
Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Toward a Polynomial Model

Paul Feautrier

LIP - ENS de Lyon
Paul.Feautrier@ens-lyon.fr

September 28, 2015

1 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Models

The Basic Algorithms
Motivation

Mathematical Background
Theorems
Implementation

Applications
Dependences
Scheduling

Related Work

Unsolved Problems

Conclusion and Future Work

2 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Models

To reason about the behaviour of a program, one needs a notation
for:

I its set of operations (instances, not statements)

I the execution order (a.k.a. the Happens Before Relation)

I a mapping from operations to memory cells

These sets are enormous: a 1 Gflops processor (big deal!) running
for 1 second generates 109 operations.
The only possibility is to take advantage of regularities and
represent these sets by symbolic constraints.

3 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Requirements

The necessary operations must have efficient implementations:

I emptyness test

I intersection, union, complement

I projection, image

I optimization

Beware: do not confuse “efficient implementation” with
decidability.

4 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

The polyhedral Model

Sets are represented by Z-polyhedra: the set of integral solutions
of affine inequalities.
These sets are associated to regular loop nests.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

j

i

i <= n−1

j <= i−1

j>=0
i>=0

for(i=0;i<n;i++)

for(j=0;j<i;j++) ...

5 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Motivation

Tools

I Farkas lemma: construct an affine formula positive inside a
polyhedron

I Linear programming : to solve the resulting constraints,
emptiness test

I Fourier Motzkin elimination algorithm : emptiness test,
projection

Linear programming has very efficient implementations: glpk,
CPLEX, gurobi, and parametric extensions (PIP).

6 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Motivation

Evaluation

Most (large) programs do not fit into the polyhedral model. Some
approaches:

I Extract small polyhedral kernels (SCOPs), optimize
independently and plug the results back into the original
program. A SCOP running time must represents a significant
portion of the total running time (Amdhal law).

I Approximate: construct a polyhedral program with more
operations, more dependences and more memory than the
original. Optimizations valid for the approximations are valid
for the original but the approximation may have no parallelism.

I Invent Other models.

7 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Motivation

Other Models

The Tree model

I Represent sets by formal languages

I Regular languages for flat programs

I Context free languages for (recursive) procedures

I Many questions are undecidable by reduction to Post
correspondance problem.

The Polynomial Model

I Represent sets by semi-algebraic sets.

I Problem 1: no projection algorithm in integers

I Problem 2: Hilbert 10th problem.

8 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Motivation

Motivation: Polynomials Everywhere, I

k =0;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

a[k++] = 0.;

→
for(i=0; i<N; i++)

for(j=0; j<N; j++)

a[N*i+j] =0.;

Are the loops parallel? Are there loop-carried dependences?

Can be solved by delinearization, or by the SMT solver Z3, or by
ISL using Bernstein polynomials. Other approaches?

9 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Motivation

Polynomials Everywhere: Scheduling

Find a schedule for:

s = 0.;

for(i=1; i<N; i++)

for(j=0; j<i; j++)

s += a[i][j];

Since the program runs in time O(N2) whatever the number of
processors, it has no affine schedule. It has a two-dimensional
schedule, which is equivalent to a quadratic schedule.

Can one find the quadratic schedule directly?

10 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Motivation

Polynomials Everywhere: Transitive Closure

What is the exact transive closure of:

(x ′ = x + y , y ′ = y , i ′ = i + 1)?

Answer:

(x ′ − i ′.y ′ = x − i .y , y ′ = y , i ′ ≥ i).

a polynomial relation.

11 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Theorems
Implementation

The Basic Problem

Given: a set K and a function f , is f positive in K :

∀x ∈ K : f (x) > 0?

Extension: f is a template depending on a vector of parameters µ.
Find µ such that:

∀x ∈ K : fµ(x) > 0.

Farkas lemma is the case where K is a polyhedron
K = {x | Ax + b ≥ 0} and f is affine. The solution is:

f (x) = λ0 + λ.(Ax + b) , λ ≥ 0

12 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Theorems
Implementation

Notations, I

A semi-algebraic set (sas):

K = {x | p1(x) ≥ 0, . . . , pn(x) ≥ 0}

where x is a set of unknowns x1, . . . , xp and the pi s are polynomials in x .
A polyhedron is an sas such that all the pi s are of first degree. One
usually include the trivial 1 ≥ 0 among the pi s.

Schweighofer products: for each ~e ∈ INn:

S~e(x) = pe1
1 (x) . . . pen

n (x) =
n∏

i=1

pei
i (x).

