TUTORIAL 1

1 Homework 1

- 1. A system X is either in the state $v_0 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ or $v_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$. We want to know which is the case. Describe a sequence of operations that determine which is the case.
- 2. Show that $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ is not a product state, i.e. not of the form $v \otimes v'$ for some qubits v, v'. Such a state

is said entangled.

2 Quantum Random Access Code

We want to encode 2 bits in a single qubit in such a way that we should be able to recover the information about the first bit only or the second bit only with a good probability of success. Formally:

Definition 2.1 (QRAC). A quantum random access code (QRAC) with success probability p is an encoding $f : \{0,1\}^2 \to \mathbb{C}^2$ (maps a pair of bits (x_1, x_2) into a quantum state $|f(x_1, x_2)\rangle$) and two unitaries U_1 and U_2 (U_i is the transformation we apply on the qubit $|f(x_1, x_2)\rangle$ to retrieve bit i) such that for all x_1, x_2 :

 $\mathbb{P}(\text{Measure output } = x_1 | U_1 \text{ was applied}) = |\langle x_1 | U_1 | f(x_1, x_2) \rangle|^2 \ge p$ $\mathbb{P}(\text{Measure output } = x_2 | U_2 \text{ was applied}) = |\langle x_2 | U_2 | f(x_1, x_2) \rangle|^2 \ge p$

- 1. A classical random access code depicts the situation where you restrict yourself to encodings $f : \{0,1\}^2 \rightarrow \{0,1\}$, i.e. encoding two bits into one bit. Then we aim to design a (probabilistic) strategy that, given $f(x_1, x_2)$, recover the information of either x_1 only or x_2 only. Show that such strategies cannot succeed with probability greater than 0.5.
- 2. How can you geometrically interpret a real unitary acting on real qubits?
- 3. Exhibit a quantum random access code with p > 0.5. What is the best you can achieve? *Hint* : *Plot the space of real qubits, and try to dispatch them the furthest appart, in such a way that two distinct unitaries can distinghuish them efficiently*

3 No-cloning Theorem

- 1. Construct a circuit that "clones" any vector of the standard basis, ie that on input $|b\rangle \otimes |0\rangle$ for $b \in \{0, 1\}$, outputs $|b\rangle \otimes |b\rangle$.
- 2. Apply your previous circuit to the qubit $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle$, have you cloned the qubit $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$?
- Prove the No-Cloning Theorem: there is no circuit that can clone any qubits, ie there is no 4 × 4 unitary matrix U such that for any |φ⟩ ∈ C², U · |φ⟩|0⟩ = |φ⟩|φ⟩. Hint: suppose that such a U exists and proceed by contradiction. Remember that U[†]U = I and try to rewrite ⟨ψ|φ⟩ differently.

4 Super-dense Coding

In this exercise, we will have two actors, Alice and Bob. Alice has two classical bits of information $(b_0, b_1) \in \{0, 1\}^2$ and she want to send them to Bob.

- 1. What is the minimum number of classical bits that Alice has to send to Bob in order to communicate him (b_0, b_1) ?

Explain how Bob can recover the values of b_0 and b_1 using $|\phi\rangle$.

