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What is a Model ?

I A model is a mathematical (or computational) object that
emulate a real world object (syntax).

I The “natural operations” of the model must emulate the
behaviour of the real world object (semantics).

I An example : Newton’s laws of motion :

F = mγ,

F = G
m.m′

r2

A system of ordinary differential equations. Semantics :
I Proof of the existence of solutions
I Computing the solution, either in closed form or numerically
I If properly initialized the solution matches the trajectory of a

rocket in the solar system.
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What is a Polytope ?

There are two equivalent definitions :

I I – A polyhedron is the locus of the solutions of a system of affine
inequalities :

P = {x | Ax + b ≥ 0}, x : n, b : m,A : m × n.

The elements of A and b can be taken as integers.

I A Z-polyhedron is the locus of the integer solutions of a system of
affine inequalities :

P ′ = Zn ∩ P.

I A polytope is a bounded polyhedron.

I II – A polyhedron is the convex hull of a finite set of points, some of
which may be at infinity :

P = {
N∑

i=1

wixi | wi ≥ 0,
N∑

i=1

wi = 1}
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Principle of the Polytope Model

for(i=0; i<n; i++)
for(j=0; j<i; j++)
S;
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i <= n−1

j <= i−1

j>=0
i>=0

{0 ≤ i ≤ n−1, 0 ≤ j ≤ i−1}

I The iterations of a regular loop nest can
be represented as one (or several)
Z-polytope.

I The inequalities are directly extracted
from the program text.

I The size of the representation is bounded,
and may contain parameters.

I One may even consider infinite loops,
which are represented by unbounded
polyhedra.

I The model can be used to answer
questions like : “is i = 0, j = 0 a legal
iteration” (simple), or “how many
iterations are executed” (difficult).
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Regular Programs

The polytope model can only be applied to programs which satisfy
the following constraints :

I One can identify a set of parameters – integer variables which
are not modified in the program

I The data structure are (multidimensional) arrays and scalars
of any type

I The control structures are arbitrarily nested DO loops and
tests

I Each loop bounds must be affine functions in the surrounding
loop counters and parameters

I Each test predicate must be affine in the surrounding loop
counters and parameters

I Array subscripts must be affine in the surrounding loop
counters and parameters
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An example : Gaussian Elimination

for(i=0; i<n; i++){

pivot = 1.0/a[i][i];

for(j=0; j<n; j++){

//regular test

if(j==i)continue;

//regular loop

for(k=i+1; k<n; k++)

//regular array accesses

a[j][k] -=

a[j][i]*a[i][k]*pivot;

}

}

I Observe that syntax does not
matter

I n is a parameter

I i , j , k are loop counters
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Fundamental Algorithms

I Conversion from systems of inequalities to vertices and back :
Chernikova, 1967, parametric extension Loechner and Wilde,
1997.

I Feasibility tests :
I Fourier-Motzkin elimination method, 1827, integer extension,

Pugh, 1991, naturally parametric.
I Simplex algorithm, Dantzig 1945, integer extension Gomory,

1950, parametric extension, PF, 1988.

I Counting integer points, E. Ehrhart, 1945, M. Brion, 1988,
Ph. Clauss, A. Barvinok, S. Verdolaege, R. Seghir

A. Schrijver : Theory of linear and integer programming, Wiley, NewYork,1986
A. Barvinok : A Course in Complexity, AMS, 2002
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Conversion

I Given : a system of affine inequalities Ax + b ≥ 0 ;

I Find : a minimum system of vertices v1, . . . , vN .

I Method : add the inequalities in the system one by one.

I Since a polyhedron may have an exponential number of vertices,
(example : the cube), the complexity is exponential.

I Many efficient implementations (Polylib, PPL, etc) all based on
H. LeVerge work.

I The same algorithm is used for the inverse transformation ! ! !

I Since the system of vertices is unique, applying this algorithm twice
is a way of normalizing a system of inequalities.

I Can be used as a projection algorithm.

I Can be used as a feasibility test or as a LP algorithm. Not
recommended.
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The Fourier-Motzkin Algorithm

I Given : a system of affine inequalities Ax + b ≥ 0 ;

I Decide if it has solutions or not.

I Method : eliminate each unknown in turn

I Each inequality involving x can be transformed in one of the two
forms :

li ≤ x ,

x ≤ uj ,

from which follows li ≤ uj .

I After elimination, decide numerical inequalities.

I Super exponential, redundant. The redundancy can be controlled.

I Integer extention : the Omega test.

B. Pugh :The Omega Test : A Fast and Practical Integer Programming Algorithm for Dependence Analysis,
Supercomputing, 1991
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The Simplex

I Given : a system of affine inequalities Ax + b ≥ 0 ;

I Find its lexicographic minimum or prove it has no solution

I Method : apply a succession of change of variables (Gaussian
pivots) until the solution is obvious : Dantzig, 1945.

