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Executive Summary

The object of this report is to evaluate the possibility of applying polyhedral techniques
to the parallel language OpenStream, which is developed by INRIA Parkas. When appli-
cable, these techniques are invaluable for compile-time debugging and for improving the
target code for a better adaptation to the target architecture.

OpenStream is a two-level language, in which a sequential control code directs the
initialization of parallel task instances that communicate through streams. OpenStream
programs are deterministic by construction, but may have deadlocks. If the control code
is polyhedral, one may statically compute, for each task instance, its read and write
indices for each stream. These indices may be polynomials of arbitrary degree. When
linear, the full power of the polyhedral model may be brought to bear for dependence
and dataflow analysis, scheduling and deadlock detection, and program transformations.

In the general case, one can think of two approaches: the first one consists in over-
approximating dependences until problems become linear. In the second approach, one
first leverage modern developments in SMT solvers, which allow them to solve polynomial
problems, albeit with no guarantee of success. Furthermore, the task index functions
have special properties that may be used to construct original analysis algorithms. Three
preliminary results in this direction are 1) the proof that deadlock detection is undecidable
in general, 2) a characterization of deadlocks in terms of dependence graphs, which implies
that streams can be safely bounded as soon as a schedule exists with such sizes, and 3)
a preliminary analysis of some solvable cases.
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1 Introduction: State of the Art
1.1 Parallel Programming Languages: How and Why

The evolution of the peak performances of processors has, for a long time, be due to the
constant increase of clock frequency, the exploitation of instruction-level pipelining and
parallelism, and the introduction of hardware mechanisms for reordering instructions,
hiding memory latencies, predicting conditional branches, etc. For the every-day pro-
grammer, this performance increase has been felt with no need to change programming
paradigms. To bridge the gap between the (sequential) programming language and the
low-level exploitation of processor architectures, compilation techniques (program trans-
formations and optimizations) have been developed: loop unrolling, register allocation,
instruction selection, peephole optimizations, optimizations beyond basic blocks, which
are almost transparent for the user. As for parallel languages, they were used mostly for
programming super-computers such as large-scale distributed memory systems.

In the last years however, with the parallelism becoming mainstream, the pressure has
became much stronger on the compilers and on the programming languages. Embedded
processors for example, designed with a simpler architecture to reduce power consumption
and size, with less hardware support for runtime optimizations, still offer good perfor-
mances, for some classes of applications, but only thanks to optimizing compilers (e.g.,
exploitation of VLIW or vector operations) or even macros visible to the programmer
(e.g., multi-media instructions). The development of GPUs (graphic processors) has led
to considerable performance gains, again for some applications, but at the price of a loss
of programming productivity: programming in CUDA or OpenCL is a task for specialists.
Programming FPGAs is feasible only for experts and at low level. Multicores, such as the
Kalray MPPA, offer impressive computational power to a larger public but expose the
user to the difficulty of parallel programming. Exascale computing, with difficult power
and fault tolerance issues, leads to the same conclusion: it is not possible to exploit
the peak performances of these machines for all applications (unlike “general purpose”
processors) and by programming them almost transparently.

In other words, the development of these new hardware accelerators (FPGA, GPGPU,
multicores), accessible to a larger public, but sometimes heterogeneous and always hard
to program, has put a new pressure on programming languages and compilers to achieve
the three “P”: portability, programmability, performance. In this quest, giving
up on the idea of automatic parallelization from sequential codes, a large number of
research projects and HPC (high-performance computing) programming languages have
been proposed, including early PGAS (partitioned global address space) languages (e.g.,
Co-Array Fortran or CAF, Unified Parallel C or UPC), APGAS (asynchronous PGAS)
languages (e.g., X10, Chapel), languages focusing on heterogeneous platforms (e.g., Lime,
OmpSs), streaming languages (e.g., SDF, SPDF, 3-C, Streamlt, OpenStream), multi-
threaded approaches (e.g., Cilk, threading building blocks or TBB), actor/object-based
languages (e.g., S-Net, Charm+-+, CnC or Concurrent Collections, Swarm), runtime-
based approaches (e.g., StarPU), source-to-source compilers (e.g., PIPS, Par4All), or
even DSLs (domain-specific languages). This list is not even exhaustive. A survey on
such languages has been organized in Lyon by the Compsys team, with the context
of the ManycoreLabs project in mind, as part of the Spring 2013 thematic quarter on
compilation, see the web site http://labexcompilation.ens-1lyon.fr/hpc-languages.



All these approaches propose different trade-offs between the expressiveness of the
language, the performance that can be obtained, manually or automatically, the style
of programming. Fach approach induces different analysis and compilation problems
and relies on different interactions with the runtime system. For the Kalray MPPA,
for which managing the core activities and the memory used to communicate between
cores is mandatory, considering streaming-like languages has been proposed. A streaming
language is more or less a language where tasks communicate explicitly, in a data-flow
manner, through buffers, in general one-dimensional buffers similar in the spirit to FIFOs,
following a semantics close to Kahn process networks. Even in this restricted class of
languages, the expressiveness of the language induces different analysis and optimization
problems: in general, the more expressive the language is, the more difficult it is to
analyze. Important questions to address are:

e What is the semantics of the language?

e [s it possible for a program to induce deadlocks?

e [s is possible for a program to induce data races?

e If yes, is it possible to check these properties at compile-time?

e s it possible to analyze (exactly or approximately) the flow of computations?
e Can we bound, statically, the size of the memory required for communications?

e [s it possible to change the granularity of the program, i.e., the size of the atomic
computation with respect to communication?

The goal of this report is to explore these questions for the language OpenStream,
proposed by the Parkas team, in the light of two other languages, CRP (Communicating
Regular Processes), which, unlike OpenStream, manipulates multi-dimensional commu-
nicating buffers, and X10, whose recent analysis presents some (loose) similarity with the
analysis of OpenStream.

1.2 Dependence Analysis for Parallel Languages

Optimizing compilers, and in particular parallelizing compilers, try to transform the
source program into an equivalent program that is better adapted to the target archi-
tecture, or runs faster, or has more parallelism. Equivalence here means that the final
output of the program (typically values of the program variables stored in memory) is
unchanged by the optimization. The problem is that, in general, program equivalence
is undecidable, so one needs a way to “understand” some key features of the program
to guarantee that a restricted class of transformations is valid. This is the purpose of
program analysis and, in particular, dependence analysis. Briefly speaking, dependence
analysis consists in deriving a relation § between program operations such that execut-
ing u before v for all operations (u,v) such that u § v guarantees that the semantics of
the program is preserved. A classic sufficient condition is to use Bernstein’s condition,
which states that if u is executed before v in the original program and both operations
access the same memory cell, at least one as a write, then u § v. See [13] for more details.
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For such an approach to be feasible, several concepts need to be defined (see also [14]).
First, what is the semantics of the original program (is it deterministic?) and, in par-
ticular, what does it mean that u is executed before v? For a sequential language, by
definition, all operations are done one after the other, so reads and writes are totally or-
dered. Furthermore, in imperative languages such as C or Fortran, this sequential order
is explicit. For parallel languages, the situation is more complex: in languages such as
OpenMP or X10 (at least in simpler forms), parallelism is explicit, thanks to the key-
words of the languages, but the order of operations is only a partial order (and, for shared
variables, data races may exist). For languages based on recurrence equations 23], the
semantics of the program is explicit (i.e., it can be read directly from the syntax of the
program), but the order of computations is implicit and is induced by single assignment
on variables (writes must be done before reads). Even worse, there may be no such order,
i.e., the specification of the program may induce deadlocks. OpenStream is an intermedi-
ate language as will be sketched in Sections 1.5 and 2.1: some sequential order, explicit in
the program, is used to define an implicit order between writes and reads, in a data-flow
manner similar to Kahn process networks. It is single assignment, deterministic, but with
an implicit partial order of operations that may induce deadlocks.

