,1) else (1,n,1,2,1).

3.4 Eliminating Parameters

The result of the above computation can be considered as a parametric repre-
sentation of the fuzzy source: as the parameters take all possible values, the
result visits all possible sources. In some cases, this is exactly what is needed
for further analysis. In most case, however, more compact representations are
enough. This can be obtained by the following process.

Let a(ﬁ) be a leaf of the fuzzy source, where E symbolizes all parameters
occurring in the leaf. Parameter elimination uses the two rules:

=

Rule 6 A leaf o(53) in context C is replaced by the set:

{o(B) | Fech.

Note that after application of this rule, the variables of E become bound vari-
ables and do no longer occur in the result.

Rule 7 A conditional if p(ﬁ) then Aelse B where A and B are sets which do
not depend on ﬁ is replaced by AU B.

Application of these rules to the result of the analysis of E3 gives the fuzzy
source:
Y ={(1,n,1,1,1),(1,n,1,2,1)}.

Observe that rules 6 and 7 are consistent with rule 4. If the context of a
leaf is unfeasible, the leaf can be removed by rule 4. It can also be transformed
into the empty set by rule 6, and it will then disappear at the next application
of rule 7.

3.5 Related Work
3.5.1 Pugh and Wonnacott’s Method

Pugh and Wonnacott [Won95] have extended the Omega calculator for han-
dling uninterpreted functions in logical formulas. This allows them to formulate
problems of dataflow analysis in the presence of intractable constructs. They
simply introduce a function to represent the value of the construct as a function
of the surrounding loop counters. These functions may be used to represent the

27

number of iteration of a while loop (see N in the analysis of example E1 in
Sect. 3.1) or the outcome of a test (see b for example E3 in the same section).
When we say that a construct has depth p;, it means that the corresponding
function has as arguments the p; outermost loop counters.

The problem with this approach is that adding one uninterpreted function
to Presburger logic renders it undecidable. Hence, Pugh and Wonnacott have to
enforce restrictions to stays within the limits of decidability. They have chosen
to partition the variables in a logical formula into input and output variables,
and to use only uninterpreted functions which depends either on the input or
output variables but not both. Applying a function to anything else (e.g. a
bound variable inside an inner quantifier) is forbidden and is replaced by the
uninterpreted symbol unknown. This restriction is rather ad hoc and it is
difficult to assert its effect on the power of Pugh and Wonnacott’s system. In
fact, we know of several examples which they cannot handle but which can be
solved by FADA: E3 is a case in point. In the case of FADA, D. Barthou et. al.
have proved in [BCF97] that their system of relations between parameters of
the maximum are correct and complete, i.e. that no potential source is missed,
and that each element of a source set can be a source for some realization of the
intractable predicates.

On the other hand, Pugh and Wonnacott have included some semantical
knowledge in their system. When assigning functions to intractable constructs,
they identify cases in which two constructs are equal and assign them the same
function. This is easily done by first converting the source program in Static
Single Assignment (SSA) form. In SSA form, syntactically identical expressions
are semantically equal. The detection of equal expression is limited to one basic
bloc. This method allows them to handle examples such as:

program E4;
begin
for i := 1 to n do
begin
if p(i) >= 0 then
1 s = ...
if p(i) < 0 then
2 s 1= ...
end;
=g ;
end

in which the key to the solution is recognizing that p(i) has the same value in
the two tests. We could have introduced a similar device in FADA; the result of
the analysis could have been translated in term of the C; sets (here, we would
have got the same relations as in the case of E3) and the analysis would have
then proceeded as above. We have chosen to handle first the semantical part of
FADA. Recognizing equal and related expressions is left for future work, and we
intend to do it with more powerful devices than SSA conversion (see [BCF97]).

3.5.2 Abstract Interpretation

As is well known, in denotational semantics, the aim is to build the input/output
function of a program, which gives the final state of the computer memory in

28

term of its initial state. This function is built in term of simpler functions, which
give the effect of each statement and the value of each expression. These func-
tions in turn are obtained by applying compilation functions to abstractions of
the program text. The definitions of the compilation functions are constructive
enough to enable a suitable interpreter to execute them. As many researchers
have observed, these function definitions are quite similar to ML programs.

The basic idea of abstract interpretation [CC77] is to define other, non stan-
dard semantical functions. Obviously, this is interesting only if a nonstandard
semantics can be considered in some sense as an approximation of standard se-
mantics. This is formalized using the concept of Galois connection between the
domains of the abstract and standard semantics.

An example of the use of these ideas for analysis of array accesses is found
in [CI96]. In this work, the results of the analysis are regions, i.e. subsets of
arrays as defined by constraints on their subscripts [TIF86]. Several types of
regions are defined. For instance, the WRITE region of a statement is the set
of array cells which may be modified when the statement is executed. The IN
region is the set of array cells whose contents are used in a calculation.

