
S
alable and Stru
tured S
hedulingPaul Feautrier �July 20, 2006Abstra
tS
heduling a program (i.e.
onstru
ting a timetable for the exe
u-tion of its operations) is one of the most powerful methods for auto-mati
 parallelization. A s
hedule gives a blueprint for
onstru
ting asyn
hronous program, suitable for an ASIC or VLIW pro
essor. How-ever,
onstru
ting a s
hedule entails solving a large linear program.Even if one a

epts the (experimental) fa
t that the Simplex is al-most always polynomial, the s
heduling time is of the order of a largepower of the program size. Hen
e, the method does not s
ale well.The present paper proposes two methods for improving the situation.Firstly, a large program
an be divided in smaller units (pro
esses)whi
h
an be s
heduled separately. This is stru
tured s
heduling. Se
-ond, one
an use proje
tion methods for solving linear programs in
re-mentally. This is spe
ially eÆ
ient if the dependen
e graph is sparse.Keywords Stru
tured s
heduling, automati
 parallelization, s
al-ability.1 Introdu
tionS
heduling a program (i.e.
onstru
ting a timetable for the exe
utionof its operations) is one of the most powerful methods for automati
parallelization. A s
hedule gives an abstra
t and partial representationof the behaviour of a program, and
an be
onverted either into a loopprogram, suitable for exe
ution on a DSP or VLIW pro
essor, or intoa VHDL spe
i�
ation at the RTL level, suitable as the input of a CADsystem.Roughly speaking (the details
an be found later or in the originalpapers [8, 9℄), s
heduling pro
eeds in two phases:�Paul.Feautrier�ens-lyon.fr, LIP / proje
t Compsys / E
ole Normale Sup�erieurede Lyon / INRIA / Universit�e Lyon I 1

� Ea
h dependen
e in the program is
onverted into a set of linear
onstraints on the
oeÆ
ients of the s
hedule;� These
onstraints are solved by some linear programming algo-rithm like Fourier-Motzkin or the Simplex or Chernikova's algo-rithm.The problem I want to address in this paper is the s
alability ofs
heduling. As a rule of thumb, the number of
onstraints is propor-tional to the number of dependen
es, whi
h is quadrati
 in the sizeof the program. The Simplex
an be more than exponential in theworst
ase, but both experien
e and theory show that its most likely
omplexity is O(m3), where m is the number of
onstraints. It followsthat the
omplexity of the method is of the order of the sixth powerof the size of the program. Hen
e the interest of modular s
hedul-ing; if a large program
an be split into several modules whi
h
an bes
heduled almost independently, large speedups
an result.In the next se
tions I de�ne whi
h type of modules are suitable forparallel programming and review the basi
 s
heduling algorithm. Inse
tion 5, I explain how to improve the s
heduling time of one moduleprovided that the dependen
e graph is sparse. Se
tion 6 explains howto do modular and stru
tured s
heduling. In Se
t. 7, I explain how tobound the size of
ommuni
ation
hannels. In the
on
lusion, I reporton an experiment, I present some open problems and dis
uss futurework.2 Communi
ating Regular Pro
essesModular
ompilation is a very well-known te
hnique, whi
h dates ba
kto the early days of Fortran. For most sequential languages, the mod-ule is the fun
tion. In fa
t, provided one has designed a
lever
allinginterfa
e, fun
tions
an be
ompiled independently of ea
h others1.Nevertheless, the
ompiler output is not an exe
utable programs. Oneneeds another tool, the linker, whose goal is mainly to plug the ad-dresses of the
alled fun
tions into the
allee
ode. Compilation ismodular, but linking is not.In the
ase of parallel programming, fun
tions are not suitableas modules. If fun
tions are handled as bla
k boxes, then one maylose many opportunities for parallelization. If one opens the box,then modularity disappears. There is, however, another possibility:pro
esses and network of pro
esses. Pro
ess networks abstra
t from1In modern languages, the need for a

urate type
he
king indu
es more
omplex rela-tions between modules. 2

the behaviour of message-passing ar
hite
tures: ea
h pro
ess sits ina pro
essor and has its own private memory. Pro
esses
ommuni
ateonly by sending messages over ports and through
hannels. Messagepassing libraries and languages abound. Libraries range from the basi
so
ket system of Unix to MPI and BSP. The best known messagepassing language is O

am. Su
h systems have almost no restri
tionson what the programmer
an do and may su�er from non-deterministi
behaviour and deadlo
ks. The analysis and debugging of programswritten using these libraries is very diÆ
ult.Kahn Pro
ess Networks (KPN) [11℄ are an attempt to impose de-terminism by
onstru
tion:
hannels are perfe
t FIFO queues, andea
h
hannel
an have only one reader and one writer. The stati
analysis of KPN is still diÆ
ult, be
ause send and re
eive operations
an only be
orrelated by
ounting messages, whi
h may lead to non-linear
ounting fun
tions and may even be impossible in the presen
eof
onditionals.My proposal is to use pro
esses as modules, but to
hange the se-manti
 of
hannels. In this paper, a
hannel is an array of arbitrarydimension, whi
h is used in write on
e/read many mode. This
on-straint is enough to insure determinism (the proof is rather te
hni
aland will be published elsewhere). Read and write operations are now
orrelated by
omparing array subs
ripts. To insure the possibilityof pre
ise analysis, subs
ripts must be aÆne fun
tions of surroundingloop
ounters, i.e. the pro
esses must be stati

ontrol programs inthe sense of [7℄.Let me emphasize the fa
t that the language of Communi
atingRegular Pro
esses (CRP) is not a programming language but a spe
i-�
ation language. For instan
e, it is said down below that a pro
ess isa sequential program. This does not mean that a pro
ess must be exe-
uted sequentially; it just says that the observable e�e
ts of a pro
essmust be the same as if it were exe
uted sequentially { performan
eex
epted. The degree of parallelism of a CRP system bears no rela-tion to the number of its pro
esses, and is mostly under
ontrol of itsimplementor.The emphasis of this paper is not on simulation or dire
t implemen-tation, but on stati
 analysis and
ompilation. Among the propertiesthat one would like to
he
k more or less automati
ally are the ab-sen
e of deadlo
ks, the boundedness of the
hannel bu�ers, and thefa
t that no unde�ned value is ever used in a
omputation. Obviously,simulation and testing may pinpoint some errors of this kind. It iswell known, however, that testing is eÆ
ient only in the �rst steps ofa design, and that formal methods are ne
essary to �nd the last bugs.3

2.1 Program Stru
tureAn appli
ation is a
olle
tion of fun
tion and pro
ess de�nitions. Sev-eral de�nitions
an be
olle
ted in a module (usually a �le); an appli-
ation
an be
omposed of an arbitrary number of modules. Like inC, pro
ess and fun
tion de�nitions are top level obje
ts and do notnest.2.2 SyntaxThe basis of the syntax of CRP is ANSI C2. There are, however, a fewnew keywords: pro
ess, inport, outport,
hannel. All these arereserved and are
onsidered as additional \storage
lass spe
i�ers" inthe C grammar.To get a feeling for the syntax of CRP, the reader is referred toFig. 1 whi
h des
ribes a produ
er /
onsumer system.2.3 Semanti
s2.3.1 Basi
 TypesThe basi
 types are void, int and float in various sizes (long, longlong, short,
har, double). The addition of another basi
 type,fix, is
ontemplated for embedded system design.2.3.2 Arrays and other Data Stru
turesThere is an array
onstru
tor, [℄, with the same properties as in C.However, the rules for dimensions are mu
h more permissive than inC. In fa
t, in many
ases, the
ompiler infers the size of the array fromthe way it is used. Similarly, there is a stru
ture
onstru
tor, with thesame syntax and properties as in C.In the present version of the
ompiler, pointers are ignored.2.3.3 Fun
tionsUser-de�ned fun
tions are inlined. Hen
e, re
ursion is forbidden.One may use bla
kbox fun
tions, whi
h are handled by the systemas if they were pure (no modi�
ations of the a
tual parameters or ofglobal variables). In embedded system design, su
h fun
tions may be2This
hoi
e is
ompletely arbitrary. Fortran or Pas
al would do as well, but C is thelanguage of
hoi
e for embedded systems.
4

