Tutorial XIV: Revision for Final

Problem 1 (True or false). For each one of these statements, say whether it is true or false and provide a brief justification.

1. There are at most 2^{nk} binary linear codes of blocklength n and dimension k.

2. Let C be a randomly chosen binary code with blocklength n and dimension $n/2$, i.e., a uniformly distributed subset of $\{0,1\}^n$ of size $2^{n/2}$. Then, with probability going to 1 as $n \to \infty$, C is not a linear code.

3. Consider the distribution $P_X = (1/2, 1/6, 1/6, 1/6)$. The code with the shortest expected length for this source has expected length exactly $H(X)$.

4. Let W be a channel with binary input and output such that $W(0|0) \neq W(0|1)$, i.e., the output distributions are different for different inputs. The capacity of this channel is >0.

5. Let X_1, \ldots, X_n be iid boolean random variables with distribution $P_{X_1}(0) = 1/4$ and $P_{X_1}(1) = 3/4$. Let $(x_1, \ldots, x_n) \in \{0,1 \}^n$ be such that $|\{i \in \{1, \ldots, n\} : x_i = 0\}| = n/2$. Then, for large enough n, (x_1, \ldots, x_n) is $\frac{1}{100}$-typical, i.e., $2^{-n(H(X_1)+\frac{1}{100})} \leq P_{X_1 \ldots X_n}(x_1, \ldots, x_n) \leq 2^{-n(H(X_1)-\frac{1}{100})}$.

6. Let $G = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$. The binary code whose generator matrix is G has a minimum distance of 4.

7. The code $C = \{0000, 0011, 1111\}$ can detect any error on two bits.

8. The code over \mathbb{F}_5 with generator matrix $G = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$ has a minimum distance of 3 and among all codes over \mathbb{F}_5 with the same blocklength and dimension it has the largest possible minimum distance.

9. For any random variable $X \in \mathcal{X}$, there exists an $x \in \mathcal{X}$ such that $P_X(x) \leq 2^{-H(X)}$.

Problem 2 (Repetition code). Let $C_k^{(r)}$ be a binary repetition code whose encoding function repeats each bit of the message r times. More precisely, for a bitstring $m_1 \ldots m_k \in \{0,1\}^k$, let $C_k^{(r)}(m_1 \ldots m_k) = m_1^{(r)} \ldots m_k^{(r)} \in \{0,1\}^{rk}$, where $m^{(r)}$ denotes the concatenation of r copies of the bit m.

1. Show that $C_k^{(r)}$ is a linear code with minimum distance r. In other words, it is a $[rk, k, r]_2$ code.

2. Write a generator matrix and a parity check matrix for $C_k^{(r)}$.
3. Recall that \(BSC_f(b|b) = 1 - f \) and \(BSC_f(1 - b|b) = f \) for any \(b \in \{0, 1\} \). We would like to know if it is a good idea to use a code \(C_k^{(r)} \) to achieve reliable communication close to the capacity of the channel \(BSC_{0.25} \). What is the capacity of the channel \(BSC_{0.25} \)?

4. Given that \(\frac{1}{9} \approx 0.111 \) and \(1 - H_2(0.25) \approx 0.189 \), let us choose \(r = 9 \) to code at a rate not too far from the capacity. If we use the code \(C_k^{(9)} \) to transmit \(k \) bits over \(9k \) copies of \(BSC_{0.25} \), can we make the error probability for decoding go to 0 as \(k \to \infty \)?

Problem 3 (Constructing good codes). The objective of this problem is to explicitly construct a family of binary linear codes with dimension \(k = \Omega(n) \) and minimum distance \(d = \Omega(n) \).