When designing such an analysis, one has to select a finite representation for
regions. In the quoted work, regions are convex polyhedra in the subscript space.
Less precise representations have been suggested, see for instance [GLL95] for
the concept of regular sections. In the same way as the standard semantics
has operators to act on arrays, the nonstandard semantics must have operators
to act on regions. These operators are intersection, union, subtraction and
projection (which is used for computing the effect of loops). Depending on
the representation chosen, these operators may be closed or not. For instance,
intersections of polyhedra are polyhedra, but unions are not. In case of unclosed
operators, one has to defined a closed approximation: for the union of polyhedra,
one takes usually the convex hull of the real union.

One sees that there are two sources of approximation in region analysis. One
comes from the choice of region representation. For instance, convex polyhedra
are more precise than regular sections, but are not precise enough to represent
frequently occurring patterns, like:

doi=1,n

m(2xi-1) = 0.
end do
The corresponding write region, in [CI96] notation, is {(m(¢),1 < ¢ < 2n — 1),
which is only an approximation of the exact region, (a(¢),¢ =219 — 1,1 < ¢ <

The second source of approximation is the same as the one in FADA: the
source program may contain intractable constructs. Approximate regions are
constructed by ignoring the intractable terms, in the spirit of (20).

ADA and FADA represent their results not as convex polyhedra but as fi-
nite unions of Z-polyhedra (the intersection of a polyhedron and a Z-module, see
the appendix). This representation is inherently more precise and has enough
power to represent exactly all regions occurring in the analysis of static control
programs. An interesting open problem is the following: is it possible to refor-
mulate the method of [CI96] in term of unions of Z-polyhedra, and, if so, would
the results be more or less precise than FADA?

29

4 Analysis of Complex Statements

4.1 What is a Complex Statement

All the preceding analyses are predicated on the hypothesis that each operation
modifies at most one memory cell. It is not difficult to see that it can be
easily extended to cases where an operation modifies a statically bounded set
of memory cells.

The situation is more complicated when the language allows the modification
of an unbounded set of memory cells by one statement. A case in point is the
read statement in Fortran:

program R
doi=1,n

read (*,x) (a(i,j), j = 1,n)
end do

Another example is parallel array assignments in languages like Fortran 90, the
Perfect Club Fortran (PCF) or HPF. The simplest case is that of the indepen-
dent do loop:

program Z program ZV
doall (i = 1:n)

a(i) = 0.0 a(l1:n) = 0.0
end doall

Program Z is in PCF notation, while ZV is in Fortan 90 vector notation.
How are we to handle such idioms in Array Dataflow Analysis? Let us recall
the definition (7) of the set of candidate sources:

-

Qi(b) = {@| Eg,@ > fig,,d@ < b, f;(@)

gb)}.

The first problem for a complex statement is that @ does no longer characterize
the values which are created when executing operation @. We have to introduce
auxiliary or inner variables to identify each value. In the case of program R,
for instance, this new variable is in evidence: it is simply the “implicit do loop
counter”, j. The same is true for program Z. In the case of program ZV, a new
counter has to be introduced, let us call it ¢.

We next have to decide what constraints must be satisfied by these inner
variables. For the three examples above, these are in evidence from the program
text:

for R, and:

for ZV. Objects like:
(M[¢],1 < ¢ <n),

composed of an array and a subset of the index space of the array, are the
regions of [CI96]. We will use here generalized regions, of the form:

(M[f(d, §)], AG + B + 1 > 0),

30

where fis affine, A and B are constant matrices, 1 is a constant vector, and @
is the vector of the outer variables.

As to the sequencing predicate in (7), it stays the same whatever the type
of the candidate statement, since we are supposing here that the correspond-
ing operation is executed in one step. There is, however, a problem with the
computation of the latest source, i.e. with the maximum of the candidate set,
whose new form is:

= -

Qi(b) = {@,8 | Eg,i > fis,, Aid + B;ié + 17 > 0,@ < b, fi(@,) = §(b)}.

We know that sources belonging to different iterations are executed according
to lexicographic order, but what of sources belonging to the same iteration?
There are several possible situations here.

In the simplest case, that of examples Z and ZT, the rules of the language
insure that there cannot be an output dependence in the doall loop or in the
vector assignment. This means that ¢ is uniquely determined by the subscript
equations whenever @ and b are known. Hence, there will never be a comparison
between sources at the same iteration; we can use any convenient order on the
components of &, lexicographic order for instance.

In the case of example R there is no such condition on the implicit do loops.
But, fortunately, the language definition stipulates that these loops are executed
in the ordinary way, i.e. in order of lexicographically increasing gi_;, as above.

