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Abstract

Scheduling a program (i.e. constructing a timetable for the execu-
tion of its operations) is one of the most powerful methods for auto-
matic parallelization. A schedule gives a blueprint for constructing a
synchronous program, suitable for an ASIC or VLIW processor. How-
ever, constructing a schedule entails solving a large linear program.
Even if one accepts the (experimental) fact that the Simplex is al-
most always polynomial, the scheduling time is of the order of a large
power of the program size. Hence, the method does not scale well.
The present paper proposes two methods for improving the situation.
Firstly, a large program can be divided in smaller units (processes)
which can be scheduled separately. This is structured scheduling. Sec-
ond, one can use projection methods for solving linear programs incre-
mentally. This is specially efficient if the dependence graph is sparse.

Keywords Structured scheduling, automatic parallelization, scal-
ability.

1 Introduction

Scheduling a program (i.e. constructing a timetable for the execution
of its operations) is one of the most powerful methods for automatic
parallelization. A schedule gives an abstract and partial representation
of the behaviour of a program, and can be converted either into a loop
program, suitable for execution on a DSP or VLIW processor, or into
a VHDL specification at the RTL level, suitable as the input of a CAD
system.

Roughly speaking (the details can be found later or in the original
papers [8, 9]), scheduling proceeds in two phases:
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e Fach dependence in the program is converted into a set of linear
constraints on the coefficients of the schedule;

e These constraints are solved by some linear programming algo-
rithm like Fourier-Motzkin or the Simplex or Chernikova’s algo-
rithm.

The problem I want to address in this paper is the scalability of
scheduling. As a rule of thumb, the number of constraints is propor-
tional to the number of dependences, which is quadratic in the size
of the program. The Simplex can be more than exponential in the
worst case, but both experience and theory show that its most likely
complexity is O(m?), where m is the number of constraints. It follows
that the complexity of the method is of the order of the sixth power
of the size of the program. Hence the interest of modular schedul-
ing; if a large program can be split into several modules which can be
scheduled almost independently, large speedups can result.

In the next sections I define which type of modules are suitable for
parallel programming and review the basic scheduling algorithm. In
section 5, I explain how to improve the scheduling time of one module
provided that the dependence graph is sparse. Section 6 explains how
to do modular and structured scheduling. In Sect. 7, I explain how to
bound the size of communication channels. In the conclusion, I report
on an experiment, I present some open problems and discuss future
work.

2 Communicating Regular Processes

Modular compilation is a very well-known technique, which dates back
to the early days of Fortran. For most sequential languages, the mod-
ule is the function. In fact, provided one has designed a clever calling
interface, functions can be compiled independently of each others'.
Nevertheless, the compiler output is not an executable programs. One
needs another tool, the linker, whose goal is mainly to plug the ad-
dresses of the called functions into the callee code. Compilation is
modular, but linking is not.

In the case of parallel programming, functions are not suitable
as modules. If functions are handled as black boxes, then one may
lose many opportunities for parallelization. If one opens the box,
then modularity disappears. There is, however, another possibility:
processes and network of processes. Process networks abstract from

'In modern languages, the need for accurate type checking induces more complex rela-
tions between modules.



the behaviour of message-passing architectures: each process sits in
a processor and has its own private memory. Processes communicate
only by sending messages over ports and through channels. Message
passing libraries and languages abound. Libraries range from the basic
socket system of Unix to MPI and BSP. The best known message
passing language is Occam. Such systems have almost no restrictions
on what the programmer can do and may suffer from non-deterministic
behaviour and deadlocks. The analysis and debugging of programs
written using these libraries is very difficult.

Kahn Process Networks (KPN) [11] are an attempt to impose de-
terminism by construction: channels are perfect FIFO queues, and
each channel can have only one reader and one writer. The static
analysis of KPN is still difficult, because send and receive operations
can only be correlated by counting messages, which may lead to non-
linear counting functions and may even be impossible in the presence
of conditionals.

My proposal is to use processes as modules, but to change the se-
mantic of channels. In this paper, a channel is an array of arbitrary
dimension, which is used in write once/read many mode. This con-
straint is enough to insure determinism (the proof is rather technical
and will be published elsewhere). Read and write operations are now
correlated by comparing array subscripts. To insure the possibility
of precise analysis, subscripts must be affine functions of surrounding
loop counters, i.e. the processes must be static control programs in
the sense of [7].

Let me emphasize the fact that the language of Communicating
Regular Processes (CRP) is not a programming language but a speci-
fication language. For instance, it is said down below that a process is
a sequential program. This does not mean that a process must be exe-
cuted sequentially; it just says that the observable effects of a process
must be the same as if it were executed sequentially — performance
excepted. The degree of parallelism of a CRP system bears no rela-
tion to the number of its processes, and is mostly under control of its
implementor.

The emphasis of this paper is not on simulation or direct implemen-
tation, but on static analysis and compilation. Among the properties
that one would like to check more or less automatically are the ab-
sence of deadlocks, the boundedness of the channel buffers, and the
fact that no undefined value is ever used in a computation. Obviously,
simulation and testing may pinpoint some errors of this kind. It is
well known, however, that testing is efficient only in the first steps of
a design, and that formal methods are necessary to find the last bugs.



2.1 Program Structure

An application is a collection of function and process definitions. Sev-
eral definitions can be collected in a module (usually a file); an appli-
cation can be composed of an arbitrary number of modules. Like in
C, process and function definitions are top level objects and do not
nest.

2.2 Syntax

The basis of the syntax of CRP is ANSI C?. There are, however, a few
new keywords: process, inport, outport, channel. All these are
reserved and are considered as additional “storage class specifiers” in
the C grammar.

To get a feeling for the syntax of CRP, the reader is referred to
Fig. 1 which describes a producer / consumer system.

2.3 Semantics
2.3.1 Basic Types

The basic types are void, int and float in various sizes (long, long
long, short, char, double). The addition of another basic type,
fix, is contemplated for embedded system design.

