
Salable and Strutured ShedulingPaul Feautrier �July 20, 2006AbstratSheduling a program (i.e. onstruting a timetable for the exeu-tion of its operations) is one of the most powerful methods for auto-mati parallelization. A shedule gives a blueprint for onstruting asynhronous program, suitable for an ASIC or VLIW proessor. How-ever, onstruting a shedule entails solving a large linear program.Even if one aepts the (experimental) fat that the Simplex is al-most always polynomial, the sheduling time is of the order of a largepower of the program size. Hene, the method does not sale well.The present paper proposes two methods for improving the situation.Firstly, a large program an be divided in smaller units (proesses)whih an be sheduled separately. This is strutured sheduling. Se-ond, one an use projetion methods for solving linear programs inre-mentally. This is speially eÆient if the dependene graph is sparse.Keywords Strutured sheduling, automati parallelization, sal-ability.1 IntrodutionSheduling a program (i.e. onstruting a timetable for the exeutionof its operations) is one of the most powerful methods for automatiparallelization. A shedule gives an abstrat and partial representationof the behaviour of a program, and an be onverted either into a loopprogram, suitable for exeution on a DSP or VLIW proessor, or intoa VHDL spei�ation at the RTL level, suitable as the input of a CADsystem.Roughly speaking (the details an be found later or in the originalpapers [8, 9℄), sheduling proeeds in two phases:�Paul.Feautrier�ens-lyon.fr, LIP / projet Compsys / Eole Normale Sup�erieurede Lyon / INRIA / Universit�e Lyon I 1

� Eah dependene in the program is onverted into a set of linearonstraints on the oeÆients of the shedule;� These onstraints are solved by some linear programming algo-rithm like Fourier-Motzkin or the Simplex or Chernikova's algo-rithm.The problem I want to address in this paper is the salability ofsheduling. As a rule of thumb, the number of onstraints is propor-tional to the number of dependenes, whih is quadrati in the sizeof the program. The Simplex an be more than exponential in theworst ase, but both experiene and theory show that its most likelyomplexity is O(m3), where m is the number of onstraints. It followsthat the omplexity of the method is of the order of the sixth powerof the size of the program. Hene the interest of modular shedul-ing; if a large program an be split into several modules whih an besheduled almost independently, large speedups an result.In the next setions I de�ne whih type of modules are suitable forparallel programming and review the basi sheduling algorithm. Insetion 5, I explain how to improve the sheduling time of one moduleprovided that the dependene graph is sparse. Setion 6 explains howto do modular and strutured sheduling. In Set. 7, I explain how tobound the size of ommuniation hannels. In the onlusion, I reporton an experiment, I present some open problems and disuss futurework.2 Communiating Regular ProessesModular ompilation is a very well-known tehnique, whih dates bakto the early days of Fortran. For most sequential languages, the mod-ule is the funtion. In fat, provided one has designed a lever allinginterfae, funtions an be ompiled independently of eah others1.Nevertheless, the ompiler output is not an exeutable programs. Oneneeds another tool, the linker, whose goal is mainly to plug the ad-dresses of the alled funtions into the allee ode. Compilation ismodular, but linking is not.In the ase of parallel programming, funtions are not suitableas modules. If funtions are handled as blak boxes, then one maylose many opportunities for parallelization. If one opens the box,then modularity disappears. There is, however, another possibility:proesses and network of proesses. Proess networks abstrat from1In modern languages, the need for aurate type heking indues more omplex rela-tions between modules. 2

the behaviour of message-passing arhitetures: eah proess sits ina proessor and has its own private memory. Proesses ommuniateonly by sending messages over ports and through hannels. Messagepassing libraries and languages abound. Libraries range from the basisoket system of Unix to MPI and BSP. The best known messagepassing language is Oam. Suh systems have almost no restritionson what the programmer an do and may su�er from non-deterministibehaviour and deadloks. The analysis and debugging of programswritten using these libraries is very diÆult.Kahn Proess Networks (KPN) [11℄ are an attempt to impose de-terminism by onstrution: hannels are perfet FIFO queues, andeah hannel an have only one reader and one writer. The statianalysis of KPN is still diÆult, beause send and reeive operationsan only be orrelated by ounting messages, whih may lead to non-linear ounting funtions and may even be impossible in the preseneof onditionals.My proposal is to use proesses as modules, but to hange the se-manti of hannels. In this paper, a hannel is an array of arbitrarydimension, whih is used in write one/read many mode. This on-straint is enough to insure determinism (the proof is rather tehnialand will be published elsewhere). Read and write operations are noworrelated by omparing array subsripts. To insure the possibilityof preise analysis, subsripts must be aÆne funtions of surroundingloop ounters, i.e. the proesses must be stati ontrol programs inthe sense of [7℄.Let me emphasize the fat that the language of CommuniatingRegular Proesses (CRP) is not a programming language but a spei-�ation language. For instane, it is said down below that a proess isa sequential program. This does not mean that a proess must be exe-uted sequentially; it just says that the observable e�ets of a proessmust be the same as if it were exeuted sequentially { performaneexepted. The degree of parallelism of a CRP system bears no rela-tion to the number of its proesses, and is mostly under ontrol of itsimplementor.The emphasis of this paper is not on simulation or diret implemen-tation, but on stati analysis and ompilation. Among the propertiesthat one would like to hek more or less automatially are the ab-sene of deadloks, the boundedness of the hannel bu�ers, and thefat that no unde�ned value is ever used in a omputation. Obviously,simulation and testing may pinpoint some errors of this kind. It iswell known, however, that testing is eÆient only in the �rst steps ofa design, and that formal methods are neessary to �nd the last bugs.3

2.1 Program StrutureAn appliation is a olletion of funtion and proess de�nitions. Sev-eral de�nitions an be olleted in a module (usually a �le); an appli-ation an be omposed of an arbitrary number of modules. Like inC, proess and funtion de�nitions are top level objets and do notnest.2.2 SyntaxThe basis of the syntax of CRP is ANSI C2. There are, however, a fewnew keywords: proess, inport, outport, hannel. All these arereserved and are onsidered as additional \storage lass spei�ers" inthe C grammar.To get a feeling for the syntax of CRP, the reader is referred toFig. 1 whih desribes a produer / onsumer system.2.3 Semantis2.3.1 Basi TypesThe basi types are void, int and float in various sizes (long, longlong, short, har, double). The addition of another basi type,fix, is ontemplated for embedded system design.2.3.2 Arrays and other Data StruturesThere is an array onstrutor, [℄, with the same properties as in C.However, the rules for dimensions are muh more permissive than inC. In fat, in many ases, the ompiler infers the size of the array fromthe way it is used. Similarly, there is a struture onstrutor, with thesame syntax and properties as in C.In the present version of the ompiler, pointers are ignored.2.3.3 FuntionsUser-de�ned funtions are inlined. Hene, reursion is forbidden.One may use blakbox funtions, whih are handled by the systemas if they were pure (no modi�ations of the atual parameters or ofglobal variables). In embedded system design, suh funtions may be2This hoie is ompletely arbitrary. Fortran or Pasal would do as well, but C is thelanguage of hoie for embedded systems.
4