4.2 ADA in the Presence of Complex Statements

To summarize the preceding discussion, in the presence of complex statements,
the first step is the determination of read and modified regions. The usefulness
of modified regions is obvious. Read regions delimit the set of memory cells for
which sources are to be calculated; their inner variables are simply added as
new parameters to the coordinates of the observation statement. In the simple
cases we have already examined, the regions can be extracted from a syntactical
analysis of the program text. See the next section for a more complicated case.

The analysis then proceeds as in the case of simple statements, the inner vari-
ables gi_; being considered as “virtual” loop counters (which they are in examples
R and Z). The corresponding components are then eliminated or kept, depending
on the application, and the direct dependences are combined as above.

4.3 Procedure Calls as Complex Statements

A procedure or function call is a complex statement, as soon as one of its
arguments is an array, provided the procedure or function can modify it. This
is always possible in Fortran or C. In Pascal, the array argument has to be
called by reference. In contrast with the previous examples, one does not know
beforehand which parts of which arguments are going to be modified. This
information can only be obtained by an analysis of the procedure body itself.

4.3.1 Computing the Input and Output Regions of a Procedure

The case of the output region is the simplest. A cell is modified as soon as
there is a an assignment to it in the code. Consider the following assignment
statement:

31

for Ei_i:---
ML f(@)] ==

The associated region is simply:
(Mf()), B¢ > 7).

The constraints of the region are given by the bounds of the surrounding loops.

We have to collect all such subregions for a given argument. The result
may have redundancies whenever a memory cell is written into several times.
This redundancy is harmless, since the write order is not significant outside
the procedure. It may however be a source of inefficiency. It can be removed
either by polyhedra handling methods or by the following systematic procedure.
Suppose we add at the end of the procedure a fictitious observation operation
for each cell of each argument?®, and that we compute the corresponding source.
The result is a quast which depends on the subscripts of the array cell, gi_; For
each leaf whose value is not L, we may construct a subregion:

(M4, C(d)),

where C' is the context of the distinguished leaf. The result will have no redun-
dancy.

The computation of the input region is more difficult. Notice first that it is
not the same thing as the read region, as shown by the elementary example:

x is read but is not in the input region, since its entry value is killed by S;.
Computing the output region as accurately as possible is important, since a
source is to be computed for each of its cells in the calling routine. Redundancies
will induce useless computation; inaccuracies generate spurious dependences and
lessen parallelism. The solution is to compute the earliest access to each cell of
each argument of the procedure. One collect all accesses to a cell in the body
of the procedure, whether reads or writes. This gives a set of candidates, of
which one computes the lexicographic minimum using the same technology as
in the source computation®. The resulting quast gives the earliest access to each
argument cell as a function of its subscripts. If the access is a read, the cell is
in the input region. If it is a write, it is not. Lastly, if the leaf is L, then the
cell is not used in the procedure. Subregions of the input are associated to read
leaves in the quast, and are constructed in the same way as in the case of the
output region.

If the procedure is not a static control program, we have to use techniques
from FADA when computing the input and output regions. Fuzziness in the
input region is not important. It simply means the loss of some parallelism.
Fuzziness in the output region is more critical, and may preclude Dataflow

4e.g., a print statement.

5Note that there is a subtle point in the use of rule 3 for this problem. We may have
to compare an operation to itself, if it includes both a read and a write to the same cell.
Obviously, the read always occurs before the write. In the line:

s 1= s + 1;
the read of s occurs before the write, hence s is in the input region.

32

Analysis of the calling routine, for reasons which have been explained above
(see Sect. 3.1).

This analysis gives the input and output regions of a procedure, but they are
expressed in term of the procedure formal arguments. To proceed to the dataflow
analysis of the calling routine, we have to translate these regions in term of the
caller variables, i.e. in term of the actual arguments of the procedure. This
translation is easy in Pascal, since actual and formal parameters must have
exactly the same type: one has simply to change the name of formal arrays
to actual arrays in each subregion. In the case of Fortran or C, where the
typing is less strict, one has to exhibit the addressing function (or linearization
function) of the formal and actual arrays. The relation between actual and
formal subscripts is obtained by writing that the two array accesses are to the
same memory cell, and that the subscripts are within the array bounds. In
simple cases, one may find closed formulas expressing one of the subscript set in
term of the other. If the bounds are explicitly given numbers, the problem can
be solved by ILP. There remains the case of symbolic array bounds, in which
one has to resort to ad hoc methods which are not guaranteed to succeed [CI96].

4.3.2 Organizing the Analysis

In Fortran, procedures cannot be recursive. Hence, one may draw a call tree.
The interprocedural dataflow analysis can be done bottom up. Leaves call no
procedure, hence their regions can be calculated without difficulty. If the input
and output regions of all called procedures are known, then the input and input
regions of the caller can be computed. When all input and output regions
are known, then array dataflow analysis can be executed independently for all
procedures.