2.3.2 Arrays and other Data Structures

There is an array constructor, [1, with the same properties as in C.
However, the rules for dimensions are much more permissive than in
C. In fact, in many cases, the compiler infers the size of the array from
the way it is used. Similarly, there is a structure constructor, with the
same syntax and properties as in C.

In the present version of the compiler, pointers are ignored.

2.3.3 Functions

User-defined functions are inlined. Hence, recursion is forbidden.
One may use blackbox functions, which are handled by the system

as if they were pure (no modifications of the actual parameters or of

global variables). In embedded system design, such functions may be

2This choice is completely arbitrary. Fortran or Pascal would do as well, but C is the
language of choice for embedded systems.



useful for representing the use of Intellectual Properties®. For instance,
instead of writing:

X =y + z;
one may want to write
x = adder_7bits(y, z);

if one knows that 7 bits are enough for this particular addition. An-
other use of blackbox functions is to hide an irregular piece of program.

2.3.4 Processes

A process is a sequential program which can communicate with other
processes through channels (see 2.3.5). All variables are local to one
and only one process and are not visible from other processes?.

Besides operative statements, a process can include process start
statements, which have the same syntax as a void function call. Pro-
cess start statements are not part of the control flow of the surrounding
process. In effect all the process start statements in an application are
collected and executed immediately at application start time. One
can define a process start graph, which must be a DAG.

The operating code of a process must be regular, or have static
control [8] in the following sense:

e Statements are assignments statements and regular loop state-
ments. All variables are considered part of some array, scalars
being zero-dimensional arrays.

e The only method of address calculation is subscripting into ar-
rays of arbitrary dimension. The subscripts must be affine forms
in constants and surrounding loop counters.

Some of these restrictions are quite natural when one is designing
compute-intensive embedded systems with real time constraints. It is
difficult, for instance, to predict the execution time of a while loop
or of the traversal of a truly dynamic data structure. Other restric-
tions can be lifted by preprocessing (goto removal, inductive variable
detection, subscript-like pointer detection, function inlining).

31IPs are ready-made hardware modules, usually sold as hardware description language
files.

4The model accepts read-only global variables (e.g. tables of constants). This facility
is not discussed here for brevity sake.



2.3.5 Channels

A channel is the only medium of communication between processes. A
channel can be viewed as a write-once/read-many array of indefinite
dimension. Each cell has a (virtual) full/empty bit. At application
start time, all such bits are set to “empty”.

e A write to an empty cell defines its value and sets the control bit
to “full”.

e A write to a full cell generates an error.

e A read of an empty cell stalls the reading process until the cell
is filled.

e A read of a full cell is immediately satisfied.

There is no way of emptying a cell.

The reader is cautioned that this is just a specification of the be-
haviour of a channel. The actual implementation may be quite differ-
ent. In fact, the target in this work is a synchronous implementation,
in which a processor never has to wait for an empty cell.

A channel may have any number of readers, and there are no con-
straints on the reading patterns. Reading is not destructive: a value
remains available at least as long as some process may have some use
for it.

2.3.6 Ports

A port is an interface between a process and a channel. It allows,
inter alia, that a process be instantiated several times, each instance
being connected to different channels. Ports are only allowed as formal
parameters to processes.

When connecting ports and channels, one must verify (statically)
that the two entities have the same (data) type and dimension. Chan-
nels play the role of actual parameters to the port formal parameters.
In what follows, and for the sake of simplicity, I will omit this con-
nection step (which poses no theoretical problem) and assume that
processes are directly connected to channels, and that all necessary
verifications have already been done successfully.

The usual rule of visibility applies to ports and channels. Let P be
a process in which a channel c¢ is defined. The only processes which
can access ¢ are P itself and processes which are started by P and have
a port connected to c.



3 Dependences

3.1 Notations

The iteration vector of a statement is a list of its surrounding loop
counters, from outside inward. An iteration vector for S cannot take
arbitrary values. It must belong to the iteration domain of S, which
is obtained by stating that each counter is within the bounds of the
corresponding loop. Under the assumption that the program is regu-
lar, iterations domains are convex polyhedra (or, more precisely, sets
of integral points inside polyhedra). In the presence of conditionals,
an iteration domain may be a union of polyhedra instead of a single
polyhedron. I will ignore this complication in what follows.

Let Dg be the iteration domain of statement S. An iteration of S
or operation is written (S,z),x € Dg where z is the iteration vector.
The set of operations of a process P is the disjoint union:

Ep=J{(S.2) | = € Ds},
SeP

and the set of operation of a CRP system is £ = UpEp. In more
abstract contexts, I may simply write u € E for an arbitrary operation.
u and v being operations of the same process P, one writes u <geq v iff
u executes before v. <geq is a strict total order on Ep. On the other
hand, there is no a priori ordering of operations in different processes.

In this paper, the most important operations are reads and writes
to some channel A. I assume that in each statement S there is at most®
one access to A, with subscript function fs4, or simply fg when A is
clear from the context. Namely, operation (S, ) access A[fsa(i)], and
fsa is affine.

Let W(A) denotes the set of statements that write into channel A,
and R(A) denotes the set of statements that read from A. The set:

F(A) = Usewalfsali) | i € Ds}
is the write window of A. Similarly the following set:
G(A) = Usery{fsali) | i € Ds}

is the read window of A. If the following constraint:

G(A) € F(A), (1)

SThe general case (several accesses) poses no theoretical problem, and its cost is just
one more loop in the compiler. For instance, the example in Fig. 1 does not observe this
restriction. However, lifting it would greatly complicate notations and explanations. The
same observation is true for iteration domains.



is not satisfied, it is clear that some process will block for ever when
accessing a memory cell in G(A) — F(A). This constraint must be
checked by the software before scheduling. On the other hand, the
cells in F(A) — G(A) are useless. In what follows, I will assume that
this set is empty, or that all channel cells are useful.

