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Abstra
t. The 
ontext of this paper is automati
 parallelization by thespa
e-time mapping method. One key issue in that approa
h is to adjustthe granularity of the derived parallelism. For that purpose, we use tilingin the spa
e and time dimensions. While spa
e tiling is always legal, thereare 
onstraints on the possibility of time tiling, unless the pla
ement issu
h that 
ommuni
ations always go in the same dire
tion (forward 
om-muni
ations only). We derive an algorithm that automati
ally 
onstru
tsan FCO pla
ement { if it exists. We show that the method is appli
ableto many familiar kernels and that it gives satisfa
tory speedups.
1 Introdu
tionIn the �eld of automati
 parallelization the question of sele
ting the right gran-ularity is still not 
ompletely solved. Espe
ially for imperfe
tly nested loops ornon-uniform dependen
es (not to talk about irregular programs) many questionsremain open.In this paper, we present a method that allows to freely 
hoose the granularityof the parallelism { if possible. Note that it is not the fo
us of this paper to �ndthe optimal granularity for a given program and a
tual ma
hine parameters,but to o�er a te
hnique that yields a parallel program in whi
h the desiredgranularity 
an be set freely.Our parallelization framework is spa
e-time mapping, based on the polytopemodel [7, 9, 16℄. It is designed for automati
 parallelization of imperfe
t loopnests, and has been extended so as to be widely appli
able, e.g., to non-uniformdependen
es, or, sometimes, with a slight loss in eÆ
ien
y, even to irregularprograms. The main idea is that every instan
e of every statement is mappedto a virtual point in time (s
hedule) and to a virtual pro
essor (pla
ement). Inother words, the spa
e-time mapping distributes all 
omputations of the sour
eprogram to as many pro
essors as required. In order to map the parallel programon a ma
hine with a �xed number of physi
al pro
essors, we must apply standardtiling te
hniques.Note that the initial idea and the te
hni
al basis of tiling in our setting is thesame as in traditional tiling, namely 
oales
ing iterations, but its appli
ation isdi�erent: we do not dis
over parallelism by tiling (this is the task of the pre
edings
heduling phase), but we limit parallelism to the physi
ally possible amount byapplying tiling te
hniques.



When running the resulting parallel programs on distributed memory sys-tems, we usually �nd that (even for few physi
al pro
essors) the granularity isstill too �ne for being eÆ
ient. The reason is that typi
ally there are 
ommuni-
ations after every single virtual time step.

logical time

virtual processors

aggregating
processors

Fig. 1. Target spa
e before tiling the time dimension
Example 1. Consider the program fragmentfor k=0 to mfor i=1 to n-1A[k,i℄ = ( A[k,i-1℄ + 2 * A[k-1,i℄ ) /3endendAfter spa
e-time mapping and tiling (partitioning) the one-dimensional pro
es-sor spa
e, we obtain a spa
e-time mapped iteration domain as in Figure 1. Thebla
k arrows represent 
ommuni
ations.The exe
ution times, speedups and eÆ
ien
y for (n;m) = (393216; 128) aregiven in Figure 2. The speedups for 2, 4, 8, and 16 pro
essors are 0.94, 1.0,1.05, and 1.13, whi
h gives poor eÆ
ien
y values of 0.47, 0.25, 0.13, and 0.07,respe
tively.Our solution is to add another tiling phase, whi
h adapts the granularity ofthe parallelism by 
oales
ing virtual time steps. The idea behind this partition-ing of time is (in the setting of distributed memory ma
hines) to postpone and
olle
t all send operations within a time partition and to exe
ute the 
ommu-ni
ations only at the end of the partition. Obviously, this redu
es the numberof 
ommuni
ations. On the other hand, the larger the time partition, the longerthe re
eiver has to wait for its data, i.e., the longer the re
eiver is delayed. Theoptimal size for the time partitions depends on the program and on the ma
hineparameters.Example 2. If we apply this idea to the spa
e-time mapped iteration domainof Figure 1, we obtain the iteration domain in Figure 3, whi
h shows the re-du
ed number of 
ommuni
ations and also the in
reased laten
y for the upper2
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ution times, speedup and eÆ
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e after partitioning time
pro
essor. The eÆ
ien
y for the same problem size as above and for di�erentvalues of the width of the time partitions is depi
ted in Figure 4. The presen
eof a maximum in the eÆ
ien
y 
urve 
learly points to a trade-o� between fewer
ommuni
ations and less laten
y.The problem is that time tiling may generate deadlo
ks: suppose that someoperation in tile t1 generates data for a later operation in t2 while an operationin t2 generates data for t1. It is 
lear that no deadlo
k 
an o