The second concept to define is what are the memory cells “accessed” by a given
operation. And what is an operation? This discussion may lead to many important
problems such as pointer analysis, pure or non-pure functions, inter-procedural analysis,
approximations, data races, control dependences, but even in the simpler case where an
operation is an atomic modification of a well-identified memory structure, a key point to
define dependences (the relation 0) is to be able to define precisely what is an operation,
what is the order of these operations, what memory cells are concerned, and if multiple
writes on shared variables (possibly inducing race conditions) are possible. In the case of
OpenStream, data races are not possible as the language has the single assignment prop-
erty (each memory cell is well-identified as a stream element, and is written only once).
However identifying which memory cell is addressed by a given operation is complex (see
Section 2.3), which makes dependence analysis hard, if not impossible.

1.3 X10 and the async / finish Languages

X10 [31] is a parallel programming language, developed at IBM Research (Yorktown
Heights), in the context of an effort to increase programmer’s productivity, sponsored by
the US department of energy (DoE).

1.3.1 The Base Language

X10 is an object oriented language of the Java family. It has classes and methods, assign-
ments and method invocation, and the usual control constructs: conditionals and loops.
Dealing with method invocation necessitates inter-procedural analysis and is beyond the
scope of this report. X10 has two kind of loops: the ordinary Java loop

for(initialization; tests; increment)
and an enumerator loop

for(x in range)



where the type of the counter x is inferred from the range type. A loop is polyhedral if x
is of integer type and if the range is an integer interval. The bounds of the range must
be affine functions of surrounding loops counters and integer parameters.

1.3.2 Concurrency

Concurrency is expressed in X10 by two constructs, async S and finish S, where S is an
arbitrary statement or statement block. Such constructs can be arbitrarily nested, except
that the whole program is always embedded in an implicit or explicit finish. The effect
of async S is to create a new activity or lightweight thread, which executes S in parallel
with the rest of the program. The effect of finish S is to launch the execution of S,
then to wait until all activities which were created inside S have terminated.

1.3.3 Synchronization

In some cases, it may be necessary to synchronize several parallel activities. This can be
achieved using clocks. Clocks are created by clocked finish constructs. Activities are
registered to the clock associated to the innermost enclosing clocked finish if created by
a clocked async construct. An activity deregisters itself from its associated clock when
it terminates. Synchronization occurs when an activity execute the advance primitive.
This activity is held until all registered activities have executed an advance, at which
time all registered activities are released.

Clocks can be seen as generalization of the classical barriers. The main differences
are that activities may be distributed among several clocks which work independently,
and that this distribution is dynamic as it can change when an activity is created or
terminated.

1.3.4 Evaluation

X10 has a well developed open source compiler, which is freely available from IBM. X10
programs belong to the class of deadlock free programs. It is easy to see that async
and finish cannot create a deadlock by themselves. There is always the possibility that
an elementary statement, e.g., a function call, does not terminate. However, an X10
program may have races, for instance, when a memory cell may be written by several
unordered operations. Races may be detected at run time, or, in favorable cases, at
compile time [37].

1.4 Communicating Regular Processes

Modular compilation is a very well-known technique, which dates back to the early days
of Fortran. For most sequential languages, the module is the function. In fact, provided
one has designed a clever calling interface, functions can be compiled independently of
each others !. Nevertheless, the compiler output is not an executable program. One
needs another tool, the linker, whose goal is mainly to plug the addresses of the called
functions into the callee code. Compilation is modular, but linking is not.

'In modern languages, the need for accurate type checking induces more complex relations between
modules.



In the case of parallel programming, functions are not suitable as modules. If functions
are handled as black boxes, then one may lose many opportunities for parallelization. If
one opens the box, then modularity disappears. There is, however, another possibil-
ity: processes and network of processes. Process networks abstract from the behavior of
message-passing architectures: each process sits in a processor and has its own private
memory. Processes communicate only by sending messages over ports and through chan-
nels. Message passing libraries and languages abound. Libraries range from the basic
socket system of Unix to MPI and BSP. Such systems have almost no restrictions on what
the programmer can do and may suffer from non-deterministic behavior and deadlocks.
The analysis and debugging of programs written using these libraries is very difficult.

Kahn Process Networks (KPN) [22] are an attempt to impose determinism by con-
struction: channels are perfect FIFO queues, and each channel has only one reader and
one writer. The static analysis of KPN is still difficult, because send and receive opera-
tions can only be correlated by counting messages, which may lead to non-linear counting
functions and may even be impossible in the presence of conditionals.

In CRP (communicating regular processes), proposed in [12|, processes are modules,
but the semantics of channels is modified. A channel is an array of arbitrary dimension,
which is used in write once/read many mode. This constraint is enough to insure de-
terminism (the proof is rather technical and has been sketched in [13]). Read and write
operations are now correlated by comparing array subscripts. To insure the possibility
of precise analysis, subscripts must be affine functions of surrounding loop counters, i.e.,
the processes must be static control programs in the sense of [10].

1.4.1 Program Structure, Syntax, and Semantics

An application is a collection of function and process definitions. Several definitions can
be collected in a module (usually a file); an application can be composed of an arbitrary
number of modules. Like in C, process and function definitions are top level objects
and do not nest. The basis of the syntax of CRP is ANSI C. There are, however, a few
new keywords: process, inport, outport, channel. All these are reserved and are
considered as additional “storage class specifiers” in the C grammar.

Arrays and other Data Structures There is an array constructor, [1, with the same
properties as in C. The number of dimensions is static (number of [1), however the rules
for sizes are much more permissive than in C. In fact, in many cases, the compiler infers
the size of the array from the way it is used. Similarly, there is a structure constructor,
with the same syntax and properties as in C. In the present version of the compiler,
pointers are ignored.

Functions User-defined functions are inlined. Hence, recursion is forbidden. One may
use black box functions, which are handled by the system as if they were pure (no modi-
fications of the actual parameters or of global variables).



1.4.2 Processes, Channels, and Ports

Processes A process is a sequential program which can communicate with other pro-
cesses through channels (see hereafter). All variables are local to one and only one process
and are not visible from other processes?.

Besides operative statements, a process can include process start statements, which
have the same syntax as a void function call. Process start statements are not part of the
control flow of the surrounding process. In effect, all the process start statements in an
application are collected and executed immediately at application start time. One can
define a process start graph, which must be a DAG.

The operating code of a process must be regular, or have static control [11]| in the

following sense:

e Statements are assignments statements and regular loop statements. All variables
are considered part of some array, scalars being one-dimensional arrays of size 1.

e The only method of address calculation is subscripting into arrays of arbitrary
dimension. The subscripts must be affine forms in constants and surrounding loop
counters.

Some of these restrictions are quite natural when designing compute-intensive em-
bedded systems with real time constraints. It is difficult, for instance, to predict the
execution time of a while loop or of the traversal of a truly dynamic data structure.
Other restrictions can be lifted by preprocessing (goto removal, inductive variable detec-
tion, subscript-like pointer detection, function inlining).

Channels A channel is the only medium of communication between processes. It can
be viewed as a write-once/read-many multi-dimensional array of indefinite sizes. Each
cell has a (virtual) full/empty bit. At application start time, all such bits are set to
“empty”.

e A write to an empty cell defines its value and sets the control bit to “full”.
e A write to a full cell generates an error.

e A read of an empty cell stalls the reading process until the cell is filled.

e A read of a full cell is immediately satisfied.