3.2 Data dependences

Data dependences were defined, as early as 1966, for the purpose of
parallelization [3]. Two operations are in dependence if interchanging
them in the execution order changes the final result of the program.
This is a global definition, which in general is too complex to be us-
able. A more local definition is: two consecutive operations are in
dependence if interchanging them changes the history of some vari-
able. This definition involves semantics considerations. For instance,
to see that the two operations x = x+1 and x = x+2 are (locally) in-
dependent, one needs some knowledge of elementary arithmetics. The
merit of Bernstein is to have found a purely syntactical criterion for
independence. An operation u being given, let R(u) be the set of
memory cells that are read by u (on which the effect of u depends)
and W (u) be the set of cells that are modified by u. It is easy to prove
that v and v are independent (u being executed first) if the three sets
W (u) N W (v) (output dependence), W(u) N R(v) (low dependence)
and R(u) N W (v) (anti-dependence) are empty.

Data dependences are concerned with the case where the memory
cells under consideration are local to some process. It follows that u
and v belong to the same process and that sequential order is well
defined. One says that v depends on « (in symbols v v) if u and v
are not independent and if © <geq v.

The data dependence relation can be split into pieces according
to the source statement S, the sink statement 7', the array references
and the depth of the dependence. Each piece is a polytope in Dg X
Dy which can be checked for emptiness by any linear programming
algorithm, or by more specialized algorithms like Banerjee’s test or
the ged test.

3.3 Communication Dependences

Assume now that the variable which causes the dependence is a chan-
nel cell. One can still say that some operations are in dependence,
with the same definition as above. The presence of an output depen-
dence indicates that the “write once” condition is not respected, and
generates an error. One must impose a flow dependence (no read can



be executed before the first and only write), and the absence of output
dependences, in conjunction with (1), is enough to insure the absence
of anti dependences. Hence, each dependence involving a channel cell
(a communication dependence) is a flow dependence and is oriented
from the write operation to the read operations. These operations
clearly belong to different processes, hence this ordering does not con-
flict directly with any other ordering in a CRP system.

In what follows, I will use the same symbol, §, for data and com-
munication dependences.

4 Scheduling

4.1 Target Architectures

In contrast to the above programming model, most of today digital
systems are synchronous: there is one global clock, and all changes
of state occur in relation to the clock. More precisely, these systems
are “globally asynchronous and locally synchronous” (GALS); there
are several unrelated clocks, and different clock domains communicate
through synchronization protocols, like handshake or bus arbitration.
The theory of multiple clock systems is still in infancy. We will postu-
late here that the target system is fully synchronous. More precisely,
it has a datapath, comprising operators, registers, memory, and some
interconnect, and a control part, which can be coded either as a pro-
gram, as in a VLIW processor, or as a finite state machine, as in an
ASIC or FPGA.

4.2 Schedules

A schedule is a function which assigns a starting time to each opera-
tion of an application. In other words, a schedule is a function from
E to the set of time values, 7. But what is time? One possibility is
to consider physical time. In that case, T is the set of non-negative
integers, time being measured in clock cycles. This approach is suit-
able when dealing with fine-grain systems in which execution time is
well defined (typically one clock cycle), and with real time problems.

Another possibility is to consider a schedule as just a way of spec-
ifying an execution order. In that case, 7 is any ordered set. 6 being
a schedule, the associated order is:

u<gv=0(u) <f(v).

The favorites for 7 are again IN and IN?, lexicographically ordered.
The second case gives rise to the so-called multidimensional schedules.



The execution order which is defined by a schedule must be legal,
i.e. it must extend the dependence relation:

Vu,v € E:udv = 0(u) < 6(v). (2)

To solve this functional inequality, one has to postulate a shape for
. The usual choice is that #(S,z) is an affine form in the iteration
vector, z:

0(S,x) = hg.x + kg, (3)

where hg is the timing vector of S and kg is a scalar. For regular
programs, this choice has the advantage that everything in (2) becomes
affine, and that powerful results from the theory of linear inequalities,
like Farkas lemma [15], can be used to characterize the solutions. The
reader is referred to [8, 9] for details. A short review of the method is
given below.

4.3 Solving the Scheduling Constraints

The first step of the solution consists in splitting formula (2) according
to the source and sink of dependences. For a given pair of statements,
S and T, the constraint now reads:

Ve € Dg,y € Dy : (S,z) 0 (T,y) = 6(S,z) < 0(T,y). (4)

Each such constraint represents of the order of Card ¢ linear con-
straints on the coefficients of #. This number is usually enormous,
or even infinite in the presence of unbounded parameters or non-
terminating loops. However, thanks to the fact that the schedules are
affine, and that the constraints defining § are affine, these constraints
can be compressed into a small finite set.

This compression can be done either by the vertex method [14] or
by making use of the following version of Farkas lemma [15]:

Lemma 1 The formula:
Ve : Az +b>0=cx+d>0
is equivalent to:
N >0,A>0:Ab+ X =d, NMA=c.

provided that the system Ax +b > 0 is feasible.
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In this formula, A is an m X n matrix, £ is an n-vector, b is an m-
vector, ¢ is an n-vector and d is a scalar. )¢ and the vector A\ are
known as the Farkas multipliers.

To apply this result, let 2 be the concatenation (zg,z7)” of the
iteration vectors of S and T. Let Agrz + bgr > 0 be the system of
constraints that defines the dependence relation from S to 7. One
first checks that this system is feasible. If not, the dependence does
not exist and imposes no constraints on the schedules.

The inequality c.x +d > 0 is taken as the delay between execution
of (S,zs) and (T, z7):

cr+d= (—hg,hT).(:L"S,ZET)T +kr—ks—12>0,
which gives the equivalent formulas:

Mgt = (=hg,hr), (5)
Mosr+Xg = kpr— kg — 1. (6)

For regular programs, Agr and bgr can be extracted from the
program text by a simple analysis. Hence, (5) is a system of linear
equations in positive variables. There is such a system for each de-
pendence, and the schedules must satisfy all of them. Hence, one has
to gather all such constraints, and submit the grand system thus con-
structed to some linear programming tool. Most of the time, such a
system has many solutions (i.e., many legal schedules). One can intro-
duce a linear objective function and select the best solution in some
sense (minimum length of the critical path, for instance).

