
Instance-wise Points-to Analysis for Loop-based
Dependence Testing

Peng Wu y Paul Feautrier z David Padua x Zehra Sura xy IBM T.J. Watson Resear
h Center z A3 Proje
t x Department of Computer S
ien
eP.O.Box 218 INRIA Ro
quen
ourt University of IllinoisYorktown Heights, NY 10598 78153 Le Chesnay, Fran
e Urbana, IL 61801pengwu�us.ibm.
om paul.feautrier�inria.fr {padua,zsura}�
s.uiu
.edu
ABSTRACTWe present a points-to analysis that aims to enable loop-based dependen
e analysis in the presen
e of Java ref-eren
es. The analysis is based on an abstra
tion 
alledelement-wise points-to (ewpt) mapping. An ewpt map-ping summarizes pre
ise points-to information for allloop iteration instan
es of a pointer or all elements ofan array of pointer type. This is done with the help ofa single, 
ompa
t representation. Su
h instan
e-wiseand element-wise information is espe
ially importantfor loop-based dependen
e analysis and for a languagewhere multi-dimensional arrays are implemented as ar-rays of pointers. We des
ribe an iterative algorithm to
ompute ewpt mappings. We also present te
hniquesto remove obje
ts from ewpt mappings for destru
tiveupdates.The points-to algorithm was implemented and evalu-ated on a set of ben
hmark programs. We demonstratethat ewpt information 
an signi�
antly improve the pre-
ision of dependen
e analysis. In many 
ases, the de-penden
e analysis reports no false dependen
es due toarray a

esses.
1. INTRODUCTIONIf Java is to be used for high performan
e 
omputing,we must enable 
lassi
al loop optimizations for it. Dueto the rigid ex
eption semanti
s of Java and its pervasiveuse of pointers, two problems need to be solved beforeloops 
an be optimized: �nding a

urate loop-based de-penden
es in the presen
e of pointers and identifyinglarge ex
eption-free regions.In the presen
e of pointers, a loop-based dependen
etest needs to relate pointers from di�erent program points
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’02, June 22-26, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-483-5/02/0006 ...$5.00.

and di�erent loop iterations. However, pointer analysesbased on existing pointer abstra
tions are either unableor not pre
ise enough to satisfy these two requirements.Let us examine the two most 
ommonly used pointer ab-stra
tions: alias relation and store-based points-to set.� Alias relation, often 
omputed as alias pairs, indi-
ates whether two pointers may refer to the samememory lo
ation at a given program point. Sin
ealias pairs only 
apture alias relations among point-ers at the same program exe
ution point and sin
ealias pairs obtained at di�erent program points
an not always be related to one another, they arenot suitable for representing pointer informationfor dependen
e analysis [9℄.� A store-based points-to set (
all it points-to setthereafter) 
aptures the set of memory lo
ations[4℄ or an
hors [9℄ that a pointer may point to atany given stati
 program point.1 Although points-to sets 
an relate pointers from di�erent programpoints, when dealing with pointers inside loops,they 
an not a

urately 
apture the aliasing amongpointers from di�erent iterations. The following
ode fragment illustrates the s
enario where points-to sets are not adequate for loop-based dependen
eanalysis:� � �1 for (i = 0; i < m; i++) {2 p = q;3 p.x = � � � ;4 q = new Obje
t();5 }In this example, there is no output-dependen
eover statement 3 a
ross di�erent iterations of loopi. To dis
over this, it is ne
essary to know that pat statement 3 points to a di�erent obje
t on ea
hiteration of the loop. To the best of our knowledge,no existing pointer analysis is able to 
ompute and1In some pointer analyses, points-to sets are used tomodel the relation between pointer and a

ess paths.We refer to su
h points-to relation as store-less points-to sets.



represent points-to information for ea
h instan
eof a pointer.
p

0 6

4

0

Figure 1: 2-dimensional Java arrayIn Java, multi-dimensional arrays are implementedas trees of one-dimensional arrays (see Fig. 1).This feature introdu
es new types of pointers whosepoints-to sets must be 
aptured pre
isely. Con-sider an a

ess p[i℄[j℄ in a double-nested i-jloop. In order to 
ompute the points-to set ofp[i℄ for any value of i, one needs to 
apture pre-
ise points-to sets for all elements of p.This paper presents an instan
e-wise points-to anal-ysis to summarizes pre
ise points-to information for allinstan
es of a pointer inside a loop and for all elementsof a pointer array. The analysis is based on a 
om-pa
t abstra
tion, element-wise points-to mapping, thatsummarizes both element-wise and instan
e-wise infor-mation. The algorithm was implemented and evaluatedon a small set of ben
hmarks. The results demonstratethat our points-to analysis 
an signi�
antly improve thepre
ision of dependen
e analysis.Contribution. In summary, the paper makes the fol-lowing 
ontributions:� It proposes a points-to abstra
tion, element-wisepoints-to mapping, that summarizes points-to in-formation for pointer instan
es and array elementpointers in a single form. It also introdu
es a pre-
ise heap naming s
heme whi
h in
lude loop iter-ation ve
tors in heap names.� It proposes a store-based pointer analysis that issuitable for loop-based dependen
e tests and foranalyzing pointer arrays.� It presents a te
hnique to remove obje
ts fromewpt mappings for destru
tive updates. This te
h-nique 
an help to identify redundant null-pointer
he
ks on heap-residing pointers.Organization. The rest of the paper is organized asfollows. Se
tion 2 gives an overview of the analysis.Se
tion 3 des
ribes our assumptions on the use of somelanguage features and introdu
es basi
 notations. Se
-tion 4 presents the transfer fun
tions and Se
tion 5 givesthe iterative algorithm. Se
tion 6 des
ribes how to re-move obje
ts from ewpt mappings for destru
tive up-dates. Se
tion 7 dis
usses the appli
ations of the anal-

ysis and experimental results. Se
tion 8 outlines somerelated work and Se
tion 9 
on
ludes.
2. OVERVIEW OF THE METHODThe analysis is based on an abstra
tion 
alled ewptmapping. Treating all referen
es uniformly as array ref-eren
es of some dimensions, an ewpt mapping 
apturesthe obje
ts pointed to by individual elements of an ar-ray as a mapping (i.e., element-wise properties), whereheap obje
t names in
orporate the iteration ve
tors ofthe surrounding loops (i.e., instan
e-wise properties).As an example of ewpt mappings, 
onsider the loop inFig. 2 and an arbitrary array element a[x℄. The ob-je
ts pointed to by a[x℄ at program point 4 in iterationi, denoted as 4(i), 
an be represented by the followingewpt mapping of aPointsTo(a[x℄) = fhnull; x > ii; hNt[x℄; x � iig;where� Nt[x℄ denotes the obje
t allo
ated by statement tat iteration x.� hNt[x℄; x � ii represents a set that, for a given x,evaluates to Nt[x℄ when x � i, and evaluates toan empty set at other points.� hnull; x > ii represents a set that evaluates tothe null obje
t when x > i, and evaluates to anempty set at other points.For illustration purposes, we show next the di�erentsteps of our method when applied to the 
ontrol 
owgraph of Fig. 2. The algorithm is an iterative �xedpoint algorithm. In Table 1, we give the values of ewptmappings during ea
h iteration of the algorithm.Point 1, a = new Complex[n℄. a points to the obje
tallo
ated by s (i.e., Ns). When �rst allo
ated,elements of Ns are initialized to null, hen
e, a[x℄points to nullfor 0 � x < ni.We assume that the array bounds 
onditions, su
has 0 � x < n, are impli
it in ewpt mappings.Therefore, the rest of the paper will use null in-stead of hnull; 0 � x < ni in ewpt mappings.Point 2, for (...), �rst iteration.Point 3, b = new Complex(). b points to the obje
tallo
ated by statement instan
e t(i) (i.e., Nt[i℄).Point 4, a[i℄ = b. The statement makes a[i℄ pointto Nt[i℄, while other array elements still point tonull. Hen
e,PointsTo(a[x℄) = null; hNt[i℄; x = iiThen, the above points-to set is 
onverted to anequivalent formPointsTo(a[x℄) = null; hNt[x℄; x = ii:



