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TUTORIAL X

1 Finite fields
In this exercise, we will prove some properties of finite fields. In the following, we will denote by Fq

a finite field of cardinality q (we will see that there exists a unique field of cardinality q so Fq is in fact
“the” finite field of cardinality q).
We recall that a field K is a ring, with a neutral element 0 for the addition and a neutral element 1 for the
multiplication (0 6= 1), and such that every non zero element in K has an inverse for the multiplication.
We also want that the multiplication is commutative inK (and of course also the addition is commutative
but this is always the case in a ring).

1. Let n ≥ 2, show that Z/nZ is a field if and only if n is a prime.

2. Prove that there exists a prime p such that Fq contains Z/pZ.

3. Prove that there is an n ≥ 1 such that q = pn.

So far, we have proven that if Fq is a finite field of cardinality q, then q is a prime power. Now
we prove the converse. Assume that q = pn for some prime n, we will construct a finite field of
cardinality q.

4. Let K be a field and P ∈ K[X] a polynomial with coefficients in K. Show that K[X]/(P ) is a field
if and only if P is irreducible in K[X].

5. We admit that, in (Z/pZ)[X], there exist irreducible polynomials of any degree. Construct a finite
field of cardinality q.

So far, we have proven that there exist finite field of cardinality pn for any prime p and n ≥ 1 and
that there are the unique possible cardinality for finite fields. We will now show that for a given
q = pn there is a unique field of cardinality q up to isomorphism (and then we can call it Fq without
ambiguity).

6. (Optional) We admit that for any prime p, there exist an algebraic closure of Z/pZ, that is a
field Fp that contains Z/pZ and such that any polynomial in Fp[X] has a root in Fp (we also
want that all elements of Fp are algebraic on Z/pZ but this is not important here). Show that
Fq = {a ∈ Fp, a

q = a}.
This proves the unicity of Fq.

2 Isoperimetric inequality for the discrete hypercube
Let V = {0, 1}n and let G = (V,E) be the hypercube graph (i.e., we have (u, v) ∈ E if u and v differ at
exactly one coordinate). We define the boundary of S ⊂ V as the set of all edges that go from the inside
of S to the outside of S, i.e., ∂S = {(u, v) ∈ E : u ∈ S, v /∈ S}. Furthermore, we call |S| the volume of
S, and we denote by δ(S) = |∂S| the size of the boundary of S.

1. Show that for any S we have δ(S) = n|S| − 2e(S), where e(S) = |{(u, v) ∈ E : u, v ∈ S}| is the
number of edges in the subgraph induced by S.

2. Let X = (X1, . . . , Xn) be a uniform random variable on S. Compute
∑n

i=1H(Xi|X−i).



3. Prove the entropy chain rule: for arbitrary random variablesX1, . . . , Xn we haveH(X1, . . . , Xn) =∑n
i=1H(Xi|X1, . . . , Xi−1).

4. Prove that δ(S) ≥ |S|(n− log |S|).

5. A k-dimensional subcube is a subset of G obtained by fixing n− k coordinates to some values and
allowing the remaining k coordinates to take any value. Show that among the sets of volume 2k

subcubes minimize the size of the boundary.

3 q-ary Entropy and Volume of Hamming Balls
q-ary entropy function: Let q be an integer and x be a real number such that q ≥ 2 and 0 ≤ x ≤ 1.
Then the q-ary entropy function is defined as follows:

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).

Volume of a Hamming ball: Let q ≥ 2 and n ≥ r ≥ 1 be integers. The volume of a Hamming ball of
radius r is given by

Volq(r, n) = |Bq(0, r)| =
r∑

i=0

(
n

i

)
(q − 1)i.

For 0 ≤ p ≤ 1− 1
q

real, show that the following bounds hold for large enough n.

1. Volq(pn, n) ≤ qnHq(p).

2. Volq(pn, n) ≥ qnHq(p)−o(n). (Hint: Use Stirling’s approximation)
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