However, in some cases, the system (5) is not feasible. This may
be due to the presence of deadlocks in the source program. But the
failure can sometime be traced to complexity reasons. A program that
has an affine schedule can be executed in linear time when enough pro-
cessors are available. It is clear that there exists programs for which
this is impossible. One can resort in this case to multidimensional
schedules, whose parallel latency is polynomial. The construction of
multidimensional schedules is explained in [9]. I will ignore this diffi-
culty here.

5 Scalability

The number of unknowns in a scheduling problem is of the order of
the number of statements times the mean depth of loop nests. The
number of dependences is in general quadratic in the program size,
and the number of constraints per dependences is again proportional
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to the mean nesting depth. Lastly, the Simplex algorithm, while ex-
ponential in the worst case, has a high probability of being cubic in
the number of unknowns or constraints, when these two numbers are
of the same order of magnitude. Hence, the direct solution of the
scheduling constraints by linear programming does not scale well.

5.1 Elimination of the Farkas multipliers

The first step in improving the scalability of the method consists in
eliminating the Farkas multipliers. The important point is that there is
one independent set of Farkas multipliers per dependence. Hence, the
elimination can proceed one dependence at a time. The complexity of
the elimination is linked to the maximum nesting level of the program,
a small integer. The number of eliminations is equal to the number of
dependences, which is at most quadratic in the size of the program.

Since the Farkas multipliers occur in linear equations, one can start
by using Gaussian elimination. In general, there are more unknowns
than equations: all Farkas multipliers cannot be eliminated. The re-
sulting constraints express the fact that the eliminated multipliers
must be positive. This trick has been proposed in [8] and has proved
to be very efficient in practice.

But one can go farther than that, by using elimination (or projec-
tion) methods to finish the job. The projection of a set D in IR"*!
along its first dimension is:

P={z|3y:yxe€ D} (7)

It is well known that if D is a polyhedron, so is P. Projection along y
is equivalent to the elimination of y in the constraints that define D.
For polyhedra, there are several projection algorithms:

e The simplest one is the Fourier-Motzkin algorithm. Its com-
plexity is super exponential. Part of this complexity is due to
the fact that the resulting system of constraints contains many
redundant inequalities.

e One can also use parametric linear programming as in PIP [6].
The solution is given as a disjoint union of polyhedra; recon-
structing P from its subsets is not easy.

e Lastly, if one knows the Minkowski representation of D [15], it
is easy to find the Minkowski representation of P by projecting
the vertices and rays of D. From that, one can reconstruct an
irredundant constraint system with the Chernikova algorithm.

12



In my implementation, I use the last method, which has the advan-
tage of being much faster than the Fourier-Motzkin algorithm, and of
always generating irredundant constraints.

Whatever the projection algorithm, when one has chosen a point
z € P, one can find — in time linear in the number of constraints of D —
a segment [a, b] such that if a < y < b, then y.z € D. Therefore, after
eliminating all unknowns but one, one can select a point in the last
— one dimensional — projection, and then back propagate the result
until all unknowns have been valued. One can show that all feasible
points for the initial constraints can be obtained in this way. Usually,
selecting the lowest possible value for each unknown is a good choice.
This technique is not necessary in the case of the Farkas multipliers,
since their value is irrelevant for the final schedule. It will however be
used in the next section.

5.2 Stepwise Scheduling

After the elimination of the Farkas multipliers, the number of un-
knowns has roughly been divided by two, and the number of con-
straints has stayed the same or may have increased slightly. Schedul-
ing is still not scalable. To go further, one has to observe that the
constraint matrix often is sparse, or, rather, block sparse. In fact, a
dependence from S to T being given, the resulting constraints can be
written as:

Mst(hs,ks)” 4+ Nsr(hr, kr)" > 0. (8)

If one compresses each block Mgr or Ngr to a single element, one gets
the incidence matrix of the dependence graph.

If the scheduling problem is solved by any variant of the Simplex
algorithm, one cannot make use of this sparsity to speed up the reso-
lution: the Simplex has fillup. In fact, the Simplex algorithm is very
similar to Gaussian elimination, with the difference that the choice of
the pivot, which is almost arbitrary in Gaussian elimination, is highly
constrained in the Simplex. Hence, one cannot choose the pivot that
generates the less fillup, as in direct methods for sparse linear sys-
tem solution [16]. However, if the Simplex is replaced by any kind
of successive elimination algorithm, one may hope to control fillup by
careful selection of the unknowns to be eliminated at each stage. 1
propose here the following algorithm:

e Partition the program into groups of statements Sp,k = 1, N.
Let hg be the concatenation of the timing vectors of the state-
ments in Sj.

e For each group Si, k=1, N do:
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— Collect all the rows of M where h;, has a non-zero coefficient.
Remove these rows from M.

— Eliminate hj from the collection. Add the result of the
elimination to M.

— Remember the bounds for hy.

e If the final system is trivially infeasible (like —1 > 0) stop. No
schedule exists.

e For each group S; in reverse order do:

— The bounds for h; are constants. Select a value within the
bounds for Ay (e.g. the lower bound).

— Substitute these values in all other bounds.

5.3 Choosing the next victims

The partitioning of the source program into group of statements is
necessarily a heuristic process. In the present version of the soft-
ware, I have implemented two very simple approaches: one-by-one
elimination, the selected statement being the one which generates the
smallest system of constraints, and elimination of all statements at
the same time. Experimental results show that the best heuristic
strongly depends on the shape of the dependence graph. One can
in fact observe that loosely coupled statements, like statements in a
serie-parallel structure, can be eliminated individually at almost no
cost, while there is no advantage in separating statements forming a
clique. It should be possible to deduce from these observations rules
for constructing an efficient elimination order, but this is left for future
work.