useful for representing the use of Intelletual Properties3. For instane,instead of writing:x = y + z;one may want to writex = adder_7bits(y, z);if one knows that 7 bits are enough for this partiular addition. An-other use of blakbox funtions is to hide an irregular piee of program.2.3.4 ProessesA proess is a sequential program whih an ommuniate with otherproesses through hannels (see 2.3.5). All variables are loal to oneand only one proess and are not visible from other proesses4.Besides operative statements, a proess an inlude proess startstatements, whih have the same syntax as a void funtion all. Pro-ess start statements are not part of the ontrol ow of the surroundingproess. In e�et all the proess start statements in an appliation areolleted and exeuted immediately at appliation start time. Onean de�ne a proess start graph, whih must be a DAG.The operating ode of a proess must be regular, or have stationtrol [8℄ in the following sense:� Statements are assignments statements and regular loop state-ments. All variables are onsidered part of some array, salarsbeing zero-dimensional arrays.� The only method of address alulation is subsripting into ar-rays of arbitrary dimension. The subsripts must be aÆne formsin onstants and surrounding loop ounters.Some of these restritions are quite natural when one is designingompute-intensive embedded systems with real time onstraints. It isdiÆult, for instane, to predit the exeution time of a while loopor of the traversal of a truly dynami data struture. Other restri-tions an be lifted by preproessing (goto removal, indutive variabledetetion, subsript-like pointer detetion, funtion inlining).3IPs are ready-made hardware modules, usually sold as hardware desription language�les.4The model aepts read-only global variables (e.g. tables of onstants). This failityis not disussed here for brevity sake.
5

2.3.5 ChannelsA hannel is the only medium of ommuniation between proesses. Ahannel an be viewed as a write-one/read-many array of inde�nitedimension. Eah ell has a (virtual) full/empty bit. At appliationstart time, all suh bits are set to \empty".� A write to an empty ell de�nes its value and sets the ontrol bitto \full".� A write to a full ell generates an error.� A read of an empty ell stalls the reading proess until the ellis �lled.� A read of a full ell is immediately satis�ed.There is no way of emptying a ell.The reader is autioned that this is just a spei�ation of the be-haviour of a hannel. The atual implementation may be quite di�er-ent. In fat, the target in this work is a synhronous implementation,in whih a proessor never has to wait for an empty ell.A hannel may have any number of readers, and there are no on-straints on the reading patterns. Reading is not destrutive: a valueremains available at least as long as some proess may have some usefor it.2.3.6 PortsA port is an interfae between a proess and a hannel. It allows,inter alia, that a proess be instantiated several times, eah instanebeing onneted to di�erent hannels. Ports are only allowed as formalparameters to proesses.When onneting ports and hannels, one must verify (statially)that the two entities have the same (data) type and dimension. Chan-nels play the role of atual parameters to the port formal parameters.In what follows, and for the sake of simpliity, I will omit this on-netion step (whih poses no theoretial problem) and assume thatproesses are diretly onneted to hannels, and that all neessaryveri�ations have already been done suessfully.The usual rule of visibility applies to ports and hannels. Let P bea proess in whih a hannel is de�ned. The only proesses whihan aess are P itself and proesses whih are started by P and havea port onneted to .
6

3 Dependenes3.1 NotationsThe iteration vetor of a statement is a list of its surrounding loopounters, from outside inward. An iteration vetor for S annot takearbitrary values. It must belong to the iteration domain of S, whihis obtained by stating that eah ounter is within the bounds of theorresponding loop. Under the assumption that the program is regu-lar, iterations domains are onvex polyhedra (or, more preisely, setsof integral points inside polyhedra). In the presene of onditionals,an iteration domain may be a union of polyhedra instead of a singlepolyhedron. I will ignore this ompliation in what follows.Let DS be the iteration domain of statement S. An iteration of Sor operation is written hS; xi; x 2 DS where x is the iteration vetor.The set of operations of a proess P is the disjoint union:EP = [S2PfhS; xi j x 2 DSg;and the set of operation of a CRP system is E = [PEP . In moreabstrat ontexts, I may simply write u 2 E for an arbitrary operation.u and v being operations of the same proess P , one writes u <seq v i�u exeutes before v. <seq is a strit total order on EP . On the otherhand, there is no a priori ordering of operations in di�erent proesses.In this paper, the most important operations are reads and writesto some hannel A. I assume that in eah statement S there is at most5one aess to A, with subsript funtion fSA, or simply fS when A islear from the ontext. Namely, operation hS; ii aess A[fSA(i)℄, andfSA is aÆne.Let W(A) denotes the set of statements that write into hannel A,and R(A) denotes the set of statements that read from A. The set:F(A) = [S2W(A)ffSA(i) j i 2 DSgis the write window of A. Similarly the following set:G(A) = [S2R(A)ffSA(i) j i 2 DSgis the read window of A. If the following onstraint:G(A) � F(A); (1)5The general ase (several aesses) poses no theoretial problem, and its ost is justone more loop in the ompiler. For instane, the example in Fig. 1 does not observe thisrestrition. However, lifting it would greatly ompliate notations and explanations. Thesame observation is true for iteration domains.7

is not satis�ed, it is lear that some proess will blok for ever whenaessing a memory ell in G(A) � F(A). This onstraint must beheked by the software before sheduling. On the other hand, theells in F(A) � G(A) are useless. In what follows, I will assume thatthis set is empty, or that all hannel ells are useful.3.2 Data dependenesData dependenes were de�ned, as early as 1966, for the purpose ofparallelization [3℄. Two operations are in dependene if interhangingthem in the exeution order hanges the �nal result of the program.This is a global de�nition, whih in general is too omplex to be us-able. A more loal de�nition is: two onseutive operations are independene if interhanging them hanges the history of some vari-able. This de�nition involves semantis onsiderations. For instane,to see that the two operations x = x+1 and x = x+2 are (loally) in-dependent, one needs some knowledge of elementary arithmetis. Themerit of Bernstein is to have found a purely syntatial riterion forindependene. An operation u being given, let R(u) be the set ofmemory ells that are read by u (on whih the e�et of u depends)andW (u) be the set of ells that are modi�ed by u. It is easy to provethat u and v are independent (u being exeuted �rst) if the three setsW (u) \W (v) (output dependene), W (u) \ R(v) (ow dependene)and R(u) \W (v) (anti-dependene) are empty.Data dependenes are onerned with the ase where the memoryells under onsideration are loal to some proess. It follows that uand v belong to the same proess and that sequential order is wellde�ned. One says that v depends on u (in symbols u Æ v) if u and vare not independent and if u <seq v.The data dependene relation an be split into piees aordingto the soure statement S, the sink statement T , the array referenesand the depth of the dependene. Eah piee is a polytope in DS �DT whih an be heked for emptiness by any linear programmingalgorithm, or by more speialized algorithms like Banerjee's test orthe gd test.3.3 Communiation DependenesAssume now that the variable whih auses the dependene is a han-nel ell. One an still say that some operations are in dependene,with the same de�nition as above. The presene of an output depen-dene indiates that the \write one" ondition is not respeted, andgenerates an error. One must impose a ow dependene (no read an8