useful for representing the use of Intelle
tual Properties3. For instan
e,instead of writing:x = y + z;one may want to writex = adder_7bits(y, z);if one knows that 7 bits are enough for this parti
ular addition. An-other use of bla
kbox fun
tions is to hide an irregular pie
e of program.2.3.4 Pro
essesA pro
ess is a sequential program whi
h
an
ommuni
ate with otherpro
esses through
hannels (see 2.3.5). All variables are lo
al to oneand only one pro
ess and are not visible from other pro
esses4.Besides operative statements, a pro
ess
an in
lude pro
ess startstatements, whi
h have the same syntax as a void fun
tion
all. Pro-
ess start statements are not part of the
ontrol
ow of the surroundingpro
ess. In e�e
t all the pro
ess start statements in an appli
ation are
olle
ted and exe
uted immediately at appli
ation start time. One
an de�ne a pro
ess start graph, whi
h must be a DAG.The operating
ode of a pro
ess must be regular, or have stati

ontrol [8℄ in the following sense:� Statements are assignments statements and regular loop state-ments. All variables are
onsidered part of some array, s
alarsbeing zero-dimensional arrays.� The only method of address
al
ulation is subs
ripting into ar-rays of arbitrary dimension. The subs
ripts must be aÆne formsin
onstants and surrounding loop
ounters.Some of these restri
tions are quite natural when one is designing
ompute-intensive embedded systems with real time
onstraints. It isdiÆ
ult, for instan
e, to predi
t the exe
ution time of a while loopor of the traversal of a truly dynami
 data stru
ture. Other restri
-tions
an be lifted by prepro
essing (goto removal, indu
tive variabledete
tion, subs
ript-like pointer dete
tion, fun
tion inlining).3IPs are ready-made hardware modules, usually sold as hardware des
ription language�les.4The model a

epts read-only global variables (e.g. tables of
onstants). This fa
ilityis not dis
ussed here for brevity sake.
5

2.3.5 ChannelsA
hannel is the only medium of
ommuni
ation between pro
esses. A
hannel
an be viewed as a write-on
e/read-many array of inde�nitedimension. Ea
h
ell has a (virtual) full/empty bit. At appli
ationstart time, all su
h bits are set to \empty".� A write to an empty
ell de�nes its value and sets the
ontrol bitto \full".� A write to a full
ell generates an error.� A read of an empty
ell stalls the reading pro
ess until the
ellis �lled.� A read of a full
ell is immediately satis�ed.There is no way of emptying a
ell.The reader is
autioned that this is just a spe
i�
ation of the be-haviour of a
hannel. The a
tual implementation may be quite di�er-ent. In fa
t, the target in this work is a syn
hronous implementation,in whi
h a pro
essor never has to wait for an empty
ell.A
hannel may have any number of readers, and there are no
on-straints on the reading patterns. Reading is not destru
tive: a valueremains available at least as long as some pro
ess may have some usefor it.2.3.6 PortsA port is an interfa
e between a pro
ess and a
hannel. It allows,inter alia, that a pro
ess be instantiated several times, ea
h instan
ebeing
onne
ted to di�erent
hannels. Ports are only allowed as formalparameters to pro
esses.When
onne
ting ports and
hannels, one must verify (stati
ally)that the two entities have the same (data) type and dimension. Chan-nels play the role of a
tual parameters to the port formal parameters.In what follows, and for the sake of simpli
ity, I will omit this
on-ne
tion step (whi
h poses no theoreti
al problem) and assume thatpro
esses are dire
tly
onne
ted to
hannels, and that all ne
essaryveri�
ations have already been done su

essfully.The usual rule of visibility applies to ports and
hannels. Let P bea pro
ess in whi
h a
hannel
 is de�ned. The only pro
esses whi
h
an a

ess
 are P itself and pro
esses whi
h are started by P and havea port
onne
ted to
.
6

3 Dependen
es3.1 NotationsThe iteration ve
tor of a statement is a list of its surrounding loop
ounters, from outside inward. An iteration ve
tor for S
annot takearbitrary values. It must belong to the iteration domain of S, whi
his obtained by stating that ea
h
ounter is within the bounds of the
orresponding loop. Under the assumption that the program is regu-lar, iterations domains are
onvex polyhedra (or, more pre
isely, setsof integral points inside polyhedra). In the presen
e of
onditionals,an iteration domain may be a union of polyhedra instead of a singlepolyhedron. I will ignore this
ompli
ation in what follows.Let DS be the iteration domain of statement S. An iteration of Sor operation is written hS; xi; x 2 DS where x is the iteration ve
tor.The set of operations of a pro
ess P is the disjoint union:EP = [S2PfhS; xi j x 2 DSg;and the set of operation of a CRP system is E = [PEP . In moreabstra
t
ontexts, I may simply write u 2 E for an arbitrary operation.u and v being operations of the same pro
ess P , one writes u <seq v i�u exe
utes before v. <seq is a stri
t total order on EP . On the otherhand, there is no a priori ordering of operations in di�erent pro
esses.In this paper, the most important operations are reads and writesto some
hannel A. I assume that in ea
h statement S there is at most5one a

ess to A, with subs
ript fun
tion fSA, or simply fS when A is
lear from the
ontext. Namely, operation hS; ii a

ess A[fSA(i)℄, andfSA is aÆne.Let W(A) denotes the set of statements that write into
hannel A,and R(A) denotes the set of statements that read from A. The set:F(A) = [S2W(A)ffSA(i) j i 2 DSgis the write window of A. Similarly the following set:G(A) = [S2R(A)ffSA(i) j i 2 DSgis the read window of A. If the following
onstraint:G(A) � F(A); (1)5The general
ase (several a

esses) poses no theoreti
al problem, and its
ost is justone more loop in the
ompiler. For instan
e, the example in Fig. 1 does not observe thisrestri
tion. However, lifting it would greatly
ompli
ate notations and explanations. Thesame observation is true for iteration domains.7

is not satis�ed, it is
lear that some pro
ess will blo
k for ever whena

essing a memory
ell in G(A) � F(A). This
onstraint must be
he
ked by the software before s
heduling. On the other hand, the
ells in F(A) � G(A) are useless. In what follows, I will assume thatthis set is empty, or that all
hannel
ells are useful.3.2 Data dependen
esData dependen
es were de�ned, as early as 1966, for the purpose ofparallelization [3℄. Two operations are in dependen
e if inter
hangingthem in the exe
ution order
hanges the �nal result of the program.This is a global de�nition, whi
h in general is too
omplex to be us-able. A more lo
al de�nition is: two
onse
utive operations are independen
e if inter
hanging them
hanges the history of some vari-able. This de�nition involves semanti
s
onsiderations. For instan
e,to see that the two operations x = x+1 and x = x+2 are (lo
ally) in-dependent, one needs some knowledge of elementary arithmeti
s. Themerit of Bernstein is to have found a purely synta
ti
al
riterion forindependen
e. An operation u being given, let R(u) be the set ofmemory
ells that are read by u (on whi
h the e�e
t of u depends)andW (u) be the set of
ells that are modi�ed by u. It is easy to provethat u and v are independent (u being exe
uted �rst) if the three setsW (u) \W (v) (output dependen
e), W (u) \ R(v) (
ow dependen
e)and R(u) \W (v) (anti-dependen
e) are empty.Data dependen
es are
on
erned with the
ase where the memory
ells under
onsideration are lo
al to some pro
ess. It follows that uand v belong to the same pro
ess and that sequential order is wellde�ned. One says that v depends on u (in symbols u Æ v) if u and vare not independent and if u <seq v.The data dependen
e relation
an be split into pie
es a

