1 Homework 2

1. Let \(A_q(n, d) \) be the largest \(k \) such that a code over alphabet \(\{1, \ldots, q\} \) of block length \(n \), dimension \(k \) and minimum distance \(d \) exists (recall that this corresponds to the notation \((n, k, d)_q\)). Determine \(A_2(3, d) \) for all integers \(d \geq 1 \).

2. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a binary linear code \([n, k, d_2]_2\) provided that

\[
2^{n-k} > 1 + \binom{n-1}{1} + \ldots + \binom{n-1}{d-2}.
\]

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is tight for the \([7, 4, 3]_2\) Hamming code.

3. A well-studied family of codes is called cyclic codes. Their defining property is that if \((c_0, \ldots, c_{n-1}) \in C\) then \((c_{n-1}, c_0, \ldots, c_{n-2}) \in C\). Show that if \(\beta \) is a generator of \(\mathbb{F}_q^* \) and \(\alpha_i = \beta_i^{-1} \) with \(n = q - 1 \), then the \([n, k]_q\) Reed-Solomon code is cyclic.

4. The Hadamard code has a nice property that it can be locally decoded. Let \(C_{Had,r} : \{0, 1\}^r \rightarrow \{0, 1\}^{2^r} \) be the encoding function of the Hadamard code. Suppose you are interested only in the \(i \)-th bit \(x_i \) of the message \(x \in \{0, 1\}^r \). The challenge is that you only have access to \(y \in \{0, 1\}^{2^r} \) such that \(\Delta(C_{Had,r}(x), y) \leq \frac{2^r}{10} \) and you would like to look only at a few bits of \(y \). Show that by querying only 2 well-chosen positions (the choice will involve some randomization) of \(y \), you can determine \(x_i \) correctly with probability \(\frac{4}{5} \) (the probability here is over the choice of the queries, in particular \(x, y \) and \(i \) are fixed).

Hint: You might want to query \(y \) at the position labelled by \(u \in \{0, 1\}^r \) at random and the position \(u + e_i \) where \(e_i \in \{0, 1\}^r \) is the binary representation of \(i \).

2 Reed-Solomon codes

Consider the Reed-Solomon code over a field \(\mathbb{F}_q \) and block length \(n = q - 1 \) defined as

\[
RS[n, k]_q = \{(p(1), p(\alpha), \ldots, p(\alpha^{n-1})) \mid p \in \mathbb{F}_q[X] \text{ has degree } \leq k-1\}
\]

where \(\alpha \) is a generator of the multiplicative group \(\mathbb{F}_q^* \) of \(\mathbb{F}_q \).

1. Show that for any \(k \in [1; n-1] \), we have

\[
\sum_{i=0}^{n-1} \alpha^{ki} = 0
\]

2. Prove that

\[
RS[n, k]_q \subseteq \left\{ (c_0, \ldots, c_{n-1}) \in \mathbb{F}_q^n \mid \forall t \in [1; n-k], c(\alpha^t) = 0, \text{ where } c(X) = \sum_{i=0}^{n-1} c_iX^i \right\}
\]
3. Prove that the following matrix is invertible, and compute its inverse.

$$W(\alpha) = \begin{pmatrix}
1 & 1 & \ldots & 1 \\
1 & \alpha & \ldots & \alpha^{n-1} \\
1 & \alpha^2 & \ldots & \alpha^{2n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{n-1} & \ldots & \alpha^{(n-1)(n-1)}
\end{pmatrix}$$

4. Prove that

$$RS[n, k]_q \supseteq \left\{ (c_0, \ldots, c_{n-1}) \in \mathbb{F}_q^n \mid \forall l \in [1; n-k], c(\alpha^l) = 0, \text{ where } c(X) = \sum_{i=0}^{n-1} c_i X^i \right\}$$

3 Secret Sharing

Secret sharing is a cryptographic problem of splitting a secret among several participants/players in such a way that the secret cannot be reconstructed unless a sufficient number of shares are combined. More formally, an \((\ell, m)\)-secret sharing scheme takes as input a set of \(n\) players \(P_1, \ldots, P_n\) and a secret \(s \in \mathcal{X}\) to be shared among them. The output is a set of shares \(s_1, \ldots, s_n\) where \(s_i\) corresponds to \(P_i\). The scheme must satisfy the following properties.

1. For all \(A \subseteq \{1, \ldots, n\}\) with \(|A| \geq m\), \(\{P_i\}_{i \in A}\) can recover \(s\) from \(\{s_i\}_{i \in A}\).

2. For all \(B \subseteq \{1, \ldots, n\}\) with \(|B| \leq \ell\), \(\{P_i\}_{i \in B}\) cannot recover \(s\) from \(\{s_i\}_{i \in B}\). By cannot recover, we mean that \(s\) is information theoretically hidden to all parties in \(B\) or equivalently, \(s\) is equally likely to take on any value in \(\mathcal{X}\).

Shamir’s \((\ell, \ell+1)\)-secret sharing scheme: Let \(\mathcal{X} = \mathbb{F}_q\) with \(q \geq n\) and \(1 \leq \ell \leq n-1\). Pick a random polynomial \(f(x) \in \mathbb{F}_q[X]\) of degree \(\leq \ell\) such that \(f(0) = s\). Choose distinct \(\alpha_i \in \mathbb{F}_q^*\) and set \(s_i = (f(\alpha_i), \alpha_i)\).

1. Show that the properties 1 and 2 hold for this scheme.

Linear codes and secret sharing: Consider \(\mathcal{X} = \mathbb{F}_q\) with \(q \geq n\). Let \(C\) be an \([n+1, k, d]_q\)-code and \(C^\perp\) be its dual \([n+1, n+1-k, d^\perp]_q\)-code. Consider the following secret sharing scheme: pick a random codeword \(c = (c_0, c_1, \ldots, c_n) \in C^\perp\) such that \(c_0 = s\), and set \(s_i = c_i\) for \(i \in [1, n]\).

1. Argue that the scheme is correct (that is, any \(s \in \mathbb{F}_q\) corresponds to some codeword).

2. Show that it is an \((\ell, m)\)-secret sharing scheme for all \(\ell \leq d^\perp - 2\) and \(m \geq n - d + 2\).

Correspondence to Reed-Solomon?

1. Show that \(RS[n, k]^\perp = RS[n, n-k]\).

2. Can you represent Shamir’s \((\ell, \ell+1)\)-scheme as a linear code-based scheme with \(C = RS[n', k']_q\) for some \(n', k'?\)