s: a = new Complex[n℄for (i=0; i<n; i++)t: b = new Complex()a[i℄ = b� � �
12

534 p

b

i

t

N

N

s

[i]

at program point 4 iteration i:

outer part

inner part

Figure 2: Constru
ting 1-dimensional array of Complex Obje
tsThis transformation is ne
essary to preserve thepre
ision of the mapping during aging (see Point2, se
ond iteration).2Point 2, for (...), se
ond iteration. Sin
e i is ad-van
ed, o

urren
es of i in the mappings are re-pla
ed by i�, whi
h denotes the value of any itera-tion before i. This transformation is 
alled aging .Point 3, b = new Complex(). b points to Nt[i℄. Notethat, obje
t Nt[i℄ allo
ated at the previous itera-tion be
ame Nt[i�℄ after aging.Point 4, a[i℄ = b. The statement makes a[i℄ pointto Nt[i℄, and leaves other elements of the arrayun
hanged. Hen
e,PointsTo(a[x℄)= null; hNt[x℄; x = i�i; hNt[x℄; x = ii= null; hNt[x℄; x 2 fi; i�gi:Point 2, 3, and 4, third iteration. The �xed pointis rea
hed.Point 5. Mappings at point 4 are merged with those atpoint 1. Sin
e i is not live after the loop, o

ur-ren
es of i are substituted by its last value (n�1).This transformation is 
alled binding .This example (Table 1) reveals several important fea-tures of the analysis.� Heap obje
ts are named by allo
ation statementinstan
es. This naming s
heme automati
ally en-
odes instan
e-wise information into the mapping.Names su
h as hNt[x℄; x � ii are generated to rep-resent the fa
t that an obje
t is atta
hed at a par-ti
ular region of an array.� Loop 
ounters may o

ur in the ewpt mappingsand are handled by aging and binding. Aging may2This is be
ause at Point 2 the se
ond iteration,hNt[i℄; x = ii and hNt[x℄; x = ii will be aged tohNt[i�℄; x = i�i and hNt[x℄; x = i�i, respe
tively. Itis obvious that the latter name (with minimum o

ur-ren
es of i) preserves better pre
ision.

introdu
e approximation but is needed for the 
on-vergen
e of the algorithm. It is the widening op-erator of the iterative algorithm.� The analysis does not remove any heap namesfrom ewpt mappings for heap assignments (i.e., nodestru
tive updates). As a result, null is alwayspresent in PointsTo(a[x℄). A te
hnique to enablekills for destru
tive updates will be presented inSe
tion 6.
3. BASIC DEFINITIONThis se
tion des
ribes our assumptions on the use ofsome language features and introdu
es basi
 notations.
3.1 Input Program FormatWithout loss of generality, we assume that referen
eassignments of the sour
e program 
omply to the formsgiven in Fig. 3. More 
ompli
ated a

esses 
an be 
on-verted into these forms by introdu
ing temporaries. Infa
t, referen
e a

esses supported by Java byte-
ode
omply with these forms.Sta
k Assignment1. p = null2. p = new Cls ()3. p = new Cls[m_1℄� � � [m_k℄� � � [℄4. p = q5. p = q.a6. p = q[e℄Heap Assignment7. p.a = q8. p[e℄ = qMethod Invo
ation9. p = q.foo(� � � );10. q.bar(� � � );Figure 3: Referen
e assignmentsControl statements are loops and 
onditionals. Forwhile loops, we 
reate a loop 
ounter before the anal-ysis. These 
onventions allow the use of notation, s(~{),



Iter: PrgmPts PointsTo(a) PointsTo(b) PointsTo(a[x℄)1 Ns null null1 2 Ns null null3 Ns Nt[i℄ null4 Ns Nt[i℄ null; hNt[i℄; x = ii ) null; hNt[x℄; x = ii2 2 Ns Nt[i�℄ null; hNt[x℄; x = i�i3 Ns Nt[i℄ null; hNt[x℄; x = i�i4 Ns Nt[i℄ null; hNt[x℄; x 2 fi�; igi3 2 Ns Nt[i�℄ null; hNt[x℄; x = i�i3 Ns Nt[i℄ null; hNt[x℄; x = i�i4 Ns Nt[i℄ null; hNt[x℄; x 2 fi�; igi5 Ns null;Nt[n � 1℄ null; hNt[x℄; 0 � x � n � 1iTable 1: The step-by-step output of the analysisfor statement instan
es, where s is a statement labeland ~{ is the iteration ve
tor of s.
3.2 Location, Object and ReferenceA lo
ation is a pla
e in memory where a primitivedata type is stored. An obje
t is an aggregation of lo
a-tions and is named by a new statement instan
e. Morepre
isely,� Given an allo
ation statement instan
e s(~{), Ns[~{℄denotes the obje
t 
reated by s(~{).One 
ompli
ation 
omes from the allo
ation ofmulti-dimensional arrays. In general, a statements in form of p = new Cls[m1℄� � � [mk℄� � � [ ℄n isequivalent to,p = new Cls[m1℄[℄� � � [℄;for (i1 = 0; i1 < m1; i1++) {p[i1℄ = new Cls[m2℄[℄� � � [℄;for (i2 = 0; i2 <m2; i2++) {p[i1℄[i2℄ = new Cls[m3℄[℄� � � [℄;� � �To name these obje
ts uniquely, for statement s,we 
reate pseudo names s`, ` ranging from 1 tok, to represent the allo
ation site of obje
ts newCls[m`℄[ ℄� � � [ ℄ in the above loop. We \virtu-ally" repla
e s by the above loop by expanding the
urrent iteration spa
e~{ by ` dimensions: Ns` [~{; ~x℄,where ~x is a ve
tor of length `, represents the ob-je
t allo
ated by statement instan
e s`(~{; ~x) in theexpanded iteration spa
e.� Ns[~{℄:a denotes the lo
ation o

upied by �eld a ofobje
t Ns[~{℄.A referen
e is a strongly typed pointer to an obje
t.It never points inside an obje
t. The dimension of areferen
e is the number of \[ ℄" in its type de
laration.The dimension of a non-array referen
e is 0.Consider a referen
e p of n dimensions. Rea
h(p)denotes all obje
ts that 
an be rea
hed from p. Obje
tsin Rea
h(p) are further divided into two parts:Skeleton part 
ontains all obje
ts pointed to by p withless than n subs
ripts, i.e., p[x1℄� � � [xk℄ wherek < n (see Fig. 2).