ordingto the sour
e statement S, the sink statement T , the array referen
esand the depth of the dependen
e. Ea
h pie
e is a polytope in DS �DT whi
h
an be
he
ked for emptiness by any linear programmingalgorithm, or by more spe
ialized algorithms like Banerjee's test orthe g
d test.3.3 Communi
ation Dependen
esAssume now that the variable whi
h
auses the dependen
e is a
han-nel
ell. One
an still say that some operations are in dependen
e,with the same de�nition as above. The presen
e of an output depen-den
e indi
ates that the \write on
e"
ondition is not respe
ted, andgenerates an error. One must impose a
ow dependen
e (no read
an8

be exe
uted before the �rst and only write), and the absen
e of outputdependen
es, in
onjun
tion with (1), is enough to insure the absen
eof anti dependen
es. Hen
e, ea
h dependen
e involving a
hannel
ell(a
ommuni
ation dependen
e) is a
ow dependen
e and is orientedfrom the write operation to the read operations. These operations
learly belong to di�erent pro
esses, hen
e this ordering does not
on-
i
t dire
tly with any other ordering in a CRP system.In what follows, I will use the same symbol, Æ , for data and
om-muni
ation dependen
es.4 S
heduling4.1 Target Ar
hite
turesIn
ontrast to the above programming model, most of today digitalsystems are syn
hronous: there is one global
lo
k, and all
hangesof state o

ur in relation to the
lo
k. More pre
isely, these systemsare \globally asyn
hronous and lo
ally syn
hronous" (GALS); thereare several unrelated
lo
ks, and di�erent
lo
k domains
ommuni
atethrough syn
hronization proto
ols, like handshake or bus arbitration.The theory of multiple
lo
k systems is still in infan
y. We will postu-late here that the target system is fully syn
hronous. More pre
isely,it has a datapath,
omprising operators, registers, memory, and someinter
onne
t, and a
ontrol part, whi
h
an be
oded either as a pro-gram, as in a VLIW pro
essor, or as a �nite state ma
hine, as in anASIC or FPGA.4.2 S
hedulesA s
hedule is a fun
tion whi
h assigns a starting time to ea
h opera-tion of an appli
ation. In other words, a s
hedule is a fun
tion fromE to the set of time values, T . But what is time? One possibility isto
onsider physi
al time. In that
ase, T is the set of non-negativeintegers, time being measured in
lo
k
y
les. This approa
h is suit-able when dealing with �ne-grain systems in whi
h exe
ution time iswell de�ned (typi
ally one
lo
k
y
le), and with real time problems.Another possibility is to
onsider a s
hedule as just a way of spe
-ifying an exe
ution order. In that
ase, T is any ordered set. � beinga s
hedule, the asso
iated order is:u <� v = �(u) < �(v):The favorites for T are again IN and INd, lexi
ographi
ally ordered.The se
ond
ase gives rise to the so-
alled multidimensional s
hedules.9

The exe
ution order whi
h is de�ned by a s
hedule must be legal,i.e. it must extend the dependen
e relation:8u; v 2 E : u Æ v) �(u) < �(v): (2)To solve this fun
tional inequality, one has to postulate a shape for�. The usual
hoi
e is that �(S; x) is an aÆne form in the iterationve
tor, x: �(S; x) = hS :x+ kS ; (3)where hS is the timing ve
tor of S and kS is a s
alar. For regularprograms, this
hoi
e has the advantage that everything in (2) be
omesaÆne, and that powerful results from the theory of linear inequalities,like Farkas lemma [15℄,
an be used to
hara
terize the solutions. Thereader is referred to [8, 9℄ for details. A short review of the method isgiven below.4.3 Solving the S
heduling ConstraintsThe �rst step of the solution
onsists in splitting formula (2) a

ordingto the sour
e and sink of dependen
es. For a given pair of statements,S and T , the
onstraint now reads:8x 2 DS ; y 2 DT : hS; xi Æ hT; yi) �(S; x) < �(T; y): (4)Ea
h su
h
onstraint represents of the order of Card Æ linear
on-straints on the
oeÆ
ients of �. This number is usually enormous,or even in�nite in the presen
e of unbounded parameters or non-terminating loops. However, thanks to the fa
t that the s
hedules areaÆne, and that the
onstraints de�ning Æ are aÆne, these
onstraints
an be
ompressed into a small �nite set.This
ompression
an be done either by the vertex method [14℄ orby making use of the following version of Farkas lemma [15℄:Lemma 1 The formula:8x : Ax+ b � 0)
:x+ d � 0is equivalent to:9�0 � 0; � � 0 : �:b+ �0 = d; �A =
:provided that the system Ax+ b � 0 is feasible.10

In this formula, A is an m � n matrix, x is an n-ve
tor, b is an m-ve
tor,
 is an n-ve
tor and d is a s
alar. �0 and the ve
tor � areknown as the Farkas multipliers.To apply this result, let x be the
on
atenation (xS ; xT)T of theiteration ve
tors of S and T . Let ASTx + bST � 0 be the system of
onstraints that de�nes the dependen
e relation from S to T . One�rst
he
ks that this system is feasible. If not, the dependen
e doesnot exist and imposes no
onstraints on the s
hedules.The inequality
:x+ d � 0 is taken as the delay between exe
utionof hS; xSi and hT; xT i:
:x+ d = (�hS ; hT):(xS ; xT)T + kT � kS � 1 � 0;whi
h gives the equivalent formulas:�AST = (�hS ; hT); (5)�bST + �0 = kT � kS � 1: (6)For regular programs, AST and bST
an be extra
ted from theprogram text by a simple analysis. Hen
e, (5) is a system of linearequations in positive variables. There is su
h a system for ea
h de-penden
e, and the s
hedules must satisfy all of them. Hen
e, one hasto gather all su
h
onstraints, and submit the grand system thus
on-stru
ted to some linear programming tool. Most of the time, su
h asystem has many solutions (i.e., many legal s
hedules). One
an intro-du
e a linear obje
tive fun
tion and sele
t the best solution in somesense (minimum length of the
riti
al path, for instan
e).However, in some
ases, the system (5) is not feasible. This maybe due to the presen
e of deadlo
ks in the sour
e program. But thefailure
an sometime be tra
ed to
omplexity reasons. A program thathas an aÆne s
hedule
an be exe
uted in linear time when enough pro-
essors are available. It is
lear that there exists programs for whi
hthis is impossible. One
an resort in this
ase to multidimensionals
hedules, whose parallel laten
y is polynomial. The
onstru
tion ofmultidimensional s
hedules is explained in [9℄. I will ignore this diÆ-
ulty here.5 S
alabilityThe number of unknowns in a s
heduling problem is of the order ofthe number of statements times the mean depth of loop nests. Thenumber of dependen
es is in general quadrati
 in the program size,and the number of
onstraints per dependen
es is again proportional11