6 Modularity

In language and compiler design, the standard definition of a module
is “a part of a program which can be partially compiled without ref-
erence to other parts”. Traditionally, the result of partial compilation
is called an object. When all modules have been compiled, a linker is
needed to finalize the construction of the target program. Modularity
has many advantages. Modules promote reuse. Also, in case of a mod-
ification, one recompiles only the affected module(s). But the most
important effect of modularity is one of discipline: since one usually
forbids access to the local variables of a module from another module,
the dependence graph is simplified and its scheduling is easier.
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6.1 Channel schedules

As has been said earlier, the natural unit of compilation for a parallel
program is the process, and dependences between processes occur only
when they share a channel. The scheduling constraints (2) are equally
applicable to the channels, and show that the schedules of different
processes are not independent. This precludes modular scheduling,
unless some “insulation” between processes is provided.

Observe that in the CRP model, each cell in channel A is written
only once at a definite time by an operation from its unique writer pro-
cess. Therefore, one can postulate the existence of a channel schedule
0(A, z) such that the value A[z] is guaranteed to be defined at time
0(A, z) (and later). For simplicity, I assume here that 6 is affine. This
is a loss of generality. Even when all statements have affine schedules,
since a channel can be divided in parts, each part being written by a
different statement, the channel schedule may only be piecewise affine.
This problem can be taken into account along the lines of [10] and is
left for future work.

The value of a channel schedule is clearly not defined for 2 ¢ F(A),
but it may be that the linear formula for 6 nevertheless gives spurious
values beyond that domain, by a process of extrapolation. This is why
the property (1) must be checked independently.

With this definition, a dependence on a channel array can be split
in two parts:

e On the write side, a cell is not available before it has been written.

Let S: A[fsa(i)] :==--- be a statement that writes into A:
i € Dg = 0(A, fsa(i)) > 0(S,1). (9)
e On the read side, a cell cannot be read before it is available. Let
S:---i=---Alfsa(j)]--- be a statement that read A:
j € Ds = 0(S,j) > 0(A, fsa(j)) + 1. (10)

The 1 in formula (10) is intended to represent a propagation delay
through the channel. I have arbitrarily inserted this delay on the read
side, but many other configurations can be used without changing the
overall method. The present choice reflects the fact that a value can
be written in a register at the end of a clock cycle, and is available for
reading at the beginning of the next cycle.

6.2 The Modular Scheduling Algorithm

Let hp be the concatenation of the timing vectors for all statements
in process P, and let h4 be the timing vector for array A. After
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application of the Farkas algorithm to (9) or (10) and elimination of
the Farkas multipliers, the shape of the constraint matrix is as follows.

For each process P there is a system Uphp > 0 which represents
the constraints generated by the inner dependences in P. The matrix
Up is block sparse, and each of its blocks is one of the Mgy or Ngp
blocks in formula (8). For each process P and each channel A which
is connected to P there is a system Vaphp +Waph4 > 0 which repre-
sents the constraints generated by the communication dependences of
the system. These observations suggest the following modular schedul-
ing algorithm.

1. Construct the constraint matrix for each process and its adjacent
channels.

2. For each process P eliminate hp from the constraints:
Uphp >0, Vpahp+Wpahy > 0, for all Aconnected to P (11)

This first pass of compilation is modular, in so far as this can be
done one process at a time, without reference to other processes.
The result is a system of constraints on channel schedules.

3. When all such communication constraints have been computed
(or collected from a library), they can be solved as a whole,
giving a solution for the channel schedules. Again, the commu-
nication constraints matrix is block-isomorphic to the commu-
nication graph of the whole system, and is likely to be sparse.
This is the only place where the system has to be considered in
toto.

4. The solution for the channel schedules can then be substituted
in the bounds for the coefficients of the process schedules, and
these coefficients can be recovered by back-substitution.

5. It remains to gather all schedules and submit them to a code gen-
erator. With present day tools [2], there is no hope of staying
modular there, unless one deals with highly specialized archi-
tectures. However, tools like CLooG are quite efficient and can
handle very large programs.

Consider Fig. 2, where a system composed of 3 processes, P, Q,
and R is represented. P and Q send information to R through channels A
and B respectively. In the constraint matrix, there is a column for the
coefficients of the schedules of each of these five objects. The schedule
of P, for instance, appears in a bloc of inner constraints, and also in a
block coupling it to the schedule of A. Eliminating P gives constraints
on the schedule of A: for instance, P may impose an upper bound to the
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rate of A. Similarly, R may impose a relation between the rates of A and
B, e.g. if R reads two tokens from A to one from B. After eliminating P,
Q and R, one obtains the communication constraint matrix of Fig. 2,
which can be solved for the channel schedules. If the communication
constraints are not feasible, it means that there is no affine schedule
for the system. This probably indicates a deadlock; note however that
the system may have a piecewise affine schedule or even a non linear
schedule, which are not found by the proposed method.

Consider now the example of Fig. 1. The first step is to compile
the two processes. Let:

O(W,i) = i, 0(Z) =, 0(M,i) =vi+ 9, 0(A,x) =azx +b.

The producer has no data dependence, hence the only constraint is a
communication constraint:

1>0=ai+b> ai.

Application of the Farkas algorithm gives®: b > 0 and a > « after elim-
ination of the multipliers. After elimination of «, the only remaining
constraint is b > 0.

In the consumer there are a flow dependence from Z to M, a flow
dependence from R to itself, and two communication dependences
from A to R. The corresponding constraints are:

i>0=p8+1 < ~i+9,
i+1<i=yi+d+1 < ~vi'+94,
1 >0=ai+b+1 < v+,
i>0=>a(i+2)+b+1 < ~yi+o.
Application of Farkas lemma gives:

f+1 < 4,

L < 9,

a < 7,

b+1 < 4,

2 +b+1 <

Elimination of «, 8 and « gives an empty system. The only commu-
nication constraint is b > 0 whose smallest solution is b = 0. From
there, one may reconstruct the schedules:

O(W,i) =0, 0(Z) =0, O(M,i) =i+1, 6(A,z) =0.