Outer part 
ontains all obje
ts that 
an be rea
hedfrom p with n subs
ripts, i.e., p[x1℄� � � [xn℄.Intuitively, the skeleton part of p 
aptures the ba
kboneof the array referen
ed by p, whereas the outer part
aptures the leaf obje
ts. Obje
ts in the skeleton partare ne
essarily array obje
ts.
3.3 Element-wise Points-to MappingGiven a referen
e p of n dimensions, the followingelement-wise points-to mappings are de�ned for p:� We de�ne mapping pk for 0 � k < n. The domainof pk is a set of k-tuples that 
ontains all sub-s
ripts of p of length k. The value of pk(~x), where~x is a k-tuple, is the set of all obje
ts that p[~x℄may point to. Due to Java's strong typing, theseobje
ts must have the same type as p[~x℄, and theyne
essarily belong to the skeleton part of p.� If the last dimension of p is of referen
e type, wede�ne an additional mapping pn. For any n-tuple,~x, the value of pn(~x) is the set of all obje
ts thatmay be rea
hed through p[~x℄. These obje
ts 
an beof any type and dimension (sin
e they may not bedire
tly pointed to by p[~x℄), and they ne
essarilybelong to the outer part of p.We 
all pk the ewpt mapping of p at level k. Considerthe sets 
omputed in Table 1. There, PointsTo(a) is a0,and PointsTo(a[x℄) is a1.
4. TRANSFER FUNCTIONSThe points-to algorithm views every referen
e assign-ment as a transfer fun
tion of ewpt mappings. For easeof understanding, this se
tion presents the transfer fun
-tions without spe
ifying the representation of ewptmap-pings and the implementation of the operations used. A
on
rete implementation of the transfer fun
tions willbe presented in Se
tion 5.
4.1 Stack AssignmentsLet s be the 
urrent statement and i1; : : : ; id be the
ounters of the loops surrounding s. Assume that p has



ewpt mappings from level 0 to level n. The transferfun
tion of ea
h of the sta
k assignments is as follows:� p = null: Sin
e a

esses attempted via a null pointergenerate an ex
eption, p[x1℄ � � � [xk℄ refers to noth-ing, i.e., it maps to the empty set. Hen
e,p0() = fnullg (1)pk(x1; : : : ; xk) = ?; 1 � k � n:� p = new Cls(): p is ne
essarily 0-dimensional. Ithas only one ewpt mapping, p0. Hen
e,p0() = fNs[i1; : : : ; id℄g: (2)� p = new Cls[m1℄� � � [m`℄[ ℄`+1� � � [ ℄n: This state-ment �rst allo
ates a n-dimensional array, assign-ing it to p. Then, it allo
ates (n� 1)-dimensionalarrays, m1 of them, and assign them to p[x1℄. Re-peating the same pro
ess, until it allo
ates (n �` + 1)-dimensional arrays, and assigning them top[x1; : : : ; x`�1℄. Elements of these (n � ` + 1)-dimensional arrays (referen
ed by p[x1; : : : ; x`�1℄)are initialized to null. Elements of null arrays are?. Hen
e, p0() = fNs0 [i1; : : : ; id℄g (3)pk(x1; : : : ; xk) = fNsk [i1; : : : ; id; x1; : : : ; xk℄g;1 � k � `� 1p`(x1; : : : ; x`) = fnullgpk(x1; : : : ; xk) = ?; `+ 1 � k � n:� p = q: p[x1℄� � � [xk℄ points to the same obje
tsas q[x1℄� � � [xk℄ does. Hen
e,pk(x1; : : : ; xk) = qk(x1; : : : ; xk); 0 � k � n: (4)� p = q.a: p[x1℄� � � [xk℄ points to the same obje
tsas q.a[x1℄� � � [xk℄ does. The legality of q.a im-plies that q is of 0 dimension. Then, q0() 
ontainsall obje
ts that 
an be rea
hed by q, in
ludingthose pointed to by q.a. This transfer fun
tion is
onservative.pk(x1; : : : ; xk) = q0(); 0 � k � n: (5)Sin
e obje
ts in pk(x1; : : : ; xk) must have the sametype as p and must be of (n�k) dimensions, a re-�nement of the above transfer fun
tion is to assignto pk those obje
ts in q0 that are of (n�k) dimen-sions.� p = q[e℄: The type rules ensure that q has onemore dimension than p. Hen
e,pk(x1; : : : ; xk) =qk+1(e; x1; : : : ; xk); 0 � k � n: (6)
4.2 Heap AssignmentsSin
e a heap lo
ation may be a

essed through dif-ferent referen
es, one heap assignment may 
hange theewpt mappings of several referen
es at the same time.

For example, 
onsider the assignment in Fig. 4. Sin
ethe lo
ation of p[e℄ 
an be rea
hed from both p and r,after p[e℄ = q, both p1 and r2 will 
hange.
q

p

r

stack heap

p[e] = q

q

p

r

stack heap

ee

Figure 4: Heap assignmentsStatement of the form p.a = q. Consider any refer-en
e r that 
an rea
h the lo
ation of p.a. Suppose thatr is of n dimensions. Sin
e p 
annot possibly point toan array, if p.a 
an be rea
hed from r, it must be in theouter part of r (i.e., rn). It may seem at �rst that therea
hability 
ondition is rn(x1; : : : ; xn)\p0() 6= ?. How-ever, if the interse
tion is null, p.a 
annot be rea
hedby r be
ause null.a is not a valid lo
ation. Hen
e, the
orre
t rea
hability 
ondition isrn(x1; : : : ; xn) \ p0() 6� fnullg:The assignment may also remove obje
ts from rn; how-ever, there is not enough information to �nd them. Con-servatively, we add Rea
h(q) to all mappings that 
anrea
h the lo
ation of p.a.All in all, let r0n be rn after the assignment. Thetransfer fun
tion isr0n(x1; : : : ; xn) =rn(x1; : : : ; xn) [ fhRea
h(q);�ig (7)where � is the system of 
onstraints obtained by impos-ing the 
onditionrn(x1; : : : ; xn) \ p0() 6� fnullg:For example, if � is 
omputed by imposing the 
onditionNs[x1; x2℄ \ Ns[n; n℄ 6� fnullg, after simpli�
ation, wehave � � fx1 = n; x2 = ng.Statement of the form p[e℄ = q. Consider any ref-eren
e r that may rea
h the lo
ation of p[e℄. Supposethat r is of n dimensions, p is of m dimensions, then qmust be of (m� 1) dimensions.� If the lo
ation of p[e℄ belongs to the skeleton partof r, p must point to one of the subarrays of r,
all it r[u1℄� � � [uh℄.3 Then, the following 
onditionmust be satis�ed:rh(u1; : : : ; uh) \ p0() 6� fnullg:3Sin
e the dimension of this subarray (i.e., n� h) mustbe the same as the dimension of p (i.e., m), we 
anfurther determine h: h = n�m provided that n � m.