to the mean nesting depth. Lastly, the Simplex algorithm, while ex-ponential in the worst
ase, has a high probability of being
ubi
 inthe number of unknowns or
onstraints, when these two numbers areof the same order of magnitude. Hen
e, the dire
t solution of thes
heduling
onstraints by linear programming does not s
ale well.5.1 Elimination of the Farkas multipliersThe �rst step in improving the s
alability of the method
onsists ineliminating the Farkas multipliers. The important point is that there isone independent set of Farkas multipliers per dependen
e. Hen
e, theelimination
an pro
eed one dependen
e at a time. The
omplexity ofthe elimination is linked to the maximum nesting level of the program,a small integer. The number of eliminations is equal to the number ofdependen
es, whi
h is at most quadrati
 in the size of the program.Sin
e the Farkas multipliers o

ur in linear equations, one
an startby using Gaussian elimination. In general, there are more unknownsthan equations: all Farkas multipliers
annot be eliminated. The re-sulting
onstraints express the fa
t that the eliminated multipliersmust be positive. This tri
k has been proposed in [8℄ and has provedto be very eÆ
ient in pra
ti
e.But one
an go farther than that, by using elimination (or proje
-tion) methods to �nish the job. The proje
tion of a set D in IRn+1along its �rst dimension is:P = fx j 9y : y:x 2 Dg: (7)It is well known that if D is a polyhedron, so is P . Proje
tion along yis equivalent to the elimination of y in the
onstraints that de�ne D.For polyhedra, there are several proje
tion algorithms:� The simplest one is the Fourier-Motzkin algorithm. Its
om-plexity is super exponential. Part of this
omplexity is due tothe fa
t that the resulting system of
onstraints
ontains manyredundant inequalities.� One
an also use parametri
 linear programming as in PIP [6℄.The solution is given as a disjoint union of polyhedra; re
on-stru
ting P from its subsets is not easy.� Lastly, if one knows the Minkowski representation of D [15℄, itis easy to �nd the Minkowski representation of P by proje
tingthe verti
es and rays of D. From that, one
an re
onstru
t anirredundant
onstraint system with the Chernikova algorithm.12

In my implementation, I use the last method, whi
h has the advan-tage of being mu
h faster than the Fourier-Motzkin algorithm, and ofalways generating irredundant
onstraints.Whatever the proje
tion algorithm, when one has
hosen a pointx 2 P , one
an �nd { in time linear in the number of
onstraints of D {a segment [a; b℄ su
h that if a � y � b, then y:x 2 D. Therefore, aftereliminating all unknowns but one, one
an sele
t a point in the last{ one dimensional { proje
tion, and then ba
k propagate the resultuntil all unknowns have been valued. One
an show that all feasiblepoints for the initial
onstraints
an be obtained in this way. Usually,sele
ting the lowest possible value for ea
h unknown is a good
hoi
e.This te
hnique is not ne
essary in the
ase of the Farkas multipliers,sin
e their value is irrelevant for the �nal s
hedule. It will however beused in the next se
tion.5.2 Stepwise S
hedulingAfter the elimination of the Farkas multipliers, the number of un-knowns has roughly been divided by two, and the number of
on-straints has stayed the same or may have in
reased slightly. S
hedul-ing is still not s
alable. To go further, one has to observe that the
onstraint matrix often is sparse, or, rather, blo
k sparse. In fa
t, adependen
e from S to T being given, the resulting
onstraints
an bewritten as: MST (hS ; kS)T +NST (hT ; kT)T � 0: (8)If one
ompresses ea
h blo
kMST or NST to a single element, one getsthe in
iden
e matrix of the dependen
e graph.If the s
heduling problem is solved by any variant of the Simplexalgorithm, one
annot make use of this sparsity to speed up the reso-lution: the Simplex has �llup. In fa
t, the Simplex algorithm is verysimilar to Gaussian elimination, with the di�eren
e that the
hoi
e ofthe pivot, whi
h is almost arbitrary in Gaussian elimination, is highly
onstrained in the Simplex. Hen
e, one
annot
hoose the pivot thatgenerates the less �llup, as in dire
t methods for sparse linear sys-tem solution [16℄. However, if the Simplex is repla
ed by any kindof su

essive elimination algorithm, one may hope to
ontrol �llup by
areful sele
tion of the unknowns to be eliminated at ea
h stage. Ipropose here the following algorithm:� Partition the program into groups of statements Sk; k = 1; N .Let hk be the
on
atenation of the timing ve
tors of the state-ments in Sk.� For ea
h group Sk; k = 1; N do:13

{ Colle
t all the rows ofM where hk has a non-zero
oeÆ
ient.Remove these rows from M .{ Eliminate hk from the
olle
tion. Add the result of theelimination to M .{ Remember the bounds for hk.� If the �nal system is trivially infeasible (like �1 � 0) stop. Nos
hedule exists.� For ea
h group Sk in reverse order do:{ The bounds for hk are
onstants. Sele
t a value within thebounds for hk (e.g. the lower bound).{ Substitute these values in all other bounds.5.3 Choosing the next vi
timsThe partitioning of the sour
e program into group of statements isne
essarily a heuristi
 pro
ess. In the present version of the soft-ware, I have implemented two very simple approa
hes: one-by-oneelimination, the sele
ted statement being the one whi
h generates thesmallest system of
onstraints, and elimination of all statements atthe same time. Experimental results show that the best heuristi
strongly depends on the shape of the dependen
e graph. One
anin fa
t observe that loosely
oupled statements, like statements in aserie-parallel stru
ture,
an be eliminated individually at almost no
ost, while there is no advantage in separating statements forming a
lique. It should be possible to dedu
e from these observations rulesfor
onstru
ting an eÆ
ient elimination order, but this is left for futurework.6 ModularityIn language and
ompiler design, the standard de�nition of a moduleis \a part of a program whi
h
an be partially
ompiled without ref-eren
e to other parts". Traditionally, the result of partial
ompilationis
alled an obje
t. When all modules have been
ompiled, a linker isneeded to �nalize the
onstru
tion of the target program. Modularityhas many advantages. Modules promote reuse. Also, in
ase of a mod-i�
ation, one re
ompiles only the a�e
ted module(s). But the mostimportant e�e
t of modularity is one of dis
ipline: sin
e one usuallyforbids a

ess to the lo
al variables of a module from another module,the dependen
e graph is simpli�ed and its s
heduling is easier.14

6.1 Channel s
hedulesAs has been said earlier, the natural unit of
ompilation for a parallelprogram is the pro
ess, and dependen
es between pro
esses o

ur onlywhen they share a
hannel. The s
heduling
onstraints (2) are equallyappli
able to the
hannels, and show that the s
hedules of di�erentpro
esses are not independent. This pre
ludes modular s
heduling,unless some \insulation" between pro
esses is provided.Observe that in the CRP model, ea
h
ell in
hannel A is writtenonly on
e at a de�nite time by an operation from its unique writer pro-
ess. Therefore, one
an postulate the existen
e of a
hannel s
hedule�(A; x) su
h that the value A[x℄ is guaranteed to be de�ned at time�(A; x) (and later). For simpli
ity, I assume here that � is aÆne. Thisis a loss of generality. Even when all statements have aÆne s
hedules,sin
e a
hannel
an be divided in parts, ea
h part being written by adi�erent statement, the
hannel s
hedule may only be pie
ewise aÆne.This problem
an be taken into a