6Tn very simple cases like these, one can apply the vertex method: to be true everywhere,
it is sufficient that these inequalities be true at ¢ = 0 and i = co.
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This solution is not satisfactory, since one has to deposit an infinite
number of values in A in one clock cycle, and hence, the size of A
must be infinite. For a practical implementation, one needs a way
of bounding a priori the channel size. A solution to this problem is
presented in Sect. 7.

6.3 Structured scheduling

In software engineering, and also when designing an embedded sys-
tem, a common practice is to wrap up several modules as a component
and to reuse it several times in the same or in different designs. For
instance, when designing a video streamer, one may build a downsam-
pler, which transforms a high resolution pixel stream into a standard
resolution one. One may then instantiate three downsamplers, one for
each primary color. The downsampler itself is made of two processes,
a vertical filter and a horizontal filter.

Such a structured or hierarchical design can be handled in the CRP
model at no extra cost. This is due to the visibility rules of Sect. 2.3.6.
Consider for instance the following specification:

process downl(inport int s[], outport int t[1){...}
process down2(inport int ul], outport int v[1){...}

process up(inport int A[], outport B[]1){
channel int X[];

downi(A, X);
down2(X, B);

The up process receives data through its A port, and sends it di-
rectly to process downl. The output of this process is sent to down2,
whose output is directly returned by up through port B.

The important point is that the internal channel X is not visible
from any process except up, downl and down2. Hence, once downl
and down2 have been compiled, giving as results two sets of commu-
nication constraints, one does not have to look anywhere else before
eliminating X. The result is the set of communications constraints for
up which can be used bottom-up for further scheduling. One can see
that the global schedules are found by a postfix traversal of the process
start tree.

18



7 Bounding the Size of a Channel

The definition of CRP says that a channel is unbounded. This is
necessary, since in many embedded systems, one must use an infinite
loop, which, in many cases, represents the flow of time and the stream
of data. In designing an ASIC or FPGA circuit, or when writing
a program, it is not possible to provide an unbounded amount of
memory. The solution is to analyze the lifespan of each value, and
to assign a memory cell to it only from its definition up to its last
use. This can be done a posteriori, when schedules are known [5].
The danger is that, when the application has much parallelism, the
inferred memory space may be too large or still be infinite.

Here I want to investigate another approach, in which the memory
size is given a priori (e.g. as part of an architecture exploration pro-
cess), the problem being that of finding a schedule that can run in the
given memory. This is a very difficult problem, which has already been
studied in [17]. The solution given there relies on ad hoc hypotheses,
which may or may not be verified in real life programs. I will use here
a similar approach. T will first identify reasonable assumptions on the
code of a CRP. I will then solve the problem under these assumptions.

The first observation is that a sequential program’
one infinite loop. The reason is that an infinite loop never terminates.
Hence everything that follows it can be removed as dead code. Simi-
larly, if an infinite loop is enclosed in another loop, the outer loop will
only execute one iteration and can be removed®. It follows that the
shape of a process is as follows:

can have only

e First, some finite calculations, perhaps taking care of initializa-
tion;
e Then, at most one infinite loop;

e The body of the infinite loop may contain finite loops.

Let 7 be the counter of the infinite loop. If the process under
consideration writes into some channel A, then ¢ must occur in at
least one of the subscripts of A; if this were not so, the “write once”
condition could not be satisfied. This dependence on ¢ may be indirect,
as in:

for(i=0; :i++)
for(j=i;j<=i;j++)
alil = ...;

"Remember that the semantic of a CRP is defined by its sequential execution.

8Take care that the concept of an infinite loop is semantical not syntactical. There is
no infinite loop in the following fragment: for(i=0;;i++) for(j=i; j<m; j++) S;. A
loop nest is infinite if the corresponding iteration domain has a ray.
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I assume that such strange constructions have been removed by
preprocessing (detection of hidden equations). T also assume that 4
occurs in the first subscript of A. This can always be obtained by
subscript permutation and is not really a restriction. My aim is then
to bound the first dimension of A. Remember that this may not always
be possible.

The channels in CRP are write once. This means that memory cells
are in one-to-one correspondence with the values that low through the
channel. If the channel is implemented as an array with bounded first
subscript, the runtime system has to allocate a sub-array A[z][*] each
time x changes, and deallocate it as soon as it becomes useless. In the
interest of performance, the mechanism for allocation and deallocation
must be as simple as possible. Tools like malloc and free are out
of the question. One option is to use a circular buffer (or modulo
allocation). Let a be the buffer associated to A, d its dimension,
and B be the size of its first dimension. The value A[z] is stored in
cell a[zy mod B][z2. 4]. A similar modification must be applied to all
read accesses to A. It is clear that the resulting program may not be
equivalent to the original, since a value may be overwritten before all
reads have been executed. Hence, to avoid such errors, the process
and channel schedules must satisfy additional constraints.

To each channel let us associate two functions « and ¢. «(A,z1)
is the time at which the sub-array A[z;][] is allocated. Similarly,
#(A, z1) is the time at which A[z][«] is deallocated. It is legitimate to
assume that o and ¢ are affine. To fulfill the “write once” condition,
21 must be unbounded, and if a were decreasing, some allocations
would occur at negative time, i.e. before the application start time.
Hence, o and ¢ are monotone increasing. These two functions are not
independent: deallocation of A[x][x] occurs at the time A[zq+ B][#] is
allocated, since these two array slices occupy the same memory cells.
Hence, assuming that allocation and deallocation take one clock cycle:

Ol(A,:El + B) +1= ¢(A,$1) (12)

This constraint is enough to ensure that « is strictly increasing. Ob-
viously, one cannot write into an array cell before its allocation, and
one cannot read it after it has been deallocated. This gives the two
constraints:

Vi € Dy : a(A, faw (i) < O(W,i), (13)
Vi e Dgp:0(R,j) < ¢(A, far(4))- (14)

These constraints are in the same form as (10) and (9) and can be
subjected to the Farkas algorithm.
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Lemma 2 The conjunction of (12, 13, 1}) is sufficient to insure the
correctness of the transformed program.