In this 
ase, the e�e
t of p[e℄ = q is to repla
esubarrays of r[u1℄� � � [uh℄[e℄ with those of q. Thatis to repla
e r[u1℄� � � [uh℄[e℄[xh+2℄� � � [xh+1+k℄by q[xh+2℄� � � [xh+1+k℄. All in all, for all k su
hthat 1 + h+ k � m,r01+h+k(x1; : : : ; xh+1+k) = r1+h+k(x1; : : : ; x1+h+k)[ fhqk(xh+2; : : : ; xh+1+k);�ig (8)where � is the system of 
ontraints got by impos-ing the 
onditionrh(x1; : : : ; xh) \ p0() 6� fnullg ^ xh+1 = e:� If the lo
ation of p[e℄ belongs to the outer part ofr, Rea
h(q) is added to all rn(x1; : : : ; xn) that 
anrea
h the lo
ation of p[e℄, whi
h is the same asthe 
ase of p.a = q. Hen
e, the transfer fun
tionis (7).
4.3 Handling Loop CountersThere are two transformations to be applied on loop
ounters in ewpt mappings. The �rst one is aging, whi
his applied at every program point that follows a ba
k-edge of a loop. It re
e
ts the fa
t that i has been ad-van
ed. Consider a loop 
ounter i. Aging would repla
ei in the mappings by i� 1. However, this may generatean in�nite number of terms, su
h as i, i � 1, i � 1 � 1,et
., during the iterative pro
ess. To limit the numberof forms that aging may generate, we introdu
e a sym-bol i� that represents the value of the loop 
ounter inany iteration before i. Then, during aging, o

urren
esof i in the mappings are repla
ed by i�. This may intro-du
e approximation in the algorithm. A better s
hemeis to k-limit the number of forms that a loop variable
an be aged into. Readers 
an refer to [19℄ for details.The se
ond transformation is binding, whi
h is ap-plied at any program point that follows a loop exit edge.This is to ensure that ewpt mappings at di�erent pro-gram points 
ontain only variables that are in s
ope atthose points. For simpli
ity of presentation, loop 
oun-ters are initialized to 0 and have a step of 1. Considera loop variable i. If the last iteration of i is n, duringbinding, o

urren
es of i in the mappings are repla
edby n, and o

urren
es of i� are repla
ed by a range[0; n � 1℄. In the 
ase of unknown loop bounds, i andi� are repla
ed by � that represents any positive integervalue.
4.4 Inter-procedural AnalysisWe would like to extend our method to programs withmethod invo
ations:p = q.foo(� � � );q.bar(� � � );The se
ond 
ase 
overs both void methods and meth-ods returning a non-pointer type. We assume that vir-tual methods and overloaded methods have been re-solved by a previous pass of the 
ompiler. We also as-sume that ea
h method uses distin
t lo
al variables anddistin
t formal parameters. All of this 
an be obtainedby quali�
ation.

In the iterative algorithm, whenever a method 
allis en
ountered, we jump to the �rst statement of themethod after exe
uting a prelude; similarly, when en-
ountering a return statement, we exe
ute a postludeand jump to the statement following the invo
ation. Inessen
e, the interpro
edural analysis is both 
ontext-sensitive and 
ow-sensitive.� During the prelude stage, a
tual parameters in the
alling 
ontext are mapped to the formal param-eters in the 
allee 
ontext. This 
an be done byexe
uting \virtual" assignments:formal = a
tualSin
e the ewpt mappings of the a
tual parame-ters may 
ontain loop 
ounters from the 
alling
ontext, whi
h is not visible from the 
allee, werepla
e su
h loop 
ounters in the ewpt mappingsof formal parameters by \*".4� The postlude of a method assigns the value re-turned by the method, if any, to the left-hand sidereferen
e in the invo
ation.Sin
e heap obje
ts referen
ed by the 
aller may bepassed to the 
allee, any stru
tural update to these ob-je
ts needs to be re
e
ted to the 
aller. In other words,the transfer fun
tions of heap assignment (in Se
tion4.2) need to be augmented to re
e
t the interpro
edu-ral 
ontext. This is done by making the ewpt mappingsof the 
allers visible to the 
allee. For example, transferfun
tions (7) and (8) now apply to ewpt mappings of allreferen
es from both the 
allee method and methods ofits 
alling 
hain.
5. THE ITERATIVE ALGORITHMThe iterative framework requires transfer fun
tionsand a meet operation. The meet operation is set-union.The transfer fun
tions are des
ribed in Se
tion 4. Thisse
tion gives a 
on
rete implementation of these transferfun
tions by de�ning the representation of ewpt map-pings and providing the operations in the transfer fun
-tions based on this representation.
5.1 Symbolic NameThe algorithm operates on tables 
alled ewpt tables.Ea
h entry of an ewpt table 
ontains a set of heap namesin the following format:hNs[a1; : : : ; ad℄; x1 = ad+1; � � � ; xk = ad+k;�A;�Bi� s is a statement and d is the nesting level of s;� x1; : : : ; xk are the parameters of any ewptmappingat level k where k is 
alled the rank of the heapname;4A more pre
ise handling of method invo
ation wouldbe to virtually inline the 
allee into the 
alling 
ontext,i.e., virtually inlining the 
allee's iteration spa
e into the
aller's. However, su
h a s
heme would fail in the pres-en
e of re
ursive method 
alls. In fa
t, this gets down toa more fundemental problem of devising a store-basedanalysis for re
ursive programs.



� A = fa1; : : : ; ad+kg is a set of (d+ k) bound vari-ables;� B is another set of bound variables that 
an berenamed at will. The size of B is bounded by 2d(see the de�nition of � below).� �A is a system of 
onstraints over A with at mostone 
onstraint per a 2 A. Let e be a subs
riptexpression in the program and i be the 
ounter ofa loop surrounding s. Constraints in �A take oneof the following forms:{ a = e[i b℄ where b 2 B.{ a = e[i u℄ where u is the last value of i.{ e[i  0℄ � a � e[i  u � 1℄ with the same
onventions.The notation e[x y℄ stands for substituting o
-
urren
es of x in e by y.� �B is a system of 
onstraints over B. For ea
hb 2 B, the 
onstraint is either of the form b 2 i orb 2 i� where i is the 
ounter of a loop surroundings. Redundant variables in B are removed: 1) whenboth b 2 i and 
 2 i belong to �B , b in �B isrepla
ed by 
, and b is removed from B; 2) whenb does not o

ur in �A, it is removed from B.These rules ensure that B 
ontains no more than2d variables.The above representation is 
alled the standard for-mat. Heap names in the standard format are 
alledsymboli
 names.
5.2 Transfer FunctionsThere is a one-to-one 
orresponden
e between anyewptmapping pk and ewpt[p,k℄. That is symboli
 namesin ewpt[p,k℄ represents the value of pk(x1; : : : ; xk). Forinstan
e, the following table entryewpt[p,1℄ = fnull; hNs[a1℄; x1 = a1; a1 � nigrepresents the mappingp1(x) = fnull; hNs[x℄; x � nig:Derived dire
tly from (1) - (8), Table 2 gives the trans-fer fun
tions based on the ewpt table representationwhere s denotes the 
urrent statement and i1; : : : ; id de-note the 
ounters of the loops that surround s. Table 2also uses several operations applied to sets of symboli
names. These operations are de�ned below. All butthe �rst one are de�ned on symboli
 names, but 
an beextended to sets in the usual way.Let Ak be a set of symboli
 names and �k be a sym-boli
 name. Both are of rank k.�k(e) binds a subs
ript expression, e, to the �rst pa-rameter of �k, x1. The resulting symboli
 name isof rank (k � 1). Given �k = hNs[a1; : : : ; ad℄;�ki,this operation eliminates x1 from �k by adding the
onstraint x1 = e to �k. The 
omputation is per-formed in three steps:1. If the system is unfeasible, it returns ?.