Input and output regions can be stored in a library, along with other infor-
mation about the procedure, such as its type and the type of its arguments.
Care should be taken, however, that the region information is not intrinsic to
the procedure and has to be computed again whenever the procedure or one of
the procedures it calls (directly or indirectly) is modified.

Input and Output regions calculation for recursive procedures is an open
problem. It is probably possible to set it up as a fixpoint calculation, but all
technical details (monotony, convergence, complexity, ...) are yet to be designed.

[CI96] gives another method for computing input and output regions. Re-
gions are approximated by convex polyhedra, and dataflow equations are used
to propagate regions through the program structure. The overall organization
of the computations is the same as the one given here.

5 Applications of ADA and FADA

All applications of ADA and FADA derives from two facts:

e The method is static: it can be used at compile time, without any knowl-
edge besides the program text.

e The result is a closed representation of a dynamic phenomenon: the cre-
ation and use of values as the execution of the program proceeds.

33

One may in fact consider that the dataflow of a program is one possible repre-
sentation of its semantics. If this is stipulated, then ADA is a way of extracting
a semantics from a program text. FADA gives the same information, but with
lesser precision. Hence, ADA and FADA are useful as soon as one needs to
go beyond the “word for word” or “sentence for sentence” translation that is
done by most ordinary compilers. Case in points are program understanding
and debugging, all kinds of optimization including parallelization, and specially
array expansion and privatization.

5.1 Program Comprehension and Debugging

A very simple application of ADA and FADA is the detection of uninitialized
variables. Each occurrence of a | in a source indicates that a memory cell is read
but that there is no write to this cell before the read. If we are given a complete
program, this clearly suggests a programming error. The program has to be
complete: it should include all statements which can set the value of a variable,
including read statements, initializations, and even hidden initialization by, e.g.,
the underlying operating system. Note that the presence of a L in a source is
not absolute proof of an error. For instance, in:

X 1=y % zZ;

y may be uninitialized if one is sure that z is zero. In the case of ADA, the
access to an uninitialized variable may be conditional on the values of structure
parameters. An example is:

doi=1,n
1 s = ...
end do
2 X =8

The source of s in Sp is if n > 1then (1,n,1)else L. There is an error if
n < 1. This situation may be explicitly forbidden by the program definition,
or, better, by a test on n just after its defining statement. One may use any
number of techniques to propagate the test information through the program
(see e.g. [JF90]) and use it to improve the analysis.

The situation is more complicated for FADA. The presence of a L in a
source indicates that, for some choice of the intractable predicates, an access
to an uninitialized variable may occur. But this situation may be forbidden
by facts about the intractable predicates that we know nothing about, or that
we are not clever enough to deduce from the program text. In this situation,
one should either shift to more precise analyses (for instance use semantical
knowledge), or just check the program by hand to show that the error never
occurs.

The same technology which is used for ADA can be reused for checking the
correctness of array accesses. The results take the form of conditions on the
structure parameters for the subscripts to be within bounds. These conditions
can be tested once and for all as soon as the values of structure parameters are
known, giving a far more efficient procedure than the run-time tests which are
generated by some Pascal compilers.

34

The knowledge of exact sources allows the translation of a program into a
system of recurrence equations (SRE):

aemD;: ’l)l[(_i] = g(.. ,vk[flk(d’)], ..),’L =1,n, (38)

where D; is the domain of the equation (a set of integer vectors), v; and vy
are “variables” (functions from integer vectors to an unspecified set of values),
and the f;;, are dependence functions. £ is an arbitrary expression, most of
the time a conditional. Systems of recurrence equations where introduced in
[KMW67]. Concrete representations of such systems are used as the starting
point of systolic array synthesis (see for instance [LMQ91]).

To transform a static control program into an SRE, first assign a distinct
variable to each assignment statement. The domain of v; associated to State-
ment S; is the iteration domain of S;, and the left hand side of the corresponding
equation is simply v;[@] where @ scans D;. The expression £ is the right hand
side of the assignment, where each memory cell is replaced bu its source. If
some of the sources include L’s, the original arrays of the source program are
to be kept as non mutable variables and each L is to be converted back to the
original reference (see [Fea91] for details).

As an example of semantics extraction, consider the program piece:

for i := 1 to n do m[i] := m[i+1]
The source of m[i+1] is L. The equivalent SER is:
v[i] = m[i +1],i = 1,n.
In the case of:
fo i :=1 ton do m[i] := m[i-1]
the source of m[i-1] is if ¢ > 1then (1,i—1,i) else L. The equivalent SER is:
v[i] = if i > 1then v[i — 1] else m[i —1].

The first recurrence clearly represents a “left shift” while the second one is a
rightward propagation of v[0].

An SER is is a mathematical object which can be submitted to ordinary
reasoning and transformations. One can say that an SER conveys the semantics
of the source program, and ADA is this sense is a semantics extractor. The
process can be pursued one step further by recognizing scans and reductions
[RF93].