Proof Let A[z] be a value which is written to a[z; mod
Bl[x2.4]- An error occurs if a write to a cell Az +kB][z2. 4]
is executed between instants «(A, z1) and ¢(A, z1). k is an
arbitrary integer; observe that k cannot be null: this would
imply that A[z] is written twice, and is in contradiction to
the “write once” assumption. Assume that k is positive,
and let (W’ 4') be the offending write:

H(Wla ZI) < ¢(A7 £E1).

By (13), a(A,z14+B) < a(A,z1+kB) < O(W',7'), since « is
increasing, and a(A, z1+B) = ¢(A, z1)+1, a contradiction.
The proof is similar for the other possibility, & < 0. I

As a consequence of (12), one can dispense with ¢ in favor of «.
(13) is a constraint on the unique writer to A, while (14) pertains to
all its readers. Modularity is thus preserved, After elimination of the
inner schedules, and before solving the communication constraints,
one identifies the allocation coefficients of the several ports of A, in
the same way that one identifies the coefficients of A clocks.

Return to the example of Fig. 1, and assume that 3 memory cells
are allocated to channel A. Let a(A,z) = o’z + b' be the allocation
function for A. In this case, (13) is:

i>0=di+b <o
From this follows ¢’ < a and &' = 0. There are two instances of (14),
one for each occurrence of Y in statement M:
i>0 = yi+d6<ad(i+3)+b+1,
i>0 = yi+d6<d(i+5)+b+1
It is easy to see that the second inequality is redundant, simply be-

cause, under our hypotheses, a’ is positive. Applying Farkas lemma
and adding the original constraints give:

y<da, §<3d+0b +1,
B+1<d§ 1<y,
a <%y b+1<9,
20 +b+1<6
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Elimination of o, 8 and ~y gives:

1 < 3d+b +1,
20 +b+1 < 3d +b +1,
1<d, a<d.

The communication constraints from the producer side are:

b=0, b =0,

!
a < a.

The solution of the system of communication constraints is: a = a’ =
1, b=10b =0, from which follows « =1, =0,y = 1,0 = 3,0(W,1) =
i and (M, i) = i+ 3. Now the producer sends one value at each clock
cycle through the channel. This value must be buffered to be used
three clock cycles later. The reader may care to redo the computation
with other values of the channel size. What is the minimum size for
which schedules still exist?

The system of constraints which has been constructed above may
be infeasible. This may indicate either a deadlock induced by insuf-
ficient buffer space, or an application for which no finite memory im-
plementation exists. In fact, the allocation scheme which is proposed
here implies that the lifetime of any value is bounded:

da

(A1) — (A1) =a(A,z1 +B)+ 1 —a(d,z1) = %B + 1
1

Now consider the following piece of code:

for(i=0;;i++)
for(j=0; j<i; j++)
A[il[3] = ...

Assume that the computation of the values of A enforces sequential
execution, and also that each value is useful (i.e. that some reader
process accesses it some time). Then the lifespan of A[i][*] extends at
least from the creation of A[7][0] to the creation of A[:][ — 1], hence
takes at least 7 cycles, which is not bounded.

8 Related Work

To the best of my knowledge, modular scheduling has not been con-
sidered in the classical literature. The reason is probably that in ap-
plications like job-shop scheduling, there is no reason to assume that
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the precedence graph has any special property. On the other hand,
there has been several attempts at modular automatic parallelization.

In [18], the unit of modularity is the procedure, whose effect is
summarized by computing regions. The drawback of this method is
that one can find parallelism between procedure calls, and also inside
procedures, but not parallelism astride a procedure boundary.

Nearer to the subject of this paper, Risset and Quinton [13] have
defined structured scheduling for systems in the ALPHA specification
language [12]. Systems can be scheduled independently. The sched-
ules of several systems are then composed to give the global schedule.
This is possible only if somewhat stringent restrictions are imposed on
systems.

The reduction of the memory footprint of an application is impor-
tant for embedded systems for reasons of cost and energy consump-
tion. Many authors have considered it (see [5] and its list of references)
mainly assuming that the schedule is known. Thies et. al. [17] have
considered the problem of finding the schedule when the memory size
is bounded (as is done here) and the simultaneous optimization of the
memory size and the schedule. Their solution relies on the assumption
that array subscripts are increasing functions of the loop subscripts;
my assumption that the allocation function is increasing is similar but
more natural than their hypothesis.

The use of processes in parallel programming dates back to the
commencement of the subject. Kahn Process Networks [11] have been
a source of inspiration for the present paper. The problem with KPNs,
as with any other system in which processes communicate through
message streams, is that analysis is only possible if the compiler is
able to infer the correspondence between send and receive operations.
In fact, as any practioner of message passing programming knows,
having a process receive the wrong message is the main source of
errors. In KPNs, this phenomenon is mitigated by having only one
reader and one writer per channel. There is still the possibility of an
error in message order. CRP goes one step further in this direction
by associating messages to locations in memory, thus rendering their
order immaterial.

9 Conclusion and future work

In this paper, I have proposed both a language, CRP, and a scheduling
method for structured specification of process systems. A prototype
scheduler, SYNTOL, has been implemented and was used to run all the
examples in this paper. Since processes are scheduled independently,
the method promotes reuse, avoids complete recompilation in case of
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a local modification, and shortens the compilation time.