The quantity N =
∑n

i=1 ei is the order of the product, not to be confused
with its degree.

13 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Theorems
Implementation

Notation, II

Given a finite subset Z ⊂ INn the associated Schweighofer sum is:

SZ (x) =
∑
~e∈Z

λ~e .S~e(x), λ~e > 0.

Clearly, all Schweighofer sums are positive in K .

14 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Theorems
Implementation

Theorems

Theorem (Handelman, 1988)

If K is a compact polyhedron, then a polynomial p is strictly
positive in K if and only if it can be represented as a Schweighofer
sum for some finite Z ∈ INn.

Theorem (Schweighofer, 2002)

If K is the intersection of a compact polyhedron and a
semi-algebraic set, then a polynomial p is strictly positive in K if it
can be represented as a Schweighofer sum for some finite Z ∈ INn.

15 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Theorems
Implementation

Comparisons

Notice the similarity between the conclusion of the two theorems,
and the difference with Farkas lemma: since there is no useful
bound on the size of Z , it is usually impossible to obtain a
negative answer.
Another difference: those two theorems deals with strictly positive
inequalities, while Farkas deals with non-strict inequalities.

16 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Theorems
Implementation

Algorithm H

The aim of this algorithm is to collect a set C of constraints on the
unknowns λ and µ.

I C = ∅.
I Given: a set of Schweighofer products {S~e(x) | ~e ∈ Z ⊂ INn}

and a polynomial (template) pµ(x),
I Result: A system of constraints on the λ and µ.
I Completely expand the master equation:

E = pµ(x)−
∑
~e∈Z

λ~e .S~e(x).

I For each monomial x f1
1 . . . x

fp
p , collect its coefficient c and add

c = 0 to C. c is an affine form in the λ and µ.

17 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Theorems
Implementation

Comments

I Algorithm H works equally well in the Handelman or
Schweighofer case, provided one use a uniform representation
of polynomials, whatever their degree.

I The main difficulty is the selection of the products. One may
use an oracle(!), or all products of a given degree, or all
products of a given order.

I The resulting system of constraints may be used in many
ways: it may be solved by itself, or may be combined with
other constraints before solving.

I If a solution for the λ and µ is found, this solution can be
certified, independently of Handleman or Schweighofer, by
straightforward algebraic evaluation.

18 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Dependences
Scheduling

Dependence Tests

A dependence set D is defined by a system of constraints:

I The iteration domains of its source and destination,

I A set of subscript equations,

I An order predicate.

Some or all of these constraints may involve polynomials. The
problem is to decide whether this set is empty or not.
A possible solution is to prove, using algorithm H, that -1 is a
positive combination of Schweighofer products of D!
Since -1 can never be positive, it follows that the constraints defining D

cannot all be satisfied at the same time, i.e. that D is empty. Compare

to the familiar Fourier-Motzkin algorithm.

19 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Dependences
Scheduling

An Example

for(i=0; i<n; i++)

for(j=0; j<n; j++)

a[N*i+j] = 0.;

The dependence set:

0 ≤ i ≤ N − 1 , 0 ≤ i ′ ≤ N − 1

0 ≤ j ≤ N − 1 , 0 ≤ j ′ ≤ N − 1

Ni + j = Ni ′ + j ′

i + 1 ≤ i ′

Algorithm H finds the following solution:

−1 = (N − i − 1)(i ′ − i − 1) + i(i ′ − i − 1) + (i ′ − i − 1)

+ j ′ + (N − j − 1) + (Ni + j − Ni ′ − j ′)

Hence, the dependence set is empty.

20 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Dependences
Scheduling

Scheduling

Notations

I R,S , . . . a set of instructions

I DR the iteration domain of R, usually a polyhedron,
sometimes an sas

I ∆RS ⊆ DR × DS , a dependence set from R to S .

Problem For each statement R find a function θR : DR → IN such
that:

x ∈ DR ⇒ θR(x) ≥ 0(
x
y

)
∈ ∆RS ⇒ θR(x) + 1 ≤ θS(y)

21 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Dependences
Scheduling

Method

I For each statement R, build a template schedule θR by
applying the first part of algorithm H to DR

I For each dependence, build a master equation for the delay
θS(y)− θR(x)− 1 by applying algorithm H to ∆RS

I Collect the constraints and solve for the λ and µs using a
linear programming tool.