One can also think of an SER as a (Dynamic) Single Assignment program.
Most of the time, the memory needs of a DSA program are prohibitive. It is
best to think of a DSA program (or of the associated SER) as an intermediate
step in the compilation process.

The results of FADA are to be thought of as an approximate semantics. It is
much more difficult to convert them into something approaching a well defined
mathematical object. One has to resort to dynamically gathered information to
select the real source among the elements of a source set. The reader is referred
to [GCI5] for details.

35

5.2 Parallelization

The main use of source information is in the construction of parallel programs.
Two operation in a program are in (data) dependence if they share a memory
cell and one of them at least modifies it. Dependent operations must be executed
sequentially. Other operations can be executed concurrently. Dependences are
classified as flow dependences, in which a value is stored for later use, and anti-
and output dependences, which are related to the sharing of a memory cell by
two unrelated values. The later type of dependence can be removed by data
expansion, while flow dependences are inherent to the underlying algorithm. It
follows that maximum parallelism is obtained by taking into account the source
relation only: an operation must always be executed after all its sources.

These indications can be formalized by computing a schedule, i.e. a function
which gives the execution date of each operation in the program. All operations
which are scheduled at the same time can be executed in parallel. For reasons
which are too complicated to explain here (see [Fea89]), one does not have to use
the exact execution time of each operation when computing a schedule, provided
the amount of parallelism is large. One may suppose that all operations take
unit time. The schedule # must then satisfy:

(u) > 6(c(u)) + 1, (39)
for all operations u in the case of ADA, and
Yo € E(u) : 0(u) > 6(v) + 1, (40)

in the case of FADA. These systems of functional inequalities have in general
many solutions. For reasons of expediency, one usually selects a particular type
of solution (in fact, the solutions which are affine functions of the loop counters)
and solve either (39) or (40) by linear programming. The reader is referred to
[Fea92a, Fea92b] for details of the solution method.

Some programs do not have affine schedules — i.e. the associated linear
programming problem proves unfeasible. In that case, one must resort to mul-
tidimensional schedules, in which the value of 6 is a d dimensional vector. The
execution order is taken to be lexicographic order. Suppose we are dealing with
a N-deep loop nest. Having a d dimensional schedule means that the parallel
program will have d sequential loops enclosing N — d parallel loops. Using such
schedules may be necessary because the source program has a limited amount
of parallelism, or because we are using overestimates of the dependences from
FADA, or simply because we want to adapt a schedule to a parallel processor
by artificially reducing the amount of parallelism.

5.3 Array Expansion and Array Privatization

It is easy to see that the degree of parallelism of a program is closely related
to the size of its working memory (the part of its memory space the program
can write into), since independent operations must write into distinct memory
cells. Consider a loop nest that we hope to execute on P processors. This is
only possible if the nest uses at least P cells of working memory. Parallelization
may thus be prevented by too small a memory space, since programmers have
a natural tendency to optimize memory. A contrario, a parallelizer may have
to enlarge the working memory to obtain an efficient parallel program.

36

This can be done in two ways. Consider for instance the kernel of a matrix-
vector code:

for i := 1 to n do
begin
1: s := 0;
for j := 1 to n do
2 : s :=s + ali,jl*x[j]
end

The working memory is s of size one, hence the program is sequential. The first
possibility is to privatize s, i.e. to provide one copy of s per processor. How
do we know that this transformation is allowed? Observe that our objective
here is to find parallel loops. If the i loop, for instance, is parallelized, distinct
iterations may be executed by distinct processors. Since each processor has its
copy of s, this means there must not be any exchange of information through s
between iterations of the i loop. The same is true for the j loop if we decide to
parallelize it. Now consider the source of s in statement 2. It is easily computed
to give:

¢(1,7,2,7,1) =if j > 1then (1,7,2,5 — 1,1) else (1,4, 1).

It is clear that there is no information flow from iteration i to i’,i # i'. There
is, on the contrary, a data flow from iteration j — 1 to iteration j. This show
both that the ¢ loop is parallel and that s must be privatized, giving:

forall i := 1 to n do
begin
s : private real;
1: s := 0;
for j := 1 to n do
2 s := s + ali,jl*x[j]
end

This method generalizes to array privatization. For another approach, see
[TP94].