9.1 Experimental results

To justify the above claim, I have set up the following somewhat artifi-
cial experiment. An equalizer is composed of a signal source, a mixer,
and several 6-taps FIR filters connected in parallel. The input signal
is fed to all filters. The output signal of each filter is sent to a mixer,
where it is weighted and added to the outputs of other filters. The
number of filters can be easily changed. The wall-clock time for each
compilation is given by the second column of Table 1, as a function
of the number of filters. These numbers were obtained on a Pentium
M 1.4 Mhz processor, running Linux, with 256 MB of memory. The
software is mostly written in MuPAD, with the exception of linear
programming kernels like PIP and the Polylib, which are written in
C. These numbers are reproducible to about 1”. As these numbers
show, the compilation time grows almost linearly with the number of
filters, the cost of one additional filter being about 13” of scheduling
time.

As a comparison, I have implemented a one-process version of the
application. Not surprisingly, the compilation time is better in the
one filter case. This is due to the launching overhead of the compiler,
which is paid four times in the many process version against one here.
There is a crossover point when the third filter is introduced, and then
an explosion in the scheduling time. In fact, the system created for the
five filters case is too large for the present version of the Polylib. This
phenomenon does not occur in the modular version. Here, the only
problems whose size grows with the number of filters are the mixer
scheduling system and the system of communication constraints. If
these systems grow too large, it is always possible to separate the
filters in several banks, and to use a cascading mixer to generate the
output signal.

9.2 Future work

However, there are still many problems to be solved if this proposal is
to become a practical solution for scheduling and high level synthesis.
Let us outline some of them:

e One may want to constrain the schedule to use no more than
a given number of functional units. Solutions are known for
two particular cases of this problem. One may apply software
pipelining to the innermost loop of each nest. The problem is
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that one may have to explore all legal loop permutations until a
satisfactory solution is found.

If the loop nest has a high degree of parallelism, one can apply
tiling to the parallel loops. Usually, programs obtained in this
way have bad locality. More general solutions to this problem
are sorely needed.

e For complexity reasons, as soon as resources are in a fixed finite
amount, the restriction to affine schedules is no longer tenable.
One has to use many-dimensional schedules. While there are
methods for constructing such schedules [9], building their mod-
ular extension is by no means obvious.

e Many problems in, e.g., image processing or software radio, are
slightly outside the regular (or polytope) model. One may some-
time obviate this difficulty by overestimating dependences, or by
encapsulating the irregular program parts, or by asking for help
from the programmer. There is much work to be done in this
direction.

e Although the problem of code generation from a schedule has
been much studied since the pioneering paper of Ancourt et.
al. [1] (see for instance a recent paper by C. Bastoul [2]), the
solutions can still be much improved, especially by taking into
account the peculiarities of the schedules and/or the underlying
hardware. One possibility is to adapt the method of Boulet et.
al. [4] to the direct construction of the control automaton.

A Appendix: the equalizer application

The schematics of the application is given in Fig. 3 for the three filter
case. Circles and triangles are processes, and links represent channels.
Note that the output channel of the source process is directly fed to all
three filters. In the CRP formalism, there is no need of a triplicator.

All filters have the same code, which is given below. It is clear that
the values in the poids parameter will differ from filter to filter.

process filtre(inport float entree[], outport float sortiel[],
float poids[7]1){
int i, j;
float s[7]1;
for(i=0;;i++){
Z: s[0] = 0.;
for(j=1; j<7; j++)
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MAC: s[j1 = s[j-1] + entreel[i+j-1] * poids[j];
W: sortiel[i] = s[6];

The code of the mixer for the three filters case is:

void play(float s);
float wl, w2, w3;

process mixer (inport float x1[],
inport float x2[],
inport float x3[]1){
int 1i;
for(i=0;;i++)
Q: play(wilxx1[i]+w2*x2[i]+w3*x3[i]);
}

The connection between processes and channels is specified by the
main process:

process source(outport float all);
process filtre(inport float x[], outport float y[], float poids[]);
process mixer(inport float ul[], inport float v[], inport float w[]);

float pi[7], p2[7], p3[7];

void main(){
channel float all, b[l, c[1, d[];

S0: source(a);

F: filtre(a, b, pl);
G: filtre(a, ¢, p2);
H: filtre(a, d, p3);
SI: mixer(b, c, d);
}

Lastly, here is the one process code for the same case:
void play(float s);
float f(int i);
float p1[7], p2[7], p3[7];

void main(){
float all;
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Z1:

MAC1:

Z2:

MAC2:

Z3:

MAC3:

int i, j;

float s1[7], s2[7], s3[7];
float wil, w2, w3;

for(i=0; i<5; i++)

ali] = f(i);
for(i=6;;i++){

ali]l = f(i);

s1[0] = 0.;

for(j=1; j<7; j++)
s1[j]1 = s1[j-11 + a[i+j-1]1 * p1[jl;

s2[0] = 0.;
for(j=1; j<7; j++)
s2[j1 = s2[j-11 + a[i+j-11 * p2[jl;
s3[0] = 0.;
for(j=1; j<7; j++)
s3[j1 = s3[j-11 + ali+j-11 * p3[jl;

play(wixs1[6]+w2*s2[6]1+w3*s3[6]);

Note that it would be straightforward to encapsulate the above
design into a higher level process and duplicate it to create a stereo-
phonic sound system.
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float f(int 1i);

process producer

process consumer

(inport float Y[]) {
float s;
int i;
s =0.;

for(i=0; ;i++)

s = 0.5x(s + Y[i]*Y[i+2]);

(outport float X[]1) {
int i; Z:
for(i=0; ; i++)
W: X[il = £(i); M:
} }
void main(){
channel float A[];
P: producer(A);
Q: consumer(A);
}
Figure 1: A producer / consumer application
P Q R A B
. |

0

communication constraints

Figure 2: The constraint matrix

Filters | many processes | one process
1 23" 157
2 347 277
3 46” 40”7
4 60” 176”
5 737 —

Table 1: Compilation times for the equalizer application
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Figure 3: Schematics of the equalizer application
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