22 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Dependences
Scheduling

DEMONSTRATION

23 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Dependences
Scheduling

Result

table((__node,S) = [[i,j],{(N >= i+1),(i >= j+1),(i >= 1),

(j >= 0)}],(__nodes) = [S],(__transition,T0) = [S,S,table(i = i’,j = j’),

{(i’ >= i+1)}],(__transition,T1) = [S,S,table(i = i’,j = j’),{(i = i’),

(j’ >= j+1)}],(__transitions) = [T0,T1])

(N * N)*mu_6+N*i*mu_11+N*i*mu_8+N*j*mu_15+N*mu_5+(i * i)*mu_12+

...

(j * j)*mu_16-j*mu_15-j*mu_16-j*mu_17-j*mu_7-mu_10-mu_5-mu_7

dependence polyhedron [(N >= i+1),(N >= i’+1),(i’ >= i+1),(i >= j+1),

(i >= 1),(i’ >= j’+1),(i’ >= 1),(j >= 0),(j’ >= 0)]

dependence polyhedron [(N >= i+1),(N >= i’+1),(i = i’),(i >= j+1),(i >= 1),

(i’ >= j’+1),(i’ >= 1),(j’ >= j+1),(j >= 0),(j’ >= 0)]

table(mu = 0,mu_10 = 1/2,mu_11 = 0,mu_12 = 0,mu_13 = 1/2,mu_14 = 1,mu_15 = 0,

mu_16 = 0,mu_17 = 0,mu_18 = 0,mu_5 = 0,mu_6 = 0,mu_7 = 0,mu_8 = 0,mu_9 = 0

)

theta[S] = [1/2*(i * i)+j-1/2*i] == (j) + 1/2 . (i-1)*(i-1) + 1/2 . (i-1)

delay [T0] = 1/2*i+1/2*(i’ * i’)+j’-1/2*(i * i)-1/2*i’-j-1

=== (j’) + 1/2 . (i’-i-1)*(i’-1) + 1/2 . (i’-i-1)*(i-1) + (i-j-1) + (i’-i-1)

24 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Related Work

I Early work by B. Pugh et. al. using uninterpreted functions,
and by van Engelen et. al. using interval analysis

I Polynomial minimization using a Bernstein expansion,
implemented in ISL, can be applied to dependence testing

I Armin Größlinger: using Cylindrical Algebraic Decomposition.

I Work in progress by A. Maréchal and M. Périn (Verimag) on
linearization (i.e. getting rid of polynomials) using Handelman
theorem and an oracle to control complexity.

25 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Code Generation

Given a polynomial schedule θ(~i), and an iteration domain: D,
generate the corresponding code. Equivalent to the construction of
fronts:

F (t) = {~i ∈ D | θ(~i) = t}

Needs a projection algorithm, for instance CAD. Can one do
better?

26 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Projection

Given a semi algebraic set, construct a Schweighofer sum, expand,
and equate to zero the coefficients of all monomials containing the
variable(s) to be projected out. Solve in positive unknowns.
Problems

I Needs a polytope enclosing box.

I The result (if any) is an over approximation of the projection.
Except in the affine case, it is impossible to prove equality.

An example Eliminate y from the definition of the unit disk
1− x2 − y2 ≥ 0. The result shoud be 1− x2 ≥ 0, but it cannot be
obtained as a Schweighofer sum, unless one add y2 ≥ 0 to the
definition of the disk.

27 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Other uses for schedules

Proving the absence of deadlock.
But:

I Sequential programs do not have deadlocks. Applies only to
parallel programs (e.g. OpenStream) or process networks (e.g.
KPN) with infinite loops.

I Deadlocks are caused by cycles in the channel structure.

The construction of a realistic example is difficult.

28 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Conclusion and Future Work, I

I The method works well and give interesting results in
acceptable time, at least for small problems.

I Other applications: transitive closure, program termination,
(perhaps) invariant construction, ressource allocation, ...

I Complexity, very high, exponential in the order of
Schweighofer products. However, well within the capability of
glpk or CPLEX.

I Can one use an oracle to guess which products are useful?

29 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

Conclusion and Future Work, II

We are still far from a polynomial model.
Other polynomial tools: CAD, Berntein, combine?
Very preliminary implementation using glpk and Z3.

30 / 31



Models
The Basic Algorithms

Mathematical Background
Applications

Related Work
Unsolved Problems

Conclusion and Future Work

THE END – QUESTIONS

31 / 31


	Models
	The Basic Algorithms
	Motivation

	Mathematical Background
	Theorems
	Implementation

	Applications
	Dependences
	Scheduling

	Related Work
	Unsolved Problems
	Conclusion and Future Work