2. Else, from the new 
onstraint x1 = e, wededu
e ad+1 = e[i  b℄. This 
onstraint isadded to �A i� ad+1 was not 
onstrained in�k. If it was 
onstrained, then there are two
onstraints for ad+1, whi
h is forbidden in thestandard format. Therefore, we 
hose to ig-nore one of them. This is in fa
t a wideningoperation. Sin
e the new 
onstraint alwaysde�nes a singleton set while the old one mayde�ne a range, we 
hose to repla
e the old
onstraint with the new one.3. Finally, the parameters of �k are shifted: [x2  x1; � � � ; xk  xk�1℄. This substitution willgenerate a symboli
 name of rank (k � 1).To give an example, suppose�1 = hNs[a; b℄; x1 = a; x2 = b; a � i; b � jg;then,�1(i+ 1) = ?�1(i� 1) = hNs[a; b℄; x1 = b; a = i � 1; b � ji:This operation is also used to 
ompute the points-to set of an array element from ewpt mappings,for instan
e, to 
ompute read-sets/write-sets of areferen
e a

ess for dependen
e analysis.�k(xm+1; : : : ; xm+1+k) substitutes xi by xi+m in �k forany 1 � i � k. The resulting symboli
 name is ofrank (k + h+ 1). For instan
e, givenv1 = hNs[a℄; x1 = a; a = ii;then, v1(x2) = hNs[a℄; x2 = a; a = ii:Ak t �k adds �k to set Ak. The resulting set is simpli-�ed by removing 
ommon names. Furthermore,if a symboli
 name subsumes another, the latteris removed from the resulting set. For instan
e,given �1 = hNs[
℄; x1 = 
; 
 < iiA1 = fhNs[a℄; x1 = a; a � iig;then, A1 t �1 = fhNs[d℄; x1 = d; d � iig:In this example, the resulting set represents thesame mapping as A1 (after intermediate variablesare renamed).�k \ �0 6� fnullg solves a system of 
onstraints overx1; : : : ; xk: �k(x1; : : : ; xk)\�0 6� fnullg: Consider�k = hNs[a1; : : : ; ad℄;�ki�0 = hNt[a1; : : : ; ad℄; T0i:The operation returns false when s 6= t, i.e., ob-je
ts in �k and �0 are 
reated by di�erent state-ments. Otherwise, it returns �0 = �k[T0. Again,�0 needs to be simpli�ed: unfeasible 
onstraintsare represented by false; and if some variable in A



p = null ewpt[p,0℄ fnullg1 � k � n : ewpt[p,k℄ ?p = new Cls() ewpt[p,0℄ hNs[a1; : : : ; ad℄; a1 = b1; : : : ; ad = bd; b1 2 i1; : : : ; bd 2 idip = new Cls[m1℄� � � ewpt[p,0℄ hNs[a1; : : : ; ad℄; a1 = b1; : : : ; ad = bd; b1 2 i1; : : : ; bd 2 idi[m`℄[ ℄`+1� � � [ ℄n 1 � k � `� 1 : ewpt[p,k℄ hNsk [a1; : : : ; ad; x1; : : : ; xk℄; a1 = b1; : : : ; ad = bd; b1 2 i1; : : : ; bd 2 idiewpt[p,`℄ fnullg`+ 1 � k � n : ewpt[p,k℄ ?p = q 0 � k � n : ewpt[p,k℄ ewpt[q,k℄p = q.a 0 � k � n : ewpt[p,k℄ ewpt[q,0℄p = q[e℄ 0 � k � n : ewpt[p,k℄ ewpt[q,k+1℄(e)p.a = q 8r; n = rank(r) :ewpt[r,n℄ ewpt[r,n℄ t hRea
h(q); ewpt[r,n℄ \ ewpt[p,0℄ 6� fnullgip[e℄ = q 8r; n = rank(r);m = rank(p), if h = n�m � 0:ewpt[r,h+1+k℄ ewpt[r,h+1+k℄ t hewpt[q,k℄(xh+2; : : : ; xh+1+k);ewpt[r,h℄ \ ewpt[p,0℄ 6� fnullg; xh = eiewpt[r,n℄ ewpt[r,n℄ t hRea
h(q); ewpt[r,n℄ \ ewpt[p,0℄ 6� fnullgiTable 2: Transfer fun
tions of ewpt tableshas more than one 
onstraints, the most pre
iseone is kept and the others are dis
arded.Consider the following example,�2(x1; x2) = hNs[a1; a2℄; x1 = a1;x2 = a2; a1 � i; a2 < ji�0() = hNs[
1; 
2℄; 
1 = i; 
1 = ji�00() = hNs[
1; 
2℄; 
1 = i; 
2 = �i:then,�2 \ �0 6� fnullg ) false�2 \ �00 6� fnullg ) fx1 = a1; x2 < a2;a1 = i; a2 < jg:Rea
h(q) 
omputes all obje
ts that 
an be rea
hedfrom referen
e variable q. It 
an be 
omputedas the union of all ewpt entries of q, removing
onstraints over the parameters of those symboli
names.Finally, the handling of loop 
ounters is explained. Con-sider a loop 
ounter i with an upper bound u. Aging isperformed by repla
ing i by i� in all symboli
 names.Binding is performed as follows,� For ea
h b 2 i in B, b in �A is repla
ed by u;� Consider any b with a 
onstraint b 2 i� in B. If bo

urs in any 
onstraint a = e in �A, then a = eis repla
ed by e[b 0℄ � a � e[b u� 1℄.It 
an be 
he
ked that operations on symboli
 namespreserve the standard format. Hen
e, the number ofsymboli
 names in a given program is �nite. This is keyfor the 
onvergen
e of the algorithm. This is the key forthe 
onvergen
e proof of the algorithm. Due to spa
elimitations, this proof is omitted. It 
an be found in fullin [19℄.