be exeuted before the �rst and only write), and the absene of outputdependenes, in onjuntion with (1), is enough to insure the abseneof anti dependenes. Hene, eah dependene involving a hannel ell(a ommuniation dependene) is a ow dependene and is orientedfrom the write operation to the read operations. These operationslearly belong to di�erent proesses, hene this ordering does not on-it diretly with any other ordering in a CRP system.In what follows, I will use the same symbol, Æ , for data and om-muniation dependenes.4 Sheduling4.1 Target ArhiteturesIn ontrast to the above programming model, most of today digitalsystems are synhronous: there is one global lok, and all hangesof state our in relation to the lok. More preisely, these systemsare \globally asynhronous and loally synhronous" (GALS); thereare several unrelated loks, and di�erent lok domains ommuniatethrough synhronization protools, like handshake or bus arbitration.The theory of multiple lok systems is still in infany. We will postu-late here that the target system is fully synhronous. More preisely,it has a datapath, omprising operators, registers, memory, and someinteronnet, and a ontrol part, whih an be oded either as a pro-gram, as in a VLIW proessor, or as a �nite state mahine, as in anASIC or FPGA.4.2 ShedulesA shedule is a funtion whih assigns a starting time to eah opera-tion of an appliation. In other words, a shedule is a funtion fromE to the set of time values, T . But what is time? One possibility isto onsider physial time. In that ase, T is the set of non-negativeintegers, time being measured in lok yles. This approah is suit-able when dealing with �ne-grain systems in whih exeution time iswell de�ned (typially one lok yle), and with real time problems.Another possibility is to onsider a shedule as just a way of spe-ifying an exeution order. In that ase, T is any ordered set. � beinga shedule, the assoiated order is:u <� v = �(u) < �(v):The favorites for T are again IN and INd, lexiographially ordered.The seond ase gives rise to the so-alled multidimensional shedules.9

The exeution order whih is de�ned by a shedule must be legal,i.e. it must extend the dependene relation:8u; v 2 E : u Æ v) �(u) < �(v): (2)To solve this funtional inequality, one has to postulate a shape for�. The usual hoie is that �(S; x) is an aÆne form in the iterationvetor, x: �(S; x) = hS :x+ kS ; (3)where hS is the timing vetor of S and kS is a salar. For regularprograms, this hoie has the advantage that everything in (2) beomesaÆne, and that powerful results from the theory of linear inequalities,like Farkas lemma [15℄, an be used to haraterize the solutions. Thereader is referred to [8, 9℄ for details. A short review of the method isgiven below.4.3 Solving the Sheduling ConstraintsThe �rst step of the solution onsists in splitting formula (2) aordingto the soure and sink of dependenes. For a given pair of statements,S and T , the onstraint now reads:8x 2 DS ; y 2 DT : hS; xi Æ hT; yi) �(S; x) < �(T; y): (4)Eah suh onstraint represents of the order of Card Æ linear on-straints on the oeÆients of �. This number is usually enormous,or even in�nite in the presene of unbounded parameters or non-terminating loops. However, thanks to the fat that the shedules areaÆne, and that the onstraints de�ning Æ are aÆne, these onstraintsan be ompressed into a small �nite set.This ompression an be done either by the vertex method [14℄ orby making use of the following version of Farkas lemma [15℄:Lemma 1 The formula:8x : Ax+ b � 0) :x+ d � 0is equivalent to:9�0 � 0; � � 0 : �:b+ �0 = d; �A = :provided that the system Ax+ b � 0 is feasible.10

In this formula, A is an m � n matrix, x is an n-vetor, b is an m-vetor, is an n-vetor and d is a salar. �0 and the vetor � areknown as the Farkas multipliers.To apply this result, let x be the onatenation (xS ; xT)T of theiteration vetors of S and T . Let ASTx + bST � 0 be the system ofonstraints that de�nes the dependene relation from S to T . One�rst heks that this system is feasible. If not, the dependene doesnot exist and imposes no onstraints on the shedules.The inequality :x+ d � 0 is taken as the delay between exeutionof hS; xSi and hT; xT i::x+ d = (�hS ; hT):(xS ; xT)T + kT � kS � 1 � 0;whih gives the equivalent formulas:�AST = (�hS ; hT); (5)�bST + �0 = kT � kS � 1: (6)For regular programs, AST and bST an be extrated from theprogram text by a simple analysis. Hene, (5) is a system of linearequations in positive variables. There is suh a system for eah de-pendene, and the shedules must satisfy all of them. Hene, one hasto gather all suh onstraints, and submit the grand system thus on-struted to some linear programming tool. Most of the time, suh asystem has many solutions (i.e., many legal shedules). One an intro-due a linear objetive funtion and selet the best solution in somesense (minimum length of the ritial path, for instane).However, in some ases, the system (5) is not feasible. This maybe due to the presene of deadloks in the soure program. But thefailure an sometime be traed to omplexity reasons. A program thathas an aÆne shedule an be exeuted in linear time when enough pro-essors are available. It is lear that there exists programs for whihthis is impossible. One an resort in this ase to multidimensionalshedules, whose parallel lateny is polynomial. The onstrution ofmultidimensional shedules is explained in [9℄. I will ignore this diÆ-ulty here.5 SalabilityThe number of unknowns in a sheduling problem is of the order ofthe number of statements times the mean depth of loop nests. Thenumber of dependenes is in general quadrati in the program size,and the number of onstraints per dependenes is again proportional11