ur if the time is nottiled (sin
e we need at least two operations with di�erent s
hedules in ea
h tile)or if all 
ommuni
ations roughly go into the same dire
tion (e.g. from t1 to t2 butnot the reverse). A formal de�nition and proof are given in Se
tion 2. We 
allthis property forward 
ommuni
ations only (FCO). A pla
ement satisfying this
onstraint allows any size for the time partitions [10℄. (Note that this 
onstraintis not ne
essary but suÆ
ient.)Using FCO pla
ements is not a novel idea. It has been suggested many timesas a sure way of avoiding deadlo
ks. Our aim here is not to advo
ate the use ofFCO pla
ements, but to give an automati
 method for building them.3
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Fig. 4. Exe
ution times after partitioning time
The rest of this paper is organized as follows. Se
tion 2 sets the formal ba
k-ground and derives the FCO pla
ement algorithm. Se
tions 3 and 4 dis
ussvariants of this algorithm: Se
tion 3 uses a di�erent pla
ement approa
h, andSe
tion 4 points out some future extensions. Se
tion 5 dis
usses related work.Se
tion 6 shows some preliminary experimental results and Se
tion 7 
on
ludes.

2 Forward Communi
ation Only Pla
ementIn the presen
e of loops, every statement S in the body has several instan
es atrun-time. We 
all them operations and denote them by hi ; S i where the iterationve
tor i is the ve
tor of all loop indi
es surrounding S . The set of all instan
esof a given statement S is 
alled the index set of S .In order to use eÆ
ient mathemati
al tools, we require the loop bounds to beaÆne fun
tions in surrounding loop indi
es and stru
ture parameters, i.e., sym-boli
 
onstants [7, 16℄. (A method avoiding this restri
tion is given elsewhere [9℄.)In our mathemati
al notation, we often use the homogeneous representationof index ve
tors: we join the l -ve
tor i of surrounding loops indi
es and them-ve
tor n of stru
ture parameters in order to obtain the d -dimensional ho-mogeneous index ve
tor. Note that the m-ve
tor of stru
ture parameters shallalways 
ontain one entry for the 
onstant 1.In the aÆne setting, the 
 bounds of the loops surrounding a statement S
an be expressed as a system of linear inequalities and represented as a 
 � dmatrix DS with DS :� in� � 0 (1)
4



where i is the iteration ve
tor of S , and n is the ve
tor of all stru
ture parameters.For 
onsisten
y, we take 
are that the trivial inequality 1 � 0 is always in
ludedin DS .A 
omputation pla
ement � is a fun
tion whi
h maps every operation to aninteger ve
tor that represents a virtual pro
essor. Again, we require pla
ementsto be aÆne in the loop indi
es and the stru
ture parameters. Hen
e, the pla
e-ment of every statement S , �S , 
an be represented by a p�d matrix �S where pis the number of pro
essor dimensions, and d = l+m, i.e. d is the dimensionalityof the index set of S plus the number of symboli
 parameters:�S (i ; n) = �S :� in� (2)Similarly, a data pla
ement maps array elements to virtual pro
essors. Forea
h array A, we express this pla
ement as:�A(a; n) = �A:�an � (3)where a is the ve
tor of A subs
ripts and n is as above.Lastly, we need a s
hedule fun
tion �, whi
h maps operations to (virtual)time. S
hedules are assumed to be aÆne in the loop indi
es and the stru
tureparameters, as this is ne
essary for subsequent target 
ode generation.In general, ea
h operation hi ; S i both reads and writes memory. Our basi
assumption is that these a

esses are to array 
ells. Let A be one of the arraysa

essed by S . We assume that we have been able to extra
t from the programtext a subs
ript fun
tion fAS su
h that the 
ell of A a