I Complexity : almost always O(n3).

I Integer extension : Gomory, 1950. NP-complete.

I Parametric extension : find the lexicographic minimum of x such
that :

Ax + By + c ≥ 0

as a function of y . The result is a multilevel conditional or quast.

P. Feautrier : Parametric Integer Programming, RAIRO-RO,22, pp. 243–268, 1988
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Counting Integer Points

I Given : a system of affine inequalities, with one (or more)
integer parameter, n,

I Construct a function giving the number of integer solutions.
I Method I : a result of E. Ehrhart shows that the function is a

polynomial of known degree. Count the solutions for enough
values of n and interpolate. Implemented in the Polylib.

I Method II : a theorem of M. Brion explains how to compute a
generating function. The required count is the limit of the
generating function when the formal variable tends to 1.
Implemented in the Barvinok library.

I Usage : counting the number of iterations of a loop nest, load
balancing, locality evaluation...

http ://icps.u-strasbg.fr/polylib
http ://www.kotnet.org/ skimo/barvinok
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Systolic Array Design

Rau

Dependences

Scheduling

Placement

Code Generation

    Irigoin, Lengauer, Rajopadhye

   

    
The Polytope Model

Tiling

Array Shrinking

Locality

HLS

Bernstein 1966
Automatic Parallelization

        1967

Cousot, Halbwachs 1977

L. Lamport, 1974

, Quinton, Robert, 1989

Rajopadhye, 1987

Pugh, 1991

LC Lu, 1991

    PF, Pingali, 1994

,    Irigoin, JL Xue, 1988

IrigoinLam

Kuck
Allen, Kennedy, 1987

Bastoul, PF, Boulet, 1987−−2005

    PF, Rajopadhye, Darte, 2005

           Bastoul, 2003

     Quinton, Risset, 1996

H. T. Kung, 1978

    Wolfe + Lam, 1991

Dependence tests, Banerjee, 1976

Karp, Miller, Winograd     Irigoin, PF 1988, Pugh, 1992

,  Quinton, Rajopadhye, Fortes, PF
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The Early days

I Dependences

I Program Transformations, Why and How

I Parallelization Algorithms
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Dependences

Two operation are in dependence if they both access the same
memory cell, one of the access being a write.
Dependences are oriented in the direction of sequential execu-
tion. The execution order of two dependent operations must
be the same in the sequential and parallel program.

I Dependences are easily detected in the absence of address
computation

I In the case of array accesses, one has to decide if the subscript
equations have solution in integers

I This gave rise to the search for fast approximate dependence tests :
gcd, Banerjee, I-test, Power test, etc.

I Superseded now by polyhedra emptiness tests : Omega or the
Simplex

I No satisfactory solution for pointer accesses
14 / 39
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Dependence classification

Dependences are classified according to the read/write order. Each
community (hardware, software) has its own terminology :

I Read after Write, flow dependence

I Write after Read, anti dependence

I Write after Write, output dependence

I (Read after Read, input dependence, useful only for locality)

WAR and WAW dependences can be removed by renaming or
expansion, RAW dependences are intrinsic to the algorithm.
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Program Transformations

I Dependences can be used to parallelize basic blocs, and to
detect parallel loops

I However, it was soon found that most programs had very low
parallelism

I Causes : over-eager optimizations. Using scalars in place of
arrays, fusing loops, strength reduction, ...

I Solution : apply enabling transformations. Loop splitting,
scalar expansion, induction variable detection, skewing ...

I Selecting a transformation sequence is a difficult
combinatorial problem
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Parallelization Algorithms

Can one find the parallel program without doing the intermediate
transformations ?

I the Kennedy and Allen Algorithm
I Combine maximum loop splitting, loop interchange and the

search for parallel loops
I Split according to the strongly connected components of the

dependence graph
I Since parallel loops can always be innermosted, the result is

(almost) a vector program.
I the Wolf and Lam algorithm : combine loop skewing and

parallelization
I using the polytope model, one can generalize to all affine

transformations
J. R. Allen and Ken Kennedy : Automatic Translation of Fortran Programs to Vector Form, ACM

TOPLAS,(9)4 :491–542, 1987
M. Wolf and Monica S. Lam, A loop transformation theory and an algorithm to maximize parallelism, IEEE TPDS,

2(4),452–471, 1991
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State of the Art

I Dependences in the Polytope Model

I Scheduling

I Placement

I Code Generation

I Memory Management : Array Shrinking

I Memory Management : Locality Optimization
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Dependences

Definition of the dependence polytope

operation 〈S ,~i〉 : A[f (~i)] 〈T ,~j〉 : A[g(~j)]

domain ~i ∈ DS
~j ∈ DT

subscript f (~i) = g(~j)

order 〈S ,~i〉 ≺ 〈T ,~j〉
i1 < j1 i1 = j1, i2 < j2 i1 = j1, i2 = j2

depth 0 1 2

One can test for emptyness, approximate, or use the dependence
polyhedron as is.
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Approximating dependences

A dependence can be conservatively approximated (the dependence
polyhedron is enlarged).