5.3 Cost AnalysisA rough estimate of the 
omplexity of the analysis
an be the produ
t of the following fa
tors:� the number of program points;� the number of ewpt mappings at ea
h point;� the number of iterations to rea
h a �xed point;� the number of symboli
 names in ea
h mapping.The se
ond fa
tor 
an be easily 
omputed. Let di bethe dimension of the i-th referen
e in the program. Thenumber of ewpt mappings isNe =Xi (di + 1):To estimate the iteration 
ount, let us 
onsider aging�rst. Sin
e ea
h loop 
ounter i in the ewpt mappings isaged to i� at the end of a loop body, it may take up to 2iterations to rea
h a �xed point plus one more iterationto test it. The iteration 
ount also depends on how fastmodi�
ations 
an be propagated. While forward mod-i�
ations are propagated instantly, it may need severaliterations to do ba
kward propagations. Consider thefollowing example:0 for(i=0; i<n; i++) {1 p = q;2 q = r;3 r = new Cls();4 }3 iterations are needed until the e�e
t of statement 3 ispropagated ba
k to p. An upper bound of the numberof iterations in a m-nested loop would be m times thenumber of pointer assignments in the loop body.We have already proved in [19℄ that the number ofsymboli
 names is �nite. Although likely to be an over-estimate, this gives an upper bound on the number ofsymboli
 names in an ewptmapping. In pra
ti
e, we 
anlimit the size of symboli
 names in an ewpt mapping toredu
e the 
ost of the analysis.



One may wonder about the 
omplexity of the opera-tions on symboli
 names. The 
omplexity of these oper-ations 
an be treated as a 
onstant, although they maybe quite expensive in pra
ti
e. It is worth to mention,however, that symboli
 names in ewpt mappings at level0 are essentially points-to sets. Operations on them areinexpensive set union and interse
tion. They be
omeexpensive only when ewpt mappings at a level greaterthan 0 (for true array element a

esses) are involved.
6. ADDITIONAL KILLINGThis se
tion presents a te
hnique to remove obje
tsfrom ewptmappings in heap assignments. There are tworeasons why the iterative algorithm performs no kill onheap assignments:� To kill on heap assignment, one needs must-aliasinformation, whereas ewpt mappings 
apture may-points-to information.� To kill an obje
t from a parti
ular array elementmay involve restri
ting the 
onstraint part of sym-boli
 names. Then, aging that repla
es a set byits super-set (i.e., repla
ing i�1 by i�) is not safeany more.The additional killing is performed after the iterativealgorithm is terminated. As opposed to widening, this isthe narrowing part of the points-to analysis. The te
h-nique is based on proving the solidity of obje
ts. Anobje
t is solid if all its �elds must not be null. Here,we fo
us on how to remove null from ewpt mappings.However, the te
hnique 
an be easily extended to a gen-eral killing s
heme. Consider the example in Fig. 2. Atprogram point 5, the following ewpt mappings are 
om-puted, a0() = Nsa1(x) = fnull; hNt[x℄; 0 � x < nig:Sin
e a points to Ns, a[x℄ and Ns:[x℄ ought to pointto the same obje
ts. Hen
e, if obje
t Ns is solid, a[x℄,for any possible x, must not be null. This means thatnull 
an be removed from a1. In general, if an ewptmapping, pk, 
ontains only solid obje
ts, null 
an beremoved from pk+1.The solidity of an obje
t 
an be proved in two steps:Step One Pointer assignments in the program are 
on-verted to pseudo assignments. For every state-ment in form of l = r, the following pseudo as-signment ( ) is 
onstru
ted,Lo
ation(l) PointsTo(r);where Lo
ation(l) and PointsTo(r) are 
omputedusing the ewpt mappings from the previous iter-ative algorithm. A pseudo assignment is a must-assignment if its left-hand-side is a singleton non-null lo
ation.For example, the following pseudo 
ode is gener-ated from the 
ode in Fig. 2,

a  Ns;for (i = 0; i<n; i++) {b  Nt[i℄;Ns:[i℄ Nt[i℄;}Step Two To prove that an obje
t is solid, one 
onsid-ers all pseudo statements that assign to a �eld ofthe obje
t. A must-assignment generates a non-null �eld if the right-hand-side (rhs) of the assign-ment 
ontains no null. An assignment whose rhs
ontains null kills a non-null �eld. For array el-ements, the Gen and Kill sets are summarized asintervals over loops. Finally, if every �eld of anobje
t does not point to null, the obje
t is solid.
7. APPLICATIONS AND RESULTSThe transfer fun
tions were implemented in Java andjava
 was augmented to drive the �xed point 
ompu-tation. We evaluate the analysis and demonstrate thatewpt mappings 
an be used to improve dependen
e test,loop parallelization, and ex
eption optimization.
7.1 The BenchmarksThe experimental results are reported based on run-ning the analysis over eight Java programs, as givenin Table 3. All ben
hmark programs use either multi-dimensional arrays or one dimensional obje
t arrays.Six of them are numeri
al 
odes that would bene�t from
lassi
al loop optimizations. Program listtbl is an ar-ti�
ial example that 
onstru
ts an array of linked listsin a loop, and is in
luded in the ben
hmark be
ause itshows an interesting pattern of referen
e assignments.The inter-pro
edural s
heme of the analysis was notimplemented, instead, we inlined method 
alls and 
om-mented out system 
alls that had no side-e�e
ts in theprograms. Table 3 gives lengths of the programs beforeand after inlining.5
7.2 Cost and PrecisionThe points-to analysis is applied to the seven ben
h-mark programs. Analysis time is measured on an UltraSPARC5 with a 270MHz pro
essor, using java fromSUN JDK1.2.2 with jit enabled. Table 4 summarizesthe measurement for ea
h program: \Prgm Pts" givesthe number of program points where ewpt mappingswere 
omputed; \time" gives the a
tual analysis time;and \ewpt/java
" gives the per
entage of the analysistime in a plain java
 
ompilation.Overall, the analysis time of the �rst seven programsis fairly small (0.1%- 3.4% of a plain java
 
ompila-tion). The analysis time of euler (25% of java
 
ompi-lation) is mu
h higher be
ause euler involves swit
hingthe four sub-arrays of a 2-dimensional array ug. As aresult, the ewpt mappings of ug 
ontains 18 symboli
names, whereas, in other ben
hmarks, most ewpt map-pings 
ontain about 2 symboli
 names. This suggests5lufa
t is smaller after inlining be
ause of some dead
ode elimination done during inlining.



Program Des
ription Lines (inlined) Sour
elisttbl 
onstru
ting an array of linked lists 15 -
matmul 
omplex matrix multipli
ation 47 -
holesky 
holesky fa
torization of a matrix 38 IBMshallow 
omplex shallow-water simulation 197 (218) IBMsor su

essive over-relaxation routine 40 Java Grandelufa
t LU fa
torization routine 287 (153) Java Grandemoldyn mole
ular dynami
s simulation 234 Java Grandeeuler 
omputational 
uid dynami
s 915 (2028) Java GrandeTable 3: The ben
hmarksProgram Prgm Pts Analysis Timetime (ms) ewpt/java
listtbl 10 9 0.1%
matmul 25 162 2.1%shallow 73 259 3.4%
holesky 19 195 2.6%sor 18 184 2.5%lufa
t 40 168 2.9%moldyn 53 77 1.0%euler 299 2440 25%Table 4: Analysis 
ostthat a reasonable k-limiting on the size of ewpt map-pings 
an help redu
e analysis 
ost on irregular assign-ment patterns.To measure the pre
ision, we 
he
ked the output ewptmappings obtained. For array referen
es, the ewpt map-pings were fairly pre
ise. In parti
ular, the mappings ofug in euler 
apture 
orre
t points-to information dueto the swit
hing of elements. Furthermore, using the\killing" te
hnique, the analysis is able to remove all ofredundant null from the mappings of array elements.
7.3 Dependence AnalysisThree versions of dependen
e tests were implementedusing di�erent pointer information. All of them use theOmega library [15℄ to determine the dependen
es.� type 
olle
ts read- and write-sets as sets of types.Two a