essed by S is A[fAS (i ; n)℄.Here again we suppose fAS to be aÆne: there exists a matrix FAS su
h that:fAS (i ; n) = FAS :� in� : (4)
In Example 1, the F matrix for the rightmost referen
e to A is �1 0 0 0 �10 1 0 0 0 �.Let A[fAS (i ; n)℄ be a read referen
e to A in S . If this array 
ell is not on thesame pro
essor as operation hi ; S i, a 
ommuni
ation is ne
essary. This 
ommu-ni
ation will be forward if:�A(fAS (i ; n); n) � �S (i ; n): (5)On the other hand, if the distinguished referen
e is a write, it will be forward if:�S (i ; n) � �A(fAS (i ; n); n): (6)These inequalities are to be understood 
omponent-wise. They are to be veri-�ed everywhere in the index set DS of S . The 
onjun
tion of these propertiesfor all referen
es in the program de�nes a forward 
ommuni
ation only (FCO)pla
ement. (Note that the de�nition of the dire
tion is arbitrary: we 
an alwaysreorder pro
essors independently in ea
h dimension).5



A tile is a set of operations whi
h are exe
uted atomi
ally by one pro
essor.Operations of a tile are exe
uted sequentially. In this paper, we use a very simpletiling s
heme. Let T be the tile size in time and B be the tile size in spa
e1.Operation hi ; S i is exe
uted by physi
al pro
essor �S (i ; n)�B in its �S (i ; n)�T -th time step.Arrays are tiled a

ording to the same s
heme: 
ell A[x ℄ is in the memoryof physi
al pro
essor �A(x ; n) � B . The 
ommuni
ation graph has the tiles asverti
es; there is an edge from tile a to b if a sends data to b.Theorem 1. Any spa
e/time tiling a

ording to an FCO pla
ement is valid.Proof. For easier understanding, the proof will be written as if the s
hedule andpla
ement were one-dimensional. Extension to several dimensions is trivial.A tiling is valid if there are no 
y
les in the 
ommuni
ation graph. Let ussuppose a 
ontrario that su
h a 
y
le exists. For k = 0; : : : ; ` � 1, tile (tk ; pk )sends data to tile (tk+1; pk+1) and tile (t`; p`) sends data to tile (t0; p0). Forea
h 
ommuni
ation, there is an emitter x (a memory 
ell or an operation)and a re
eiver y (an operation or a memory 
ell), ea
h one having a pla
ementfun
tion �e (resp. �r ). The FCO 
ondition implies:�e(x ) � �r (y);from whi
h follows: pe = �e(x )� B � �r (y)� B = pr ;where pe (resp. pr ) is the name of the (real) pro
essor exe
uting (or holding) x(resp. y). Furthermore, the inequality is stri
t, sin
e there a
tually is a 
ommu-ni
ation.We have just proved that pk < pk+1 for k = 0; : : : ; ` � 1 and p` < p0 whi
his impossible sin
e < is an order.Let us now 
onsider one of the FCO 
onditions, (5) for instan
e. It 
an berewritten as:8� in� : DS :� in� � 0) �S :� in���A:FAS � in� � 0: (7)Farkas' lemma [20℄ shows how su
h an aÆne inequation system 
an be trans-formed into an equivalent equation system by adding non negative variables.Thus, (7) is equivalent to: �S ��A:FAS = �ASDS : (8)where the Farkas multipliers �AS are non negative. In this equation, the �S ; �Aand �AS are unknowns, while FAS and DS 
an be dedu
ed from the sour
eprogram. Similar 
onsiderations apply to (6).1 When the s
hedule and/or pla
ement are multidimensional,T and B be
ome ve
tors,the integer division operator � being extended 
omponentwise.6