to the mean nesting depth. Lastly, the Simplex algorithm, while ex-ponential in the worst ase, has a high probability of being ubi inthe number of unknowns or onstraints, when these two numbers areof the same order of magnitude. Hene, the diret solution of thesheduling onstraints by linear programming does not sale well.5.1 Elimination of the Farkas multipliersThe �rst step in improving the salability of the method onsists ineliminating the Farkas multipliers. The important point is that there isone independent set of Farkas multipliers per dependene. Hene, theelimination an proeed one dependene at a time. The omplexity ofthe elimination is linked to the maximum nesting level of the program,a small integer. The number of eliminations is equal to the number ofdependenes, whih is at most quadrati in the size of the program.Sine the Farkas multipliers our in linear equations, one an startby using Gaussian elimination. In general, there are more unknownsthan equations: all Farkas multipliers annot be eliminated. The re-sulting onstraints express the fat that the eliminated multipliersmust be positive. This trik has been proposed in [8℄ and has provedto be very eÆient in pratie.But one an go farther than that, by using elimination (or proje-tion) methods to �nish the job. The projetion of a set D in IRn+1along its �rst dimension is:P = fx j 9y : y:x 2 Dg: (7)It is well known that if D is a polyhedron, so is P . Projetion along yis equivalent to the elimination of y in the onstraints that de�ne D.For polyhedra, there are several projetion algorithms:� The simplest one is the Fourier-Motzkin algorithm. Its om-plexity is super exponential. Part of this omplexity is due tothe fat that the resulting system of onstraints ontains manyredundant inequalities.� One an also use parametri linear programming as in PIP [6℄.The solution is given as a disjoint union of polyhedra; reon-struting P from its subsets is not easy.� Lastly, if one knows the Minkowski representation of D [15℄, itis easy to �nd the Minkowski representation of P by projetingthe verties and rays of D. From that, one an reonstrut anirredundant onstraint system with the Chernikova algorithm.12

In my implementation, I use the last method, whih has the advan-tage of being muh faster than the Fourier-Motzkin algorithm, and ofalways generating irredundant onstraints.Whatever the projetion algorithm, when one has hosen a pointx 2 P , one an �nd { in time linear in the number of onstraints of D {a segment [a; b℄ suh that if a � y � b, then y:x 2 D. Therefore, aftereliminating all unknowns but one, one an selet a point in the last{ one dimensional { projetion, and then bak propagate the resultuntil all unknowns have been valued. One an show that all feasiblepoints for the initial onstraints an be obtained in this way. Usually,seleting the lowest possible value for eah unknown is a good hoie.This tehnique is not neessary in the ase of the Farkas multipliers,sine their value is irrelevant for the �nal shedule. It will however beused in the next setion.5.2 Stepwise ShedulingAfter the elimination of the Farkas multipliers, the number of un-knowns has roughly been divided by two, and the number of on-straints has stayed the same or may have inreased slightly. Shedul-ing is still not salable. To go further, one has to observe that theonstraint matrix often is sparse, or, rather, blok sparse. In fat, adependene from S to T being given, the resulting onstraints an bewritten as: MST (hS ; kS)T +NST (hT ; kT)T � 0: (8)If one ompresses eah blokMST or NST to a single element, one getsthe inidene matrix of the dependene graph.If the sheduling problem is solved by any variant of the Simplexalgorithm, one annot make use of this sparsity to speed up the reso-lution: the Simplex has �llup. In fat, the Simplex algorithm is verysimilar to Gaussian elimination, with the di�erene that the hoie ofthe pivot, whih is almost arbitrary in Gaussian elimination, is highlyonstrained in the Simplex. Hene, one annot hoose the pivot thatgenerates the less �llup, as in diret methods for sparse linear sys-tem solution [16℄. However, if the Simplex is replaed by any kindof suessive elimination algorithm, one may hope to ontrol �llup byareful seletion of the unknowns to be eliminated at eah stage. Ipropose here the following algorithm:� Partition the program into groups of statements Sk; k = 1; N .Let hk be the onatenation of the timing vetors of the state-ments in Sk.� For eah group Sk; k = 1; N do:13

{ Collet all the rows ofM where hk has a non-zero oeÆient.Remove these rows from M .{ Eliminate hk from the olletion. Add the result of theelimination to M .{ Remember the bounds for hk.� If the �nal system is trivially infeasible (like �1 � 0) stop. Noshedule exists.� For eah group Sk in reverse order do:{ The bounds for hk are onstants. Selet a value within thebounds for hk (e.g. the lower bound).{ Substitute these values in all other bounds.5.3 Choosing the next vitimsThe partitioning of the soure program into group of statements isneessarily a heuristi proess. In the present version of the soft-ware, I have implemented two very simple approahes: one-by-oneelimination, the seleted statement being the one whih generates thesmallest system of onstraints, and elimination of all statements atthe same time. Experimental results show that the best heurististrongly depends on the shape of the dependene graph. One anin fat observe that loosely oupled statements, like statements in aserie-parallel struture, an be eliminated individually at almost noost, while there is no advantage in separating statements forming alique. It should be possible to dedue from these observations rulesfor onstruting an eÆient elimination order, but this is left for futurework.6 ModularityIn language and ompiler design, the standard de�nition of a moduleis \a part of a program whih an be partially ompiled without ref-erene to other parts". Traditionally, the result of partial ompilationis alled an objet. When all modules have been ompiled, a linker isneeded to �nalize the onstrution of the target program. Modularityhas many advantages. Modules promote reuse. Also, in ase of a mod-i�ation, one reompiles only the a�eted module(s). But the mostimportant e�et of modularity is one of disipline: sine one usuallyforbids aess to the loal variables of a module from another module,the dependene graph is simpli�ed and its sheduling is easier.14

6.1 Channel shedulesAs has been said earlier, the natural unit of ompilation for a parallelprogram is the proess, and dependenes between proesses our onlywhen they share a hannel. The sheduling onstraints (2) are equallyappliable to the hannels, and show that the shedules of di�erentproesses are not independent. This preludes modular sheduling,unless some \insulation" between proesses is provided.Observe that in the CRP model, eah ell in hannel A is writtenonly one at a de�nite time by an operation from its unique writer pro-ess. Therefore, one an postulate the existene of a hannel shedule�(A; x) suh that the value A[x℄ is guaranteed to be de�ned at time�(A; x) (and later). For simpliity, I assume here that � is aÆne. Thisis a loss of generality. Even when all statements have aÆne shedules,sine a hannel an be divided in parts, eah part being written by adi�erent statement, the hannel shedule may only be pieewise aÆne.This problem an be taken into aount along the lines of [10℄ and isleft for future work.The value of a hannel shedule is learly not de�ned for x 62 F(A),but it may be that the linear formula for � nevertheless gives spuriousvalues beyond that domain, by a proess of extrapolation. This is whythe property (1) must be heked independently.With this de�nition, a dependene on a hannel array an be splitin two parts:� On the write side, a ell is not available before it has been written.Let S : A[fSA(i)℄ := � � � be a statement that writes into A:i 2 DS) �(A; fSA(i)) � �(S; i): (9)� On the read side, a ell annot be read before it is available. LetS : � � � := � � �A[fSA(j)℄ � � � be a statement that read A:j 2 DS) �(S; j) � �(A; fSA(j)) + 1: (10)The 1 in formula (10) is intended to represent a propagation delaythrough the hannel. I have arbitrarily inserted this delay on the readside, but many other on�gurations an be used without hanging theoverall method. The present hoie reets the fat that a value anbe written in a register at the end of a lok yle, and is available forreading at the beginning of the next yle.6.2 The Modular Sheduling AlgorithmLet hP be the onatenation of the timing vetors for all statementsin proess P , and let hA be the timing vetor for array A. After15