There is no way of emptying a cell.

A channel may have any number of readers, and there are no constraints on the
reading patterns. Reading is not destructive: a value remains available at least as long
as some process may have some use for it.

2The model accepts read-only global variables (e.g., tables of constants). This facility is not discussed
here for brevity sake.



Ports A port is an interface between a process and a channel. It allows, inter alia,
that a process be instantiated several times, each instance being connected to different
channels. Ports are only allowed as formal parameters to processes.

When connecting ports and channels, one must verify (statically) that the two entities
have the same (data) type and dimension, that a channel has only one writer in single
assignment mode, and that readers do not access undefined cells (holes) in a channel.
Channels play the role of actual parameters to the port formal parameters.

The usual rule of visibility applies to ports and channels. If P is a process in which a
channel c is defined, the only processes that can access c are P itself and processes which
are started by P and have a port connected to c.

1.4.3 Evaluation

Within these restrictions, the CRP compiler, Syntol, is able to do a very precise analysis
of a CRP application. It can compute dependences, construct a runtime schedule (when
it finds one), and impose a maximum size on channels. Incidentally, the existence of a
schedule is a proof that the application has no deadlock. Furthermore, all these analysis
can mostly be done process by process, thus greatly improving the compilation time. The
price to pay is that many programs do not fit into the CRP model. Researches are under
way to enlarge the applicability of the CRP model, either by better preprocessing or by
approximation methods.

1.5 OpenStream

The design of OpenStream builds on a previous streaming data-flow extension [27] to
OpenMP. For a more detailed presentation, one may refer to [30], and to the formal
model underlying the operational semantics of OpenStream [28].

1.5.1 The Base Language

In a nutshell, OpenStream allows the composition of tasks communicating through data-
flow streams, as well as separate compilation. It also provides more general dynamic
constructs to support complex data structures and unbounded fan-in and fan-out commu-
nications. Streams are strongly typed, and first-class. In particular, they may be freely
combined with recursive computations and dynamic data structures, while preserving
modular (separate) compilation. Variadic stream clauses allow to construct arbitrarily
complex, dynamic, possibly nested task graphs.

It has been shown that OpenStream is sufficiently expressive to efficiently encode
high-level parallel language features such as the memory regions of StarSs [26], as well as
low-level point-to-point communication primitives such as futures |29, 30]. OpenStream
also provides syntactic support for broadcast operations.

1.5.2 Concurrency

OpenStream relies on programmer annotations to specify regions of the control flow
that may be spawned as concurrent coroutines and delivered to a runtime execution
environment. These control flow regions are called tasks and inherit the OpenMP task



syntax. Without stream annotations, OpenStream tasks also have the same semantics as
OpenMP tasks.

Unlike OpenMP, OpenStream allows to express the data flow between OpenMP tasks
and to build a task dependence graph. Task graphs need be neither regular nor static,
unlike the majority of the streaming languages. OpenStream programs allow dynamic
connections between tasks, multiple tasks interleaving their communications in the same
streams, arbitrary and variable fan-in, fan-out, and communication rates in a dynamically
constructed task graph.

Despite its expressiveness, the programming model comes with specific conditions
under which the functional determinism of Kahn networks [22]| is guaranteed by con-
struction. These conditions enforce a precise interleaving of data in streams derived from
the control flow of the program responsible for spawning tasks dynamically, hereafter
called the control program. One simple sufficient condition for determinism is that the
control program is sequential. More general conditions exist, based on the partitioning of
streams occurring in concurrent tasks of the control program [28], or based on the total
ordering of concurrent control program tasks spawning tasks that operate on the same
stream. The formal characterization of these more general conditions remains work in
progress.

1.5.3 Synchronization

The syntactic extension to the OpenMP3.0 language specification consists in two ad-
ditional clauses for the task construct: the input and output clauses presented on
Figure 1. We provide an informal description of the programming model; see 28] for a
formal, trace-based operational semantics.

input/output (list :!.nt s,'Rwin[R}.lorizon];
P list P . i list):, item int Wwin[Whorizon];

item input (s >> Rwin[Rburst]) E.g.:

item stream " Rwin

stream >> window [ S Rhorizon = 4
stream << window ; burspeekl Rburst =2
stream ::= var
S burst | poke | : =
| array[expr] E”—Li Whorizon = 6
expr ::= var “win Wburst =3

| value

Figure 1: Syntax for input and output clauses (left) and illustration of stream access
through windows (right).

Both clauses take a list of items, each describing a stream and its behavior with regard
to the task to which the clause applies. If the item notation is in the abbreviated form
stream, then the stream can only be accessed one element at a time through the same
variable stream. In the second form, stream >> window, the programmer uses the C+ -
flavored << >> stream operators to connect a sliding window to a stream, gaining access
to multiple stream elements, within the body of the task.

Tasks compute on streams of values and not on individual values. To the programmer,
streams are simple C scalars, transparently expanded into streams by the compiler. An
array declaration (in plain C) defines the sliding window accessible within the task and
its size, the horizon. The connection of a sliding window to a stream in an input or
output clause allows to specify the burst, which is the number of elements by which the
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#pragma omp task output (x) // Task T1
X = ...

for (i = 0; i < N; ++i) {
int window_a[2], window_b[3];

#pragma omp task output (x « window_a[2]) // Task T2
window_al[0] = ...; window_al[1] = ...;
if (1% 2) 1
#pragma omp task input (x » window_b[2]) // Task T3 Stream "x"
use (window_b[0], window_b[1]);
}
#pragma omp task input (x) // Task T4
use (x);
J;

Figure 2: Example of input/output clause uses (left) and the resulting task graph (right).

sliding window is shifted after each task activation (see Section 1.6). In Figure 1, the
input window Rwin would be shifted by two elements, while the output window Wwin
would be shifted by three elements. The data-flow case corresponds to horizon = burst.
In the more general case where horizon > burst, the window elements beyond the burst
are accessible to the task; for an output window, the burst and horizon must be equal.
Task activation is enabled by the availability, on each input stream, of all horizon elements
on the input window, and is driven by the control flow of the main OpenMP program
(see Section 2.3 for a more formal description of dependences between tasks).

The example in Figure 2 illustrates the syntax of the input and output clauses.
Task T1 uses the abbreviated syntax to produce one data element for stream x. The
semantics of stream operations is to interleave accesses, as illustrated on Figure 3, in task
creation order. This order is determined by the flow of control spawning tasks, called
control program. In our example, T1 introduces a delay in stream x. Task T2 is also a
producer, adding two elements to stream x at each activation. Tasks can be guarded by
arbitrary control flow, as is the case for T3, which reads three elements at a time and
discards two elements. T4 also reads from x, interleaving its accesses to the stream with
the accesses from T3. This interleaving is entirely determined by the schedule of the
control program, in this case, it is a sequence (T4, T3, T4, T4, T3, ...).

Stream"x" LII LI TEITTITTITITT]

Figure 3: Interleaving of stream accesses for the tasks on Figure 2.
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1.5.4 Evaluation

Higher expressiveness may improve productivity, but it often comes with performance
overheads, impacting the compiler optimizations and increasing the complexity of the
necessary runtime support. However, it is also an important asset: general point-to-
point synchronizations alleviate the risk of overconstraining the execution: for example,
task-level pipelines can hardly be expressed in simpler programming models like Cilk.
Performance evaluation backing up this intuition can be found in [30].