Let � be the ve
tor obtained by 
on
atenating the �A and �S in someorder, and � be the ve
tor obtained by 
on
atenating the �AS . (The fa
t thatthe entries of � and � are p-ve
tors themselves is irrelevant for the followingreasoning.) It is 
lear that there exist matri
es C and D su
h that the FCO
ondition is equivalent to: C :� = D :�; (9)� � 0: (10)The set of solutions of this system (i.e. the set of valid FCO pla
ements) is a
one C (it is 
losed both by addition and by multipli
ation by a non-negative
onstant). Let h�;�i be su
h a solution; let us 
onsider a spe
i�
 referen
e to Ain S . There is a part of � whi
h 
orresponds to �AS in (8). If this part is null, thenthe distinguished referen
e entails no 
ommuni
ation. Let h�1; �1i and h�2; �2ibe two solutions. It is 
lear that h�1 + �2; �1 + �2i is another solution whoseresidual 
ommuni
ations are the union of the residual 
ommuni
ations of thetwo initial solutions. This leads us to 
onsider only extremal solutions, whi
h
annot be obtained as a weighted sum of other solutions.Any 
one 
an be 
hara
terized [20℄ by its extremal rays r1; : : : ; rs and itslines l1; : : : ; lt in su
h a way that:C = fX xk rk +X yk lk j xk � 0g: (11)There are well known algorithms for �nding the rays and lines of a 
one, and atleast one eÆ
ient implementation, the Polylib [21℄.Let us now 
onsider a line lk = h�k ; �k i. Sin
e lk is a line, h��k ;��k i isalso in C. By (10) we obtain �k � 0 and ��k � 0 whi
h implies �k = 0.Conversely, if h�k ; �k i is a ray with �k = 0, then h��k ;��k i is also asolution and the ray is a line. It follows that lines 
orrespond to 
ommuni
ation-free pla
ements, and that rays 
orrespond to FCO pla
ements with residual
ommuni
ations. Furthermore, an analysis of the null 
omponents of the � partof a ray allows one to identify residual 
ommuni
ations. If we assign a weightto ea
h referen
e (e.g. an estimate of the number of transmitted values), we
an asso
iate a weight to ea
h ray and sele
t the one with minimum weight(remember that in this 
ontext, lines will show up as zero weight solutions).However, we still have to 
onsider parallelism. Let�S be the part of a solutionwhi
h 
orresponds to statement S . While up to now we have 
onsidered �S as ave
tor, it is in fa
t a matrix with p rows, where p is the dimension of the pro
essorgrid. The set of a
tive pro
essors is the image of the index set of S by �S . Inorder to preserve eÆ
ien
y, we want this set to have the same dimension as thepro
essor grid (however, this dimension 
annot be higher than the dimension ofS index set). Finding the dimension of the set of a
tive pro
essors is a simplerank 
omputation.We 
an thus propose the following algorithm:{ Build the matri
es C and D from the sour
e program.{ Build the rays and lines of the 
one C asso
iated to C and D .7



{ Filter out rays and lines whi
h do not satisfy the rank 
ondition above.{ Compute the weight of ea
h remaining ray or line.{ Sele
t the ray or line with the smallest weight.If a line has survived the �ltering pro
ess, it has zero weight and will be se-le
ted, giving a 
ommuni
ation free pla
ement. If the sele
tee is a ray, it will givean FCO pla
ement with minimum 
ommuni
ation volume. Lastly, if there are nosurvivors, then the problem has no FCO pla
ement of the required dimension.We 
annot 
laim that the pla
ement we �nd in this way is the best one,in the sense of giving the best speedup. However, if the weights we assign to
ommuni
ations are estimates of the 
ommuni
ation volumes, then our algorithmis a greedy solution to the problem of �nding a minimum 
ommuni
ation FCOpla
ement.Let us note that the severity of the �ltering in
reases with the dimensionof the pro
essor grid. Hen
e, we 
an always try again with a grid of a smallerdimension. In general, the higher the dimension, the higher the volume of resid-ual 
ommuni
ations, but also the higher the bandwidth of the 
ommuni
ationnetwork. Sin
e the relative importan
e of these two opposite fa
tors depends ondetails of the ar
hite
ture, the best 
hoi
e 
an only be found experimentally.
3 Another approa
h: Dependen
e driven pla
ementsThe presented pla
ement algorithm 
omputes one 
omputation pla
ement perstatement and one data pla
ement per array. However, there also exists otherapproa
hes for the 
omputation of pla
ements. We show how our basi
 FCOpla
ement algorithm 
an be adapted a

ordingly.One possibility is to drop the notion of ownership and assume that everypro
essor holds the data it 
omputes, and that it sends the data dire
tly to every
onsumer. We 
all su
h a pla
ement method dependen
e driven, in 
ontrast tothe original method whi
h we 
all ownership driven.Note that we have a very strong notion of dependen
es in this 
ontext: we usedire
t dependen
es for this approa
h. On the one hand, this requires a pre
isedata
ow analysis, e.g. [2, 4℄. On the other hand, the result is as pre
ise as ifwe had 
onverted the program to single assignment form: we 
an tell, for everyoperation, where the a