appliation of the Farkas algorithm to (9) or (10) and elimination ofthe Farkas multipliers, the shape of the onstraint matrix is as follows.For eah proess P there is a system UPhP � 0 whih representsthe onstraints generated by the inner dependenes in P . The matrixUP is blok sparse, and eah of its bloks is one of the MST or NSTbloks in formula (8). For eah proess P and eah hannel A whihis onneted to P there is a system VAPhP +WAPhA � 0 whih repre-sents the onstraints generated by the ommuniation dependenes ofthe system. These observations suggest the following modular shedul-ing algorithm.1. Construt the onstraint matrix for eah proess and its adjaenthannels.2. For eah proess P eliminate hP from the onstraints:UPhP � 0; VPAhP +WPAhA � 0; for allA onneted toP (11)This �rst pass of ompilation is modular, in so far as this an bedone one proess at a time, without referene to other proesses.The result is a system of onstraints on hannel shedules.3. When all suh ommuniation onstraints have been omputed(or olleted from a library), they an be solved as a whole,giving a solution for the hannel shedules. Again, the ommu-niation onstraints matrix is blok-isomorphi to the ommu-niation graph of the whole system, and is likely to be sparse.This is the only plae where the system has to be onsidered intoto.4. The solution for the hannel shedules an then be substitutedin the bounds for the oeÆients of the proess shedules, andthese oeÆients an be reovered by bak-substitution.5. It remains to gather all shedules and submit them to a ode gen-erator. With present day tools [2℄, there is no hope of stayingmodular there, unless one deals with highly speialized arhi-tetures. However, tools like CLooG are quite eÆient and anhandle very large programs.Consider Fig. 2, where a system omposed of 3 proesses, P, Q,and R is represented. P and Q send information to R through hannels Aand B respetively. In the onstraint matrix, there is a olumn for theoeÆients of the shedules of eah of these �ve objets. The sheduleof P, for instane, appears in a blo of inner onstraints, and also in ablok oupling it to the shedule of A. Eliminating P gives onstraintson the shedule of A: for instane, Pmay impose an upper bound to the16

rate of A. Similarly, R may impose a relation between the rates of A andB, e.g. if R reads two tokens from A to one from B. After eliminating P,Q and R, one obtains the ommuniation onstraint matrix of Fig. 2,whih an be solved for the hannel shedules. If the ommuniationonstraints are not feasible, it means that there is no aÆne shedulefor the system. This probably indiates a deadlok; note however thatthe system may have a pieewise aÆne shedule or even a non linearshedule, whih are not found by the proposed method.Consider now the example of Fig. 1. The �rst step is to ompilethe two proesses. Let:�(W; i) = �i; �(Z) = �; �(M; i) = i+ Æ; �(A; x) = ax+ b:The produer has no data dependene, hene the only onstraint is aommuniation onstraint:i � 0) ai+ b � �i:Appliation of the Farkas algorithm gives6: b � 0 and a � � after elim-ination of the multipliers. After elimination of �, the only remainingonstraint is b � 0.In the onsumer there are a ow dependene from Z to M , a owdependene from R to itself, and two ommuniation dependenesfrom A to R. The orresponding onstraints are:i � 0) � + 1 � i+ Æ;i+ 1 � i0) i+ Æ + 1 � i0 + Æ;i � 0) ai+ b+ 1 � i+ Æ;i � 0) a(i+ 2) + b+ 1 � i+ Æ:Appliation of Farkas lemma gives:� + 1 � Æ;1 � ;a � ;b+ 1 � Æ;2a+ b+ 1 � Æ:Elimination of �; � and gives an empty system. The only ommu-niation onstraint is b � 0 whose smallest solution is b = 0. Fromthere, one may reonstrut the shedules:�(W; i) = 0; �(Z) = 0; �(M; i) = i+ 1; �(A; x) = 0:6In very simple ases like these, one an apply the vertex method: to be true everywhere,it is suÆient that these inequalities be true at i = 0 and i =1.17

This solution is not satisfatory, sine one has to deposit an in�nitenumber of values in A in one lok yle, and hene, the size of Amust be in�nite. For a pratial implementation, one needs a wayof bounding a priori the hannel size. A solution to this problem ispresented in Set. 7.6.3 Strutured shedulingIn software engineering, and also when designing an embedded sys-tem, a ommon pratie is to wrap up several modules as a omponentand to reuse it several times in the same or in di�erent designs. Forinstane, when designing a video streamer, one may build a downsam-pler, whih transforms a high resolution pixel stream into a standardresolution one. One may then instantiate three downsamplers, one foreah primary olor. The downsampler itself is made of two proesses,a vertial �lter and a horizontal �lter.Suh a strutured or hierarhial design an be handled in the CRPmodel at no extra ost. This is due to the visibility rules of Set. 2.3.6.Consider for instane the following spei�ation:proess down1(inport int s[℄, outport int t[℄){...}proess down2(inport int u[℄, outport int v[℄){...}proess up(inport int A[℄, outport B[℄){hannel int X[℄;down1(A, X);down2(X, B);} The up proess reeives data through its A port, and sends it di-retly to proess down1. The output of this proess is sent to down2,whose output is diretly returned by up through port B.The important point is that the internal hannel X is not visiblefrom any proess exept up, down1 and down2. Hene, one down1and down2 have been ompiled, giving as results two sets of ommu-niation onstraints, one does not have to look anywhere else beforeeliminating X. The result is the set of ommuniations onstraints forup whih an be used bottom-up for further sheduling. One an seethat the global shedules are found by a post�x traversal of the proessstart tree.
18