There is however another method, which is to resort to array expansion
instead of array privatization. The first idea that comes to mind is to use
the Dynamic Single Assignment version of the program, thus insuring that all
output dependences are satisfied. The result in the above case is:

forall i := 1 to n do
begin
1 s1[i] := 0;
for j := 1 to n do
2 s2[i,j] := (if j > 1

then s2[i,j-1]
else s1[i]) + ali,jl*x[j]
end

Notice however that while the original memory size was O(1), it is now O(n?),
the amount of parallelism being only O(n). The degree of expansion is clearly

37

too large. It is possible, by analyzing the life span of each value in the program,
to find the minimum expansion for a given schedule [LF97]. In the present case,
one finds:

forall i := 1 to n do
begin
1 : s[i] := 0;
for j := 1 to n do
2 : s[i] := s[i] + ali,jl*x[j]
end

Suppose we are using P processors. This may still be too much if n is much larger
than P, as it should for efficiency sake. The solution is to adjust the schedule
for the right amount of parallelism. The optimal schedule is 6(1,7,2,7,1) = j
which should be replaced by the two dimensional version:

6(1,i,2,j,1) = (i p) :

The resulting program is®:

forall ii := 1 to P do
for k := ii to n by P do

begin
1: s[ii] := 0;
for j := 1 to n do
2 : s[ii] := s[ii] + alk,jl*x[j]
end

The amount of expansion is now exactly equal to the amount of parallelism.

6 Conclusions

Let us take a look at was has been achieved so far. We have presented a tech-
nique for extracting semantics information from sequential imperative programs
at compile time. The information we get is exact and, in fact, exhaustive in
the case of static control programs. In the case of less regular programs, we get
approximate results, the degree of approximation being in exact proportion of
the irregularity of the source code.

Array Dataflow information has many uses, some of which have been pre-
sented here, in program analysis and checking, program optimization and pro-
gram parallelization. There are other applications, some of which have not been
reported here due to lack of space [RF93], while others are still awaiting further
developments: consider for instance the problem of improving the locality of
sequential and parallel codes.

There are still many problems in the design of Array Dataflow Analyses. For
instance, what is the relation between FADA and methods based on Abstract
Interpretation? What is the best way of taking advantage of semantical infor-
mation about the source program? Can we extend Dataflow Analysis to other
data structures, e.g. trees? All these questions will be the subject of future
research.

6For simplicity, we have supposed that P divide n.

38

A Appendix : Mathematical Tools

The basic reference on linear inequalities in rationals or integers is the treatise
[Sch86].

A.1 Polyhedra and Polytopes

There are two ways of defining a polyhedron. The simplest one is to give a set
of linear inequalities:
AZ+a>0.

The polyhedron is the set of all Z which satisfies these inequalities. A polyhedron
can be empty — the set of defining inequalities is said to be unfeasible — or
unbounded. A bounded polyhedron is called a polytope. .

The basic property of a polyhedron is convexity: if two points @ and b belong
to a polyhedron, then so do all convex combinations MA@ + (1 — A)b,0 < A < 1.
Conversely, it can be shown that any polyhedron can be generated by convex
combinations of a finite set of points, some of which — rays — may be at infinity.
Any polyhedron is generated by a minimal set of vertices and rays.

There exist non-polynomial algorithms for going from a representation by
inequalities to a representation by vertices and rays and vice-versa. Each rep-
resentation has its merits: for instance, inequalities are better for constructing
intersections, while vertices are better for convex unions’.

The basic algorithms for handling polyhedra are feasibility tests: the Fou-
rier-Motzkin cross-elimination method [Fou90] and the Simplex [Dan63]. The
interested reader is referred to the above quoted treatise of Schrijver for details.
Both algorithms prove that the object polyhedron is empty, or exhibit a point
which belongs to it. For definiteness, this point is generally the lexicographic
minimum of the polyhedron. In the case of the Fourier-Motzkin algorithm, the
construction of the exhibit point is a well separated phase which is omitted in
most cases.

Both the Fourier-Motzkin and the Simplex are variants of the Gaussian
elimination scheme, with different rules for selecting the pivot row and column.
Theoretical results and experience have shown that the Fourier-Motzkin algo-
rithm is faster for small problems (less than about 10 inequalities), while the
Simplex is better for larger problems.

A.2 Z-modules

Let vy, ...,v, be a set of linearly independent vectors of Z" with integral com-
ponents. The set:

L(v1,y...,0n) = {pvr + ...+ ppoy | 1 € Z}

is the Z-module generated by vy,...,v,. The set of all integral points in Z" is
the Z-module generated by the canonical basis vectors (the canonical Z-module).

Any Z-module can be characterized by the square matrix V' of which vy, ..., v,
are the column vectors. We will use the notation £(V') for L(v,...,v,). How-
ever, many different matrices may represent the same Z-module. A square

"Notice that while the intersection of two polyhedra is a polyhedron, their union is not.

39

matrix is said to be unimodular if it has integral coefficients and if its determi-
nant is 1. Let U be a unimodular matrix. It is easy to prove that V and VU
generate the same lattice.

Conversely, it can be shown that any non-singular matrix V can be written
in the form V = HU where U is unimodular and H has the following properties:

e H is lower triangular,
e All coefficients of H are positive,

e The coefficients in the diagonal of H dominate coefficients in the same
row.

