1 Homework 3

1. Let $|\Phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Given a basis $B := (|b_0\rangle, |b_1\rangle)$, we measure $|\Phi\rangle$ in $B \otimes B$. If the outcome of the measure on the first qubit is $|b_0\rangle$, is the outcome of the measure on the second qubit always $|b_0\rangle$ (and vice-versa)?

2. Now let $|\Phi'\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$. Show that if the outcome of the measure on the first qubit is $|b_0\rangle$, then the outcome of the measure on the second qubit is $|b_1\rangle$ (and vice-versa).

2 Some Properties of Circuits

2.1 Do Circuits Commute?

1. Propose two different gates A, B acting on 2-qubits states such that applying A then B is the same as applying B, then A.

2. Propose two different gates A, B acting on 2-qubits states such that applying A then B is not the same as applying B, then A.

2.2 Are Circuits Ambiguous?

1. Let $|\phi\rangle$ be a 2-qubits state. A gate A is applied to the first qubit, and then a gate B is applied to the second qubit. Show that the gate B could have been applied before the gate A.

2. Let $|\phi\rangle$ be a 2-qubits state. Check that measuring the first qubit, then the second one gives the same result as measuring the second qubit, then the first.

3. Let $|\phi\rangle$ be a $n + 1$-qubits state. A gate U is applied to the first n qubits, and then the last qubit is measured. Show that measuring the last qubit and then applying the gate U on the first n qubits gives the same result.

3 The CHSH Game

The CHSH game (named after John Clauser, Michael Horne, Abner Shimony, and Richard Holt) was introduced to disprove local hidden-variable theories trying to explain the correlations that can result from entanglement. The goal here is to retrieve this result.

The game works in the following way: two players, Alice and Bob, receive respectively two bits x and y from a referee. They send him back two bits a and b and win the game if $a \oplus b = x \land y$. However Alice and Bob cannot communicate with each other during the process. They can only agree on a strategy beforehand.
We will consider the case where the referee send uniformly X and Y. The goal for Alice and Bob is to maximize the probability of winning, ie. $\mathbb{P}(A \oplus B = X \land Y)$. The value of the game is the maximum over all possible strategies of the probability of winning.

1. What is a classical deterministic strategy for Alice and Bob? Show that no classical deterministic strategy can have a probability of success greater than $\frac{3}{4}$. What is the classical value of the CHSH game?

2. Suppose now that Alice and Bob share some hidden-variable, ie. some common shared randomness. This is modelised as a random variable $K \in [n]$, and now Alice and Bob can have a common strategy depending on K.

 (a) Give a formula to express the value of that game, where you can also choose freely the random variable K and n.

 (b) What is the hidden-variable value of the CHSH game?

3. Suppose now that Alice and Bob share some EPR pair $|\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$. Alice (resp. Bob) can make local measurements depending on x (resp. y) on the first qubit (resp. second qubit). Find the best quantum strategy possible. Conclude.

 Hint: If Alice measures her qubit in the real basis ($|a_0\rangle, |a_1\rangle$), what is the remaining state of Bob? Then plot Bob’s qubit in order to find the best strategy.

4 Quantum 1-Machine

You have a device that outputs only $|0\rangle$. You can use this device several times, and measure in any basis. How many calls to the device do you need to get a $|1\rangle$?

5 Simon’s Problem Generalized

Consider a function $f : \{0, 1\}^n \to \{0, 1\}^n$ with the promise that there exists a vector subspace V of $\{0, 1\}^n$ (seen as a vector space over \mathbb{F}_2) such that:

$$\forall x, y \in \{0, 1\}^n, f(y) = f(x) \iff \exists v \in V, x = y + v.$$

Show that one run of Simon’s algorithm output $x \in \{0, 1\}^n$ such that x is orthogonal to V ($\forall y \in V, x \cdot y = 0 \mod 2$).

Remark: the usual version of Simon’s Problem is when $V = \{0, a\}$ for some $a \in \{0, 1\}^n$.