1. We will define a family of codes with blocklength \(2k \) and dimension \(k \). Recall that we can view the set \(\{0, 1\}^k \) as a field \(\mathbb{F}_{2^k} \) (the only thing needed for this problem is that it is a field). More formally, we assume that \(\sigma : \mathbb{F}_{2^k}^k \to \mathbb{F}_{2^k} \) is a bijection and satisfies the properties \(\sigma(0) = 0 \), \(\sigma(x + y) = \sigma(x) + \sigma(y) \) for any \(x, y \in \mathbb{F}_{2^k} \) and also \(\sigma^{-1}(u + v) = \sigma^{-1}(u) + \sigma^{-1}(v) \) for \(u, v \in \mathbb{F}_{2^k} \). For every \(\alpha \in \mathbb{F}_{2^k} \) nonzero, let \(C_\alpha : \{0, 1\}^k \to \{0, 1\}^{2k} \) be defined by \(C_\alpha(x) = (x, \sigma^{-1}(\alpha \cdot \sigma(x))) \). Here \(\cdot \) denotes the multiplication in the field \(\mathbb{F}_{2^k} \).

 (a) Show that for any \(\alpha \), \(C_\alpha \) is a linear code. For \(\alpha = 1 \) (the unit for the field \(\mathbb{F}_{2^k} \)), what is the minimum distance of \(C_1 \)?

 (b) Show that for \(\alpha \neq \beta \), \(C_\alpha \cap C_\beta = \{0\} \).

 (c) Show that the fraction of codes \(C_\alpha \) with minimum distance \(\leq d - 1 \) is at most \(\sum_{i=0}^{d-1} \binom{2k}{i} \). Recall that for large enough \(k \), \(\sum_{i=0}^{d-1} \binom{2k}{i} \leq 2^{2kH_2(\frac{d}{2})} \). Let \(\epsilon > 0 \) and \(d = H_2^{-1}(\frac{1}{2} - \frac{\epsilon}{2})2k \). Show that the fraction of codes with minimum distance \(\geq d \) is at least \(1 - 2^{-\epsilon k} \).

2. The problem in this family is that we do not know which value of \(\alpha \) leads to a good code. Let \(RS \) be a Reed Solomon \([2^k - 1, 2^{k-1}, 2^{k-1}] \) code.

 (a) Give a generator matrix for the code \(RS \).

 (b) Consider the concatenation of the code \(RS \) and use as inner codes the codes \(C_\alpha \), i.e., the block labeled \(\alpha \) is encoded using the code \(C_\alpha \). The resulting code is a binary code. What is the blocklength and the dimension of the resulting code? Give a lower bound on the minimum distance that is linear in the blocklength.

Problem 4. Given two channels \(W_{Y_1|X_1} \) and \(W_{Y_2|X_2} \) with input spaces \(X_1, X_2 \) and outputs spaces \(Y_1, Y_2 \). Consider the channel \(W^{12} \) defined on input space \(X_1 \times X_2 \) and output space \(Y_1 \times Y_2 \) and \(W_{Y_1Y_2|X_1X_2}(y_1y_2|x_1x_2) = W_{Y_1|X_1}(y_1|x_1) \cdot W_{Y_2|X_2}(y_2|x_2) \). Compute \(C(W^{12}) = \max_{P_{X_1X_2}} I(X_1X_2 : Y_1Y_2) \) (where \(Y_1Y_2 \) is the output of \(W^{12} \) when the input is \(X_1X_2 \)) as a function of \(C(W^1) \) and \(C(W^2) \).

Problem 5. Let \(C \) be an \([n, k] \) linear code with \(w_j \) denoting the number of codewords of \(C \) of Hamming weight \(j \) for \(0 \leq j \leq n \). Define the polynomial \(f(X) = \sum_{j=0}^{n} w_j X^j \).
1. What is the value of w_0 and $\sum_{j=0}^{n} w_j$?

2. Suppose C is used for the transmission over n copies of the binary symmetric channel with flip probability $p < \frac{1}{2}$ and that we use a maximum likelihood decoder, i.e., given $y \in \{0, 1\}^n$, the decoder outputs $c \in C$ such that the Hamming distance between y and c is minimized. Show that for any transmitted codeword, the probability of an incorrect decoding is at most $f(\xi) - 1$ with $\xi = \sqrt{4p(1-p)}$.