I Ignore difficult constraints (e.g. integrity constraints)
I Simplify the polyhedron :

I dependence depth,
I dependence distance,
I dependence cone,
I direction vectors,
I octagons
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Scheduling

Assign a logical date to each operation in the program.

I Since the number of operations is usually unknown, the date
must be given by a formula, not by a table.

I An operation is denoted by the name of its statement and by
its iteration vector. The schedule is assumed to be affine in
the iteration vector.

I Causality Constraints If operation 〈S ,~i〉 is dependent on
〈T ,~j〉, then their schedules must satisfy :

θ(S ,~i) < θ(T ,~j).

Beside :

θ(S ,~i) ≥ 0.
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Solution

I If one replace ~i and ~j by numerical values, one gets a linear
constraint on the coefficients of θ

I However, the number of such constraints may be very large or
even infinite

I It is enough to write the constraints at the vertices of the
dependence polyhedron, or to use Farkas lemma

I The solution is obtained by application of any LP solver.

I The system of constraints may not be feasible if the original
program has more than linear parallel complexity. A
multi-dimensional schedule is needed.
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The Shape of the Parallel Program

Let :
L = max θ(S ,~i),

the latency of the parallel program, and :

F(t) = {S ,~i | θ(S ,~i) = t},

the front at time t.

for 0 <= t <= L
do in parallel F(t)

I Since all operations in a front are independent, this is nearly a
vector program (node splitting)

I The locality is poor
I Allen and Kennedy, Wolf and Lam are scheduling algorithms where

the exact dependences are replaced by approximations
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Placement, how and why

On distributed memory architectures, one needs to know :
I in which memory each piece of data is stored : π(x)
I on which processor each operation is executed : π(u)

To avoid communications, if operation 〈S ,~i〉 uses datum A[f (~i)],
one must impose :

π(S ,~i) = π(A[f (~i)]).

Another presentation : if two operation u and v access the same x ,
then they are in dependence, cannot be executed in parallel, and
may as well be assigned to the same processor :

π(u) = π(x) = π(v)

Since all operations that (re)use the same datum are on the same
processor, the resulting program has good locality.
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Placement algorithm

In most cases, the placement equation cannot be satisfied
everywhere : the program has no communication free parallelism.
The solution :

I Each instance of the placement equation represents a
(potential) communication

I If the equation is satisfied, the communication disappear

I The communication volume can be estimated (e.g. by
counting points)

I Ignore the communication with the smallest volume and try to
solve

I Continue ignoring communications until a solution is found
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Code Generation

In contrast to parallelization algorithm (e.g. Kennedy/Allen), the
outcome of scheduling or allocation is not a program but a change
of variables to be applied to the iteration space.

I Basic method : rewrite the iteration space constraints as
functions of the new variables

I Construct a system of loop nests which scans the new
iteration space in lexicographic order

I Overhead : integer divisions, modulos, guards ...
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CLooG

The same basic framework, but :

I the transformation is seen as a renaming

I code duplication is used to avoid guards

I loop steps > 1 are used to avoid modulos

I any degree of freedom in the schedule is used to simplify the
target code

A long history : Z. Chamsky, F. Quilleré and S. Rajopadhye,
C. Bastoul

http ://www.CLooG.org
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Another Code Generation Method

Given :

I a set of operations E = ∪S〈S ,DS〉,
I an execution order � (parallel or sequential) on E .

compute :

first() = min
�

E ,

next(S ,~i) = min
�
∪T{T ,~j |~j ∈ DT , 〈S ,~i〉 � 〈T ,~j〉}

using parametric integer programing.
The result can be interpreted as a finite state machine, where the
next function enumerates the transitions from a given state.
Especially suitable for high level synthesis.

Pierre Boulet and Paul Feautrier, Scanning Polyhedra without DO loops, PACT’98, 1998
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Array Contraction

Motivation
I For embedded systems, minimize the size of memory
I For multicore, minimize memory bandwidth
I But beware : more parallelism needs more memory

Method
I For a given schedule, compute the life span of variable x ;

L = [min{θ(u) | u writes x},max{θ(v) | v reads x}]

I If the life spans of two variables do not overlap, reuse the
same memory cell.

Lefebvre, Quilleré and Rajopadhye, Darte et. al.

Alain Darte, Robert Schreiber and Gilles Villard, Lattice-Based Memory Allocation, IEEE Transactions on
Computers, 54(10),1242–1257, 2005
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Cache Optimization

I The length of the life span :

d = max{θ(v) | v reads x} −min{θ(u) | u writes x}

can be interpreted as the reuse distance of x .