The official repository and web site for OpenStream (http://www.openstream.info)
centralizes the information for embedded and high-performance computing scenarios. The
sources of the GCC-based OpenStream compiler are available with the command:

$ git clone git://git.code.sf.net/p/open-stream/code open-stream-code
on a Sourceforge GIT repository. Compiling GCC requires additional libraries, but the
process is fully automated with regression testing and platform-specific auto-tuning of
some of the runtime parameters. This version supports x86 32, x86 64 and ARM v7
instruction sets. The prototype MPPA (single-cluster) version is available on demand.

1.6 Other Data-Flow and Streaming Languages

The principal motivation for research into data-flow models comes from the incapacity
of the von Neumann architecture to exploit large amounts of parallelism, and to do so
efficiently in terms of hardware complexity and power consumption. The early data-
flow architectures |7, 6, 36] avoid the von Neumann bottlenecks by only relying on local
memory and replacing the global program counter by a purely data-driven execution
model, executing instructions as soon as their operands become available. Programmer
productivity is another important motivation: debugging concurrent applications with
low-level threads is a daunting task, mostly because of the non-deterministic nature of
races and deadlock-related errors. Data-flow languages closely follow the hardware model:
the execution is explicitly driven by data dependences rather than control flow [21]|. Data-
flow languages offer functional and parallel composition of parallel programs preserving
functional determinism. Recent data-flow architectures, execution models, and languages
rely on the same principles, albeit at a coarser grain, executing sequences of instructions,
or data-flow threads, instead of single instructions.

Among the most notable data-flow languages, Lucid [2| relies on the next keyword
within loops to achieve a similar effect to advancing in a stream of data, by consuming or
producing in a channel, or, in the synchronous languages domain, to the advancement of
clocks on signals. Sisal [17] explicitly introduces the notion of stream, which is naturally
very close to lists. If stream processing systems are understood as the parallel implemen-
tation of stream transformers, which is the functional interpretation of a process network
mapping a set of input streams to a set of output streams, then any functional language
can be used for stream programming. This corresponds to the lazy interpretation of
functional languages; see [5] for a Haskell [20] implementation of Lucid Synchrone [4].
First-class streams of data improve expressiveness for a variety of communication and
concurrency patterns such as broadcast, delays, and sliding windows. This was observed
by data-flow computing pioneers, who designed I-structures as unbounded streams of
futures to alleviate some of the overheads of a pure data-flow execution model [1].
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As was already discussed, Kahn process networks (KPN) [22] form the basis for
most deterministic languages based on stream computing concepts. In his survey [33]
of stream processing, Stephens classifies stream processing systems based on three cri-
teria: synchrony, determinism, and the type of communication channel. Fundamentally,
stream-based models of computation all share the same structure, which can generally be
represented as a graph, where computing nodes are connected through streaming edges.
However, cyclic networks can lead to deadlocks or unbounded growth of in-flight data,
which has spurred the development of a restricted form of Kahn process networks: static
data-flow (SDF) and cyclo-static data-flow (CSDF) [24, 3]. While processes in KPNs
execute asynchronously and can produce or consume variable amounts of data, CSDF
processes have a statically-defined behavior. With rates of production and consump-
tion known at compile time, it is possible to statically decide whether the execution is
free of deadlocks and to statically schedule the execution. It can also guarantee the ab-
sence of resource deadlocks when executing on bounded memory, a realistic restriction.
SPDF [16] is another extension of SDF where production/consumption rates can be para-
metric. Streamlt is an instantiation of CSDF, building on the strong static restrictions of
the underlying model to enable aggressive compiler optimizations. It achieves excellent
performance and performance portability across a variety of targets [18] for a restricted
set of benchmarks that properly map on this model. On the other hand, data-flow syn-
chronous languages such as Lustre [19] have been widely adopted in the certified design
flow of reactive control applications. They offer determinism, deadlock freedom, bounded
reaction time and memory. Unlike CSDF, they are not restricted to periodic activations
and communications. Processes respond instantly and communicate through signals, also
used to define a notion of time and causality. Signals differ from streams in that they are
sampled rather than consumed.

All of these diverse approaches to stream programming have the potential to help
mitigate the memory wall, but they only apply to restricted classes of applications.
Programs are generally considered built around regular streams of data, which fits the
models where channels of communication are implemented as single-producer and single-
consumer FIFO queues. We believe that the development of applications for current
and upcoming multi- and many-core architectures requires a more general model, where
communication patterns are not always regular or statically defined, but can occur and
be exploited dynamically. The insight that the flow of data plays a central role in all
programs is not flawed, but data flow often needs to be predicated by complex control
flow due to irregular events, as is the case in synchronous programs. Importantly, new
approaches to streaming should try to preserve the strong properties provided by some
of the existing models, like functional determinism or deadlock-freedom.

Outside the field of streaming languages, a rich set of constructs has emerged to
express inter-task dependences in parallel languages. StarSs [26] is a pragma-based lan-
guage to program distributed-memory and heterogeneous architectures; it supports both
data-flow and control-flow programming styles, deriving inter-task dependences from the
read and write accesses to array regions. SMPSs is one of the StarSs incarnations for
shared-memory targets [25]. Unlike most alternative constructs, this choice of a control-
flow-induced, data-centric definition of inter-tasks dependences guarantees the absence
of deadlock. One of the downsides is that pipelining and data parallel execution require
the programmer to explicitly expand/privatize the arrays used for synchronization. The
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cost of dynamic dependence resolution is also slightly increased due to the management
trees of array regions and matching task signatures within those trees. Independently,
Habanero Java [32] introduced phasers, generalizing barriers and point-to-point synchro-
nizations. Phasers ease the expression of complex inter-task dependences, but do not
guarantee the absence of deadlock. Interestingly, and unlike most streaming languages,
these parallel languages also support dynamic task creation. OpenStream was intro-
duced in an attempt to reconcile some of the strengths of both streaming and dynamic
task-parallel languages.

2 Dependence and Dataflow Analysis

The rest of this report deals specifically with the OpenStream language as defined in [30]
and introduced in Section 1.5. Another source is the CDDF research report [28].

Any attempt to apply instance-wise analysis methods to OpenStream must start by
identifying the key concepts: the set of statement instances or operations, and their
execution order or happens before relation. For an example of such a characterization
applied to the X10 language, see [37] as well as the summary given in Section 2.2.

OpenStream and CDDEF are two-levels languages: task creation, then task activa-
tion/execution. A sequential control program direct the creation of tasks. Each created
task waits until its activation, which means that all tasks it depends on (see hereafter)
have terminated execution: it can now start its execution as soon as it is selected by
the runtime scheduler. Both the control program and the task’s code are written in a
classical sequential language, C in this case. There are no constraints in the amount of
work done either by the control program or the tasks. Communication between tasks is
done through streams, inducing producer-consumer dependences. A stream is a virtual
one-dimensional array of indefinite size, which can only be accessed through a sliding
window. A window is defined by two integers, the horizon — the size of the window —
and the burst — the amount by which the window is shifted right at each task creation.
These numbers may be arbitrary data-dependent expressions. However, it does not seem
possible to analyze OpenStream programs unless they can be expressed (in the code or
after some analysis) as numerical, symbolic constants, or polynomial expressions (in this
case, this relates to the concept of weighted sum in the integer set library ISL [34]).

The syntax of the language allows for arrays of streams, not to be confused with
multi-dimensional streams, i.e., these arrays are similar to arrays of pointers, each pointer
corresponding to a (one-dimensional) stream, and there are no windows associated to the
array dimensions themselves. At the time of creation, tasks have access to all variables
of the control program which are in scope, using standard OpenMP mechanisms like
firstprivate and copyin. Communication from tasks to the control program is through
shared variables, under control of barrier synchronization. These constructs are inherited
from OpenMP.