H is the Hermite normal form of V. Two matrices generate the same Z-module
if they have the same Hermite normal form. The Hermite normal form of a
unimodular matrix is the identity matrix, which generates the canonical Z-
module.

Computing the Hermite normal form of an n X n matrix is of complexity
O(n?), provided that the integers generated in the process are of such size that
arithmetic operations can still be done in time O(1).

A.3 Z-polyhedra

A Z-polyhedron is the intersection of a Z-module and a polyhedron:
F={zZ|ZeL(V),AZ+d > 0}.

If the context is clear, and if £(V') is the canonical Z-module (V' = I), it may
be omitted in the definition.

The basic problem about Z-polyhedra is the question of their emptiness or
not. For canonical Z-polyhedra, this is the linear integer programming question
[Sch86, Min83]. Studies in static program analysis use either the Omega test
[Pug91] which is an extension of Fourier-Motzkin, or the Gomory cut method,
which is an extension of the Simplex [Gom63].

Both the Omega test and the Gomory cut method are inherently non poly-
nomial algorithms, since the integer programming problem is known to be NP-
complete.

A.4 Parametric Problems

A linear programming problem is parametric if some of its elements — e.g. the
coefficients of the constraint matrix or those of the economic function — depend
on parameters. In problems associated to parallelization, it so happens that
constraints are often linear with respect to parameters. In fact, most of the
time we are given a polyhedron P:

A(Zf,)-l-azo

in which the variables have been partitioned in two sets, the unknowns: #, and

the parameters: 7. Setting the values of the parameters to § is equivalent to

40

considering the intersection of P with the hyperplane i = P, which is also a poly-
hedron. In a parametric problem, we have to find the lexicographic minimum
of this intersection as a function of .

The Fourier-Motzkin method is “naturally” parametric in this sense. One
only has to eliminate the unknowns from the last component of Z to the first.
When this is done, the remaining inequalities give the conditions that the pa-
rameters must satisfy for the intersection to be non empty. If this condition is
verified, each unknown is set to its minimum possible value, i.e. to the maxi-
mum of all its lower bounds. Let C§ + & > 0 be the resulting inequalities after
elimination of all unknowns. The parametric solution may be written:

max(f(p), .-, 9(p))

max(h(p), ..., k(D))

where L is the undefined value and the functions f,...,k are affine.

The simplex also relies on linear combinations of the constraint matrix rows,
which can be applied without difficulty in the parametric case. The only diffi-
culty lies in the choice of the pivot row, which is such that its constant coefficient
must be negative. Since this coefficient depends in general on the parameters,
its sign cannot be ascertained; the problem must be split in two, with opposite
hypotheses on this sign. These hypotheses are not independent; each one re-
stricts the possible values of the parameters, until inconsistent hypotheses are
encountered. At this point, the splitting process stops. By climbing back the
problem tree, one may reconstruct the solution in the form of a multistage con-
ditional. The advantage of the parametric Simplex over the Fourier-Motzkin
algorithm is that it can be extended to the all-integer case. Parametric Gomory
cuts can be constructed by introducing new parameters which represent integer
quotients. The reader is referred to [Fea88b] for an implementation of these
ideas in the Parametric Integer Programming (PIP) algorithm.

Irgn(Pﬂ{gjzﬁ})zifCﬁ—}—é'Z Othen else |

References

[AK87] J.R. Allen and Ken Kennedy. Automatic translation of fortran pro-
grams to vector form. ACM TOPLAS, 9(4):491-542, October 1987.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, Reading, Mass, 1986.

[BCF97] Denis Barthou, Jean-Francois Collard, and Paul Feautrier. Fuzzy
array dataflow analysis. Journal of Parallel and Distributed Com-
puting, 40:210-226, 1997.

[Bra88] Thomas Brandes. The importance of direct dependences for auto-
matic parallelization. In ACM Int. Conf. on Supercomputing, St
Malo, France, July 1988.

[CCT77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Symp. on Principle and Practice of
Programming Languages, pages 238-252. ACM, 1977.

41

[CI96]

[Dan63]

[Fea88a]

[Fea88b]

[Fea89]

[Fea9l]

[Fea92a]

[Fea92b]

[Flo67]

[Fou90]

[GC95]

[GLLY5)]

[Gom63]

[HT94]

[JF90]

Béatrice Creusillet and Francois Irigoin. Interprocedural array re-
gions analyses. Int. J. of Parallel Programming, 24(6):513-546, 1996.

G. B. Dantzig. Linear Programming and Extensions. Princeton Uni-
versity Press, 1963.

Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercom-
puting, pages 429-441, 1988.

Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243-268, September 1988.

Paul Feautrier. Asymptotically efficent algorithms for parallel ar-
chitectures. In M. Cosnard and C. Girault, editors, Decentralized
System, pages 273-284. IFIP WG 10.3, North-Holland, December
1989.