esses are reported dependent if their typesare 
ompatible and at least one of them is a write.Two array a

esses a[x℄ and b[y℄ are dependentif a and b are of 
ompatible types, and if x and ymay denote the same o�set. The latter 
onditionis determined by the Omega library.� flat assumes no aliasing between di�erent arrayelements (i.e., arrays are 
at FORTRAN-like ar-rays) and no aliasing between arrays of di�erentnames. For non-array referen
es, it uses a type-based analysis as in the previous test. Note that,flat is based on an unsafe assumption about arrayaliasing, how it gives a lower bound of the numberof array-indu
ed dependen
es in the program.� ewpt 
omputes read- and write-sets as sets of heaplo
ations from ewpt mappings. Details 
an be

found in [19℄. Dependen
e testing on heap lo
a-tions is the same as that on FORTRAN arrays.Table 5 gives the statisti
s 
olle
ted for the three im-plementations. Only dependen
es due to 
on
i
ts ofheap lo
ations were reported, and at most one depen-den
e was reported between any pair of statements.Note that ewpt reports fewer dependen
es than flat.This is be
ause although flat assumes perfe
t informa-tion about arrays, it is quite 
onservative about non-array obje
ts; whereas ewpt has information on bothtypes of obje
ts.It is worth to mentioning that using a 
onventionalpoints-to analysis in pla
e of type would not improvethe dependen
e test signi�
antly, due to their la
k ofability to disambiguate di�erent elements of an array.Program Dependen
es Parallel Loopstype 
at ewpt type ewpt reallisttbl 5 3 2 0 1 1
matmul 8 3 3 3 7 7
holesky 10 4 4 5 6 6shallow 1092 152 152 6 17 17sor 6 5 5 3 4 4lufa
t 72 45 45 9 11 11moldyn 2 0 0 17 19 19euler 12559 2489 2489 36 55 55Table 5: Dependen
es and parallel loopsTable 5 also shows the number of parallel loops de-te
ted by ewpt and type. The a
tual number of parallelloops is given in real. We assume that 
on
i
ts dueto sta
k lo
ations 
an be handled by te
hniques su
h ass
alar privatization. Overall, ewpt is able to dete
t alla
tual parallel loops, whereas parallel loops dete
ted bytype are mostly initialization loops.
7.4 Exception AnalysisA Java virtual ma
hine automati
ally performs tworuntime 
he
ks { the null-pointer and the array bounds
he
k { for ea
h indire
t load. Restri
ted by the ex
ep-tion semanti
s of Java, an instru
tion 
annot be moveda
ross a point where ex
eptions may o

ur. Therefore,it is important for high-level optimizers to identify re-gions that are free of ex
eptions. One parti
ular prob-lem is to eliminate redundant null-pointer 
he
ks for



Program bound-
he
k null-
he
k safe loopewpt type ewpt type ewpt reallisttbl 0 2 0 3 2 2
matmul 0 13 0 13 7 7
holesky 0 19 0 19 8 8shallow 0 278 0 278 20 20sor 0 17 0 17 7 7lufa
t 22 57 0 57 6 15moldyn 2 2 0 8 22 24euler 12 507 0 705 57 60Table 6: Redundant 
he
ks and safe loopspointers residing in array 
ells (e.g., p[i℄).6 Sin
e ewptmappings 
an tell whether an a

ess is null, or is out-of-bounds, they 
an be exploited to improve Java ex-
eption analysis. For instan
e, if mapping p1 
ontainsno null, the 
ompiler 
an prove that a

ess p[i℄ 
annot throw any null-pointer ex
eption.Table 6 gives the number of array bounds and null-pointer 
he
ks identi�ed as redundant as well as thenumber of ex
eption-free loops (safe loops). Some re-dundant array bounds 
he
ks are undete
ted be
auseour implementation is not able to 
ompare symboli
 ex-pressions. On the other hand, all null-pointer 
he
ksin the ben
hmarks have been identi�ed as redundantdue to the analysis' ability to remove null from ewptmappings.
8. RELATED WORKWe 
ompare our work with resear
h in three areas:analyses of heap-dire
ted pointers, dependen
e analysesin the presen
e of pointers, and Java ex
eption analysis.Pointer Analysis. There are two approa
hes to 
om-pute properties for heap-dire
ted pointers. The �rstone is referred to as store-based be
ause heap lo
ationsare named stati
ally, using either the pointer type [7,17, 2℄, or the allo
ation site [18℄. Our points-to anal-ysis is store-based, but it uses a more pre
ise namings
heme. We name obje
ts by their allo
ation statementinstan
es. In many 
ases, naming heap obje
ts usingallo
ation sites is a good 
ost/pre
ision trade-o�. How-ever, for loop-based dependen
e tests it is important todistinguish di�erent obje
ts 
reated by the same allo-
ation site. Furthermore, our points-to analysis is ableto 
ompute points-to information for individual arrayelements that most others 
annot.As opposed to the store-based approa
h, a store-lessanalysis dire
tly 
omputes alias properties without nam-ing heap obje
ts. These properties 
ould be alias pairinformation [6, 8, 3℄ or shape information [12, 16, 9℄.The shape of a pointer tells us whether a pointer refersto a list, a tree, et
. It is the \store-less" 
ounterpart ofthe element-wise information that our analysis 
aptures.Although the work by Deuts
h [6℄ is store-less, our work6Pointers stored on the heap are heap-residing pointers;those stored on the sta
k are sta
k-residing pointers.

shares one 
ommon feature with his. Both analyses tryto summarize properties of unbounded obje
ts in onesymboli
 form. His work uses symboli
 a

ess paths,whereas ours uses ewpt mappings (or symboli
 names).Dependen
e Testing with Pointers. Dependen
etests that are based on store-less pointer analyses [11,10, 13℄ represent read/write sets as sets of a

ess paths.A

ess paths from di�erent program points 
annot be
ompared as they do not have any asso
iated points-to information. Therefore, these dependen
e tests areappli
able only to loops with no pointer assignments.Like our points-to analysis, Ghiya and Hendren [9℄also address pointer analysis in the 
ontext of depen-den
e testing. Their analysis aims to enhan
e store-lesss
hemes so that they 
an be used for dependen
e tests.Our s
heme aims to improve the pre
ision of store-basedanalyses for iteration-based dependen
e tests. They areable to handle pointers to 
at arrays, but not array el-ements of pointer types sin
e their points-to analysis isnot element-wise. In addition, they 
annot handle de-penden
es in a loop with pointer assignments as theirs
heme is not instan
e-wise.Chambers et al. [2℄ address dependen
e analysis forJava in the presen
e of ex
eptions, multi-threading, anddynami
 