In this report, we focus on programs for which the execution order of the control
program is easily deduced from the abstract syntax tree (AST). (This is not the case for
programs with goto or even if constructs, for example.) As a side effect, one obtains
the creation order of task instances. For each stream and each task instance, one may
compute a read or write index. One can then compute dependences between tasks. Since
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#pragma omp task output(x) //T1
X = ...

for(i = 0; i<n; i++){
int window_a[2], window_b[3];

#pragma omp task output(x << window_a[2]) //T2
window_a[0] = ...; window_a[1] = ...;

if(d % 2){
#pragma omp task input(x >> window_b[2])//T3
use (window_b) ;
}
#pragma omp task input(x) //T4
use (x) ;

0 1
[ [
task for
| |
a i
[ [
T1: seq
[
X=...;
0 1 2
| | I
task if(7 mod 2 = 0) task
| |
a a
| tt ft |
T2:window _a | | T4:use(x)
task T5:skip

|
a
[

T3:use(window)

Figure 4: Program example (see Fig. 2) and corresponding AST.

streams are accessed in single assignment mode by construction, there are only read-
after-write (RAW) or producer-consumer (PC) dependences. Two task instances are in
dependence if, for some stream, the output window of one of them intersects the input
window of the other. In this case, the writer must be executed first. The execution order
of task instances is the transitive closure of the dependence relation.

And now for the details.

2.1 Execution Order
2.1.1 The Abstract Syntax Tree
The AST has five kind of nodes:

e Sequence: S1;

.; Sn has n outgoing edges, labeled from 1 to n.

e Loop: for(i=0; i<n; i++) has one outgoing edge, labeled by 1.

Basic statement: has no outgoing edge.

Task: has one outgoing edge, labelled ? by the letter a.

If: has two outgoing edges, labelled tt and f f.

The position vector of a node is the list of labels encountered on the unique path from
the AST root to the node. As an example, consider the program on the left of Figure 4
(see also Section 1.5), which is an example borrowed from [30]|Fig. 2]. Its AST is given on
the right (statement labels added). The position vector of 81 is [0, a] ; the position vector
of S31is [1,14,1,tt,a]. The task that executes statement S4 has position vector [1,1,2, a].

3for historical reasons, see Section 2.2, and for possible future extensions.



2.1.2 Orders of Tasks

A general OpenStream program, which allows for the creation of tasks within tasks
(second-level tasks), has several execution levels:

e the creation order (a total order) of first-level tasks, which depends only on their
position vectors,

e the activation order (a partial order) of first-level tasks, which depends on the
dependences induced by stream accesses,

e the creation order of second-level tasks, which can be defined only if the execution
order of first-level tasks is (at least partially) sequential, so that all tasks accessing
a given stream are created sequentially,

and so on recursively. In this document, only first-level tasks are considered, i.e., no tasks
can be created within tasks.

2.1.3 Creation Order

This is simply given by the lexicographic order of position vectors (excluding the terminal
“a”’ which is not necessary here). For example, consider an instance of 82, [1, 7,0, a|, and
an instance of 84, [1,7,2 a]. The first one is created before the second one if and only if

I<IV(1=1ANi<d) VA =1Ai=iAN0<2)V((1=1ANi="AN0=2)=i<7

This creation order is denoted < (strict order) and < (with equality) in what follows.

In this context, tests pose a difficulty. It is clear that the execution order of the
opposite branches of a test is undefined. However, we want to use absence of order to
represent parallelism. The trick is to associate to each elementary statement an iteration
domain, and to stipulate that two position vectors can be compared only if their iteration
domains intersect. This point is not elaborated in this document.

2.2 The Case of X10

The main tools for an instance-wise and element-wise dependence or dataflow analysis
are a precise representation of the program operations and of their execution order or
happens-before relation. X10 is simpler than OpenStream in that its execution order can
be extracted from the program text (or its AST) in a straightforward manner, instead of
being the result of a complex dependence calculation.

2.2.1 Paths and Iteration Vectors

Each statement instance is identified by a vector of integers, called an iteration vector.
While in OpenStream it is enough to mark the creation of a task by the letter a, in X10
one has also to introduce another letter, f, for finish. The iteration vector is computed
(symbolically) as a path from the root to a leaf in the AST. As the AST is traversed,
values are appended to the vector based on the following rules:

e Sequence: Integer x when taking the x-th branch of a sequence.
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e For: Loop iterator i.
e Async: a
e Finish: f

The iteration vector for a statement instance is obtained by instantiating the loop it-
erators to integer values. This is similar to the conventional iteration vectors used in
the polyhedral literature, with the addition of @ and f. Due to structural constraints,
when two iteration vectors are compared, a and f are never compared to anything but
themselves, and thus their order is irrelevant.

2.2.2 Happens-Before Relation

For sequential programs, the full lexicographical order denotes the execution order. In
the presence of parallelism, the execution order is no longer total. Yuki et al. [37] showed
that for the finish/async subset of X10 programs, the happens-before relationship can
be expressed as an incomplete lexicographic order.

The strict lexicographic order of two distinct vectors v and v is defined as follows:

vy = \Ju<,u, (1)
p=>0

P
UL, v = (/\ = Uk) A (Uptr1 < Vpi1) (2)
k=1

The incomplete version restricts the depths p that contribute to Equation (1) to some

subset I. Intuitively, the set [ is constructed such that the depths that do not contribute

to the happens-before relation, due to concurrent execution, are removed. The relation
[39h)

u <, v is not considered if there is a “a” in v in a coordinate larger than coordinate p+ 1
and no “f” in between. The happens-before relation < is then defined as follows:

u%vEUu<<kv (3)
kel

2.2.3 Race Detection through Dataflow Analysis

Using the iteration vectors and happens-before ordering, the authors of [37] developed
an extension to the array dataflow analysis of [10] for X10 programs. Array dataflow
analysis finds the statement instance that produced the value used by an instance of a
read. Given reader and writer statements R and W, and memory access functions fr
and fy, the set of potential sources is defined by:

r € Dpg, (4)

w € Dy, (5)

Jw(w) = fr(r), (6)
S(r<w) A r#w (7)

where
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e Constraints (4) and (5) restrict the statement instances to their domains (the sets
of legal iterations),

e Constraint (6) restricts to those that access the same array element, and

e Constraint (7) excludes writers that happen after reads, and writes by the same
statement instance.

In a sequential program, < is total, hence —(v < w) A v # w is equivalent to w < v,
which is the usual formulation of dataflow analysis as developed in [10].

The above gives a set of writer instances w that may be a producer for a read instance r
for a single writer statement W. The proposed analysis proceeds by finding the most
recent w among all statements that write to the same array. Since the happens-before
relation is not total, the most recent w may not be unique, and there is a race when a
producer cannot be uniquely identified.

2.2.4 Advance Counts

Informally, a clock may be considered to have as many associated counters as there are
registered activities. When all participating activities execute an advance, synchroniza-
tion takes place, and all counters are incremented. The statements that may-happen-in-
parallel are restricted to those that are executed when the value of the counters match.
In the case of a one-clock program, or inside an innermost clocked finish, this observa-
tion can be formalized as follows: let us write ¢(x) for the number of advance that have
happened before operation x, and let A be the set of advance instances in the program
under study. Then:

¢(z) = Card{a € A | a < z}.