ount along the lines of [10℄ and isleft for future work.The value of a
hannel s
hedule is
learly not de�ned for x 62 F(A),but it may be that the linear formula for � nevertheless gives spuriousvalues beyond that domain, by a pro
ess of extrapolation. This is whythe property (1) must be
he
ked independently.With this de�nition, a dependen
e on a
hannel array
an be splitin two parts:� On the write side, a
ell is not available before it has been written.Let S : A[fSA(i)℄ := � � � be a statement that writes into A:i 2 DS) �(A; fSA(i)) � �(S; i): (9)� On the read side, a
ell
annot be read before it is available. LetS : � � � := � � �A[fSA(j)℄ � � � be a statement that read A:j 2 DS) �(S; j) � �(A; fSA(j)) + 1: (10)The 1 in formula (10) is intended to represent a propagation delaythrough the
hannel. I have arbitrarily inserted this delay on the readside, but many other
on�gurations
an be used without
hanging theoverall method. The present
hoi
e re
e
ts the fa
t that a value
anbe written in a register at the end of a
lo
k
y
le, and is available forreading at the beginning of the next
y
le.6.2 The Modular S
heduling AlgorithmLet hP be the
on
atenation of the timing ve
tors for all statementsin pro
ess P , and let hA be the timing ve
tor for array A. After15

appli
ation of the Farkas algorithm to (9) or (10) and elimination ofthe Farkas multipliers, the shape of the
onstraint matrix is as follows.For ea
h pro
ess P there is a system UPhP � 0 whi
h representsthe
onstraints generated by the inner dependen
es in P . The matrixUP is blo
k sparse, and ea
h of its blo
ks is one of the MST or NSTblo
ks in formula (8). For ea
h pro
ess P and ea
h
hannel A whi
his
onne
ted to P there is a system VAPhP +WAPhA � 0 whi
h repre-sents the
onstraints generated by the
ommuni
ation dependen
es ofthe system. These observations suggest the following modular s
hedul-ing algorithm.1. Constru
t the
onstraint matrix for ea
h pro
ess and its adja
ent
hannels.2. For ea
h pro
ess P eliminate hP from the
onstraints:UPhP � 0; VPAhP +WPAhA � 0; for allA
onne
ted toP (11)This �rst pass of
ompilation is modular, in so far as this
an bedone one pro
ess at a time, without referen
e to other pro
esses.The result is a system of
onstraints on
hannel s
hedules.3. When all su
h
ommuni
ation
onstraints have been
omputed(or
olle
ted from a library), they
an be solved as a whole,giving a solution for the
hannel s
hedules. Again, the
ommu-ni
ation
onstraints matrix is blo
k-isomorphi
 to the
ommu-ni
ation graph of the whole system, and is likely to be sparse.This is the only pla
e where the system has to be
onsidered intoto.4. The solution for the
hannel s
hedules
an then be substitutedin the bounds for the
oeÆ
ients of the pro
ess s
hedules, andthese
oeÆ
ients
an be re
overed by ba
k-substitution.5. It remains to gather all s
hedules and submit them to a
ode gen-erator. With present day tools [2℄, there is no hope of stayingmodular there, unless one deals with highly spe
ialized ar
hi-te
tures. However, tools like CLooG are quite eÆ
ient and
anhandle very large programs.Consider Fig. 2, where a system
omposed of 3 pro
esses, P, Q,and R is represented. P and Q send information to R through
hannels Aand B respe
tively. In the
onstraint matrix, there is a
olumn for the
oeÆ
ients of the s
hedules of ea
h of these �ve obje
ts. The s
heduleof P, for instan
e, appears in a blo
 of inner
onstraints, and also in ablo
k
oupling it to the s
hedule of A. Eliminating P gives
onstraintson the s
hedule of A: for instan
e, Pmay impose an upper bound to the16

rate of A. Similarly, R may impose a relation between the rates of A andB, e.g. if R reads two tokens from A to one from B. After eliminating P,Q and R, one obtains the
ommuni
ation
onstraint matrix of Fig. 2,whi
h
an be solved for the
hannel s
hedules. If the
ommuni
ation
onstraints are not feasible, it means that there is no aÆne s
hedulefor the system. This probably indi
ates a deadlo
k; note however thatthe system may have a pie
ewise aÆne s
hedule or even a non linears
hedule, whi
h are not found by the proposed method.Consider now the example of Fig. 1. The �rst step is to
ompilethe two pro
esses. Let:�(W; i) = �i; �(Z) = �; �(M; i) =
i+ Æ; �(A; x) = ax+ b:The produ
er has no data dependen
e, hen
e the only
onstraint is a
ommuni
ation
onstraint:i � 0) ai+ b � �i:Appli
ation of the Farkas algorithm gives6: b � 0 and a � � after elim-ination of the multipliers. After elimination of �, the only remaining
onstraint is b � 0.In the
onsumer there are a
ow dependen
e from Z to M , a
owdependen
e from R to itself, and two
ommuni
ation dependen
esfrom A to R. The
orresponding
onstraints are:i � 0) � + 1 �
i+ Æ;i+ 1 � i0)
i+ Æ + 1 �
i0 + Æ;i � 0) ai+ b+ 1 �
i+ Æ;i � 0) a(i+ 2) + b+ 1 �
i+ Æ:Appli
ation of Farkas lemma gives:� + 1 � Æ;1 �
;a �
;b+ 1 � Æ;2a+ b+ 1 � Æ:Elimination of �; � and
 gives an empty system. The only
ommu-ni
ation
onstraint is b � 0 whose smallest solution is b = 0. Fromthere, one may re
onstru
t the s
hedules:�(W; i) = 0; �(Z) = 0; �(M; i) = i+ 1; �(A; x) = 0:6In very simple
ases like these, one
an apply the vertex method: to be true everywhere,it is suÆ
ient that these inequalities be true at i = 0 and i =1.17

This solution is not satisfa
tory, sin
e one has to deposit an in�nitenumber of values in A in one
lo
k
y
le, and hen
e, the size of Amust be in�nite. For a pra
ti
al implementation, one needs a wayof bounding a priori the
hannel size. A solution to this problem ispresented in Se
t. 7.6.3 Stru
tured s
hedulingIn software engineering, and also when designing an embedded sys-tem, a
ommon pra
ti
e is to wrap up several modules as a
omponentand to reuse it several times in the same or in di�erent designs. Forinstan
e, when designing a video streamer, one may build a downsam-pler, whi
h transforms a high resolution pixel stream into a standardresolution one. One may then instantiate three downsamplers, one forea
h primary
olor. The downsampler itself is made of two pro
esses,a verti
al �lter and a horizontal �lter.Su
h a stru
tured or hierar
hi
al design
an be handled in the CRPmodel at no extra
ost. This is due to the visibility rules of Se
t. 2.3.6.Consider for instan
e the following spe
i�
ation:pro
ess down1(inport int s[℄, outport int t[℄){...}pro
ess down2(inport int u[℄, outport int v[℄){...}pro
ess up(inport int A[℄, outport B[℄){
hannel int X[℄;down1(A, X);down2(X, B);} The up pro
ess re
eives data through its A port, and sends it di-re
tly to pro
ess down1. The output of this pro
ess is sent to down2,whose output is dire
tly returned by up through port B.The important point is that the internal
hannel X is not visiblefrom any pro
ess ex
ept up, down1 and down2. Hen
e, on
e down1and down2 have been
ompiled, giving as results two sets of
ommu-ni
ation
onstraints, one does not have to look anywhere else beforeeliminating X. The result is the set of
ommuni
ations
onstraints forup whi
h
an be used bottom-up for further s
heduling. One
an seethat the global s
hedules are found by a post�x traversal of the pro
essstart tree.
18