7 Bounding the Size of a ChannelThe de�nition of CRP says that a hannel is unbounded. This isneessary, sine in many embedded systems, one must use an in�niteloop, whih, in many ases, represents the ow of time and the streamof data. In designing an ASIC or FPGA iruit, or when writinga program, it is not possible to provide an unbounded amount ofmemory. The solution is to analyze the lifespan of eah value, andto assign a memory ell to it only from its de�nition up to its lastuse. This an be done a posteriori, when shedules are known [5℄.The danger is that, when the appliation has muh parallelism, theinferred memory spae may be too large or still be in�nite.Here I want to investigate another approah, in whih the memorysize is given a priori (e.g. as part of an arhiteture exploration pro-ess), the problem being that of �nding a shedule that an run in thegiven memory. This is a very diÆult problem, whih has already beenstudied in [17℄. The solution given there relies on ad ho hypotheses,whih may or may not be veri�ed in real life programs. I will use herea similar approah. I will �rst identify reasonable assumptions on theode of a CRP. I will then solve the problem under these assumptions.The �rst observation is that a sequential program7 an have onlyone in�nite loop. The reason is that an in�nite loop never terminates.Hene everything that follows it an be removed as dead ode. Simi-larly, if an in�nite loop is enlosed in another loop, the outer loop willonly exeute one iteration and an be removed8. It follows that theshape of a proess is as follows:� First, some �nite alulations, perhaps taking are of initializa-tion;� Then, at most one in�nite loop;� The body of the in�nite loop may ontain �nite loops.Let i be the ounter of the in�nite loop. If the proess underonsideration writes into some hannel A, then i must our in atleast one of the subsripts of A; if this were not so, the \write one"ondition ould not be satis�ed. This dependene on imay be indiret,as in:for(i=0;:i++)for(j=i;j<=i;j++)a[i℄ = ...;7Remember that the semanti of a CRP is de�ned by its sequential exeution.8Take are that the onept of an in�nite loop is semantial not syntatial. There isno in�nite loop in the following fragment: for(i=0;;i++) for(j=i; j<n; j++) S;. Aloop nest is in�nite if the orresponding iteration domain has a ray.19

I assume that suh strange onstrutions have been removed bypreproessing (detetion of hidden equations). I also assume that iours in the �rst subsript of A. This an always be obtained bysubsript permutation and is not really a restrition. My aim is thento bound the �rst dimension of A. Remember that this may not alwaysbe possible.The hannels in CRP are write one. This means that memory ellsare in one-to-one orrespondene with the values that ow through thehannel. If the hannel is implemented as an array with bounded �rstsubsript, the runtime system has to alloate a sub-array A[x1℄[�℄ eahtime x1 hanges, and dealloate it as soon as it beomes useless. In theinterest of performane, the mehanism for alloation and dealloationmust be as simple as possible. Tools like mallo and free are outof the question. One option is to use a irular bu�er (or moduloalloation). Let a be the bu�er assoiated to A, d its dimension,and B be the size of its �rst dimension. The value A[x℄ is stored inell a[x1 mod B℄[x2::d℄. A similar modi�ation must be applied to allread aesses to A. It is lear that the resulting program may not beequivalent to the original, sine a value may be overwritten before allreads have been exeuted. Hene, to avoid suh errors, the proessand hannel shedules must satisfy additional onstraints.To eah hannel let us assoiate two funtions � and �. �(A; x1)is the time at whih the sub-array A[x1℄[�℄ is alloated. Similarly,�(A; x1) is the time at whih A[x1℄[�℄ is dealloated. It is legitimate toassume that � and � are aÆne. To ful�ll the \write one" ondition,x1 must be unbounded, and if � were dereasing, some alloationswould our at negative time, i.e. before the appliation start time.Hene, � and � are monotone inreasing. These two funtions are notindependent: dealloation of A[x1℄[�℄ ours at the time A[x1+B℄[�℄ isalloated, sine these two array slies oupy the same memory ells.Hene, assuming that alloation and dealloation take one lok yle:�(A; x1 +B) + 1 = �(A; x1): (12)This onstraint is enough to ensure that � is stritly inreasing. Ob-viously, one annot write into an array ell before its alloation, andone annot read it after it has been dealloated. This gives the twoonstraints: 8i 2 DW : �(A; fAW (i)) � �(W; i); (13)8i 2 DR : �(R; j) � �(A; fAR(j)): (14)These onstraints are in the same form as (10) and (9) and an besubjeted to the Farkas algorithm.20

Lemma 2 The onjuntion of (12, 13, 14) is suÆient to insure theorretness of the transformed program.Proof Let A[x℄ be a value whih is written to a[x1 modB℄[x2::d℄. An error ours if a write to a ell A[x1+kB℄[x2::d℄is exeuted between instants �(A; x1) and �(A; x1). k is anarbitrary integer; observe that k annot be null: this wouldimply that A[x℄ is written twie, and is in ontradition tothe \write one" assumption. Assume that k is positive,and let hW 0; i0i be the o�ending write:�(W 0; i0) � �(A; x1):By (13), �(A; x1+B) � �(A; x1+kB) � �(W 0; i0), sine � isinreasing, and �(A; x1+B) = �(A; x1)+1, a ontradition.The proof is similar for the other possibility, k < 0.As a onsequene of (12), one an dispense with � in favor of �.(13) is a onstraint on the unique writer to A, while (14) pertains toall its readers. Modularity is thus preserved, After elimination of theinner shedules, and before solving the ommuniation onstraints,one identi�es the alloation oeÆients of the several ports of A, inthe same way that one identi�es the oeÆients of A loks.Return to the example of Fig. 1, and assume that 3 memory ellsare alloated to hannel A. Let �(A; x) = a0x + b0 be the alloationfuntion for A. In this ase, (13) is:i � 0) a0i+ b0 � �i:From this follows a0 � a and b0 = 0. There are two instanes of (14),one for eah ourrene of Y in statement M :i � 0) i+ Æ � a0(i+ 3) + b0 + 1;i � 0) i+ Æ � a0(i+ 5) + b0 + 1:It is easy to see that the seond inequality is redundant, simply be-ause, under our hypotheses, a0 is positive. Applying Farkas lemmaand adding the original onstraints give: � a0; Æ � 3a0 + b0 + 1;� + 1 � Æ 1 � ;a � b+ 1 � Æ;2a+ b+ 1 � Æ 21

Elimination of �; � and gives:1 � 3a0 + b0 + 1;2a+ b+ 1 � 3a0 + b0 + 1;1 � a0; a � a0:The ommuniation onstraints from the produer side are:b = 0; b0 = 0;a0 � a:The solution of the system of ommuniation onstraints is: a = a0 =1; b = b0 = 0, from whih follows � = 1; � = 0; = 1; Æ = 3; �(W; i) =i and �(M; i) = i+3. Now the produer sends one value at eah lokyle through the hannel. This value must be bu�ered to be usedthree lok yles later. The reader may are to redo the omputationwith other values of the hannel size. What is the minimum size forwhih shedules still exist?The system of onstraints whih has been onstruted above maybe infeasible. This may indiate either a deadlok indued by insuf-�ient bu�er spae, or an appliation for whih no �nite memory im-plementation exists. In fat, the alloation sheme whih is proposedhere implies that the lifetime of any value is bounded:�(A; x1)� �(A; x1) = �(A; x1 +B) + 1� �(A; x1) = d�dx1B + 1:Now onsider the following piee of ode:for(i=0;;i++)for(j=0; j<i; j++)A[i℄[j℄ =;Assume that the omputation of the values of A enfores sequentialexeution, and also that eah value is useful (i.e. that some readerproess aesses it some time). Then the lifespan of A[i℄[�℄ extends atleast from the reation of A[i℄[0℄ to the reation of A[i℄[i � 1℄, henetakes at least i yles, whih is not bounded.8 Related WorkTo the best of my knowledge, modular sheduling has not been on-sidered in the lassial literature. The reason is probably that in ap-pliations like job-shop sheduling, there is no reason to assume that22