As a consequence, the happens-before relation for clocked programs, =<, must be
completed as follows:

=<y =d(r) <dly) Ve <y,

in other words: x happens before y if fewer advance have been executed before x than
before y, or when their advance counts are equal, if z would be executed before y in an
unclocked program.

2.2.5 Counting Integer Points in Polytopes

For polyhedral iteration spaces, the question of counting advances can be cast as counting
the number of integer points in polyhedra. Ehrhart [8] showed that the number of integer
points in a polytope can be expressed as periodic polynomials. The work on X10 uses
an algorithm proposed by Verdoolaege et al. [35] for computing such polynomials, which
handles parametric polytopes.
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2.2.6 Disproving Races

One may refine the dataflow analysis formulation developed for X10 programs without
clocks (overviewed in Section 2.2.3) using the new happens-before relation for clocked
programs. The only change required is to replace < with <<. However, the fact that
the ¢ functions are not affine in general creates a problem: parametric integer linear
programming [9] can no longer be used, and there is no known alternative that can
handle polynomials in integer variables.

Therefore, the proposed solution is to first detect races ignoring clocks and then later
use constraint solvers to verify if the statement instances involved in a race can have equal
¢ values. One can prove that the problem is still undecidable: it is in fact equivalent
to Hilbert’s 10th problem, deciding whether a polynomials has integral roots (see [15]).
However, modern SMT solvers, using heuristics and pattern matching approaches are
able to solve most of the cases one encounters in practice.

2.3 The Case of OpenStream
2.3.1 Stream Indices

Let us write W (resp. Ry) for the set of tasks which have write access (resp. read access)
to a stream s. To each instance t of a task 7 and each stream s accessed by 7 is associated
a burst b, . Each task instance has read or write access to a stream through a window.
For a given task instance and stream, the position of the window (its index) is computed
by the control program by summing the bursts of all preceding tasks instances.

To show the strong link with computations of cardinals (and generalizations), we first
consider the case where a burst is a numerical or symbolic constant that can be extracted
from the program text, in which case we can write b, ; instead of b, for any instance ¢
of a task 7. A burst is always a nonnegative integer, and can only be null for an input
stream 1 (the peek operation).

Let us write I4(¢) for the index of output stream s at instance ¢ of task 7. Let D, be
the domain (set of instances) of task 7. We have the fundamental formula (see also [28]):

I(t) = Z b, sCard {z € D,;|r <t} (8)

TEWS

In the same way, if s is an input stream, the read index is given by:

Jo(t) = ) b..Card {z € D.|z < t} (9)

TERS

Since for polyhedral programs D, is a polyhedron, and since < is a disjunction of
affine constraints, the necessary cardinal can be computed in closed form by familiar
techniques and libraries. The result will usually be a polynomial, the degree of which is
equal to the maximum dimension of D,. However, these polynomials are not arbitrary,
and their properties may be used to advantage for program analysis. For instance, the
innermost loop counter in ¢ will usually occur linearly in I4(¢). The index function I is
also, of course, related to the relation <, the task creation order:

40utput windows with a null burst /horizon are meaningless and would not even create a dependence.
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Proposition 1 Ift and t' have write access to the same channel s, and if t <t', then:
Is(t) + bT,S < Is(t,)7

Proof Observe that the sets whose cardinals contribute to I4(t') are su-
persets of those contributing to I(t), and that ¢ belongs to the one but not
to the other. l

Note that if bursts are not constants, Proposition 1 remains true with b, ; instead
of b; 5. From this follows directly that streams have the single assignment property, since
the write windows for ¢ and ¢, i.e., [I5(t), [s(t) + brs — 1] and [I5(t'), Is(¥') + by s — 1], are
always disjoint. Also, if bursts are not constants, Formulas (8) and (9) become

Lty= ) beand ()= > by,

TEWs, x€D,, x<t TERs, x€ED,, x<t

When the bursts are polynomials in the control program loop counters, the resulting
sums can still be evaluated at compile time by tools like ISL [34].

2.3.2 Dependence Test

Two operations are in dependence if they both access the same memory location, and one
of the accesses at least is a write. According to [30], the shared memory locations must
belong to a stream. It would be possible to compute dependences on global variables,
but this does not seem to be in the spirit of a streaming language.

As is well known, there are three kind of dependences:

e Producer-Consumer (PC) or RAW hazards or flow dependences,
e Producer-Producer (PP) or WAW hazards or output dependences,
e Consumer-Producer (CP) or WAR hazards or anti dependences.

The single assignment property implies that PP dependences do not exist. Also, there
are no CP dependences as specified by the semantics of streams: by definition, writes
always occur before reads.

To simplify the analysis, let us assume that each task access all elements of its win-
dows. This condition can easily be checked if windows are accessed with constant values.
Furthermore, if it was not satisfied on output windows, it would create holes in streams,
which could never be filled by the single assignment property. Holes in input windows
can only create spurious dependences and reduce parallelism. Another assumption is that
each task has at most one window per stream. Otherwise, the semantics of this situation
has to be defined, for example by considering that the windows sum up (sum of the bursts
and horizons), or by considering the largest window (max of the bursts and horizons).

Let ¢ be an instance of task 7 that writes to stream s and ¢’ be an instance of task 7’
that reads from stream s, with horizon hy ;. The write window is [I(¢), I5(t) + b s —1] and
the read window is [Js(t'), Js(t') + hy s — 1]. There is a dependence if these two segments
overlap, i.e., if:

L(t) < J(t) + hys — LN J(8) < Ig(t) + bys — 1. (10)
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To these constraints, one must add conditions that express the fact that ¢ and ¢’ are legal
iterations: ¢t € D, and ¢ € D,,. This condition enforces only that the writer of a given
stream cell occurs before its readers. One can also impose a “Kahnian continuity” on
streams (as in a FIFO), which means that a read can occur only if all stream cells with a
smaller index have been written before. In this case, the condition becomes simply:

L(t) < J(t") + hys — 1 (11)

Indeed, this is equivalent to considering that the read window goes from 0 to J(¢') +
hy s — 1, thus the second inequality of Equation (10) is always satisfied.

Let us write tdt’ if this system of constraints is satisfied: ¢ is the instance-wise depen-
dence graph of the subject program. The system t5t’ may be tested for satisfiability by
any available tool. The result is a relation 7A7’, the statement-wise dependence graph of
the subject program, where the dependence pair (7,7’) is labelled by the set of instances
that satisfy Equation (10) (or Equation (11) with the Kahnian continuity semantics), or
an over-approximation of this set. The statement-wise dependence graph can be analyzed
for parallelism. However, to apply an algorithm such as the Allen-Kennedy algorithm,
some concept of depth has to be synthesized. Similarly, defining distance vectors may be
interesting if the iteration domains of writes and reads are the same.

If the index functions are linear, i.e., if the control program has no deeply nested
loops, a linear programming tool may be enough. If not, the use of an SMT solver like Z3,
which can handle polynomials will be necessary. As in the case of ordinary dependences,
one may relax the integrality constraints on ¢ and ¢’ and obtain conservative results. The
advantage of this approximation is that solving polynomials in the reals is decidable, while
looking for integer solutions is not. Other approximation schemes are to be explored.

Whatever the situation, if ¢ and ¢’ are in dependence, then ¢ (the writer) must be
executed before t' (the reader). Observe that the dependence relation for OpenStream
tasks is not a subset of the sequential creation order, as is the case for sequential programs.
Hence, this raises the possibility of deadlocks, even in the absence of barriers.