7 Bounding the Size of a ChannelThe de�nition of CRP says that a
hannel is unbounded. This isne
essary, sin
e in many embedded systems, one must use an in�niteloop, whi
h, in many
ases, represents the
ow of time and the streamof data. In designing an ASIC or FPGA
ir
uit, or when writinga program, it is not possible to provide an unbounded amount ofmemory. The solution is to analyze the lifespan of ea
h value, andto assign a memory
ell to it only from its de�nition up to its lastuse. This
an be done a posteriori, when s
hedules are known [5℄.The danger is that, when the appli
ation has mu
h parallelism, theinferred memory spa
e may be too large or still be in�nite.Here I want to investigate another approa
h, in whi
h the memorysize is given a priori (e.g. as part of an ar
hite
ture exploration pro-
ess), the problem being that of �nding a s
hedule that
an run in thegiven memory. This is a very diÆ
ult problem, whi
h has already beenstudied in [17℄. The solution given there relies on ad ho
 hypotheses,whi
h may or may not be veri�ed in real life programs. I will use herea similar approa
h. I will �rst identify reasonable assumptions on the
ode of a CRP. I will then solve the problem under these assumptions.The �rst observation is that a sequential program7
an have onlyone in�nite loop. The reason is that an in�nite loop never terminates.Hen
e everything that follows it
an be removed as dead
ode. Simi-larly, if an in�nite loop is en
losed in another loop, the outer loop willonly exe
ute one iteration and
an be removed8. It follows that theshape of a pro
ess is as follows:� First, some �nite
al
ulations, perhaps taking
are of initializa-tion;� Then, at most one in�nite loop;� The body of the in�nite loop may
ontain �nite loops.Let i be the
ounter of the in�nite loop. If the pro
ess under
onsideration writes into some
hannel A, then i must o

ur in atleast one of the subs
ripts of A; if this were not so, the \write on
e"
ondition
ould not be satis�ed. This dependen
e on imay be indire
t,as in:for(i=0;:i++)for(j=i;j<=i;j++)a[i℄ = ...;7Remember that the semanti
 of a CRP is de�ned by its sequential exe
ution.8Take
are that the
on
ept of an in�nite loop is semanti
al not synta
ti
al. There isno in�nite loop in the following fragment: for(i=0;;i++) for(j=i; j<n; j++) S;. Aloop nest is in�nite if the
orresponding iteration domain has a ray.19

I assume that su
h strange
onstru
tions have been removed byprepro
essing (dete
tion of hidden equations). I also assume that io

urs in the �rst subs
ript of A. This
an always be obtained bysubs
ript permutation and is not really a restri
tion. My aim is thento bound the �rst dimension of A. Remember that this may not alwaysbe possible.The
hannels in CRP are write on
e. This means that memory
ellsare in one-to-one
orresponden
e with the values that
ow through the
hannel. If the
hannel is implemented as an array with bounded �rstsubs
ript, the runtime system has to allo
ate a sub-array A[x1℄[�℄ ea
htime x1
hanges, and deallo
ate it as soon as it be
omes useless. In theinterest of performan
e, the me
hanism for allo
ation and deallo
ationmust be as simple as possible. Tools like mallo
 and free are outof the question. One option is to use a
ir
ular bu�er (or moduloallo
ation). Let a be the bu�er asso
iated to A, d its dimension,and B be the size of its �rst dimension. The value A[x℄ is stored in
ell a[x1 mod B℄[x2::d℄. A similar modi�
ation must be applied to allread a

esses to A. It is
lear that the resulting program may not beequivalent to the original, sin
e a value may be overwritten before allreads have been exe
uted. Hen
e, to avoid su
h errors, the pro
essand
hannel s
hedules must satisfy additional
onstraints.To ea
h
hannel let us asso
iate two fun
tions � and �. �(A; x1)is the time at whi
h the sub-array A[x1℄[�℄ is allo
ated. Similarly,�(A; x1) is the time at whi
h A[x1℄[�℄ is deallo
ated. It is legitimate toassume that � and � are aÆne. To ful�ll the \write on
e"
ondition,x1 must be unbounded, and if � were de
reasing, some allo
ationswould o

ur at negative time, i.e. before the appli
ation start time.Hen
e, � and � are monotone in
reasing. These two fun
tions are notindependent: deallo
ation of A[x1℄[�℄ o

urs at the time A[x1+B℄[�℄ isallo
ated, sin
e these two array sli
es o

upy the same memory
ells.Hen
e, assuming that allo
ation and deallo
ation take one
lo
k
y
le:�(A; x1 +B) + 1 = �(A; x1): (12)This
onstraint is enough to ensure that � is stri
tly in
reasing. Ob-viously, one
annot write into an array
ell before its allo
ation, andone
annot read it after it has been deallo
ated. This gives the two
onstraints: 8i 2 DW : �(A; fAW (i)) � �(W; i); (13)8i 2 DR : �(R; j) � �(A; fAR(j)): (14)These
onstraints are in the same form as (10) and (9) and
an besubje
ted to the Farkas algorithm.20

Lemma 2 The
onjun
tion of (12, 13, 14) is suÆ
ient to insure the
orre
tness of the transformed program.Proof Let A[x℄ be a value whi
h is written to a[x1 modB℄[x2::d℄. An error o

urs if a write to a
ell A[x1+kB℄[x2::d℄is exe
uted between instants �(A; x1) and �(A; x1). k is anarbitrary integer; observe that k
annot be null: this wouldimply that A[x℄ is written twi
e, and is in
ontradi
tion tothe \write on
e" assumption. Assume that k is positive,and let hW 0; i0i be the o�ending write:�(W 0; i0) � �(A; x1):By (13), �(A; x1+B) � �(A; x1+kB) � �(W 0; i0), sin
e � isin
reasing, and �(A; x1+B) = �(A; x1)+1, a
ontradi
tion.The proof is similar for the other possibility, k < 0.As a
onsequen
e of (12), one
an dispense with � in favor of �.(13) is a
onstraint on the unique writer to A, while (14) pertains toall its readers. Modularity is thus preserved, After elimination of theinner s
hedules, and before solving the
ommuni
ation
onstraints,one identi�es the allo
ation
oeÆ
ients of the several ports of A, inthe same way that one identi�es the
oeÆ
ients of A
lo
ks.Return to the example of Fig. 1, and assume that 3 memory
ellsare allo
ated to
hannel A. Let �(A; x) = a0x + b0 be the allo
ationfun
tion for A. In this
ase, (13) is:i � 0) a0i+ b0 � �i:From this follows a0 � a and b0 = 0. There are two instan
es of (14),one for ea
h o

urren
e of Y in statement M :i � 0)
i+ Æ � a0(i+ 3) + b0 + 1;i � 0)
i+ Æ � a0(i+ 5) + b0 + 1:It is easy to see that the se
ond inequality is redundant, simply be-
ause, under our hypotheses, a0 is positive. Applying Farkas lemmaand adding the original
onstraints give:
 � a0; Æ � 3a0 + b0 + 1;� + 1 � Æ 1 �
;a �
 b+ 1 � Æ;2a+ b+ 1 � Æ 21