the preedene graph has any speial property. On the other hand,there has been several attempts at modular automati parallelization.In [18℄, the unit of modularity is the proedure, whose e�et issummarized by omputing regions. The drawbak of this method isthat one an �nd parallelism between proedure alls, and also insideproedures, but not parallelism astride a proedure boundary.Nearer to the subjet of this paper, Risset and Quinton [13℄ havede�ned strutured sheduling for systems in the Alpha spei�ationlanguage [12℄. Systems an be sheduled independently. The shed-ules of several systems are then omposed to give the global shedule.This is possible only if somewhat stringent restritions are imposed onsystems.The redution of the memory footprint of an appliation is impor-tant for embedded systems for reasons of ost and energy onsump-tion. Many authors have onsidered it (see [5℄ and its list of referenes)mainly assuming that the shedule is known. Thies et. al. [17℄ haveonsidered the problem of �nding the shedule when the memory sizeis bounded (as is done here) and the simultaneous optimization of thememory size and the shedule. Their solution relies on the assumptionthat array subsripts are inreasing funtions of the loop subsripts;my assumption that the alloation funtion is inreasing is similar butmore natural than their hypothesis.The use of proesses in parallel programming dates bak to theommenement of the subjet. Kahn Proess Networks [11℄ have beena soure of inspiration for the present paper. The problem with KPNs,as with any other system in whih proesses ommuniate throughmessage streams, is that analysis is only possible if the ompiler isable to infer the orrespondene between send and reeive operations.In fat, as any prationer of message passing programming knows,having a proess reeive the wrong message is the main soure oferrors. In KPNs, this phenomenon is mitigated by having only onereader and one writer per hannel. There is still the possibility of anerror in message order. CRP goes one step further in this diretionby assoiating messages to loations in memory, thus rendering theirorder immaterial.9 Conlusion and future workIn this paper, I have proposed both a language, CRP, and a shedulingmethod for strutured spei�ation of proess systems. A prototypesheduler, Syntol, has been implemented and was used to run all theexamples in this paper. Sine proesses are sheduled independently,the method promotes reuse, avoids omplete reompilation in ase of23

a loal modi�ation, and shortens the ompilation time.9.1 Experimental resultsTo justify the above laim, I have set up the following somewhat arti�-ial experiment. An equalizer is omposed of a signal soure, a mixer,and several 6-taps FIR �lters onneted in parallel. The input signalis fed to all �lters. The output signal of eah �lter is sent to a mixer,where it is weighted and added to the outputs of other �lters. Thenumber of �lters an be easily hanged. The wall-lok time for eahompilation is given by the seond olumn of Table 1, as a funtionof the number of �lters. These numbers were obtained on a PentiumM 1.4 Mhz proessor, running Linux, with 256 MB of memory. Thesoftware is mostly written in MuPAD, with the exeption of linearprogramming kernels like PIP and the Polylib, whih are written inC. These numbers are reproduible to about 1". As these numbersshow, the ompilation time grows almost linearly with the number of�lters, the ost of one additional �lter being about 13" of shedulingtime.As a omparison, I have implemented a one-proess version of theappliation. Not surprisingly, the ompilation time is better in theone �lter ase. This is due to the launhing overhead of the ompiler,whih is paid four times in the many proess version against one here.There is a rossover point when the third �lter is introdued, and thenan explosion in the sheduling time. In fat, the system reated for the�ve �lters ase is too large for the present version of the Polylib. Thisphenomenon does not our in the modular version. Here, the onlyproblems whose size grows with the number of �lters are the mixersheduling system and the system of ommuniation onstraints. Ifthese systems grow too large, it is always possible to separate the�lters in several banks, and to use a asading mixer to generate theoutput signal.9.2 Future workHowever, there are still many problems to be solved if this proposal isto beome a pratial solution for sheduling and high level synthesis.Let us outline some of them:� One may want to onstrain the shedule to use no more thana given number of funtional units. Solutions are known fortwo partiular ases of this problem. One may apply softwarepipelining to the innermost loop of eah nest. The problem is24

that one may have to explore all legal loop permutations until asatisfatory solution is found.If the loop nest has a high degree of parallelism, one an applytiling to the parallel loops. Usually, programs obtained in thisway have bad loality. More general solutions to this problemare sorely needed.� For omplexity reasons, as soon as resoures are in a �xed �niteamount, the restrition to aÆne shedules is no longer tenable.One has to use many-dimensional shedules. While there aremethods for onstruting suh shedules [9℄, building their mod-ular extension is by no means obvious.� Many problems in, e.g., image proessing or software radio, areslightly outside the regular (or polytope) model. One may some-time obviate this diÆulty by overestimating dependenes, or byenapsulating the irregular program parts, or by asking for helpfrom the programmer. There is muh work to be done in thisdiretion.� Although the problem of ode generation from a shedule hasbeen muh studied sine the pioneering paper of Anourt et.al. [1℄ (see for instane a reent paper by C. Bastoul [2℄), thesolutions an still be muh improved, espeially by taking intoaount the peuliarities of the shedules and/or the underlyinghardware. One possibility is to adapt the method of Boulet et.al. [4℄ to the diret onstrution of the ontrol automaton.A Appendix: the equalizer appliationThe shematis of the appliation is given in Fig. 3 for the three �lterase. Cirles and triangles are proesses, and links represent hannels.Note that the output hannel of the soure proess is diretly fed to allthree �lters. In the CRP formalism, there is no need of a tripliator.All �lters have the same ode, whih is given below. It is lear thatthe values in the poids parameter will di�er from �lter to �lter.proess filtre(inport float entree[℄, outport float sortie[℄,float poids[7℄){int i, j;float s[7℄;for(i=0;;i++){Z: s[0℄ = 0.;for(j=1; j<7; j++) 25