I Intuitively, the probability of finding x in the cache increases
when d decreases

I transform loops so that all accesses to x are at the deepest
level of a loop nest (Wolf and Lam, 1991)

I or, use an upper bound for d as an objective function when
solving for the schedule by linear programming

U. Bondhugula et.al., Automatic Transformations for Communication-Minimized Parallelization and Locality
Optimization in the Polyhedral Model, Compiler Construction, 2008, 132–146
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Self-assessment

The polytope model is a nice framework, but :

I it has scalability problems

I some questions are still unsolved or needs better solutions

I it can only be applied to severely restricted programs

31 / 39



Introduction
Prehistory

State of the Art
What Next ?

Scalability
Memory, Resources and Locality
Extending the Polytope Model
Beyond the Polytope Model

Scalability

I The size of the scheduling problem is proportional to the
number of dependences, which increases as the square of the
program size

I Other factors (array dimension and loop nesting depth) are
“small integers”

I Linear programming is almost always cubic (like Gaussian
elimination)

I Hence, the scheduling problem scales as the six power of the
program size

I Scheduling is not scalable ! ! ! !
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Scalability : Outline of a Solution

Some programs (especially streaming programs) can be split in
processes which communicate throught channels (write once /
read many arrays) :

I For each process, compute a schedule, parametric in the
“clocks” of its input and output channels

I Solve for the channel clocks

I Adjust the process schedules

Problem Most programs are not written that way :

I Can the method be extended to interprocedural scheduling ?
(I guess not)

I Can ordinary programs be converted into process systems ?
(Maybe)

Paul Feautrier, Scalable and Structured Scheduling, Int. J. of Parallel Programming, 34, 459–487, 2006
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Memory, Resources, and Locality

Scheduling usually results in a lot of fine grain parallelism : e.g.
Gaussian elimination has O(n2) parallelism. The run-time system is
responsible for adjusting it to the degree of parallelism of the
target computer (e.g. a dual-core processor)

I large overhead

I excessive use of memory

I bad locality

I what about architectures without a run-time system
(hardware or embedded processors) ?
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Constructing threads

Fronts are OK for SIMD processors (Multimedia extensions) and
vector processors (GPU), but SMPs (multicores) need threads.

I Split the code into phases (probably along Strongly Connected
Components)

I For each phase, select a placement function (which gives the
name of the thread for each operation)

I Schedule under the additional condition that each thread
execute at most one operation at a time (how ?)
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Extending the Polytope Model

The polytope model deals only with highly constrained programs :

I DO loops with affine bounds

I Arrays with affine subscripts

One can enlarge the set of tractable programs by preprocessing and
approximations :

I induction variable detection

I while loop analysis

I enlarging polyhedra by ignoring non-affine constraints

Problems with code generation
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SCoPs and GRAPHITE

matrix

assembly

Gaussian

elimination

While most programs are not regular in toto
one can usually find large pieces which are :
Static Control Parts or SCoP.

I extract the SCoPs

I parallelize each SCoP using the polytope
model

I plug the result back into the original
program

I let the host compiler generate the target
code

I partially implemented in the GRAPHITE
branch of gcc

I beware of Amdahl’s law !
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Run-time Parallelization

The basic approach is speculative :

I Execute each loop as if it were parallel

I Test for dependences on the fly

I If a dependence if found, rollback and execute sequentially

I Overhead ?

I Can be improved by excluding obviously sequential loops at
compile time

I May be generalized to iterators insted of loops

Another approach : the inspector-executor method : the inspector
dynamically construct a parallel schedule that is used several time
by the executor.

Kulkarni, Pingali et. al. : Optimistic Parallelism Requires Abstractions, CACM 52(9), 89–97, 2009
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Domain Specific Parallelization

In many cases, the necessary information is not present in the
program text :

I Dependences may be excluded or negligible for physical
reasons (the two wingtips of an aircraft)

I The execution order of some operations may be indifferent
(the exploration order in a branch-and-bound tree, the order
of additions in a summation – up to rounding errors)

I It may be indifferent to add or remove a few operations (to
iterate slightly farther than convergence)

These situations can only be handled by domain specific languages
and parallelizers. Some exemples already exists : FFTW and Spiral
for the Fast Fourier Transform, code for the solution of chemical
and biological ODE.

39 / 39


	Introduction
	What is a Polytope?
	Basis of the Polytope Model
	Fundamental Algorithms

	Prehistory
	State of the Art
	Dependences and Dependence Approximations
	Scheduling and Vectorization
	Allocation
	Code Generation
	Memory Management

	What Next?
	Scalability
	Memory, Resources and Locality
	Extending the Polytope Model
	Beyond the Polytope Model