lass loading. They use a type-based points-toanalysis. They do not fo
us on getting pre
ise informa-tion for loop iterations or array elements.Overall, no previous work 
an de
ide that the follow-ing loop 
arries no dependen
e over statement 3.1 for (i = 0; i<n; i++) {2 p = new ...;3 p.a = ...;4 }The fa
t that p points to a new obje
t at ea
h iteration
annot be abstra
ted by either shape or alias informa-tion. Our analysis 
an do this be
ause of the instan
e-wise naming of obje
ts.Ex
eption Analysis. Bodik, Gupta, and Sarkar [1℄proposed a method to eliminate ex
eption 
he
ks basedon partial redundan
y elimination. La
king pre
ise pointerinformation, their method only remove partially redun-dant 
he
ks for heap-residing referen
es. Our points-toanalysis, on the other hand, is able to dire
tly removeredundant 
he
ks based on ewpt mappings.Moreira, Gupta, and Midki� [14℄ exploited ex
eption-free regions for numeri
al Java programs. However, theydid not address the te
hniques to identify su
h regions.
9. CONCLUSION AND FUTURE WORKThis paper presents an iterative algorithm that 
om-putes points-to information for instan
es of referen
esand elements of referen
e arrays as ewpt mapping. Su
hpointer information 
an be used to enable a pre
ise loop-based dependen
e test in the presen
e of Java refer-en
es. We also propose a te
hnique to perform killson ewpt mappings for heap assignments. This te
h-nique 
an help identify redundant null-pointer 
he
ksfor heap-residing pointers. We obtain promising results



with a reasonable 
ost when using ewpt information ondependen
e analysis and ex
eption analysis.This work 
an be extended in many dire
tions. Theinterpro
edural algorithm is neither eÆ
ient nor pre
ise.One possible solution is that when an ewpt mappingare likely to be 
hanged, instead of 
arrying it around,abstra
t it into boolean properties su
h as the inje
tivityof the mapping (or 
ombness as 
oined in [5℄), whi
h aremu
h more lightweight and easy to rea
h 
onvergen
e.The 
hallenges, then, is how to 
ombine a store-baseds
heme with a store-less abstra
tion. To improve thepre
ision of the inter-pro
edural analysis. Consider thefollowing example:� � �for (..i..)s: bar(a[i℄);� � � bar(Cls[℄ f) {for (..j..)t: f[j℄ = new Cls();}To pre
ise naming s
heme needs to distinguish in-stan
es of t from di�erent invo
ations of bar() (i.e.,di�erent instan
es of s). One method is to nest the it-eration spa
e of t inside that of s, i.e., s; t(i; j), thenname the obje
t allo
ated by t(j) in the 
alling 
ontextof s(i) as Ns;t[i; j℄. The 
hallenge then is to devise su
ha store-based naming s
heme for re
ursive programs.We would also like to explore other appli
ation ofthe analysis su
h as heap optimizations. Sin
e ewptmappings 
apture pre
ise links between referen
es, ob-je
ts and allo
ation sites, it is possible to use them forgarbage 
olle
tion, obje
t layout optimization (e.g., 
at-tening arrays), and obje
t privatization.
10. REFERENCES[1℄ Rastislav Bodik, Ragiv Gupta, and Vivek Sarkar.ABCD: Eliminating array bounds 
he
ks ondemand. In ACM Symp. on ProgrammingLanguage Design and Implementation, June 2000.[2℄ C. Chambers, I. Pe
ht
hanski, V. Sarkar,M. Serrano, and H. Srinivasan. Dependen
eanalysis for Java. In Workshop on Languages andCompilers for Parallel Computing, August 1999.[3℄ Ben-Chung Cheng and Wen mei Hwu. Modularinterpro
edural pointer analysis using a

esspaths: design, implementation, and evaluation. InACM Symp. on Programming Language Designand Implementation, pages 57{69, June 2000.[4℄ Jong-Deok Choi, Mi
hael Burke, and Paul Carini.EÆ
ient 
ow-sensitive interpro
edural
omputation of pointer-indu
ed aliases and sidee�e
ts. In ACM Symp. on Prin
iples ofProgramming Languages, pages 232{245, 1993.[5℄ Albert Cohen, Peng Wu, and David Padua.Pointer analysis for monotoni
 
ontainertraversals. Te
hni
al Report CSRD 1586,University of Illinois at Urbana-Champaign,January 2001.[6℄ Alain Deuts
h. Interpro
edural may-alias analysisfor pointers: Beyond k-limiting. In ACM Symp.on Programming Language Design andImplementation, June 1994.[7℄ A. Diwan, K.S. M
Kinley, and E.B. Moss.Type-based alias analysis. In ACM Symp. on

Programming Language Design andImplementation, June 1998.[8℄ Rakesh Ghiya and Laurie J. Hendren. Conne
tionanalysis: A pra
ti
al interpro
edural heap analysisfor C. In Workshop on Languages and Compilersfor Parallel Computing. Springer-Verlag, 1995.[9℄ Rakesh Ghiya and Laurie J. Hendren. Puttingpointer analysis to work. In ACM Symp. onPrin
iples of Programming Languages, January1998.[10℄ Laurie J. Hendren and Alexandru Ni
olau.Parallelizing programs with re
ursive datastru
tures. In IEEE Trans. on Parallel andDistributed Computing, January 1990.[11℄ Joseph Hummel, Laurie J. Hendren, and AlexNi
olau. A general data dependen
e test fordynami
, pointer-based data stru
tures. In ACMSymp. on Programming Language Design andImplementation, June 1994.[12℄ Joseph Hummel, Laurie J. Hendren, and AlexNi
olau. A language for 
onveying the alisingproperties of dynami
, pointer-based datastru
tures. In Inthernational Parallel Pro
essingSymposium, pages 208{216, April 1994.[13℄ J. Larus and P. Hil�nger. Dete
ting 
on
i
tsbetween stru
ture a

esses. In ACM Symp. onProgramming Language Design andImplementation, Atlanta, GA, June 1988.[14℄ J. E. Moreira, S. P. Midki�, and M. Gupta. From
op to mega
ops: Java for te
hni
al 
omputing.ACM Trans. on Programming Languages andSystems, 22(2):265{295, Mar
h 2000.[15℄ William Pugh. The Omega test: A fast andpra
ti
al integer programming algorithm fordependen
e analysis. In Super
omputing, 1991.[16℄ M. Sagiv, T. Reps, and R. Wilhelm. Solving shapeanalysis problems in languages with destru
tiveupdating. In ACM Symp. on Prin
iples ofProgramming Languages, January 1996.[17℄ B. Steensgaard. Points-to analysis in almost lineartime. In ACM Symp. on Prin
iples ofProgramming Languages, January 1996.[18℄ R. Wilson and M. Lam. EÆ
ient 
ontext-sensitivepointer analysis for C programs. In ACM Symp.on Programming Language Design andImplementation, June 1995.[19℄ Peng Wu. Analyses of pointers, indu
tionvariables, and 
ontainer obje
ts for dependen
etesting. Te
hni
al Report UIUCDCS-R-2001-2209,University of Illinois at Urbana-Champaign, May2001. Ph.D Thesis.