MAC: s[j℄ = s[j-1℄ + entree[i+j-1℄ * poids[j℄;W: sortie[i℄ = s[6℄;}} The ode of the mixer for the three �lters ase is:void play(float s);float w1, w2, w3;proess mixer(inport float x1[℄,inport float x2[℄,inport float x3[℄){int i;for(i=0;;i++)Q: play(w1*x1[i℄+w2*x2[i℄+w3*x3[i℄);} The onnetion between proesses and hannels is spei�ed by themain proess:proess soure(outport float a[℄);proess filtre(inport float x[℄, outport float y[℄, float poids[℄);proess mixer(inport float u[℄, inport float v[℄, inport float w[℄);float p1[7℄, p2[7℄, p3[7℄;void main(){hannel float a[℄, b[℄, [℄, d[℄;SO: soure(a);F: filtre(a, b, p1);G: filtre(a, , p2);H: filtre(a, d, p3);SI: mixer(b, , d);} Lastly, here is the one proess ode for the same ase:void play(float s);float f(int i);float p1[7℄, p2[7℄, p3[7℄;void main(){float a[℄; 26

int i, j;float s1[7℄, s2[7℄, s3[7℄;float w1, w2, w3;for(i=0; i<5; i++)Q: a[i℄ = f(i);for(i=6;;i++){P: a[i℄ = f(i);Z1: s1[0℄ = 0.;for(j=1; j<7; j++)MAC1: s1[j℄ = s1[j-1℄ + a[i+j-1℄ * p1[j℄;Z2: s2[0℄ = 0.;for(j=1; j<7; j++)MAC2: s2[j℄ = s2[j-1℄ + a[i+j-1℄ * p2[j℄;Z3: s3[0℄ = 0.;for(j=1; j<7; j++)MAC3: s3[j℄ = s3[j-1℄ + a[i+j-1℄ * p3[j℄;Q: play(w1*s1[6℄+w2*s2[6℄+w3*s3[6℄);}} Note that it would be straightforward to enapsulate the abovedesign into a higher level proess and dupliate it to reate a stereo-phoni sound system.Referenes[1℄ Corinne Anourt and Fran�ois Irigoin. Sanning polyhedra withDO loops. In Pro. third SIGPLAN Symp. on Priniples andPratie of Parallel Programming, pages 39{50. ACM Press, April1991.[2℄ C. Bastoul. EÆient ode generation for automati parallelizationand optimization. In ISPDC'03 IEEE International Symposiumon Parallel and Distributed Computing, pages 23{30, Ljublana,Otober 2003.[3℄ A. J. Bernstein. Analysis of programs for parallel proessing.IEEE Trans. on El. Computers, EC-15, 1966.[4℄ Pierre Boulet and Paul Feautrier. Sanning polyhedra withoutDO loops. In PACT'98, Otober 1998.27

[5℄ A. Darte, R. Shreiber, and G. Villard. Lattie-based memoryalloation. In 6th ACM International Conferene on Compil-ers, Arhitetures and Synthesis for Embedded Systems (CASES2003), Otober 2003.[6℄ Paul Feautrier. Semantial analysis and mathematial program-ming; appliation to parallelization and vetorization. In M. Cos-nard, Y. Robert, P. Quinton, and M. Raynal, editors, Workshopon Parallel and Distributed Algorithms, Bonas, pages 309{320.North Holland, 1989.[7℄ Paul Feautrier. Dataow analysis of salar and array referenes.Int. J. of Parallel Programming, 20(1):23{53, February 1991.[8℄ Paul Feautrier. Some eÆient solutions to the aÆne shedulingproblem, I, one dimensional time. Int. J. of Parallel Program-ming, 21(5):313{348, Otober 1992.[9℄ Paul Feautrier. Some eÆient solutions to the aÆne shedulingproblem, II, multidimensional time. Int. J. of Parallel Program-ming, 21(6):389{420, Deember 1992.[10℄ Martin Griebl, Paul Feautrier, and Christian Lengauer. Index setsplitting. Int. J. of Parallel Programming, 28(6):607{631, 2000.[11℄ G. Kahn. The semantis of a simple language for parallel pro-gramming. In North Holland, editor, IFIP'94, pages 471{475,1974.[12℄ Herv�e Leverge, ChristopheMauras, and Patrie Quinton. The al-pha language and its use for the design of systoli arrays. Journalof VLSI Signal Proessing, 3:173{182, 1991.[13℄ P. Quinton and T. Risset. Strutured sheduling of reurreneequations: Theory and pratie. In Pro. of the System Arhi-teture MOdelling and Simulation Workshop, Leture Notes inComputer Siene, 2268, Samos, Greee, 2001. Springer Verlag.[14℄ Patrie Quinton. The systemati design of systoli arrays. InF. Fogelman, Y. Robert, and M. Tshuente, editors, Automatanetworks in Computer Siene, pages 229{260. Manhester Uni-versity Press, Deember 1987.[15℄ A. Shrijver. Theory of linear and integer programming. Wiley,NewYork, 1986.[16℄ Robert E. Tarjan. Graph theory and gaussian elimination. InJ. Bunh and D. Rose, editors, Sparse Matrix Computations. Aa-demi Press, 1976. 28

[17℄ William Thies, Fr�ed�eri Vivien, Je�rey Sheldon, and SamanAmarasinghe. A uni�ed framework for shedule and storage op-timization. In ACM SIGPLAN'01 Conferene on ProgrammingLanguage Design and Implementation (PLDI), Snowbird, Utah,jun 2001.[18℄ R�emi Triolet, Fran�ois Irigoin, and Paul Feautrier. Automatiparallelization of FORTRAN programs in the presene of proe-dure alls. In Bernard Robinet and R. Wilhelm, editors, ESOP1986, LNCS 213. Springer-Verlag, 1986.

29

float f(int i);proess produer(outport float X[℄) {int i;for(i=0; ; i++)W: X[i℄ = f(i);}
proess onsumer(inport float Y[℄) {float s;int i;Z: s = 0.;for(i=0; ;i++)M: s = 0.5*(s + Y[i℄*Y[i+2℄);}void main(){hannel float A[℄;P: produer(A);Q: onsumer(A);}Figure 1: A produer / onsumer appliation

P Q

R

A B

P Q R A B

communication constraintsFigure 2: The onstraint matrixFilters many proesses one proess1 23" 15"2 34" 27"3 46" 40"4 60" 176"5 73" |Table 1: Compilation times for the equalizer appliation.30

source

filters

mixer

mainFigure 3: Shematis of the equalizer appliation

31

	1 Introduction
	2 Communicating Regular Processes
	2.1 Program Structure
	2.2 Syntax
	2.3 Semantics
	2.3.1 Basic Types
	2.3.2 Arrays and other Data Structures
	2.3.3 Functions
	2.3.4 Processes
	2.3.5 Channels
	2.3.6 Ports

	3 Dependences
	3.1 Notations
	3.2 Data dependences
	3.3 Communication Dependences

	4 Scheduling
	4.1 Target Architectures
	4.2 Schedules
	4.3 Solving the Scheduling Constraints

	5 Scalability
	5.1 Elimination of the Farkas multipliers
	5.2 Stepwise Scheduling
	5.3 Choosing the next victim

	6 Modularity
	6.1 Channel schedules
	6.2 The Modular Scheduling Algorithm
	6.3 Structured scheduling

	7 Bounding the Size of a Channel
	8 Related Work
	9 Conclusion and future work
	9.1 Experimental results
	9.2 Future work

	A Appendix: the multi-filter application