essed data is lo
ated { be
ause we know the sour
e ofthe dire
t dependen
e, i.e., the produ
er in the 
ase of 
ow dependen
es.Note that if some array element A[x ℄ is re-assigned, the new produ
er holdsthe new value and, as written above, sends it to those pro
essors that need thisnew value. Thus, we 
annot say that A[x ℄ is owned by some pro
essor, be
ausethe \ownership" for A[x ℄ 
hanges. In this aspe
t, the dependen
e driven approa
his more 
exible than the ownership driven approa
h.On the other hand, the impli
it owner of every element (provided that itexists, e.g., be
ause the program is single assignment) is its produ
er. There isno possibility that the produ
er stores the value at some di�erent pro
essor ifthis would be bene�
ial. So, in this aspe
t the ownership driven approa
h is more
exible [8℄ . 8



The 
onstru
tion of a dependen
e driven FCO pla
ement 
an be a
hievedalong the same lines as above. There is one pla
ement 
onstraint per dependen
ein the program.A dependen
e d is given as a relation from the sour
e index set to the desti-nation index set:
fhi ; n; S i ! hj ; n;T i j Rd : ijn! � 0g;

in whi
h we have assumed that the dependen
e is representable as one polyhe-dron. For every su
h dependen
e, we require the FCO property:�S (i ; n) � �T (j ; n): (12)This 
an be rewritten as
8i ; j ; n : Rd : ijn! � 0 ) �T :� jn���S :� in� � 0: (13)

From then on, the algorithm follows the same lines as above. We eliminatequanti�ers with the help of Farkas lemma, then �nd the rays and lines of thesolution 
one, and sele
t the best one.
4 On the use of redistributionThe ownership driven approa
h has the drawba
k that an array has only onepla
ement for all the exe
ution of a program. This is unsatisfa
tory: many pro-grams 
an be divided in su

essive phases with di�ering a

ess patterns to ar-rays. Hen
e, we need the ability to freely determine a data pla
ement, but alsoto 
hange this data pla
ement during program exe
ution. Let us dis
uss this onan example.Example 3. Consider the sour
e program in Figure 5. There, we 
an avoid any
ommuni
ation due to the two-dimensional (hen
e, most important) a

esses toarrays A and B by the following mapping: A[x ; y ℄ 7! x and hi ; j ;T i 7! i (thiseliminates the dependen
es 
y
le inside T ), and B [l ; k ℄ 7! l and hl ; k ;U i 7! l(this eliminates the dependen
e from T to U due to A and enables a lo
al storeof B).Furthermore, we map hi ; S i 7! i and C [z ℄ 7! z in order to eliminate 
ommu-ni
ations due to a

esses of C in S and T . This solution is optimal if we allowone mapping per array and per statement { even if every of the n2 a

esses toC [l � 1℄ in U 
auses a 
ommuni
ation.A mu
h better solution would be if we 
ould re-map array C between itsuses in T and U . If we re-map C [l � 1℄ to l before exe
uting U , then thereare no 
ommuni
ations 
aused by U . The 
ost for the redistribution is one9



DO i=0,n-1S: C[i℄ = 42;DO j=0, n-1T: A[i,j℄ = A[i,j-1℄ + C[i℄END DOEND DODO l=1,n-1DO k=0, n-1U: B[l,k℄ = A[l,k℄ + C[l-1℄END DOEND DO
Fig. 5. A sour
e program that needs redistribution

read/re-store per element of C , i.e., the redistribution 
auses only linearly many
ommuni
ations.How 
an we modify our pla
ement algorithm in order to �nd this solution?The �rst step is to split the �rst loop. We then add redistribution points inthe sour
e program, i.e., te
hni
ally, we add arti�
ial statements that read allelements of the array to be redistributed and 
opy them to a new array (andupdate the subsequent a