Paul Feautrier. Dataflow analysis of scalar and array references. Int.
J. of Parallel Programming, 20(1):23-53, February 1991.

Paul Feautrier. Some efficient solutions to the affine scheduling
problem, I, one dimensional time. Int. J. of Parallel Programming,
21(5):313-348, October 1992.

Paul Feautrier. Some efficient solutions to the affine scheduling prob-
lem, II, multidimensional time. Int. J. of Parallel Programming,
21(6):389-420, December 1992.

Robert J. Floyd. Assigning meaning to programs. In Mathematical
Aspects of Computer Science. AMS, 1967.

J. B. J. Fourier. Qeuvres de Fourier, Tome II. Gauthier-Villard,
Paris, 1890.

M. Griebl and J.-F. Collard. Generation of synchronous code for
automatic parallelization of while loops. In Furo-Par95, Stockholm,
Sweden, Aug 1995.

Jungie Gu, Zhiyuan Li, and Gyungho Lee. Symbolic array dataflow
analysis for array privatization and program parallelization. In Su-
percomputing, December 1995.

R. E. Gomory. An algorithm for integer solutions to linear programs.
In R. L. Graves and P. Wolfe, editors, Recent Advances in Math.
Programming, chapter 34, pages 269-302. Mac-Graw Hill, New York,
1963.

C. Heckler and L. Thiele. Computing linear data dependencies in
nested loop programs. Parallel Processing Letters, 4(3):193-204,
1994.

Pierre Jouvelot and Paul Feautrier. Parallélisation Sémantique. In-
formatique théorique et Applications, 24:131-159, 1990.

42

[KMWG67] R. M. Karp, R. E. Miller, and S. Winograd. The organization of

[KP96)

[Kuc78]

[Les96]

[LF97]

[LMQ91]

[MAL93)

[Min83]

[Pugdl]

[PWS6]

[PW93)

[RF93]

[Sch86]

[ST77]

computations for uniform recurrence equations. Journal of the ACM,
14:563-590, 1967.

Induprakas Kodokula and Keshav Pingali. Transformations for im-
perfect nested loops. In Supercomputing, 1996.

David J. Kuck. The Structure of Computers and Computations. J.
Wiley and sons, New York, 1978.

Arnauld Leservot. Analyse Interprocédurale du flot des données. PhD
thesis, Université Paris VI, March 1996.

Vincent Lefebvre and Paul Feautrier. Storage management in parallel
programs. In IEEE Computer Society, editor, 5th FEuromicro Work-
shop on Parallel and Distributed Processing, pages 181-188, Londres
(England), January 1997.

Hervé Leverge, Christophe Mauras, and Patrice Quinton. The ALPHA
language and its use for the design of systolic arrays. Journal of VLSI
Signal Processing, 3:173-182, 1991.

Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array
dataflow analysis and its use in array privatization. In Proc. of ACM
Conf. on Principles of Programming Languages, pages 2—15, January
1993.

Michel Minoux. Programmation Mathématique, théorie et algo-
rithmes. Dunod, Paris, 1983.

William Pugh. The Omega test: A fast and practical integer pro-
gramming algorithm for dependence analysis. In Supercomputing,
1991.

D. A. Padua and Michael J. Wolfe. Advanced compiler optimization
for supercomputers. CACM, 29:1184-1201, December 1986.

William Pugh and David Wonnacott. An evaluation of exact methods
for analysis of value-based array data dependences. In Sizth Annual
Workshop on Programming Languages and Compilers for Parallel
Computing, pages 546-566. Springer-Verlag LNCS 768, August 1993.

Xavier Redon and Paul Feautrier. Detection of reductions in sequen-
tial programs with loops. In Arndt Bode, Mike Reeve, and Gottfried
Wolf, editors, Procs. of the 5th Int. Parallel Architectures and Lan-
guages Furope, pages 132-145. LNCS 694, June 1993.

A. Schrijver. Theory of linear and integer programming. Wiley,
NewYork, 1986.

N. Suzuki and D. Jefferson. Verification decidability of Pressburger
array programs. In Procs. of a conf. on TCS, Waterloo, 1977.

43

[TIF86]

[TPY4]

[Won95]

Rémi Triolet, Francois Irigoin, and Paul Feautrier. Automatic paral-
lelization of FORTRAN programs in the presence of procedure calls.
In Bernard Robinet and R. Wilhelm, editors, ESOP 1986, LNCS
2183. Springer-Verlag, 1986.

Peng Tu and David Padua. Array privatization for shared and dis-
tributed memory machines. In Proc. of the 7th Workshop on Lan-
guages and Compilers for Parallel Computers, LNCS 892, 1994.

David G. Wonnacott. Constraint-Based Array Dependence Analysis.
PhD thesis, U. of Maryland, 1995.

44