Elimination of �; � and
 gives:1 � 3a0 + b0 + 1;2a+ b+ 1 � 3a0 + b0 + 1;1 � a0; a � a0:The
ommuni
ation
onstraints from the produ
er side are:b = 0; b0 = 0;a0 � a:The solution of the system of
ommuni
ation
onstraints is: a = a0 =1; b = b0 = 0, from whi
h follows � = 1; � = 0;
 = 1; Æ = 3; �(W; i) =i and �(M; i) = i+3. Now the produ
er sends one value at ea
h
lo
k
y
le through the
hannel. This value must be bu�ered to be usedthree
lo
k
y
les later. The reader may
are to redo the
omputationwith other values of the
hannel size. What is the minimum size forwhi
h s
hedules still exist?The system of
onstraints whi
h has been
onstru
ted above maybe infeasible. This may indi
ate either a deadlo
k indu
ed by insuf-�
ient bu�er spa
e, or an appli
ation for whi
h no �nite memory im-plementation exists. In fa
t, the allo
ation s
heme whi
h is proposedhere implies that the lifetime of any value is bounded:�(A; x1)� �(A; x1) = �(A; x1 +B) + 1� �(A; x1) = d�dx1B + 1:Now
onsider the following pie
e of
ode:for(i=0;;i++)for(j=0; j<i; j++)A[i℄[j℄ =;Assume that the
omputation of the values of A enfor
es sequentialexe
ution, and also that ea
h value is useful (i.e. that some readerpro
ess a

esses it some time). Then the lifespan of A[i℄[�℄ extends atleast from the
reation of A[i℄[0℄ to the
reation of A[i℄[i � 1℄, hen
etakes at least i
y
les, whi
h is not bounded.8 Related WorkTo the best of my knowledge, modular s
heduling has not been
on-sidered in the
lassi
al literature. The reason is probably that in ap-pli
ations like job-shop s
heduling, there is no reason to assume that22

the pre
eden
e graph has any spe
ial property. On the other hand,there has been several attempts at modular automati
 parallelization.In [18℄, the unit of modularity is the pro
edure, whose e�e
t issummarized by
omputing regions. The drawba
k of this method isthat one
an �nd parallelism between pro
edure
alls, and also insidepro
edures, but not parallelism astride a pro
edure boundary.Nearer to the subje
t of this paper, Risset and Quinton [13℄ havede�ned stru
tured s
heduling for systems in the Alpha spe
i�
ationlanguage [12℄. Systems
an be s
heduled independently. The s
hed-ules of several systems are then
omposed to give the global s
hedule.This is possible only if somewhat stringent restri
tions are imposed onsystems.The redu
tion of the memory footprint of an appli
ation is impor-tant for embedded systems for reasons of
ost and energy
onsump-tion. Many authors have
onsidered it (see [5℄ and its list of referen
es)mainly assuming that the s
hedule is known. Thies et. al. [17℄ have
onsidered the problem of �nding the s
hedule when the memory sizeis bounded (as is done here) and the simultaneous optimization of thememory size and the s
hedule. Their solution relies on the assumptionthat array subs
ripts are in
reasing fun
tions of the loop subs
ripts;my assumption that the allo
ation fun
tion is in
reasing is similar butmore natural than their hypothesis.The use of pro
esses in parallel programming dates ba
k to the
ommen
ement of the subje
t. Kahn Pro
ess Networks [11℄ have beena sour
e of inspiration for the present paper. The problem with KPNs,as with any other system in whi
h pro
esses
ommuni
ate throughmessage streams, is that analysis is only possible if the
ompiler isable to infer the
orresponden
e between send and re
eive operations.In fa
t, as any pra
tioner of message passing programming knows,having a pro
ess re
eive the wrong message is the main sour
e oferrors. In KPNs, this phenomenon is mitigated by having only onereader and one writer per
hannel. There is still the possibility of anerror in message order. CRP goes one step further in this dire
tionby asso
iating messages to lo
ations in memory, thus rendering theirorder immaterial.9 Con
lusion and future workIn this paper, I have proposed both a language, CRP, and a s
hedulingmethod for stru
tured spe
i�
ation of pro
ess systems. A prototypes
heduler, Syntol, has been implemented and was used to run all theexamples in this paper. Sin
e pro
esses are s
heduled independently,the method promotes reuse, avoids
omplete re
ompilation in
ase of23

a lo
al modi�
ation, and shortens the
ompilation time.9.1 Experimental resultsTo justify the above
laim, I have set up the following somewhat arti�-
ial experiment. An equalizer is
omposed of a signal sour
e, a mixer,and several 6-taps FIR �lters
onne
ted in parallel. The input signalis fed to all �lters. The output signal of ea
h �lter is sent to a mixer,where it is weighted and added to the outputs of other �lters. Thenumber of �lters
an be easily
hanged. The wall-
lo
k time for ea
h
ompilation is given by the se
ond
olumn of Table 1, as a fun
tionof the number of �lters. These numbers were obtained on a PentiumM 1.4 Mhz pro
essor, running Linux, with 256 MB of memory. Thesoftware is mostly written in MuPAD, with the ex
eption of linearprogramming kernels like PIP and the Polylib, whi
h are written inC. These numbers are reprodu
ible to about 1". As these numbersshow, the
ompilation time grows almost linearly with the number of�lters, the
ost of one additional �lter being about 13" of s
hedulingtime.As a
omparison, I have implemented a one-pro
ess version of theappli
ation. Not surprisingly, the
ompilation time is better in theone �lter
ase. This is due to the laun
hing overhead of the
ompiler,whi
h is paid four times in the many pro
ess version against one here.There is a
rossover point when the third �lter is introdu
ed, and thenan explosion in the s
heduling time. In fa
t, the system
reated for the�ve �lters
ase is too large for the present version of the Polylib. Thisphenomenon does not o

ur in the modular version. Here, the onlyproblems whose size grows with the number of �lters are the mixers
heduling system and the system of
ommuni
ation
onstraints. Ifthese systems grow too large, it is always possible to separate the�lters in several banks, and to use a
as
ading mixer to generate theoutput signal.9.2 Future workHowever, there are still many problems to be solved if this proposal isto be
ome a pra
ti
al solution for s
heduling and high level synthesis.Let us outline some of them:� One may want to
onstrain the s
hedule to use no more thana given number of fun
tional units. Solutions are known fortwo parti
ular
ases of this problem. One may apply softwarepipelining to the innermost loop of ea
h nest. The problem is24

that one may have to explore all legal loop permutations until asatisfa
tory solution is found.If the loop nest has a high degree of parallelism, one
an applytiling to the parallel loops. Usually, programs obtained in thisway have bad lo
ality. More general solutions to this problemare sorely needed.� For
omplexity reasons, as soon as resour
es are in a �xed �niteamount, the restri
tion to aÆne s
hedules is no longer tenable.One has to use many-dimensional s
hedules. While there aremethods for
onstru
ting su
h s
hedules [9℄, building their mod-ular extension is by no means obvious.� Many problems in, e.g., image pro
essing or software radio, areslightly outside the regular (or polytope) model. One may some-time obviate this diÆ
ulty by overestimating dependen
es, or byen
apsulating the irregular program parts, or by asking for helpfrom the programmer. There is mu
h work to be done in thisdire
tion.� Although the problem of
ode generation from a s
hedule hasbeen mu
h studied sin
e the pioneering paper of An
ourt et.al. [1℄ (see for instan
e a re
ent paper by C. Bastoul [2℄), thesolutions
an still be mu
h improved, espe
ially by taking intoa

ount the pe
uliarities of the s
hedules and/or the underlyinghardware. One possibility is to adapt the method of Boulet et.al. [4℄ to the dire
t
onstru
tion of the
ontrol automaton.A Appendix: the equalizer appli
ationThe s
hemati
s of the appli
ation is given in Fig. 3 for the three �lter
ase. Cir
les and triangles are pro
esses, and links represent
hannels.Note that the output
hannel of the sour
e pro
ess is dire
tly fed to allthree �lters. In the CRP formalism, there is no need of a tripli
ator.All �lters have the same
ode, whi
h is given below. It is
lear thatthe values in the poids parameter will di�er from �lter to �lter.pro
ess filtre(inport float entree[℄, outport float sortie[℄,float poids[7℄){int i, j;float s[7℄;for(i=0;;i++){Z: s[0℄ = 0.;for(j=1; j<7; j++) 25