3 Verification Problems in OpenStream

3.1 Deadlocks

The easiest method for proving the absence of deadlocks consists in building a schedule.
If the I and J, functions are linear, this can be done using standard algorithms like the
Farkas algorithm. In the presence of polynomial functions, it may be that the special
form of Equation (10) may simplify the construction of a schedule. It is not clear however
if an equivalent of Farkas lemma (useful for generating schedules in the polyhedral model)
for polynomial constraints exists, but one never knows.

The other possibility is to observe that there is a deadlock if one can find a cycle
to,t1,...,t,—1 such that ¢;0t;y1 and ¢, _1dtg. (This condition is necessary and sufficient
if the number of operations is finite, or with the Kahnian continuity semantics, see Sec-
tion 3.1.1.) Furthermore, the corresponding statements 7y, ...,7,_1, form a cycle in the
statement-wise dependence graph. There is a deadlock if the conjunction of the depen-
dence relations is satisfiable. However, the number of such cycles (between instances) is
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potentially unbounded except in trivial cases, hence this is only a semi-algorithm. Here
again, the special form of § may simplify the solution.

These two approaches are left for future work. We now give two preliminary results
that characterize how difficult deadlock detection can be in the general case.

3.1.1 Deadlocks and Cycles between Task Instances

Consider the following example in an OpenStream-like format:

s, t streams;

c: read once in t;

for(i = 0; ; i++) { /* infinite domain */
a: write once in s; read once in t;
b: write once in t; read once in s;

}

Here, c depends on b(0), which produces the first value of the stream t, while other values
produced by b(i) for i > 0 are read by a(i-1). As for stream s, it induces a dependence
from a(i) to b(i). In other words, for all 7, a(i) depends on b(i+1), which depends
on a(i+1), etc. The program cannot start: an infinite number of tasks is created but none
of them can execute. This is a case of deadlock where, in the graph defined by dependences
among task instances, there is no cycle, but an infinite path. However, with the Kahnian
continuity semantics, there is a cycle: a(i-1) depends on b(i) because of stream t
and b(i) depends also on a(i-1) because of stream s as it depends “functionally” on a(i).
The following proposition explicits these situations in general.

Proposition 2 If the control program generates a finite number of task instances, there
15 a deadlock if and only the graph of dependences among task instances has a cycle. The
same is true for an infinite number of instances and the Kahnian continuity semantics.
Without the Kahnian continuity semantics, if the number of task instances is infinite,
there is a deadlock if and only if there is a task T and an infinite sequence of position
vectors (ij)jen such that i; < ij41 such that T(i;) depends on T(ij41), i.e., an infinite
number of instances of the same task that depend on each other in the inverse order of
their creation.

Proof Here is a sketch of the proof. A schedule is a function o that
assigns to each task instance ¢ a nonnegative integer o(t) € N such that
if a task instance ¢ depends on a task instance u, then o(t) > o(u), ie.,
o(t) > o(u) + 1. This corresponds to assuming that each task has duration
one (real durations can be arbitrarily large but tasks are assumed to have no
deadlock internally, thus to execute in finite time and to take at least one unit
of time ®). As task creation does not depend on tasks dependences, there is
no deadlock due to task creation, we only need to consider when tasks start
executing. Using proof techniques similar to those used for systems of uniform
recurrence equations [23], we can show the following properties.

5Tasks of duration 0 or infinitely small would allow for an infinite number of activations without
implying deadlocks, which is not a reasonable model to work with.
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e There is no schedule if and only if there is a task instance ¢ such that
the length [(t) of a dependence path leading to ¢ is not bounded.

e Each task instance depends (directly) on a finite number of other task
instances. This is because a task instance reads only a finite number of
streams and because bursts and horizons are numbers (thus finite). This
is true also in the Kahnian case as streams start at 0 (and not —oo). This
implies that there is no schedule if and only if there is a task instance ¢
and an infinite dependence path leading to .

e The previous property shows that there is a deadlock if and only if there
is no schedule. Indeed, if there is no deadlock, there exists an execution of
tasks. This execution produces a schedule (considering that the smallest
task duration is 1). Conversely, if there is a schedule, it is not enough
to say that this schedule can be stretched to take the real duration into
account as, given a task instance, there can be an infinite number of
task instances scheduled before and thus the maximum of their duration
can be infinite. However, one can build another schedule, called the free
schedule, that executes each task instance as early as possible (this is
without resource constraints): this is possible as the length of each path
leading to it is finite and thus its total duration is finite too.

e Consider an infinite path leading to ¢, i.e., a sequence of task instances
(t;)ien such that to = ¢ and ¢; depends on ¢;,;. From (¢;);en, one can
extract an infinite subsequence (#;;);en of task instances (which are thus
in dependence by transitivity) that is nondecreasing with respect to the
order of task creation =, i.e., ¢; <i; if j < 5. As there is a finite number
of tasks, one can even select only instances of the same task 7. In other
words, if there is a deadlock, there is a task 7" and a sequence of position
vectors (i;);jen such that if 7 < j', T'(j) depends on T'(j') and j < j’
(lexicographic order). The converse is obviously true.

This shows most of Proposition 2. When there is only a finite number of
task instances, an infinite path traverses at least twice the same task instance,
thus there is a cycle. It remains to see what happens with the Kahnian
continuity semantics with an infinite number of task instances. It is easy to
see that given two tasks T" and U, and two position vectors ¢ and j, such that
U(j) depends (directly or by transitivity) on T'(i), then U(j) also depends
on T'(i") for all " < i if all task instances always write in the same streams
(i.e., if T'(¢) writes in s, so does T'(i")). If there is a deadlock, there exist a
task 7" and two position vectors i and j such that i < j and 7'(¢) depends
on T'(j), thus T'(7) also depends on T'(7) since i < j, which forms a cycle. The
converse is of course true. ll

3.1.2 Detecting Deadlocks is Undecidable

The following construction shows that it is in general undecidable (thanks to a reduction
from Hilbert’s tenth problem) to detect:

e if an OpenStream program has a functional deadlock;
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e if an OpenStream program has a spurious or a functional deadlock;

e if an OpenStream program has a stream causal schedule.

A functional deadlock is, as explained earlier, a situation where no created task can
be executed, assuming the general semantics of dependences given by Equation (10).
A spurious deadlock is a deadlock that arises only because of the Kahnian continuity
semantics, i.e., if a read in a stream at a given index must wait for all writes in the
stream at smaller indices. A causal schedule is a schedule where writes to a given stream
occur in the same order as their indices, i.e., in the same order as the creation of the
corresponding task: o(t) < o(u) if t and u write to the same stream and ¢t < « (in this
case, the index written by ¢ is smaller than the index written by ).

The proof is based on the following construction, inspired by a similar proof related to
race conditions in X10 presented by Paul Feautrier during the April 2013 french compi-
lation days [15]. P and () are two multivariate polynomials (with n variables). The code
can use only horizons and bursts equal to 1 if large loop bodies are allowed, otherwise
horizons and bursts can be used to emulate coefficients of the polynomials.

s, t streams;
for (x in D) { /* D is the n-dimensional cube of size N in the first orthant */

R1: read Q(x)-1 times in t;

Wil: write P(x)-1 times in t;

S: read once in t and write once in s;
T: read once in s and write once in t;
R2: read P(x) times in t;

W2: writes Q(x) times in t;

Following the construction of [15], it is always possible to write affine loops so that R1
reads Q(z) — 1 times in t (same for the other polynomial expressions). The dependence
graph has only one possible cycle, involving S and 7', other tasks cannot induce deadlocks.
For each iteration of x, there are P(x) + Q(x) + 1 writes and reads in stream t and one
write and one read in stream s, thus functional dependences among task instances can
only involve instances corresponding to the same iteration x. Because of stream s, there
is a dependence from S(x) to T'(z). Concerning stream t, T'(x) writes in position P(x)
(without counting all previous iterations of ) and S(z) reads in position Q(z).

