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TUTORIAL IV

1 Fixed-length almost lossless compressor: source coding theorem
Recall that a fixed length compressor for source Y ∈ Y of length ` is a functionC : Y → {0, 1}`. It has error
probability at most δ if there exists a decompressor D : {0, 1}` → Y such that P[D(C(Y )) = Y ] ≥ 1− δ.
Let define

`opt(Y, δ) = min{` : there exists a length ` compressor for Y with error probability δ}.

We will prove what is usually called Shannon Source Coding Theorem: Let Xn = X1 . . . Xn be a
sequence of independent and distributed as X ∈ X . For any δ ∈ (0, 1),

lim
n→∞

`opt(Xn, δ)

n
= H(X). (1)

We will give another proof for the achievability part, based on a random coding strategy.

1.1 Achievability using random coding
Recall that in order to prove achievability of the source coding theorem, we chose the set S of correctly
encoded symbols to be the set of xn ∈ X n such that PXn(xn) ≥ 2−n(H(X)−ε). We will now show a similar
result by choosing the set S at random. In fact, we start by considering a general source (i.e., not necessarily
iid) and derive an upper bound on the probability of error and will give us the desired result in the special
case of an iid source.

Our objective is to show that for any source X and any integer ` ≥ 0, there exists a compressor with
error probability

δ ≤ P[− log2(PX(X)) > `− τ ] + 2−τ , ∀τ > 0. (2)

1. Let τ > 0, X be a random variable and C be a length ` compressor. Let x0 be a fixed letter of X .

Define D = {0, 1}` → X by

D(y) =

{
x, if ∃!x ∈ X s.t. C(x) = y and − log2(PX(x)) ≤ `− τ
x0, otherwise

(3)

Define also

J(x,C) = {x′ ∈ X : C(x) = C(x′), x 6= x′, and − log2(PX(x
′)) ≤ `− τ}

Show that

P[D(C(X)) 6= X] ≤ P[− log2(PX(X)) > `− τ ] +P[J(X,C) 6= ∅]



2. Let C be a random length-` compressor, that is for each x ∈ X , C(x) is a random bit string of length `,
with each bit choosen independantly and uniformly from {0, 1}. Show that

EC [P[J(X,C) 6= ∅]] ≤ 2−τ

where we compute the mean on the randomness of C but not on X .

3. Prove Eq. (2)

4. Can you build from the proof a length ` compressor with error δ ≤ P[− log2(PX(X)) > `− τ ]+2−τ?

5. Use Eq. (2) to give a proof of the upper bound in Shannon source coding theorem (1).

2 Code for unknown distribution
Recall that we can build a code C that achieves an expected length within 1 bit of the lower bound, that is:

H(X) ≤ E(|C(X)|) < H(X) + 1

This is done either by using Huffman’s algorithm or using the following choice of word lengths: `x =⌈
log 1

p(x)

⌉
, where p is the distribution of X . In some cases, we don’t know the true distribution p, but only

have an approximation q, and still want to find a code.

1. Show that if we use the same choice of word lengths: `i =
⌈
log 1

qi

⌉
, we have:

H(p) +D(p‖q) ≤ EX∼p(|C(X)|) < H(p) +D(p‖q) + 1

2. Does this also holds when you construct C using Huffman’s algorithm on q instead of p?

3 Entropy of Markov chains
A Markov chain is an indexed sequence {Xi} of random variables such that the variableXn+1 only depends
on the value of Xn. In other terms:

P(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P(Xn+1 = xn+1|Xn = xn)

In the following, we will always assume that the Markov chains are time-independant, ie the following
holds:

P(Xn+1 = a|Xn = b) = P(X1 = a|X0 = b)

In this case, the evolution of the system depends only on the conditional distribution P (X1|X0), and we
will usually describe this distribution using a probability transition matrix P = [Pij], where Pij = P(X1 =
j|X0 = i). If all the Xi’s can only take a finite number of values, we usually represent Xi by its distribution
pi = (P(Xi = 0),P(Xi = 1), . . . ,P(Xi = l)).

Those notations allow us to use the tools of linear algebra, since we can describe the dependency between
Xi+1 and Xi using the matrix product: pi+1 = pi ·P = p0 ·P i. For instance, under reasonable assumptions,
we know that P i converges to a certain matrix P∞, and that the resulting limit distribution p∞ = p0 · P∞ is
the only fixpoint of P (i.e. the only p such that p = p · P ).
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1. Find the stationary/limit distribution of a two-states Markov chain with a probability transition matrix
of the form: (

1− α α
β 1− β

)

0 11− α

α

1− β

β

2. In the case of a system with memory, the basic notion of entropy don’t capture the dependency between
states. Thus, we define another notion of entropy: the entropy rate is defined as

H(X ) = lim
n→+∞

H(Xn|Xn−1, . . . , X0) = lim
n→+∞

1

n
H(X1, . . . , Xn)

In the case of Markov chain, we thus have: H(X ) = limn→+∞H(Xn|Xn−1). If we are in a convergent
case, we have: H(X ) = H(X1|X0), where the conditional entropy is calculated using the stationary
distribution, ie with X0 ∼ µ.
Compute the entropy rate of the Markov chain of question 1.

3. What is the maximum value of H(X ) in this example?

4. We now take the special case where β = 1. Give a simplified expression of the entropy rate.

5. Find the maximum value ofH(X ) in this case. Is it normal that this maximum is achieved for α < 1/2?

6. Let N(t) be the number of allowable state sequences of length t for the Markov chain (with β = 1).
Find N(t) and calculate:

H0(X ) = lim
t→+∞

1

t
H0(X0, . . . , Xt−1) = lim

t→+∞

1

t
logN(t)

Why is H0 an upper bound on the entropy rate of the Markov chain? Compare H0 with the maximum
entropy found in the previous question.
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