esses to the new array). This s
heme has the addedadvantage of limiting the 
omplexity of ea
h elementary pla
ement problem,thus improving the s
alability of our approa
h.After inserting redistribution points for array C between the loops on Sand T , and also between the loops on T and U , and applying our pla
ementalgorithm, we obtain:{ between S and T : C 0[z ℄ 7! z{ between T and U : C 00[z ℄ 7! z+1This means that we should not redistribute C between S and T , but betweenT and U { the expe
ted result.The 
entral question for this approa
h is where to insert redistribution points,and for whi
h arrays. One heuristi
s is to try redistribution along the edgesof the a
y
li
 
ondensation of the statement dependen
e graph. On the onehand this allows redistribution between di�erent phases of an algorithm (whereredistribution might be most important); on the other hand it guarantees thatthe expensive re-mapping is not exe
uted too often, esp. not exe
uted repeatedlyba
k and forth, sin
e it forbids redistribution inside dependen
e 
y
les. Of 
ourse,other strategies 
an be imagined as well.In addition, there are other possibilities to make pla
ement algorithms more
exible (e.g., to allow repli
ation of arrays or even redundant 
omputations, orto deal with pie
ewise aÆne pla
ements, e.g., via index set splitting [12℄). Weleave this for our ongoing work. 10



5 Related WorkTiling has many appli
ations in program optimization. We will not 
onsiderhere its use for lo
ality improvement in sequential programs as in the work ofWolfe [23℄ or Xue et. al. [26℄. Tiling may be used as a parallelization method.This approa
h was �rst proposed by Triolet [15℄. The shape of the tile is �rst
hosen in su
h a way that deadlo
ks are avoided. The parallel program is then
onstru
ted by a simple appli
ation of the hyperplane method. Lastly, the sizeof the tiles is adjusted for minimum run time [1, 13, 14, 18, 19, 24, 25℄.Another approa
h 
onsists of applying tiling after parallelization in orderto adjust the grain of parallelism [22℄. This has lead to the de�nition of fullypermutable loop nests. The present paper belongs to this 
ategory. It di�ers fromprevious proposals in that we do not apply tiling either to arrays or to indexsets, but to time and spa
e. In a previous work [11℄, the �rst author explainedin more detail why the parallelization pro
edure des
ribed in Se
tion 1 
an besuperior to the traditional tiling approa
h. The most important reasons are awider appli
ability and, at the same time, a possibly better quality of the result.There also exist multiple papers about pla
ement fun
tions, some of themusing the same framework as this paper [3, 6, 17℄. However, to the best of ourknowledge, this is the �rst time that automati
 
onstru
tion of FCO pla
ementsis 
onsidered. In Lim and Lam terminology [17℄, our methods apply when 
on-stant parallelism is not suÆ
ient for taking bene�t of all pro
essors.The use of Farkas lemma for quanti�er elimination in formulas like (7) hasbeen �rst proposed by the se
ond author [5℄, however in a di�erent appli
ationarea.
6 ExperimentsOur pla
ement algorithm has been implemented as an extension to the LooPoparallelizer and tested on about ten kernels, some real and some arti�
ial. Thesekernels are available on demand from the authors. We found FCO pla
ementsfor all examples, and even some 
ommuni
ation free pla
ements. The largestexamples where \burg" (a signal pro
essing kernel with 22 lines of 
ode) and\LCZOS" (a Lan
zos iteration with 60 lines). The algorithm has removed 31
ommuni
ations out of 44 in the �rst 
ase and 62 out of 64 in the se
ond 
ase.We then tested the performan
es of our target 
ode on an SCI-
onne
tednetwork of 32 nodes, every node (board) with two Pentium 3 pro
essors at 1GHz and 512 MB of main memory. In order to avoid e�e
ts due to the sharedmemory on the boards, we only used one pro
essor per node. We took g

-2.96-O2 for the 
ompilation and SCAMPI as 
ommuni
ation library.Our �rst experiments show that tiling time is ne
essary for some 
ases. Asa rule of thumb, these 
ases arise for loop nests where one dimension goes tospa
e and all other dimensions are 
overed by the s
hedule. In this situation,we must redu
e the number of 
ommuni
ation phases whi
h, before tiling time,take pla
e at every iteration of the sequential loops.11