If P(z) = Q(x), there is a functional dependence from T'(z) to S(z). Otherwise,
there exists a schedule for iteration z: execute W1(z) and W2(x), then S(z), then
T'(x), and finally R1(z) and R2(x). Thus, there exists a value of N with a deadlock if
and only if there exists a (component-wise) nonnegative vector x such that P(z) = Q(x)
(undecidable, see [15], variant of Hilbert’s 10th problem). This is for functional deadlocks.

For spurious deadlocks, i.e., with the Kahnian continuity semantics, there is a depen-
dence from S(x) to T'(z') for all x < 2’ because of stream s. For stream t, if P(z) = Q(z)
there is a functional deadlock and if P(z) < Q(x) then the task instance writing in Q(x)
is one of the instances of W2(x). But there is still a dependence from 7'(z) to S(x)
since T'(z) writes in a smaller index than W2(z), thus there is a deadlock. Finally, if
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P(z) > Q(z), there is a schedule and even a causal schedule: execute W1(x), then R1(z),
then S(z), then T'(z), then W2(z), and finally R2(x). In conclusion, there is a deadlock
if and only if there exists a component-wise non-negative = such that P(x) < Q(x). This
leads to another variant of Hilbert’s 10th problem: is there a component-wise nonnega-
tive = such that P(z) < 07 If this problem was decidable, then one could also decide if
Q(z) = 0 for a given polynomial Q. Indeed, Q(z) = 0 if and only if Q*(z) = 0, which is
also equivalent to Q*(z) < 0.

3.2 Dataflow Analysis

Dataflow analysis for OpenStream is both trivial and impossible in general. The problem
is, given a cell i in stream s, to find the position vector of the task that wrote s[i]. This
vector and the associated task must satisfy the constraints:

L) <i<IL(t)+b,—1,teD,.

This is a constraint satisfaction problem, which may be solved if I is linear or a low
degree polynomial, but which seems impossible in general — this is a form of quantifier
elimination, which is impossible in general for integers and polynomials. Due to its special
form, it may be that the I, function may be inverted, giving a closed form expression
for ¢ as suggested earlier. This is a subject for future work.

3.2.1 Looking for Some Solvable Cases

To try to better understand the function I, and .J; and how to compute them, let us
give a few remarks. By construction, the functions I4(t) and Js(t) have some hidden
lexicographic properties, as stated in Proposition 1. Consider I4(t). Given a scalar k,
there exists t; such that the set of vectors ¢ for which I4(¢) < k has the following form
{t | I;(t) < k} = {t |t = tg}. Similarly, there exists a task instance ) such that
{t' | Js(t') > k} ={t' | t, X t'}. Then, assuming hy , = 1 to simplify the notations,
Equation (11) can be rewritten into:

Ak st t <ty, t, It te D, t' e Dy (12)

The minimal dependence distance (when 7 and 7/ have same iteration domain) is the
minimum of ¢, — ¢;. The challenge is now to be able to compute ;, i.e., more or less to
inverse the function I (same for J). It also becomes clear from Equation (12) that a
conservative approximation consists in building ¢, (resp. t},) larger (resp. smaller), with
respect to <, than the exact vector.

Property 1 also implies that ¢, and ¢} can be defined one dimension at a time for a
given domain D,. Indeed, if t;, = (ig,Jx) (in dimension 2 to simplify notations), then
tr = max<{t | I;(t) <k}, thus:

S max{i ‘ (17.]) € DT? Is(zaj) < k}? ]k = max{j | (Zk7k> € DT7 IS(ZIWJ) < k}

Actually, for the computation of i, one can replace j by f(i7) where f(i) is a function
of i such that (i,j) € D,. This way, I is now a function of i only. If f(i) is the
smallest possible j (for example j = 0 on a rectangular domain starting at 0) then
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max{i | (i, f(i)) € D,, Ls(i, f(i)) < k} is equal to ix. In the general case, this maximum
can be equal to iy or 7 — 1. This variable elimination may make the computations simpler
to solve. In some simple (and hopefully practical) cases, these computations can even
be carried out in an affine way, and the dependences, thanks to Equation (12), can be
computed in an affine way too. This is left for future work.

3.2.2 Impact of Barriers

There is not much about barriers in [30], but they certainly exist in OpenMP, and are a
prominent feature in [28|. The semantics here is that when the control program executes
a barrier, it stops until all created tasks have terminated. The first consequence is that
the presence of barriers does not change anything in the < relation, hence has no impact
on the functions I, and J,, and hence does not change stream dependences. However, it
adds new pseudo-dependences to the instance-wise dependence graph. If b is the position
vector of a barrier and if ¢ < b and b < t, then one must add a dependence from ¢
to t’ to the stream-based dependences. Note that this dependence is some variation on
the lexicographic order, hence it fits in the polyhedral model and does not increase the
difficulty of deadlock detection and scheduling.

4 Conclusion

This preliminary study of the OpenStream language has shown that, even if there is hope
in solving more general but specific cases, two conditions must be satisfied to apply the
full polyhedral model:

e The control program must conform to the polyhedral model: DO loops with affine
bounds in outer loop counters and size constants.

e The index functions as defined by equations (8) and (9) must be affine; this in turn
implies that bursts and horizons must be known numbers, and that the program
has only one-dimensional loops.

If these conditions are satisfied, all polyhedral tools can be applied, including scheduling
and hence efficient proof of deadlock absence (proving the existence of deadlocks seems
much harder) and program transformations. The knowledge of a static schedule may
help the compiler in the generation of efficient parallel code. However, it seems probable
that the actual runtime scheduler will keep some dynamic features, if only to adapt to
variations in the execution time of tasks. A knowledge of the properties of this scheduler
will be necessary for stream sizing. However, Proposition 2 shows, as a by-product, that
if streams are bounded statically and if a schedule still exists, then a dynamic schedule
will not deadlock, i.e., will not end with a situation where no ready task can be executed.

To analyze programs beyond this very restricted set of polyhedral OpenStream pro-
grams, one may follow two directions: one may use affine approximations, or one may
try to take advantage of the special properties of the I and J functions and invent new
analysis algorithms, for example as suggested in Section 3.2.1. As an example of what one
can do with approximations, dependences can be conservatively approximated by over-
estimating the J function and underestimating the I function. If these approximations
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are affine, the polyhedral model can be applied. Finding affine over- and under-estimates
is probably easy for bounded programs, but may be difficult or even impossible in the
presence of infinite loops, as found in signal processing applications. Another approach is
to observe that the I and J functions are not arbitrary polynomials. Their main property
is that they are monotone increasing with respect to the lexicographic order of task acti-
vations, and hence invertible. However, finding a closed form inverse might be difficult.
Another interesting property is that the counter of the innermost surrounding loop will
always occur linearly in the task I and J function. How to exploit these properties, for
instance to devise a scheduling algorithm, is an interesting research subject.

Transforming an OpenStream program in order to augment its granularity or to im-
prove its locality is another interesting subject. Since OpenStream tasks are best con-
sidered as black boxes, the transformation must apply only to the control program. One
possible approach would be to find conditions under which the I and J functions of the
transformed program stay the same.

Lastly, one may wonder if the analysis techniques proposed in this report may be
extended to more advanced features of OpenStream, like second-level tasks, variadic
streams, or conditionals.
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