MAC: s[j℄ = s[j-1℄ + entree[i+j-1℄ * poids[j℄;W: sortie[i℄ = s[6℄;}} The
ode of the mixer for the three �lters
ase is:void play(float s);float w1, w2, w3;pro
ess mixer(inport float x1[℄,inport float x2[℄,inport float x3[℄){int i;for(i=0;;i++)Q: play(w1*x1[i℄+w2*x2[i℄+w3*x3[i℄);} The
onne
tion between pro
esses and
hannels is spe
i�ed by themain pro
ess:pro
ess sour
e(outport float a[℄);pro
ess filtre(inport float x[℄, outport float y[℄, float poids[℄);pro
ess mixer(inport float u[℄, inport float v[℄, inport float w[℄);float p1[7℄, p2[7℄, p3[7℄;void main(){
hannel float a[℄, b[℄,
[℄, d[℄;SO: sour
e(a);F: filtre(a, b, p1);G: filtre(a,
, p2);H: filtre(a, d, p3);SI: mixer(b,
, d);} Lastly, here is the one pro
ess
ode for the same
ase:void play(float s);float f(int i);float p1[7℄, p2[7℄, p3[7℄;void main(){float a[℄; 26

int i, j;float s1[7℄, s2[7℄, s3[7℄;float w1, w2, w3;for(i=0; i<5; i++)Q: a[i℄ = f(i);for(i=6;;i++){P: a[i℄ = f(i);Z1: s1[0℄ = 0.;for(j=1; j<7; j++)MAC1: s1[j℄ = s1[j-1℄ + a[i+j-1℄ * p1[j℄;Z2: s2[0℄ = 0.;for(j=1; j<7; j++)MAC2: s2[j℄ = s2[j-1℄ + a[i+j-1℄ * p2[j℄;Z3: s3[0℄ = 0.;for(j=1; j<7; j++)MAC3: s3[j℄ = s3[j-1℄ + a[i+j-1℄ * p3[j℄;Q: play(w1*s1[6℄+w2*s2[6℄+w3*s3[6℄);}} Note that it would be straightforward to en
apsulate the abovedesign into a higher level pro
ess and dupli
ate it to
reate a stereo-phoni
 sound system.Referen
es[1℄ Corinne An
ourt and Fran�
ois Irigoin. S
anning polyhedra withDO loops. In Pro
. third SIGPLAN Symp. on Prin
iples andPra
ti
e of Parallel Programming, pages 39{50. ACM Press, April1991.[2℄ C. Bastoul. EÆ
ient
ode generation for automati
 parallelizationand optimization. In ISPDC'03 IEEE International Symposiumon Parallel and Distributed Computing, pages 23{30, Ljublana,O
tober 2003.[3℄ A. J. Bernstein. Analysis of programs for parallel pro
essing.IEEE Trans. on El. Computers, EC-15, 1966.[4℄ Pierre Boulet and Paul Feautrier. S
anning polyhedra withoutDO loops. In PACT'98, O
tober 1998.27

[5℄ A. Darte, R. S
hreiber, and G. Villard. Latti
e-based memoryallo
ation. In 6th ACM International Conferen
e on Compil-ers, Ar
hite
tures and Synthesis for Embedded Systems (CASES2003), O
tober 2003.[6℄ Paul Feautrier. Semanti
al analysis and mathemati
al program-ming; appli
ation to parallelization and ve
torization. In M. Cos-nard, Y. Robert, P. Quinton, and M. Raynal, editors, Workshopon Parallel and Distributed Algorithms, Bonas, pages 309{320.North Holland, 1989.[7℄ Paul Feautrier. Data
ow analysis of s
alar and array referen
es.Int. J. of Parallel Programming, 20(1):23{53, February 1991.[8℄ Paul Feautrier. Some eÆ
ient solutions to the aÆne s
hedulingproblem, I, one dimensional time. Int. J. of Parallel Program-ming, 21(5):313{348, O
tober 1992.[9℄ Paul Feautrier. Some eÆ
ient solutions to the aÆne s
hedulingproblem, II, multidimensional time. Int. J. of Parallel Program-ming, 21(6):389{420, De
ember 1992.[10℄ Martin Griebl, Paul Feautrier, and Christian Lengauer. Index setsplitting. Int. J. of Parallel Programming, 28(6):607{631, 2000.[11℄ G. Kahn. The semanti
s of a simple language for parallel pro-gramming. In North Holland, editor, IFIP'94, pages 471{475,1974.[12℄ Herv�e Leverge, ChristopheMauras, and Patri
e Quinton. The al-pha language and its use for the design of systoli
 arrays. Journalof VLSI Signal Pro
essing, 3:173{182, 1991.[13℄ P. Quinton and T. Risset. Stru
tured s
heduling of re
urren
eequations: Theory and pra
ti
e. In Pro
. of the System Ar
hi-te
ture MOdelling and Simulation Workshop, Le
ture Notes inComputer S
ien
e, 2268, Samos, Gree
e, 2001. Springer Verlag.[14℄ Patri
e Quinton. The systemati
 design of systoli
 arrays. InF. Fogelman, Y. Robert, and M. Ts
huente, editors, Automatanetworks in Computer S
ien
e, pages 229{260. Man
hester Uni-versity Press, De
ember 1987.[15℄ A. S
hrijver. Theory of linear and integer programming. Wiley,NewYork, 1986.[16℄ Robert E. Tarjan. Graph theory and gaussian elimination. InJ. Bun
h and D. Rose, editors, Sparse Matrix Computations. A
a-demi
 Press, 1976. 28

[17℄ William Thies, Fr�ed�eri
 Vivien, Je�rey Sheldon, and SamanAmarasinghe. A uni�ed framework for s
hedule and storage op-timization. In ACM SIGPLAN'01 Conferen
e on ProgrammingLanguage Design and Implementation (PLDI), Snowbird, Utah,jun 2001.[18℄ R�emi Triolet, Fran�
ois Irigoin, and Paul Feautrier. Automati
parallelization of FORTRAN programs in the presen
e of pro
e-dure
alls. In Bernard Robinet and R. Wilhelm, editors, ESOP1986, LNCS 213. Springer-Verlag, 1986.

29

float f(int i);pro
ess produ
er(outport float X[℄) {int i;for(i=0; ; i++)W: X[i℄ = f(i);}
pro
ess
onsumer(inport float Y[℄) {float s;int i;Z: s = 0.;for(i=0; ;i++)M: s = 0.5*(s + Y[i℄*Y[i+2℄);}void main(){
hannel float A[℄;P: produ
er(A);Q:
onsumer(A);}Figure 1: A produ
er /
onsumer appli
ation

P Q

R

A B

P Q R A B

communication constraintsFigure 2: The
onstraint matrixFilters many pro
esses one pro
ess1 23" 15"2 34" 27"3 46" 40"4 60" 176"5 73" |Table 1: Compilation times for the equalizer appli
ation.30

source

filters

mixer

mainFigure 3: S
hemati
s of the equalizer appli
ation

31

	1 Introduction
	2 Communicating Regular Processes
	2.1 Program Structure
	2.2 Syntax
	2.3 Semantics
	2.3.1 Basic Types
	2.3.2 Arrays and other Data Structures
	2.3.3 Functions
	2.3.4 Processes
	2.3.5 Channels
	2.3.6 Ports

	3 Dependences
	3.1 Notations
	3.2 Data dependences
	3.3 Communication Dependences

	4 Scheduling
	4.1 Target Architectures
	4.2 Schedules
	4.3 Solving the Scheduling Constraints

	5 Scalability
	5.1 Elimination of the Farkas multipliers
	5.2 Stepwise Scheduling
	5.3 Choosing the next victim

	6 Modularity
	6.1 Channel schedules
	6.2 The Modular Scheduling Algorithm
	6.3 Structured scheduling

	7 Bounding the Size of a Channel
	8 Related Work
	9 Conclusion and future work
	9.1 Experimental results
	9.2 Future work

	A Appendix: the multi-filter application

