TUTORIAL XI

1 Error-correcting VS error-detecting codes

- 1. Show the two following implications for a code C and even integer $d \ge 2$:
 - 1. If C has minimum distance at least d, then C can correct at least $\frac{d}{2} 1$ errors.
 - 2. If C can correct at least $\frac{d}{2} 1$ errors, then C has minimum distance at least d 1.
- 2. Show that the following statements are equivalent for a code C and an integer $d \ge 2$:
 - 1. C has minimum distance d.
 - 2. C can detect d 1 errors.
 - 3. C can correct d 1 erasures (in the erasure model, the receiver knows where the errors have occurred).

2 Generalized Hamming bound

Prove the following bound: for any $(n, k, d)_q$ code $C \subseteq (\Sigma)^n$ with $|\Sigma| = q$,

$$k \le n - \log_q \left(\sum_{i=0}^{\lfloor \frac{(d-1)}{2} \rfloor} {n \choose i} (q-1)^i \right)$$

3 Parity check matrix

Let C be a $[n, k, d]_q$ -linear code and $G \in \mathbb{F}_q^{k \times n}$ be a generator matrix. That is, $C = \{xG, x \in \mathbb{F}_q^k\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_q^{(n-k) \times n}$ such that for all $c \in \mathbb{F}_q^n$ we have $cH^T = 0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

- 1. Show that H is a parity check matrix if and only if $GH^T = 0$ and rank(H) = n k.
- 2. Show that, from G we can construct a generator matrix G' of the form $G' = [I_k|P]$ for some $P \in \mathbb{F}_q^{k \times (n-k)}$. (If n is not optimal, we may have to permute the coefficients of the vectors).
- 3. Construct a parity check matrix from G'.
- 4. Construct a parity check matrix of the code given by the generator matrix $G = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ in \mathbb{F}_2 .

4 Almost-universal hash-functions: link between almost-universal hash-functions and codes with a good distance

A hash function is generally a function from a large space to a small one. A desirable property for a hash function is that there are few collisions. A family of functions $\{f_y\}_{y \in \mathcal{Y}}$ from $f_y : \mathcal{X} \to \mathcal{Z}$ is called ϵ -almost universal if for any $x \neq x'$, we have $\Pr_y \{f_y(x) = f_y(x')\} \leq \epsilon$ for a uniformly chosen $y \in \mathcal{Y}$. In other words, for any $x \neq x'$,

$$|\{y \in \mathcal{Y} : f_y(x) = f_y(x')\}| \le \epsilon |\mathcal{Y}|.$$
(1)

The objective of the exercise is to show that almost-universal hash-functions and codes with a good distance are equivalent: from one you can construct the other efficiently.

Definition 4.1. Let $\mathcal{H} = \{f_1, \ldots, f_n\}$ be a family of hash-functions, where for each $1 \leq i \leq n$, $f_i : \mathcal{X} \to \mathcal{Z}$. We define the code $C_{\mathcal{H}} = \mathcal{X} \to \mathcal{Z}^n$ by

$$C_{\mathcal{H}}(x) = (f_1(x), \dots, f_n(x))$$

for all $x \in \mathcal{X}$.

On the contrary, given a code $C : \mathcal{X} \to \mathcal{Z}^n$, we define the family of hash-functions $\mathcal{H}_C = \{f_1, \ldots, f_n\}$, from \mathcal{X} to \mathcal{Z} by

$$f_i(x) = C(x)_i$$

where $x \in \mathcal{X}$ and $C(x)_i$ is the *i*-th letter of C(x) in the alphabet \mathcal{Z} .

- 1. Let $\mathcal{H} = \{f_1, \ldots, f_n\}$ be a family of ϵ -almost universal hash-functions. Prove that $C_{\mathcal{H}}$ has minimum distance $(1 \epsilon)n$.
- 2. On the other way, let C be a code from \mathcal{X} to \mathcal{Z}^n with minimum distance δn , prove that \mathcal{H}_C is a family of (1δ) -almost universal hash-functions.