DO J=1,MDO I=2,N-1A(I)=(A(I-1)+A(I+1))/2.0END DOEND DO
SOR 1-dimensional

DO k=0, n-1sum[n-k℄ = b[n-k℄DO l=0, k-1sum[n-k℄=sum[n-k℄-a[n-k℄[n-l℄*b[n-l℄END DOb[n-k℄=sum[n-k℄/a[n-k℄[n-k℄END DO LUBKSBFig. 6. Example programs that need partitioning of time
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Fig. 7. Exe
ution time and eÆ
ien
y for SOR
We use the programs in Figure 6. The SOR algorithm has uniform, theLUBKSB (LU Ba
kward Substitution) non-uniform but aÆne dependen
es; the
omplex array indi
es in LUBKSB result from loop normalization (in the initialprogram, the loops are 
ounting ba
kward). The s
hedules for SOR and the threestatements of LUBKSB are 2�J+I �4 and 0; 2� l+2; 2�k+1, and the FCOpla
ements generated by our algorithm are J and k ; k ; k , respe
tively. We givethe exe
ution time and speedup for di�erent numbers of pro
essors and di�erentwidths of the time partitions in Figures 7 and 8.For the SOR experiment, we set M to 6144 and N to 1048576; the resultingoriginal sequential exe
ution time was 180.5 se
onds. Due to 
a
he e�e
ts, theoptimized parallel program on one pro
essor needed only 71.4 se
onds. This is animportant 
ollateral bene�t: the aim of pla
ement algorithms is to improve lo-
ality. This results not only in less 
ommuni
ations, but also in less 
a
he misses.Figure 7, right, shows the eÆ
ien
y (with respe
t to this improved sequentialtime). We 
an see that the eÆ
ien
y for the optimal time partitioning is about15 to 30 % higher than without partitioning time, i.e., with time partition widthof 1. On the other end of the spe
trum, long time partitions (width = 524288)give up nearly all parallelism and so do not s
ale at all. Note that for the 
hosenvalue for parameter M , the 32 pro
essors are not fully used; this be
omes better12
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ution time and eÆ
ien
y for LUBKSB
for largerM (but at the same time the importan
e of partitioning time de
reasesfor the smaller number of pro
essors).In the LUBKSB experiment we use N = 10240 and obtain a sequentialexe
ution time of 19.81 se
onds. The parallel version exe
utes in 20.69 se
ondson a single pro
essor. We do not observe a speedup due to 
a
he e�e
ts here sin
eboth programs a

ess the array a in a 
a
he friendly way. Figure 8 shows thatwe a
hieve the highest speedup with tile sizes between 16 (on 7 pro
essors) and128 (on 2 pro
essors). This example does not s
ale as well as the SOR example,be
ause the iteration spa
e is triangular, hen
e the work is distributed unevenlyamong the pro
essors. A possible solution is to build tiles with variable size, butwe have not worked out all the details of this te
hnique.
7 Con
lusionsAs we have seen in Se
tion 6, partitioning in the time dire
tion is importantin order to obtain good speedups for some kinds of algorithms. However, par-titioning time is not always legal. A suÆ
ient 
ondition for legality is that all
ommuni
ations of the parallel program go forward in every dimension (FCO).This 
ondition is also ne
essary in one dimension.The main theme of this paper has been the development of an algorithm forthe automati
 
onstru
tion of FCO pla
ements. This algorithm has been imple-mented as an extension to the LooPo parallelizer and used for all the examples inthis paper. Experiments show that the transformed programs have satisfa
toryperforman
es on a 
luster of PC, although better load balan
ing is needed insome 
ases.Although we have not emphasized the point, the method 
an be generalized tohandle programs beyond the stri
t polytope model: modulo and integer divisionin the subs
ripts, min and max operators in the loop bounds, tests on the loop13



indi
es, union of polytopes in the dependen
e des
riptions, and even in�niteiteration domains as in signal pro
essing.We intend to pursue this work in several dire
tions:{ Analyze the FCO pla
ement algorithm. Can its 
omplexity be redu
ed? Findexamples in whi
h no FCO pla
ement 
an be found.{ Build a rough 
ost model for the tiled program, in order to help the sele
tionof a good tile size. Can this model help in the 
onstru
tion of programs withtiles of varying size?{ Compare the ownership driven and the dependen
e driven approa
hes as toappli
ability, 
omplexity and eÆ
ien
y.{ Explore the redistribution approa
h, with a view of improving the s
alabilityof the 
ompiler.
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